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1 Introduction

In [2, 4, 9, 10], a Hopf algebra of rooted trees HR was introduced. It was shown that
the antipode of this algebra was the key of a problem of renormalization ([11]). HR is
related to the Hopf algebra HCM introduced in [5]. Moreover, the dual algebra of HR

is the enveloping algebra of the Lie algebra of rooted trees L1. An important problem
was to give an explicit construction of the primitive elements of HR. In [3], a bigradation
allowed to compute the dimensions of the graded parts of the space of primitive elements.

The aim of this paper is an algebraic study of HR. We first use the duality theorem
of [4] to prove a result about the subcomodules of a finite dimensional comodule over the
Hopf algebra of rooted trees. Then we use this result to construct comodules from finite
families of primitive elements. Furthermore, we classify these comodules by restricting the
possible families of primitive elements, and taking the quotient by the action of certain
groups. We also show how the study of the whole algebra as a left-comodule leads to the
bigrading of [3]. We then prove that L1 is a free Lie algebra.

In the next section, we prove a formula about primitive elements of the Hopf algebra
of ladders, which was already given in [3], and construct a projection operator on the
space of primitive elements. This operator produces the operator S1 of [3]. Moreover, it
allows to obtain a basis of the primitive elements by an inductive process, which answers
one of the questions of [3].

The following sections give results about the endomorphisms of HR. First, we classify
the Hopf algebra endomorphisms using the bilinear map related to the growth of trees.
Then we study the coalgebra endomorphisms, using the graded Hopf algebra gr(HR)
associated to the filtration by degp of [3]. We finally prove that HR ≈ gr(HR), and
deduce a decomposition of the group of the Hopf algebra automorphisms of HR as a
semi-direct product.

2 Preliminaries

We will use notations of [3, 4]. Call a rooted tree t a connected and simply-connected
finite set of oriented edges and vertices such that there is one distinguished vertex with
no incoming edge; this vertex is called the root of t. The weight of t is the number of its
vertices. The fertility of a vertex v of a tree t is the number of edges outgoing from v. A
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ladder is a rooted tree such that every vertex has fertility less than or equal to 1. There
is a unique ladder of weight i; we denote it by li.

We define the algebra HR as the algebra of polynomials over Q in rooted trees. The
monomials of HR will be called forests. It is often useful to think of the unit 1 of HR as
an empty forest.
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Figure 1: the rooted trees of weight less than or equal to 4. The first, second, third and
fifth trees are ladders.

We are going to give a structure of Hopf algebra to HR. Before this, we define an
elementary cut of a rooted tree t as a cut at a single chosen edge. An admissible cut C of
a rooted tree t is an assignment of elementary cuts such that any path from any vertex of
the tree has at most one elementary cut. A cut maps a tree t into a forest t1 . . . tn. One
of the ti contains the root of t: it will be denoted by RC(t). The product of the others
will be denoted by PC(t). Then ∆ is the morphism of algebras from HR into HR ⊗HR

such that

for any rooted tree t, ∆(t) = 1⊗ t+ t⊗ 1 +
∑

C admissible cut

PC(t)⊗ RC(t).
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Figure 2: an example of coproduct.

The counit is given by ε(1) = 1, ε(t) = 0 for any rooted tree t.
Then HR is a Hopf algebra, with antipode given by :

S(t) =
∑

all cuts of t

(−1)nC+1PC(t)RC(t)

where nC is the number of elementary cuts in C.

Moreover, HR is graded as Hopf algebra by degree(t) = weight(t).

For example, for all n ∈ N∗,

∆(ln) = 1⊗ ln + ln ⊗ 1 +

n−1
∑

j=1

lj ⊗ ln−j.
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cuts: r
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Figure 3: the antipode.

So the subalgebra of HR generated by the ladders is a Hopf subalgebra; we will denote
it by Hladder.

We will use the Lie algebra of rooted trees L1. It is the linear span of the elements Zt

indexed by rooted trees. For t1, t2, t rooted trees, one defines n(t1, t2; t) as the number of
elementary cuts of t such that PC(t) = t1 and RC(t) = t2. Then the Lie bracket on L1 is
given by:

[Zt1 , Zt2 ] =
∑

t

n(t1, t2; t)Zt −
∑

t

n(t2, t1; t)Zt.

L1 is graded as Lie algebra by degree(Zt) = weight(t). The enveloping algebra U(L1) is
graded as Hopf algebra with the corresponding gradation (see [4]). It is shown in [8, 12]
that U(L1) and the Grossman-Larson Hopf algebra on rooted trees are isomorphic (see
[6, 7]).

3 Duality between HR -comodules and U(L1)-modules

We shall use the following result of [4]:

Theorem 3.1 There is a bilinear form on U(L1)×HR defined in the following way: for
every rooted tree t, for every forest F ,

< 1, F > = ε(F ),

< Zt, F > = 0 if F 6= t,

= 1 if F = t,

and < Z1Z2, P > = < Z1 ⊗ Z2,∆(P ) > for any Z1, Z2 ∈ U(L1), P ∈ HR.

An easy induction on weight (P (ti)) proves the following property:

Lemma 3.2 If l ∈ U(L1) and P (ti) ∈ HR are homogeneous of different degrees,
then < l, P (ti) >= 0.

Let In be the ideal of HR generated by the homogeneous elements of weight greater
than or equal to n and Jn the ideal of U(L1) generated by the homogeneous elements
of weight greater than or equal to n. Let HR

∗g = {f ∈ H∗
R/∃n ∈ N, f(In) = (0)} and

U(L1)∗g = {f ∈ U(L1)∗/∃n ∈ N, f(Jn) = (0)}. One defines an algebra structure on HR
∗g

by dualising the coproduct on HR and a coalgebra structure on U(L1)∗g by dualising the
product of U(L1). Then we have the following result:
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Corollary 3.3

Let Φ :

{

HR 7−→ U(L1)∗g

P (ti) 7−→ 〈., P (ti)〉
and let Ψ :

{

U(L1) 7−→ H∗g
R

l 7−→ 〈l, .〉.

Then Φ is a coalgebra isomorphism and Ψ is an algebra isomorphism.

One can now dualise HR-comodules and U(L1)-modules. First, we have:

Proposition 3.4 Let C be a HR-comodule and ∆C its structure map: C 7−→ HR ⊗ C.
Then C∗ is a U(L1)-module with:

∀l ∈ U(L1), ∀f ∈ C∗, ∀x ∈ C, l.f(x) =
∑

(x)

〈l, x(1)〉f(x(2))

where ∆C(x) =
∑

(x)

x(1) ⊗ x(2).

Proof: classical; see [14].

Proposition 3.5 Let M be a U(L1)-module. Let M∗g = {f ∈ M∗/∃n ∈ N, f(JnM) =
(0)}. Then M∗g is a HR-comodule with ∆M :M∗g 7−→ HR ⊗M∗g defined by:

∀f ∈M∗g, ∀l ∈ U(L1), ∀x ∈M, with ∆M(f) =
∑

(f)

f (1) ⊗ f (2) :

∆M (f).(l ⊗m) =
∑

(f)

〈l, f (1)〉f (2)(m) = f(l.m).

Proof:

Let α :







U(L1)∗g ⊗M∗g 7−→ (U(L1)⊗M)∗

f ⊗ g 7−→

{

U(L1)⊗M 7−→ Q

l ⊗m 7−→ f(l)g(m);

α is injective. If µ is the structure map of M and µ∗ its transpose (µ : U(L1)⊗M 7−→M),
we have to show that Imµ∗ ⊂ Imα. With the definition of M∗g, one easily has:
Imα = {f ∈ (U(L1)⊗M)∗/∃n ∈ N, f(Jn ⊗M) = (0), f(A⊗JnM) = (0)}.
Let f ∈ M∗g, l ⊗m ∈ U(L1)⊗M . µ∗(f)(l ⊗m) = f(l.m). As f ∈ M∗g, clearly µ∗(f) is
in Imα.

Proposition 3.6 Let M1,M2 two U(L1)-modules, with M1 ⊂ M2; there exists an injec-
tion of comodules:

(M2/M1)
∗g 7−→ M∗g

2 .

Proof: let p : M2 7−→ M2/M1 the canonical surjection; then it is easy to see that its
transpose is an injective morphism of comodules from (M2/M1)

∗g to M∗g
2 .

Proposition 3.7 Let C a finite-dimensional HR-comodule. Then C∗ is a U(L1)-module,
and (C∗)∗g is the whole of (C∗)∗. Moreover C and (C∗)∗ are isomorphic HR-comodules.
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Proof: let l ∈ U(L1), f ∈ C∗, x ∈ C. Then (l.f)(x) =
∑

(x)〈l, x
(1)〉, f(x(2)).

Let kx = max(x)
(

weight(x(1))
)

+ 1. If l is homogeneous of weight greater than kx, then
(l.f)(x) = 0 (lemma 3.2). As C is finite-dimensional, there exists k ∈ N, k ≥ kx ∀x ∈ C,
hence Jk.C

∗ = (0), and hence (C∗)∗g = (C∗)∗. It is then easy to show that the canonical
isomorphism between C and (C∗)∗ is a comodule isomorphism.

We are now ready to prove the:

Theorem 3.8 Let C be a finite-dimensional HR-comodule and n its dimension; then C
has a complete flag of comodules, that is to say:
∀i ∈ {1 . . . n}, ∃C (i) a subcomodule of C of dimension i, with C (1) ⊂ . . . ⊂ C (n) = C.

Proof: it is enough to exhibit a subcomodule of dimension n − 1. By proposition 3.4,
C∗ is a U(L1)-module, and there exists k ∈ N, Jk.C

∗ = (0). Hence as a L1-module,
l.C∗ = (0) for every l in L1, homogeneous of weight greater than n. So C∗ is in fact a
module over the quotient of L1 by the Lie ideal generated by these l, and it is clear that
this quotient is a finite-dimensional nilpotent Lie algebra. Moreover, every l ∈ L1 is a
nilpotent endomorphism of C∗. By Engel’s theorem, C∗ has a submodule C’ of dimension
1. Jk.(C

∗/C ′) = (0) because Jk.C
∗ = (0), so (C∗/C ′)∗g = (C∗/C ′)∗, and the dimension

of this comodule is n − 1. By proposition 3.7, C is isomorphic to (C∗)∗ which has a
subcomodule of dimension n− 1 by proposition 3.6.

Remark: one can use the fact that L1 acts by zero on C ′ (which is given by Engel’s

theorem), to show that the quotients C(i+1)

C(i) are trivial comodules, that is to say ∆(x) =

1⊗ x ∀x ∈ C(i+1)

C(i) .

4 Natural growth

Let M,N be two forests of HR. We define:

M⊤N =

{ 1
weight(N)

∑

forests obtained by appending M to every node of N if N 6= 1

M if N = 1.

We extend .⊤. to a bilinear map from HR ×HR into HR.
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Figure 4: the bilinear map ⊤.

In the following we use the notation ∆̃(x) = ∆(x)− 1⊗ x− x ⊗ 1 for every x ∈ HR.
We have Prim(HR) = Ker(∆̃).
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Lemma 4.1 Let x ∈ HR and y be a primitive element of HR. Then we have:

∆̃(x⊤y) = x⊗ y +
∑

(x)

x(1) ⊗ (x(2)⊤y)

where ∆̃(x) =
∑

(x) x
(1) ⊗ x(2).

Proof: see [3], section 5.4.

Definition 4.2 Let i ∈ N∗ and p1, . . . , pi be primitive elements of HR. By induction on
i we define pi⊤ . . .⊤p1 by (pi⊤ . . .⊤p2)⊤p1. And we define:

Fi :

{

Prim(HR)
⊗i 7−→ HR

pi ⊗ . . .⊗ p1 7−→ pi⊤ . . .⊤p1.

Lemma 4.3 Let p1, . . . , pi be primitive elements of HR.

∆̃(pi⊤ . . .⊤p1) =

j=i−1
∑

j=1

(pi⊤ . . .⊤pj+1)⊗ (pj⊤ . . .⊤p1).

Proof: by induction, using 4.1.

One remarks easily that ∆̃ is still coassociative. We define ∆̃0 = IdHR
− η ◦ ε, ∆̃1 = ∆̃,

and by induction ∆̃k = (∆̃k−1 ⊗ Id) ◦ ∆̃.

Lemma 4.4 Let i ∈ N∗; then ∆̃i−1 ◦ Fi = Id[Prim(HR)]⊗i; if k > i − 1, ∆̃k ◦ Fi = 0.

Moreover, Fi is injective, and the sum (1) +
∑∞

i=1 Im(Fi) is direct.

Proof: one shows the first point by induction, using 4.3. The second point is an immediate
corollary. For the last point, let x0 ∈ Q, xi ∈ Im(Fi) ∀i ∈ {1 . . . n}, with x01 + x1 + . . .+
xn = 0. Then ε(0) = x0 = 0. Moreover, ∆̃n−1(x1 + . . . + xn) = ∆̃n−1(xn) = 0. As
xn = Fn(yn) for a certain yn, we have yn = 0, so xn = 0. One concludes by an induction
on n.

5 Construction and parametrization of finite-dimensional

HR-comodules

Definition 5.1 Let (i, j) ∈ (N∗)2, i ≤ j. We denote Ii,j := {i . . . j}. A decomposition of
Ii,j is a partition of Ii,j in connected parts. We denote a decomposition in the following
way:

Ii1,j1 . . . Iik,jk with i = i1 ≤ j1 < i2 ≤ . . . < ik ≤ jk = j;

we have il+1 = jl + 1. We denote by Di,j the set of all decompositions of Ii,j. There are
2j−i decompositions of Ii,j .

Proposition 5.2 Let n ≥ 1, (pi,j)1≤i≤j≤n any family of n(n+1)
2

primitive elements of HR.
Let C be a vector space of dimension n + 1, with basis (e0, . . . , en). We define:

∆C(e0) = 1⊗ e0;

∆C(ei) =





j=i−1
∑

j=0





∑

Ii1,j1 ...Iik,jk
∈Dj+1,i

pik,jk⊤ . . .⊤pi1,j1



⊗ ej



+ 1⊗ ei.

Then (C,∆C) is a (left) HR-comodule. We denote this comodule by C(pi,j).
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Proof: the axiom of counity is trivial.
Coassociativity: we have to show that ((∆⊗ Id) ◦∆C)(ei) = ((Id⊗∆C) ◦∆C)(ei) ∀i. It
is trivial for i = 0. For i ≥ 1, we have:

((Id⊗∆C) ◦∆C)(ei) =

j=i
∑

j=0

l=j
∑

l=0





∑

Dj+1,i

pik,jk⊤ . . .⊤pi1,j1



⊗





∑

Dl+1,j

pi′r ,j′r⊤ . . .⊤pi′1,j′1



⊗ el

=

i
∑

l=0

∑

Dl+1,i

∆(pi′′s ,j′′s ⊤ . . .⊤pi′′1 ,j′′1 )⊗ el (by 4.3)

= ((∆⊗ Id) ◦∆C)(ei).

The following theorem gives a parametrization of the finite dimensional HR-comodules
by certain finite families of primitive elements:

Theorem 5.3 Let (C,∆C) be a finite-dimensional comodule. If the dimension of C is 1,
then C is trivial, that is to say ∆C(x) = 1⊗x ∀x ∈ C. If the dimension of C is n, n ≥ 2,

then there is a finite family (pi,j)1≤i≤j≤n of n(n+1)
2

primitive elements of HR such that C
is isomorphic to C(pi,j).

We shall use the following lemma:

Lemma 5.4 If x ∈ HR is such that ∆(x) = x⊗ x, then x = 0 or 1.

Proof: suppose x 6= 0. As ∆ is homogeneous of degree 0, x is of weight 0. It is then trivial
that x = 1.

Proof of the theorem: let C (0) ⊂ . . . ⊂ C (n) be a complete flag of subcomodules,
which exists by 3.8, and let (e0, . . . , en) be an adapted basis to this flag. Then we
have a family (Qi,j)1≤j≤i≤n of elements of HR such that ∆(ei) =

∑j=i

j=0Qi,j ⊗ ej . (If
n = 0, then (Qi,j)1≤j≤i≤n is empty). The axiom of counity implies that ε(Qi,i) = 1, and

∆(Qi,j) =
∑l=i

l=j Qi,l ⊗Ql,j by the axiom of coassociativity. So by the lemma, Qi,i = 1 ∀i,
which proves the theorem for n = 0. Moreover, Qi,i−1 is primitive. If n = 1, C ≈ C(p1,1)

with p1,1 = Q1,0. We end with an induction on n: by induction hypothesis on C ′

spanned by (e0, . . . , en−1), we have pi,j , 1 ≤ i ≤ j ≤ n − 1. With pn,n = Qn,n−1, we
have Qn,n−1 =

∑

Dn,n
pik,jk⊤ . . .⊤pi1,j1. Suppose we have built pn,n, . . . , pi+1,n, such that

Qn,i =
∑

Di+1,n
pik,jk⊤ . . .⊤pi1,j1. Then

∆̃(Qn,i−1) =
l=n−1
∑

l=i





∑

Dl+1,n

pik,jk⊤ . . .⊤pi1,j1



⊗





∑

Di,l

pi′r ,j′r⊤ . . .⊤pi′1,j′1





=
∑

Di,n−{Ii,n}

∆̃(pi′′s ,j′′s ⊤ . . .⊤pi′′1 ,j′′1 ).

As Ker(∆̃) = Prim(HR), we take pi,n = Qn,i−1 −
∑

Di,n−{Ii,n}

(pi′′s ,j′′s ⊤ . . .⊤pi′′1 ,j′′1 ).

5.6 Remarks:

1. The family (pi,j) depends on the choice of the basis (e0, . . . , en), hence is not unique.
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2. By the following, we shall identify (pi,j)1≤i≤j≤n with











0 p1,1 · · · p1,n
...

. . .
. . .

...

0 · · ·
. . . pn,n

0 · · · · · · 0











= P ∈ Mn+1(Prim(HR))

where Mn+1(Prim(HR)) is the space of square matrices of order n+1 with entries
in Prim(HR). With the notation of the proof of 5.3, we will write

Q =











Q0,0 0 · · · 0
...

. . .
. . .

...

Qn−1,0 · · ·
. . . 0

Qn,0 · · · · · · Qn,n











∈ Mn+1(HR)

where Mn+1(HR) is the space of square matrices of order n+1 with entries in HR.
Recall that Fi was defined in 4.2. Let π1 be the projection on Prim(HR) = Im(F1)
in (1)⊕⊕i=∞

i=1 Im(Fi). Then Qi,j ∈ (1)⊕⊕i=∞
i=1 Im(Fi), and π1(Qi,j) = pj+1,i, or in a

matricial form: P = π1(Q
T ) (here π1 acts on each entry of the matrix).

6 Classification of the finite-dimensionalHR-comodules

Definition 6.1 Let (pi,j)1≤i≤j≤n
be a family of n(n+1)

2
primitive elements of HR and P

the associated matrix as in the remark 5.6. We say that (pi,j) is reduced if there are
c0, . . . , ck ∈ N

∗ such that:

P =











0 P1,1 · · · P1,k

...
. . .

. . .
...

0 · · ·
. . . Pk,k

0 · · · · · · 0











where the diagonal zero blocs are in Mc0(HR), . . . ,Mck(HR) and the columns in each
bloc Pi,i, 1 ≤ i ≤ k, are linearly independent; (c0, . . . , ck) is called the type of (pi,j).

Example:

Let P =













0 a b x y
0 0 0 c e
0 0 0 d f
0 0 0 0 0
0 0 0 0 0













∈ M5(Prim(HR)).

Suppose that a and b are linearly independent in the vector space HR, and

(

c
d

)

and
(

e
f

)

are linearly independent in the vector space H2
R. Then (pi,j) is a reduced family

of type (1,2,2).

Definition 6.2 Let C be a HR-comodule. One defines C0 = {x ∈ C/∆C(x) = 1 ⊗ x}
and, by induction, Ci+1 the unique subcomodule of C such that
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i) Ci ⊂ Ci+1;

ii) Ci+1

Ci
=
(

C
Ci

)

0
.

If C is finite-dimensional, then by 5.3, C is isomorphic to a C(pi,j) and so C0 is a

non-zero subcomodule of C. Moreover, if i ≥ 0, we have Ci+1

Ci
= ( C

Ci
)
0
, so Ci+1

Ci
is non-zero

and we get in this way a flag of comodules: there is k ∈ N, such that C0  . . .  Ck = C.

Proposition 6.3 Let (pi,j)1≤i≤j≤n be a reduced family of primitive elements of type (c0, . . . , ck)
and (e0, . . . , en) the basis of C(pi,j) as decribed in 5.2. Then for all l ∈ {0 . . . k},
(e0, . . . , ec0+...+cl−1) is a basis of (C(pi,j))l.

Proof: as P = π1(Q
T ), we can write:

Q =











Id 0 · · · 0

Q1,0
. . .

. . . 0
... · · ·

. . .
. . .

Qk,0 · · · Qk,k−1 Id











where the diagonal blocs are in Mc0(HR), . . . ,Mck(HR). Because of coassociativity, the
elements in the blocs Qi,i−1 are primitive, so Qi,i−1 = PT

i,i and the rows of the blocs
Qi,i−1 are linearly independent. We easily deduce that (e0, . . . , ec0−1) is a basis of C0. We
conclude by induction on n, with the remark that C

C0
is isomorphic to C(p′i,j)

, with:

P ′ =











0 P2,2 · · · P2,k

...
. . .

. . .
...

0 · · ·
. . . Pk,k

0 · · · · · · 0











so (p′i,j) is a reduced family of type (c1, . . . , ck).

Proposition 6.4 Let C be a comodule of finite dimension with a basis (e0, . . . , en) such
that (e0, . . . , edim(Ci)−1) is a basis of Ci for 0 ≤ i ≤ k. Let (pi,j) be the family of primitive
elements built as in the proof of 5.3. Then (pi,j) is a reduced family of type (c0, . . . , ck),
with c0 = dim(C0), ci = dim(Ci)− dim(Ci−1) for 1 ≤ i ≤ k.

Proof: as Ci

Ci−1
is trivial, we have:

Q =











Id 0 · · · 0

Q1,0
. . .

. . . 0
... · · ·

. . .
...

Qk,0 · · · Qk,k−1 Id











where the diagonal blocs are in Mc0(HR), . . . ,Mck(HR), and the blocs Qi,i−1 are formed
of primitive elements. Suppose the rows of the bloc Qi,i−1 are not linearly independent.
Then we can build an element x ∈ Ci+1 − Ci, with ∆C(x) ≡ 1 ⊗ x [HR ⊗ Ci−1], hence x
is a trivial element of C

Ci−1
, which contradicts the definition of Ci. We conclude using the

equality P = π1(Q
T ).
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Corollary 6.5 For any finite-dimensional comodule C, there exists a reduced family (pi,j)
such that C is isomorphic to C(pi,j).
If (pi,j) and (p′i,j) are reduced families with C(pi,j) and C(p′i,j)

isomorphic, then (pi,j) and

(p′i,j) have the same type.

In the following, we call ”type of a comodule C” the type of any reduced family (pi,j)
such that C is isomorphic to C(pi,j). Given (c0, . . . , ck), we call

G(c0,...,ck) =





























g0,0 g0,1 · · · g0,k
...

. . .
. . .

...

0 · · ·
. . . gk−1,k

0 · · · · · · gk,k











, gi,i ∈ GLci(Q)



















⊂ GLc0+...+ck(Q).

G(c0,...,ck) is a parabolic subgroup of GLc0+...+ck(Q), and it acts on the set of reduced
families of type (c0, . . . , ck) by g.P = gPg−1, where g ∈ G(c0,...,ck), and P is the matrix of
a reduced family (pi,j).

Theorem 6.6 Let (pi,j) and (p′i,j) be two reduced families of primitive elements of HR,
and (c0, . . . , ck) be the type of (pi,j). Then C(pi,j) ≈ C(p′i,j)

if and only if (pi,j), (p
′
i,j) have

the same type and there exists g ∈ G(c0,...,ck), such that P ′ = g.P.

Proof: we put C = C(pi,j), C
′ = C(p′i,j)

.

⇐: we have P ′ = g.P, so Q = (gT )
−1
Q′gT . Let (gT )

−1
= (ai,j)0≤i,j≤n, g

T = (bi,j)0≤i,j≤n

and let (f0, . . . fn) be the basis of C defined by fi =
∑

j bi,jej . An easy direct computation
shows that ∆C(fi) =

∑

j,k(bi,jQj,kak,l)⊗ fl =
∑

iQ
′
i,l ⊗ fl. So C ≈ C ′.

⇒: then there exists A ∈ GLn+1(Q), with inverse B such that if fi =
∑

j bi,jej, then
∆C(fi) =

∑

l Q
′
i,l ⊗ fl. Then the same computation shows that Q′

i,l =
∑

j,k bi,jQj,kak,l

or equivalently: Q′ = A−1QA. Hence, P = ATP ′AT−1
. As (p′i,j) is reduced, Ci =

(f0, . . . , fc0+...+ci−1) = (e0, . . . , ec0+...+ci−1) so A
T ∈ G(c0,...,ck).

We have now entirely proved the following theorem:

Theorem 6.7 Let P(c0...ck) be the set of the reduced families of primitive elements of HR

of type (c0, . . . , ck), and O(c0,...,ck) the orbit space under the action of the parabolic subgroup
G(c0,...,ck) of GLc0+...+ck(Q). Then there is a bijection from O(c0...ck) into the set of HR-
comodules of type (c0, . . . , ck). Moreover there is a bijection from the disjoint union of the
O(c0...ck)’s into the set of finite-dimensional comodules.

Example: let C be a comodule of dimension 2. Then its type can be (2) or (1, 1). We
have:

P(2) =

{[

0 0
0 0

]}

, P(1,1) =

{[

0 p
0 0

]

/p 6= 0

}

.

Let

[

0 p
0 0

]

and

[

0 p′

0 0

]

∈ P(1,1). They are in the same orbit under the action of G(1,1)

if and only if ∃λ ∈ Q∗, p′ = λp. Hence, O(1,1) is in bijection with the projective space
associated to Prim(HR), and O(2) is reduced to a single point, which corresponds to the
trivial comodule of dimension 2.

We now give a characterization of comodules of type (n+ 1) and type (1, . . . , 1).
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Proposition 6.8 Let C be a comodule of dimension n+ 1.

1. C is of type (n+ 1) ⇐⇒ C is trivial.

2. C is of type (1, . . . , 1) ⇐⇒ ∀i ∈ {1 . . . n + 1}, C has a unique subcomodule
of dimension i.

In particular, if C is of type (1, . . . , 1), C admits a unique complete flag of subcomodules.

Proof: 1. is obvious.
2. ⇐: let C (i) be the unique subcomodule of dimension i + 1 of C. Let x ∈ C0, x 6= 0.
Then (x) is a subcomodule of dimension 1 of C, so (x) = C (0) and we get C0 = C (0).
Suppose that Ci−1 = C (i−1). Let x ∈ Ci − Ci−1, then Ci−1 ⊕ (x) is a subcomodule of
dimension i+ 1 of C, so it is equal to C (i) and we get Ci = C (i). Hence, the type of C is
(1, . . . , 1).

⇒: let C ′ be a subcomodule of dimension 1 of C. Then C ′ is trivial, so C ′ ⊂ C0.
As dim(C0) = 1, C ′ = C0. Suppose that C has a unique subcomodule of dimension i.
Then it is Ci−1. Let C ′′ be a subcomodule of dimension i + 1. It has a subcomodule of
dimension i, so Ci−1 ⊂ C ′′. Moreover, C′′

Ci−1
is trivial, so C ′′ ⊂ Ci. As they have the same

dimension, C ′′ = Ci.

To conclude this section, we indicate how finite-dimensional comodules can help in
renormalization. Recall the Toy model of [4]. For a rooted tree t with n vertices, enumer-
ated such that the root has number one, we associate the integral

xt(c) =

∫ ∞

0

1

y1 + c

n
∏

i=2

1

yi + yj(i)
y−ε
n dyn . . . y

−ε
1 dy1, ∀c > 0,

where j(i) is the number of the vertex to which the i-th vertex is connected via its
incomming edge.

Let {t1, . . . , tm = t} = {RC(t)/C cut of t}. We take the comodule C with basis
(xt1 , . . . xtm), and structure map defined by

∆C(xti) = 1⊗ xti +
∑

admissible cuts C of ti

PC(ti)⊗ xRC (ti).

With [M ] = xM(0) for M a non-empty forest, and [1] = 1, we consider the integral:

xt(c) = (([.]⊗ Id) ◦ (S ⊗ Id) ◦ (∆C)) (xt)

Then the renormalized function is:

xRt (c) =
lim

ε 7−→ 0 (xt(c)− [xt(c)]).

We don’t have to worry anymore about non commutativity within the forests.

Example:

xl1(c) =

∫ ∞

0

1

y1 + c
y−ε
1 dy1,

xl2(c) =

∫ ∞

0

1

y1 + c

1

y2 + y1
y−ε
2 dy2 y

−ε
1 dy1,

xl3(c) =

∫ ∞

0

1

y1 + c

1

y2 + y1

1

y3 + y2
y−ε
3 dy3 y

−ε
2 dy2 y

−ε
1 dy1.
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We take the comodule C with basis (xl1 , xl2 , xl3). We then get:

∆C(xl3) = 1⊗ xl3 + l1 ⊗ xl2 + l2 ⊗ xl1 .

So xl3(c) = xl3(c)− [xl1(c)]xl2(c)− [xl2(c)]xl1(c) + [xl1(c)xl1(c)]xl1(c),

and xRl3(c) = lim
ε→0

(

xl3(c) − [xl1(c)]xl2(c) − [xl2(c)]xl1(c) + [xl1(c)xl1(c)]xl1(c)

−[xl3(c)] + [[xl1(c)]xl2(c)] + [[xl2(c)]xl1(c)] − [[xl1(c)xl1(c)]xl1(c)]

)

.

7 HR as a comodule. Bigrading HR

Here, we consider the (left-)comodule C = (HR,∆). Of course it is not finite-
dimensional, but it is the union of finite-dimensional comodules (for example, the co-
modules linearly spanned by the forests of weight less than n, n ∈ N).

Proposition 7.1 C0 = (1); if i ≥ 1 then Ci = (1)⊕⊕j=i
j=1Im(Fj).

Proof: C0: let x ∈ C,∆(x) = 1 ⊗ x. Then x = (Id ⊗ ε)(∆(x)) = ε(x)1: x is constant.

i ≥ 1: induction on i. Let x ∈ Ci+1,∆(x) = 1⊗x+x⊗ 1+
∑

j x
(1)
j ⊗x

(2)
j . By hypothesis,

the x
(2)
j ’s are in Ci = (1) ⊕ ⊕j=i

j=1Im(Fj). Suppose that x
(2)
1 . . . x

(2)
l are in Im(Fi), the

others in Ci−1. By coassociativity of ∆̃, x
(1)
1 . . . x

(1)
l are primitive.

Then ∆

(

x− Fi+1

(

j=l
∑

j=1

x
(1)
j ⊗ F−1

i (x
(2)
j )

))

≡ 1⊗ x [HR ⊗ Ci−1] ,

so x−Fi+1

(

j=l
∑

j=1

x
(1)
j ⊗ F−1

i (x
(2)
j )

)

∈ Ci. Hence, Ci+1 = Ci+Im(Fi+1). The result is then

trivial.

Proposition 7.2 C = (1)⊕⊕j=∞
j=1 Im(Fj).

Proof: let Hn be the subspace of HR generated by the homogeneous elements of weight
n. Then ⊕n

i=0Hi is a subcomodule of C. By 6.2, we have (⊕n
i=0Hi)k ⊂ Ck. For a k large

enough, we have: ⊕n
i=0Hi = (⊕n

i=0Hi)k ⊂ Ck. So as HR = ⊕∞
i=0Hi, we have the result.

It is now easy to see that Ci = Ker(∆̃i)⊕ (1). We recognize then the second grading
of [3], that is to say Ci = {x ∈ HR/degp(x) ≤ i}, which defines degp. Following [3], we
put Hn,k = Hn∩Ck, hn,k = dim(Hn,k), and rn = dim(Hn). One has h0,0 = 1 and hn,0 = 0
if n 6= 0. Note that hn,1 = dim(Hn ∩ Prim(HR)).

Proposition 7.3

Let Θn =
∑

b1+2b2+...+nbn=n

(−1)b1+...+bn+1 (b1 + . . .+ bn)!

b1! . . . bn!
Xb1

1 . . .Xbn
n ∈ Q[X1 . . .Xn]

and ϕn,k =
∑

b1+2b2+...+nbn=n

b1+b2+...+bn=k

k!

b1! . . . bn!
Xb1

1 . . .Xbn
n ∈ Q[X1 . . .Xn].

Then hn,1 = Θn(r1, . . . , rn) ∀n ∈ N, and hn,k = ϕn,k(h1,1, . . . , hn,1) ∀n, k ∈ N∗.
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Proof:

We also need Φn =
∑

b1+2b2+...+nbn=n

(b1 + . . .+ bn)!

b1! . . . bn!
Xb1

1 . . .Xbn
n ∈ Q[X1 . . .Xn].

As the Fi are homogeneous, we have Hn = ⊕n
i=1 ⊕b1+...+bi=n Fi(⊗

n
j=1Hbj ,1). As the Fi

are injective, we find: rn = Φn(h1,1, . . . , hn,1). Let’s work in the algebra of formal power
series Q[[X1, . . . , Xn, . . .]]. In this algebra,we have:

∑

(b1,...,bn)6=(0,...,0)

(b1 + . . .+ bn)!

b1! . . . bn!
Xb1

1 . . .Xbn
n =

∑

k 6=0

(

∑

b1+...+kbk=k

(b1 + . . .+ bk)!

b1! . . . bk!
Xb1

1 . . .Xbk
k

)

=
∑

k 6=0

Φk(X1, . . . , Xk)

=
∑

l 6=0

(

∑

b1+...+bk=l

l!

b1! . . . bk!
Xb1

1 . . .Xbk
k

)

=
∑

l 6=0

(

∑

i 6=0

Xi

)l

=

∑

i 6=0Xi

1−
∑

i 6=0Xi

.

We then get:

∑

k 6=0

Φk(−Φ1, . . . ,−Φk) =
−
∑

i 6=0Φi

1 +
∑

i 6=0Φi

=
−

∑
Xi

1−
∑

Xi

1 +
∑

Xi

1−
∑

Xi

= −
∑

i 6=0

Xi.

Hence, by putting Xi in weight i and by comparing the homogeneous parts of each
member, we find Φk(−Φ1, . . . ,−Φk) = −Xk, or equivalently Θk(Φ1, . . . ,Φk) = Xk. So
Θk (Φ1(h1,1), . . . ,Φk(h1,1, . . . , hk,1)) = Θk(r1, . . . , rk) = hk,1.
If k > 1, then Hn,k = ⊕c1+...+ck=nFk(Hc1,1, . . . ,Hck,1). As Fk is injective, we find the
announced result.

We denote H(X, Y ) =
∑

n,k hn,kX
nY k, Hj(x) =

∑

n hn,jX
n, R(X) =

∑

n rnX
n.

The second formula of 7.3 implies thatHj(X) = H1(X)j, ∀j ∈ N. The first formula implies
that 1−H1(X) = 1

R(X)
. We have then H(X, Y ) =

∑∞
j=0Hj(X)Y j =

∑∞
j=0 [H1(X)Y ]j =

1
1−H1(X)Y

= R(X)
Y+(1−Y )R(X)

, which is a reformulation of the main theorem of [3] (with a small

difference because of the different definitions of R(X)). We give the first values of rn and
hn,1 in the appendix (see also [13]).

8 The Lie algebra L1

Proposition 8.1 1. U(L1) is a free algebra;

2. ∀l1, l2 ∈ U(L1), weight(l1l2) = weight(l1) + weight(l2).

proof: let (pi)i≥1 be a basis of Prim(HR) such that the pi’s are homogeneous for the
weight. By proposition 7.2 and lemma 4.4, (pi1⊤ . . .⊤pik)k≥0,i1,...,ik≥1 is a basis of HR. We
define fj1,...,jl ∈ H∗

R by :

fj1,...,jl(pi1⊤ . . .⊤pik) =

{

1 if (j1, . . . , jl) = (i1, . . . , ik)
0 if (j1, . . . , jl) 6= (i1, . . . , ik).
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As the (pi1⊤ . . .⊤pik)’s are homogeneous for the weight, (fj1,...,jl)k≥0,i1,...,ik≥1 is a basis of
H∗g

R .

(fj1,...,jlfj′1,...,j′n, pi1⊤ . . .⊤pik) = (fj1,...,jl ⊗ fj′1,...,j′n,∆(pi1⊤ . . .⊤pik))

= (fj1,...,jl ⊗ fj′1,...,j′n,
k
∑

s=0

pi1⊤ . . .⊤pis ⊗ pis+1⊤ . . .⊤pik)

=

{

1 if (j1, . . . , jl, j
′
1, . . . , j

′
n) = (i1, . . . , ik),

0 if (j1, . . . , jl, j
′
1, . . . , j

′
n) 6= (i1, . . . , ik).

So fj1,...,jlfj′1,...,j′n = fj1,...,jl,j′1,...,j′n, hence H∗g
R and the free algebra generated by the fi’s,

i ≥ 1, are isomorphic algebras. Moreover, the fi’s are homogeneous elements of H∗g
R ,

so we have weight(ff ′) = weight(f) + weight(f ′) ∀f, f ′ ∈ H∗g
R . As H∗g

R and U(L1) are
isomorphic graded algebras, the proposition is proved.

Let A be the augmentation ideal of U(L1), that is to say A = ker(ε).

Lemma 8.2 in the duality between U(L1) andHR, the orthogonal of A
2⊕(1) is Prim(HR).

Proof:
(A2 ⊕ (1))⊥ ⊆ Prim(HR): let x ∈ (A2 ⊕ (1))⊥, and l1, l2 ∈ U(L1). One has to show that
(l1 ⊗ l2,∆(x)) = (l1 ⊗ l2, x⊗ 1 + 1⊗ x), that is to say (l1l2, x) = ε(l1)(l2, x) + (l1, x)ε(l2).
As U(L1) = (1)⊕ ker(ε), one has four cases to considerate:

1. ε(l1) = ε(l2) = 0: then l1l2 ∈ A2, so (l1l2, x) = 0 = ε(l1)(l2, x) + (l1, x)ε(l2);

2. ε(l1) = 0 and l2 = 1: obvious;

3. l1 = 1 and ε(l2) = 0: obvious;

4. l1 = l2 = 1 : one has to show that (1, x) = 2(1, x); as (1, x) = 0 it is true.

Prim(HR) ⊆ (A2 ⊕ (1))⊥: equivalently we show A2 ⊕ (1) ⊆ (Prim(HR))
⊥. Let p ∈

Prim(HR), then (1, p) = ε(p) = 0, so 1 ∈ (Prim(HR))
⊥. Let l ∈ A2. One can suppose

that l = l1l2, ε(l1) = ε(l2) = 0. Let p ∈ Prim(HR).

(l1l2, p) = (l1 ⊗ l2, p⊗ 1 + 1⊗ p) = ε(l1)(l2, p) + (l1, p)ε(l2) = 0.

We denote by U(L1)n the space of the homogeneous elements of U(L1) of weight
n. We have dim(U(L1)n) = dim(Hn) = rn. Moreover, A = ⊕n≥1U(L

1)n. We denote
A2

n = A2 ∩ U(L1)n. We have A2 = ⊕n≥1A
2
n. Now, observe that L1 + A2 = U(L1)

(it is obvious when one takes a Poincaré-Birkhoff-Witt basis of U(L1)). So for every
n ≥ 1, we can choose a subspace Gn of L1, such that U(L1)n = Gn ⊕A2

n. By lemma 8.2,
dim(Gn) = dim(Prim(HR) ∩ Hn) = hn,1. We denote G = ⊕n≥1Gn.

Lemma 8.3 G generates the algebra U(L1).

Proof: we denote by < G > the subalgebra of U(L1) generated by G. Let l ∈ U(L1),
homogeneous of weight n; we proceed by induction on n. If n = 0, then l is constant:
it is then obvious. Suppose that every element of weight less than n is in < G >. As
U(L1)n = Gn ⊕ A2

n, one can suppose that l = l1l2, with l1, l2 ∈ A. By lemma 8.1,
weight(l) = weight(l1) + weight(l2), so weight(l1) < n, and weight(l2) < n. Then
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l1, l2 ∈< G >, and l ∈< G >.

We denote by F(G) the free associative algebra generated by the space G. The
gradation of G induces a gradation of the algebra F(G). By the last lemma, we have a
surjective algebra morphism:

Υ :

{

F(G) 7−→ U(L1)
g ∈ G 7−→ g.

Moreover, Υ is homogeneous of degree 0. We now calculate the dimension fn of the
homogeneous part of weight n of F(G) :

fn =
∑

a1+...+ak=n

ai≥1 ∀i

ha1,1 . . . hak ,1

=
∑

b1+2b2+...+nbn=n

b1 + . . .+ bn
b1! . . . bn!

hb11,1 . . . h
bn
n,1 = rn.

(For the second equality, bi is the number of the aj ’s equal to i; the third equality was
shown in the proof of proposition 7.3).
As the homogeneous parts of U(L1) and F(G) have the same finite dimension, and as Υ
is surjective and homogeneous of degree 0, it is in fact an isomorphism.

We now put a Hopf algebra structure on F(G) by putting ∆(g) = g⊗1+1⊗g ∀g ∈ G.
As G ⊂ L1, the elements of G are primitive in both U(L1) and F(G), so Υ is a Hopf
algebra isomorphism. Hence, it induces a Lie isomorphism between Prim(F(G)) and
Prim(U(L1)) = L1. But Prim(F(G)) is isomorphic to the free Lie algebra generated by
G (see for example [1]), so we have the following result:

Theorem 8.4 L1 is a free Lie algebra.

9 Primitive elements

9.1 Primitive elements of the Hopf Algebra Hladder

First, we construct a family of primitive elements of Hladder. For that, we introduce
the Hopf algebra Q[X1, . . . , Xn, . . .] with coproduct defined by ∆(Xi) = Xi ⊗ 1 + 1⊗Xi.
In this algebra let

Ψn =
∑

a1+2a2...+nan=n

Xa1
1 . . .Xan

n

a1! . . . an!
.

Lemma 9.1 ∆(Ψn) =
∑j=n

j=0 Ψj ⊗Ψn−j.

Proof: one easily shows that:

∆(Xa1
1 . . .Xan

n ) =

n
∑

i=0

ki=ai
∑

ki=0

(

a1
k1

)

. . .

(

an
kn

)

Xk1
1 . . .Xkn

n ⊗Xa1−k1
1 . . .Xan−kn

n .
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So

∆(Ψn) =
∑

a1+2a2...+nan=n

n
∑

i=0

ki=ai
∑

ki=0

1

a1! . . . an!

(

a1
k1

)

. . .

(

an
kn

)

Xk1
1 . . .Xkn

n ⊗Xa1−k1
1 . . .Xan−kn

n

=
∑

b1+...+nbn+c1+...+ncn=n

(

b1+c1
b1

)

. . .
(

bn+cn
bn

)

(b1 + c1)! . . . (bn + cn)!
Xb1

1 . . .Xbn
n ⊗Xc1

1 . . .Xcn
n

=

n
∑

j=0

∑

b1+...+jbj=j

∑

c1+...+(n−j)cn−j=n−j

1

b1!c1! . . . bn!cn!
Xb1

1 . . .X
bj
j ⊗Xc1

1 . . .X
cn−j

n−j

=

n
∑

j=0

Ψj ⊗Ψn−j.

We define a sequence (Pi)i≥1 of elements in Hladder by:

P1 = l1, Pn = ln −Ψn(P1, . . . , Pn−1, 0) ∀n ≥ 2.

As Ψn = Xn +Ψn(X1, . . . , Xn−1, 0), we have ln = Ψn(P1, . . . , Pn−1, Pn).

Proposition: 9.2 Pi is primitive for all i ≥ 1.

Proof: induction on i. It is trivial for i = 1. Suppose it is true for each j ≤ i− 1. Then

∆̃(li) =

j=i−1
∑

j=1

lj ⊗ li−j

=

j=i−1
∑

j=1

Ψj(P1, . . . , Pj)⊗Ψi−j(P1, . . . , Pi−j)

= ∆̃ (Ψi(P1, . . . , Pi−1, 0))

by 9.1, and the fact that P1, . . . , Pi−1 are primitive. So ∆̃ (li −Ψi(P1, . . . , Pi−1, 0)) =
∆̃(Pi) = 0, hence Pi is primitive.

We work again in Q[[X1, . . . , Xn, . . .]]. In this algebra, we have:

∑

(b1,...,bn)6=(0,...,0)

Xb1
1 . . .Xbn

n

b1! . . . bn!
=

∑

k 6=0

(

∑

b1+2b2+...+kbk=k

Xb1
1 . . .Xbk

k

b1! . . . bk!

)

=
∑

k 6=0

Ψk(X1, . . . , Xk)

=
∑

l 6=0

1

l!

(

∑

b1+b2+...+bk=l

l!

b1! . . . bk!
Xb1

1 . . . Xbk
k

)

=
∑

l 6=0

1

l!

(

∑

i 6=0

Xi

)l

= (exp−1)

(

∑

i 6=0

Xi

)

.
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So ln
(

1 +
∑

k 6=0Ψk(X1, . . . , Xk)
)

= ln
(

1 + (exp−1)
(

∑

i 6=0Xi

))

=
(

∑

i 6=0Xi

)

. By

putting Xi in weight i, and comparing the homogeneous parts, we find:

∑

a1+...+iai=i

(−1)a1+...+ai+1 (a1 + . . .+ ai − 1)!

a1! . . . ai!
Ψa1

1 . . .Ψai
i = Xi.

As Ψi(P1, . . . , Pi) = li, we deduce:

Proposition 9.3

Pi =
∑

a1+...+iai=i

(−1)a1+...+ai+1 (a1 + . . .+ ai − 1)!

a1! . . . ai!
la11 . . . laii .

InHR, consider the projection πc on the space spanned by rooted trees, which vanishes
on the space spanned by non connected forests. We have:

Lemma 9.4 let p ∈ HR be a primitive element such that πc(p) = 0. Then p = 0.

Proof: suppose p 6= 0, and let write p =
∑

α=(α1,...,αk)
aαt

α1
1 . . . tαk

k , where the ti’s are rooted

trees, with ∂p

∂ti
6= 0. One can suppose that weight(tk) ≥ weight(ti) ∀i. Let t

α1
1 . . . tαk

k such
that αk 6= 0 and aα 6= 0.

Let F a forest such that in the basis (F1 ⊗ F2)F1 and F2 forests of HR ⊗ HR, the coeffi-
cient of tα1

1 . . . t
αk−1

k1
⊗ tk in ∆(F ) is 6= 0. Then F = tα1

1 . . . tαk

k , and then this coefficient

is αk, or there exists t′ a rooted tree with weight(t′) > weight(t), such that ∂F
∂t′

6= 0.
So the coefficient of tα1

1 . . . t
αk−1

k1
⊗ tk in ∆(p) is αkaα 6= 0. As p is primitive, tk = 1 or

tα1
1 . . . t

αk−1

k1
= 1. If tk = 1, then p is constant: this is a contradiction, because then p

would not be primitive. So tα1
1 . . . t

αk−1

k1
= 1, and then πc(p) 6= 0.

Theorem 9.5 (Pi)i∈N∗ is a basis of the space of primitive elements in Hladder.

Proof: let p be a primitive element in Hladder. Then πc(p) is a linear combination of
ladders, so there is a linear combination p′ of Pi such that πc(p) = πc(p

′). By the lemma,
p = p′.

9.2 The operator π1

Recall that π1 is the projection on Im(F1) = Prim(HR) which vanishes on (1) ⊕
⊕j≥2Im(Fj).

Theorem 9.6 Let F be a non-empty forest.

We put ∆̃(F ) =
∑

(F )

F (1) ⊗ F (2); then:

π1(F ) = F −
∑

(F )

F (1)⊤π1(F
(2)).

17



Proof: induction on weight(F ). If weight(F ) = 1, it is obvious. Suppose the formula is
true for every forests of weight less than or equal to n− 1. Let F be a forest of weight n.
Then weight(F (2)) < weight(F ), so:

∆̃(F ) =
∑

(F )

F (1) ⊗ F (2)

=
∑

(F )

F (1) ⊗



π1(F
(2)) +

∑

(F (2))

(F (2))
(1)
⊤π1

(

(F (2))
(2)
)





=
∑

(F )



F (1) ⊗ π1(F
(2)) +

∑

(F (1))

(F (1))
(1)

⊗
[

(F (1))
(2)
⊤π1(F

(2))
]



 (by coassociativity)

=
∑

(F )

∆̃
(

F (1)⊤π1(F
(2))
)

(by 4.1).

So F −
∑

(F )

F (1)⊤π1(F
(2)) ∈ Im(F1); as

∑

(F )

F (1)⊤π1(F
(2)) ∈ ⊕j≥2Im(Fj), we have

the result for F .

So we have an easy way to find a family who generates the space of primitive elements
of weight n, by induction on n. Moreover, we have relations between the π1(F ), which
are given by π1(F

′⊤p) = 0 for any non-empty forest F ′ and for any primitive element
p we have ever found. So we easily have a basis of the space of homogeneous primitive
elements of weight n.

For example, for n = 1, we have π1(l1) = l1; the basis is (l1); we have the relation
π1(F

′⊤l1) = 0 ∀F ′ non-empty forest; so R1 : π1(T ) = 0 ∀T rooted tree of weight greater
than or equal to 2.

Hence, for n = 2, we only have to compute π1(l
2
1) = l21 − 2l1⊤π1(l1) = l21 − 2l2. The

basis is (l21 − 2l2), and we have: π1(F
′⊤(l21 − l2)) = 0, which gives: R2: π1(l1T ) = 0 ∀T

rooted tree of weight greater than or equal to 2.
For n = 3, we have to compute π1(l

3
1); the others are zero by R1 and R2. One finds

the basis (l31−3l1l2+3l3) and the relation R3: π1(l
2
1T ) = π1(l2T )∀T rooted tree of weight

greater than or equal to 2.
For n = 4, one would have to compute π1(l

4
1) and π1(l

2
2), and so on.

Remark: by linearity, the formula of 9.6 is true for any x ∈ HR. For example, for
x = p1p2, with p1, p2 primitive elements of HR, one finds: π1(x) = p1p2 − p1⊤p2 − p2⊤p1;
hence, S1(p1) = π1(−Y (p1)l1) with Y (F ) = weight(F ) F for all forest F , and S1 defined
in [3].

10 Classification of the Hopf algebra endomorphisms

of HR

In the sequel, we will denote by CT the set of (connected) rooted trees.
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Definition 10.1 Let (Pt)t∈CT be a family of primitive elements of HR indexed by CT .
Let Φ(Pt) be the algebra endomorphism of HR defined by induction on weight(T ) by:

Φ(Pt)(l1) = Pl1 ;

∀T ∈ CT , with ∆̃(T ) =
∑

(T )

T (1) ⊗ T (2),

Φ(Pt)(T ) =





∑

(T )

Φ(Pt)(T
(1))⊤PT (2)



 + PT .

Then Φ(Pt) is a bialgebra endomorphism of HR.

Proof: one has to show (Φ(Pt) ⊗ Φ(Pt)) ◦ ∆̃(T ) = ∆̃(Φ(Pt)(T )) ∀T ∈ CT . We proceed by
induction on n = weight(T ). It is obvious for n = 1, since then T = l1 is primitive.
Suppose it is true for all rooted trees of weight < n. Then as Φ(Pt) is an algebra endo-
morphism, it is true for all non connected forests of weight ≤ n. Let T be a rooted tree
of weight n. Then:

∆̃(Φ(Pt)(T )) =
∑

(T )

∆̃
(

Φ(Pt)(T
(1))⊤PT (2)

)

=





∑

(T )

Φ(Pt)(T
(1))⊗ PT (2)



+
∑

(T )

Φ(Pt)(T
(1))⊗ (Φ(Pt)(T

(2))⊤PT (3))

=
∑

(T )

Φ(Pt)(T
(1))⊗





∑

(T (2))

(

Φ(Pt)((T
(2))

(1)
)⊤P

(T (2))
(2)

)

+ P
(2)
T





=
∑

(T )

Φ(Pt)(T
(1))⊗ Φ(Pt)(T

(2)).

We used the induction hypothesis and 4.1 for the second equality, and coassociativity
of ∆̃ for the third.

Theorem 10.2 Let Ψ be an endomorphism of the bialgebra HR. Then there exists a
unique family (Pt) of primitive elements, such that Ψ = Φ(Pt).

Proof: one remarks that if (Pt) and (Qt) are two families of primitive elements, such that
Pt = Qt if weight(t) ≤ n, then Φ(Pt)(x) = Φ(Qt)(x) for all x of weight ≤ n. So we only
have to show that there exists a family (Pt) such that if we denote:

P
(n)
t =

{

Pt if weight(T ) ≤ n
0 if weight(T ) > n,

then Ψ(x) = Φ
(P

(n)
t )

(x) for all x of weight ≤ n. We take Pl1 = Ψ(l1), and then it is true

for n = 1. Suppose we have Pt for all t of weight < n. We put Φ
(P

(n−1)
t )

= Φn−1. Let T

be a rooted tree of weight n.

∆̃(Ψ(T )) =
∑

(T )

Ψ(T (1))⊗Ψ(T (2))

=
∑

(T )

Φn−1(T
(1))⊗ Φn−1(T

(2)) = ∆̃(Φn−1(T )).

We take PT = Ψ(T )− Φn−1(T ); then Ψ(T ) = Φ
(P

(n)
t )

(T ).

For the uniqueness of the family (Pt), we have π1(Ψ(T )) = PT , ∀T rooted tree.
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Proposition 10.3 Let Ψ be an endomorphism of the bialgebra HR; then Ψ is an endo-
morphism of the Hopf algebra HR, that is to say Ψ ◦ S = S ◦Ψ.

Let B+ be the operator of HR which appends each term of a forest t1 . . . tn to a
common root. One can show that for every x ∈ HR,

∆(B+(x)) = B+(x)⊗ 1 + (Id⊗ B+)(∆(x)).

Lemma 10.4 Let p be a primitive element of HR and let x ∈ HR, with ε(x) = 0. Then

S(x⊤p) = −x⊤p− S(x)p−
∑

(x)

S(x(1))(x(2)⊤p) where ∆̃(x) =
∑

(x)

x(1) ⊗ x(2).

In particular, for p = l1,

S(B+(x)) = −B+(x)− S(x)l1 −
∑

(x)

S(x(1))B+(x(2)).

Proof: we have (S ⊗ Id) ◦∆(x) = 0. Then we use 4.1 to conclude.

Proof of the proposition: let F be a forest in HR.

Ψ ◦ S(B+(F )) = −Ψ(F )⊤Pl1 −
∑

(F )

Ψ(F (1))⊤PB+(F (2)) − PB+(F )

−
∑

(F )

Ψ ◦ S(F (1))(Ψ(F (2))⊤Pl1)−
∑

(F )

Ψ ◦ S(F (1))[Ψ(F (2))⊤PB+(F (3))]

−Ψ ◦ S(F )Pl1 −
∑

(F )

Ψ ◦ S(F (1))PB+(F (2));

S ◦Ψ(B+(F )) = S(Ψ(F )⊤Pl1) +
∑

(F )

S(Ψ(F (1))⊤PB+(F (2))) + S(PB+(F ))

= −Ψ(F )⊤Pl1 −
∑

(F )

Ψ(F (1))⊤PB+(F (2)) − PB+(F )

−
∑

(F )

S ◦Ψ(F (1))(ψ(F (2))⊤Pl1)−
∑

(F )

S ◦Ψ(F (1))[Ψ(F (2))⊤PB+(F (3))]

−S ◦Ψ(F )Pl1 −
∑

(F )

S ◦Ψ(F (1))PB+(F (2)).

We conclude by an induction on the weight.

11 Associated graded algebra of HR and coalgebra

endomorphisms

As it is shown in [3], HR is filtered as Hopf algebra by degp. What is the associated
graded algebra ?

The filtration is given by (HR)
(P )
n = {x ∈ HR, degpx ≤ n} = (1)⊕⊕n

1Im(Fj) = Cn =
Ker(∆̃(n))⊕(1). We put πi the projection on Im(Fi) which vanishes on (1)⊕⊕j 6=iIm(Fj).
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Lemma 11.1 Let p1, . . . , pj, pj+1, . . . , pj+l be primitive elements of HR. Then

πj+l(pj+l⊤ . . .⊤pj+1.pj⊤ . . .⊤p1) =
∑

σ (j,l)-shuffle

pσ(j+l)⊤ . . .⊤pσ(1),

where a (j,l)-shuffle is a permutation σ of {1, . . . , j+l} such that σ(1) < σ(2) < . . . < σ(j)
and σ(j + 1) < σ(j + 2) < . . . < σ(j + l).

Proof: by induction we prove:

∆̃j−l−1(pj+l⊤ . . .⊤pj+1.pj⊤ . . .⊤p1) =
∑

σ (j,l)-shuffle

pσ(j+l) ⊗ . . .⊗ pσ(1)

= ∆̃j−l−1







∑

σ (j,l)-shuffle

pσ(j+l)⊤ . . .⊤pσ(1)






.

So pj+l⊤ . . .⊤pj+1.pj⊤ . . .⊤p1 −
∑

σ (j,l)-shuffle

pσ(j+l)⊤ . . .⊤pσ(1) is in (HR)
(P )
j+l−1,

which proves the lemma.

We naturally identify (HR)
(P )
n /(HR)

(P )
n−1 with Im(Fn). We can now describe gr(HR),

the associated graded Hopf algebra:

i) as vector space, gr(HR) = (1)⊕⊕∞
1 Im(Fi);

ii) ∀pj⊤ . . .⊤p1 ∈ Im(Fj), pj+l⊤ . . .⊤pj+1 ∈ Im(Fl),

(pj+l⊤ . . .⊤pj+1) ∗ (pj⊤ . . .⊤p1) =
∑

σ (j,l)-shuffle

pσ(j+l)⊤ . . .⊤pσ(1),

where ∗ is the product of gr(HR);

iii) ∀pj⊤ . . .⊤p1 ∈ Im(Fj),

∆(pj⊤ . . .⊤p1) = (1⊗ pj⊤ . . .⊤p1) + (pj⊤ . . .⊤p1 ⊗ 1)

+

k=j
∑

k=2

(pj⊤ . . .⊤pk)⊗ (pk−1⊤ . . .⊤p1);

iv) ∀x ∈ Im(Fj), j ≥ 1, ε(x) = 0;

v) ∀p1⊤ . . .⊤pj ∈ Im(Fj), S∗(pj⊤ . . .⊤p1) = (−1)j p1⊤ . . .⊤pj.

Clearly, the linear map from gr(HR) into HR which is the identity on every Im(Fi)
is a coalgebra isomorphism. It is not an algebra morphism, although we shall prove later
that gr(HR) and HR are in fact isomorphic Hopf algebras, via another map.

We are going to classify the coalgebra endomorphisms HR or indifferently gr(HR).
First we fix a notation. Let u be a linear map from Prim(HR)

⊗i into Prim(HR)
⊗j . Then

u is the linear map from Im(Fi) into Im(Fj) defined by u = Fj ◦ u ◦ F
−1
i .
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Theorem 11.2 For all i ∈ N∗, let ui : Prim(HR)
⊗i 7−→ Prim(HR). Let Φ(ui) be the

linear map defined by:

Φ(ui)(1) = 1;

Φ(ui)(pn⊤ . . .⊤p1) =
n
∑

k=1

∑

a1+...+ak=n

(ua1 ⊗ . . .⊗ uak )(pn⊤ . . .⊤p1).

Then Φ(ui) is a coalgebra endomorphism of HR (or gr(HR)).
Moreover, if Φ is a coalgebra endomorphism of HR (or gr(HR)), then for all i ∈ N∗, there
exists a unique ui : Prim(HR)

⊗i 7−→ Prim(HR), such that Φ = Φ(ui).

Proof: first we prove that Φ(ui) is a coalgebra endomorphism:

Φ(ui) ⊗ Φ(ui)(∆̃(pn⊤ . . .⊤p1)) =
∑

j

∑

a1+...+ak=j

∑

b1+...+bl=n−j

[(ua1 ⊗ . . .⊗ uak )⊗ (ub1 ⊗ . . .⊗ ubl )] [(pn⊤ . . .⊤pj+1)⊗ (pj⊤ . . .⊤p1)]

= ∆̃

(

∑

d1+...+dm=n

(ud1 ⊗ . . .⊗ udm )(pn⊤ . . .⊤p1)− un(pn⊤ . . .⊤p1)

)

= ∆̃

(

∑

d1+...+dm=n

(ud1 ⊗ . . .⊗ udm )(pn⊤ . . .⊤p1)

)

− 0

= ∆̃(Φ(ui)(pn⊤ . . .⊤p1)).

Let Φ be a coalgeabra endomorphism. ∆(Φ(1)) = Φ(1) ⊗ Φ(1), so Φ(1) = 0 or 1. As
ε ◦ Φ = ε, Φ(1) = 1. We constuct ui by induction on i. For i = 1, u1 is the restriction of
Φ on Prim(HR). Suppose we have ui for i < n. Then with u′i = ui if i < n and u′i = 0 if
i ≥ n, Φ = Φ(u′

i)
on (1)⊕⊕n−1

1 Im(Fj). So

∆̃(Φ(pn⊤ . . .⊤p1)) = (Φ⊗ Φ) ◦ ∆̃(pn⊤ . . .⊤p1)

= (Φ(u′
i)
⊗ Φ(u′

i)
) ◦ ∆̃(pn⊤ . . .⊤p1) = ∆̃(Φ(u′

i)
(pn⊤ . . .⊤p1)).

So we can take un(pn⊤ . . .⊤p1) = (Φ− Φ(u′
i)
)(pn⊤ . . .⊤p1).

For the uniqueness, observe that π1 ◦ Φ = ui on Im(Fi).

We now give a criterion of inversibility of a coalgebra endomorphism:

Proposition 11.3 Φ(ui) is bijective if and only if the restriction u1 of Φ(ui) to Prim(HR)
is bijective.

Proof: ⇒: obvious.
⇐: we put Φ = Φ(ui). Recall that Ci = (1) ⊕ ⊕i

1Im(Fj). As Φ(Ci) ⊂ Ci, it is enough
to show that Φ|Ci

: Ci 7−→ Ci is inversible ∀i. For i = 1, it is the hypothesis. Suppose it
is true for a certain i− 1. Then Φ(pi⊤ . . .⊤p1)− (u1 ⊗ . . .⊗ u1 )(pi⊤ . . .⊤p1) belongs to
Ci−1, so it belongs to Im(Φ); hence (u1 ⊗ . . .⊗ u1 )(Ci) ⊂ Im(Φ). As (u1 ⊗ . . .⊗ u1 ) is
surjective (because u1 is surjective), Φ|Ci

is surjective.
Let x ∈ Ci, Φ(x) = 0. x = xi + y, xi ∈ Im(Fi), y ∈ Ci−1. Then Φ(x) = 0 =
(u1 ⊗ . . .⊗ u1 )(xi)+Ci−1, so (u1 ⊗ . . .⊗ u1 )(xi) = 0 (because it belongs to Im(Fi)∩Ci−1).
As u1 is injective, xi = 0, and x ∈ Ci−1. As Φ|Ci−1

is injective, x = 0: Φ|Ci
is injective.

We now give a criterion to know when a coalgebra endomorphism is in fact a bialgebra
endomorphism.
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Proposition 11.4 Let Φ = Φ(ui) be a coalgebra endomorphism. Let Φ(n) = Φ(un
i )

be the
coalgebra endomorphism with uni = ui if i ≤ n, uni = 0 if i > n.

1. (case of HR) Φ is a bialgebra endomorphism if and only if for all xi ∈ Im(Fi),
xj ∈ Im(Fj), ui+j(xi ∗ xj) = −Φ(i+j−1)(xi.xj) + Φ(i+j−1)(xi).Φ

(i+j−1)(xj).

2. (case of gr(HR)) Φ is a bialgebra endomorphism if and only if for all xi ∈ Im(Fi),
xj ∈ Im(Fj), ui+j(xi ∗ xj) = −Φ(i+j−1)(xi ∗ xj) + Φ(i+j−1)(xi) ∗ Φ

(i+j−1)(xj).

Proof: we study the case of HR. Observe that Φ(xi.xj) = ui+j(xi ∗ xj) + Φ(i+j−1)(xi.xj)
because xi.xj − xi ∗ xj belongs to Ci+j−1. Moreover Φ = Φ(i+j−1) on Ci+j−1. It is then
obvious. The proof in the case of gr(HR) is analog, even easier.

12 Automorphisms of HR

In the following, we shall identify gr(HR) and HR as vector spaces via:
Id : Im(Fi) ⊂ gr(HR) 7−→ Im(Fi) ⊂ HR.
Now the vector spaceHR has two Hopf algebra structures: (HR, .,∆, S) and (HR, ∗,∆, S∗).
Note that the coproduct is the same in both cases. Both are graded as Hopf algebras by
the weight. We still denote by Hi the homogeneous components, which are the same for
both structures. (HR, ∗,∆, S∗) is by construction graded as Hopf algebra by degp, and
the homogeneous components are the Im(Fi)’s.

We denote the augmentation ideal, which is the same for both structures, by M, and
its square in (HR, .) by M2. We put Mi = M∩Hi and M

2
i = M2 ∩ Hi. We have:

M = ⊕i Mi and M2 = ⊕i M
2
i .

Obviously,
∑

j Hi∩ Im(Fj) = Hi∩
∑

j Im(Fj) = Hi if i ≤ 1. So M2
i +
∑

j Hi∩ Im(Fj) =

Hi = Mi. Hence, we can choose Vi,j ⊂ Hi∩Im(Fj), such that Mi = M2
i ⊕⊕jVi,j. We put

Vi = ⊕jVi,j, and V = ⊕i,jVi,j. Note that V1 = H1. Moreover, for any x ∈ M2, πc(x) = 0,
so by lemma 9.4, M2 ∩ Im(F1) =M2 ∩ Prim(HR) = (0). So Vi,1 = Hi ∩ Im(F1).

Lemma 12.1 V generates the algebra (HR, .).

Proof: we denote by 〈V 〉 the subalgebra of (HR, .) generated by V .
We have to show that Hi ⊂ 〈V 〉 ∀i ≥ 1. We proceed by induction on i. If i = 1, then it
is true since V1 = H1. Suppose it is true for any i′ ≤ i− 1. Let x ∈ Hi = M2

i ⊕ Vi. It is
obvious if x ∈ Vi. If x ∈ M2

i , one can suppose that x = m1m2, with m1 and m2 in M.
Then m1 and m2 cannot be constant, so weight(m1) < i and weight(m2) < i. So they
are in 〈V 〉, so x ∈ 〈V 〉.

Lemma 12.2 V generates the algebra (HR, ∗).

Proof: we denote by 〈V 〉∗ the subalgebra of (HR, ∗) generated by V .
Let x ∈ HR. Let j = degp(x). If j = 1, then x ∈ 〈V 〉∗ since Im(F1) = ⊕iVi,1. Sup-
pose that y ∈ 〈V 〉∗ for any y with degp(y) < j. One can suppose that x ∈ M =
M2 ⊕ V . If x ∈ V , then x ∈ 〈V 〉∗. If x ∈ M2, one can suppose that x = m1m2, with
m1, m2 ∈ M. Then degp(x) = degp(m1) + degp(m2), so degp(m1) < j and degp(m2) < j,
so m1 and m2 are in 〈V 〉∗, and m1 ∗ m2 ∈ 〈V 〉∗. By construction of the product ∗,
m1m2 = m1 ∗m2 + (1)⊕⊕k<jIm(Fk). So by induction hypothesis, x = m1m2 ∈ 〈V 〉∗.

We denote by S(V ) the symmetric algebra generated by V .
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Lemma 12.3 1. ∀i ∈ N∗, dim(Vi) is the number of rooted trees of weight i.

2. There is an algebra isomorphism between (HR, .) and S(V ) which is the identity on
V .

Proof:
1. We have dim(Vi) = dim(Mi) − dim(M2

i ). A basis of Mi is formed by forests of
weight i, whereas a basis of M2

i is formed by non connected forests of weight i. The first
point is then obvious.

2. As HR is commutative, we have an algebra morphism:

Λ :

{

S(V ) 7−→ (HR, .)
x ∈ V 7−→ x

By lemma 12.1, Λ is surjective. S(V ) is graded as algebra by putting Vi in degree i. By
the first point, the homogeneous components of S(V ) and HR (for the weight) have the
same (finite) dimensions. Moreover, Λ is homogeneous of degree zero; as it is surjective,
it is injective; so it is an isomorphism.

Using Λ, we define an algebra isomorphism:

Ξ :

{

(HR, .) 7−→ (HR, ∗)
x ∈ V 7−→ x

By lemma 12.2, Ξ is surjective. Moreover, it is homogenous of degree zero for the
weight; as the homogeneous components have the same finite dimensions in (HR, .) and
in (HR, ∗), it is an isomorphism.

As the coproduct is the same for both Hopf algebra structures on HR, and since Ξ fix
a system of generators, it is a bialgebra isomorphism. Moreover, Ξ◦S ◦Ξ−1 is an antipode
of (HR, ∗,∆), so it is equal to S∗. Hence, Ξ is a Hopf algebra isomorphism.

We have degp(Ξ(x)) ≤ degp(x) ∀x ∈ HR, since it is true for any x ∈ V . We get:

Ξ({x ∈ HR/degp(x) ≤ j, weight(x) = i}) ⊂ {x ∈ HR/degp(x) ≤ j, weight(x) = i} ∀i, j.

As these spaces have the same finite dimension, they are in fact equal. We deduce:

Ξ({x ∈ HR/degp(x) = j}) = {x ∈ HR/degp(x) = j}.

We have entirely proved:

Theorem 12.4 gr(HR) and HR are isomorphic Hopf algebras; there is a Hopf alge-
bra isomorphism Ξ : (HR, .) 7−→ (HR, ∗) such that weight(Ξ(x)) = weight(x) and
degp(Ξ(x)) = degp(x) for any x ∈ HR.

We work now in gr(HR). We denote by M∗2 the square of the augmentation ideal
in this algebra. Let u1 be a linear application from Prim(gr(HR)) into itself. Can we
extend it to a bialgebra endomorphism of gr(HR)? With 11.4, one sees that u2 is entirely
determined onM∗2∩Im(F2), and we can extend it to the whole Im(F2) as we want. More
generally, ui is determined over M∗2∩Im(Fi). So in fact, if we fix a complement C ofM∗2,
a bialgebra endomorphism Φ is entirely determined by (π1 ◦Φ)|C : C 7−→ Prim(gr(HR)).
Moreover, for any application L : C 7−→ Prim(gr(HR)), there is a unique bialgebra
endomorphism ΦL such that (π1 ◦ ΦL)|C = L. Because of 12.4, we have the same result
for HR. In this case, two important choices of C can be done:
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1. if we choose C the subspace generated by the rooted trees: with notations of 10.1,

(π1 ◦ Φ(pt))|C :

{

〈 rooted trees 〉 7−→ Prim(HR)
t 7−→ pt.

2. if we choose a complement C which contains Prim(HR), then we see that
{

Endbialgebra(HR) 7−→ L(Prim(HR))
Φ 7−→ Φ|Prim(HR)

is surjective.

Because of 11.3, we have a surjection:

χ :

{

Autbialgeabra(HR) 7−→ GL(Prim(HR))
Φ 7−→ Φ|Prim(HR)

We look for a lifting of GL(Prim(HR)) into Autbialgeabra(HR). It is easier to work in
gr(HR), for there is an obvious lifting: if u ∈ GL(Prim(HR)), we take u1 = u, ui = 0 if
i ≥ 2; then one proves easily that Φu = Φ(ui) ∈ Autbialgebra(HR), and Φu ◦ Φv = Φu◦v. So,
with 10.3 we have the following result:

Theorem 12.5

Autbialgebra(HR) = AutHopf(HR) = Ker(χ)⋊GL(Prim(HR)).

13 Appendix

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
rn 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973 87811 235381
hn,1 1 1 1 2 3 8 16 41 98 250 631 1646 4285 11338 30135

16 17 18 19 20 21 22 23
634847 1721159 4688676 12826228 35221832 97055181 268282855 743724984
80791 217673 590010 1606188 4392219 12055393 33206321 91752211

24 25 26 27 28 29
2067174645 5759636510 16083734329 45007066269 126186554308 354426847597
254261363 706465999 1967743066 5493195530 15367129299 43073007846
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