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Introduction The Etingof-Ginzburg sheaf Consequences

The rational Cherednik algebra

W a complex reflection group with representation h over C
S ⊂ W the set of complex reflections and c : S/W −→ C a
function (our “parameter”)

Fix ω :
∧2(h⊕ h∗) −→ C,

ω((f1, f2), (g1, g2)) = g2(f1)− f2(g1)

For s ∈ S, ωs is ω on im(1− s) and zero on ker(1− s)
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Introduction The Etingof-Ginzburg sheaf Consequences

The rational Cherednik algebra

We can form the rational Cherednik algebra

Ht,c(W ) =
T (h⊕ h∗)#W

〈[x , y ] = tω(x , y)−
∑

s∈S c(s)ωs(x , y)s〉

Where x , y ∈ h⊕ h∗

For x , x ′ ∈ h∗, [x , x ′] = 0 and similarly if y , y ′ ∈ h, [y , y ′] = 0

PBW Theorem (Etingof - Ginzburg)

As a vector space Ht,c
∼= C[h]⊗ C[h∗]⊗ CW
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The generalized Calogero-Moser space

When t = 0, H0,c is a finite module over its center Z0,c , but the
center of H is C when t 6= 0

From now on we assume t = 0 and write Xc(W ) for the reduced
affine variety Spec(Z (H0,c))

Xc(W ) is the generalized Calogero-Moser space associated to W

C[h]W and C[h∗]W ↪→ Z0,c(W ) so we have a map

πW : Xc(W ) � h/W

Example: W = S2
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The Etingof-Ginzburg sheaf

Let e be the idempotent in CW ⊂ Hc corresponding to the trivial
W -module
Then Hce is a left Hc-module and a (right) Zc-module

Definition

The Etingof-Ginzburg sheaf, R[W ], on Xc is the sheaf defined by
Γ(Xc,R[W ]) = Hce

The sheaf R “contains all the information about Hc”

Theorem (Etingof - Ginzburg)

EndZc(He) ∼= Hc
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Relation to simple modules

Let U be a Zariski-open affine subset of Xc

Theorem (Etingof-Ginzburg)

If U ⊆Smooth(Xc) then

1 The sheaf RU is locally free and EndU(RU) ∼= Hc,U

2 Any simple Hc,U -module is isomorphic to R(x) for some
x ∈ U

3 Any simple Hc,U -module has dimension |W | and is isomorphic
to the regular representation as a W -module
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The case W = Sn and c 6= 0

In this situation Xc is smooth and isomorphic to the “classical”
Calogero-Moser space studied by Wilson

Thus, R[Sn] is a vector bundle on Xc and, ∀ x ∈ Xc,

R[Sn](x) ∼= CSn as a Sn-module

In particular, dim R[Sn](x) = n!
It was hoped that R[Sn] would be related to the Procesi bundle on
the Hilbert scheme
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Factorization

To b ∈ Cn/Sn we associate (up to conjugation) a stabilizer
subgroup

Wb = Sn1 × Sn2 × · · · × Snk
n1 + · · ·+ nk = n

Then Wilson showed:

Factorization

π−1
Sn

(b) ∼= π−1
Sn1

(0)× · · · × π−1
Snk

(0)
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Conjecture

Fix Y = π−1
Sn

(b). Based on the analogy with the Procesi bundle,
Etingof and Ginzburg made

Conjecture

There is a factorization of the Etingof-Ginzburg bundle

R[Sn]|Y
∼= IndSn

Sn1×···×Snk
R[Sn1 ] � · · ·�R[Snk

]|Y

as Sn-equivariant bundles
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The main results

Theorem - Factorization of the gen Calogero-Moser space (B)

Let W be a complex relection group, b ∈ h/W with stabilizer Wb,
then there is a scheme theoretic isomorphism

π−1
W (b) ∼= π−1

Wb
(0)

Theorem - Factorization of the Etingof-Ginzburg sheaf (B)

For W , b and Wb as above,

R[W ]|
π−1

W
(b)

∼= IndW
Wb
R[Wb]|

π−1
Wb

(0)

as W -equivariant sheaves

Proof is based on a recent result of Bezrukavnikov and Etingof
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Poisson structure on Xc

Since Z0,c
∼= eH0,ce has a flat noncommutative deformation,

eHt,ce, it is a Poisson algebra with bracket

{− , −} : Z0,c × Z0,c −→ Z0,c

i.e. (Z0,c, {−,−}) is a Lie algebra and {z ,−} a derivation
∀ a ∈ Z0,c

In this situation, Xc is stratified by symplectic leaves

A result of Brown and Gordon says that there are only finitely
many leaves and they are algebraic

i.e. each leaf is Zariski locally closed
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Finite dimensional quotients

A point x ∈ Xc corresponds to a maximal ideal mx ⊂ Zc

Fix
Hc,x := Hc/mxHc (= Hc(x))

Then the following holds

Theorem (Brown-Gordon)

Let L ⊂ Xc be a symplectic leaf and x , y ∈ L, then there is an
algebra isomorphism

Hc,x
∼= Hc,y
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Reduction to zero dimsional leaves

In fact, when describing Hc,x we need only consider the “worst”
case:

Theorem (B)

Let L ⊂ Xc(W ) be a symplectic leaf of dimension 2l and x ∈ L.
Then there exists a parabolic subgroup W ′ of W , a point
y ∈ Xc′(W

′) such that {y} is a symplectic leaf and an algebra
isomorphism

Hc,x
∼= Mat|W /W ′|(Hc′,y )

If dim Xc(W ) = 2n then rank W ′ = n − l
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Example G2
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