Algèbres de Hopf combinatoires

Loïc Foissy

Univ. Littoral Côte d’Opale, UR 2597 LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville F-62100 Calais, France.
Email: foissy@univ-littoral.fr
Table des matières

1 Produit tensoriel d’espaces vectoriels
 1.1 Définition ... 7
 1.2 Propriétés du produit tensoriel 9
 1.2.1 Base et dimension ... 9
 1.2.2 Associativité et unité .. 9
 1.2.3 Sommes et intersections de produits tensoriels 10
 1.2.4 Dualité .. 11
 1.2.5 Volte .. 12
 1.3 Algèbre tensorielle et algèbre symétrique 13
 1.3.1 Algèbre tensorielle ... 13
 1.3.2 Algèbre symétrique .. 14
 1.4 Produit tensoriel d’algèbres ... 15

2 Algèbres, cogèbres, bigèbres ... 17
 2.1 Axiomes des algèbres .. 17
 2.2 Cogèbres ... 19
 2.2.1 Définition .. 19
 2.2.2 Coidéaux et sous-cogèbres 22
 2.2.3 Morphismes de cogèbres 22
 2.2.4 Produit tensoriel de cogèbres 23
 2.3 Bigèbres ... 23
 2.3.1 Définition .. 23
 2.3.2 Sous-bigèbres et quotients 25
 2.3.3 Bigèbres tensorielles et bigèbres symétriques 25

3 Convolution et algèbres de Hopf 29
 3.1 Définition des algèbres de Hopf 29
 3.1.1 Convolution .. 29
 3.1.2 Définition .. 30
 3.1.3 Idéaux de Hopf et morphismes d’algèbres de Hopf 30
 3.2 Propriétés de l’antipode .. 31
 3.2.1 bigèbres opposées et coopposées 31
 3.2.2 Compatibilités de l’antipode avec les structures de bigèbres 31
 3.2.3 Antipode d’une algèbre de Hopf (co)commutative 33
 3.2.4 Eléments de type groupe et éléments primitifs 33
 3.3 Algèbres de Hopf $T(V)$ et $S(V)$ 34
 3.3.1 Antipode d’une algèbre tensorielle 34
 3.3.2 Antipode d’une algèbre symétrique 34
<table>
<thead>
<tr>
<th>4 Graduations</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Espaces gradués</td>
<td>37</td>
</tr>
<tr>
<td>4.1.1 Définitions</td>
<td>37</td>
</tr>
<tr>
<td>4.1.2 Séries formelles de Poincaré-Hilbert</td>
<td>38</td>
</tr>
<tr>
<td>4.1.3 Dual gradué</td>
<td>39</td>
</tr>
<tr>
<td>4.1.4 Algèbres, cogèbres, bigèbres graduées</td>
<td>40</td>
</tr>
<tr>
<td>4.2 Dual gradué d’une algèbre de Hopf tensorielle ou symétrique</td>
<td>41</td>
</tr>
<tr>
<td>4.2.1 Dual d’une algèbre symétrique</td>
<td>41</td>
</tr>
<tr>
<td>4.2.2 Dual d’une algèbre tensorielle</td>
<td>43</td>
</tr>
<tr>
<td>5 Connexité</td>
<td>47</td>
</tr>
<tr>
<td>5.1 Algèbres de Hopf connexes</td>
<td>47</td>
</tr>
<tr>
<td>5.1.1 Définitions et exemples</td>
<td>47</td>
</tr>
<tr>
<td>5.1.2 Existence d’un antipode</td>
<td>47</td>
</tr>
<tr>
<td>5.2 Générateurs et éléments primitifs</td>
<td>49</td>
</tr>
<tr>
<td>5.2.1 Espaces des générateurs</td>
<td>49</td>
</tr>
<tr>
<td>5.2.2 Éléments primitifs</td>
<td>50</td>
</tr>
<tr>
<td>5.3 Algèbres de Lie et algèbres enveloppantes</td>
<td>51</td>
</tr>
<tr>
<td>5.3.1 Axiomes des algèbre de Lie</td>
<td>51</td>
</tr>
<tr>
<td>5.3.2 Algèbres enveloppantes</td>
<td>52</td>
</tr>
<tr>
<td>5.4 Théorème de Cartier-Quillen-Milnor-Moore</td>
<td>54</td>
</tr>
<tr>
<td>5.4.1 Lemmes préliminaires</td>
<td>54</td>
</tr>
<tr>
<td>5.4.2 Théorème</td>
<td>56</td>
</tr>
<tr>
<td>5.5 Groupe des caractères d’une algèbre de Hopf graduée connexe</td>
<td>57</td>
</tr>
<tr>
<td>5.5.1 Groupe des caractères et algèbre de Lie des caractères infinitésimaux</td>
<td>57</td>
</tr>
<tr>
<td>5.5.2 Cas d’une algèbre de Hopf graduée connexe</td>
<td>58</td>
</tr>
<tr>
<td>6 Un exemple d’algèbre de Hopf combinatoire : l’algèbre des fonctions symétriques</td>
<td>63</td>
</tr>
<tr>
<td>6.1 Définition</td>
<td>63</td>
</tr>
<tr>
<td>6.1.1 Construction</td>
<td>63</td>
</tr>
<tr>
<td>6.1.2 Antipode</td>
<td>63</td>
</tr>
<tr>
<td>6.2 Algèbre de Lie et groupe associés à Sym</td>
<td>64</td>
</tr>
<tr>
<td>6.2.1 Caractères infinitésimaux de Sym</td>
<td>64</td>
</tr>
<tr>
<td>6.2.2 Groupe des caractères de Sym</td>
<td>65</td>
</tr>
<tr>
<td>6.2.3 Éléments primitifs de Sym</td>
<td>66</td>
</tr>
<tr>
<td>7 Algèbre des arbres enracinés</td>
<td>67</td>
</tr>
<tr>
<td>7.1 Construction</td>
<td>67</td>
</tr>
<tr>
<td>7.1.1 Arbres enracinés</td>
<td>67</td>
</tr>
<tr>
<td>7.1.2 Opérateur de greffe sur une racine</td>
<td>68</td>
</tr>
<tr>
<td>7.1.3 Graduation de H_R</td>
<td>68</td>
</tr>
<tr>
<td>7.2 Algèbre de Hopf H_R</td>
<td>69</td>
</tr>
<tr>
<td>7.2.1 Définition du coproduit</td>
<td>69</td>
</tr>
<tr>
<td>7.2.2 Antipode</td>
<td>73</td>
</tr>
<tr>
<td>7.2.3 Propriété universelle de l’algèbre de Hopf H_R</td>
<td>73</td>
</tr>
<tr>
<td>7.3 Dual gradué de H_R</td>
<td>75</td>
</tr>
<tr>
<td>7.4 Structure de H_R</td>
<td>76</td>
</tr>
<tr>
<td>7.4.1 Opération de greffe</td>
<td>76</td>
</tr>
</tbody>
</table>
8 Algèbres des arbres enracinés plans

8.1 Construction
8.1.1 Arbres enracinés plans
8.1.2 Opérateur de greffe sur une racine
8.1.3 Graduation de H_{PR}

8.2 Algèbre de Hopf H_{PR}
8.2.1 Définition du coproduit
8.2.2 Propriété universelle de l’algèbre de Hopf H_{PR}

8.3 Dual gradué de H_{PR}
8.3.1 Application γ
8.3.2 Autodualité
8.3.3 Applications : couplage de Hopf et base duale

Notations 0.0.1.
1. Dans tout ce texte, \mathbb{K} désigne un corps commutatif quelconque. Tous les espaces vectoriels, algèbres, etc, de ce texte seront pris sur le corps \mathbb{K}. On ne considèrera par ailleurs que des algèbres non nulles.

2. Si V est un espace vectoriel et si $(e_i)_{i \in I}$ est une base de V, alors $(e_i^*)_{i \in I}$ est la famille de V^* définie par :

$$e_i^* : \begin{cases} V &\longrightarrow \mathbb{K} \\ e_j &\mapsto \delta_{i,j}. \end{cases}$$

Il s’agit d’une famille libre. Lorsque V est de dimension finie, il s’agit d’une base de V^*, appelée la base duale de $(e_i)_{i \in I}$.

3. Soient V et W deux espaces. L’ensemble des applications linéaires de V dans W est noté $\text{Hom}(V, W)$.
Chapitre 1

Produit tensoriel d’espaces vectoriels

Soient V et W deux espaces vectoriels et soit $f : V \rightarrow W$ une application linéaire. Sa transposition est une application linéaire $f^* : W^* \rightarrow V^*$ (on a "inversé le sens de la flèche"). Soient maintenant V_1, V_2 et W des espaces vectoriels et soit $f : V_1 \times V_2 \rightarrow W$ une application bilinéaire. Comment transposer f ? Il faut d’abord linéariser f, en remplaçant $V_1 \times V_2$ par un espace vectoriel $V_1 \otimes V_2$. Nous nous limitons ici au produit tensoriel sur un corps K. Pour des résultats plus généraux (sur un anneau quelconque), voir par exemple [2] ou le premier chapitre de [19], ou encore [14].

1.1 Définition

Lemme 1.1.1. Soit X un ensemble quelconque. Il existe un espace vectoriel \mathbb{K}^X de base X et cet espace est unique à un isomorphisme fixant X près.

Démonstration. Existence. Soit $F = \mathbb{K}^X$, ensemble des applications de X dans \mathbb{K}. Cet ensemble est naturellement muni d’une structure d’espace vectoriel. Pour tout $x \in X$, on considère :

$$f_x : \begin{cases} X & \rightarrow & \mathbb{K} \\ y & \rightarrow & \delta_{x,y}. \end{cases}$$

Alors la famille $(f_x)_{x \in X}$ est libre. Soit E le sous-espace vectoriel de F engendré par ces éléments. Ainsi, E est un espace vectoriel ayant une base indexée par les éléments de X. Pour obtenir un espace vectoriel dont une base est indexée par X, on pose $\mathbb{K}X = (E - \{f_x \mid x \in X\}) \cup X$. Cet ensemble est en bijection avec E de la manière suivante :

$$\begin{cases} E & \rightarrow & \mathbb{K}X \\ f_x (x \in X) & \rightarrow & x, \\ f \notin \{f_x \mid x \in X\} & \rightarrow & f. \end{cases}$$

Comme E est un espace vectoriel, via cette bijection il en est de même pour $\mathbb{K}X$. Comme $(f_x)_{x \in X}$ est une base de E, son image X par cette bijection est une base de $\mathbb{K}X$.

Unicité. Soit V un autre espace vectoriel ayant X pour base. Alors il existe une unique application linéaire envoyant $x \in X \subseteq \mathbb{K}X$ sur $x \in V$ pour tout x. Cette application envoie une base sur une base, donc c’est un isomorphisme. \square

Proposition 1.1.2. Soient V_1, V_2 deux espaces vectoriels. Il existe un couple (V , \otimes), tel que V soit un espace vectoriel et \otimes une application bilinéaire :

$$\otimes : \begin{cases} V_1 \times V_2 & \rightarrow & V \\ (v_1 , v_2) & \rightarrow & v_1 \otimes v_2, \end{cases}$$
avec la propriété universelle suivante : pour tout espace vectoriel W et toute application bilinéaire $f : V_1 \times V_2 \rightarrow W$, il existe une unique application linéaire $F : V \rightarrow W$ rendant le diagramme suivant commutatif :

$$
\begin{array}{ccc}
V_1 \times V_2 & \xrightarrow{f} & W \\
\otimes \downarrow & & \downarrow F \\
V & \xrightarrow{\Phi} & V
\end{array}
$$

Autrement dit, pour tout $(v_1, v_2) \in V_1 \times V_2$, $F(v_1 \otimes v_2) = f(v_1, v_2)$. Ce couple (V, \otimes) est de plus unique à isomorphisme près.

Démonstration. Existence. Soit V' un espace vectoriel dont une base est donnée par tous les éléments de $V_1 \times V_2$. Soit V'' le sous-espace de V' engendré par les éléments suivants :

$$(v_1 + \lambda v'_1, v_2 + \mu v'_2) - (v_1, v_2) - \lambda(v'_1, v_2) - \mu(v_1, v'_2) - \lambda \mu(v'_1, v'_2),$$

où v_1, v'_1 parcourent V_1, v_2, v'_2 parcourent V_2, λ, μ parcourent K. On pose alors $V = V'/V''$. Soit \otimes l’application suivante :

$$
\otimes : \begin{cases}
V_1 \times V_2 & \rightarrow & V \\
(v_1, v_2) & \rightarrow & (v_1, v_2).
\end{cases}
$$

Par définition de V'', \otimes est bilinéaire.

Montrons maintenant la propriété universelle. Soit $f : V_1 \times V_2 \rightarrow W$ une application bilinéaire. Soit f' l’unique application linéaire de V' dans W envoyant (v_1, v_2) sur $f(v_1, v_2)$. Comme f est bilinéaire, f' est nulle sur V'', donc passe au quotient en une application $F : V \rightarrow W$, vérifiant $F(v_1 \otimes v_2) = f'(v_1, v_2) = f(v_1, v_2)$. Cette application F convient donc. Comme $V_1 \times V_2$ engendre V', $V_1 \times V_2$ engendre V et donc F est unique.

Unicité. Soit (W, \otimes') un autre couple convenable. Comme \otimes' est bilinéaire, il existe une unique application linéaire

$$
\Phi : \begin{cases}
V & \rightarrow & W \\
v_1 \otimes v_2 & \rightarrow & v_1 \otimes' v_2.
\end{cases}
$$

Symétriquement, il existe une application linéaire

$$
\Phi' : \begin{cases}
W & \rightarrow & V \\
v_1 \otimes' v_2 & \rightarrow & v_1 \otimes v_2.
\end{cases}
$$

Alors $\Phi' \circ \Phi : V \rightarrow V$ vérifie $\Phi' \circ \Phi(v_1 \otimes v_2) = \otimes(v_1, v_2)$. Par unicité dans la propriété universelle, $\Phi' \circ \Phi = \text{Id}_V$. De même, $\Phi \circ \Phi' = \text{Id}_W$. Donc Φ et Φ' sont des isomorphismes réciproques l’un de l’autre.

Définition 1.1.3. Le couple (V, \otimes) est appelé produit tensoriel de V_1 et V_2 et noté $V_1 \otimes V_2$.

Notons que tout élément de $V_1 \otimes V_2$ s’écrit sous la forme :

$$
\sum_{i=1}^{k} v_i^{(1)} \otimes v_i^{(2)},
$$

où pour tout $1 \leq i \leq k$, $v_i^{(1)} \in V_1$ et $v_i^{(2)} \in V_2$. Les éléments de la forme $v_1 \otimes v_2$ sont appelés tenseurs.

Remarque 1.1.1. On peut définir de manière équivalente le produit tensoriel de deux A-modules, lorsque A est un anneau commutatif. Sur un anneau non commutatif, on peut définir le produit tensoriel d’un module à gauche par un module à droite.
Proposition 1.1.4. (Produit tensoriel d’application). Soient \(f : V \to V' \) et \(g : W \to W' \) deux applications linéaires. Il existe une unique application linéaire :

\[
f \otimes g : \begin{cases}
V \otimes W & \to \; V' \otimes W' \\
v \otimes w & \to \; f(v) \otimes g(w).
\end{cases}
\]

Démonstration. Car l’application \((v, w) \to f(v) \otimes g(w)\) est bilinéaire. \(\square\)

1.2 Propriétés du produit tensoriel

1.2.1 Base et dimension

Proposition 1.2.1. Soit \((e_i)_{i \in I}\) une base de \(V\) et \((f_j)_{j \in J}\) une base de \(W\). Alors \((e_i \otimes f_j)_{(i,j) \in I \times J}\) est une base de \(V \otimes W\).

Démonstration. Comme \(\otimes\) est bilinéaire, tout tenseur \(v \otimes w\) peut se décomposer en somme de \(e_i \otimes f_j\) en décomposant \(v\) et \(w\) dans les bases de \(V\) et \(W\). Comme \(V \otimes W\) est engendré par les tenseurs, tout élément de \(V \otimes W\) se décompose en somme de \(e_i \otimes f_j\), donc \((e_i \otimes f_j)_{(i,j) \in I \times J}\) engendre \(V \otimes W\). Supposons que \(\sum a_{i,j} e_i \otimes f_j = 0\), les \(a_{i,j}\) étant presque tous nuls. Fixons \(i_0 \in I\), \(j_0 \in J\). On considère l’application suivante :

\[
f : \begin{cases}
V \times W & \to \; \mathbb{K} \\
(v, w) & \to \; e_{i_0}^*(v)f_{j_0}^*(w).
\end{cases}
\]

\(f\) est bilinéaire donc il existe \(F : V \otimes W \to \mathbb{K}\) telle que \(F(v \otimes w) = e_{i_0}^*(v)f_{j_0}^*(w)\). En conséquence :

\[
F\left(\sum a_{i,j} e_i \otimes f_j\right) = \sum_{i,j} a_{i,j} e_{i_0}^*(e_i)f_{j_0}^*(f_j) = a_{i_0,j_0} = 0.
\]

Donc \((e_i \otimes f_j)_{(i,j) \in I \times J}\) est libre. \(\square\)

Corollaire 1.2.2. Si \(V\) et \(W\) sont de dimension finie, alors \(V \otimes W\) aussi et

\[
\dim_{\mathbb{K}}(V \otimes W) = \dim_{\mathbb{K}}(V) \dim_{\mathbb{K}}(W).
\]

1.2.2 Associativité et unité

Proposition 1.2.3. Soient \(V_1, V_2, V_3\) trois espaces vectoriels. L’application suivante est un isomorphisme d’espaces vectoriels :

\[
\begin{cases}
(V_1 \otimes V_2) \otimes V_3 & \to \; V_1 \otimes (V_2 \otimes V_3) \\
(v_1 \otimes v_2) \otimes v_3 & \to \; v_1 \otimes (v_2 \otimes v_3).
\end{cases}
\]

On identifiera ces deux espaces et on notera \(V_1 \otimes V_2 \otimes V_3\).

Démonstration. Il est clair que cette application est bien définie. En choisissant une base de chaque espace, par la proposition précédente, elle envoie une base sur une base, donc c’est un isomorphisme. \(\square\)

Par récurrence, on définit ainsi \(V_1 \otimes \ldots \otimes V_n\) pour tout \(n\). Par récurrence, on démontre la propriété universelle suivante :

Proposition 1.2.4. Soit \(f : V_1 \times \ldots \times V_n \to W\) une application \(n\)-linéaire. Alors il existe une unique application linéaire :

\[
\begin{cases}
V_1 \otimes \ldots \otimes V_n & \to \; W \\
v_1 \otimes \ldots \otimes v_n & \to \; f(v_1, \ldots, v_n).
\end{cases}
\]
On peut définir par récurrence $f_1 \otimes \ldots \otimes f_n$ pour tout n.

Proposition 1.2.5. Soit V un espace. Les applications suivantes sont des isomorphismes :

\[
\Phi : \begin{cases}
\mathbb{K} \otimes V & \longrightarrow & V \\
\lambda \otimes v & \longrightarrow & \lambda v,
\end{cases}
\quad \Psi : \begin{cases}
V \otimes \mathbb{K} & \longrightarrow & V \\
v \otimes \lambda & \longrightarrow & \lambda v.
\end{cases}
\]

Démonstration. Comme l’application $(\lambda, v) \mapsto \lambda v$ est bilinéaire, Φ et Ψ existent. Fixons $(e_i)_{i \in I}$ une base de V. Une base de $\mathbb{K} \otimes V$ est alors $(1 \otimes e_i)_{i \in I}$. Son image par Φ et Ψ est la base $(e_i)_{i \in I}$ de V, donc Φ et Ψ sont des isomorphismes.

Par la suite, on identifiera donc $\mathbb{K} \otimes V$ et $V \otimes \mathbb{K}$ avec V.

1.2.3 Sommes et intersections de produits tensoriels

Soient U et V deux espaces vectoriels et soient U' et V' des sous-espaces de U et V. L’application suivante est injective :

\[
\begin{align*}
U' \otimes V' & \longrightarrow U \otimes V \\
u \otimes v & \longrightarrow u \otimes v.
\end{align*}
\]

Par la suite, on considérera donc $U' \otimes V'$ comme un sous-espace de $U \otimes V$.

Proposition 1.2.6. Soient U, V deux espaces, U_1, U_2 deux sous-espaces de U, V_1, V_2 deux sous-espaces de V.

1. $(U_1 + U_2) \otimes (V_1 + V_2) = U_1 \otimes V_1 + U_2 \otimes V_1 + U_1 \otimes V_2 + U_2 \otimes V_2$.
2. $(U_1 \otimes V_1) \cap (U_2 \otimes V_2) = (U_1 \cap U_2) \otimes (V_1 \cap V_2)$.
3. Si $U = U_1 \oplus U_2$, alors $U \otimes V = (U_1 \otimes V) \oplus (U_2 \otimes V)$.
4. Si $V = V_1 \oplus V_2$, alors $U \otimes V = (U \otimes V_1) \oplus (U \otimes V_2)$.

Démonstration.

1. Les deux sous-espaces de $U \otimes V$ apparaissant ici sont tous deux engendrés par les tenseurs $u \otimes v$, avec $u \in U_1 \cup U_2$, $v \in V_1 \cup V_2$. Ils sont donc égaux.

2. De manière immédiate, $(U_1 \cap U_2) \otimes (V_1 \cap V_2) \subseteq (U_1 \otimes V_1) \cap (U_2 \otimes V_2)$. Soit $(e_i)_{i \in I'}$ une base de $U_1 \cap U_2$, complétée en une base $(e_i)_{i \in I_1}$ de U_1 et $(e_i)_{i \in I_2}$ de U_2 (donc $I' = I_1 \cap I_2$). On complète la famille libre $(e_i)_{i \in I'} \cup (e_i)_{i \in I_1 - I'} \cup (e_i)_{i \in I_2 - I'}$ en une base $(e_i)_{i \in I}$ de U. De même, soit $(f_j)_{j \in J'}$ une base de $V_1 \cap V_2$, complétée en une base $(f_j)_{j \in J_1}$ de V_1 et $(f_j)_{j \in J_2}$ de V_2 (donc $J' = J_1 \cap J_2$). On complète la famille libre $(f_j)_{j \in J'} \cup (f_j)_{j \in J_1 - J'} \cup (f_j)_{j \in J_2 - J'}$ en une base $(f_j)_{j \in J}$ de V. Soit x un élément de $(U_1 \otimes V_1) \cap (U_2 \otimes V_2)$. Il s’écrit de manière unique :

\[
x = \sum_{i \in I, j \in J} a_{i,j} e_i \otimes f_j.
\]

Soit $i_0 \notin I'$. Alors $i_0 \notin I_1$ ou $i_0 \notin I_2$. Supposons par exemple $i_0 \notin I_1$. Alors $e_{i_0}^*(U_1) = (0)$. Par suite, comme $x \in U_1 \otimes V_1$, $(e_{i_0}^* \otimes \Id_V)(x) = 0$, donc :

\[
\sum_{i \in I, j \in J} a_{i,j} e_{i_0}^*(e_i) f_j = \sum_{j \in J} a_{i_0,j} f_j = 0.
\]

Les f_j étant linéairement indépendants, $a_{i_0,j} = 0$ pour tout $j \in J$. De même, si $j_0 \notin J'$, $a_{i,j_0} = 0$ pour tout $i \in I$. Donc :

\[
x = \sum_{i \in I', j \in J'} a_{i,j} e_i \otimes f_j \in (U_1 \cap U_2) \otimes (V_1 \cap V_2).
\]

3. On a, par le premier point, $U \otimes V = (U_1 \otimes V) + (U_2 \otimes V)$. De plus, par le deuxième point, $(U_1 \otimes V) \cap (U_2 \otimes V) = (U_1 \cap U_2) \otimes V = (0) \otimes V = (0)$.

4. Idem. \qed
1.2.4 Dualité

Proposition 1.2.7. Soient V et W deux espaces vectoriels. L’application suivante est injective :

$$
\Theta : \begin{cases}
V^* \otimes W^* & \longrightarrow (V \otimes W)^* \\
(f \otimes g) & \longrightarrow (V \otimes W) \\
v \otimes w & \longrightarrow f(v)g(w).
\end{cases}
$$

Elle est bijective si, et seulement si, V ou W est de dimension finie.

Démonstration. Tout d’abord, Θ est bien définie. Soit $(f, g) \in V^* \times W^*$. On considère l’application suivante :

$$
\begin{cases}
V \times W & \longrightarrow K \\
(v, w) & \longrightarrow f(v)g(w).
\end{cases}
$$

Elle est évidemment bilinéaire, donc il existe une unique application linéaire :

$$
\Theta(f, g) : \begin{cases}
V \otimes W & \longrightarrow K \\
v \otimes w & \longrightarrow f(v)g(w).
\end{cases}
$$

De manière immédiate, $\Theta : V^* \times W^* \longrightarrow (V \otimes W)^*$ est bilinéaire, donc Θ de l’énoncé existe et est unique.

Soit $F \in V^* \otimes W^*$ non nul tel que $\Theta(F) = 0$. Alors F peut s’écrire de la manière suivante :

$$
F = \sum_{i=1}^{N} f_i \otimes g_i.
$$

Choisissons une écriture de F de sorte que N soit minimale. Supposons $(f_i)_{1 \leq i \leq N}$ liée. Quitte à permuter les indices, on peut supposer que $f_N = a_1f_1 + \ldots + a_{N-1}f_{N-1}$ et alors :

$$
F = \sum_{i=1}^{N-1} f_i \otimes g_i + (a_1f_1 + \ldots + a_{N-1}f_{N-1}) \otimes g_N
$$

$$
= \sum_{i=1}^{N-1} f_i \otimes (g_i + a_i g_N).
$$

Ceci contredit la minimalité de N. Donc $(f_i)_{1 \leq i \leq N}$ est libre. De même, $(g_i)_{1 \leq i \leq N} est libre. Fixons 1 \leq i_0 \leq N. Alors il existe $x \in V$, $y \in W$ tel que pour tous i, $f_i(x) = \delta_{i,i_0}$ et $g_i(y) = \delta_{i,i_0}$. Par suite :

$$
0 = \Theta(F)(x \otimes y) = \sum_{i,j} f_i(x)g_i(y) = 1.
$$

Ceci est une contradiction, donc Θ est injective.

Remarquons que si V et W sont de dimension finie, alors $\dim_K(V^* \otimes W^*) = \dim_K(V) \dim_K(W) = \dim_K((V \otimes W)^*) < +\infty$, donc Θ est un isomorphisme.

Supposons V de dimension finie. On fixe une base $(e_i)_{i \in I}$ de V et une base $(f_j)_{j \in J}$ de W. Soit $F \in (V \otimes W)^*$. Pour tout $i \in I$, soit $g_i : W \longrightarrow K$, linéaire, telle que $g_i(f_j) = F(e_i \otimes f_j)$ pour tout j. Alors, I étant fini, l’élément $\sum_{i \in I} e_i^* \otimes g_i \in V^* \otimes W^*$. De plus, pour tout $k \in I$, $l \in J$:

$$
\Theta \left(\sum_{i \in I} e_i^* \otimes g_i \right)(e_k \otimes f_l) = \sum_{i \in I} e_i^*(e_k)g_i(f_l) = g_k(f_l) = F(e_k \otimes f_l).
$$

Comme $(e_k \otimes f_l)_{k \in I, l \in J}$ est une base de $V \otimes W$, $F \in \text{Im}(\Theta)$. La preuve est similaire si W est de dimension finie.
Supposons V et W de dimension infinie. En conservant les notations précédentes, si I et J sont infinis, quitte à permuter V et W on peut supposer qu’il existe une injection : \(I \rightarrow J \).
Soit alors \(F : V \otimes W \rightarrow \mathbb{K} \), envoyant \(e_i \otimes f_j \) sur \(\delta_{\phi(i),j} \) pour tous \(i, j \). Supposons \(F \in \text{Im}(\Theta) \).
Alors il existe \(h_1, \ldots, h_n \in V^* \), \(g_1, \ldots, g_n \in W^* \), tels que \(F = \Theta(h_1 \otimes g_1 + \cdots + h_n \otimes g_n) \). Soit \(V' = \cap \text{Ker}(h_i) \). Alors \(V' \) est un sous-espace de codimension finie de \(V \). De plus, \(F(V' \otimes W) = (0) \). Comme \(V' \) est de codimension finie, \(V' \) est non nul. Soit alors \(v = \sum a_i e_i \) un élément non nul de \(V' \). Il existe \(i_0 \in I \), tel que \(a_{i_0} \neq 0 \). Alors, comme \(v \in V' \), \(F(v \otimes f_{\phi(i_0)}) = 0 \). D’autre part :
\[
F(v \otimes f_{\phi(i_0)}) = \sum_{i \in I} a_i F(e_i \otimes f_{\phi(i)}) = \sum_{i \in I} a_i \delta_{\phi(i_0),\phi(i)} = \sum_{i \in I} a_i \delta_{i_0,i} = a_{i_0} \neq 0,
\]
car \(\phi \) est injective. Ceci est contradictoire, donc \(F \notin \text{Im}(\Theta) \).

Par suite, si V et W sont de dimension finie, on identifiera \((V \otimes W)^* \) et \(V^* \otimes W^* \).

Proposition 1.2.8. Soient \(U, V \) deux espaces de dimension finie, \(A \subseteq U, B \subseteq V \). Alors :
\[
(A \otimes B)^\perp = A^\perp \otimes V^* + U^* \otimes B^\perp.
\]

Démonstration. \(\supseteq \). Soit \(f \in A^\perp, g \in V^* \). Si \(a \in A, b \in B \), \((f \otimes g)(a \otimes b) = f(a)g(b) = 0 \). Donc \(f \otimes g \in (A \otimes B)^\perp \). \(\subseteq \). Soit \(f \in (A \otimes B)^\perp \). On fixe \((e_i)_{i \in I}\) une base de \(A \), complétée en une base \((e_i)_{i \in I}\) de \(U \) et \((f_j)_{j \in J}\) une base de \(B \), complétée en une base \((f_j)_{j \in J}\) de \(V \). Alors \(f \) s’écrit de manière unique :
\[
f = \sum_{i \in I, j \in J} a_{i,j} e_i^* \otimes f_j^*.
\]
Soit \(i_0 \in I', j_0 \in J'. \) Alors \(e_{i_0} \otimes f_{j_0} \in A \otimes B \), donc \(f(e_{i_0} \otimes f_{j_0}) = 0 \), donc \(a_{i_0,j_0} = 0 \). Par suite :
\[
f = \sum_{(i,j) \in I \times J - I' \times J'} a_{i,j} e_i^* \otimes f_j^* = \sum_{i \notin I', j \in J} a_{i,j} e_i^* \otimes f_j^* + \sum_{i \in I', j \notin J'} a_{i,j} e_i^* \otimes f_j^* \in A^\perp \otimes V^* + U^* \otimes B^\perp.
\]

1.2.5 Volte

Proposition 1.2.9. Soient \(V \) et \(W \) deux espaces vectoriels. Il existe une unique application linéaire :
\[
\tau_{V,W} : \begin{cases}
V \otimes W & \rightarrow W \otimes V \\
v \otimes w & \rightarrow w \otimes v.
\end{cases}
\]

Cette application est appelée volte de \(V \otimes W \). Elle est inversible et son inverse est la volte de \(W \otimes V \).

Démonstration. L’existence provient du fait que \((v,w) \rightarrow w \otimes v \) est bilinéaire. Le reste ne présente pas de difficultés.

De la même manière, pour tout \(\sigma \in S_n \), on peut définir :
\[
\tau_{\sigma} : \begin{cases}
V_1 \otimes \ldots \otimes V_n & \rightarrow V_{\sigma^{-1}(1)} \otimes \ldots \otimes V_{\sigma^{-1}(n)} \\
v_1 \otimes \ldots \otimes v_n & \rightarrow v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)}.
\end{cases}
\]

Pour \(\sigma = (1,2) \in S_2 \), on retrouve la volte. Ceci est particulièrement intéressant lorsque \(V_1 = \ldots = V_n = V \). On montre facilement que \(\tau_{\sigma} \circ \tau_{\sigma'} = \tau_{\sigma \circ \sigma'} \).
1.3 Algèbre tensorielle et algèbre symétrique

1.3.1 Algèbre tensorielle

Notations 1.3.1. Pour tout \(n \geq 1 \), on note \(V^\otimes n = V \otimes \ldots \otimes V \). Par convention, \(V^\otimes 0 = K \).

Les éléments de \(V^\otimes n \) sont des combinaisons linéaires de tenseurs de longueur \(n \) d’éléments de \(V \). De tels tenseurs sont souvent appelés mots en l’alphabet \(V \) de longueur \(n \). Les mots de longueur 0 sont les scalaires.

Définition 1.3.1. Soit \(V \) un espace vectoriel. L’algèbre tensorielle de \(V \) est :

\[
T(V) = \bigoplus_{n=0}^{\infty} V^\otimes n.
\]

Les éléments de \(T(V) \) sont des combinaisons linéaires de tenseurs d’éléments de \(V \) de longueur quelconque.

Pour simplifier l’écriture, dans \(T(V) \) on omet souvent les produits tensoriels : on écrit \(v_1 \ldots v_n \) au lieu de \(v_1 \otimes \ldots \otimes v_n \).

Proposition 1.3.2. Soit \((v_i)_{i \in I} \) une base de \(V \). Une base de \(T(V) \) est donnée par l’ensemble des mots en l’alphabet \((v_i)_{i \in I} \) :

\[
(v_i \otimes \ldots \otimes v_k)_{k \geq 0, i_1, \ldots, i_k \in I},
\]

avec la convention que pour \(k = 0 \), le mot obtenu est 1.

Démonstration. Car les mots en l’alphabet \((v_i)_{i \in I} \) de longueur \(n \) est une base de \(V^\otimes n \).

Théorème 1.3.3. L’algèbre tensorielle \(T(V) \) est muni d’un produit associatif unitaire par concaténation des mots :

\[
\begin{align*}
T(V) \times T(V) & \rightarrow T(V) \\
v_1 \ldots v_k, w_1 \ldots w_l & \rightarrow v_1 \ldots v_k w_1 \ldots w_l.
\end{align*}
\]

Ce produit est appelé produit de concaténation. Il est commutatif si, et seulement si, \(\dim(V) = 0 \) ou 1. Cette algèbre vérifie la propriété universelle suivante : soit \(A \) une algèbre quelconque, \(f : V \rightarrow A \) une application linéaire quelconque, alors il existe un unique morphisme d’algèbres de \(T(V) \) dans \(A \) envoyant \(v \in V \) sur \(f(v) \in A \).

Démonstration. L’associativité du produit de \(T(V) \) provient de l’associativité du produit tensoriel. Montrons la propriété universelle. L’application \((v_1, \ldots, v_n) \rightarrow f(v_1) \ldots f(v_n) \) est \(n \)-linéaire, donc il existe une application linéaire :

\[
F_n : \left\{ \begin{array}{l}
V^\otimes n \rightarrow A \\
v_1 \ldots v_n \rightarrow f(v_1) \ldots f(v_n).
\end{array} \right.
\]

En sommant, on obtient une application :

\[
F : \left\{ \begin{array}{l}
T(V) \rightarrow A \\
v_1 \ldots v_n \rightarrow f(v_1) \ldots f(v_n).
\end{array} \right.
\]

Il est clair qu’il s’agit d’un morphisme d’algèbres et que si \(v \in V, F(v) = f(v) \). De plus, si \(F' \) est un autre morphisme d’algèbres vérifiant ces propriétés, pour tous \(v_1, \ldots, v_n \in V \) :

\[
F'(v_1 \ldots v_n) = F'(v_1) \ldots F'(v_n) = f(v_1) \ldots f(v_n) = F(v_1 \ldots v_n).
\]

Donc \(F' = F \).
Supposons $V = (0)$. Alors $T(V) = \mathbb{K}$ est commutatif. Supposons dim$_{\mathbb{K}}(V) = 1$. Soit (x) une base de V. Une base de $T(V)$ est alors $(x^n)_{n \geq 0}$. Par suite, l’application suivante est un isomorphisme d’algèbres :

$$
\begin{align*}
\{ \mathbb{K}[X] & \rightarrow T(V) \\
X^n & \rightarrow x^n.
\end{align*}
$$

Comme $\mathbb{K}[X]$ est commutative, il en est de même pour $T(V)$. Si dim$_{\mathbb{K}}(V) \geq 2$, soient v_1 et v_2 deux éléments linéairement indépendants de V. Alors $v_1 \otimes v_2$ et $v_2 \otimes v_1$ sont deux éléments linéairement indépendants de $V \otimes V$, donc de $T(V)$. Par suite, $v_1 v_2$ et $v_2 v_1$ sont linéairement indépendants dans $T(V)$, donc distincts.

Proposition 1.3.4. Soit X un ensemble quelconque. L’algèbre librement engendrée par X est $\mathbb{K}\langle X \rangle = T(\mathbb{K}X)$, où $\mathbb{K}X$ est l’espace vectoriel de base X. Une base de $\mathbb{K}\langle X \rangle$ est l’ensemble des mots $(x_1 \ldots x_n)_{n \geq 0, x_1, \ldots, x_n \in X}$. Cette algèbre vérifie la propriété universelle suivante : soit A une algèbre quelconque et soit $a_x \in A$ pour tout $x \in X$. Il existe un unique morphisme d’algèbres de $\mathbb{K}\langle X \rangle$ dans A envoyant x sur a_x pour tout $x \in X$.

Démonstration. Comme X est une base de $\mathbb{K}X$, $(x_1 \ldots x_n)_{n \geq 0, x_1, \ldots, x_n \in X}$ est une base de $\mathbb{K}\langle X \rangle$. Montrons la propriété universelle. Soit f l’unique application linéaire de $\mathbb{K}X$ dans A envoyant x sur a_x pour tout $x \in X$. Par propriété universelle de $T(\mathbb{K}X)$, elle se prolonge en un unique morphisme d’algèbres de $\mathbb{K}\langle X \rangle$ dans A. □

1.3.2 Algèbre symétrique

Construisons maintenant une algèbre commutative associée à V.

Définition 1.3.5. Soit V un espace vectoriel. Alors l’algèbre symétrique $S(V)$ associée à V est le quotient de $T(V)$ par l’idéal engendré par les éléments $v_1 v_2 - v_2 v_1$, où v_1 et v_2 parcourrent V. On identifie $v \in V \subseteq T(V)$ et son image dans $S(V)$.

Proposition 1.3.6.

1. $S(V)$ est commutative.

2. $S(V)$ vérifie la propriété universelle suivante : soit A une algèbre commutative quelconque, $f : V \rightarrow A$ une application linéaire quelconque, alors il existe un unique morphisme d’algèbres de $S(V)$ dans A envoyant $v \in V$ sur $f(v) \in A$.

3. Soit $(v_i)_{i \in I}$ une base de V. Une base de $S(V)$ est donnée par :

$$
\left(\prod_{i \in I} v_i^{a_i} \right) \text{ les } a_i \text{ presque tous nuls}.
$$

Ces éléments sont appelés monômes en les v_i.

Démonstration. 1. Comme $S(V)$ est un quotient de $T(V)$, les mots $v_1 \ldots v_n$ engendrent linéairement $S(V)$. Pour montrer que $S(V)$ est commutative, il suffit donc de montrer que ces mots commutent deux-à-deux. Comme ces mots sont des produits de mots d’une seule lettre, élément de V, il suffit de montrer que les éléments de V commutent. Or, par définition, si $v_1, v_2 \in V$, $v_1 v_2 - v_2 v_1 = 0$ dans $S(V)$.

2. Par propriété universelle de $T(V)$, il existe un unique morphisme d’algèbres \overline{F} de $T(V)$ dans A, envoyant v sur $f(v)$ pour tout $v \in V$. Comme A est commutative, si $v_1, v_2 \in V$:

$$
\overline{F}(v_1 v_2 - v_2 v_1) = f(v_1) f(v_2) - f(v_2) f(v_1) = 0.
$$

Donc l’idéal définissant $S(V)$ est inclus dans Ker(\overline{F}). Par passage au quotient, il existe un unique morphisme d’algèbres $F : S(V) \rightarrow A$, envoyant v sur $f(v)$ pour tout $v \in V$. □
3. Les mots en les v_i engendrent $T(V)$, donc leurs images engendrent $S(V)$. En conséquence, les monômes en les v_i engendrent $S(V)$. Supposons que dans $S(V)$:

$$x = \sum_{(a_i)} b_{(a_i)} \prod_{i \in I} v_i^{a_i} = 0.$$

Seul un nombre fini de coefficients $b_{(a_i)}$ sont non nuls, et pour chacun de ces coefficients non nuls, seul un nombre fini de v_i apparaissent dans le produit des $v_i^{a_i}$. Par suite, seul un nombre fini de v_i apparaissent dans l'expression de x. Quitte à changer l'ensemble des indices I, x peut alors s'écrire :

$$x = \sum_{a_1, \ldots, a_n \geq 0} b_{(a_1, \ldots, a_n)} v_1^{a_1} \ldots v_n^{a_n} = 0.$$

On considère $A = \mathbb{K}[X_1, \ldots, X_n]$. Comme (v_1, \ldots, v_n) est libre dans V, il existe une application linéaire $f : V \to A$, envoyant v_i sur X_i pour tout i. En utilisant la propriété universelle, on obtient un morphisme d'algèbres $F : S(V) \to A$, telle que :

$$F(x) = \sum_{a_1, \ldots, a_n \geq 0} b_{(a_1, \ldots, a_n)} X_1^{a_1} \ldots X_n^{a_n} = 0.$$

Par suite, $b_{(a_1, \ldots, a_n)} = 0$ pour tout (a_1, \ldots, a_n). En conséquence, la famille des monômes en les v_i est libre.

Corollaire 1.3.7. Si V est de dimension n, alors $S(V)$ est isomorphe à $\mathbb{K}[X_1, \ldots, X_n]$.

Démonstration. Soit (v_1, \ldots, v_n) une base de V. Soit F le morphisme d'algèbres de $S(V)$ sur $\mathbb{K}[X_1, \ldots, X_n]$ envoiant v_i sur X_i pour tout i. Par la proposition précédente, F envoie la base des monômes en les v_i sur la base des monômes de $\mathbb{K}[X_1, \ldots, X_n]$, donc est un isomorphisme. □

Proposition 1.3.8. Soit X un ensemble quelconque. L'algèbre commutative librement engendrée par X est $\mathbb{K}[X] = S(\mathbb{K}X)$, où $\mathbb{K}X$ est l'espace vectoriel de base X. Une base de $\mathbb{K}[X]$ est l'ensemble des monômes en X. Cette algèbre vérifie la propriété universelle suivante : soit A une algèbre commutative quelconque et soit $a_x \in A$ pour tout $x \in X$. Il existe un unique morphisme d'algèbres de $\mathbb{K}[X]$ dans A envoiant x sur a_x pour tout $x \in X$.

Démonstration. Semblable à la preuve de la proposition 1.3.4. □

1.4 Produit tensoriel d'algèbres

Théorème 1.4.1. Soient A et B deux algèbres non nulles. Alors $A \otimes B$ est munie d'une structure d'algèbre par :

$$(a \otimes b)(a' \otimes b') = (aa') \otimes (bb').$$

L'unité de $A \otimes B$ est $1_A \otimes 1_B$. De plus, les applications suivantes sont des morphismes injectifs d'algèbres :

$$\begin{align*}
A &\to A \otimes B, \\
a &\to a \otimes 1_B, \\
B &\to A \otimes B, \\
b &\to 1_A \otimes b.
\end{align*}$$

Démonstration. En exercice. □

Exercices

1. Soient V et W deux espaces, V étant de dimension finie. Montrer que $V^* \otimes W$ est naturellement isomorphe à $\text{Hom}(V, W)$. Dans le cas particulier où $V = W$, déterminer l’antécédent de Id_V par cet isomorphisme. **Indication** : utiliser une base de V. □
2. Soient A et B deux algèbres non nulles. Montrer que $A \otimes B$ est commutative si, et seulement si, A et B sont commutatives.

3. Montrer que les algèbres $\mathbb{K}[X] \otimes \mathbb{K}[Y]$ et $\mathbb{K}[X, Y]$ sont isomorphes.

4. Soient U et V deux espaces. Montrer que les algèbres $S(U) \otimes S(V)$ et $S(U \oplus V)$ sont isomorphes.

5. Soit $U \subseteq V$ deux espaces. Montrer que $T(V)/\langle U \rangle \approx T(V/U)$ et que $S(V)/\langle U \rangle \approx S(V/U)$.

6. Si A et B sont des algèbres, montrer que la voûte de $A \otimes B$ est un isomorphisme d’algèbres.

7. Soient $f : A \rightarrow A'$ et $g : B \rightarrow B'$. Montrer que $\text{Im}((f \otimes g) = \text{Im}((f) \otimes \text{Im}((g)$ et $\text{Ker}(f \otimes g) = \text{Ker}(f) \otimes B + A \otimes \text{Ker}(g)$.

8. Soit V un espace vectoriel. On pose, pour tout $n \geq 1$:

$$S^n(V) = \{x \in V^\otimes_n / \tau_\sigma(x) = x, \ \forall \sigma \in S_n\}.$$

$$\Lambda^n(V) = \{x \in V^\otimes_n / \tau_\sigma(x) = \varepsilon(\sigma)x, \ \forall \sigma \in S_n\}.$$

Par convention, $S^0(V) = \mathbb{K}$ et $\Lambda^0(V) = 0$. Ces espaces sont appelés puissances symétriques et antisymétriques de V.

(a) On suppose que \mathbb{K} est de caractéristique nulle. Montrer que les applications suivantes sont des projecteurs sur $S^n(V)$ et $\Lambda^n(V)$:

$$\left\{ \begin{array}{c}
V^\otimes_n \rightarrow V^\otimes_n \\
x \rightarrow \frac{1}{n!} \sum_{\sigma \in S_n} \tau_\sigma.x,
\end{array} \right. \quad \left\{ \begin{array}{c}
V^\otimes_n \rightarrow V^\otimes_n \\
x \rightarrow \frac{1}{n!} \sum_{\sigma \in S_n} \varepsilon(\sigma)\tau_\sigma.x.
\end{array} \right.$$

(b) Montrer que $V^\otimes 2 = S^2(V) \oplus \Lambda^2(V)$.

(c) Donner une base de $S^n(V)$ et $\Lambda^n(V)$ à partir d’une base de V. Calculer $\dim_{\mathbb{K}}(S^n(V))$ et $\dim_{\mathbb{K}}(\Lambda^n(V))$ en fonction de n et de $\dim_{\mathbb{K}}(V)$.

(d) Montrer que la projection canonique $\pi : T(V) \rightarrow S(V)$ induit un isomorphisme :

$$\bigoplus_{n=0}^{\infty} S^n(V) \rightarrow S(V).$$

(e) Si $\dim_{\mathbb{K}}(V) = n$, donner une base de $\Lambda^n(V)$.
Chapitre 2

Algèbres, cogèbres, bigèbres

Nous pouvons maintenant introduire les axiomes de cogèbres, bigèbres et algèbres de Hopf. Les références classiques sur ce sujet sont [1, 21]. On peut ajouter par exemple [12].

2.1 Axiomes des algèbres

Soit A une algèbre (associative et unitaire). Son produit étant bilinéaire, on peut donc le considérer comme une application linéaire de $A \otimes A$ dans A :

$$m : \begin{cases} A \otimes A & \longrightarrow & A \\ a \otimes b & \longrightarrow & ab. \end{cases}$$

L’axiome d’associativité s’écrit alors :

$$\forall a, b, c \in A, \quad a(bc) = (ab)c.$$

$$m \circ (m \otimes \text{Id}) = m \circ (\text{Id} \otimes m).$$

Pour linéariser l’axiome d’unité, il est nécessaire d’introduire l’application unité :

$$\eta : \begin{cases} K & \longrightarrow & A \\ \lambda & \longrightarrow & \lambda 1_A. \end{cases}$$

Cette application est toujours injective (car on suppose que $A \neq (0)$) et permet d’identifier K à une sous-algèbre de A. L’axiome d’unité s’écrit alors :

$$\forall a \in A, \quad a.1_A = a = 1_A.a.$$

$$m \circ (\text{Id} \otimes \eta) = \text{Id} = m \circ (\eta \otimes \text{Id}).$$

Proposition 2.1.1. Une K-algèbre est un triplet (A, m, η) où A est un espace et $m : A \otimes A \longrightarrow A$, $\eta : K \longrightarrow A$, satisfaisant les deux axiomes suivants :

17
— Associativité :

\[m \circ (m \otimes \text{Id}) = m \circ (\text{Id} \otimes m). \]

\[
\begin{array}{c}
A \otimes A \otimes A \\
\downarrow m \otimes \text{Id} \quad \text{Id}_m \quad m \\
A \otimes A \quad m \\
\end{array}
\]

— Unité :

\[m \circ (\text{Id} \otimes \eta) = \text{Id} = m \circ (\eta \otimes \text{Id}). \]

\[
\begin{array}{c}
\mathbb{K} \otimes A \\
\downarrow \eta \otimes \text{Id} \quad \eta \otimes \text{Id} \quad \text{Id}_\eta \\
A \otimes A \quad \text{Id}_\eta \\
\downarrow m \\
A
\end{array}
\]

De la même manière, les notions de module (à gauche ou à droite), d'idéal, de sous-algèbre se linéarisent :

Proposition 2.1.2. Soit \(A = (A, m, \eta) \) une algèbre.

1. Une sous-algèbre de \(A \) est un sous-espace \(B \) de \(A \) tel que :

\[m(B \otimes B) \subseteq B, \ \eta(\mathbb{K}) \subseteq B. \]

2. Un \(A \)-module (à gauche) est un couple \((M, p) \) où \(M \) est un espace vectoriel et \(p : A \otimes M \rightarrow M \) vérifiant les axiomes suivants :

— Associativité :

\[p \circ (m \otimes \text{Id}) = p \circ (\text{Id} \otimes p). \]

\[
\begin{array}{c}
A \otimes A \otimes M \\
\downarrow m \otimes \text{Id} \quad \text{Id}_p \\
A \otimes M \\
\downarrow p \\
M
\end{array}
\]

— Unité :

\[p \circ (\eta \otimes \text{Id}) = \text{Id}_M. \]

\[
\begin{array}{c}
\mathbb{K} \otimes M \\
\downarrow \eta \otimes \text{Id} \\
A \otimes M \\
\downarrow p \\
M
\end{array}
\]

3. Un idéal à gauche de \(A \) est un sous-espace \(I \) de \(A \) tel que :

\[m(A \otimes I) \subseteq I. \]

Un idéal à droite de \(A \) est un sous-espace \(I \) de \(A \) tel que :

\[m(I \otimes A) \subseteq I. \]

4. Un idéal (bilatère) de \(A \) est un sous-espace \(I \) de \(A \) tel que :

\[m(A \otimes I + I \otimes A) \subseteq I. \]

De même, linéarisons les axiomes définissant les morphismes d'algèbres :

Proposition 2.1.3. Soient \(A \) et \(B \) deux algèbres et \(\phi : A \rightarrow B \) une application linéaire. Alors \(\phi \) est un morphisme d'algèbres si, et seulement si :
2.2. COGÈBRES

2.2.1 Définition

Pour définir les axiomes des cogèbres, nous allons dualiser les axiomes définissant les algèbres.

Définition 2.2.1. Une cogèbre (ou coalgèbre) est un triplet (C, Δ, ε), où C est un espace vectoriel, $\Delta : C \rightarrow C \otimes C$ (coproduit) et $\varepsilon : C \rightarrow \mathbb{K}$ (counité), tels que :

1. Coassociativité :

\[
\begin{array}{c}
C \otimes C \otimes C \\
\uparrow \id \otimes \Delta \\downarrow \Delta
\end{array} \xrightarrow{\Delta \otimes \id} \begin{array}{c}
C \otimes C \\
\Delta \end{array}
\]

$(\id \otimes \Delta) \circ \Delta = (\Delta \otimes \id) \circ \Delta$.

2. Counité :

\[
\begin{array}{c}
\mathbb{K} \otimes C \xrightarrow{\varepsilon \otimes \id} C \otimes C \xrightarrow{\id \otimes \varepsilon} C \otimes \mathbb{K}
\end{array}
\]

$(\varepsilon \otimes \id) \circ \Delta = \id \circ \varepsilon = (\id \otimes \varepsilon) \circ \Delta$.

Si de plus $\tau \circ \Delta = \Delta$, où τ est la volte de $C \otimes C$, on dira que C est cocommutative.

Notations 2.2.1. La notation suivante est connue sous le nom de notation de Sweedler. Le coproduit d’un élément est donc une somme de tenseurs. Pour décrire le coproduit, on utilise la notation suivante :

$\Delta(x) = \sum_x x^{(1)} \otimes x^{(2)}$.

La coassociativité s’écrit alors de la manière suivante : pour tout $x \in C$,

\[
\sum_x \sum_{x^{(1)}} \left(x^{(1)} \right)^{(1)} \otimes \left(x^{(1)} \right)^{(2)} \otimes x^{(2)} = \sum_x \sum_{x^{(2)}} x^{(1)} \otimes \left(x^{(2)} \right)^{(1)} \otimes \left(x^{(2)} \right)^{(2)} = \sum_x x^{(1)} \otimes x^{(2)} \otimes x^{(3)}.
\]
On peut ainsi définir par récurrence les coproduits itérés :
\[
\left(\Delta \otimes \text{Id}^{\otimes (n-1)} \right) \circ \left(\Delta \otimes \text{Id}^{\otimes (n-2)} \right) \circ \ldots \circ \Delta (x) = \sum_{x} x^{(1)} \otimes \ldots \otimes x^{(n+1)}.
\]

L’axiome de counité s’écrit : pour tout \(x \in C \),
\[
\sum_{x} \varepsilon \left(x^{(1)} \right) x^{(2)} = \sum_{x} x^{(1)} \varepsilon \left(x^{(2)} \right) = x.
\]

Remarque 2.2.1. La counité est unique : si \(\varepsilon, \varepsilon' \) sont deux counités, alors pour tout \(x \in C \) :
\[
(\varepsilon \otimes \varepsilon') \circ \Delta (x) = \sum_{x} \varepsilon \left(x^{(1)} \right) \varepsilon' \left(x^{(2)} \right)
= \varepsilon \left(\sum_{x} x^{(1)} \varepsilon' \left(x^{(2)} \right) \right)
= \varepsilon (x),
\]
\[
= \varepsilon' \left(\sum_{x} \varepsilon \left(x^{(1)} \right) x^{(2)} \right)
= \varepsilon' (x).
\]

Exemple 2.2.1.
1. Soit \(V \) un espace vectoriel de base \((e_i)_{i \in I}\). On munit \(V \) d’un coproduit en posant, pour tout \(i \in I \) :
\[
\Delta (e_i) = e_i \otimes e_i.
\]
Ce coproduit est coassociatif : pour tout \(i \in I \),
\[
(\text{Id} \otimes \Delta) \circ \Delta (e_i) = (\Delta \otimes \text{Id}) \circ \Delta (e_i) = e_i \otimes e_i \otimes e_i.
\]
Sa counité est donnée par \(\varepsilon (e_i) = 1 \) pour tout \(i \) :
\[
(\varepsilon \otimes \text{Id}) \circ \Delta (e_i) = 1 e_i = e_i = (\text{Id} \otimes \varepsilon) \circ \Delta (e_i).
\]
Comme \(\tau \circ \Delta (e_i) = \Delta (e_i) = e_i \otimes e_i, C \) est cocommutative.
2. En particulier, si \(V = \mathbb{K} \) avec comme base \((1)\), \(\mathbb{K} \) admet une structure de cogèbre définie par \(\Delta (\lambda) = \lambda 1 \otimes 1 \). La counité de \(\mathbb{K} \) est \(\text{Id}_{\mathbb{K}} \).
3. (Cogèbres de matrices). Soit \(n \geq 1 \) et \(M^*_{\mathbb{K}} \) un espace vectoriel de base \((e_{i,j})_{1 \leq i,j \leq n} \). On définit le coproduit de \(M^*_{\mathbb{K}} \) par :
\[
\Delta (e_{i,j}) = \sum_{k=1}^{n} e_{i,k} \otimes e_{k,j}.
\]
Ce coproduit est coassociatif :
\[
(\Delta \otimes \text{Id}) \circ \Delta (e_{i,j}) = \sum_{k=1}^{n} \Delta (e_{i,k}) \otimes e_{k,j} = \sum_{k=1}^{n} \sum_{l=1}^{n} e_{i,l} \otimes e_{l,k} \otimes e_{k,j},
\]
\[
(\text{Id} \otimes \Delta) \circ \Delta (e_{i,j}) = \sum_{l=1}^{n} e_{i,l} \otimes \Delta (e_{l,j}) = \sum_{l=1}^{n} \sum_{k=1}^{n} e_{i,l} \otimes e_{l,k} \otimes e_{k,j}.
\]
La counité est donnée par \(\varepsilon (e_{i,j}) = \delta_{i,j} \). En effet :
\[
(\varepsilon \otimes \text{Id}) \circ \Delta (e_{i,j}) = \sum_{k=1}^{n} \delta_{i,k} e_{k,j} = e_{i,j}.
\]
De même pour \((\text{Id} \otimes \varepsilon) \circ \Delta \). Si \(n \geq 2 \), \(M^*_{\mathbb{K}} \) n’est pas cocommutative. En effet, \(\Delta (e_{1,2}) \) contient le terme \(e_{1,1} \otimes e_{1,2} \) mais pas le terme \(e_{1,2} \otimes e_{1,1} \), et donc \(\tau \circ \Delta (e_{1,2}) \) contient le terme \(e_{1,2} \otimes a_{1,1} \) mais pas le terme \(e_{1,1} \otimes e_{1,2} \).
Proposition 2.2.2. 1. Soit $C = (C, \Delta, \varepsilon)$ une cogèbre (non nécessairement de dimension finie). Alors C^* est une algèbre avec le produit défini par :

$$fg(x) = (f \otimes g) \circ \Delta(x) = \sum_{x} f\left(x^{(1)}\right)g\left(x^{(2)}\right).$$

L’unité de C^* est ε.

2. Soit $A = (A, m, \eta)$ une algèbre de dimension finie. Alors A^* est une cogèbre avec $\Delta = m^*: A^* \rightarrow (A \otimes A)^* = A^* \otimes A^*$. Sa counité est $f \rightarrow f(1)$.

Démonstration. 1. Associativité : si $f, g, h \in C^*$, pour tout $x \in C$:

$$(fg)h(x) = \sum_{x} (fg)\left(x^{(1)}\right)h\left(x^{(2)}\right)$$

$$= \sum_{x} \sum_{x^{(1)}} f\left(x^{(1)}\right)\left(g\left(x^{(2)}\right)\right)h\left(x^{(2)}\right)$$

$$= \sum_{x} \sum_{x^{(2)}} f\left(x^{(1)}\right)g\left(x^{(2)}\right)h\left(x^{(2)}\right)$$

$$= \sum_{x} f\left(x^{(1)}\right)gh\left(x^{(2)}\right)$$

$$= f(gh)(x).$$

De plus, pour tout $x \in C$:

$$\varepsilon f(x) = \sum_{x} \varepsilon\left(x^{(1)}\right)f\left(x^{(2)}\right) = f(x) = f\varepsilon(x).$$

2. Coassociativité : Soit $f \in A^*$. En identifiant $(A \otimes A \otimes A)^*$ et $A^* \otimes A^* \otimes A^*$, pour tout $x \otimes y \otimes z \in A \otimes A \otimes A$:

$$(\Delta \otimes \text{Id}) \circ \Delta(f)(x \otimes y \otimes z) = \Delta(f)(xy \otimes z)$$

$$= f((xy)z)$$

$$= f(x(yz))$$

$$= \Delta(f)(x \otimes yz)$$

$$= (\text{Id} \otimes \Delta) \circ \Delta(f)(x \otimes y \otimes z).$$

D’autre part, en notant $\epsilon : f \rightarrow f(1)$, pour tout $x \in A$:

$$(\epsilon \otimes \text{Id}) \circ \Delta(f)(x) = f(1.x) = f(x).$$

De même pour $(\text{Id} \otimes \epsilon) \circ \Delta(f)$. \hfill \square

Exemple 2.2.2. Déterminons le dual de la cogèbre $C = M_n^* (\mathbb{K})$. La base duale de $(e_{i,j})_{1 \leq i, j \leq n}$ est dénotée $(E_{i,j})_{1 \leq i, j \leq n}$. Fixons $i, j, k, l \in \{1, \ldots, n\}$. On pose :

$$E_{i,j}E_{k,l} = \sum_{1 \leq s, t \leq n} x_{s,t}E_{s,t}.$$

Alors :

$$x_{s,t} = E_{i,j}E_{k,l}(e_{s,t}) = (E_{i,j} \otimes E_{k,l}) \circ \Delta(e_{s,t}) = (E_{i,j} \otimes E_{k,l})\left(\sum_{u=1}^{n} e_{s,u} \otimes e_{u,t}\right) = \sum_{u=1}^{n} \delta_{i,u}\delta_{j,u}\delta_{k,u}\delta_{l,t}.$$

Donc $E_{i,j}E_{k,l} = 0$ si $j \neq k$ et $E_{i,j}E_{k,l} = E_{i,l}$ si $j = k$. Autrement dit, $C^* \cong M_n(\mathbb{K})$ comme algèbre.

Remarque 2.2.2. Si A n’est pas de dimension finie, $A^* \otimes A^* \subseteq (A \otimes A)^*$ et donc m^* n’est pas nécessairement un coproduit.
2.2.2 Coidéaux et sous-cogèbres

Dualisons maintenant les notions d’idéal et de sous-algèbre.

Définition 2.2.3. Soient C une cogèbre et V un sous-espace de C.
1. V est une sous-cogèbre de C si $\Delta(V) \subseteq V \otimes V$.
2. V est un coidéal bilatère de C si $\Delta(V) \subseteq V \otimes C + C \otimes V$ et $\varepsilon(V) = (0)$.

Proposition 2.2.4. Soient C une cogèbre et V un sous-espace de C.
1. Si V est une sous-cogèbre de C, alors $\Delta|_V$ est une cogèbre.
2. Si V est un coidéal, alors $C \{ V \}$ est muni d’une structure de cogèbre définie par :

$$\Delta(x) = \sum_x x^{(1)} \otimes x^{(2)} = \sum_{x,(1)} x^{(1)} \otimes x^{(2)} + \sum_{x,(2)} x^{(1)} \otimes x^{(2)},$$

la première somme étant dans $V \otimes C$ et la seconde dans $C \otimes V$. Alors :

$$\sum_{x} x^{(1)} \otimes x^{(2)} = \sum_{x,(1)} x^{(1)} \otimes x^{(2)} + \sum_{x,(2)} x^{(1)} \otimes x^{(2)} = 0 + 0,$$

donc $\Delta : C/V \rightarrow C/V \otimes C/V$ est bien défini. Les axiomes de cogèbre de C impliquent immédiatement les axiomes de cogèbre de C/V.

Démonstration.
1. Par hypothèse, $\Delta|_V : V \rightarrow V \otimes V$. Les axiomes de cogèbre de C impliquent immédiatement les axiomes de cogèbre de V.
2. Montrons que $\Delta : C/V \rightarrow C/V \otimes C/V$ et $\varepsilon : C/V \rightarrow \mathbb{K}$ sont bien définis. Comme $\varepsilon(V) = (0)$, $V \subseteq \text{Ker}(\varepsilon)$ et donc $\varepsilon : C/V \rightarrow \mathbb{K}$ est bien définie. Soit $x \in V$. Alors $\Delta(x) \in V \otimes C + C \otimes V$. On pose alors :

$$\Delta(x) = \sum_{x} x^{(1)} \otimes x^{(2)} = \sum_{x,(1)} x^{(1)} \otimes x^{(2)} + \sum_{x,(2)} x^{(1)} \otimes x^{(2)},$$

3. **2.2.3 Morphismes de cogèbres**

Définition 2.2.5. Soient C et D deux cogèbres et $\phi : C \rightarrow D$ une application linéaire. On dira que ϕ est un morphisme de cogèbres si :

$$\begin{align*}
\begin{array}{c}
C \xrightarrow{\phi} D \\
\Delta_C \\
\end{array}
\end{align*}$$

$$\Delta_D \circ \phi = (\phi \otimes \phi) \circ \Delta_C.$$
Théorème 2.2.6. Soit \(\phi : C \longrightarrow D \) un morphisme de cogèbres. Alors Im((\(\phi \)) est une sous-cogèbre de \(D \), Ker(\(\phi \)) est un coidéal de \(C \) et \(C/Ker(\phi) \approx \text{Im}((\phi)) \).

Démonstration. Soit \(y = \phi(x) \in \text{Im}((\phi)) \). Alors :

\[
\Delta(y) = \sum_{\phi(x)} \phi(x)^{(1)} \otimes \phi(x)^{(2)} = \sum_{x} \phi(x)^{(1)} \otimes \phi(x)^{(2)} \in \text{Im}((\phi)) \otimes \text{Im}((\phi)).
\]

Donc \(\text{Im}((\phi)) \) est une sous-cogèbre de \(D \).

Soit \(x \in \text{Ker}(\phi) \). Alors \((\phi \otimes \phi)(\Delta(x)) = \Delta(\phi(x)) = 0 \), donc \(\Delta(x) \in \text{Ker}(\phi) \otimes \phi = \text{Ker}(\phi) \otimes C + C \otimes \text{Ker}(\phi) \). De plus, \(\varepsilon(x) = \varepsilon \circ \phi(x) = 0 \), donc \(\text{Ker}(\phi) \) est un coidéal de \(C \).

La bijection induite par \(\phi \) entre \(C/\text{Ker}(\phi) \) et \(\text{Im}((\phi)) \) est un isomorphisme de cogèbres.

2.2.4 Produit tensoriel de cogèbres

D’après le théorème 1.4.1, \(A \) et \(B \) sont deux algèbres, alors \(A \otimes B \) est une algèbre, avec le produit défini par :

\[(a_1 \otimes b_1)(a_2 \otimes b_2) = a_1a_2 \otimes b_1b_2.\]

Autrement dit, le produit de \(A \otimes B \) est \((m_A \otimes m_B) \circ (Id_A \otimes \tau \otimes Id_B)\), où \(\tau \) est la volte de \(B \otimes A \).

Proposition 2.2.7. Soient \(C \) et \(D \) deux cogèbres. Alors \(C \otimes D \) est aussi une cogèbre, avec le coproduit défini par :

\[(\text{Id}_C \otimes \tau \otimes \text{Id}_D) \circ (\Delta_C \otimes \Delta_D).\]

Autrement dit :

\[
\Delta(x \otimes y) = \sum_x \sum_y (x^{(1)} \otimes y^{(1)}) \otimes (x^{(2)} \otimes y^{(2)}).
\]

La counité est \(\varepsilon_C \otimes \varepsilon_D : x \otimes y \longrightarrow \varepsilon_C(x)\varepsilon_D(y) \).

Démonstration. En exercice.

2.3 Bigèbres

2.3.1 Définition

Une bigèbre est à la fois une algèbre et une cogèbre, avec une compatibilité entre ces deux structures.

Lemme 2.3.1. Soit \(H \) un espace, muni d’une structure d’algèbre \((H, m, \eta)\) et d’une structure de cogèbre \((H, \Delta, \varepsilon)\). Les conditions suivantes sont équivalentes :

1. \(\Delta \) et \(\varepsilon \) sont des morphismes d’algèbres.
2. \(m \) et \(\eta \) sont des morphismes de cogèbres.
3. Pour tous \(x, y \in H \) :

\[
\Delta(xy) = \sum_x \sum_y x^{(1)}y^{(1)} \otimes x^{(2)}y^{(2)},
\]

\[
\Delta(1) = 1 \otimes 1,
\]

\[
\varepsilon(xy) = \varepsilon(x)\varepsilon(y),
\]

\[
\varepsilon(1) = 1.
\]

Démonstration. 1. \(\iff \) 3. \(\Delta : H \longrightarrow H \otimes H \) est un morphisme d’algèbres si et seulement si :

- Pour tous \(x, y \in H \), \(\Delta(xy) = \Delta(x)\Delta(y) = \sum_x \sum_y x^{(1)}y^{(1)} \otimes x^{(2)}y^{(2)} \).
- \(\Delta(1) = 1_{H \otimes H} = 1 \otimes 1 \).

\[\varepsilon : H \to K \] est un morphisme d’algèbres si et seulement si :

- Pour tous \(x, y \in H \), \(\varepsilon(xy) = \varepsilon(x)\varepsilon(y) \).
- \(\varepsilon(1) = 1_K = 1 \).

Donc 1. et 3. sont équivalentes.

2. \[H \otimes H \to H \] est un morphisme de cogèbres si et seulement si :

- Pour tout \(x \otimes y \in H \otimes H \),
 \[\Delta_H \circ m(x \otimes y) = (m \otimes m) \circ \Delta_{H\otimes H}(x \otimes y) \]
 \[\Delta(xy) = (m \otimes m) \left(\sum_{x, y} x^{(1)} \otimes y^{(1)} \otimes x^{(2)} \otimes y^{(2)} \right) \]
 \[\Delta(xy) = \sum_{x, y} x^{(1)}y^{(1)} \otimes x^{(2)}y^{(2)} \].

- Pour tous \(x \otimes y \in H \otimes H \), \(\varepsilon_H \circ m(x \otimes y) = \varepsilon(xy) \).

Comme (1) est une base de \(K \), \(: K \to H \) est un morphisme de cogèbres si, et seulement si :

\[\Delta_H \circ \eta(1) = (\eta \otimes \eta) \circ \Delta_K(1) \]
\[\Delta_H(1_H) = (\eta \otimes \eta)(1 \otimes 1) \]
\[\Delta(1) = 1 \otimes 1 \].

Donc 2. et 3. sont équivalentes.

\[\square \]

Définition 2.3.2. Une bigèbre (ou bialgèbre) est une famille \((H, m, \eta, \Delta, \varepsilon) \) telle que :

1. \((H, m, \eta) \) est une algèbre.
2. \((H, \Delta, \varepsilon) \) est une cogèbre.
3. \(\Delta \) et \(\varepsilon \) sont des morphismes d’algèbres ou, de manière équivalente, \(m \) et \(\eta \) sont des morphismes de cogèbres.

Exemple 2.3.1. 1. Soit \(G \) un groupe (multiplicatif). Soit \(KG \) l’espace vectoriel de base les éléments de \(G \). Le produit de \(G \) est étendu par bilinéarité à \(KG \) tout entier. Ainsi, \(KG \) est une algèbre. On définit un coproduit sur \(KG \) par \(\Delta(g) = g \otimes g \) pour tout \(g \in G \). Ainsi, \(KG \) est une cogèbre. Sa counité vérifie \(\varepsilon(g) = 1 \) pour tout \(g \in G \). De plus, pour tous \(g, h \in G \) :

\[\Delta(gh) = gh \otimes gh = (g \otimes g)(h \otimes h) = \Delta(g)\Delta(h) \]
\[\Delta(1) = 1 \otimes 1 \]
\[\varepsilon(gh) = \varepsilon(g)\varepsilon(h) = 1 \]
\[\varepsilon(1) = 1 \]

Donc \(KG \) est une bigèbre. Sa dimension est le cardinal de \(G \).

2. Soit \(A \) une bigèbre de dimension finie. Alors son dual \(A^* = (A^*, \Delta^*, \varepsilon^*, m^*, \eta^*) \) est aussi une bigèbre. (On sait qu’il s’agit d’une algèbre et d’une cogèbre. Comme \(m \) est un morphisme de cogèbres, \(m^* \) est un morphisme d’algèbres, etc).

3. En particulier, si \(G \) est un groupe fini, le dual de \(KG \) s’identifie avec l’algèbre \(K^G \) des applications de \(G \) dans \(K \). Cette algèbre est donc une bigèbre avec le coproduit suivant : si \(f : G \to K \), alors \(\Delta(f)(x \otimes y) = f(xy) \) pour tous \(x, y \in G \). En particulier, une base de \(K^G \) est \((\delta_x)_{x \in G} \), avec pour tout \(x \in G \) :

\[\delta_x : \begin{cases} G \\ y \to \delta_{x,y} \end{cases} \]
Par suite :
\[\Delta(\delta_x)(y \otimes z) = \delta_{x,y} = \left(\sum_{u,v \in G, uv = x} \delta_u \otimes \delta_v \right) (y \otimes z) = \left(\sum_{u \in G} \delta_u \otimes \delta_{u^{-1}x} \right) (y \otimes z). \]

Donc :
\[\Delta(\delta_x) = \sum_{u \in G} \delta_u \otimes \delta_{u^{-1}x}. \]

L’unité de \(\mathbb{K}G^n \) est la somme des \(\delta_x \) (autrement dit, l’application constante 1) et la counité est donnée par \(f \mapsto f(e_G) \). Autrement dit, \(\varepsilon(\delta_x) = \delta_{x,e_G} \).

2.3.2 Sous-bigèbres et quotients

Définition 2.3.3. Soit \(H \) une bigèbre et \(I \) un sous-espace de \(H \).

1. On dira que \(I \) est une sous-bigèbre de \(H \) si \(I \) est une sous-algèbre et une sous-cogèbre.
2. On dira que \(I \) est un bidéal de \(H \) si \(I \) est un idéal et un coidéal de \(H \).

Les résultats suivants sont alors immédiats :

Proposition 2.3.4. Soit \(H \) une bigèbre.

1. Toute sous-bigèbre de \(H \) est une bigèbre.
2. Pour tout bidéal \(I \) de \(H \), \(H/I \) est muni d’une structure de bigèbre induite.

Démonstration. En exercice.

Définition 2.3.5. Soient \(H \) et \(H' \) deux bigèbres et \(\phi : H \to H' \). On dira que \(\phi \) est un morphisme de bigèbres si \(\phi \) est un morphisme d’algèbres et de cogèbres.

Théorème 2.3.6. Soient \(H \) et \(H' \) deux bigèbres et \(\phi : H \to H' \) un morphisme de bigèbres. Alors \(\text{Im}(\phi) \) est une sous-bigèbre de \(H' \) et \(\text{Ker}(\phi) \) est un bidéal de \(H \). De plus, les bigèbres \(H/\text{Ker}(\phi) \) et \(\text{Im}(\phi) \) sont isomorphes.

Démonstration. En exercice.

2.3.3 Bigèbres tensorielles et bigèbres symétriques

Théorème 2.3.7. Soit \(V \) un espace vectoriel quelconque. L’algèbre \(T(V) \) est munie d’une structure de bigèbre uniquement définie par la formule suivante : pour tout \(v \in V \), \(\Delta(v) = v \otimes 1 + 1 \otimes v \). D’autre part, \(T(V) \) est cocommutative. Elle est commutative si, et seulement si, \(\dim_{\mathbb{K}}(V) = 0 \) ou 1.

Démonstration. Unicité. Le coproducte \(\Delta \) étant un morphisme d’algèbres, par propriété universelle de \(T(V) \) il existe au plus un unique coproducte sur \(T(V) \) ainsi défini. L’unité et la counité étant alors unique, ceci prouve l’unicité de la structure de bigèbre ainsi définie sur \(T(V) \).

Existence. Soit \(\Delta : T(V) \to T(V) \otimes T(V) \) l’unique morphisme d’algèbres envoyant \(v \) sur \(v \otimes 1 + 1 \otimes v \) pour tout \(v \in V \) (propriété universelle de \(T(V) \)). Montrons que \(\Delta \) est coassociatif.

Si \(v \in V \):
\[
(\Delta \otimes \text{Id}) \circ \Delta(v) = v \otimes 1 \otimes 1 + 1 \otimes v \otimes 1 + 1 \otimes 1 \otimes v,
\]
\[
(\text{Id} \otimes \Delta) \circ \Delta(v) = v \otimes 1 \otimes 1 + 1 \otimes v \otimes 1 + 1 \otimes 1 \otimes v.
\]

D’autre part, \((\Delta \otimes \text{Id}) \circ \Delta, (\text{Id} \otimes \Delta) \circ \Delta : T(V) \to T(V) \otimes T(V) \otimes T(V) \) sont deux morphismes d’algèbres (vérification directe) qui coïncident sur \(V \). Par unicité dans la propriété universelle de \(T(V) \), ils sont égaux : \(\Delta \) est coassociatif.
Soit $\varepsilon : T(V) \rightarrow K$ l’unique morphisme d’algèbres envoyant v sur 0 pour tout $v \in V$ (ceci existe par propriété universelle de $T(V)$). Soit $v \in V$.

$$(\varepsilon \otimes \text{Id}) \circ \Delta(v) = \varepsilon(v)1 + \varepsilon(1)v = (\text{Id} \otimes \varepsilon) \circ \Delta(v).$$

Donc les trois morphismes d’algèbres $(\varepsilon \otimes \text{Id}) \circ \Delta$, $(\text{Id} \otimes \varepsilon) \circ \Delta$ et Id de $T(V)$ dans $T(V)$ coïncident sur V. Ils sont donc égaux.

De plus, par définition, Δ et ε sont des morphismes d’algèbres. Donc $T(V)$ est une bigèbre.

Montrons enfin la cocommutativité. Soit $v \in V$.

$$\tau \circ \Delta(v) = 1 \otimes v + v \otimes 1 = \Delta(v).$$

Comme $\tau \circ \Delta$ et Δ sont des morphismes d’algèbres, ils sont égaux.

Décrivons de manière plus précise le coproduit de $T(V)$. Nous allons utiliser les notations suivantes : soient $v_1, \ldots, v_n \in V$. Pour toute partie $I = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, n\}$, avec $i_1 < \ldots < i_k$, on pose $v_I = v_{i_1} \ldots v_{i_k}$. En particulier, $v_{\emptyset} = 1$.

Proposition 2.3.8. Soient $v_1, \ldots, v_n \in V$ ($n \geq 1$). Alors :

$$\Delta(v_1 \ldots v_n) = \sum_{I \subseteq \{1, \ldots, n\}} v_I \otimes v_{I^c}. $$

De plus, $\varepsilon(v_1 \ldots v_n) = 0$.

Exemple 2.3.2.

$\Delta(v_1v_2) = v_1v_2 \otimes 1 + v_1 \otimes v_2 + v_2 \otimes v_1 + 1 \otimes v_1v_2$,

$\Delta(v_1v_2v_3) = v_1v_2v_3 \otimes 1 + v_1v_2 \otimes v_3 + v_1v_3 \otimes v_2 + v_2v_3 \otimes v_1$

$$+ v_1 \otimes v_2v_3 + v_2 \otimes v_1v_3 + v_3 \otimes v_1v_2 + 1 \otimes v_1v_2v_3.$$

Démonstration. Par récurrence sur n. C’est immédiat si $n = 1$. Supposons le résultat vrai au rang $n-1$.

$$\Delta(v_1 \ldots v_n) = \Delta(v_1 \ldots v_{n-1})\Delta(v_n)$$

$$= \left(\sum_{I \subseteq \{1, \ldots, n-1\}} v_I \otimes v_{\{1, \ldots, n-1\}\setminus I} \right) (v_n \otimes 1 + 1 \otimes v_n)$$

$$= \sum_{I \subseteq \{1, \ldots, n-1\}} v_I v_n \otimes v_{\{1, \ldots, n-1\}\setminus I} + \sum_{I \subseteq \{1, \ldots, n-1\}} v_I \otimes v_{\{1, \ldots, n-1\}\setminus I} v_n$$

$$= \sum_{I \subseteq \{1, \ldots, n\}, n \notin I} v_I \otimes v_{\{1, \ldots, n\}\setminus I} + \sum_{I \subseteq \{1, \ldots, n\}, n \notin I} v_I \otimes v_{\{1, \ldots, n\}\setminus I}$$

$$= \sum_{I \subseteq \{1, \ldots, n\}} v_I \otimes v_{I^c}.$$

D’autre part, $\varepsilon(v_1 \ldots v_n) = \varepsilon(v_1) \ldots \varepsilon(v_n) = 0$ si les $n \neq 0$.

Théorème 2.3.9. Soit V un espace vectoriel quelconque. L’algèbre $S(V)$ est munie d’une structure de bigèbre uniquement définie par la formule suivante : pour tout $v \in V$, $\Delta(v) = v \otimes 1 + 1 \otimes v$. D’autre part, $S(V)$ est commutative et cocommutative.

Démonstration. Semblable à la preuve du théorème 2.3.7. On peut utiliser la propriété universelle de $S(V)$ pour définir Δ car $S(V) \otimes S(V)$ est commutative.

Donnons le coproduit des monômes de $S(V)$.

Proposition 2.3.10. Soient \(v_1, \ldots, v_n \in V \), \(a_1, \ldots, a_n \in \mathbb{N} \).

\[
\Delta(v_1^{a_1} \ldots v_n^{a_n}) = \sum_{0 \leq b_1 \leq a_1} \frac{a_1!}{b_1!(a_1 - b_1)!} \ldots \frac{a_n!}{b_n!(a_n - b_n)!} v_1^{b_1} \ldots v_n^{b_n} \otimes v_1^{a_1 - b_1} \ldots v_n^{a_n - b_n}.
\]

De plus, \(\varepsilon(v_1^{a_1} \ldots v_n^{a_n}) = 0 \) si les \(a_i \) ne sont pas tous nuls.

Démonstration. Par multiplicativité de \(\Delta \), il suffit de démontrer la formule pour \(n = 1 \). Dans ce cas :

\[
\Delta(v^a) = (v \otimes 1 + 1 \otimes v)^a \\
= \sum_{b=0}^{a} \binom{a}{b} (v \otimes 1)^b (1 \otimes v)^{a-b} \\
= \sum_{b=0}^{a} \binom{a}{b} (v^b \otimes 1)(1 \otimes v^{a-b}) \\
= \sum_{b=0}^{a} \binom{a}{b} v^b \otimes v^{a-b}.
\]

De plus, \(\varepsilon(v) = 0 \) pour tout \(v \in V \), donc \(\varepsilon(v_1^{a_1} \ldots v_n^{a_n}) = 0^{a_1} \ldots 0^{a_n} = 0 \) si les \(a_i \) ne sont pas tous nuls.

Par analogie :

Proposition 2.3.11. Soit \(n \geq 1 \). L’algèbre de polynômes \(\mathbb{K}[X_1, \ldots, X_n] \) est muni d’une structure de bigèbre définie de la manière suivante : pour tout \(1 \leq i \leq n \),

\[
\Delta(X_i) = X_i \otimes 1 + 1 \otimes X_i.
\]

Cette bigèbre est commutative et cocommutative. Si \(a_1, \ldots, a_n \in \mathbb{N} \) :

\[
\Delta(X_1^{a_1} \ldots X_n^{a_n}) = \sum_{0 \leq b_1 \leq a_1} \frac{a_1!}{b_1!(a_1 - b_1)!} \ldots \frac{a_n!}{b_n!(a_n - b_n)!} X_1^{b_1} \ldots X_n^{b_n} \otimes X_1^{a_1 - b_1} \ldots X_n^{a_n - b_n}.
\]

Exercices

1. Sur le corps de base \(\mathbb{R} \), décrire les cogèbres \(\mathbb{C}^* \) et \(\mathbb{H}^* \), où \(\mathbb{H} \) désigne l’algèbre des quaternions.

2. Soit \(C \) une cogèbre et soit \(x \in C \). Montrer que :

 (a) \(\sum x^{(1)} \otimes \ldots \otimes \Delta(x^{(i)}) \otimes \ldots \otimes x^{(n)} = \sum x^{(1)} \otimes \ldots \otimes x^{(n+1)} \).

 (b) \(\sum x^{(1)} \otimes \ldots \otimes \varepsilon(x^{(i)}) \otimes \ldots \otimes x^{(n)} = \sum x^{(1)} \otimes \ldots \otimes x^{(n-1)} \).

3. Soit \(C \) une cogèbre de dimension finie, \(A \) une algèbre de dimension finie. Montrer que \(C^{**} \cong C \), \(A^{**} \cong A \).

4. Soit \(C \) une cogèbre de dimension finie et \(A \) l’algèbre duale. Soit \(V \) un sous-espace de \(C \).

 (a) Montrer que \(V \) est une sous-cogèbre de \(C \) si, et seulement si, \(V^\perp \) est un idéal de \(A \). Montrer qu’alors \(V^* \cong A/V^\perp \).
CHAPITRE 2. ALGÈBRES, COGÈBRES, BIGÈBRES

(b) Montrer que V est un coidéal de C si, et seulement si, V^\perp est une sous-algèbre de A. Montrer qu’alors $(C/V)^* \approx V^\perp$.

6. Sur le corps de base \mathbb{R}, déterminer les sous-cogèbres de \mathbb{C}, \mathbb{H} et $M_n(\mathbb{R})$.

7. Soient H, H' deux bigèbres. Montrer que $H \otimes H'$, muni du produit et du coproduit du cours, est une bigèbre. Donner une CNS pour la cocommutativité de $H \otimes H'$.

8. Soient G et G' deux groupes. Montrer que la bigèbre $\mathbb{K}G \otimes \mathbb{K}G'$ est isomorphe à une bigèbre $\mathbb{K}G''$ et déterminer G''.

9. Montrer que les bigèbres $S(V) \otimes S(V')$ et $S(V \oplus V')$ sont isomorphes.

10. Soit H une cogèbre. On dira que $x \in H$ est un élément de type groupe si x est non nul et vérifie $\Delta(x) = x \otimes x$.

(a) Soient x_1, \ldots, x_n des éléments de type groupe d’une cogèbre H, linéairement indépendants. Montrer que les seuls éléments de type groupe de $	ext{Vect}(x_1, \ldots, x_n)$ sont x_1, \ldots, x_n.

(b) Soit H une cogèbre. Montrer que ses éléments de type groupe sont linéairement indépendants.

(c) Soit G un groupe. Montrer que les éléments de type groupe de $\mathbb{K}G$ sont les éléments de G.

(d) Soient G et G' deux groupes. Montrer que les bigèbres $\mathbb{K}G$ et $\mathbb{K}G'$ sont isomorphes si, et seulement si, les groupes G et G' sont isomorphes.

(e) i. Soit $G_1 = \{1, I, I^2, I^3\}$ un groupe cyclique d’ordre 4. Montrer que les quatre éléments suivants forment une base de $\mathbb{C}G_1$ et calculer tous les produits de deux de ces éléments :

$$\frac{1 + I + I^2 + I^3}{2}$$

$$\frac{1 - I + I^2 - I^3}{2}$$

$$\frac{1 + iI - I^2 - iI^3}{2}$$

$$\frac{1 - iI - I^2 + iI^3}{2}$$

En déduire que l’algèbre $\mathbb{C}G_1$ est isomorphe à \mathbb{C}^4.

ii. Soit $G_2 = \{1, -1\}^2$. Montrer que les quatre éléments suivants forment une base de $\mathbb{C}G_2$ et calculer tous les produits de deux de ces éléments :

$$\frac{(1, 1) + (1, -1) + (-1, 1) + (-1, -1)}{2}$$

$$\frac{(1, 1) - (1, -1) + (-1, 1) - (-1, -1)}{2}$$

$$\frac{(1, 1) + (1, -1) - (-1, 1) - (-1, -1)}{2}$$

$$\frac{(1, 1) - (1, -1) - (-1, 1) + (-1, -1)}{2}$$

En déduire que l’algèbre $\mathbb{C}G_2$ est isomorphe à \mathbb{C}^4.

iii. Montrer que $\mathbb{C}G_1$ et $\mathbb{C}G_2$ sont isomorphes comme algèbres, comme cogèbres, mais pas comme bigèbres.

11. Montrer que les bigèbres $\mathbb{C}Z/n\mathbb{Z}$ et $\mathbb{C}^2/n\mathbb{Z}$ sont isomorphes. Indication : déterminer tous les morphismes de groupe de $\mathbb{Z}/n\mathbb{Z}$ dans \mathbb{C}^* et montrer que ces éléments sont de type groupe dans $\mathbb{C}^2/n\mathbb{Z}$.
Chapitre 3
Convolution et algèbres de Hopf

Dans le chapitre 2, on a vu qu’un groupe G permettait de construire une bigèbre $\mathbb{K}G$. En fait, l’axiome de l’existence d’un inverse sur G n’est pas nécessaire pour cette construction et il suffit de supposer que G est un monoïde pour effectuer cette construction. Comme traduire l’axiome d’existence d’un inverse sur les bigèbres?

3.1 Définition des algèbres de Hopf

3.1.1 Convolution

Proposition 3.1.1. Soit $C = (C, \Delta, \varepsilon)$ une cogèbre et $A = (A, m, \eta)$ une algèbre. L’espace vectoriel $Hom(C, A)$ est muni d’une structure d’algèbre de la manière suivante : si $f, g \in Hom(C, A)$,

$$f \ast g = m \circ (f \otimes g) \circ \Delta.$$

Autrement dit, pour tout $x \in C$:

$$(f \ast g)(x) = \sum_x f(x^{(1)})g(x^{(2)}).$$

Ce produit est appelé produit de convolution. L’unité est l’application $\iota : x \mapsto \varepsilon(x)1_A$.

Démonstration. Montrons l’associativité de \ast. Soient $f, g, h \in Hom(C, A)$. Pour tout $x \in C$:

$$(f \ast g) \ast h(x) = \sum_x f(x^{(1)})g(x^{(2)})h(x^{(3)})$$

$$= \sum_x f(x^{(1)})g(x^{(2)})h(x^{(3)})$$

$$= f \ast (g \ast h)(x).$$

D’autre part, si $f \in Hom(C, A)$, pour tout $x \in C$:

$$\iota \ast f(x) = \sum_x \varepsilon(x^{(1)})1_Af(x^{(2)})$$

$$= f \left(\sum_x \varepsilon(x^{(1)})x^{(2)} \right)$$

$$= x.$$

Donc $\iota \ast f = f$. De même, $f \ast \iota = f$.

Exemple 3.1.1. 1. Si $A = \mathbb{K}$, on retrouve l’algèbre C^*.

2. Si H est une bigèbre, on peut prendre $A = H$ et $C = H$. Alors $Hom(H, H)$ est muni d’un produit \ast, qui n’est pas la composition. L’élément neutre pour ce produit est $x \mapsto \varepsilon(x)1_H$, ce qui n’est pas Id_H. 29
3.1.2 Définition

Définition 3.1.2. Soit H une algèbre de Hopf. On dira que H est une algèbre de Hopf si Id_H possède un inverse dans l’algèbre de convolution $\text{Hom}(H, H), \bullet$. L’unique inverse de Id_H est appelé antipode de H et est noté en général S. Autrement dit, H est une algèbre de Hopf s’il existe une application linéaire $S : H \to H$ telle que pour tout $x \in H$:

$$\sum_x S(x^{(1)})x^{(2)} = \varepsilon(x)1 = \sum_x x^{(1)}S(x^{(2)}).$$

Remarque 3.1.1. Par unicité de l’inverse dans l’algèbre associative $\text{Hom}(H, H), \bullet$, si l’antipode existe, il est unique.

Exemple 3.1.2.

1. Soit G un groupe. Soit $S : \mathbb{K}G \to \mathbb{K}G$ l’application linéaire envoyant g sur g^{-1} pour tout $g \in G$. Alors pour tout $g \in G$:

$$(S \bullet \text{Id})(g) = S(g)g = g^{-1}g = 1 = \varepsilon(g)1 = gg^{-1} = gS(g) = (\text{Id} \bullet S)(g).$$

Donc $\mathbb{K}G$ est une algèbre de Hopf et son antipode est S.

2. Soit G un groupe fini. Soit $S : \mathbb{K}^G \to \mathbb{K}^G$ envoyant δ_g sur $\delta_{g^{-1}}$ pour tout $g \in G$. Alors pour tout $g \in G$:

$$(S \bullet \text{Id})(\delta_g) = \sum_{h \in G} S(\delta_h)\delta_{h^{-1}g}$$

$$= \sum_{h \in G} \delta_h \delta_{h^{-1}g}$$

$$= 0 \text{ si } g \neq e_G,$$

$$= \sum_{h \in G} \delta_{h^{-1}} \text{ si } g = e_G,$$

$$\varepsilon(\delta_g)1_{\mathbb{K}^G} = 0 \text{ si } g \neq e_G,$$

$$= \sum_{h \in G} \delta_h \text{ si } g = e_G.$$

Donc $S \bullet \text{Id} = \iota$. De même, $\text{Id} \bullet S = \iota$. Donc \mathbb{K}^G est une algèbre de Hopf et S est son antipode.

Dans les deux exemples précédents, $S^2 = \text{Id}$. On dit que ce sont des algèbres de Hopf involutives.

3.1.3 Idéaux de Hopf et morphismes d’algèbres de Hopf

Définition 3.1.3. Soit H une algèbre de Hopf et I un sous-espace de H.

1. On dira que I est une sous-algèbre de Hopf de H si I est une bigèbre et si $S(I) \subseteq I$.

2. On dira que I est un idéal de Hopf de H si I est un biidéal et si $S(I) \subseteq I$.

Si I est une sous-algèbre de Hopf de H, alors I est une algèbre de Hopf d’antipode $S|_I$. Si I est un idéal de Hopf de H, alors H/I est une algèbre de Hopf, d’antipode induite par S.

Définition 3.1.4. Soient H et H' deux algèbres de Hopf et $\phi : H \to H'$. On dira que ϕ est un morphisme d’algèbres de Hopf si ϕ est un morphisme de bigèbres et si $\phi \circ S_H = S_{H'} \circ \phi$.

Théorème 3.1.5. Soient H et H' deux algèbres de Hopf et $\phi : H \to H'$ un morphisme d’algèbres de Hopf. Alors $\text{Im}(\phi)$ est une sous-algèbre de Hopf de H' et $\text{Ker}(\phi)$ est un idéal de Hopf de H. De plus, les algèbres de Hopf $H/\text{Ker}(\phi)$ et $\text{Im}(\phi)$ sont isomorphes.
3.2 Propriétés de l’antipode

3.2.1 Bigèbres opposées et coopposées

Définition 3.2.1. Soit H une bigèbre. Les objets suivants sont des bigèbres :

1. $H^{\text{op}} = (H, m \circ \tau, \eta, \Delta, \varepsilon)$.
2. $H^{\text{cop}} = (H, m, \eta, \tau \circ \Delta, \varepsilon)$.
3. $H^{\text{op,cop}} = (H, m \circ \tau, \eta, \tau \circ \Delta, \varepsilon)$.

Démonstration. Vérifications directes.

Le produit de H^{op} et $H^{\text{op,cop}}$ est souvent noté m^{op}. Autrement dit :

$$m^{\text{op}}(x \otimes y) = yx.$$

Le coproduit de H^{cop} et $H^{\text{op,cop}}$ est souvent noté Δ^{cop}. Autrement dit :

$$\Delta^{\text{cop}}(x) = \sum_x x^{(2)} \otimes x^{(1)}.$$

D’autre part, de manière immédiate, $H = H^{\text{op}}$ si, et seulement si, H est commutative ; $H = H^{\text{cop}}$ si, et seulement si, H est cocommutative ; $H = H^{\text{op,cop}}$ si, et seulement si, H est commutative et cocommutative.

3.2.2 Compatibilités de l’antipode avec les structures de bigèbres

Théorème 3.2.2. Soit H une algèbre de Hopf.

1. $S(1) = 1$ et pour tout $x, y \in H$, $S(xy) = S(y)S(x)$.
2. $\varepsilon \circ S = \varepsilon$ et pour tout $x \in H$:

$$\Delta(S(x)) = \sum_x S\left(x^{(2)}\right) \otimes S\left(x^{(1)}\right).$$

Autrement dit, S est un morphisme de bigèbres de H dans $H^{\text{op,cop}}$.

Démonstration. Comme $H \otimes H$ est une cogèbre et H est une algèbre, $\text{Hom}(H \otimes H, H)$ est une algèbre de convolution. Le produit \ast vérifie :

$$f \ast g(x \otimes y) = f\left(x^{(1)} \otimes y^{(1)}\right) g\left(x^{(2)} \otimes y^{(2)}\right).$$

L’élément neutre ι vérifie :

$$\iota(x \otimes y) = \varepsilon(x)\varepsilon(y)1.$$

Cherchons l’inverse de m dans $\text{Hom}(H \otimes H, H)$.

$$(S \circ m) \ast m(x \otimes y) = \sum_x \sum_y S\left(x^{(1)}y^{(1)}\right) x^{(2)}y^{(2)}$$

$$= \sum_{xy} S\left((xy)^{(1)}\right) (xy)^{(2)}$$

$$= \varepsilon(xy)1$$

$$= \varepsilon(x)\varepsilon(y)1$$

$$= \iota(x \otimes y).$$
Donc $(S \circ m) \ast m = \iota$.

$$\begin{align*}
m \ast (m \circ (S \otimes S) \circ \tau)(x \otimes y) &= \sum_{x} \sum_{S(x)} y x^{(1)} y^{(1)} S\left(y^{(2)}\right) S\left(x^{(2)}\right) \\
&= \varepsilon(y) \sum_{x} x^{(1)} S\left(x^{(2)}\right) \\
&= \varepsilon(x) \varepsilon(y) 1.
\end{align*}$$

Donc $m(\ast m \circ (S \otimes S) \circ \tau) = \iota$. Par associativité de \ast :

$$\begin{align*}
S \circ m = (S \circ m) \ast (m \circ (S \otimes S) \circ \tau) &= ((S \circ m) \ast m) \ast (m \circ (S \otimes S) \circ \tau) = m \circ (S \otimes S) \circ \tau.
\end{align*}$$

Comme H est une cogèbre et $H \otimes H$ est une algèbre, $\text{Hom}(H, H \otimes H)$ est une algèbre de convolution. Cherchons l'inverse de Δ dans cette algèbre.

$$\begin{align*}
(\Delta \circ S) \ast \Delta(x) &= \sum_{x} \sum_{S(x)} S\left(x^{(1)}\right) x^{(2)} \otimes S\left(x^{(2)}\right) x^{(3)} \\
&= \sum_{x} \sum_{S(x^{(1)})} \left(S\left(x^{(1)}\right) x^{(2)}\right)^{(1)} \otimes \left(S\left(x^{(1)}\right) x^{(2)}\right)^{(2)} \\
&= \Delta(\varepsilon(x) 1) \\
&= \varepsilon(x) 1 \otimes 1 \\
&= \iota(x).
\end{align*}$$

Donc $(\Delta \circ S) \ast \Delta = \iota$.

$$\begin{align*}
\Delta \ast (\tau \circ (S \otimes S) \circ \Delta)(x) &= \sum_{x} x^{(1)} S\left(x^{(4)}\right) \otimes x^{(2)} S\left(x^{(3)}\right) \\
&= \sum_{x} x^{(1)} S\left(x^{(3)}\right) \otimes \varepsilon\left(x^{(2)}\right) 1 \\
&= \sum_{x} x^{(1)} S\left(x^{(2)}\right) \otimes 1 \\
&= \varepsilon(x) 1 \otimes 1 \\
&= \iota(x).
\end{align*}$$

Donc $\Delta \ast (\tau \circ (S \otimes S) \circ \Delta) = \iota$. Comme dans le cas précédent, $\Delta \circ S = \tau \circ (S \otimes S) \circ \Delta$.

Comme $\Delta(1) = 1 \otimes 1$, $S(1) 1 = \varepsilon(1) 1 = 1$, donc $S(1) = 1$. Pour tout $x \in H$:

$$\begin{align*}
\varepsilon(x) &= \varepsilon(\varepsilon(x) 1) \\
&= \sum_{x} \varepsilon\left(x^{(1)} S\left(x^{(2)}\right)\right) \\
&= \sum_{x} \varepsilon(x^{(1)}) \varepsilon\left(S\left(x^{(2)}\right)\right) \\
&= \varepsilon\left(S\left(\sum_{x} \varepsilon(x^{(1)}) x^{(2)}\right)\right) \\
&= \varepsilon(S(x)).
\end{align*}$$

Donc $\varepsilon = \varepsilon \circ S$. \hfill \square
3.2.3 Antipode d’une algèbre de Hopf (co)commutative

Théorème 3.2.3. Soit H une algèbre de Hopf commutative ou cocommutative. Alors son antipode S vérifie $S^2 = \text{Id}$ (H est involutive).

Démonstration. Supposons H commutative ou cocommutative. Soit $x \in H$.

\[S^2 \ast S(x) = \sum_x S^2 \left(x^{(1)} \right) S \left(x^{(2)} \right) = S \left(\sum_x x^{(2)} S \left(x^{(1)} \right) \right). \]

Si H est commutative, on obtient :

\[S^2 \ast S(x) = S \left(\sum_x S \left(x^{(1)} \right) x^{(2)} \right) = S(\varepsilon(x)1) = \varepsilon(x)1. \]

Si H est cocommutative, on obtient :

\[S^2 \ast S(x) = S \left(\sum_x x^{(1)} S \left(x^{(2)} \right) \right) = S(\varepsilon(x)1) = \varepsilon(x)1. \]

Dans les deux cas, $S^2 \ast S = 1$. En conséquence, S^2 est l’inverse de S pour la convolution, c’est-à-dire Id.

3.2.4 Eléments de type groupe et éléments primitifs

Définition 3.2.4. Soit H une bigèbre. Soit $x \in H$. On dira que x est de type groupe (group-like) si $x \neq 0$ et si $\Delta(x) = x \otimes x$. On dira que x est primitif si $\Delta(x) = x \otimes 1 + 1 \otimes x$. L’ensemble des éléments de type groupe de H est noté $G(H)$ et le sous-espace des éléments primitifs de H est noté $\text{Prim}(H)$.

Proposition 3.2.5. $G(H)$ est un groupe pour le produit de H. L’inverse d’un élément de $G(H)$ est donné par l’antipode.

Démonstration. On montre que $G(H)$ est un sous-groupe du groupe des unités de H. Soit $x \in G(H)$. Alors $x = (\varepsilon \otimes \text{Id}) \circ \Delta(x) = \varepsilon(x)x$. Comme $x \neq 0$, $\varepsilon(x) = 1$. En conséquence, $S \ast \text{Id}(x) = S(x)x = \varepsilon(x)1 = 1 = \text{Id} \ast S(x) = xS(x)$, donc x est inversible, d’inverse $S(x)$.

Soient $x, y \in G(H)$. Alors $\Delta(xy) = (x \otimes x)(y \otimes y) = xy \otimes xy$. De plus, $\Delta(S(x)) = (S \otimes S) \circ \Delta^{op}(x) = S(x) \otimes S(x)$. Donc xy et $S(x) \in G(H)$.

Proposition 3.2.6. $\text{Prim}(H)$ est une sous-algèbre de Lie de H. Autrement dit, si $x, y \in \text{Prim}(H)$, $[x, y] = xy - yx \in \text{Prim}(H)$. De plus, si $x \in \text{Prim}(H)$, $\varepsilon(x) = 0$ et $S(x) = -x$.

Démonstration. En effet, si $x, y \in \text{Prim}(H)$:

\[\Delta(xy) = (x \otimes 1 + 1 \otimes x)(y \otimes 1 + 1 \otimes y) = xy \otimes 1 + x \otimes y + y \otimes x + 1 \otimes xy, \]

\[\Delta(yx) = yx \otimes 1 + 1 \otimes y + x \otimes y + 1 \otimes xy, \]

\[\Delta(xy - yx) = (xy - yx) \otimes 1 + 1 \otimes (xy - yx). \]

D’autre part :

\[x = (\varepsilon \otimes \text{Id}) \circ \Delta(x) = \varepsilon(x)1 + \varepsilon(1)x = \varepsilon(x)1 + x, \]

donc $\varepsilon(x) = 0$. Enfin :

\[S \ast \text{Id}(x) = S(x)1 + S(1)x = S(x) + x = 0, \]

donc $S(x) = -x$.

\[\square \]
3.3 Algèbres de Hopf $T(V)$ et $S(V)$

3.3.1 Antipode d’une algèbre tensorielle

Théorème 3.3.1. Soit V un espace vectoriel. Alors $T(V)$ est une algèbre de Hopf, d’antipode donnée par :

$$S(v_1 \ldots v_n) = (-1)^n v_n \ldots v_1.$$

Démonstration. On définit une application S_g par récurrence sur chaque mot par récurrence sur la longueur de la manière suivante :

1. $S_g(1) = 1.$
2. $S_g(v) = -v.$
3. Si $x = v_1 \ldots v_n$, $S_g(x) = -v_1 \ldots v_n - \sum_{\emptyset \subseteq I \subseteq \{1, \ldots, n\}} S_g(v_I)v_F.$

Ceci définit bien une application linéaire de $T(V)$ dans elle-même, car si $\emptyset \subseteq I \subseteq \{1, \ldots, n\}$, le mot v_I a strictement moins de n lettres. De plus :

1. Si $x = 1$, $m \circ (S_g \otimes \text{Id}) \circ \Delta(x) = 1 = \varepsilon(1)1$.
2. Si $x = v \in V$, $m \circ (S_g \otimes \text{Id}) \circ \Delta(x) = S_g(v)1 + S_g(1)v = 0 = \varepsilon(x)1$.
3. Si $x = v_1 \ldots v_n$:

$$S_g \ast \text{Id}(x) = S_g(x)1 + S_g(1)x + \sum_{\emptyset \subseteq I \subseteq \{1, \ldots, n\}} S_g(v_I)v_F = 0 = \varepsilon(v)1.$$

Donc $S_g \ast \text{Id} = \iota$. On peut construire de la même manière S_d telle que $\text{Id} \ast S_d = \iota$. En conséquence :

$$S_g = S_g \ast (\text{Id} \ast S_d) = (S_g \ast \text{Id}) \ast S_d = S_d.$$

Donc $S_g = S_d = S$ est un antipode pour $T(V)$.

Comme S est un antimorphisme d’algèbres et que $S(v) = -v$ pour tout $v \in V$:

$$S(v_1 \ldots v_n) = S(v_n) \ldots S(v_1) = (-v_n) \ldots (-v_1) = (-1)^n v_n \ldots v_1.$$

\[
\square
\]

3.3.2 Antipode d’une algèbre symétrique

Théorème 3.3.2. Soit V un espace vectoriel. Alors $S(V)$ est une algèbre de Hopf, d’antipode donnée par :

$$S(v_1^{a_1} \ldots v_n^{a_n}) = (-1)^{a_1 + \ldots + a_n} v_1^{a_1} \ldots v_n^{a_n}.$$

Démonstration. En exercice.

\[
\square
\]

Exercices

1. Soit H une algèbre de Hopf de dimension finie et V un sous-espace de H.
 (a) Montrer que H^* est une algèbre de Hopf d’antipode S^*.
 (b) Montrer que V est un idéal de Hopf de H si, et seulement si, V^\perp est une sous-algèbre de Hopf de H^* et que dans ce cas, les algèbres de Hopf $(H/V)^*$ et V^\perp sont isomorphes.
 (c) Montrer que V est une sous-algèbre de Hopf de H si, et seulement si, V^\perp est un idéal de Hopf de H^* et que dans ce cas, les algèbres de Hopf V^* et H^*/V^\perp sont isomorphes.
2. Existe-t-il des algèbres de Hopf telles l’antipode S vérifie que $S = \text{Id}$?
3. Soit H une algèbre de Hopf d’antipode S.

3.3. ALGÈBRES DE HOPF T(V) ET S(V)

(a) Montrer que $H^{op,cop}$ est une algèbre de Hopf d’antipode S.
(b) Montrer que H^{op} est une algèbre de Hopf si, et seulement si, S est inversible et que dans ce cas, l’antipode de H^{op} est S^{-1}.
(c) Montrer que H^{cop} est une algèbre de Hopf si, et seulement si, S est inversible et que dans ce cas, l’antipode de H^{cop} est S^{-1}.

4. Soient H et H' deux algèbres de Hopf et $\phi : H \rightarrow H'$ un morphisme de bigèbres. Montrer que ϕ est un morphisme d’algèbres de Hopf, c’est-à-dire $\phi \circ S_H = S_{H'} \circ \phi$. Indication : chercher l’inverse de ϕ pour une convolution bien choisie.

5. Déterminer à isomorphisme près toutes les bigèbres de dimension 2 sur K. Parmi celles-ci, lesquelles sont des algèbres de Hopf?

(a) Montrer que pour tous $x, y \in H$, $\Delta([x, y]) \in I \otimes H + H \otimes I$. En déduire que I est un biidéal.
(b) Montrer que pour tous $x, y \in H$, $S([x, y]) \in I$. En déduire que I est un idéal de Hopf.
(c) Montrer que $H_{ab} = H/I$ est une algèbre de Hopf commutative. Cette algèbre de Hopf est appelée abélianisée de H.
(d) Montrer que $T(V)_{ab} = S(V)$.
Chapitre 4

Graduations

En général, le dual d’une algèbre de Hopf de dimension infinie n’est pas une algèbre de Hopf. Il existe une notion de dual de Hopf, en général assez difficile à déterminer (voir par exemple [11]). Par exemple, certaines algèbres de Hopf de dimension infinie ont un dual de Hopf égal à \(K \). Lorsque l’algèbre de Hopf possède une graduation, on obtient une nouvelle notion de dual, le dual gradué, plus facilement manipulable.

4.1 Espaces gradués

4.1.1 Définitions

Définition 4.1.1. 1. Soit \(V \) un espace vectoriel. Une graduation de \(V \) est une famille \((V_n)_{n \geq 0} \) de sous-espaces de \(V \) de dimension finie telle que :
\[
V = \bigoplus_{n=0}^{\infty} V_n.
\]

2. Soit \(V \) un espace gradué, c’est-à-dire un espace muni d’une graduation.
(a) Les éléments de \(V_n \) sont appelés les éléments homogènes de degré \(n \).
(b) Pour tout \(v \in V \), non nul, le degré de \(v \) est le minimum des entiers \(n \) tel que \(v \in V_0 \oplus \ldots \oplus V_n \). Par convention, le degré de \(0 \) est \(-\infty\).

Exemple 4.1.1. \(\mathbb{K}[X_1, \ldots, X_k] \) est un espace gradué, en posant :
\[
\mathbb{K}[X_1, \ldots, X_k]_n = \text{Vect}(X_1^{a_1} \ldots X_k^{a_k} / a_1 + \ldots + a_k = n).
\]
La notion de degré associée à cette graduation est le degré usuel.

Définition 4.1.2. Soit \(V \) un espace gradué et \(W \) un sous-espace de \(V \). On dira que \(W \) est un sous-espace gradué de \(V \) si :
\[
W = \bigoplus_{n=0}^{\infty} W \cap V_n.
\]
Si \(W \) est un sous-espace gradué de \(V \), il est lui-même gradué, avec \(W_n = W \cap V_n \). De plus :
\[
V/W = \bigoplus_{n=0}^{\infty} V_n/W_n.
\]
Donc \(V/W \) est gradué, avec \((V/W)_n = V_n/W_n \).

Proposition 4.1.3. Soient \(V \) et \(W \) deux espaces gradués.
1. Alors \(V \oplus W \) est un espace gradué, avec \((V \oplus W)_n = V_n \oplus W_n \).
2. Alors $V \otimes W$ est un espace gradué, avec :

$$(V \otimes W)_n = \bigoplus_{i=0}^{n} V_i \otimes W_{n-i}.$$

\textbf{Démonstration.} Le deuxième point provient de la proposition 1.2.6, troisième point.

\textbf{Définition 4.1.4.} Soient V et V' deux espaces gradués et $\phi : V \rightarrow V'$ une application linéaire. Soit $k \in \mathbb{Z}$. On dira que ϕ est homogène de degré k si pour tout $n \in \mathbb{N}$, $\phi(V_n) \subseteq V_{n+k}$, avec la convention $V_l^0 = (0)$ si $l < 0$.

\textbf{Exemple 4.1.2.} Prenons $V = V' = \mathbb{K}[X_1, \ldots, X_k]$. La multiplication par X_i est homogène de degré 1; la dérivation partielle en X_i est homogène de degré -1.

\subsection*{4.1.2 Séries formelles de Poincaré-Hilbert}

\textbf{Définition 4.1.5.} Soit V un espace gradué. La série formelle de Poincaré-Hilbert associée à V est :

$$F_V(h) = \sum_{n=0}^{\infty} \dim_{\mathbb{K}}(V_n) h^n \in \mathbb{Q}[[h]].$$

\textbf{Exemple 4.1.3.} La série formelle de $\mathbb{K}[X_1, \ldots, X_k]$ est :

$$F_{\mathbb{K}[X_1, \ldots, X_k]}(h) = \sum_{n=0}^{\infty} \binom{n+k-1}{n} h^n = \frac{1}{(1-h)^k}.$$

\textbf{Proposition 4.1.6.} Soient V et W deux espaces gradués. Alors :

$$F_{V \otimes W}(h) = F_V(h) + F_W(h),$$

$$F_{V \oplus W}(h) = F_V(h) F_W(h).$$

\textbf{Démonstration.} Notons $p_k = \dim_{\mathbb{K}}(V_k)$ et $q_k = \dim_{\mathbb{K}}(W_k)$ pour tout k. Alors :

$$F_{V \otimes W}(h) = \sum_{n=0}^{\infty} \dim_{\mathbb{K}}(V_n \otimes W_n) h^n$$

$$= \sum_{n=0}^{\infty} (p_n + q_n) h^n$$

$$= F_V(h) + F_W(h).$$

$$F_{V \oplus W}(h) = \sum_{n=0}^{\infty} \dim \left(\bigoplus_{i+j=n} V_i \otimes W_j \right) h^n$$

$$= \sum_{n=0}^{\infty} \sum_{i+j=n} p_i q_j h^n$$

$$= F_V(h) F_W(h).$$

\textbf{Corollaire 4.1.7.} Soit V un espace gradué tel que $V_0 = (0)$. Alors $T(V)$ est un espace gradué et :

$$F_{T(V)}(h) = \frac{1}{1 - F_V(h)}.$$
Démonstration. Comme V est gradué, $V^\otimes k$ est gradué pour tout k. Donc $T(V)$ admet une décomposition:

$$T(V) = \bigoplus_{k=0}^{\infty} T(V)_k.$$

Comme $V_0 = (0)$, $(V^\otimes k)_n = (0)$ si $k > n$. En conséquence:

$$T(V)_k = (\mathbb{K})_k \oplus V_k \oplus \ldots \oplus (V^\otimes k)_k + (0),$$

donc $T(V)_k$ est de dimension finie. De plus:

$$F_{T(V)}(h) = \sum_{k=0}^{\infty} F_{V^\otimes k}(h) = \sum_{k=0}^{\infty} F_{V}(h)^k = \frac{1}{1 - F_{V}(h)}.$$

\[\square\]

Corollaire 4.1.8. Soit V un espace gradué tel que $V_0 = (0)$. Soit $p_i = \dim_{\mathbb{K}}(V_i)$ pour tout i. Alors $S(V)$ est un espace gradué et:

$$F_{S(V)}(h) = \prod_{n=1}^{\infty} \frac{1}{(1 - h^n)^{p_n}}.$$

Démonstration. Soit I l’idéal définissant $S(V)$. Par bilinéarité du produit, I est linéairement engendré par les éléments de la forme $a(bc - cb)d$, avec a, b, c, d éléments homogènes de $T(V)$. Ces éléments étant homogènes, I est un sous-espace gradué. Comme $S(V)$ est un quotient de $T(V)$ par un certain idéal I gradué, $S(V)$ est graduée.

Fixons une base de V, notée $(v_i)_{i \in I}$, formée d’éléments homogènes. Il y a donc dans cette base p_k éléments homogènes de degré k, pour tout $k \geq 0$. Une base de $S(V)$ est :

$$\left(\prod_{i \in I} a_i^{p_i}\right)_{i \in I, a_i \in \mathbb{N}}$$, les a_i presque tous nul

Ces éléments sont tous homogènes. Par suite, $\dim_{\mathbb{K}}(S(V)_k)$ est le nombre de ces éléments qui sont homogènes de degré k. Autrement dit, il s’agit du nombre de solutions entières et positives de l’équation :

$$\sum_{i \in I} a_i \deg(v_i) = k.$$

Il s’agit donc du coefficient de h^k de la série formelle :

$$\prod_{i \in I} \left(\sum_{a_i=0}^{+\infty} h^a \deg(v_i)\right) = \prod_{i \in I} (1 - h^{\deg(v_i)}) = \prod_{n=1}^{\infty} (1 - h^n)^{p_n}.$$

Comme ceci est vrai pour tout k :

$$F_{S(V)}(h) = \prod_{n=1}^{\infty} \frac{1}{(1 - h^n)^{p_n}}.$$

\[\square\]

4.1.3 Dual gradué

Soit V un espace gradué. Soit $n \geq 0$. Alors V^*_n s’identifie au sous-espace suivant de V^*:

$$V^*_n \approx \{f \in V^* / f(V_k) = (0) \text{ si } k \neq n\}.$$

Par la suite, on identifiera les deux et on pourra écrire $V^*_n \subseteq V^*$.
Démonstration. Il suffit de montrer que $\phi^*(W_n^*) \subseteq V_{n-k}^*$ pour tout $n \geq 0$. Soit $f \in W_n^*$. Considérons $x \in V_m$, $m \neq n-k$.

$$\phi^*(f)(x) = f(\phi(x)) = 0,$$

car $\phi(x) \in V_{m+k}$ et $m + k \neq n$. Donc $\phi^*(f)(V_m) = (0) : \phi^*(f) \in V_{n-k}^*$.

\[\square\]

Proposition 4.1.11. Soient V et W deux espaces gradués. L’application suivante est un isomorphisme homogène de degré 0 :

$\Theta : \begin{cases}
V^\otimes W^\otimes \rightarrow (V \otimes W)^\otimes \\
 f \otimes g \rightarrow \begin{cases}
V \otimes W \rightarrow k \\
v \otimes w \rightarrow f(v)g(w)
\end{cases}
\end{cases}$

En conséquence, on identifie $(V \otimes W)^\otimes$ et $V^\otimes \otimes W^\otimes$.

Démonstration. Remarquons que cette application Θ est la restriction de l’application Θ de la proposition \[\ref{1.2.7} \] à $V^\otimes \otimes W^\otimes$. Soit $f \in V^\otimes_k$, $g \in W^\otimes_l$, montrons que $\Theta(f \otimes g) \in (V \otimes W)_l^\otimes$. Soit alors $x \in (V \otimes W)_n$, avec $n \neq k + l$. Par linéarité, on peut supposer que $x = x_1 \otimes x_2$, $x_1 \in V_i$, $x_2 \in W_j$, $i + j \neq k + l$. Donc $i \neq k$ ou $j \neq l$. Par suite :

$$\Theta(f \otimes g)(x) = f(x_1)g(x_2) = 0.$$

Par suite, $\Theta(f \otimes g) \in (V \otimes W)_l^\otimes \subseteq (V \otimes W)^\otimes$. Donc Θ est bien à valeurs dans $(V \otimes W)^\otimes$ et est homogène de degré 0.

Par la proposition \[\ref{1.2.7} \] par restriction Θ est injective. D’autre part :

$$F_{V^\otimes \otimes W^\otimes}(h) = F_{V^\otimes}(h)F_{W^\otimes}(h)$$

$$= F_V(h)F_W(h),$$

$$F_{(V \otimes W)^\otimes}(h) = F_{V \otimes W^\otimes}(h)$$

$$= F_V(h)F_W(h).$$

Donc $\Theta_{(V^\otimes \otimes W^\otimes)_n} : (V^\otimes \otimes W^\otimes)_n \rightarrow (V \otimes W)^\otimes_n$ est injective, et ces deux espaces ont la même dimension finie. Donc $\Theta_{(V^\otimes \otimes W^\otimes)_n}$ est surjective. En conséquence, $(V \otimes W)^\otimes \subseteq \text{Im}(\Theta)$ et Θ est surjective.

\[\square\]

4.1.4 Algèbres, cogèbres, bigèbres graduées

Définition 4.1.12. Soit A une algèbre. Une graduation de A est une graduation de l’espace sous-jacent de A telle que :

1. Pour tous $i, j \in \mathbb{N}$, $m(A_i \otimes A_j) \subseteq A_{i+j}$.
2. $1 \in A_0$.

Autrement dit, si (A, m, η) est une algèbre graduée, m et η sont homogènes de degré 0.
4.2. Dual gradué d’une algèbre de Hopf tensorielle ou symétrique

4.2.1. Dual d’une algèbre symétrique

Soit V un espace gradué, tel que $V_0 = (0)$. Alors $S(V)$ est une algèbre de Hopf graduée. Décritons son dual gradué $S(V)^\circ$. Fixons pour cela une base $(v_i)_{i \in I}$ de V formée d’éléments homogènes de V. Une base de $S(V)$ est alors :

$$
\left(\prod_{i \in I} v_i^{a_i} \right)_{\forall i \in I, a_i \in \mathbb{N}}, \text{ les } a_i \text{ presque tous nul}
$$

La base duale est notée :

$$(f(a_i))_{\forall i \in I, a_i \in \mathbb{N}}, \text{ les } a_i \text{ presque tous nul}.$$

Il s’agit d’une base de $S(V)^\circ$. En particulier, la base duale de $(v_i)_{i \in I}$ correspond aux $f(a_i)$ avec un seul a_i non nul.

Décritons le produit de $S(V)^\circ$ dans cette base :

$$
f(a_i)f(b_i)\left(\prod_{i \in I} v_i^{c_i} \right) = (f(a_i) \otimes f(b_i)) \circ \Delta \left(\prod_{i \in I} v_i^{c_i} \right)
= \sum_{(d_i) \vdash (c_i) \text{ avec } (c_i) \in I} \prod_{i \in I} \frac{c_i!}{d_i!e_i!} f(a_i) \left(\prod_{i \in I} v_i^{d_i} \right) \otimes f(b_i) \left(\prod_{i \in I} v_i^{e_i} \right).
$$
Par suite, si \((c_i) \neq (a_i) + (b_i)\), ceci est nul. Pour \(c_i = a_i + b_i\), ceci vaut \(\prod_{i \in I} \frac{(a_i + b_i)!}{a_i! b_i!}\). En conséquence:

\[f(a_i) f(b_i) = \prod_{i \in I} \frac{(a_i + b_i)!}{a_i! b_i!} f(a_i + b_i). \]

L’unité est \(f(0)\). En particulier, si \((a_i)\) et \((b_i)\) sont à supports disjoints, \(f(a_i) f(b_i) = f(a_i + b_i)\).

Décritons le coproduit de \(S(V)^\circledast\):

\[\Delta(f(a_i)) = \prod_{i \in I} v_i^b \otimes \prod_{i \in I} v_i^{c_i} = f(a_i) \left(\prod_{i \in I} v_i^{b + c_i} \right). \]

Ceci vaut 0 si \((a_i) \neq (b_i + c_i)\) et vaut 1 sinon. Donc:

\[\Delta(f(a_i)) = \sum_{(b_i + c_i) = (a_i)} f(b_i) \otimes f(c_i). \]

La counité est donné par \(\varepsilon(f(a_i)) = 0\) si les \(a_i\) ne sont pas tous nuls.

Enfin, décrivons l’antipode:

\[S(f(a_i)) \left(\prod_{i \in I} v_i^b \right) = f(a_i) \left(S \left(\prod_{i \in I} v_i^b \right) \right) = (-1) \sum_{i} b_i f(a_i) \left(\prod_{i \in I} v_i^{b_i} \right) = (-1) \sum_{i} b_i \delta(a_i) f(a_i). \]

En conséquence:

\[S(f(a_i)) = (-1) \sum_{i} a_i f(a_i). \]

Théorème 4.2.1. Soit \(\phi\) l’unique morphisme d’algèbre défini de la manière suivante (propriété universelle de \(S(V)^\circledast\)):

\[\Phi : \begin{cases} S(V)^\circledast & \rightarrow & S(V)^\circledast \\ f & \rightarrow & f. \end{cases} \]

Alors \(\Phi\) est un morphisme d’algèbres de Hopf, homogène de degré 0. Si de plus \(K\) est de caractéristique nulle, alors \(\Phi\) est un isomorphisme d’algèbres de Hopf.

Démonstration. On utilise les notations du début de ce paragraphe. Soit \((f_i)_{i \in I}\) la base duale de la base \(v_i)_{i \in I}\). Autrement dit, \(f_i = f_{(0, \ldots, 0, 1, 0, \ldots)}\) pour tout \(i \in I\), où le 1 est en position \(i\). Montrons que:

\[\Phi \left(\prod_{i \in I} f_i^{a_i} \right) = \left(\prod_{i \in I} a_i! \right) f(a_i). \]

Montrons d’abord que dans \(S(V)^\circledast\):

\[f_i^k = k! f_{(0, \ldots, 0, k, 0, \ldots)}. \]

C’est immédiat si \(k = 0\) ou 1. De plus:

\[f_i^{k+1} = f_i f_i^k = k! f_{(0, \ldots, 0, k, 0, \ldots)} f_i = k! \frac{(k + 1)!}{k!} f_{(0, \ldots, 0, k + 1, 0, \ldots)} = (k + 1)! f_{(0, \ldots, 0, k + 1, 0, \ldots)}. \]

En conséquence:

\[\Phi \left(\prod_{i \in I} f_i^{a_i} \right) = \prod_{i \in I} (a_i! f_{(0, \ldots, 0, a_i, 0, \ldots)}) = \left(\prod_{i \in I} a_i! \right) f(a_i). \]

Par définition, \(\Phi\) est un morphisme d’algèbres. Comme il envoie tout monôme de degré \(n\) de \(S(V)^\circledast\) sur un élément homogène de degré \(n\) de \(S(V)^\circledast\), il est homogène de degré 0. Montrons qu’il s’agit d’un morphisme de cogèbres. Soit \(f \in V^\circledast\). Alors \(\Phi(f) = f \in V^\circledast \subseteq S(V)^\circledast\), donc:

\[\Delta \circ \Phi(f) = \Delta_{S(V)^\circledast}(f) = f \otimes 1 + 1 \otimes f; \]

\[(\Phi \otimes \Phi) \circ \Delta(f) = (\Phi \otimes \Phi)(f \otimes 1 + 1 \otimes f) = f \otimes 1 + 1 \otimes f. \]
Donc $\Delta \circ \Phi$ et $(\Phi \otimes \Phi) \circ \Delta$ sont deux morphismes d’algèbres de $S(V^\oplus)$ dans $S(V^\oplus) \otimes S(V^\oplus)$ qui coïncident sur V^\oplus. Par unicité dans la propriété universelle, ils sont égaux.

La condition sur la comuïté est immédiate. De plus :

$$S \circ \Phi \left(\prod_{i \in I} f_i^{a_i} \right) = (-1)^{\sum a_i} \left(\prod_{i \in I} a_i! \right) f_{(a_i)} = \Phi \circ S \left(\prod_{i \in I} f_i^{a_i} \right).$$

Donc Φ est un morphisme d’algèbres de Hopf.

Si \mathbb{K} est de caractéristique nulle, alors Φ envoie la base des monômes en les f_i de $S(V^\oplus)$ sur la base $\left(\left(\prod_{i \in I} a_i! \right) f_{(a_i)} \right)$ de $S(V^\oplus)$. Il s’agit donc d’un isomorphisme.

Remarque 4.2.1. Si \mathbb{K} est de caractéristique p, alors les calculs précédents montrent que $f_i^p = p! f_{(0,...,0,p,0,...)} = 0$ dans $S(V^\oplus)$, donc l’algèbre $S(V^\oplus)$ possède des éléments nilpotents (si $V \neq (0)$), donc n’est pas intègre. Elle n’est donc pas isomorphe à l’algèbre $S(V^\oplus)$.

4.2.2 Dual d’une algèbre tensorielle

Lorsque V est de dimension ≥ 2, $T(V)$ est non commutative et cocommutative. Son dual gradué est donc une algèbre de Hopf commutative et non cocommutative. Donc $T(V^\oplus)$ n’est pas une algèbre de Hopf tensorielle. Il s’agit en fait d’une algèbre de Hopf cotensorielle, aussi appelée algèbre de Hopf de battage. Nous allons en donner ici une description.

Comme espace vectoriel :

$$T(V^\oplus) = \left(\bigoplus_{n=0}^{\infty} V \otimes^n \right) \cong \bigoplus_{n=0}^{\infty} (V \otimes^n)^\oplus = \bigoplus_{n=0}^{\infty} (V^\oplus) \otimes^n = T(V^\oplus).$$

Pour tout $m, n \in \mathbb{N}$, pour tous $f_1, \ldots, f_m \in V^\oplus$, pour tous $x_1, \ldots, x_n \in V$:

$$f_1 \ldots f_m(v_1 \ldots v_n) = \begin{cases} 0 & \text{si } m \neq n, \\ f_1(v_1) \ldots f_m(v_m) & \text{si } m = n. \end{cases}$$

Notons $*$ le produit de $T(V^\oplus)$, dual du coproduit Δ de $T(V)$. Soient $f_1, \ldots, f_m, f_{m+1}, \ldots, f_{m+n} \in V^\oplus$. Pour tous $v_1, \ldots, v_k \in V$:

$$f_1 \ldots f_m \cdot f_{m+1} \ldots f_{m+n}(v_1 \ldots v_k) = \sum_{I \subseteq \{1, \ldots, k\}} f_1 \ldots f_m(v_I) \otimes f_{m+1} \ldots f_{m+n}(v_{I^c})$$

$$= 0 \text{ si } k \neq m + n,$$

$$= \sum_{\substack{I \subseteq \{1, \ldots, k\} \\ \text{card}(I) = m}} f_1 \ldots f_m(v_I) \otimes f_{m+1} \ldots f_{m+n}(v_{I^c}).$$

Ainsi, par exemple :

$$f_1 \cdot f_2(v_1 v_2) = f_1(v_1) f_2(v_2) + f_1(v_2) f_2(v_1) = (f_1 f_2 + f_2 f_1)(v_1 v_2),$$

donc $f_1 \cdot f_2 = f_1 f_2 + f_2 f_1$.

$$f_1 f_2 f_3(v_1 v_2 v_3) = f_1(v_1) f_2(v_2) f_3(v_3) + f_1(v_2) f_2(v_3) f_3(v_2) + f_1(v_3) f_2(v_2) f_3(v_1).$$

Donc $f_1 f_2 f_3 = f_1 f_2 f_3 + f_1 f_3 f_2 + f_3 f_1 f_2$. De manière générale :

Proposition 4.2.2. Soit $\text{bat}(m,n)$ l’ensemble des (m,n)-battages, c’est-à-dire des bijections $\sigma \in S_{m+n}$ croissantes sur $\{1, \ldots, m\}$ et sur $\{m+1, \ldots, m+n\}$. Alors, dans $T(V^\oplus)$:

$$f_1 \ldots f_m \cdot f_{m+1} \ldots f_{m+n} = \sum_{\sigma \in \text{bat}(m,n)} f_{\sigma^{-1}(1)} \ldots f_{\sigma^{-1}(m+n)}.$$

L’unité de ce produit est le mot vide ε.

Considérons le coproduit d’un élément $f_1 \ldots f_n$ de $T(V)$. Soient $v_1, \ldots, v_k, v_{k+1}, \ldots, v_{k+l} \in V$.

$$\Delta(f_1 \ldots f_n)(v_1 \ldots v_k \otimes v_{k+1} \ldots v_{k+l}) = f_1 \ldots f_n(v_1 \ldots v_{k+l})$$

$$= 0 \text{ si } k + l \neq n$$

$$= f_1(v_1) \ldots f_n(v_n) \text{ si } k + l = n.$$

Dans tous les cas :

$$\Delta(f_1 \ldots f_n)(v_1 \ldots v_k \otimes v_{k+1} \ldots v_{k+l}) = \left(\sum_{i=0}^{n} f_i \otimes f_{i+1} \ldots f_n\right)(v_1 \ldots v_k \otimes v_{k+1} \ldots v_{k+l}).$$

Le coproduit de $T(V)$ est donc le coproduit de déconcaténation :

$$\Delta(f_1 \ldots f_n) = \sum_{i=0}^{n} f_1 \ldots f_i \otimes f_{i+1} \ldots f_n.$$

Considérons l’antipode de $T(V)$.

$$S(f_1 \ldots f_m)(v_1 \ldots v_n) = f_1 \ldots f_m(S(v_1 \ldots v_n))$$

$$= (-1)^n f_1 \ldots f_m(v_n \ldots v_1)$$

$$= 0 \text{ si } n \neq m$$

$$= (-1)^m f_m(v_1) \ldots f_1(v_m) \text{ si } n = m.$$

Donc $S(f_1 \ldots f_m) = (-1)^m f_m \ldots f_1$.

On définit alors l’algèbre de Hopf de battage de la manière suivante :

Définition 4.2.3. Soit V un espace. L’algèbre de Hopf de battage ou algèbre de Hopf cotensorielle $coT(V) = (T(V), \ast, \eta, \Delta, \varepsilon, S)$ est définie par :

$$v_1 \ldots v_k \ast v_{k+1} \ldots v_{k+l} = \sum_{\sigma \in \text{bat}(k,l)} v_{\sigma^{-1}(1)} \ldots v_{\sigma^{-1}(k+l)},$$

$$\Delta(v_1 \ldots v_n) = \sum_{k=0}^{n} v_1 \ldots v_k \otimes v_{k+1} \ldots v_n,$$

$$S(v_1 \ldots v_n) = (-1)^n v_n \ldots v_1.$$

L’unité est le mot vide 1 et la counité envoie tout mot non vide sur 0. De plus, si V est un espace gradué tel que $V_0 = (0), coT(V)$ est une algèbre de Hopf graduée.

Il s’agit bien d’une algèbre de Hopf. Nous l’avons démontré lorsque V est le dual d’un espace gradué tel que $V_0 = (0)$. Notons que $coT(V)$ est commutative et non cocommutative si $\dim_{k}(V) \geq 2$. D’autre part, nous avons montré :

Proposition 4.2.4. Soit V un espace gradué tel que $V_0 = (0)$. Alors $T(V)^{\otimes} \simeq coT(V)^{\otimes}$.

Par bidualité, sous les mêmes hypothèses, $coT(V)^{\otimes} \simeq T(V)^{\otimes}$.

Exercices

1. Soit V un espace gradué. On pose, pour tout $x \in V$:

$$\text{val}(x) = \max\{k \in \mathbb{N} / x \in V_k \oplus V_{k+1} \oplus \ldots\},$$

avec la convention $\text{val}(0) = +\infty$.

(a) Soient $\lambda \in \mathbb{K} - \{0\}$ et $x, y \in V$. Montrer que $\text{val}(\lambda x) = \text{val}(x)$ et que $\text{val}(x + y) \geq \min(\text{val}(x), \text{val}(y))$, avec égalité si $\text{val}(x) \neq \text{val}(y)$.

(b) On pose $|x| = 2^{-\text{val}(x)}$ pour tout $x \in V$, avec la convention $2^{-\infty} = 0$. Montrer que si $\lambda \in \mathbb{K} - \{0\}$ et $x, y \in V$, alors $|\lambda x| = |x|$, $|x + y| \leq \max(|x|, |y|) \leq |x| + |y|$ et que $|x| = 0$ si, et seulement si, $x = 0$.

(c) Montrer que l’application $d : V \times V \longrightarrow \mathbb{R}$ définie par $d(x, y) = |x - y| = 2^{-\text{val}(x-y)}$ est une distance sur V. Cette distance est appelée distance val-adique.

(d) Décrire les boules fermées de V.

(e) Soient V et V' deux espaces gradués, munis tous deux de leur distances val-adiques respectives. Soit $\phi : V \longrightarrow V'$, homogène de degré k. Montrer que ϕ est continue (et même lipschitzienne).

(f) Montrer que pour tous $x, y, z \in V$, $d(x, z) \leq \max(d(x, y), d(y, z))$. On dit que (V, d) est ultramétrique.

(g) Soit $(v_n)_{n \geq 1}$ une suite d’éléments de V. Montrer que la série de terme général v_n est de Cauchy si, et seulement si, v_n tend vers 0.

(h) Montrer que (V, d) est complet si, et seulement si, V est de dimension finie. Lorsque V n’est pas de dimension finie, décrire le complété de V.

2. Soit V un espace gradué. On considère les applications suivantes : si $\lambda \in \mathbb{K} - \{0\}$,

$$D : \left\{ \begin{array}{ccc} V & \longrightarrow & V \\ x \in V_n & \longrightarrow & nx \end{array} \right. \quad \phi_{\lambda} : \left\{ \begin{array}{ccc} V & \longrightarrow & V \\ x \in V_n & \longrightarrow & \lambda^nx \end{array} \right.$$

(a) On suppose ici que \mathbb{K} de caractéristique nulle. Soit $n \in \mathbb{N}$. Montrer que $(x \in V_n) \Longleftrightarrow (D(x) = nx) \Longleftrightarrow (\forall \lambda \in \mathbb{K} - \{0\}, \phi_{\lambda}(x) = \lambda^n(x))$.

(b) On suppose que V est une algèbre graduée. Montrer que :

i. ϕ_{λ} est un isomorphisme d’algèbres pour tout $\lambda \neq 0$.

ii. D est une dérivation de V, c’est-à-dire $D(xy) = xD(y) + D(x)y$ pour tous $x, y \in V$.

(c) On suppose que V est une cogèbre graduée. Montrer que :

i. ϕ_{λ} est un isomorphisme de cogèbres pour tout $\lambda \neq 0$.

ii. D est une codérivation de V, c’est-à-dire $\Delta(D(x)) = (D \otimes \text{Id} + \text{Id} \otimes D) \circ \Delta(x)$ pour tout $x \in V$.

3. Soit H une algèbre de Hopf graduée. Montrer que $(H^\otimes)^\otimes \approx H$.

4. Soit A un espace gradué munie d’une structure d’algèbre (A, m, η) telle que $m(A_i \otimes A_j) \subseteq A_{i+j}$ pour tous i, j. Montrer que $1 \in A_0$.

5. Soit C un espace gradué munie d’une structure de cogère (C, Δ, ε) telle que pour tout n :

$$\Delta(C_n) \subseteq \sum_{i+j=n} C_i \otimes C_j.$$

Montrer que $\varepsilon(C_n) = (0)$ si $n \geq 1$.

6. Soit H une cogèbre graduée. Montrer que les éléments de type groupe de H sont tous homogènes de degré 0.

7. Soient $(X_1, \ldots, X_n, \ldots)$ des indéterminées. Montrer que $\mathbb{K}[X_1, \ldots, X_n, \ldots]$ est munie d’une unique structure de bigère donnée par :

$$\Delta(X_n) = \sum_{i=0}^n X_i \otimes X_{n-i},$$

avec la convention $X_0 = 1$. Montrer que cette bigère est graduée avec X_n homogène de degré n pour tout n. Est-elle cocommutative?
Chapitre 5

Connexité

On étudie maintenant les algèbres de Hopf graduées connexes, c’est-à-dire telles que la composante homogène de degré 0 est de dimension 1. En particulier, le théorème de Cartier-Quillen-Milnor-Moore classifie les algèbres de Hopf graduées et connexes cocommutatives.

5.1 Algèbres de Hopf connexes

5.1.1 Définitions et exemples

Définition 5.1.1. Soit H une algèbre de Hopf graduée. On dira qu’elle est connexe si H_0 est de dimension 1.

Comme $1 \in H_0$, H est donc connexe si, et seulement si, $H_0 = \mathbb{K}1 = \mathbb{K}$. On définit de la même manière les notions d’algèbres, cogèbres et bigèbres connexes.

Exemple 5.1.1. 1. Si V est un espace gradué tel que $V_0 = (0)$, alors $S(V)$, $T(V)$ et $coT(V)$ sont connexes.

2. Si H est connexe, alors H^\otimes aussi.

3. Si H est connexe, toutes ses sous-algèbres de Hopf sont connexes, ainsi que tous ses quotients par un idéal de Hopf gradué.

5.1.2 Existence d’un antipode

Proposition 5.1.2. Soit H une bigèbre. On pose :

$\tilde{\Delta} : \begin{cases} H \rightarrow H \otimes H \\ 1 \rightarrow 0 \\ x \in \text{Ker}(\varepsilon) \rightarrow \Delta(x) - x \otimes 1 - 1 \otimes x. \end{cases}$

Alors $\tilde{\Delta}$ est coassociatif (non counitaire), à valeurs dans $\text{Ker}(\varepsilon) \otimes \text{Ker}(\varepsilon)$.

Démonstration. Remarquons que comme $H = \mathbb{K} \oplus \text{Ker}(\varepsilon)$, $\tilde{\Delta}$ est bien défini. Soit $x \in H$, montrons que $\tilde{\Delta}(x) \in \text{Ker}(\varepsilon) \otimes \text{Ker}(\varepsilon)$. Par linéarité, on peut se limiter à $x = 1$ ou $\varepsilon(x) = 0$. Dans le premier cas, c’est évident. Dans le second :

$$(\varepsilon \otimes \text{Id}) \circ \tilde{\Delta}(x) = (\varepsilon \otimes \text{Id}) \circ \Delta(x) - \varepsilon(x)1 - \varepsilon(1)x = x - 0 - x = 0.$$

Donc $\tilde{\Delta}(x) \in \text{Ker}(\text{Id} \otimes \varepsilon) = \text{Ker}(\varepsilon) \otimes H$. De même, $\tilde{\Delta}(x) \in \text{Ker}(\varepsilon \otimes \text{Id}) = H \otimes \text{Ker}(\varepsilon)$. Donc :

$\tilde{\Delta}(x) \in \text{Ker}(\varepsilon) \otimes H) \cap (H \otimes \text{Ker}(\varepsilon)) = \text{Ker}(\varepsilon) \otimes \text{Ker}(\varepsilon).$
Soit $x \in H$, montrons que $(\tilde{\Delta} \otimes \text{Id}) \circ \tilde{\Delta}(x) = (\text{Id} \otimes \tilde{\Delta}) \circ \tilde{\Delta}(x)$. Par linéarité, on peut se limiter à $x = 1$ ou $\varepsilon(x) = 0$. Dans le premier cas, c’est évident. Dans le second, posons :

$$\tilde{\Delta}(x) = \sum_{x'} x' \otimes x''.$$

Alors :

$$(\Delta \otimes \text{Id}) \circ \Delta(x) = \Delta(x) \otimes 1 + \Delta(1) \otimes x + \sum_{x'} \Delta(x') \otimes x''$$

$$= x \otimes 1 \otimes 1 + \otimes x \otimes 1 + \sum_{x'} x' \otimes x'' \otimes 1 + 1 \otimes 1 \otimes x$$

$$+ \sum_{x'} x' \otimes 1 \otimes x'' + \sum_{x} 1 \otimes x' \otimes x'' + (\tilde{\Delta} \otimes \text{Id}) \circ \tilde{\Delta}(x),$$

$$= (\text{Id} \otimes \Delta) \circ \Delta(x) = x \otimes \Delta(1) + 1 \otimes \Delta(x) + \sum_{x'} x' \otimes \Delta(x'')$$

$$= x \otimes 1 \otimes 1 + \otimes 1 \otimes x + \sum_{x} 1 \otimes x' \otimes x''$$

$$+ \sum_{x'} x' \otimes x'' \otimes 1 + \sum_{x} x' \otimes 1 \otimes x'' + (\text{Id} \otimes \tilde{\Delta}) \circ \tilde{\Delta}(x).$$

En comparant ces deux expressions, on obtient la coassociativité de $\tilde{\Delta}$. \hfill \Box

Lemme 5.1.3. Soit H une bigèbre graduée connexe. Alors :

1. $\ker(\varepsilon) = \bigoplus_{n=1}^{\infty} H_n$.

2. Si x est homogène de degré $n \geq 1$. Alors :

$$\tilde{\Delta}(x) \in \sum_{i=1}^{n-1} H_i \otimes H_{n-i}.$$

Démonstration.

1. ε provient de la définition d’une bigèbre graduée. De plus, comme $\varepsilon : H \to \mathbb{K}$ est surjective (car $\varepsilon(1) = 1$), $\text{codim}_\mathbb{K}(\ker(\varepsilon)) = 1$. Donc il s’agit d’une égalité.

2. En effet, $\tilde{\Delta}$ est clairement homogène de degré 0 :

$$\tilde{\Delta}(x) \in \ker(\varepsilon)^{\otimes 2} \cap (H \otimes H)_n = \left(\bigoplus_{i=1}^{\infty} H_i\right)^{\otimes 2} \cap (H \otimes H)_n = \sum_{i=1}^{n-1} H_i \otimes H_{n-i}. \hfill \Box$$

Théorème 5.1.4. Soit H une bigèbre graduée connexe. Alors H possède un antipode S, homogène de degré 0. Autrement dit, H est une algèbre de Hopf graduée connexe.

Démonstration. On définit inductivement une application $S_g : H \to H$ de la manière suivante :

1. $S_g(1) = 1$.

2. Si x est homogène de degré $n \geq 1$, posons $\tilde{\Delta}(x) = \sum_{x'} x' \otimes x''$. Remarquons que $\sum S_g(x')x''$ est déjà définie par le lemme 5.1.3. On pose alors $S_g(x) = -x - \sum S_g(x')x''$.

Alors, par définition, $S_g \ast \text{Id} = \varepsilon$. On construit de même S_d telle que $\text{Id} \ast S_d = \varepsilon$. L’associativité de \ast donne alors $S_g = S_d = S$. Une récurrence simple sur n montre que $S_g(x)$ est homogène de degré 0 si x est homogène de degré n. Donc $S = S_g$ est homogène de degré 0. \hfill \Box
5.2 Générateurs et éléments primitifs

5.2.1 Espaces des générateurs

Proposition 5.2.1. Soit A une algèbre graduée connexe. L’idéal d’augmentation de A est :

$$M = \bigoplus_{n=1}^{\infty} A_n.$$

Soit V un sous-espace gradué de A. Alors V génère l’algèbre A si, et seulement si,

$$A = ((1) \oplus M^2) + V.$$

D’autre part, V est un espace gradué générateur minimal de A (c’est-à-dire qu’aucun sous-espace gradué strict de V ne génère A) si, et seulement si :

$$A = (1) \oplus M^2 \oplus V.$$

Remarque 5.2.1. Il est clair que M est un idéal de A de codimension 1. Lorsque A est une algèbre de Hopf graduée, $M = \text{Ker}(\varepsilon)$.

Démonstration. Supposons que $A = ((1) \oplus M^2) + V$. Soit A' la sous-algèbre de A engendrée par V. Soit $x \in A$, homogène de degré n. Montrons que $x \in A'$ par récurrence sur n. Si $n = 0$, comme A est connexe, x est un multiple de 1, donc appartient à A'. Supposons $n \geq 1$ et que tous les éléments homogènes de degré $< n$ de A sont dans A'. Alors $A_n = (M^2)_n + V_n$, donc x s’écrit

$$x = y + v,$$

avec les y_i, z_j dans M. On peut supposer ces éléments homogènes. Quitte à retirer les termes qui ne sont pas homogènes de degré n, on peut supposer que pour tout i, deg(y_i) + deg(z_i) = n. Comme $y_i, z_j \in M$, leur degré est ≥ 1, donc aussi $< n$. Ces éléments sont donc dans A'. Par suite $y \in A'$ et donc $x \in A'$.

Supposons que V engendre A. Comme $V_0 = (0)$ ou \mathbb{K}, on peut supposer sans problème que $V_0 = (0)$. Soit alors $x \in A$. Comme x est dans la sous-algèbre engendrée par V, il s’écrit alors :

$$x = \sum_{i=1}^{N} \lambda_i v^{(i)}_1 \ldots v^{(i)}_k,$$

où les $v^{(i)}_j$ sont des éléments de V. On peut de plus les supposer homogènes. Ils sont alors tous homogènes de degré $k \geq 1$ car $V_0 = (0)$, donc dans M. Si $k_i = 0$, alors $\lambda_i v^{(i)}_1 \ldots v^{(i)}_k \in \mathbb{K}$; si $k_i = 1$, $\lambda_i v^{(i)}_1 \ldots v^{(i)}_k \in V$; si $k_i \geq 2$, $\lambda_i v^{(i)}_1 \ldots v^{(i)}_k \in M^2$. Donc $x \in (\mathbb{K} \oplus M^2) + V$.

Supposons que $A = (1) \oplus V \oplus M^2$. D’après ce qui précède, V génère A. Soit $W \subseteq V$ un sous-espace gradué strict de V. Soit $x \in V - W$. Alors $x \notin ((1) \oplus M^2) + W$, donc W n’engendre pas $A : V$ est minimal.

Supposons que V soit un espace gradué générateur minimal de A. Alors $A = ((1) \oplus M^2) + V$. Si $V \cap ((1) \oplus M^2) \neq 0$, soit W un supplémentaire gradué dans V de ce sous-espace de V. C’est un sous-espace strict de V et $(1) \oplus M^2 \oplus W = A : W$ génère A. Ceci contredit la minimalité de V. Donc $A = (1) \oplus V \oplus M^2$.

Cette propriété suggère la définition suivante :

Définition 5.2.2. Soit H une algèbre de Hopf graduée et connexe. L’espace des générateurs de H est l’espace gradué :

$$\text{Gen}(H) = \frac{H}{(1) \oplus M^2} = \frac{M}{M^2},$$

où $M = \text{Ker}(\varepsilon)$ est l’idéal d’augmentation de H.

En particulier, tout espace gradué générateur minimal de H est en bijection avec $\text{Gen}(H)$ via la surjection canonique.
5.2.2 Éléments primitifs

Soit H une algèbre de Hopf quelconque. On rappelle que :

$$\operatorname{Prim}(H) = \{ x \in H / \Delta(x) = x \otimes 1 + 1 \otimes x \}.$$

On peut remarquer que $\operatorname{Ker}(\bar{\Delta}) = (1) \oplus \operatorname{Prim}(H)$.

Proposition 5.2.3. Soit H une algèbre de Hopf graduée. Alors dans H^\otimes, $((1) + \operatorname{Ker}(\varepsilon))^\perp = \operatorname{Prim}(H^\otimes)$. Donc $\operatorname{Gen}(H^\otimes) = \operatorname{Prim}(H^\otimes)$.

Remarque 5.2.2. Cette proposition explique le fait que $\operatorname{Prim}(H)$ soit parfois appelé "espace des cogénérateurs de H".

Démonstration. Soit $f \in \operatorname{Prim}(H^\otimes)$. Alors $f(1) = \varepsilon(f) = 0$. Si $x, y \in \operatorname{Ker}(\varepsilon)$:

$$f(xy) = \Delta(f)(x \otimes y) = f(x)\varepsilon(y) + \varepsilon(x)f(y) = 0.$$

Donc $f \in ((1) \oplus \operatorname{Ker}(\varepsilon)^2)^\perp$.

Soit $f \in ((1) \oplus \operatorname{Ker}(\varepsilon)^2)^\perp$. On fixe $(x_i)_{i \in I}$ une base de H formée d’éléments homogènes, de sorte que $0 \in I$, $x_0 = 1$ et $\varepsilon(x_i) = 0$ si $i \neq 0$. Soit $(f_i)_{i \in I}$ la base duale. Alors $f_0(1) = 1$ et $f_0(x_i) = 0$ si $i \neq 0$, donc $f_0 = \varepsilon = 1_{H^\otimes}$. On pose :

$$\Delta(f) = \sum_{i,j} a_{i,j} f_i \otimes f_j.$$

Soient $i, j \neq 0$. Alors $x_i x_j \in M^2$, donc $f(x_i x_j) = 0$. Or :

$$f(x_i x_j) = \Delta(f)(x_i \otimes x_j) = a_{i,j} = 0.$$

De plus, $f(x_0) = f(1) = 0 = f(x_0 x_0) = \Delta(f)(x_0 \otimes x_0) = a_{0,0}$. En conséquence :

$$\Delta(f) = f_0 \otimes \left(\sum_{j \neq 0} a_{0,j} f_j \right) + \left(\sum_{i \neq 0} a_{i,0} f_i \right) \otimes f_0 = 1 \otimes g_1 + g_2 \otimes 1,$$

avec $\varepsilon(g_1) = \varepsilon(g_2) = 0$. De plus :

$$(\varepsilon \otimes \text{Id}) \circ \Delta(f) = f_1 + 0 = f,$$

donc $g_1 = f$. De même, $g_2 = f$. Donc f est primitif.

Comme $H^\otimes \approx H$, on obtient également que $\operatorname{Prim}(H)^\perp = (1) \oplus \operatorname{Ker}(\varepsilon)^2$.

Corollaire 5.2.4. Soit V un espace vectoriel quelconque. Alors $\operatorname{Prim}(\coT(V)) = V$. Si \mathbb{K} est de caractéristique nulle, $\operatorname{Prim}(S(V)) = V$.

Démonstration. C'est évident dans les deux cas. Pour l’inclusion réciproque dans $S(V)$, supposons d’abord V de dimension finie. On le gradue alors en posant $V = V_1$. Alors $S(V)$ devient une algèbre graduée, où les éléments de V sont tous homogènes de degré 1. Il en est de même pour $S(V^\otimes) \approx S(V)^\otimes$ (on est en caractéristique nulle). De plus, V^\otimes engendre clairement $S(V^\otimes)$, donc $S(V^\otimes) = ((1) \oplus \operatorname{Ker}(\varepsilon)M^2) + V^\otimes$ et donc $\text{dim}_\mathbb{K}(\operatorname{Gen}(S(V^\otimes))) \leq \text{dim}_\mathbb{K}(V)$. Donc $\text{dim}_\mathbb{K}(\operatorname{Gen}(S(V^\otimes))) \leq \text{dim}_\mathbb{K}(V)$ et donc $\text{dim}_\mathbb{K}(\operatorname{Gen}(S(V^\otimes)^\otimes)) = \text{dim}_\mathbb{K}(\operatorname{Prim}(S(V))) \leq \text{dim}_\mathbb{K}(V)$. Donc $\operatorname{Prim}(V) = V$. Lorsque V n’est pas de dimension finie, soit $x \in \operatorname{Prim}(S(V))$. Fixons une base $(v_i)_{i \in I}$ de V. Alors en écrivant x dans la base des monômes en les v_i, seuls un nombre fini de v_i apparaissent dans cette écriture. En posant V' le sous-espace de V engendré par ces v_i, alors V' est de dimension finie et $x \in S(V')$. Alors $x \in \operatorname{Prim}(S(V')) = V' \subseteq V$.

La preuve est identique pour $\coT(V)$ en remplaçant $S(V^\otimes)$ par $T(V^\otimes)$, elle aussi engendrée par V^\otimes.

\(\square\)
Remarque 5.2.3. Si \(\dim(V) \geq 2 \), alors \(V \subseteq \text{Prim}(T(V)) \). En effet, si \(v_1 \) et \(v_2 \) sont deux éléments de \(V \) linéairement indépendants, alors \([v_1, v_2] = v_1 v_2 - v_2 v_1 \) est un élément primitif non nul de \(T(V) \), n’appartenant pas à \(V \). On peut montrer (en caractéristique nulle) que \(\text{Prim}(T(V)) \) est l’algèbre de Lie libre engendrée par \(V \) : il s’agit de tous les éléments de \(T(V) \) qu’on peut obtenir à partir d’éléments de \(V \) en appliquant un certain nombre de fois le crochet de Lie. Notons que \(\text{Prim}(T(V)) \) est de dimension infinie dès que \(V \) est de dimension \(\geq 2 \).

5.3 Algèbres de Lie et algèbres enveloppantes

5.3.1 Axiomes des algèbres de Lie

On suppose ici que la caractéristique du corps de base \(\mathbb{K} \) est différente de 2.

Définition 5.3.1. Une algèbre de Lie est un couple \(g = (\mathfrak{g}, [-,-]) \) où \(\mathfrak{g} \) est un espace vectoriel et \([- , -] : \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g} \) une application bilinéaire, appelée crochet de Lie, telle que :

1. (Antisymétrie) Pour tous \(x, y \in \mathfrak{g} \), \([x, y] = -[y, x]\).
2. (Jacobi) Pour tous \(x, y, z \in \mathfrak{g} \), \([[x, y], z] + [y, [z, x]] + [[z, x], y] = 0\).

Exemple 5.3.1. 1. Soit \(A \) une algèbre associative (non nécessairement unitaire). Alors \(A \) est une algèbre de Lie avec \([x, y] = xy - yx\). Ce crochet est évidemment antisymétrique et de plus, si \(x, y, z \in A \):

\[
[[x, y], z] + [y, [z, x]] + [[z, x], y] = xyz - yxz - zyx + zyx + yzx + zyx + zxy - zyx + zyx + yzx = 0.
\]

En particulier, si \(A = M_n(\mathbb{K}) \), l’algèbre de Lie obtenue est notée \(\mathfrak{gl}(n, \mathbb{K}) \).

2. \(\mathfrak{sl}(n, \mathbb{K}) = \{ A \in M_n(\mathbb{K}) \mid Tr(A) = 0 \} \) n’est pas une sous-algèbre de \(M_n(\mathbb{K}) \) mais est une sous-algèbre de Lie de \(\mathfrak{gl}(n, \mathbb{K}) \) : en effet, si \(Tr(AB) = Tr(BA) \) pour toutes matrices \(A \) et \(B \).

3. Soit \(H \) une algèbre de Hopf. On a déjà vu que \(\text{Prim}(H) \) est une sous-algèbre de Lie de \((H, [-, -]) \).

4. (Algèbre de Lie de Faà di Bruno). Soit \(\mathfrak{g} \) un espace vectoriel de base \((e_i)_{i \geq 1}\). On définit un crochet sur \(\mathfrak{g} \) par :

\[
[e_i, e_j] = (j - i)e_{i+j}.
\]

C’est bien un crochet de Lie : si \(i, j \geq 1 \),

\[
[e_j, e_i] = (i - j)e_{i+j} = -[e_i, e_j].
\]

Si \(i, j, k \geq 1 \):

\[
[[e_i, e_j], e_k] + [[e_j, e_k], e_i] + [[e_k, e_i], e_j] = ((j - i)(k - i - j) + (k - j)(i - j - k) + (i - k)(j - i - k))e_{i+j+k} = (jk - ij - j^2 - ik + i^2 + ij + ik - jk - k^2 - ij + j^2 + jk + ij - i^2 - ik - jk + ik + k^2)e_{i+j+k} = 0.
\]

5. Tout espace vectoriel muni du crochet nul est une algèbre de Lie. Ces algèbres de Lie sont dites abéliennes.
Il existe une notion de sous-algèbres de Lie, d’algèbres de Lie quotient et un premier théorème d’isomorphisme.

Définition 5.3.2. Soit \(\mathfrak{g} \) une algèbre de Lie. Une graduation de \(\mathfrak{g} \) est une graduation de l’espace sous-jacent de \(\mathfrak{g} \) telle que pour tout \(i, j \in \mathbb{N} \), \([\mathfrak{g}_i, \mathfrak{g}_j] \subseteq \mathfrak{g}_{i+j} \).

Exemple 5.3.2.
1. L’algèbre de Lie de Faà di Bruno est graduée avec \(\mathfrak{g}_i = \text{Vect}(e_i) \) pour tout \(i \geq 1 \) et \(\mathfrak{g}_0 = (0) \).
2. Si \(H \) est une algèbre de Hopf graduée, Prim\((H)\) est une algèbre de Lie graduée : en effet, si \(x \in \text{Prim}(H) \), notons \(x_1 + \ldots + x_n \) sa décomposition en composantes homogènes. Alors la composante homogène de degré \(i \) de \(\Delta(x) \) est :

\[
\Delta(x_i) = x_i \otimes 1 + 1 \otimes x_i,
\]

donc les composantes homogènes de \(x \) sont elles-aussi primitives. Donc Prim\((H)\) est un sous-espace gradué de \(H \).

L’étude des algèbres de Lie et en particulier des algèbres de Lie simple est l’objet d’une littérature importante. Citons le classique [3], ou encore [8].

5.3.2 Algèbres enveloppantes

Définition 5.3.3. Soit \(\mathfrak{g} \) une algèbre de Lie. L’algèbre enveloppante de \(\mathfrak{g} \) est l’algèbre \(\mathcal{U}(\mathfrak{g}) \) définie par :

\[
\mathcal{U}(\mathfrak{g}) = \frac{T(\mathfrak{g})}{\langle xy - yx - [x, y], x, y \in \mathfrak{g} \rangle}.
\]

Remarque 5.3.1. En particulier, si \(\mathfrak{g} \) est abélienne, \(\mathcal{U}(\mathfrak{g}) = S(\mathfrak{g}) \).

Proposition 5.3.4. \(\mathcal{U}(\mathfrak{g}) \) est une algèbre de Hopf cocommutative, dans laquelle les éléments de \(\mathfrak{g} \) sont primitifs.

Démonstration. Il s’agit de montrer que l’idéal \(I \) définissant \(\mathcal{U}(\mathfrak{g}) \) est de Hopf. Soient \(x, y \in \mathfrak{g} \). Alors \(x, y \) et \([x, y] \) sont dans \(\mathfrak{g} \), donc sont primitifs. En conséquence, \(xy - yx \) aussi est primitif et donc

\[
\Delta(xy - yx - [x, y]) = (xy - yx - [x, y]) \otimes 1 + 1 \otimes (xy - yx - [x, y]) \in I \otimes T(\mathfrak{g}) + T(\mathfrak{g}) \otimes I.
\]

Par multiplicativité de \(\Delta \) :

\[
\Delta(I) \subseteq (T(\mathfrak{g}) \otimes T(\mathfrak{g}))(I \otimes T(\mathfrak{g}) + T(\mathfrak{g}) \otimes I)(T(\mathfrak{g}) \otimes T(\mathfrak{g})) \subseteq I \otimes T(\mathfrak{g}) + T(\mathfrak{g}) \otimes I.
\]

Les générateurs de \(I \) sont primitifs, donc dans Ker\((\varepsilon)\). En conséquence, \(I \subseteq \text{Ker}(\varepsilon) \). D’autre part, \(S(xy - yx - [x, y]) = -(xy - yx - [x, y]) \in I \). Comme \(S \) est antimultiplicative, \(S(I) \subseteq I \). Donc \(I \) est un idéal de Hopf.

Le théorème suivant sera admis :

Théorème 5.3.5 (Poincaré-Birkhoff-Witt). Soit \(\mathfrak{g} \) une algèbre de Lie et soit \((\mathfrak{g}_i)_{i \in I} \) une base de \(\mathfrak{g} \) de sorte que \(I = \mathbb{N}^* \) ou \(\{1, \ldots, n\} \). Une base de \(\mathcal{U}(\mathfrak{g}) \) est donnée par l’ensemble des éléments \(\mathfrak{g}_i^a_1 \ldots \mathfrak{g}_k^a_k \), où \(k \in I \), \(a_1, \ldots, a_k \in \mathbb{N} \).

Attention aux produits d’éléments de cette base, \(\mathcal{U}(\mathfrak{g}) \) n’étant pas commutative. Par exemple, pour l’algèbre de Lie de Faà di Bruno, prenons la base de la définition. Si \(i < j \), alors \(e_i e_j = e_j e_i \) dans la base de Poincaré-Birkhoff-Witt associée. D’autre part, toujours si \(j < i \), \(e_je_i = e_i e_j + (e_j e_i - e_i e_j) = e_i e_j + [e_j, e_i] = e_i e_j + (i - j)e_{i+j} \) dans la base de Poincaré-Birkhoff-Witt associée.
Corollaire 5.3.6. L’application suivante est un isomorphisme de cogèbres :
\[
\begin{align*}
 & U(\mathfrak{g}) \rightarrow S(\mathfrak{g}) \\
 & g^{a_1} \cdots g^{a_k} \rightarrow g_1^{a_1} \cdots g_k^{a_k}.
\end{align*}
\]

Démonstration. Il s’agit de calculer le coproduit de \(g^{a_1} \cdots g^{a_k}\) dans \(U(\mathfrak{g})\) est de le comparer au coproduit dans \(S(\mathfrak{g})\). Tout d’abord, si \(g \in \mathfrak{g}\), comme \(\mathfrak{g} \otimes 1\) et \(1 \otimes \mathfrak{g}\) commutent :
\[
\Delta(g^k) = (g \otimes 1 + 1 \otimes g)^k = \sum_{i=0}^{k} \binom{k}{i} g^i \otimes g^{k-i}.
\]
Par suite :
\[
\Delta(g^{a_1} \cdots g^{a_k}) = \left(\sum_{b_1=0}^{a_1} \binom{a_1}{b_1} g_1^{b_1} \otimes g_1^{a_1-b_1} \right) \cdots \left(\sum_{b_k=0}^{a_k} \binom{a_k}{b_k} g_k^{b_k} \otimes g_k^{a_k-b_k} \right).
\]
En remarquant que les monômes apparaissant dans cette expression sont bien des éléments de la base de Poincaré-Birkhoff-Witt, on obtient immédiatement en comparant avec l’expression du coproduit de \(S(V)\) qu’il s’agit bien d’un isomorphisme de cogèbres.

Par définition de \(U(\mathfrak{g})\), si \(x, y \in \mathfrak{g}\), \([x, y] = xy - yx\) dans \(U(\mathfrak{g})\). Autrement dit, \(\mathfrak{g}\) est une sous-algèbre de Lie de \(\text{Prim}(U(\mathfrak{g}))\). En fait :

Corollaire 5.3.7. Si \(K\) est de caractéristique nulle, \(\text{Prim}(U(\mathfrak{g})) = \mathfrak{g}\) comme algèbre de Lie.

Démonstration. Car alors les cogèbres \(U(\mathfrak{g})\) et \(S(\mathfrak{g})\) sont isomorphes et \(\text{Prim}(S(\mathfrak{g})) = \mathfrak{g}\).

Proposition 5.3.8. Soit \(\mathfrak{g}\) une algèbre de Lie graduée telle que \(\mathfrak{g}_0 = (0)\). Alors \(U(\mathfrak{g})\) est une algèbre de Hopf graduée et connexe. De plus, \(S(\mathfrak{g})\) et \(U(\mathfrak{g})\) ont la même série formelle :
\[
F_{U(\mathfrak{g})}(h) = \prod_{n=1}^{\infty} \frac{1}{\dim_{K}\mathfrak{g}_n}(1 - h^n)^{\dim_{K}\mathfrak{g}_n}.
\]

Démonstration. Alors \(T(\mathfrak{g})\) est graduée et connexe. De plus, par bilinéarité, l’idéal \(I\) définissant \(U(\mathfrak{g})\) est engendré par les éléments \(xy - yx - [x, y]\), où \(x, y\) sont des éléments homogènes de \(\mathfrak{g}\). Un tel élément est homogène de degré \(\deg x + \deg y\). Comme \(I\) est engendré par des éléments homogènes, il est gradué, donc \(U(\mathfrak{g})\) est graduée et connexe. Le théorème de Poincaré-Birkhoff-Witt implique que \(S(\mathfrak{g})\) et \(U(\mathfrak{g})\) ont la même série formelle.

Terminons ce paragraphe par la propriété universelle des algèbres enveloppantes :

Théorème 5.3.9. Soit \(\mathfrak{g}\) une algèbre de Lie, \(A\) une algèbre associative (unitaire) et \(\phi : \mathfrak{g} \rightarrow A\) telle que pour tout \(x, y \in \mathfrak{g}\), \(\phi([x, y]) = \phi(x)\phi(y) - \phi(y)\phi(x)\) (autrement dit, \(\phi\) est un morphisme d’algèbres de Lie). Alors il existe un unique morphisme d’algèbres \(\Phi : U(\mathfrak{g}) \rightarrow A\) tel que \(\Phi|_{\mathfrak{g}} = \phi\).

Démonstration. Unicité. Provient du fait que \(\mathfrak{g}\) engendre \(U(\mathfrak{g})\).

Existence. Soit \(\overline{\Phi} : T(\mathfrak{g}) \rightarrow A\), tel que \(\overline{\Phi}|_{\mathfrak{g}} = \phi\) (propriété universelle de \(T(\mathfrak{g})\)). Alors pour tous \(x, y \in \mathfrak{g}\) :
\[
\overline{\Phi}(xy - yx - [x, y]) = \phi(x)\phi(y) - \phi(y)\phi(x) - \phi([x, y]) = 0,
\]
donc l’idéal définissant \(U(\mathfrak{g})\) est inclus dans \(\text{Ker}(\overline{\Phi})\). En conséquence, il existe un morphisme \(\Phi : U(\mathfrak{g}) \rightarrow A\) tel que \(\Phi|_{\mathfrak{g}} = \overline{\Phi}|_{\mathfrak{g}} = \phi\).
5.4 Théorème de Cartier-Quillen-Milnor-Moore

5.4.1 Lemmes préliminaires

Soit \(H \) une bigèbre. On considère :

\[
\rho : \begin{cases}
H & \rightarrow H \\
x & \rightarrow x - \varepsilon(x)1.
\end{cases}
\]

Alors \(\rho \) est la projection sur Ker(\(\varepsilon \)) parallèlement à \(K \). En effet, si \(x \in \text{Ker}(\varepsilon) \), \(\rho(x) = x \). De plus, si \(x = 1 \), \(\rho(1) = 1 - 1 = 0 \).

Comme \(\tilde{\Delta} \) est coassociatif, on peut définir par récurrence \(\tilde{\Delta}^{(n)} : H \rightarrow H^{\otimes(n+1)} \):

1. \(\tilde{\Delta}^{(0)} = \rho \).
2. \(\tilde{\Delta}^{(1)} = \tilde{\Delta} \).
3. \(\tilde{\Delta}^{(n+1)} = (\tilde{\Delta} \otimes \text{Id}^{(n)}) \circ \tilde{\Delta}^{(n)} \).

On définit de manière semblable \(\Delta^{(n)} \) pour tout \(n \geq 0 \).

Lemme 5.4.1. Soit \(H \) une bigèbre. Pour tout \(n \geq 1 \):

\[
\tilde{\Delta}^{(n)} = (\rho \otimes \ldots \otimes \rho) \circ \Delta^{(n)}.
\]

Démonstration. Par récurrence sur \(n \). Montrons le d’abord pour \(n = 1 \).

\[
(\rho \otimes \rho) \circ \Delta(1) = \rho(1) \otimes \rho(1) = 0 = \tilde{\Delta}(1).
\]

Si \(\varepsilon(x) = 0 \), comme \(\tilde{\Delta}(x) \in \text{Ker}(\varepsilon) \otimes \text{Ker}(\varepsilon) \), (\(\rho \otimes \rho \)) \(\circ \tilde{\Delta} = \tilde{\Delta} \), donc :

\[
(\rho \otimes \rho) \circ \Delta(x) = \rho(1) \otimes \rho(x) + \rho(x) \otimes \rho(1) + (\rho \otimes \rho) \circ \tilde{\Delta}(x) = \tilde{\Delta}(x).
\]

Supposons le résultat vrai au rang \(n - 1 \). Comme \(\Delta \circ \rho = \Delta \) car \(\tilde{\Delta}(1) = 0 \):

\[
(\rho \otimes \ldots \otimes \rho) \circ \Delta^{(n)} = ((\rho \otimes \rho) \circ \Delta \otimes \rho \otimes \ldots \otimes \rho) \circ \Delta^{(n-1)}
\]

\[
= (\tilde{\Delta} \otimes \rho \otimes \ldots \otimes \rho) \circ \Delta^{(n-1)}
\]

\[
= (\tilde{\Delta} \otimes \text{Id} \otimes \ldots \otimes \text{Id}) \circ (\rho \otimes \ldots \otimes \rho) \circ \Delta^{(n-1)}
\]

\[
= (\tilde{\Delta} \otimes \text{Id} \otimes \ldots \otimes \text{Id}) \circ \tilde{\Delta}^{(n-1)}
\]

\[
= \tilde{\Delta}^{(n)}.
\]

Lemme 5.4.2. Soient \(v_1, \ldots, v_n \) des éléments primitifs d’une bigèbre \(H \). Alors :

\[
\tilde{\Delta}^{(n-1)}(v_1 \ldots v_n) = \sum_{\sigma \in S_n} v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)}.
\]

De plus, si \(k \geq n \), \(\tilde{\Delta}^{(n)}(v_1 \ldots v_n) = 0 \).

Démonstration. Comme dans le cas de \(T(V) \), on montre que :

\[
\Delta(v_1 \ldots v_n) = \sum_{I \subseteq \{1, \ldots,n\}} v_I \otimes v_{I^c}.
\]

Une récurrence simple montre que pour tout \(k \geq 1 \):

\[
\Delta^{(k)}(v_1 \ldots v_n) = \sum_{I_1 \cup \ldots \cup I_{k+1} = \{1, \ldots, n\}} v_{I_1} \otimes \ldots \otimes v_{I_{k+1}}.
\]
Pour obtenir $\Delta^{(k)}(v_1 \ldots v_n)$, par le lemme précédent il suffit d’appliquer $\rho \otimes (k+1)$. Si $I = \emptyset$, alors $\rho(v_I) = 0$, sinon $\rho(v_I) = v_I$. Par suite :

$$\Delta^{(k)}(v_1 \ldots v_n) = \sum_{I_1, \ldots, I_{k+1} = \{1, \ldots, n\}} v_{I_1} \otimes \ldots \otimes v_{I_{k+1}}.$$

Par suite, pour $k = n - 1$, la somme est effectué sur les I_1, \ldots, I_n réduits à un seul élément, ce qui donne immédiatement le résultat. Si $k \geq n$, alors la somme s’effectue sur un ensemble d’indices vide, donc est nulle. □

Lemme 5.4.3. Soit H une bigèbre et soit $x \in H$ tel que $\Delta^{(n)}(x) = 0$. Alors $\Delta^{(n-1)}(x) \in \text{Prim}(H)^{\otimes n}$.

Démonstration. Par coassociativité de Δ, pour tout $1 \leq i \leq n$:

$$(\text{Id}^{\otimes (i-1)} \otimes \Delta \otimes \text{Id}^{\otimes (n-i)}) \circ \Delta^{(n-1)}(x) = \Delta^{(n)}(x) = 0.$$

Donc :

$$\Delta^{(n-1)}(x) \in \text{Ker}(\text{Id}^{\otimes (i-1)} \otimes \Delta \otimes \text{Id}^{\otimes (n-i)}) = H^{\otimes (i-1)} \otimes (K \oplus \text{Prim}(H)) \otimes H^{\otimes (n-i)}.$$

Comme de plus $\Delta^{(n-1)}(x) \in (\text{Ker}(\varepsilon)^{\otimes n}$:

$$\Delta^{(n-1)}(x) \in H^{\otimes (i-1)} \otimes \text{Prim}(H) \otimes H^{\otimes (n-i)}.$$

En prenant l’intersection de ces n sous-espaces, on obtient le résultat annoncé. □

Lemme 5.4.4. Soit H une bigèbre graduée connexe. Alors pour tout $x \in H$, $\Delta^{(k)}(x) = 0$ si $k \geq \text{deg}(x)$.

Démonstration. On peut se restreindre au cas où x est homogène de degré n. Alors par homogénéité de $\Delta^{(k)}$:

$$\Delta^{(k)}(x) \in \left(\text{Ker}(\varepsilon)^{\otimes (k+1)}\right)_n = \bigoplus_{i_1 + \ldots + i_{k+1} = n} H_{i_1} \otimes \ldots \otimes H_{i_{k+1}}.$$

Si $k > n$, cet espace est nul, donc $\Delta^{(k)}(x) = 0$. □

Lemme 5.4.5. Soit H une bigèbre graduée connexe et I un coidéal gradué non nul de H. Alors I contient des éléments primitifs non nuls de H.

Démonstration. Soit $x \in I$, non nul, homogène de degré minimal k parmi les éléments de I (ceci existe car I est non nul et gradué). Comme I est un coidéal, $I \subseteq \text{Ker}(\varepsilon)$, $k \geq 1$. Par suite, on peut écrire :

$$\Delta(x) = x \otimes 1 + 1 \otimes x + \sum x' \otimes x'',$$

avec $\sum x' \otimes x'' \in \text{Ker}(\varepsilon) \otimes \text{Ker}(\varepsilon)$. Par homogénéité, on peut supposer que les x' et les x'' sont homogènes et de degré $< k$. De plus, $\Delta(x) \in H \otimes I + I \otimes H$. On peut donc supposer que pour chaque tenseur $x' \otimes x''$, $x' \in I$ ou $x'' \in I$. Par minimalité de k, $x' = 0$ ou $x'' = 0$ pour tout tenseur $x' \otimes x''$. Donc $\sum x' \otimes x'' = 0 : x$ est primitif. □
5.4.2 Théorème

Le théorème suivant a été prouvé par Cartier et Quillen mais est surtout connu dans sa formulation de [14]:

Théorème 5.4.6 (Cartier-Quillen-Milnor-Moore). Supposons que \mathbb{K} soit de caractéristique nulle. Soit H une algèbre de Hopf graduée, connexe, cocommutative. Alors H est isomorphe à l’algèbre de Hopf graduée $\mathcal{U}(\text{Prim}(H))$.

Démonstration. Montrons d’abord que H est engendrée par Prim(H). Soit H' la sous-algèbre de H engendrée par Prim(H). Soit $x \in H$, non nul. Par le lemme 5.4.4 pour k assez grand, $\tilde{\Delta}^{(k)}(x) = 0$. On note $\deg_p(x)$ le plus petit entier k tel que $\tilde{\Delta}^{(k)}(x) = 0$. Montrons que $x \in H'$ par récurrence sur $\deg_p(x)$. Si $\deg_p(x) = 0$, alors $\rho(x) = 0$ donc $x \in \mathbb{K} \subseteq H'$. Si $\deg_p(x) = 1$, alors à une constante additive près, x est primitif, donc est dans H'. Si $n = \deg_p(x) > 1$, alors par le lemme 5.4.3 on peut écrire :

$$\tilde{\Delta}^{(n-1)}(x) = \sum x^{(i)} \otimes \ldots \otimes x^{(i)}_n,$$

avec les $x^{(i)}_j$ tous primitifs. Comme H est cocommutative, ceci est invariant par permutation des tenseurs, donc pour tout $\sigma \in S_n$:

$$\tilde{\Delta}^{(n-1)}(x) = \sum x^{(i)}_{\sigma(1)} \otimes \ldots \otimes x^{(i)}_{\sigma(n)}.$$

En moyennant, le corps étant de caractéristique nulle :

$$\Delta^{(n-1)}(x) = \frac{1}{n!} \sum_{\sigma \in S_n} \sum x^{(i)}_{\sigma(1)} \otimes \ldots \otimes x^{(i)}_{\sigma(n)}.$$

Par le lemme 5.4.2 :

$$\Delta^{(n-1)}(x) = \tilde{\Delta}^{(n-1)} \left(\frac{1}{n!} \sum x^{(i)}_1 \ldots x^{(i)}_n \right).$$

Par suite :

$$\deg_p \left(x - \frac{1}{n!} \sum x^{(i)}_1 \ldots x^{(i)}_n \right) < n.$$

L’hypothèse de récurrence implique que cet élément est dans H', donc $x \in H'$.

La propriété universelle de $\mathcal{U}(\text{Prim}(H))$ implique qu’il existe un morphisme d’algèbres Φ de $\mathcal{U}(\text{Prim}(H))$ sur H, fixant tous les éléments primitifs de H. En conséquence, ce morphisme est un morphisme d’algèbres de Hopf, car il envoie le générateurs primitifs de $\mathcal{U}(\text{Prim}(H))$ sur des éléments primitifs. De plus, comme il envoie un générateur primitif homogène de degré k de $\mathcal{U}(\text{Prim}(H))$ sur un élément homogène de degré k, Φ est homogène de degré 0. Son image est une sous-algèbre de H contenant Prim(H), c’est donc H : Φ est surjectif. Supposons Φ non injectif. Alors son noyau est un idéal de Hopf gradué non nul de $\mathcal{U}(\text{Prim}(H))$, donc un coidéal gradué non nul. D’après le lemme 5.4.5 il contient donc des éléments primitifs non nuls de Prim($\mathcal{U}(\text{Prim}(H))$) = Prim$(H)$: absurde, le seul élément de Prim(H) dont l’image par Φ est nulle est 0. Donc Φ est injectif.

Corollaire 5.4.7. Supposons \mathbb{K} de caractéristique nulle. Soit H une algèbre de Hopf graduée connexe. Si H est commutative et cocommutative, alors $H \cong S(\text{Prim}(H))$ en tant qu’algèbres de Hopf graduées.

Démonstration. Car alors Prim(H) est abélienne, donc $\mathcal{U}(\text{Prim}(H)) = S(\text{Prim}(H))$.

Ce théorème admet maintenant des variantes diverses, s’appliquant à d’autres types de bigèbres, par exemple [15] [16].
5.5 Groupe des caractères d’une algèbre de Hopf graduée connexe

5.5.1 Groupe des caractères et algèbre de Lie des caractères infinitésimaux

Définition 5.5.1. Soit H une algèbre de Hopf quelconque. Un caractère de H est un morphisme d’algèbres de H dans K. Autrement dit, il s’agit d’un élément f de H^* tel que $f(1) = 1$ et $f(xy) = f(x)f(y)$ pour tous $x, y \in H$. L’ensemble des caractères de H est noté $\text{Car}(H)$.

Remarque 5.5.1. Lorsque H est de dimension finie, $\text{Car}(H) = G(H^*)$, ensemble des éléments de type groupe de H^*.

Proposition 5.5.2. L’ensemble $\text{Car}(H)$ muni du produit de convolution de H^* (dual du coproduit de H) est un groupe.

Démonstration. Remarquons que la coumity ε est un caractère. Soient $f, g \in \text{Car}(H)$. Soient $x, y \in H$. Alors :

$$fg(xy) = \sum_x \sum_y f\left(x^{(1)}y^{(1)}\right)g\left(x^{(2)}y^{(2)}\right)$$

$$= \sum_x \sum_y f\left(x^{(1)}\right)f\left(y^{(1)}\right)g\left(x^{(2)}\right)g\left(y^{(2)}\right)$$

$$= \sum_x \sum_y f\left(x^{(1)}\right)g\left(x^{(2)}\right)f\left(y^{(1)}\right)g\left(y^{(2)}\right)$$

$$= fg(x)f(y).$$

De plus, $fg(1) = f(1)g(1) = 1$, donc $fg \in \text{Car}(H)$. Soit maintenant $f \in \text{Car}(H)$. Alors $f \circ S(1) = f(1) = 1$. De plus, si $x, y \in H$:

$$f \circ S(xy) = f(S(y)S(x))$$

$$= f(S(y))f(S(x))$$

$$= f \circ S(y)f \circ S(x)$$

$$= f \circ S(x)f \circ S(y).$$

Donc $f \circ S \in \text{Car}(H)$. De plus, $f \circ S$ est l’inverse de f : pour tout $x \in H$,

$$(f \circ S)f(x) = \sum_x f\left(S\left(x^{(1)}\right)\right)f\left(x^{(2)}\right)$$

$$= \varepsilon(x)f(1)$$

$$= \varepsilon(x).$$

De même, $f(f \circ S) = \varepsilon$. Donc $\text{Car}(H)$ est un groupe. \hfill \Box

Définition 5.5.3. Soit H une algèbre de Hopf quelconque. Un caractère infinitésimal de H est une application linéaire f de H dans K telle que pour tous $x, y \in H$:

$$f(xy) = f(x)\varepsilon(y) + \varepsilon(x)f(y).$$

L’espace caractères infinitésimaux de H est noté $\text{InfCar}(H)$.

Remarque 5.5.2. Lorsque H est de dimension finie, $\text{InfCar}(H) = \text{Prim}(H^*)$, ensemble des éléments primitifs de H^*.

Proposition 5.5.4. L’ensemble $\text{InfCar}(H)$ muni du crochet de Lie induit par le produit de convolution de H^* (dual du coproduit de H) est une algèbre de Lie.
Démonstration. Il suffit de montrer que le crochet de deux caractères infinitésimaux est un caractère infinitésimal. Soient $f, g \in \text{InfCar}(H)$. Si $x, y \in H$:

$$fg(xy) = \sum_{x} \sum_{y} f \left(x^{(1)} y^{(1)} \right) g \left(x^{(2)} y^{(2)} \right)$$

$$= \sum_{x} \sum_{y} f \left(x^{(1)} \right) g \left(x^{(2)} \right) \xi \left(y^{(1)} \right) \xi \left(y^{(2)} \right)$$

$$+ \sum_{x} \sum_{y} f \left(y^{(1)} \right) g \left(x^{(2)} \right) \xi \left(x^{(1)} \right) \xi \left(y^{(2)} \right)$$

$$+ \sum_{x} \sum_{y} f \left(x^{(1)} \right) g \left(y^{(2)} \right) \xi \left(y^{(1)} \right) \xi \left(x^{(2)} \right)$$

$$+ \sum_{x} \sum_{y} f \left(y^{(1)} \right) g \left(y^{(2)} \right) \xi \left(x^{(1)} \right) \xi \left(x^{(2)} \right)$$

$$= f g(x) \xi(y) + f(x) g(y) + g(x) f(y) + \xi(x) f g(y).$$

$g f(xy) = g f(x) \xi(y) + g(x) f(y) + f(x) g(y) + \xi(x) g f(y),$

$$(f g - g f)(xy) = (f g - g f)(x) \xi(y) + \xi(x)(f g - g f)(y).$$

Donc $f g - g f \in \text{InfCar}(H)$. □

5.5.2 Cas d’une algèbre de Hopf graduée connexe

Soit H une algèbre de Hopf graduée connexe. Son dual (complet) s’écrit alors :

$$H^* = \prod_{n=0}^{\infty} H_n^*,$$

c’est-à-dire que tout élément de H^* s’écrit sous la forme :

$$f = \sum_{n=0}^{\infty} f_n,$$

avec $f_n = f|_{H_n}$ pour tout $n \in \mathbb{N}$. Pour tout $x \in H$, seul un nombre fini de $f_n(x)$ sont non nuls et donc la somme suivante a bien un sens :

$$f(x) = \sum_{n=0}^{\infty} f_n(x).$$

Proposition 5.5.5. Soit H une algèbre de Hopf graduée et connexe et soit $f = \sum f_n$ un élément de H^* :

1. $f \in \text{InfCar}(H)$ si, et seulement si, les f_n sont tous primitifs.

2. $f \in \text{Car}(H)$ si, et seulement si, f est non nul et si pour tout $n \geq 0$:

$$\Delta(f_n) = \sum_{i+j=n} f_i \otimes f_j.$$

Démonstration. 1. Supposons que f soit un caractère infinitésimal. Fixons $n \geq 0$. Soient x homogène de degré i, y homogène de degré j, avec $i + j = n$. Alors $f(xy) = f_n(xy)$. Donc :

$$f(xy) = f_n(xy)$$

$$f(x) \xi(y) + \xi(x) f(y) = \Delta(f_n)(x \otimes y).$$

Par suite, si i et j sont non nuls, $\xi(x) = \xi(y) = 0$. Donc f_n s’annule sur $\text{Ker}(\epsilon)^2$. De plus, $f(1) = f(1,1) = f(1) \epsilon(1) + \epsilon(1) f(1) = 2 f(1)$, donc $f(1) = 0$. En conséquence, $f_n(1) = 0$ et donc $f_n \in ((1) \oplus \text{Ker}(\epsilon)^2)^\bot = \text{Prim}(H^\otimes)$.

Réciproquement, si \(x \) et \(y \) sont homogènes de degrés respectifs \(i \) et \(j \):

\[
f(xy) = f_{i+j}(xy) = \Delta(f_{i+j})(x \otimes y) = f_{i+j}(x)\varepsilon(y) + \varepsilon(x)f_{i+j}(y).
\]

Si \(i, j \geq 1 \), alors \(f(xy) = 0 = f(x)\varepsilon(y) + \varepsilon(x)f(y) \). Si \(i = 0 \) et \(j \geq 1 \), alors on peut supposer que \(x = 1 \). Dans ce cas, \(f(xy) = f(x)\varepsilon(1) + \varepsilon(x)f(1) \). Le même raisonnement s’applique si \(i \geq 1 \) et \(j = 0 \). Enfin, si \(i = j = 0 \), on peut supposer que \(x = y = 1 \). Comme \(f_0 \) est primitif et homogène de degré 0, \(f_0 = 0 \). Donc \(f(1.1) = 0 = f(1)\varepsilon(1) + \varepsilon(1)f(1) \). En conclusion, \(f \) est un caractère infinitésimal.

2. Supposons que \(f \) soit un caractère. Alors \(f(1) = 1 \), donc \(f \) est non nul. Fixons \(n \geq 0 \). Soient \(x \) homogène de degré \(i \), \(y \) homogène de degré \(j \), avec \(i + j = n \). Alors \(f(xy) = f_n(xy) \). Donc :

\[
f(xy) = f_n(xy) = \Delta(f_n)(x \otimes y) = f_i(x)f_j(y) = \sum_{k+l=n} f_k \otimes f_l (x \otimes y) = \Delta(f_n)(x \otimes y).
\]

Comme ceci est vrai pour tous les tenseurs \(x \otimes y \in (H \otimes H)_n \), on en déduit que :

\[
\Delta(f_n) = \sum_{k+l=n} f_k \otimes f_l.
\]

Réciproquement, supposons l’assertion sur le coproduit des \(f_n \). Soit \(x \in H \), homogène de degré \(k \), \(y \in H \), homogène de degré \(l \). Posons \(n = k + l \). Alors :

\[
f(xy) = f_n(xy) = \Delta(f_n)(x \otimes y) = \sum_{i+j=n} f_i(x) \otimes f_j(y) = f_k(x)f_l(y) = f(x)f(y).
\]

En particulier, \(f_0 \) est nul ou un élément de type groupe de \(H^\oplus \), homogène de degré 0. Comme \(H^\oplus_0 = \mathbb{K}\varepsilon_H \), on en déduit que \(f_0 = 0 \) ou \(\varepsilon_H \). Si \(f_0 = 0 \), alors pour tout \(i \geq 1 \):

\[
\Delta(f_n) = \sum_{i=1}^{n-1} f_i \otimes f_{n-i} \in \text{Ker}(\varepsilon_H) \otimes \text{Ker}(\varepsilon_H),
\]

donc \(f_n = (\varepsilon_H \otimes \text{Id}) \circ \Delta(f_n) = 0 : f \) est nul, contradiction. Donc \(f_0 = \varepsilon \) et donc \(f(1) = f_0(1) = \varepsilon_H(1) = 1 \). Donc \(f \) est un caractère de \(H \). \(\square \)

Lemme 5.5.6. Soit \(H \) une algèbre de Hopf graduée connexe. Soit \(f \in H^* \), telle que \(f(1) = 0 \) et soit \(\sum a_n X^n \in \mathbb{K}[[X]] \). Alors \(f^n \) s’annule sur \(H_0 \oplus \ldots \oplus H_{n-1} \) pour tout \(n \geq 1 \). En conséquence, la série \(\sum a_n f^n(x) \) stationne pour tout \(x \in H \). Ceci définit donc un élément de \(H^* \) dénoté \(\sum a_n f^n \).
Démonstration. Soit $x \in H_k$, $k < n$. Comme $f(1) = 0$, $f \circ \rho = f$, avec les notations du lemme 5.4.1. Par suite :

$$f^n(x) = (f \otimes \ldots \otimes f) \circ \Delta^{(n-1)}(x)$$

$$= (f \otimes \ldots \otimes f) \circ (\rho \otimes \ldots \otimes \rho) \circ \Delta^{(n-1)}(x)$$

$$= (f \otimes \ldots \otimes f) \circ \tilde{\Delta}^{(n-1)}(x) = 0,$$

par les lemmes 5.4.1 et 5.4.4. □

Théorème 5.5.7. On suppose que K est de caractéristique nulle. Soit H une algèbre de Hopf graduée connexe. Les applications suivantes sont deux bijections inverses l'une de l'autre :

$$\exp : \begin{cases} \text{InfCar}(H) & \rightarrow & \text{Car}(H) \\ f & \rightarrow & \sum_{n=0}^{\infty} \frac{1}{n!} f^n \\ \ln : \begin{cases} \text{Car}(H) & \rightarrow & \text{InfCar}(H) \\ f & \rightarrow & \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (f - \varepsilon)^n. \end{cases} \end{cases}$$

Démonstration. Si $f = \sum f_n$ est un caractère infinitésimal, alors $f(1) = f(1.1) = \varepsilon(1)f(1) + f(1)\varepsilon(1) = 2f(1)$, donc $f(1) = 0$. Par suite, $\exp(f)$ existe. D’autre part, si f est un caractère, $f(1) = 1$, donc $(f - \varepsilon)(1) = 0$ et $\ln(f)$ existe.

Soit $f \in \text{InfCar}(H)$. Soient $x, y \in H$.

$$\exp(f)(xy) = \Delta \left(\sum_{n=0}^{\infty} \frac{1}{n!} f^n \right)(x \otimes y)$$

$$= \left(\sum_{n=0}^{\infty} \frac{1}{n!} \Delta(f)^n \right)(x \otimes y)$$

$$= \left(\sum_{n=0}^{\infty} \frac{1}{n!} (f \otimes 1 + 1 \otimes f)^n \right)(x \otimes y)$$

$$= (\exp(f \otimes 1 + 1 \otimes f))(x \otimes y)$$

$$= (\exp(f \otimes 1) \exp(1 \otimes f))(x \otimes y)$$

$$= ((\exp(f) \otimes 1)(1 \otimes \exp(f)))(x \otimes y)$$

$$= (\exp(f) \otimes \exp(f))(x \otimes y)$$

$$= \exp(f)(x) \exp(f)(y).$$

en remarquant que toutes ces sommes sont en fait finies et ne font intervenir qu’un nombre fini de composantes homogènes de f, ce qui permet d’écrire $\Delta(f)$. La cinquième égalité est vraie car $f \otimes 1$ et $1 \otimes f$ commutent dans $H^* \otimes H^*$ (propriété de la série formelle $\exp : \exp(x + y) = \exp(x) \exp(y)$ dans $K[[x, y]]$). D’autre part :

$$\exp(f)(1) = \frac{1}{0!} f^0(1) + 0 = \varepsilon(1) = 1,$$

donc $\exp(f) \in \text{Car}(H)$.

Soit $f \in \text{Car}(H)$. Soient $x, y \in H$.

$$\ln(f)(xy) = \ln(f \otimes f)(x \otimes y)$$

$$= \ln((f \otimes 1)(1 \otimes f))(x \otimes y)$$

$$= (\ln(f \otimes 1) + \ln(1 \otimes f))(x \otimes y)$$

$$= \ln(f)(x)\varepsilon(y) + \varepsilon(x) \ln(f)(y).$$

Donc $\ln(f) \in \text{InfCar}(H)$. Comme les séries formelles $\exp(h)$ et $\ln(1 + h)$ vérifient $\exp(\ln(1 + h)) = 1 + h$ et $\ln(1 + (\exp(h) - 1)) = h$:

$$\ln(\exp(f)) = \ln(1 + (\exp(f) - 1)) = f,$$
On obtient que \(\ln \) et \(\exp \) sont des bijections réciproques l’une de l’autre. \(\square \)

Ainsi, si \(H \) est une algèbre de Hopf graduée, connexe et commutative, les connaissance de l’un des trois objets \(H, \text{Prim}(H^\otimes) \) ou \(\text{Car}(H) \) sont équivalentes par le théorème de Milnor-Moore et le théorème précédent. Il est donc équivalent d’étudier les algèbres de Lie graduées à composante homogène de degré 0 nulle, les algèbres de Hopf graduées connexes commutative, et les groupes de caractères de ces dernières.

Exercices

1. (a) Montrer que les trois éléments suivants forment une base de \(\mathfrak{sl}(2) \):
 \[
 E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
 \]

(c) Montrer que \((E^i F^j H^k)_{i,j,k\geq 0}\) est une base de \(\mathcal{U}(\mathfrak{sl}(2)) \). Écrire les produits suivants dans cette base :
 \[
 H^2 E, \quad EFE, \quad H^2 F, \quad FEF, \quad H E F.
 \]

(d) En déduire que \(H^2 + 4EF - 2H \) est central dans \(\mathcal{U}(\mathfrak{sl}(2)) \) (élément de Casimir).

2. Soit \(H \) une algèbre de Hopf (non nécessairement graduée) sur un corps \(\mathbb{K} \) de caractéristique 0. Montrer que \(H \) est engendrée par \(\text{Prim}(H) \) si, et seulement si, \(H \) est isomorphe à \(\mathcal{U}(\text{Prim}(H)) \).

3. Soit \(g \) une algèbre de Lie sur un corps \(\mathbb{K} \) de caractéristique nulle et soit \(I \) un idéal de Hopf de \(\mathcal{U}(g) \). Montrer que \(\mathcal{U}(g)/I \approx \mathcal{U}(g/I \cap I) \).

4. Soit \(H \) une algèbre de Hopf, \(M = \ker(\varepsilon) \). Si \(V \) est un espace vectoriel quelconque, \(\text{Le groupe } S_n \text{ agit sur } V^\otimes_n \text{ de la manière suivante :} \)
 \[
 \sigma.(v_1 \otimes \ldots \otimes v_n) = v_{\sigma^{-1}(1)} \otimes \ldots \otimes v_{\sigma^{-1}(n)}.
 \]

(a) Montrer que l’application suivante est bien définie :
 \[
 \delta : \left\{ \begin{array}{ccc}
 M/M^2 & \longrightarrow & M/M^2 \otimes M/M^2 \\
 \varpi & \longrightarrow & \sum x^{(1)} \otimes x^{(2)} - \sum x^{(2)} \otimes x^{(1)}.
 \end{array} \right.
 \]

(b) Montrer que \(\delta \) est antisymétrique : si \(\varpi \in M/M^2 \),
 \[
 \delta(\varpi) = -(1 2) \cdot \delta(\varpi).
 \]

(c) Montrer que \(\delta \) vérifie la relation de Jacobi duale : \(\varpi \in M/M^2 \),
 \[
 (\delta \otimes \text{Id}) \circ \delta(\varpi) + (1 2 3) \cdot ((\delta \otimes \text{Id}) \circ \delta(\varpi)) + (1 3 2) \cdot ((\delta \otimes \text{Id}) \circ \delta(\varpi)) = 0.
 \]

 Autrement dit, \(M/M^2 \) est une cogèbre de Lie.

(d) On suppose que \(H \) est gradué et connexe. Montrer que les algèbres de Lie \((M/M^2, \delta) \) et \((\text{Prim}(H^\otimes), [-, -]) \) sont isomorphes.

5. Soit \(\mathbb{K} \) un corps de caractéristique \(p > 0 \). Montrer que \(\mathbb{K}[X]/\langle X^p \rangle \) est une algèbre de Hopf graduée, connexe, de dimension finie, commutative et cocommutative. Montrer que ce n’est pas une algèbre enveloppante.

6. Soit \(H \) une algèbre de Hopf et \(H_{ab} \) son abélianisée. Montrer que \(\text{Car}(H) \) et \(\text{Car}(H_{ab}) \) sont des groupes isomorphes. Montrer que \(\inf \text{Car}(H) \) et \(\inf \text{Car}(H_{ab}) \) sont des algèbres de Lie isomorphes.
Chapitre 6

Un exemple d’algèbre de Hopf combinatoire : l’algèbre des fonctions symétriques

Cette algèbre de Hopf possède d’intéressantes applications à la théorie des représentations des groupes symétriques, voir par exemple [7].

6.1 Définition

6.1.1 Construction

Soit \((\Sigma_n)_{n \geq 1}\) une famille d’indéterminées. On munit l’algèbre \(A = \mathbb{K}[\Sigma_1, \ldots, \Sigma_n, \ldots]\) d’un coproduit défini de la manière suivante : pour tout \(n \geq 1\),

\[\Delta(\Sigma_n) = \sum_{i=0}^{n} \Sigma_i \otimes \Sigma_j n - i\]

avec la convention \(\Sigma_0 = 1\). Par propriété universelle de \(\mathbb{K}[\Sigma_1, \ldots, \Sigma_n, \ldots]\), \(\Delta\) se prolonge en un unique morphisme d’algèbres de \(A\) dans \(A \otimes A\). Montrons qu’il est coassociatif. Pour tout \(n \geq 1\) :

\[(\Delta \otimes \text{Id}) \circ \Delta(\Sigma_n) = \sum_{i+j+k=n} \Sigma_i \otimes \Sigma_j \otimes \Sigma_k = (\text{Id} \otimes \Delta) \circ \Delta(\Sigma_n).\]

Par unicité dans la propriété universelle, \(\Delta\) est coassociatif. De manière immédiate, la counité est donnée par \(\varepsilon(\Sigma_n) = 0\) pour tout \(n \geq 1\). Donc \(A\) est une bigèbre. Elle est clairement graduée en mettant \(\Sigma_n\) homogène de degré \(n\) pour tout \(n \geq 1\). Cette graduation est connexe, donc \(A\) a un antipode. L’algèbre de Hopf ainsi obtenue s’appelle \(\text{Sym}\), algèbre de Hopf des fonctions symétriques. Notons que \(\text{Sym}\) est commutative et cocommutative. Sa série formelle est :

\[F_{\text{Sym}}(h) = \prod_{n=1}^{\infty} \frac{1}{1 - h^n}.\]

6.1.2 Antipode

Proposition 6.1.1. Soit \(n \geq 1\). Dans \(\text{Sym}\) :

\[S(\Sigma_n) = \sum_{k=1}^{n} \sum_{\substack{a_1, \ldots, a_k \geq 1 \atop a_1 + \ldots + a_k = n}} (-1)^k \Sigma_{a_1} \ldots \Sigma_{a_k}.\]
Par exemple :

\[
S(\Sigma_1) = -\Sigma_1,
\]
\[
S(\Sigma_2) = -\Sigma_2 + \Sigma_1 \Sigma_1,
\]
\[
S(\Sigma_3) = -\Sigma_3 + \Sigma_1 \Sigma_2 + \Sigma_2 \Sigma_1 - \Sigma_1 \Sigma_1 \Sigma_1
= -\Sigma_3 + 2\Sigma_2 \Sigma_1 - \Sigma_1 \Sigma_1 \Sigma_1.
\]

\textbf{Démonstration.} Par récurrence sur \(n\). Si \(n = 1\), \(\Sigma_1\) étant primitif, \(S(\Sigma_1) = -\Sigma_1\). D’autre part, si \(n \geq 1\) :

\[
m \circ (S \otimes \text{Id}) \circ \Delta(\Sigma_n) = S(\Sigma_n) + \sum_{i=1}^{n-1} S(\Sigma_i) \Sigma_{n-i} + \Sigma_n = 0.
\]

Donc :

\[
S(\Sigma_n) = -\Sigma_n - \sum_{i=1}^{n-1} \sum_{k \geq 1} \sum_{a_1, \ldots, a_k \geq 1} \sum_{a_1 + \ldots + a_k = i} (-1)^k \Sigma_{a_1} \ldots \Sigma_{a_k} \Sigma_{n-i}
= -\Sigma_n + \sum_{k \geq 1} \sum_{a_1, \ldots, a_k, a_{k+1} \geq 1} \sum_{a_1 + \ldots + a_k + a_{k+1} = n} (-1)^{k+1} \Sigma_{a_1} \ldots \Sigma_{a_{k+1}}
= \sum_{k=1}^{n} \sum_{a_1, \ldots, a_k \geq 1} \sum_{a_1 + \ldots + a_k = n} (-1)^k \Sigma_{a_1} \ldots \Sigma_{a_k}.
\]

\[\square\]

\textbf{Remarque 6.1.1.} Comme \(S\) est un morphisme d’algèbres (car \(\text{Sym}\) est commutatif), ce dernier résultat décrit totalement \(S\).

\section*{6.2 Algèbre de Lie et groupe associés à \(\text{Sym}\)}

\subsection*{6.2.1 Caractères infinitésimaux de \(\text{Sym}\)}

Déterminons tout d’abord les éléments primitifs de \(\text{Sym}^\circ\). Le dual gradué de \(\text{Prim}(\text{Sym}^\circ)\) est \(\text{Ker}(\varepsilon)/\text{Ker}(\varepsilon)^2 = \text{Vect}(\Sigma_n/\Sigma_n \geq 1)\). La base duale \((f_n)_{n \geq 1}\) de \(\text{Prim}(\text{Sym}^\circ)\) est donc définie par :

\[
f_n : \begin{cases}
\text{Sym} & \to \mathbb{K}, \\
\Sigma_k & \to \delta_{k,n}, \\
\Sigma_{a_1} \ldots \Sigma_{a_k} & \to 0 \text{ si } a_1 + \ldots + a_k \neq 1.
\end{cases}
\]

Déterminons le produit \(f_i f_j\) dans \(\text{Sym}^\circ\). Pour cela, on utilise le lemme suivant :

\textbf{Lemme 6.2.1.} Soient \(f\) et \(g\) deux caractères infinitésimaux d’une algèbre de Hopf \(H\). Alors \(fg\) s’annule sur \((1) \oplus \text{Ker}(\varepsilon)^3\).

\textbf{Démonstration.} En effet, si \(x, y, z \in \text{Ker}(\varepsilon)\), en posant \(\tilde{\Delta}(x) = \sum x' \otimes x''\), etc :

\[
\Delta(xyz) = \left(x \otimes 1 + 1 \otimes x + \sum_x x' \otimes x'' \right) \left(y \otimes 1 + 1 \otimes y + \sum_y y' \otimes y'' \right) \left(z \otimes 1 + 1 \otimes z + \sum_z z' \otimes z'' \right).
\]

En développant ceci, comme \(\tilde{\Delta}(x), \tilde{\Delta}(y)\) et \(\tilde{\Delta}(z) \in \text{Ker}(\varepsilon)^{\otimes 2}\) :

\[
\Delta(xyz) \in ((1) \oplus \text{Ker}(\varepsilon))^{\otimes 2}.
\]

Soient alors \(f, g \in \text{InfCar}(H)\). Comme chaque composante de \(f\) et \(g\) est primitive, \(f\) et \(g\) s’annulent sur \((1) \oplus \text{Ker}(\varepsilon)\). Alors :

\[
f g(xyz) = (f \otimes g) \circ \Delta(xyz) = 0.
\]

De plus, \(fg(1) = f(1)g(1) = 0\). \[\square\]
Si \(p = (p_1, \ldots, p_k) \) est une partition, on pose \(\Sigma_p = \Sigma_{p_1} \cdots \Sigma_{p_k} \). En conséquence, si la partition \(p \) est de longueur 0 ou \(\geq 3 \), alors \(f_i f_j(\Sigma_p) = 0 \). D'autre part :

\[
 f_i f_j(\Sigma_n) = \sum_{k=0}^{n} f_i(\Sigma_k) f_j(\Sigma_{n-k}) = \delta_{n,i+j}.
\]

Enfin, si \(p, q \geq 1 \) :

\[
 f_i f_j(\Sigma_p \Sigma_q) = \sum_{k+l=p, m+n=q} f_i(\Sigma_k \Sigma_m) f_j(\Sigma_l \Sigma_n).
\]

\[
 = \sum_{k+l=p, m+n=q} (f_i(\Sigma_k) \varepsilon(\Sigma_m) + \varepsilon(\Sigma_k) f_i(\Sigma_m))(f_j(\Sigma_l) \varepsilon(\Sigma_n) + \varepsilon(\Sigma_l) f_j(\Sigma_n))
\]

\[
 = f_i(\Sigma_p) f_j(\Sigma_q) + f_i(\Sigma_q) f_j(\Sigma_p)
\]

\[
 = \delta_{i,p} \delta_{j,q} + \delta_{i,q} \delta_{j,p}.
\]

Pour tout \(i, j \in \mathbb{N}^* \), soit \(f_{i,j} \) l'élément de \(\text{Sym}^p \) qui envoie \(\Sigma_{i} \Sigma_{j} \) sur 1 et tous les autres monômes en les \(\Sigma_k \) sur 0 (il s'agit d'un élément de la base duale de la base des monômes en les \(\Sigma_k \)). En conséquence, si \(i \neq j \), \(f_i f_j = f_{i+j} + f_{i,j} \). Si \(i = j \), \(f_i^2 = f_{2i} + 2 f_{i,i} \). En résumé :

\[
 f_i f_j = f_{i+j} + (1 + \delta_{i,j}) f_{i,j}.
\]

Donc \([f_i, f_j] = 0\). Autrement dit, \(\text{Prim}(\text{Sym}^p) \) est abélienne (ce qui était prévisible, étant donné que \(\text{Sym}^p \) est cocommutatif).

Proposition 6.2.2. L’algèbre de Lie \(\text{InfCar}(\text{Sym}) \) est :

\[
 \left\{ \sum_{n=1}^{\infty} a_n f_n / \forall n \geq 1, a_n \in \mathbb{K} \right\}.
\]

Elle est abélienne.

6.2.2 Groupe des caractères de \(\text{Sym} \)

Par propriété universelle de \(\mathbb{K}[\Sigma_1, \ldots, \Sigma_n, \ldots] \), un caractère \(f \) de \(\text{Sym} \) est entièrement déterminé par la suite des valeurs \((f(\Sigma_n))_{n \geq 1} \). D'autre part, soient \(f, g \in \text{Car}(\text{Sym}) \). Pour tout \(n \geq 1 \):

\[
 f g(\Sigma_n) = \sum_{i=0}^{n} f(\Sigma_i) g(\Sigma_{n-i}) = f(\Sigma_n) + \sum_{i=1}^{n-1} f(\Sigma_i) g(\Sigma_{n-i}) + g(\Sigma_n).
\]

Ce groupe est donc isomorphe au sous-groupe du groupe des unités de \(\mathbb{K}[[h]] \) suivant :

\[
 U(\mathbb{K}[[h]])_1 = \{ \sum_{n=0}^{\infty} a_n h^n / a_0 = 1 \}.
\]

En effet, le produit de ce groupe est donné par :

\[
 \left(1 + \sum_{n=1}^{\infty} a_n h^n \right) \left(1 + \sum_{n=1}^{\infty} b_n h^n \right) = 1 + \sum_{n=1}^{\infty} \left(a_n + \sum_{k=1}^{n-1} a_k b_{n-k} + b_n \right) h^n.
\]

Donc l’application suivante est un isomorphisme de groupes :

\[
 \Upsilon : \left\{ \begin{array}{ccc}
 \text{Car}(\text{Sym}) & \longrightarrow & U(\mathbb{K}[[h]])_1 \\
 f & \longrightarrow & 1 + \sum_{n=1}^{\infty} (f(\Sigma_n)) h^n.
 \end{array} \right.
\]
6.2.3 Éléments primitifs de Sym

On suppose que K est de caractéristique nulle. Alors par le théorème de Cartier-Quillen-Minor-Moore, Sym étant commutative et cocommutative, $\text{Sym} \approx U(\text{Prim}(\text{Sym})) = S(\text{Prim}(\text{Sym}))$. On souhaite avoir ici une base de $\text{Prim}(\text{Sym})$. Notons p_n la dimension de $\text{Prim}(\text{Sym})_n$. Alors la série formelle de Poincaré-Hilbert de Sym est :

$$
\prod_{n=1}^{\infty} \frac{1}{1-h^n} = \prod_{n=1}^{\infty} \frac{1}{(1-h^n)^{p_n}}.
$$

Par récurrence, on obtient $p_n = 1$ pour tout $n \geq 1$.

Considérons maintenant Sym comme dual de Sym°. D’après les résultats du chapitre précédent :

$$\Sigma = \sum_{n=0}^{\infty} \Sigma_n \in \text{Car}(\text{Sym}^\circ).$$

Donc $\ln(\Sigma)$ est un caractère infinitésimal de Sym°. De plus :

$$\ln(\Sigma) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \left(\sum_{n=1}^{\infty} \Sigma_n \right)^k.$$

La composante homogène Γ_n de degré n de $\ln(\Sigma)$ est donc un élément primitif :

$$\Gamma_n = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \sum_{a_1 + \ldots + a_k = n \atop a_1, \ldots, a_k \geq 1} \Sigma_{a_1} \ldots \Sigma_{a_k}.$$

Le coefficient de Γ_n en Σ_n est 1, donc Γ_n est non nul. Par suite, (Γ_n) est une base de $\text{Prim}(\text{Sym})_n$ car ce sous-espace est de dimension 1. En conséquence :

Proposition 6.2.3. La famille $(\Gamma_n)_{n \geq 1}$ est une base de $\text{Prim}(\text{Sym})$.

Exemple 6.2.1.

- $\Gamma_1 = \Sigma_1$,
- $\Gamma_2 = \Sigma_2 - \frac{1}{2} \Sigma_1^2$,
- $\Gamma_3 = \Sigma_3 - \frac{1}{2} (\Sigma_1 \Sigma_2 + \Sigma_2 \Sigma_1) + \frac{1}{3} \Sigma_1^3$
 $= \Sigma_3 - \Sigma_1 \Sigma_2 + \frac{1}{3} \Sigma_1^3$.

Exercices

Montrer que l’algèbre $A = K\langle \Sigma_1, \ldots, \Sigma_n, \ldots \rangle$ est une algèbre de Hopf graduée et connexe, avec, pour tout $n \geq 1$:

$$\Delta(\Sigma_n) = \sum_{i+j=n} \Sigma_i \otimes \Sigma_j.$$

Cette algèbre de Hopf est notée NSym (fonctions symétriques non commutatives). Déterminer l’antipode de Σ_n pour tout n. Décrire le dual gradué de NSym. Cette dernière algèbre de Hopf est notée QSym (fonctions quasi-symétriques).
Chapitre 7

Algèbre des arbres enracinés

7.1 Construction

7.1.1 Arbres enracinés

Définition 7.1.1. Un arbre enraciné est un couple $t = (G,x)$, où G est un arbre, c’est-à-dire un graphe fini, connexe, sans circuit, et x est un sommet de G. Le sommet x est appelé racine de l’arbre enraciné t. L’ensemble des arbres enracinés est noté \mathcal{T}_R; l’ensemble des arbres enracinés à n sommets est noté $\mathcal{T}_R(n)$.

Exemple 7.1.1. La racine de l’arbre enraciné t est toujours dessinée "en bas" de la représentation graphique du graphe sous-jacent de t.

\[
\begin{align*}
\mathcal{T}_R(1) &= \{\bullet\}, \\
\mathcal{T}_R(2) &= \{\text{I}\}, \\
\mathcal{T}_R(3) &= \{\text{V, I}\}, \\
\mathcal{T}_R(4) &= \{\text{V, V, Y, I}\}, \\
\mathcal{T}_R(5) &= \{\text{V, V, V, V, V, Y, Y, Y, I}\}.
\end{align*}
\]

Définition 7.1.2. L’algèbre des arbres enracinés H_R est $\mathbb{K}[\mathcal{T}_R]$.

Autrement dit, une base de H_R est donnée par les monômes en les arbres enracinés, également appelés forêts enracinées. L’ensemble des forêts enracinées est noté \mathcal{F}_R; l’ensemble des forêts enracinées à n sommets est noté $\mathcal{F}_R(n)$. Voici par exemple les forêts enracinées ayant moins de 4 sommets :

\[
\begin{align*}
1, \ldots, 1, \ldots, 1, \text{V, I, \ldots, I, V, \ldots, I, V, V, V, V, V, Y, Y, Y, I}.
\end{align*}
\]

Le produit est donné par la multiplication des forêts; l’unité est la forêt vide 1.
7.1.2 Opérateur de greffe sur une racine

Définition 7.1.3. L’opérateur de greffe \(B \) est l’application linéaire suivante :

\[
\begin{cases}
H_R & \rightarrow H_R \\
t_1 \ldots t_n \in \mathcal{F}_R & \rightarrow \text{l’arbre obtenu en greffant } t_1, \ldots, t_n \text{ sur une racine commune.}
\end{cases}
\]

Par exemple, \(B(1) = \sqrt{\cdot} \).

Théorème 7.1.4. Soit \(A \) une algèbre commutative et \(L : A \rightarrow A \) une application linéaire quelconque. Alors il existe un unique morphisme d’algèbres \(\phi : H_R \rightarrow A \) tel que \(\phi \circ B = L \circ \phi \).

Démonstration. Existence. On définit un élément \(a_F \in A \) pour toute forêt \(F \) par récurrence sur le nombre de sommets de \(F \) de la manière suivante :

1. \(a_1 = 1_A \).
2. Si \(F \) est un arbre, il existe une forêt \(G \) ayant un sommet de moins telle que \(F = B(G) \) ; alors \(a_F = L(a_G) \).
3. Si \(F \) n’est pas un arbre, alors \(F = t_1 \ldots t_n \), où \(t_1, \ldots, t_n \) sont des arbres ayant strictement moins de sommets que \(F \) ; alors \(a_F = a_{t_1} \ldots a_{t_n} \).

Comme \(A \) est commutative, \(a_{t_1} \ldots a_{t_n} \) ne change pas lorsque l’on modifie l’ordre des \(t_i \), donc ceci est bien défini. Soit maintenant \(\phi : H_R \rightarrow A \) l’unique application linéaire envoyant \(F \) sur \(a_F \) pour toute forêt \(F \). Montrons que \(\phi \) est un morphisme d’algèbres. Par définition, \(\phi(1) = 1_A \).

Soient deux forêts \(F \) et \(G \). Si \(F = 1 \), alors \(\phi(FG) = \phi(G) = \phi(F)\phi(G) \). De même, si \(G = 1 \), \(\phi(FG) = \phi(F) = \phi(F)\phi(G) \). Supposons maintenant \(F, G \neq 1 \). Posons \(F = t_1 \ldots t_n \) et \(G = s_1 \ldots s_m \), \(n, m \geq 1 \). Alors, par définition :

\[\phi(FG) = a_{t_1} \ldots a_{t_n}a_{s_1} \ldots a_{s_m} = \phi(F)\phi(G) \].

Donc \(\phi \) est un morphisme d’algèbres. D’autre part, pour toute forêt \(F \) :

\[\phi \circ B(F) = a_{B(F)} = L(a_F) = L \circ \phi(F), \]

donc \(\phi \circ B = L \circ \phi \).

Unicité. Soit \(\psi : H_R \rightarrow A \) un morphisme d’algèbres tel que \(\psi \circ B = L \circ \psi \). Montrons que \(\psi(F) = a_F \) pour toute forêt \(F \) par récurrence sur le nombre de sommets de \(F \). Si \(F = 1 \), \(\psi(F) = 1_A = a_1 \). Si \(F \) est un arbre, alors \(F = B(G) \) et l’hypothèse de récurrence s’applique à \(G \). Alors :

\[\psi(F) = \psi(B(G)) = L \circ \psi(G) = L(a_G) = a_F \].

Si \(F \) n’est pas un arbre, \(F = t_1 \ldots t_n \), l’hypothèse de récurrence s’applique à \(t_1, \ldots, t_n \). Alors :

\[\psi(F) = \psi(t_1) \ldots \psi(t_n) = a_{t_1} \ldots a_{t_n} = a_F \].

En conclusion, \(\psi(F) = \phi(F) \) pour toute forêt \(F \), donc \(\psi = \phi \). □

7.1.3 Graduation de \(H_R \)

On gradue \(H_R \) par le nombre de sommets des forêts. Autrement dit, \(H_R(n) \) est le sous-espace engendré par les forêts de \(\mathcal{F}_R(n) \). On note \(t_n \) le nombre d’arbres enracinés de \(T_R(n) \) et \(r_n \) le nombre de forêts enracinés de \(\mathcal{F}_R(n) \). Comme \(H_R = S(\mathbb{K} T_R) \), la série de Poincaré-Hilbert de \(H_R \) est :

\[F_{H_R}(h) = \sum_{k=0}^{\infty} r_k h^k = \prod_{n=1}^{\infty} \frac{1}{(1 - h^n)^{t_n}}. \]
D’autre part, B est un isomorphisme homogène de degré 1 entre H_R et $K[T_R]$. Par suite :

$$F_{K[T_R]}(h) = \sum_{k=1}^{\infty} t_k h^k = h F_{H_R}(h).$$

Autrement dit, $t_k = r_{k-1}$ pour tout $k \geq 1$. En conséquence :

Proposition 7.1.5. Les coefficients r_n sont déterminés par :

$$F_{H_R}(h) = \sum_{k=0}^{\infty} r_k h^k = \prod_{i=1}^{\infty} \frac{1}{(1 - h^i)^{r_{i-1}}}.$$

Par exemple, le programme MuPAD suivant calcule les coefficients r_k :

```plaintext
forets:=proc(n)
local i,produit,res;
begin
res:=[1];
produit:=1;
for i from 1 to n do
    produit:=produit/(1-h^i)^(res[i]);
    res:=res.[coeff(series(produit,h,i+1),h,i)];
end_for;
return(res);
end_proc;
```

Les premières valeurs de r_k sont données par :

<table>
<thead>
<tr>
<th>k</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_k</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>20</td>
<td>48</td>
<td>115</td>
<td>286</td>
<td>719</td>
<td>1842</td>
</tr>
</tbody>
</table>

7.2 Algèbre de Hopf H_R

7.2.1 Définition du coproduit

On définit tout d’abord :

$$\varepsilon : \begin{cases} H_R & \rightarrow \mathbb{K} \\ F \in F_R & \rightarrow \delta_{F,1}. \end{cases}$$

Il est clair que ε est un morphisme d’algèbres. De plus, pour tout arbre t, $\varepsilon(t) = 0$. En conséquence, $\varepsilon \circ B = 0$.

Théorème 7.2.1. Soit $\Delta : H_R \rightarrow H_R \otimes H_R$ l’unique morphisme d’algèbres tel que $\Delta \circ B = L \circ \Delta$, avec :

$$L : \begin{cases} H_R \otimes H_R & \rightarrow H_R \otimes H_R \\ x \otimes y & \rightarrow B(x) \otimes \varepsilon(y) 1 + x \otimes B(y). \end{cases}$$

Munie de ce coproduit, H_R est une algèbre de Hopf graduée connexe.

Démonstration. On utilise les notations de Sweedler pour H_R. Alors pour tout $x \in H_R$:

$$\Delta(B(x)) = \sum_x B \left(x^{(1)} \right) \otimes \varepsilon \left(x^{(2)} \right) 1 + \sum_x x^{(1)} \otimes B \left(x^{(2)} \right).$$

Comme $H_R \otimes H_R$ est commutative, par la propriété universelle de H_R (théorème [7.1.4]), Δ est bien défini. Pour montrer que H_R est une algèbre de Hopf graduée connexe, il faut montrer que Δ est coassociatif et counitaire, et homogène de degré 0 (on sait déjà que Δ est un morphisme d’algèbres).
Montrons d’abord que ε est une counité pour Δ. Montrons que \((\varepsilon \otimes \text{Id}) \circ \Delta(F) = F\) pour toute forêt \(F\) par récurrence sur le nombre de sommets. Si \(F = 1\) :

\[(\varepsilon \otimes \text{Id}) \circ \Delta(1) = \varepsilon(1)1 = 1.\]

Si \(F\) est un arbre, \(F = B(G)\). Alors :

\[
(\varepsilon \otimes \text{Id}) \circ \Delta(F) = (\varepsilon \otimes \text{Id}) \left(\sum_G B \left(G^{(1)} \right) \otimes \varepsilon \left(G^{(2)} \right) + \sum_G G^{(1)} \otimes B \left(G^{(2)} \right) \right)
\]

\[
= \sum_G \varepsilon \circ B \left(G^{(1)} \right) \otimes \varepsilon \left(G^{(2)} \right) + \sum_G \varepsilon \left(G^{(1)} \right) B \left(G^{(2)} \right)
\]

\[
= 0 + \sum_G B \left(\varepsilon \left(G^{(1)} \right) G^{(2)} \right)
\]

\[
= B(G)
\]

\[
= F.
\]

Sinon, \(F = t_1 \ldots t_n\) et en appliquant l’hypothèse de récurrence sur \(t_1, \ldots, t_n\):

\[
(\varepsilon \otimes \text{Id}) \circ \Delta(F) = \sum_{t_1, \ldots, t_n} \varepsilon \left(t_1^{(1)} \ldots t_n^{(1)} \right) t_1^{(2)} \ldots t_n^{(2)}
\]

\[
= \sum_{t_1, \ldots, t_n} \varepsilon \left(t_1^{(1)} \right) \ldots \varepsilon \left(t_n^{(1)} \right) t_1^{(2)} \ldots t_n^{(2)}
\]

\[
= t_1 \ldots t_n
\]

\[
= F.
\]

Montrons maintenant que \((\text{Id} \otimes \varepsilon) \circ \Delta(F) = F\) pour toute forêt \(F\) par récurrence sur le nombre de sommets. Si \(F = 1\) :

\[(\text{Id} \otimes \varepsilon) \circ \Delta(1) = 1\varepsilon(1) = 1.\]

Si \(F\) est un arbre, \(F = B(G)\). Alors :

\[
(\text{Id} \otimes \varepsilon) \circ \Delta(F) = (\text{Id} \otimes \varepsilon) \left(\sum_G B \left(G^{(1)} \right) \otimes \varepsilon \left(G^{(2)} \right) + \sum_G G^{(1)} \otimes B \left(G^{(2)} \right) \right)
\]

\[
= \sum_G B(G^{(1)}) \otimes \varepsilon \left(G^{(2)} \right) + \sum_G G^{(1)} \varepsilon \circ B \left(G^{(2)} \right)
\]

\[
= \sum_G B \left(G^{(1)} \varepsilon \left(G^{(2)} \right) \right)
\]

\[
= B(G)
\]

\[
= F.
\]

Sinon, \(F = t_1 \ldots t_n\) et en appliquant l’hypothèse de récurrence sur \(t_1, \ldots, t_n\):

\[
(\text{Id} \otimes \varepsilon) \circ \Delta(F) = \sum_{t_1, \ldots, t_n} t_1^{(1)} \ldots t_n^{(1)} \varepsilon \left(t_1^{(2)} \ldots t_n^{(2)} \right)
\]

\[
= \sum_{t_1, \ldots, t_n} t_1^{(1)} \ldots t_n^{(1)} \varepsilon \left(t_1^{(2)} \right) \ldots \varepsilon \left(t_n^{(2)} \right)
\]

\[
= t_1 \ldots t_n
\]

\[
= F.
\]
Donc ε est une counité pour Δ. En conséquence, pour tout \(x \in H_R \):

\[
\Delta(B(x)) = B(x) \otimes 1 + \sum_x x^{(1)} \otimes B\left(x^{(2)} \right).
\]

Montrons la coassociativité de Δ. Plus précisément, montrons que \((\Delta \otimes \text{Id}) \circ \Delta(F) = (\text{Id} \otimes \Delta) \circ \Delta(F)\) pour toute forêt \(F \) par récurrence sur le nombre de sommets. Si \(F = 1 \), c’est évident. Si \(F \) est un arbre, alors \(F = B(G) \). D’autre part :

\[
(\Delta \otimes \text{Id}) \circ \Delta(F) = (\Delta \otimes \text{Id}) \circ \Delta \circ B(G)
\]

\[
= (\Delta \otimes \text{Id}) \left(B(G) \otimes 1 + \sum_G G^{(1)} \otimes B\left(G^{(2)} \right) \right)
\]

\[
= B(G) \otimes 1 \otimes 1 + \sum_G G^{(1)} \otimes B\left(G^{(2)} \right) \otimes 1
\]

\[
+ \sum_{G,G^{(1)}} \left(G^{(1)} \right)^{(1)} \otimes \left(G^{(1)} \right)^{(2)} \otimes B\left(G^{(2)} \right),
\]

\[
(\text{Id} \otimes \Delta) \circ \Delta(F) = (\text{Id} \otimes \Delta) \circ \Delta \circ B(G)
\]

\[
= (\text{Id} \otimes \Delta) \left(B(G) \otimes 1 + \sum_G G^{(1)} \otimes B\left(G^{(2)} \right) \right)
\]

\[
= B(G) \otimes 1 \otimes 1 + \sum_G G^{(1)} \otimes B\left(G^{(2)} \right) \otimes 1
\]

\[
+ \sum_{G,G^{(2)}} G^{(1)} \otimes \left(G^{(2)} \right)^{(1)} \otimes B\left(\left(G^{(2)} \right)^{(2)} \right).
\]

On conclut avec la coassociativité de Δ appliqué à \(G \). Si \(F \) n’est pas un arbre, posons \(F = t_1 \ldots t_n \). Alors :

\[
(\Delta \otimes \text{Id}) \circ \Delta(F) = \sum_{t_1,\ldots,t_n} \sum_{t_1^{(1)},\ldots,t_n^{(1)}} \left(t_1^{(1)} \right)^{(1)} \ldots \left(t_n^{(1)} \right)^{(1)} \otimes \left(t_1^{(1)} \right)^{(2)} \otimes t_1^{(2)} \ldots t_n^{(2)}
\]

\[
= \sum_{t_1,\ldots,t_n} \sum_{t_1^{(2)},\ldots,t_n^{(2)}} \left(t_1^{(2)} \right)^{(1)} \otimes \left(t_1^{(2)} \right)^{(2)} \otimes \left(t_n^{(2)} \right)^{(2)}
\]

\[
= (\text{Id} \otimes \Delta) \circ \Delta(F).
\]

Donc Δ est coassociatif.

Il reste à montrer que Δ est homogène de degré 0. Ceci peut se montrer par récurrence ou découler de la description en terme de coupes du coproduit (proposition \ref{prop:coproduct}). L’existence de l’antipode découle du théorème \ref{thm:antipode}. \qed

\textbf{Remarque 7.2.1.} On a montré au passage que pour tout \(x \in H_R \):

\[
\Delta \circ B(x) = B(x) \otimes 1 + (\text{Id} \otimes B) \circ \Delta(x).
\]

Cette équation peut s’interpréter en terme de cohomologie de Cartier-Quillen (équation définissant les 1-cocycles).
On peut calculer le coproduit par récurrence :

\[
\Delta(1) = 1 \otimes 1 \\
\Delta(\cdot) = \cdot \otimes 1 + 1 \otimes \cdot \\
\Delta(\cdot \cdot) = \cdot \otimes 1 + 1 \otimes \cdot + 2 \otimes \cdot \\
\Delta(1) = 1 \otimes 1 + 1 \otimes 1 + \cdot \otimes \\
\Delta(\mathcal{V}) = \mathcal{V} \otimes 1 + 1 \otimes \mathcal{V} + \cdot \otimes + 2 \otimes \\
\Delta(1) = 1 \otimes 1 + 1 \otimes 1 + \cdot \otimes 1 + 1 \otimes .
\]

En particulier, \(\Delta(\mathcal{V}) \) montre que \(H_R \) n’est pas cocommutative.

On donne maintenant une description combinatoire du coproduit.

Définition 7.2.2. Soit \(t \) un arbre.

1. Une coupe de \(t \) est un choix non vide \(c \) d’arêtes de \(t \). La forêt obtenue en ôtant ces arêtes est notée \(W^c(t) \).

2. Une coupe \(c \) est dite admissible si tout trajet de la racine à une feuille de \(t \) rencontre au plus une arête coupée. Si \(c \) est admissible, la composante de \(W^c(t) \) contenant la racine de \(t \) est notée \(R^c(t) \). Le produit des autres composantes de \(W^c(t) \) est noté \(P^c(t) \). L’ensemble des coupes admissibles de \(t \) est noté \(\text{Adm}(t) \).

Exemple 7.2.1. Pour l’arbre \(t = \mathcal{V} \) :

<table>
<thead>
<tr>
<th>coupe (c)</th>
<th>(\mathcal{V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissible?</td>
<td>oui</td>
<td>oui</td>
<td>oui</td>
<td>non</td>
<td>oui</td>
<td>oui</td>
</tr>
<tr>
<td>(W^c(t))</td>
<td>(\mathcal{V})</td>
<td>(\mathcal{V})</td>
<td>(\mathcal{V})</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>(R^c(t))</td>
<td>(\mathcal{V})</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>(P^c(t))</td>
<td>(\times)</td>
<td></td>
</tr>
</tbody>
</table>

Proposition 7.2.3. Soit \(t \) un arbre. Alors :

\[
\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{c \in \text{Adm}(t)} P^c(t) \otimes R^c(t).
\]

Remarque 7.2.2. Cette propriété indique immédiatement que \(\Delta \) est homogène de degré 0.

Démonstration. Par récurrence sur le nombre de sommets de \(t \). Si \(t = \cdot \), c’est évident (\(t \) n’ayant alors aucune coupe admissible). Si \(t = B(t_1 \ldots t_n) \), alors :

\[
\Delta(t) = t \otimes 1 + (\text{Id} \otimes B) \left(\left(t_1 \otimes 1 + 1 \otimes t_1 + \sum_{c_1 \in \text{Adm}(t_1)} P^{c_1}(t_1) \otimes R^{c_1}(t_1) \right) \right)
\]

\[
\ldots \left(t_n \otimes 1 + 1 \otimes t_n + \sum_{c_n \in \text{Adm}(t_n)} P^{c_n}(t_n) \otimes R^{c_n}(t_n) \right) \right).
\]

Soit \(c \) une coupe admissible de \(t \). Considérons la restriction \(c_i \) de \(c \) à \(t_i \). L’un et l’un seul des trois cas suivants est possible :

- \(c_i \) est vide : elle correspond alors au terme \(1 \otimes t_i \).
— c_i coupe totalement t_i : elle correspond alors au terme $t_i \otimes 1$.
— c_i est un coupe admissible de t_i : elle correspond alors au terme $P^{c_i}(t_i) \otimes R^{c_i}(t_i)$.

Autrement dit, chacun des termes obtenus après développement de $\Delta(t)$ correspond à une unique coupe admissible de t et donc :

$$\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{c \in \text{Adm}(t)} P^c(t) \otimes R^c(t).$$

Par exemple :

$$\Delta(V) = V \otimes 1 + 1 \otimes V + 1 \otimes 1 + \ldots + 1 \otimes 1 + \ldots + 1 \otimes 1.$$

7.2.2 Antipode

Proposition 7.2.4. Soit t un arbre. Pour toute coupe c de t, n_c désigne le nombre d’arêtes coupées par c. Alors :

$$S(t) = -t - \sum_{c \text{ coupe de } t} (-1)^{n_c} W^c(t).$$

Remarque 7.2.3. Comme H_R est commutative, S est un morphisme d’algèbres et donc cette proposition détermine entièrement S.

Démonstration. Par récurrence sur le nombre de sommets de t. Si $t = \cdot$, c’est évident. Sinon :

$$m \circ (S \otimes \text{Id}) \circ \Delta = S(t) + t + \sum_{c \in \text{Adm}(t)} S(P^c(t))R^c(t) = 0.$$

Donc :

$$S(t) = -t - \sum_{c \in \text{Adm}(t)} S(P^c(t))R^c(t).$$

Soit c une coupe de t. Il existe une unique coupe admissible $f(c)$ de t telle que $R^{f(c)}(t)$ soit la composante de $W^c(t)$ contenant la racine de t. Pour toute coupe admissible c, posons $P^c(t) = t_1^c \ldots t_k^c$. Alors :

$$S(t) = -t - \sum_{c \in \text{Adm}(t)} \prod_{i=1}^{k_c} (-t_i^c) - \sum_{c_i \text{ coupe de } t_i^c} (-1)^{n_c} W^{c_i}(t_i^c) R^c(t)$$

$$= -t - \sum_{c \text{ coupe de } t} (-1)^{n_c} W^c(t)$$

ce qui termine la récurrence. \qed

7.2.3 Propriété universelle de l’algèbre de Hopf H_R

Théorème 7.2.5. Soit A une algèbre de Hopf commutative et soit $L : A \longrightarrow A$ une application linéaire telle que pour tout $a \in A$:

$$\Delta \circ L(a) = L(a) \otimes 1 + (\text{Id} \otimes L) \circ \Delta(a).$$

Alors l’unique morphisme d’algèbres ϕ de H_R dans A tel que $\phi \circ B = L \circ \phi$ (théorème 7.1.4) est un morphisme d’algèbres de Hopf.
Démonstration. Montrons que $\Delta \circ \phi(F) = (\phi \otimes \phi) \circ \Delta(F)$ pour toute forêt F par récurrence sur le nombre de sommets de F. Si $F = 1$, c’est évident. Si F est un arbre, posons $F = B(G)$. Alors :

$\Delta \circ \phi(F) = \Delta \circ \phi \circ B(G)$

$= \Delta \circ L \circ \phi(G)$

$= L \circ \phi(G) \otimes 1 + \sum_{G} \phi(G) \otimes L \left(\phi(G) \otimes \phi(G) \right)$

$= \phi \circ B(G) \otimes \phi(1) + \sum_{G} \phi \left(G(1) \right) \otimes L \left(\phi \left(G(2) \right) \right)$

$= \phi \circ B(G) \otimes \phi(1) + \sum_{G} \phi \left(G(1) \right) \otimes \phi \circ B \left(G(2) \right)$

$= \left(\phi \otimes \phi \right) \left(B(G) \otimes 1 + \sum_{G} G(1) \otimes B \left(G(2) \right) \right)$

$= \left(\phi \otimes \phi \right) \circ \Delta(F)$.

Sinon, $F = t_1 \ldots t_n$ et :

$\Delta \circ \phi(F) = \Delta(\phi(t_1) \ldots \phi(t_n))$

$= \Delta \circ \phi(t_1) \ldots \Delta \circ \phi(t_n)$

$= (\phi \otimes \phi) \circ \Delta(t_1) \ldots (\phi \otimes \phi) \circ \Delta(t_n)$

$= (\phi \otimes \phi) (\Delta(t_1) \ldots \Delta(t_n))$

$= (\phi \otimes \phi) \circ \Delta(F)$.

Montrons enfin que $\varepsilon \circ \phi = \varepsilon$. Comme il s’agit de deux morphismes d’algèbres, il suffit de montrer que pour tout arbre t, $\varepsilon \circ \phi(t) = \varepsilon(t) = 0$. Comme tout arbre t est dans l’image de B, il suffit de montrer que $\varepsilon \circ \phi \circ B = 0$, autrement dit que $\varepsilon \circ L \circ \phi = 0$. Il suffit donc de montrer que $\varepsilon \circ L = 0$. Soit $x \in A$. Alors :

$\Delta \circ L(x) = L(x) \otimes 1 + \sum_{x} x^{(1)} \otimes L \left(x^{(2)} \right)$

$(\varepsilon \otimes \text{Id}) \circ \Delta \circ L(x) = \varepsilon \circ L(x) \otimes 1 + \sum_{x} \varepsilon(x^{(1)}) L \left(x^{(2)} \right)$

$= \varepsilon \circ L(x) + L(x)$

$= L(x)$.

Donc $\varepsilon \circ L(x) = 0$. Donc ϕ est un morphisme de bigèbres et donc d’algèbres de Hopf.

Exemple 7.2.2. On suppose K de caractéristique nulle. On prend $A = K[X]$, avec sa structure d’algèbre de Hopf définie dans le deuxième chapitre. On vérifie que l’application suivante vérifie bien les hypothèses de l’énoncé :

$L : \begin{cases} K[X] & \rightarrow \ K[X] \\ P(X) & \rightarrow \ \int_{0}^{X} P(t) dt \end{cases}$

Autrement dit, pour tout n,

$L(X^n) = \frac{X^{n+1}}{n+1}$.

Il existe donc un unique morphisme d’algèbres de Hopf ϕ de H_R dans $K[X]$ tel que $\phi \circ B = L \circ \phi$. On vérifie par récurrence que pour toute forêt F ayant n sommets, $\phi(F) = \frac{1}{F!} X^n$, où $F!$ est un certain entier strictement positif.
7.3 Dual gradué de H_R

On suppose ici le corps K de caractéristique nulle. Le dual gradué de H_R est une algèbre de Hopf graduée, connexe, cocommutative et non commutative. D’après le théorème de Cartier-Quillen-Milnor-Moore, il s’agit d’une algèbre enveloppante d’une algèbre de Lie $\mathfrak{g} = \text{Prim}(H_R^\otimes)$.

Nous décrivons ici cette algèbre de Lie. La base duale de la base des forêts de H_R est notée $(Z_F)_{F \in \mathcal{F}_R}$. Une base de $(1) + \text{Ker}(\varepsilon)^2$ dans H_R est $(F)_{F \in \mathcal{F}_R - \mathcal{T}_R}$. Comme $\mathfrak{g} = ((1) + \text{Ker}(\varepsilon)^2)^\perp$, une base de \mathfrak{g} est $(Z_t)_{t \in \mathcal{T}_R}$.

Notations 7.3.1. Si $t_1, t_2, t \in \mathcal{T}_R$, on désigne par $n(t_1, t_2; t)$ le nombre de coupes simples c de t telles que $P^c(t) = t_1$ et $R^c(t) = t_2$.

Soient $t_1, t_2 \in \mathcal{T}_R$. Alors d’après le lemme 6.2.1, $Z_{t_1}Z_{t_2}$ s’annule sur les forêts ayant trois arbres ou plus, ainsi que sur 1. Donc on peut écrire :

$$Z_{t_1}Z_{t_2} = \sum_{t \in \mathcal{T}_R} a_tZ_t + \sum_{uv \in \mathcal{F}_R} a_{uv}Z_{uv}.$$

De plus :

$$a_t = Z_{t_1}Z_{t_2}(t) = (Z_{t_1} \otimes Z_{t_2}) \circ \Delta(t) = n(t_1, t_2; t).$$

Si $u, v \in \mathcal{T}_R$:

$$\Delta(uv) - (uv \otimes 1 + 1 \otimes uv + u \otimes v + v \otimes u) \in \text{Ker}(\varepsilon)^2 \otimes \text{Ker}(\varepsilon) + \text{Ker}(\varepsilon) \otimes \text{Ker}(\varepsilon)^2.$$

Donc :

$$a_{uv} = Z_{t_1}(u)Z_{t_2}(v) + Z_{t_1}(v)Z_{t_2}(v) = \delta_{t_1,u}\delta_{t_2,v} + \delta_{t_2,u}\delta_{t_1,v}.$$

Donc :

$$a_{uv} = (1 + \delta_{t_1,t_2})\delta_{uv,t_1t_2}.$$

Finalement :

$$Z_{t_1}Z_{t_2} = (1 + \delta_{t_1,t_2})Z_{t_1t_2} + \sum_{t \in \mathcal{T}_R} n(t_1, t_2; t)Z_t.$$

Exemple 7.3.1.

$$Z_1Z_1 = 2Z_1 + Z_1 + Z_1 + Z_1$$

On obtient donc :

Proposition 7.3.1. Le dual gradué de H_R est l’algèbre enveloppante de l’algèbre de Lie \mathfrak{g} ayant pour base $(Z_t)_{t \in \mathcal{T}_R}$ et pour crochet :

$$[Z_{t_1}, Z_{t_2}] = \sum_{t \in \mathcal{T}_R} n(t_1, t_2; t)Z_t - \sum_{t \in \mathcal{T}_R} n(t_2, t_1; t)Z_t.$$

Cette algèbre de Lie est étudiée dans [4]. Le dual gradué de H_R est isomorphe à l’algèbre de Hopf de Grossman-Larson [9], comme il est démontré dans [10, 18].

Exemple 7.3.2.

$$[Z_1, Z_1] = 2Z_1 + Z_1 - Z_1.$$
Remarque 7.3.1. On peut définir un produit bilinéaire * sur g de la manière suivante :

\[Z_{t_1} \ast Z_{t_2} = \sum_{t \in T_R} n(t_1, t_2; t) Z_t, \]

de sorte que pour tous \(x, y \in g \), \([x, y] = x \ast y - y \ast x\). Ce produit n’est pas associatif, mais vérifie

la relation pré-Lie à gauche :

\[(x \ast y) \ast z - x \ast (y \ast z) = (y \ast x) \ast z - y \ast (x \ast z). \]

Cette relation permet de démontrer directement l’égalité de Jacobi :

\[[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = x \ast (y \ast z) - x \ast (z \ast y) - (y \ast z) \ast x + (z \ast y) \ast x \]
\[+ y \ast (z \ast x) - y \ast (x \ast z) - (z \ast x) \ast y + (x \ast z) \ast y \]
\[+ z \ast (x \ast y) - z \ast (y \ast x) - (x \ast y) \ast z + (y \ast x) \ast z \]
\[= x \ast (y \ast z) - (x \ast y) \ast z - y \ast (x \ast z) + (y \ast x) \ast z \]
\[+ y \ast (z \ast x) - (y \ast z) \ast x - z \ast (y \ast x) + (z \ast y) \ast x \]
\[+ z \ast (x \ast y) - (z \ast x) \ast y - x \ast (z \ast y) + (x \ast z) \ast y \]
\[= 0 + 0 + 0. \]

7.4 Structure de \(H_R \)

7.4.1 Opération de greffe

On suppose dans cette section que \(K \) est de caractéristique nulle.

Définition 7.4.1. Soient \(F \) et \(G \) deux forêts non nulles. On définit :

\[F \ast G = \frac{1}{\text{card}(G)} \sum_{x \text{ sommet de } G} \text{greffe de } F \text{ sur } G \text{ sur le sommet } x. \]

On pose aussi \(1 \ast F = F \ast 1 = F \) pour toute forêt \(F \). Cette application \(\ast \) est étendue en une application bilinéaire de \(H_R \times H_R \rightarrow H_R \).

Exemple 7.4.1.

\[\ast 1 = \frac{1}{2} (\mathcal{V} + 1), \quad 1 \ast . = 1, \quad . \ast 1 = \frac{1}{2} (\mathcal{V} + \mathcal{Y}). \]

Remarquons que \(\ast \) n’est pas associatif :

\[(. \ast .) \ast . = 1 \ast . = 1, \quad . \ast (., .) = . \ast 1 = \frac{1}{2} (\mathcal{V} + 1). \]

Lemme 7.4.2. Soit \(x \in \text{Ker}(\mathcal{E}) \), \(y \in \text{Prim}(H_R) \). Alors :

\[\Delta(x \ast y) = x \ast y \otimes 1 + \sum_x x^{(1)} \otimes x^{(2)} \ast y. \]

Démonstration. Soient \(F \) et \(G \) deux forêts non vides. Soit \(x \) un sommet de \(G \) et soit \(H \) la forêt obtenue en greffant \(F \) sur \(G \) au sommet \(x \). Étudions les coupes admissibles de \(H \) : soit \(c \) une telle coupe. Différents cas se présentent :

1. \(c \) coupe toutes les arêtes reliant \(F \) à \(x \) et uniquement celles-ci : alors \(P^c(H) = F \) et \(R^c(H) = G \).
2. c coupe toutes les arêtes reliant \(F \) à \(x \) et d’autres arêtes : comme \(c \) est admissible, ces autres arêtes sont des arêtes de \(G \). De plus, \(c_G \) est admissible, et \(P^c(H) = FP^cG(G) \), \(R^c(H) = R^cG(G) \). De plus, \(x \) est un sommet de \(R^c(H) \).

3. \(c \) coupe au moins une arête de \(F \) ou une arête de \(x \) à \(F \), et ne coupe pas toutes les arêtes de \(x \) à \(F \). Dans ce cas, \(c_G \) est admissible ou vide, et \(c_F \) est admissible ou vide.

 (a) Si \(c_G \) est vide, \(P^c(H) = P^cF(F) \) et \(R^c(H) \) est la greffe de \(R^cF(F) \) sur le sommet \(x \) de \(G \).

 (b) Si \(c_G \) n’est pas vide, \(P^c(H) = P^cF(F)P^cG(G) \) et \(R^c(H) \) est la greffe de \(R^cF(F) \) sur le sommet \(x \) de \(R^cG(G) \).

4. \(c \) ne coupe que des arêtes de \(G \). Alors :

 (a) Si \(x \) est un sommet de \(P^c(G) \), alors \(P^c(H) \) est la greffe de \(F \) sur le sommet \(x \) de \(P^cG(G) \) et \(R^c(H) = R^cG(G) \).

 (b) Si \(x \) est un sommet de \(R^cG(G) \), alors \(R^c(H) \) est la greffe de \(F \) sur le sommet \(x \) de \(R^cG(G) \) et \(P^c(H) = P^cG(G) \).

En sommant sur \(x \), en posant \(\tilde{\Delta}(F) = \sum F' \otimes F'' \) et \(\tilde{\Delta}(G) = \sum G' \otimes G'' \):

\[
n \tilde{\Delta}(F \ll G) = nF \otimes G + \sum_G n'' FG' \otimes G'' + \sum_F nF' \otimes F'' \ll G
+ \sum_F \sum_G n'' F'G' \otimes F'' \ll G'' + \sum_G n' F' \ll G' \otimes G'' + \sum_G n'' G' \otimes F' \ll G'',
\]

où \(n = |G| \), \(n' = |G'| \) et \(n'' = |G''| \). Remarquons que \(n' + n'' = n \). Pour toute forêt \(F \), on considère l’application linéaire définie par :

\[
h_F(X \otimes Y) = \frac{y}{x+y} FX \otimes Y + \frac{y}{x+y} \sum_F F' \otimes F'' \ll G
+ \frac{x}{x+y} F \ll X \otimes Y + \frac{y}{x+y} X \otimes F \ll Y,
\]

pour toutes forêts non vides \(X,Y \), avec respectivement \(x \) et \(y \) sommets. On a donc, pour toute forêt \(G \):

\[
\tilde{\Delta}(F \ll G) = F \otimes G + \sum_F F' \otimes F'' \ll G + h_F(\tilde{\Delta}(G)).
\]

Par linéarité, pour tout \(y \in H_R \):

\[
\tilde{\Delta}(F \ll y) = F \otimes y + \sum_F F' \otimes F'' \ll y + h_F(\tilde{\Delta}(y)).
\]

En particulier, si \(\tilde{\Delta}(y) = 0 \), c’est-à-dire si \(y \) est primitif :

\[
\tilde{\Delta}(F \ll y) = F \otimes y + \sum_F F' \otimes F'' \ll y.
\]

En conséquence, par linéarité en \(F \), pour tout \(x \in \text{Ker}(\varepsilon) \), pour tout \(y \in \text{Prim}(H_R) \):

\[
\tilde{\Delta}(x \ll y) = x \otimes y + \sum_x x' \otimes x'' \ll y.
\]

Donc :

\[
\Delta(x \ll y) = x \ll y \otimes 1 + 1 \otimes x \ll y + x \otimes y + \sum_x x^{(1)} \otimes x^{(2)} \ll y - x \otimes y - 1 \otimes x \ll y
= x \ll y \otimes 1 + \sum_x x^{(1)} \otimes x^{(2)} \ll y.
\]

\[\square\]
On définit alors par récurrence sur n, pour tous $p_1,\ldots,p_n \in \text{Prim}(H_R)$:

\[
\begin{align*}
\omega(p_1) & = p_1, \\
\omega(p_1,\ldots,p_n) & = \omega(p_1,\ldots,p_{n-1}) \otimes p_n.
\end{align*}
\]

Lemme 7.4.3. Pour tout $n \geq 1$, pour tous $p_1,\ldots,p_n \in \text{Prim}(H_R)$:

\[
\Delta(\omega(p_1,\ldots,p_n)) = \sum_{i=0}^{n} \omega(p_1,\ldots,p_i) \otimes \omega(p_{i+1},\ldots,p_n),
\]

avec la convention $\omega() = 1$.

Démonstration. Par récurrence sur n. Si $n = 1$, c’est évident. Supposons le résultat vrai au rang $n - 1$. Alors, d’après le lemme précédent :

\[
\begin{align*}
\Delta(\omega(p_1,\ldots,p_n)) & = \omega(p_1,\ldots,p_n) \otimes 1 + \sum_{i=0}^{n-1} \omega(p_1,\ldots,p_i) \otimes \omega(p_{i+1},\ldots,p_{n-1}) \otimes p_n \\
& = \omega(p_1,\ldots,p_n) \otimes 1 + \sum_{i=0}^{n-1} \omega(p_1,\ldots,p_i) \otimes \omega(p_{i+1},\ldots,p_n) \\
& = \sum_{i=0}^{n} \omega(p_1,\ldots,p_i) \otimes \omega(p_{i+1},\ldots,p_n).
\end{align*}
\]

Donc le résultat est vrai pour tout n.

Lemme 7.4.4. L’application suivante est un isomorphisme de cogèbres graduées :

\[
\Omega : \left\{ \begin{array}{c}
\text{co}T(\text{Prim}(H_R)) \rightarrow H_R \\
p_1 \ldots p_n \rightarrow \omega(p_1,\ldots,p_n).
\end{array} \right.
\]

Démonstration. D’après le lemme précédent, cette application est un morphisme de cogèbres. Elle est clairement homogène de degré 0.

Montrons qu’elle est surjective : soit $x \in H_R$, montrons que $x \in \text{Im}(\Omega)$. Comme H_R est graduée et connexe, $	ilde{\Delta}^{(n)}(x) = 0$ pour n assez grand (lemme 5.4.4). Procédons par récurrence sur n. Si $n = 0$, alors $x \in K \subseteq \text{Im}(\Omega)$. Supposons le résultat vrai à tous les rangs $< n$. D’après le lemme 5.4.3 on peut poser :

\[
\tilde{\Delta}^{(n-1)}(x) = \sum \omega(p_1,\ldots,p_n) \in \text{Prim}(H_R)^{\otimes n}.
\]

En conséquence :

\[
\tilde{\Delta}^{(n-1)}(x) = \sum \tilde{\Delta}^{(n-1)}(\omega(p_1,\ldots,p_n)).
\]

L’hypothèse de récurrence implique que $x - \sum \omega(p_1,\ldots,p_n) \in \text{Im}(\Omega)$ et donc $x \in \text{Im}(\Omega)$.

Supposons Ω non injective. Alors Ker(Ω) est un coidéal gradué non nul de $\text{co}T(\text{Prim}(H_R))$. D’après le lemme 5.4.5 il contient donc des éléments primitifs non nuls de $\text{co}T(\text{Prim}(H_R))$, et donc des éléments non nul de $\text{Prim}(H_R)$. Or pour tout $p \in \text{Prim}(H_R)$, $\Omega(p) = p$: contradiction. Donc Ω est injective.

Attention, Ω n’est pas un morphisme de bigèbres. Pourtant :

Théorème 7.4.5. Les algèbres de Hopf graduées H_R et $\text{co}T(\text{Prim}(H_R))$ sont isomorphes.
Démonstration. D’après le lemme précédent, les cogèbres graduées \(H_R\) et \(\text{coT}(\text{Prim}(H_R))\) sont isomorphes. De manière duale, les algèbres graduées \(H_R^\otimes\) et \(T(\text{Prim}(H_R)^\otimes)\) sont isomorphes.

Pour alléger les notation, on pose \(V = \text{Prim}(H_R)^\otimes\). Soit \(F(h)\) la série formelle de \(H_R\) et \(P(h)\) la série formelle de \(V\). On en déduit qu’alors :

\[
F(h) = \frac{1}{1-P(h)}, \quad P(h) = 1 - \frac{1}{F(h)}.
\]

De plus, la série formelle de l’espace des générateurs \(\text{Ker}(\varepsilon)/\text{Ker}(\varepsilon)^2\) de \(T(V)\) est \(P(h)\). Il en est donc de même dans \(H_R^\otimes\).

Par le théorème de Cartier-Quillen, \(H_R^\otimes\) est une algèbre enveloppante, donc est engendrée par \(\text{Prim}(H_R^\otimes)\). Par la proposition 5.2.1, on a alors \(\text{Ker}(\varepsilon) = \text{Prim}(H_R^\otimes) + \text{Ker}(\varepsilon)^2\). On peut donc choisir un supplémentaire gradué \(W\) de \(\text{Ker}(\varepsilon)^2\) dans \(\text{Ker}(\varepsilon)\) inclus dans \(\text{Prim}(H_R^\otimes)\). Alors \(W\) et \(\text{Ker}(\varepsilon)/\text{Ker}(\varepsilon)^2\) ont la même série formelle, c’est-à-dire \(P(h)\). Donc la série formelle de \(T(W)\) est \(\frac{1}{1-P(h)} = F(h)\). Par la proposition 5.2.1, \(W\) est un espace générateur minimal de \(H_R^\otimes\).

Par la propriété universelle de \(T(W)\), on a un morphisme d’algèbres :

\[
\Upsilon : \begin{cases}
T(W) & \longrightarrow H_R^\otimes \\
 w & \mapsto w,
\end{cases}
\]

Ce morphisme est évidemment homogène de degré 0. Comme \(W\) génére \(H_R^\otimes\), \(\Upsilon\) est surjectif. Comme \(T(W)\) et \(H_R^\otimes\) ont la même série formelle, \(\Upsilon\) est une bijection. Enfin, pour tout \(w \in W\) :

\[
(\Upsilon \otimes \Upsilon) \circ \Delta (w) = \Delta \circ \Upsilon (w) = w \otimes 1 + 1 \otimes w,
\]

car \(W \subseteq \text{Prim}(H_R^\otimes)\). Comme \(W\) génére \(T(W)\), on en déduit que \(\Upsilon\) est un isomorphisme d’algèbres de Hopf. Donc \(H_R^\otimes\) et \(T(W)\) sont isomorphes. De manière duale, \(H_R\) et \(\text{coT}(W^\otimes)\) sont isomorphes. Enfin, comme \(W^\otimes\) et \(\text{Prim}(H_R)\) ont la même série formelle \(P(h)\), \(\text{coT}(W^\otimes)\) et \(\text{coT}(\text{Prim}(H_R))\) sont isomorphes.

Ce théorème permet donc aussi de calculer la série formelle de \(\text{Prim}(H_R)\) :

\[
F_{\text{Prim}(H_R)}(h) = 1 - \frac{1}{F_{H_R}(h)} = 1 - \prod_{i=1}^{\infty} (1 - h^i)^{r_{i-1}}.
\]

Par exemple, le programme MuPAD suivant calcule \(\text{dim}_\mathbb{K}(\text{Prim}(H_R(n)))\) pour tout \(n\) :

```plaintext
primitifs:=proc(n)
local i,produit,R,res;
begin
res:=[0];
R:=forets(n-1);
produit:=1;
for i from 1 to n do
    produit:=divide(produit*(1-h^i)^{(R[i]},{h}^{(n+1))}[2];
end_for;
produit:=produit+1;
for i from 1 to n do
    res:=res.[coeff(produit,h,i)];
end_for;
return(res);
end_proc;

Par exemple :

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{dim}_\mathbb{K}(\text{Prim}(H_R(n))))</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>16</td>
<td>41</td>
<td>98</td>
<td>250</td>
</tr>
</tbody>
</table>
```

Cette suite est référencée dans l’encyclopédie des suites entières de Sloane [20], suite A051573.
Exercices

1. Calculer les coproduits dans H_R de toutes les forêts ayant 1, 2, 3, 4 ou 5 sommets.

2. Donner une base de $\text{Prim}(H_R)(n)$ pour $n \leq 5$.

3. Une échelle est un arbre sans ramification, par exemple $\cdot, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$. Montrer qu’il existe une unique échelle à n sommets pour tout $n \geq 1$. Montrer que la sous-algèbre de H_R engendrée par les échelles est une sous-algèbre de Hopf isomorphe à Sym.

4. Soit $\lambda \in \mathbb{K}$. Montrer qu’il existe un unique morphisme d’algèbres de Hopf de $H_R \rightarrow H_R$ tel que $\phi \circ B = \lambda B \circ \phi$. Déterminer l’image par ce morphisme de toutes les forêts.

5. Construire une algèbre de Hopf H munie de deux opérateurs B_1 et B_2 vérifiant la propriété universelle suivante : soit A une algèbre de Hopf commutative et $L_1, L_2 : A \rightarrow A$ tels que pour tout $x \in A$,

$$
\Delta \circ L_1(x) = L_1(x) \otimes 1 + (\text{Id} \otimes L_1) \circ \Delta(x),
$$

$$
\Delta \circ L_2(x) = L_2(x) \otimes 1 + (\text{Id} \otimes L_2) \circ \Delta(x);
$$

alors il existe un unique morphisme d’algèbres de Hopf $\phi : H \rightarrow A$ tel que $\phi \circ B_1 = L_1 \circ \phi$ et $\phi \circ B_2 = L_2 \circ \phi$. Généraliser à un nombre quelconque d’opérateurs. Indication : utiliser des arbres dont les sommets sont décorés.

6. (a) Ecrire un programme calculant $\dim_{\mathbb{K}}(H_R(n))$.

(b) Ecrire un programme calculant $\dim_{\mathbb{K}}(\text{Prim}(H_R)(n))$.

7. Le but de l’exercice est de montrer que le crochet de Lie de $\text{Prim}(H_R^\otimes)$ vérifie bien la relation de Jacobi sans utiliser les résultats du cours sur les éléments primitifs d’une algèbre de Hopf. On pose, pour tous arbres $t_1, t_2 \in T_R$:

$$
Z_{t_1} \ast Z_{t_2} = \sum_{t \in T_R} n(t_1, t_2; t)Z_t.
$$

(a) Montrer que \ast n’est pas associatif.

(b) Montrer que pour tous $x, y, z \in \text{Prim}(H_R^\otimes)$:

$$
(x \ast (y \ast z)) - (x \ast y) \ast z = y \ast (x \ast z) - (y \ast x) \ast z.
$$

On dit que \ast est un produit pré-Lie.

(c) Montrer directement que le crochet de Lie de $\text{Prim}(H_R^\otimes)$ vérifie la relation de Jacobi.
Chapitre 8

Algèbres des arbres enracinés plans

8.1 Construction

8.1.1 Arbres enracinés plans

Définition 8.1.1. Un arbre enraciné plan est un arbre enraciné t tel que pour tout sommet x de t, les descendants directs de s sont totalement ordonné. L’ensemble des arbres enracinés plans est noté T_{PR} ; l’ensemble des arbres enracinés plans à n sommets est noté $T_{PR}(n)$.

Exemple 8.1.1. La racine de l’arbre plan enraciné t est toujours dessinée "en bas" de la représentation graphique du graphe sous-jacent de t et les descendants de chaque sommet sont totalement ordonnés de gauche à droite.

$T_{PR}(1) = \{\cdot\}$,

$T_{PR}(2) = \{1\}$,

$T_{PR}(3) = \{\nabla, 1\}$,

$T_{PR}(4) = \{\nabla, \nabla, \nabla, \nabla, 1\}$,

$T_{PR}(5) = \{\nabla, \nabla, \nabla, \nabla, \nabla, \nabla, 1, \nabla, \nabla, \nabla, \nabla, 1\}$.

Définition 8.1.2. L’algèbre des arbres enracinés plans H_{PR} est $\mathbb{K}\langle T_{PR} \rangle$.

Autrement dit, une base de H_{PR} est donnée par les mots en les arbres enracinés plans, également appelés forêts enracinées planes. L’ensemble des forêts enracinées planes est noté F_{PR} ; l’ensemble des forêts enracinées planes à n sommets est noté $F_{PR}(n)$. Voici par exemple les forêts enracinées planes ayant moins de 4 sommets :

$1, \ldots, 1, \ldots, 1, \nabla, 1, \ldots, 1, \nabla, \ldots, \nabla, 1, \nabla, \ldots, \nabla, \nabla, 1$.

Le produit est donné par la concaténation des forêts planes ; l’unité est la forêt vide 1.
8.1.2 Opérateur de greffe sur une racine

Définition 8.1.3. L’opérateur de greffe sur une racine \(B \) est l’application linéaire suivante :

\[
\begin{align*}
H_{PR} & \rightarrow H_{PR} \\
t_1 \ldots t_n \in \mathcal{F}_{PR} & \rightarrow \text{l’arbre plan obtenu en greffant } t_1, \ldots, t_n \\
& \text{sur une racine commune, dans cet ordre de la gauche vers la droite.}
\end{align*}
\]

Exemple 8.1.2.

\[
B(1) = \sqrt{1}, \quad B(1.) = \sqrt{\frac{1}{\sqrt{1}}}
\]

Théorème 8.1.4. Soit \(A \) une algèbre et \(L : A \rightarrow A \) une application linéaire quelconque. Alors il existe un unique morphisme d’algèbres \(\phi : H_{PR} \rightarrow A \) tel que \(\phi \circ B = L \circ \phi \).

Démonstration. En exercice, semblable à la preuve du théorème 7.1.4.

8.1.3 Graduation de \(H_{PR} \)

On gradue \(H_{PR} \) par le nombre de sommets des forêts planes. Autrement dit, pour tout \(n \in \mathbb{N} \), \(H_{PR}(n) = \text{Vect}(\mathcal{F}_{PR}(n)) \). On note \(t_n \) le nombre d’arbres enracinés plans de \(\mathcal{T}_{PR}(n) \) et \(f_n \) le nombre de forêts enracinés planes de \(\mathcal{F}_{PR}(n) \). Comme \(H_{PR} = T(\mathbb{K}T_{PR}) \), la série de Poincaré-Hilbert de \(H_{PR} \) est :

\[
F(h) = F_{H_{PR}}(h) = \sum_{k=0}^{\infty} r_k h^k = \frac{1}{1 - T(h)},
\]

où \(T(h) = \sum t_k h^k \). D’autre part, \(B \) est un isomorphisme homogène de degré 1 entre \(H_{PR} \) et \(\mathbb{K}T_{PR} \). Par suite :

\[
T(h) = h F(h).
\]

On en déduit que \(h F(h)^2 - F(h) + 1 = 0 \). Comme \(F(0) = 1 \) :

\[
F(h) = \frac{1 - \sqrt{1 - 4h}}{2h}.
\]

On en déduit :

Proposition 8.1.5. La série formelle de \(H_{PR} \) est :

\[
F(h) = \frac{1 - \sqrt{1 - 4h}}{2h}.
\]

La série formelle de \(\mathbb{K}T_{PR} \) est :

\[
T(h) = \frac{1 - \sqrt{1 - 4h}}{2}.
\]

Donc pour tout \(n \geq 0 \), \(\text{card}(\mathcal{F}_{PR}(n)) = \text{card}(\mathcal{T}_{PR}(n+1)) = \frac{(2n)!}{n!(n+1)!} \).

Ces nombres sont appelés nombres de Catalan (voir par exemple [20], suite A000108).
8.2 Algèbre de Hopf H_{PR}

8.2.1 Définition du coproduit

On définit tout d’abord :

\[\varepsilon : \begin{cases} H_{PR} & \to \mathbb{K} \\ F \in \mathcal{F}_{PR} & \to \delta_{F,1}. \end{cases} \]

Il est clair que ε est un morphisme d’algèbres. De plus, pour tout arbre t, $\varepsilon(t) = 0$. En conséquence, $\varepsilon \circ B = 0$.

Théorème 8.2.1. Soit $\Delta : H_{PR} \to H_{PR} \otimes H_{PR}$ l’unique morphisme d’algèbres tel que $\Delta \circ B = L \circ \Delta$, avec :

\[\begin{cases} H_{PR} \otimes H_{PR} & \to \ H_{PR} \otimes H_{PR} \\ x \otimes y & \to \ B(x) \otimes \varepsilon(y)1 + x \otimes B(y). \end{cases} \]

Munie de ce coproduit, H_{PR} est une algèbre de Hopf graduée connexe.

Démonstration. En exercice, semblable à la preuve du théorème 7.2.1. \qed

Donnons une interprétation combinatoire du coproduit. On remarque que si t est un arbre plan et si c est une coupe admissible de t, alors $R^c(t)$ est un arbre plan. De plus, les arbres formant $P^c(t)$ sont plans et naturellement totalement ordonnés de gauche à droite, donc $P^c(t)$ est une forêt plane.

Proposition 8.2.2. Soit t un arbre plan. Alors :

\[\Delta(t) = t \otimes 1 + 1 \otimes t + \sum_{c \in \text{Adm}(t)} P^c(t) \otimes R^c(t). \]

Démonstration. En exercice, semblable à la preuve du théorème 7.2.3. \qed

Par exemple :

\[\Delta(V) = \begin{cases} V \otimes 1 + 1 \otimes V + 1 \otimes 1 + 1 \otimes 1 + \ldots \otimes 1, \\ 1 \otimes V + V \otimes 1 + \ldots \otimes 1 \end{cases} \]

Cet exemple montre que H_{PR} n’est pas cocommutative. Elle n’est pas non plus commutative.

8.2.2 Propriété universelle de l’algèbre de Hopf H_{PR}

On montre que pour tout $x \in H_{PR}$:

\[\Delta \circ B(x) = B(x) \otimes 1 + (\text{Id} \otimes B) \circ \Delta(x). \]

On a de plus une propriété universelle :

Théorème 8.2.3. Soit A une algèbre de Hopf et soit $L : A \to A$ une application linéaire telle que pour tout $a \in A$:

\[\Delta \circ L(a) = L(a) \otimes 1 + (\text{Id} \otimes L) \circ \Delta(a). \]

Alors l’unique morphisme d’algèbres ϕ de H_{PR} dans A tel que $\phi \circ B = L \circ \phi$ est un morphisme d’algèbres de Hopf.

Démonstration. En exercice, semblable à la preuve de la propriété universelle de H_{R}. \qed
8.3 Dual gradué de H_{PR}

L’algèbre de Hopf H_R est commutative et non cocommutative et donc H_R et H_R° sont de natures différentes. Ce n’est pas le cas pour H_{PR} et on montre que H_{PR} et son dual gradué sont isomorphes.

8.3.1 Application γ

Définition 8.3.1. L’application γ est définie par :

$$\gamma : \begin{cases} H_{PR} & \rightarrow H_{PR} \\ t_1 \ldots t_n \in F_{PR} & \rightarrow t_1 \ldots t_{n-1} \delta_{t_n, \ast} \end{cases}$$

En particulier, $\gamma(1) = 0$.

Proposition 8.3.2. 1. γ est homogène de degré -1.

2. γ est surjective.

3. Pour tous $x, y \in H_{PR}$, $\gamma(xy) = x\gamma(y) + \varepsilon(y)\gamma(x)$.

4. Si $p \in \text{Prim}(H_{PR})$, $\gamma(p) = 0$ si, et seulement si, p est nul.

Démonstration. 1. Si F est une forêt plane à n sommets, $\gamma(F)$ est nul ou est une forêt plane à $n-1$ sommets. Donc $\gamma(F) \in H_{PR}(n-1)$. Comme l’ensemble des forêts planes à n sommets est une base de $H_{PR}(n)$, $\gamma(H_{PR}(n)) \subseteq H_{PR}(n-1)$ pour tout n et donc γ est homogène de degré -1.

2. Pour toute forêt plane F, $\gamma(F, \ast) = F$, donc γ est surjective.

3. Il suffit de le démontrer pour x et y deux forêts. Si $y = 1$, alors $\gamma(xy) = \gamma(x) = x\gamma(y) + \varepsilon(y)\gamma(x)$. Si $y \neq 1$, alors $\gamma(xy) = x\gamma(y) = x\gamma(y) + \varepsilon(y)\gamma(x)$.

4. Soit p un primitif non nul de H_{PR}. On pose :

$$p = \sum_{F \in F_{PR}} a_F F.$$

Soit $X = \{ F / a_F \neq 0 \}$. Cet ensemble est fini et non vide. Parmi toutes ces forêts, choisissons F ayant le plus d’arbres possibles. Parmi tous les choix possibles pour une telle forêt, choisissons F de sorte que l’arbre le plus à droite de F ait un nombre de sommets minimal. Autrement dit, si on pose $F = t_1 \ldots t_m$:

- $a_F \neq 0$.
- Si $G = s_1 \ldots s_n$ est telle que $a_G \neq 0$, alors $n \leq m$ et si $n = m$, alors $\text{card}(s_n) \geq \text{card}(t_n)$.

Supposons que $t_m \neq \ast$. Soit alors c la coupe admissible de t_m coupant toutes les arêtes issues de la racine de t_m. Alors le terme $P(c(t_m) \otimes t_1 \ldots t_{m-1}, \ast)$ apparaît dans $\Delta(F)$. Comme $\Delta(p) = p \otimes 1 + 1 \otimes p$, ce terme est éliminé par une autre forêt dans $\Delta(p)$, donc il existe G telle que $a_G \neq 0$, $G \neq F$, et $P(c(t_m) \otimes t_1 \ldots t_{m-1}, \ast)$ apparaît dans $\Delta(G)$. Alors G est obtenue à partir de $t_1 \ldots t_{m-1}, \ast$ en intercalant ou en greffant les différents arbres de $P(c(t_m))$ sur $t_1 \ldots t_{m-1}, \ast$. Trois cas sont possibles :

1. Certains arbres de $P(c(t_m))$ sont intercalés entre deux arbres de $t_1 \ldots t_{m-1}, \ast$. Alors G a au moins $m+1$ arbres. Par choix de F, $a_G = 0$: contradiction.

2. Tous les arbres de $P(c(t_m))$ sont greffés sur des arbres de $t_1 \ldots t_{m-1}, \ast$, mais pas tous sur \ast : dans ce cas, F et G ont n arbres et le nombre de sommets du dernier arbre de G est strictement plus petit que le nombre de sommets du dernier arbre de F. Par choix de F, $a_G = 0$: contradiction.

3. Tous les arbres de $P(c(t_m))$ sont greffés sur \ast : alors $F = G$, contradiction.
On aboutit à une contradiction, donc $t_m = 1$. On a montré qu'il existe $F' \in \mathcal{F}_{PR}$ telle que $a_{F'} \neq 0$. Alors:

$$\gamma(p) = \sum_{F \in \mathcal{F}_{PR}} a_F \gamma(F) = \sum_{F' \in \mathcal{F}_{PR}} a_{F'} F' \neq 0.$$

Donc si $p \neq 0$, $\gamma(p) \neq 0$. La réciproque est évidente.

8.3.2 Autodualité

L’application γ étant homogène de degré -1, on peut considérer sa transposition $\gamma^* : H_{PR}^\otimes \rightarrow H_{PR}^\otimes$.

Lemme 8.3.3.

1. γ^* est homogène de degré 1.

2. γ^* est injective.

3. Pour tout $f \in H_{PR}^\otimes$:

$$\Delta(\gamma^*(f)) = \gamma^*(f) \otimes 1 + (\text{Id} \otimes \gamma^*) \circ \Delta(f).$$

4. $\text{Im}(\gamma^*)$ engendre H_{PR}^\otimes.

Démonstration. 1. Car γ est homogène de degré -1.

2. Car γ est surjective.

3. Soit $f \in H_{PR}^\otimes$. Pour tous $x, y \in H_{PR}$:

$$\Delta(\gamma^*(f))(x \otimes y) = \gamma^*(f)(xy) = f(\gamma(xy)) = f(x\gamma(y)) + \varepsilon(y)f(\gamma(x)) = \Delta(f)(x \otimes \gamma(y)) + (f \circ \gamma \otimes 1)(x \otimes y) = ((\text{Id} \otimes \gamma^*) \circ \Delta(f) + \gamma^*(f) \otimes 1)(x \otimes y).$$

4. D’après le lemme précédent (quatrième point), $\text{Ker}(\gamma) \cap \text{Prim}(H_{PR}) = (0)$. En passant à l’orthogonal :

$$H_{PR}^\otimes = \text{Ker}(\gamma)^\perp + \text{Prim}(H_{PR})^\perp = \text{Im}(\gamma^*) + (1) + \text{Ker}(\varepsilon)^2.$$

D’après la proposition 5.2.1 $\text{Im}(\gamma^*)$ engendre H_{PR}^\otimes.

Théorème 8.3.4. L’unique morphisme d’algèbres Φ de H_{PR} dans H_{PR}^\otimes tel que $\Phi \circ B = \gamma^* \circ \Phi$ est un isomorphisme d’algèbres de Hopf graduées.

Démonstration. D’après la propriété universelle de H_{PR}, le troisième point du lemme précédent implique que Φ est un morphisme d’algèbres de Hopf. Montrons qu’il est homogène de degré 0. Soit F une forêt plane à n sommets, montrons que $\Phi(F)$ est homogène de degré n. Si $n = 0$, alors $F = 1$ et $\Phi(F) = 1$ est homogène de degré 0. Supposons le résultat vrai pour toutes forêts ayant $k < n$ sommets. Si F est un arbre, posons $F = B(G)$. Alors $\Phi(F) = \gamma^* \circ \Phi(G)$. Par l’hypothèse de récurrence, $\Phi(G)$ est homogène de degré $n - 1$ et comme γ^* est homogène de degré 1, $\Phi(F)$ est homogène de degré $n - 1 + 1 = n$. Si F n’est pas un arbre, posons $F = t_1 \ldots t_l$, $l \geq 2$. Alors $\Phi(F) = \Phi(t_1) \ldots \Phi(t_l)$ est homogène de degré $|t_1| + \ldots + |t_l| = n$ d’après l’hypothèse de récurrence appliquée à t_1, \ldots, t_l.

8.3. DUAL GRADUÉ DE H_{PR}
Montrons que Φ est surjective. Soit $f \in H_{PR}^R$, homogène de degré n. Montrons que $f \in \text{Im}(\Phi)$ par récurrence sur n. Si $n = 0$, c’est évident, $f = 1$. Si $n \geq 1$, par le quatrième point du lemme précédent :

$$H_{PR}(n) = \text{Ker}(\varepsilon)^2(n) + \text{Im}((\gamma^*)(n) = \text{Ker}(\varepsilon)^2(n) + \gamma^*(H_{PR}^R(n - 1)).$$

On peut donc se limiter à $f \in \text{Ker}(\varepsilon)^2(n)$ ou $f \in \gamma^*(H_{PR}^R(n - 1))$. Dans le premier cas, on peut se ramener à $f = gh$, où g et h sont homogènes de degré $< n$. Par l’hypothèse de récurrence, $g = \Phi(x)$ et $h = \Phi(y)$ pour certains $x, y \in H_{PR}$. Alors $f = \Phi(xy)$. Dans le second cas, $f = \gamma^*(g)$, ou g est homogène de degré $n - 1$. Par l’hypothèse de récurrence, $g = \Phi(x)$ pour un certain $x \in H_{PR}$. Alors $\Phi(B(x)) = \gamma^* \circ \Phi(x) = \gamma^*(g) = f$.

Comme les séries formelles de H_{PR} et H_{PR}^R sont égales, Φ est bijectif. \hfill \Box

8.3.3 Applications : couplage de Hopf et base duale

Comment utiliser cet isomorphisme ? En donnant une forme bilinéaire symétrique (couplage) sur H_{PR}.

Théorème 8.3.5. Pour tous $x, y, z \in H_{PR}$, on pose $\langle x, y \rangle = \Phi(x)(y)$. Cette forme bilinéaire vérifie les propriétés suivantes :

1. Pour tout $x \in H_{PR}$, $\langle 1, x \rangle = \varepsilon(x)$.
2. Pour tous $x, y, z \in H_{PR}$, $\langle xy, z \rangle = \sum_z \langle x, z^{(1)} \rangle \langle y, z^{(2)} \rangle$.
3. Pour tous $x, y \in H_{PR}$, $\langle B(x), y \rangle = \langle x, \gamma(y) \rangle$.
4. $\langle -, - \rangle$ est symétrique.
5. $\langle -, -, \rangle$ est non-dégénéré.
6. Si $x, y \in H_{PR}$ sont homogènes de degré différents, $\langle x, y \rangle = 0$.
7. Pour tous $x, y \in H_{PR}$, $\langle S(x), y \rangle = \langle x, S(y) \rangle$.

Démonstration. Utilisons d’abord le fait que Φ soit un morphisme d’algèbres de Hopf. Soient $x, y, z \in H_{PR}$.

$$\langle 1, x \rangle = \Phi(1)(x) = \varepsilon(x),$$
$$\langle x, 1 \rangle = \Phi(x)(1) = \varepsilon \circ \Phi(x) = \varepsilon(x).$$

De plus :

$$\sum_z \langle x, z^{(1)} \rangle \langle y, z^{(2)} \rangle = \sum_x \Phi(x)(z^{(1)}) \Phi(y)(z^{(2)}) = \Phi(xy)(z) = \langle xy, z \rangle,$$

Enfin :

$$\langle S(x), y \rangle = \Phi(S(x))(y) = S_{H_{PR}}^R(\Phi(x))(y) = S^R_\Phi(\Phi(x))(y) = \Phi(x)(S(y)) = \langle x, S(y) \rangle.$$

Ces cinq axiomes signifient que $\langle -, - \rangle$ est un couplage de Hopf. En particulier, on obtient les points 1, 2 et 7.
D’autre part, \(\Phi \) est homogène de degré 0. Si \(x \in H_{PR} \) est homogène de degré \(k \), alors \(\Phi(x) \in (H_{PR})^k \). Donc si \(y \in H_{PR} \) est homogène de degré \(l \neq k \), \(\langle x, y \rangle = \Phi(x)(y) = 0 \). On obtient le point 6.

Soit \(x \) dans l’orthogonal à gauche de \(H_{PR} \). Alors pour tout \(y \in H_{PR} \), \(0 = \langle x, y \rangle = \Phi(x)(y) \). Donc \(\Phi(x) = 0 \). Comme \(\Phi \) est injectif, \(x = 0 \) : \(\langle -, - \rangle \) est non-dégénéré à gauche. Soit \(y \) dans l’orthogonal à droite de \(H_{PR} \). Alors pour tout \(x \in H_{PR} \), \(0 = \langle x, y \rangle = \Phi(x)(y) \). Si \(y \neq 0 \), il existe \(f \in H_{PR}^\perp \), tel que \(f(y) \neq 0 \). Comme \(\Phi \) est surjectif, choisissons \(x \in H_{PR} \) tel que \(\Phi(x) = f \). Alors \(\langle x, y \rangle = f(y) \neq 0 \) : contradiction. Donc \(\langle -, - \rangle \) est non-dégénéré à droite. On obtient le point 5.

Soient \(x, y \in H_{PR} \). Alors :

\[
\langle B(x), y \rangle = \Phi \circ B(x)(y) = (\gamma \circ \Phi)(x)(y) = \Phi(x)(\gamma(y)) = \langle x, \gamma(y) \rangle.
\]

On obtient le point 3.

Reste à démontrer la symétrie du couplage. Montrons d’abord que pour tous \(x, y \in H_{PR} \), \(\langle \gamma(x), y \rangle = \langle x, B(y) \rangle \). On peut supposer que \(x \) et \(y \) sont deux forêts. On procède par récurrence sur le nombre \(n \) de sommets de \(x \). Si \(n = 0 \), alors \(x = 1 \). Alors :

\[
\langle \gamma(x), y \rangle = \gamma(1, y) = \langle 0, y \rangle = 0,
\]

\[
\langle x, B(y) \rangle = \langle 1, B(y) \rangle = \varepsilon(B(y)) = 0,
\]

car \(B(y) \) est un arbre.

Si \(n = 1 \), alors \(x = \ast \). Alors :

\[
\langle \gamma(x), y \rangle = \langle 1, y \rangle = \varepsilon(y) = \delta_{y,1},
\]

car \(y \) est une forêt. De plus :

\[
\langle x, B(y) \rangle = \langle \ast, B(y) \rangle = \langle B(1), B(y) \rangle = \langle 1, \gamma \circ B(y) \rangle = \langle 1, \delta_{y,1} \rangle = \delta_{y,1}\varepsilon(1) = \delta_{y,1}.
\]

Supposons le résultat vrai aux rangs \(< n \), avec \(n \geq 2 \). Deux cas se présentent.

1. Si \(x \) est un arbre, comme \(n \geq 2 \), \(\gamma(x) = 0 \) et donc \(\langle \gamma(x), y \rangle = 0 \). D’autre part, en posant \(x = B(x') \) :

\[
\langle x, B(y) \rangle = \langle B(x'), B(y) \rangle = \langle x', \gamma \circ B(y) \rangle = \langle x', \delta_{y,1} \rangle = \delta_{y,1}\varepsilon(x').
\]

Comme \(x \) est de degré \(n \geq 2 \), \(x' \) est de degré \(n - 1 \geq 1 \) donc \(\varepsilon(x') = 0 \).

2. Sinon, posons \(x = x_1x_2 \), où \(x_1 \) est une forêt non vide et \(x_2 \) est un arbre. Alors, en appliquant l’hypothèse de récurrence à \(x_1 \) et \(x_2 \) :

\[
\langle \gamma(x), y \rangle = \langle \gamma(x_1x_2), y \rangle
\]

\[
= \langle \gamma(x_1), \varepsilon(x_2), y \rangle + \langle x_1 \gamma(x_2), y \rangle
\]

\[
= \langle x_1, B(y) \rangle \langle x_2, 1 \rangle + \sum_y \langle x_1, y^{(1)} \rangle \langle \gamma(x_2), y^{(2)} \rangle
\]

\[
= \langle x_1, B(y) \rangle \langle x_2, 1 \rangle + \sum_y \langle x_1, y^{(1)} \rangle \langle x_2, B(y^{(2)}) \rangle
\]

\[
= \sum_{B(y)} \langle x_1, B(y^{(1)}) \rangle \langle x_2, B(y^{(2)}) \rangle
\]

\[
= \langle x_1x_2, B(y) \rangle
\]

\[
= \langle x, B(y) \rangle.
\]

Donc pour tous \(x, y \in H_{PR} \), \(\langle \gamma(x), y \rangle = \langle x, B(y) \rangle \).

Montrons maintenant la symétrie du couplage : \(\langle x, y \rangle = \langle y, x \rangle \) pour tous \(x, y \in H_{PR} \). On peut supposer que \(x \) est une forêt de degré \(n \). On procède par récurrence sur \(n \). Si \(n = 0 \), alors \(x = 1 \). Dans ce cas :

\[
\langle x, y \rangle = \langle 1, y \rangle = \varepsilon(y) = \langle y, 1 \rangle = \langle y, x \rangle.
\]

Supposons le résultat vrai à tous les rangs \(< n \). Deux cas se présentent.
1. x est un arbre. Posons alors $x = B(x')$. Alors, d’après l’hypothèse de récurrence au rang $n - 1$:
\[
\langle x, y \rangle = \langle B(x'), y \rangle = \langle x', \gamma(y) \rangle = \langle \gamma(y), x' \rangle = \langle y, B(x') \rangle = \langle y, x \rangle.
\]

2. Sinon, on peut poser $x = x_1x_2$, avec x_1 une forêt du degré $n' < n$ et x_2 un arbre de degré $n'' < n$. En appliquant l’hypothèse de récurrence aux rangs n' et n''
\[
\langle x, y \rangle = \langle x_1x_2, y \rangle = \sum_y \langle x_1, y^{(1)} \rangle \langle x_2, y^{(2)} \rangle = \sum_y \langle y^{(1)}, x_1 \rangle \langle y^{(2)}, x_2 \rangle = \langle y, x'x_2 \rangle = \langle y, x \rangle.
\]

Donc $\langle -, - \rangle$ est symétrique.

Remarque 8.3.1. Les trois premiers points permettent de calculer $\langle F, G \rangle$ par récurrence sur le degré de F. Par exemple :
\[
\langle \ast, \ast \rangle = \langle 1, \gamma(\ast) \rangle = \langle 1, 1 \rangle = 1,
\]
\[
\langle \mathbb{I}, \mathbb{I} \rangle = \langle \ast, \gamma(\mathbb{I}) \rangle = 0,
\]
\[
\langle \mathbb{I}, \ast \rangle = \langle \ast, \gamma(\mathbb{I}) \rangle = \langle \ast, \ast \rangle = 1,
\]
\[
\langle \mathbb{I}, \mathbb{I} \rangle = \langle \ast, \Delta(\ast) \rangle
\]
\[
= \langle \ast \otimes \ast, \ast \otimes 1 + 1 \otimes \ast \rangle = 0 + 2 = 2.
\]

La matrice de $\langle -, - \rangle$ restreinte en degré 0, 1 et 2 est donc :
\[
\begin{array}{c|cc}
1 & 1 & 1 \\
\hline
1 & \ast & 1 \\
1 & 1 & 0
\end{array}
\]

Le dual gradué H^*_F est muni de la base duale $(Z_F)_F$ de la base des forêts planes. On pose pour toute forêt F, $e_F = \Phi^{-1}(Z_F)$. Comme Φ est un isomorphisme homogène de degré 0, $(e_F)_F$ est une base de H^*_F et pour toute F, e_F est homogène de même degré que F. De plus, ces éléments sont caractérisés de la manière suivante : pour toutes forêts F, G,
\[
\langle e_F, G \rangle = \delta_{F,G}.
\]
En conséquence, la matrice de passage de la base (e_F) à la base (F) de $(H^*_F)_n$ est la matrice du couplage $\langle -, - \rangle$ restreint à $(H^*_F)_n$; la matrice de passage de la base (F) à la base (e_F) de $(H^*_F)_n$ est l'inverse de cette matrice. Par exemple, en degré 2 :
\[
\operatorname{Pass}([F], (e_F)) = \begin{pmatrix}
1 & e \ast & 1 \\
0 & 1 & 1 \\
1 & 1 & -2
\end{pmatrix}
\]

Donc $e_{\ast \ast} = 1$ et $e_{1 \ast} = \ast - 21$.

Proposition 8.3.6. Pour toute forêt plane $F = t_1 \ldots t_n$:
\[
\Delta(e_F) = \sum_{G,H=F} e_G \otimes e_H = \sum_{i=0}^n e_{t_1 \ldots t_i} \otimes e_{t_{i+1} \ldots t_n}.
\]

Démonstration. Soient F, X, Y des forêts. Alors :
\[
\langle \Delta(e_F), X \otimes Y \rangle = \langle e_F, X Y \rangle = \delta_{F,XY} = \sum_{G,H=F} \langle e_G \otimes e_H, X \otimes Y \rangle.
\]

Comme le couplage $\langle -, - \rangle$ est non-dégénéré, on obtient l’égalité demandée.

Corollaire 8.3.7. La famille $(e_t)_{t \text{ arbre plan}}$ est une base de $\operatorname{Prim}(H^*_F)$. De plus, $H^*_F \approx \operatorname{coT}(\operatorname{Prim}(H^*_F))$ comme cogèbre graduée.
Démonstration. Il est immédiat que pour tout arbre t, e_t est primitif. Soit $p = \sum a_F e_F$ un élément primitif. Sa counité est nulle, donc $a_1 = 0$. Soit F une forêt qui ne soit pas un arbre. Il existe alors deux forêts G et H non vides, telles que $F = GH$. Alors :

$$
\begin{align*}
a_F &= \langle p, F \rangle \\
&= \langle p, GH \rangle \\
&= \langle \Delta(p), G \otimes H \rangle \\
&= \langle p \otimes 1 + 1 \otimes p, G \otimes H \rangle \\
&= \varepsilon(H)\langle p, G \rangle + \varepsilon(G)\langle p, H \rangle \\
&= 0.
\end{align*}
$$

Donc $p \in \text{Vect}(e_t \mid t \text{ arbre})$.

Il est immédiat que l’application suivante est un isomorphisme de cogèbres :

$$
\begin{align*}
\text{coT}(\text{Prim}(H_{PR})) &\longrightarrow H_{PR} \\
e_{t_1 \cdots t_n} &\mapsto e_{t_1 \cdots t_n}.
\end{align*}
$$

Donc les cogèbres H_{PR} et $\text{coT}(\text{Prim}(H_{PR}))$ sont isomorphes.

Remarque 8.3.2. Comme H_{PR} n’est pas commutative, les algèbres de Hopf H_{PR} et $\text{coT}(\text{Prim}(H_{PR}))$ ne sont pas isomorphes.

Exercices

1. Calculer le coproduit dans H_{PR} de tous les arbres ayant 1, 2, 3 ou 4 sommets.
2. Calculer l’antipode de tous les arbres de H_{PR} ayant 1, 2, 3 ou 4 sommets. En utilisant ∇, montrer que $S^2 \neq S$.
3. Calculer le couplage de deux forêts de H_{PR} de poids ≤ 4.
4. Donner les éléments de la base $(e_F)_{F}$ forêt plane de degré ≤ 4.
5. (a) Montrer que $\gamma(e_F) = 0$ si F n’est pas un arbre et que $\gamma(e_{B(G)}) = e_G$ pour toute forêt G.
(b) Donner e_{F^n} pour tout n.
(c) Donner e_{F^n} pour tout n.
6. Décrire le produit de H_{PR}^\otimes de deux éléments de la base duale des forêts. Indication : utiliser des greffes.
7. (a) Construire une algèbre de Hopf H munie de deux opérateurs B_1 et B_2 vérifiant la propriété universelle suivante : soit A une algèbre de Hopf et $L_1, L_2 : A \rightarrow A$ tels que pour tout $x \in A$,

$$
\Delta \circ L_1(x) = L_1(x) \otimes 1 + (\text{Id} \otimes L_1) \circ \Delta(x), \\
\Delta \circ L_2(x) = L_2(x) \otimes 1 + (\text{Id} \otimes L_2) \circ \Delta(x);
$$

alors il existe un unique morphisme d’algèbres de Hopf $\phi : H \rightarrow A$ tel que $\phi \circ B_1 = L_1 \circ \phi$ et $\phi \circ B_2 = L_2 \circ \phi$. Indication : utiliser des arbres dont les sommets sont décorés.
(b) Montrer que H est graduée de sorte que B_1 et B_2 soient homogènes de degré 1, puis que H^\otimes et H sont des algèbres de Hopf graduées isomorphes.
(c) Généraliser à un nombre quelconque d’opérateurs.
Bibliographie

