Factorization in generalized Calogero-Moser spaces

Gwyn Bellamy

Thursday, 27th November, 2008
Introduction

The Etingof-Ginzburg sheaf

Consequences

Outline

1. The rational Cherednik algebra
2. The generalized Calogero-Moser space and Etingof-Ginzburg sheaf
3. Factorization

Consequences

1. A reduction theorem
2. Example G_2
The rational Cherednik algebra

- \mathcal{W} a complex reflection group with representation \mathfrak{h} over \mathbb{C}
- $S \subset \mathcal{W}$ the set of complex reflections and $c : S/\mathcal{W} \longrightarrow \mathbb{C}$ a function (our “parameter”)
- Fix $\omega : \bigwedge^2(\mathfrak{h} \oplus \mathfrak{h}^*) \longrightarrow \mathbb{C}$,

$$\omega((f_1, f_2), (g_1, g_2)) = g_2(f_1) - f_2(g_1)$$
The rational Cherednik algebra

- \mathcal{W} a complex reflection group with representation \mathfrak{h} over \mathbb{C}
- $S \subset \mathcal{W}$ the set of complex reflections and $c : S/\mathcal{W} \to \mathbb{C}$ a function (our "parameter")
- Fix $\omega : \bigwedge^2(\mathfrak{h} \oplus \mathfrak{h}^*) \to \mathbb{C}$, $\omega((f_1, f_2), (g_1, g_2)) = g_2(f_1) - f_2(g_1)$

- For $s \in S$, ω_s is ω on $\text{im}(1 - s)$ and zero on $\ker(1 - s)$
The rational Cherednik algebra

We can form the rational Cherednik algebra

\[H_{t,c}(W) = \frac{T(\mathfrak{h} \oplus \mathfrak{h}^*) \# W}{\langle [x, y] = t\omega(x, y) - \sum_{s \in S} c(s)\omega_s(x, y)s \rangle} \]

Where \(x, y \in \mathfrak{h} \oplus \mathfrak{h}^* \)
The rational Cherednik algebra

We can form the **rational Cherednik algebra**

\[
H_{t,c}(W) = \frac{T(\mathfrak{h} \oplus \mathfrak{h}^*) \# W}{\langle [x, y] = t\omega(x, y) - \sum_{s \in S} c(s)\omega_s(x, y)s \rangle}
\]

Where \(x, y \in \mathfrak{h} \oplus \mathfrak{h}^* \)

For \(x, x' \in \mathfrak{h}^* \), \([x, x'] = 0\) and similarly if \(y, y' \in \mathfrak{h} \), \([y, y'] = 0\)
The rational Cherednik algebra

We can form the rational Cherednik algebra

\[H_{t,c}(W) = \frac{T(\mathfrak{h} \oplus \mathfrak{h}^*) \# W}{\langle [x, y] = t \omega(x, y) - \sum_{s \in S} c(s) \omega_s(x, y)s \rangle} \]

Where \(x, y \in \mathfrak{h} \oplus \mathfrak{h}^* \)
For \(x, x' \in \mathfrak{h}^* \), \([x, x'] = 0 \) and similarly if \(y, y' \in \mathfrak{h} \), \([y, y'] = 0 \)

PBW Theorem (Etingof - Ginzburg)

As a vector space \(H_{t,c} \cong \mathbb{C}[\mathfrak{h}] \otimes \mathbb{C}[\mathfrak{h}^*] \otimes \mathbb{C}W \)
The generalized Calogero-Moser space

When $t = 0$, $H_{0,c}$ is a finite module over its center $Z_{0,c}$, but the center of H is \mathbb{C} when $t \neq 0$
The generalized Calogero-Moser space

When \(t = 0 \), \(H_{0,c} \) is a finite module over its center \(Z_{0,c} \), but the center of \(H \) is \(\mathbb{C} \) when \(t \neq 0 \)

From now on we assume \(t = 0 \) and write \(X_c(W) \) for the reduced affine variety \(\text{Spec}(Z(H_{0,c})) \)

\(X_c(W) \) is the generalized Calogero-Moser space associated to \(W \)
The generalized Calogero-Moser space

When $t = 0$, $H_{0,c}$ is a finite module over its center $Z_{0,c}$, but the center of H is \mathbb{C} when $t \neq 0$

From now on we assume $t = 0$ and write $X_c(W)$ for the reduced affine variety $\text{Spec}(Z(H_{0,c}))$

$X_c(W)$ is the generalized Calogero-Moser space associated to W

$\mathbb{C}[\mathfrak{h}]^W$ and $\mathbb{C}[\mathfrak{h}^*]^W \hookrightarrow Z_{0,c}(W)$ so we have a map

$\pi_W : X_c(W) \rightarrow \mathfrak{h}/W$

Example: $W = S_2$
The Etingof-Ginzburg sheaf

Let e be the idempotent in $\mathbb{C}W \subset H_c$ corresponding to the trivial W-module.
Then H_ce is a left H_c-module and a (right) Z_c-module.
The Etingof-Ginzburg sheaf

Let e be the idempotent in $\mathbb{C}W \subset H_c$ corresponding to the trivial W-module.
Then $H_c e$ is a left H_c-module and a (right) Z_c-module.

Definition

The Etingof-Ginzburg sheaf, $\mathcal{R}[W]$, on X_c is the sheaf defined by
$\Gamma(X_c, \mathcal{R}[W]) = H_c e$.

The sheaf \mathcal{R} “contains all the information about H_c”

Theorem (Etingof - Ginzburg)

$$\text{End}_{Z_c}(He) \cong H_c$$
Relation to simple modules

Let U be a Zariski-open affine subset of X_c

Theorem (Etingof-Ginzburg)

If $U \subseteq \text{Smooth}(X_c)$ then

1. The sheaf \mathcal{R}_U is locally free and $\text{End}_U(\mathcal{R}_U) \cong \mathcal{H}_{c,U}$
2. Any simple $\mathcal{H}_{c,U}$-module is isomorphic to $\mathcal{R}(x)$ for some $x \in U$
3. Any simple $\mathcal{H}_{c,U}$-module has dimension $|\mathcal{W}|$ and is isomorphic to the regular representation as a \mathcal{W}-module
The case $W = S_n$ and $c \neq 0$

In this situation X_c is smooth and isomorphic to the “classical” Calogero-Moser space studied by Wilson.
The case \(W = S_n \) and \(c \neq 0 \)

In this situation \(X_c \) is smooth and isomorphic to the “classical” Calogero-Moser space studied by Wilson. Thus, \(\mathcal{R}[S_n] \) is a vector bundle on \(X_c \) and, \(\forall x \in X_c \),

\[
\mathcal{R}[S_n](x) \cong \mathbb{C}S_n \quad \text{as a } S_n\text{-module}
\]

In particular, \(\dim \mathcal{R}[S_n](x) = n! \)
The case $\mathcal{W} = S_n$ and $c \neq 0$

In this situation X_c is smooth and isomorphic to the “classical” Calogero-Moser space studied by Wilson. Thus, $\mathcal{R}[S_n]$ is a vector bundle on X_c and, $\forall x \in X_c$,

$$\mathcal{R}[S_n](x) \cong \mathbb{C}S_n \text{ as a } S_n\text{-module}$$

In particular, $\dim \mathcal{R}[S_n](x) = n!$

It was hoped that $\mathcal{R}[S_n]$ would be related to the Procesi bundle on the Hilbert scheme.
Factorization

To $b \in \mathbb{C}^n / S_n$ we associate (up to conjugation) a stabilizer subgroup

$$W_b = S_{n_1} \times S_{n_2} \times \cdots \times S_{n_k} \quad n_1 + \cdots + n_k = n$$

Then Wilson showed:

$$\pi_{S_n}^{-1}(b) \cong \pi_{S_{n_1}}^{-1}(0) \times \cdots \times \pi_{S_{n_k}}^{-1}(0)$$
Conjecture

Fix $Y = \pi_{\mathcal{S}_n}^{-1}(b)$. Based on the analogy with the Procesi bundle, Etingof and Ginzburg made

There is a factorization of the Etingof-Ginzburg bundle

$$\mathcal{R}[S_n]|_Y \cong \text{Ind}_{\mathcal{S}_{n_1} \times \ldots \times \mathcal{S}_{n_k}} \mathcal{R}[S_{n_1}] \boxtimes \cdots \boxtimes \mathcal{R}[S_{n_k}]|_Y$$

as S_n-equivariant bundles.
The main results

Theorem - Factorization of the gen Calogero-Moser space (B)

Let \(W \) be a complex reflection group, \(b \in \mathfrak{h}/W \) with stabilizer \(W_b \), then there is a scheme theoretic isomorphism

\[
\pi_{W}^{-1}(b) \cong \pi_{W_b}^{-1}(0)
\]
The main results

Theorem - Factorization of the gen Calogero-Moser space (B)

Let W be a complex reflection group, $b \in \mathfrak{h}/W$ with stabilizer W_b, then there is a scheme theoretic isomorphism

$$\pi_W^{-1}(b) \cong \pi_{W_b}^{-1}(0)$$

Theorem - Factorization of the Etingof-Ginzburg sheaf (B)

For W, b and W_b as above,

$$
\mathcal{R}[W]|_{\pi_W^{-1}(b)} \cong \text{Ind}_{W_b}^W \mathcal{R}[W_b]|_{\pi_{W_b}^{-1}(0)}
$$

as W-equivariant sheaves

Proof is based on a recent result of Bezrukavnikov and Etingof
Poisson structure on X_c

Since $Z_{0,c} \cong eH_{0,c}e$ has a flat noncommutative deformation, $eH_{t,c}e$, it is a Poisson algebra with bracket

$$\{ - , - \} : Z_{0,c} \times Z_{0,c} \longrightarrow Z_{0,c}$$

i.e. $(Z_{0,c}, \{ - , - \})$ is a Lie algebra and $\{ z , - \}$ a derivation

$\forall a \in Z_{0,c}$
Poisson structure on X_c

Since $Z_{0,c} \cong eH_{0,c}e$ has a flat noncommutative deformation, $eH_{t,c}e$, it is a Poisson algebra with bracket

$$\{ -, - \} : Z_{0,c} \times Z_{0,c} \longrightarrow Z_{0,c}$$

i.e. $(Z_{0,c}, \{ -, - \})$ is a Lie algebra and $\{ z, - \}$ a derivation

$\forall \ a \in Z_{0,c}$

In this situation, X_c is stratified by symplectic leaves

A result of Brown and Gordon says that there are only finitely many leaves and they are algebraic

i.e. each leaf is Zariski locally closed
Finite dimensional quotients

A point $x \in X_c$ corresponds to a maximal ideal $m_x \subset Z_c$

Fix

$$H_{c,x} := H_c/m_x H_c \quad (= H_c(x))$$
Finite dimensional quotients

A point \(x \in X_c \) corresponds to a maximal ideal \(m_x \subset \mathbb{Z}_c \)

Fix

\[H_{c,x} := H_c/m_x H_c \quad (= \mathcal{H}_c(x)) \]

Then the following holds

Theorem (Brown-Gordon)

Let \(\mathcal{L} \subset X_c \) be a symplectic leaf and \(x, y \in \mathcal{L} \), then there is an algebra isomorphism

\[H_{c,x} \cong H_{c,y} \]
Reduction to zero dimensional leaves

In fact, when describing $H_{c,x}$ we need only consider the “worst” case:

Theorem (B)

Let $\mathcal{L} \subset X_{c}(W)$ be a symplectic leaf of dimension $2l$ and $x \in \mathcal{L}$. Then there exists a parabolic subgroup W' of W, a point $y \in X_{c'}(W')$ such that $\{y\}$ is a symplectic leaf and an algebra isomorphism

$$H_{c,x} \cong \text{Mat}_{|W/W'|}(H_{c',y})$$

If $\dim X_{c}(W) = 2n$ then $\text{rank } W' = n - l$
Example G2