Factorization in generalized Calogero-Moser spaces

Gwyn Bellamy

Thursday, 27th November, 2008

Outline

- The rational Cherednik algebra
- The generalized Calogero-Moser space and Etingof-Ginzburg sheaf
- Sactorization

Consequences

- A reduction theorem
- 2 Example G_2

- $\bullet~$ W a complex reflection group with representation $\mathfrak h$ over $\mathbb C$
- $\mathcal{S} \subset W$ the set of complex reflections and $\mathbf{c} : \mathcal{S}/W \longrightarrow \mathbb{C}$ a function (our "parameter")
- Fix $\omega: \bigwedge^2(\mathfrak{h} \oplus \mathfrak{h}^*) \longrightarrow \mathbb{C}$,

$$\omega((f_1, f_2), (g_1, g_2)) = g_2(f_1) - f_2(g_1)$$

- $\bullet~$ W a complex reflection group with representation $\mathfrak h$ over $\mathbb C$
- $S \subset W$ the set of complex reflections and $\mathbf{c} : S/W \longrightarrow \mathbb{C}$ a function (our "parameter")
- Fix $\omega : \bigwedge^2 (\mathfrak{h} \oplus \mathfrak{h}^*) \longrightarrow \mathbb{C}$,

$$\omega((f_1,f_2),(g_1,g_2))=g_2(f_1)-f_2(g_1)$$

• For
$$s\in\mathcal{S}$$
, ω_s is ω on $\mathsf{im}(1-s)$ and zero on $\mathsf{ker}(1-s)$

We can form the rational Cherednik algebra

$$H_{t,c}(W) = \frac{T(\mathfrak{h} \oplus \mathfrak{h}^*) \# W}{\langle [x, y] = t\omega(x, y) - \sum_{s \in S} \mathbf{c}(s) \omega_s(x, y) s \rangle}$$

Where $x, y \in \mathfrak{h} \oplus \mathfrak{h}^*$

We can form the rational Cherednik algebra

$$H_{t,c}(W) = \frac{T(\mathfrak{h} \oplus \mathfrak{h}^*) \# W}{\langle [x, y] = t\omega(x, y) - \sum_{s \in S} \mathbf{c}(s) \omega_s(x, y) s \rangle}$$

Where $x, y \in \mathfrak{h} \oplus \mathfrak{h}^*$ For $x, x' \in \mathfrak{h}^*$, [x, x'] = 0 and similarly if $y, y' \in \mathfrak{h}$, [y, y'] = 0

We can form the rational Cherednik algebra

$$H_{t,c}(W) = \frac{T(\mathfrak{h} \oplus \mathfrak{h}^*) \# W}{\langle [x, y] = t\omega(x, y) - \sum_{s \in S} \mathbf{c}(s) \omega_s(x, y) s \rangle}$$

Where $x, y \in \mathfrak{h} \oplus \mathfrak{h}^*$ For $x, x' \in \mathfrak{h}^*$, [x, x'] = 0 and similarly if $y, y' \in \mathfrak{h}$, [y, y'] = 0

PBW Theorem (Etingof - Ginzburg)

As a vector space $H_{t,c} \cong \mathbb{C}[\mathfrak{h}] \otimes \mathbb{C}[\mathfrak{h}^*] \otimes \mathbb{C}W$

The generalized Calogero-Moser space

When t = 0, $H_{0,c}$ is a finite module over its center $Z_{0,c}$, but the center of H is \mathbb{C} when $t \neq 0$

The generalized Calogero-Moser space

When t = 0, $H_{0,c}$ is a finite module over its center $Z_{0,c}$, but the center of H is \mathbb{C} when $t \neq 0$ From now on we assume t = 0 and write $X_c(W)$ for the reduced affine variety $\text{Spec}(Z(H_{0,c}))$

 $X_{c}(W)$ is the generalized Calogero-Moser space associated to W

The generalized Calogero-Moser space

When t = 0, $H_{0,c}$ is a finite module over its center $Z_{0,c}$, but the center of H is \mathbb{C} when $t \neq 0$ From now on we assume t = 0 and write $X_c(W)$ for the reduced affine variety $\text{Spec}(Z(H_{0,c}))$

 $X_{c}(W)$ is the generalized Calogero-Moser space associated to W

 $\mathbb{C}[\mathfrak{h}]^W$ and $\mathbb{C}[\mathfrak{h}^*]^W \hookrightarrow Z_{0,\mathbf{c}}(W)$ so we have a map

$$\pi_W: X_{\mathbf{c}}(W) \twoheadrightarrow \mathfrak{h}/W$$

Example: $W = S_2$

The Etingof-Ginzburg sheaf

Let e be the idempotent in $\mathbb{C} W \subset H_{\mathbf{c}}$ corresponding to the trivial W-module

Then $H_c e$ is a left H_c -module and a (right) Z_c -module

The Etingof-Ginzburg sheaf

Let *e* be the idempotent in $\mathbb{C}W \subset H_c$ corresponding to the trivial *W*-module

Then $H_c e$ is a left H_c -module and a (right) Z_c -module

Definition

The Etingof-Ginzburg sheaf, $\mathcal{R}[W]$, on X_c is the sheaf defined by $\Gamma(X_c, \mathcal{R}[W]) = H_c e$

The sheaf \mathcal{R} "contains all the information about H_c "

Theorem (Etingof - Ginzburg)

 $\operatorname{End}_{Z_{\mathbf{c}}}(He) \cong H_{\mathbf{c}}$

Relation to simple modules

Let U be a Zariski-open affine subset of X_c

Theorem (Etingof-Ginzburg)

If $U \subseteq \text{Smooth}(X_c)$ then

- **1** The sheaf \mathcal{R}_U is locally free and $End_U(\mathcal{R}_U) \cong \mathcal{H}_{\mathbf{c},U}$
- ② Any simple $\mathcal{H}_{c,U}$ -module is isomorphic to $\mathcal{R}(x)$ for some *x* ∈ *U*
- Any simple H_{c,U}-module has dimension |W| and is isomorphic to the regular representation as a W-module

The case $W = S_n$ and $\mathbf{c} \neq 0$

In this situation X_c is smooth and isomorphic to the "classical" Calogero-Moser space studied by Wilson

The case $W = S_n$ and $\mathbf{c} \neq 0$

In this situation X_c is smooth and isomorphic to the "classical" Calogero-Moser space studied by Wilson Thus, $\mathcal{R}[S_n]$ is a vector bundle on X_c and, $\forall x \in X_c$,

$$\mathcal{R}[S_n](x) \cong \mathbb{C}S_n$$
 as a S_n -module

In particular, dim $\mathcal{R}[S_n](x) = n!$

The case $W = S_n$ and $\mathbf{c} \neq 0$

In this situation X_c is smooth and isomorphic to the "classical" Calogero-Moser space studied by Wilson Thus, $\mathcal{R}[S_n]$ is a vector bundle on X_c and, $\forall x \in X_c$,

$$\mathcal{R}[S_n](x) \cong \mathbb{C}S_n$$
 as a S_n -module

In particular, dim $\mathcal{R}[S_n](x) = n!$ It was hoped that $\mathcal{R}[S_n]$ would be related to the Procesi bundle on the Hilbert scheme

Factorization

To $b \in \mathbb{C}^n/S_n$ we associate (up to conjugation) a stabilizer subgroup

$$W_b = S_{n_1} \times S_{n_2} \times \cdots \times S_{n_k} \qquad n_1 + \cdots + n_k = n_k$$

Then Wilson showed:

Factorization

$$\pi_{S_n}^{-1}(b) \cong \pi_{S_{n_1}}^{-1}(0) \times \cdots \times \pi_{S_{n_k}}^{-1}(0)$$

Conjecture

Fix $Y = \pi_{S_n}^{-1}(b)$. Based on the analogy with the Procesi bundle, Etingof and Ginzburg made

Conjecture

There is a factorization of the Etingof-Ginzburg bundle

$$\mathcal{R}[S_n]_{|_Y} \cong \mathrm{Ind}_{S_{n_1} imes \cdots imes S_{n_k}}^{S_n} \mathcal{R}[S_{n_1}] \boxtimes \cdots \boxtimes \mathcal{R}[S_{n_k}]_{|_Y}$$

as S_n -equivariant bundles

The main results

Theorem - Factorization of the gen Calogero-Moser space (B)

Let W be a complex relection group, $b \in \mathfrak{h}/W$ with stabilizer W_b , then there is a scheme theoretic isomorphism

$$\pi_W^{-1}(b) \cong \pi_{W_b}^{-1}(0)$$

The main results

Theorem - Factorization of the gen Calogero-Moser space (B)

Let W be a complex relection group, $b \in \mathfrak{h}/W$ with stabilizer W_b , then there is a scheme theoretic isomorphism

$$\pi_W^{-1}(b) \cong \pi_{W_b}^{-1}(0)$$

Theorem - Factorization of the Etingof-Ginzburg sheaf (B)

For W, b and W_b as above,

$$\mathcal{R}[W]_{ert_{W}^{-1}(b)}\cong ext{Ind}_{W_b}^{W}\mathcal{R}[W_b]_{ert_{\pi_{W_b}^{-1}(b)}}$$

as W-equivariant sheaves

Proof is based on a recent result of Bezrukavnikov and Etingof

Poisson structure on X_{c}

Since $Z_{0,c} \cong eH_{0,c}e$ has a flat noncommutative deformation, $eH_{t,c}e$, it is a Poisson algebra with bracket

$$\{\,-\,,\,-\,\}:Z_{0,\mathbf{c}}\times Z_{0,\mathbf{c}}\longrightarrow Z_{0,\mathbf{c}}$$

i.e. $(Z_{0,c}, \{-,-\})$ is a Lie algebra and $\{z,-\}$ a derivation $\forall a \in Z_{0,c}$

Poisson structure on X_{c}

Since $Z_{0,c} \cong eH_{0,c}e$ has a flat noncommutative deformation, $eH_{t,c}e$, it is a Poisson algebra with bracket

$$\{\,-\,,\,-\,\}:Z_{0,\mathbf{c}}\times Z_{0,\mathbf{c}}\longrightarrow Z_{0,\mathbf{c}}$$

i.e. $(Z_{0,c}, \{-, -\})$ is a Lie algebra and $\{z, -\}$ a derivation $\forall a \in Z_{0,c}$ In this situation, X_c is stratified by symplectic leaves

A result of Brown and Gordon says that there are only finitely many leaves and they are algebraic

i.e. each leaf is Zariski locally closed

Finite dimensional quotients

A point $x \in X_{\mathbf{c}}$ corresponds to a maximal ideal $\mathfrak{m}_x \subset Z_{\mathbf{c}}$ Fix

$$H_{\mathbf{c},x} := H_{\mathbf{c}}/\mathfrak{m}_{x}H_{\mathbf{c}}$$
 $(= \mathcal{H}_{\mathbf{c}}(x))$

Finite dimensional quotients

A point $x \in X_c$ corresponds to a maximal ideal $\mathfrak{m}_x \subset Z_c$ Fix

$$H_{\mathbf{c},x} := H_{\mathbf{c}}/\mathfrak{m}_{x}H_{\mathbf{c}} \qquad (=\mathcal{H}_{\mathbf{c}}(x))$$

Then the following holds

Theorem (Brown-Gordon)

Let $\mathcal{L} \subset X_{c}$ be a symplectic leaf and $x, y \in \mathcal{L}$, then there is an algebra isomorphism

$$H_{\mathbf{c},x} \cong H_{\mathbf{c},y}$$

Reduction to zero dimsional leaves

In fact, when describing $H_{\mathbf{c},\times}$ we need only consider the "worst" case:

Theorem (B)

Let $\mathcal{L} \subset X_{\mathbf{c}}(W)$ be a symplectic leaf of dimension 2*I* and $x \in \mathcal{L}$. Then there exists a parabolic subgroup W' of W, a point $y \in X_{\mathbf{c}'}(W')$ such that $\{y\}$ is a symplectic leaf and an algebra isomorphism

$$H_{\mathbf{c},x} \cong \operatorname{Mat}_{|W/W'|}(H_{\mathbf{c}',y})$$

If dim $X_{\mathbf{c}}(W) = 2n$ then rank W' = n - l

Example G2

