Finite dimensional comodules over the Hopt algebra of
rooted trees

L. Foissy

Laboratoire de Mathématiques - UMR6056, Université de Reims
Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France

e-mail: loic.foissy@univ-reims.fr

1 Introduction

In [2, 4, 9, 10], a Hopf algebra of rooted trees Hr was introduced. It was shown that
the antipode of this algebra was the key of a problem of renormalization ([11]). Hpg is
related to the Hopf algebra Heps introduced in [5]. Moreover, the dual algebra of Hp
is the enveloping algebra of the Lie algebra of rooted trees £!. An important problem
was to give an explicit construction of the primitive elements of Hy. In [3], a bigradation
allowed to compute the dimensions of the graded parts of the space of primitive elements.

The aim of this paper is an algebraic study of Hg. We first use the duality theorem
of [4] to prove a result about the subcomodules of a finite dimensional comodule over the
Hopf algebra of rooted trees. Then we use this result to construct comodules from finite
families of primitive elements. Furthermore, we classify these comodules by restricting the
possible families of primitive elements, and taking the quotient by the action of certain
groups. We also show how the study of the whole algebra as a left-comodule leads to the
bigrading of [3]. We then prove that £! is a free Lie algebra.

In the next section, we prove a formula about primitive elements of the Hopf algebra
of ladders, which was already given in [3], and construct a projection operator on the
space of primitive elements. This operator produces the operator S; of [3]. Moreover, it
allows to obtain a basis of the primitive elements by an inductive process, which answers
one of the questions of [3].

The following sections give results about the endomorphisms of Hg. First, we classify
the Hopf algebra endomorphisms using the bilinear map related to the growth of trees.
Then we study the coalgebra endomorphisms, using the graded Hopf algebra gr(Hg)
associated to the filtration by deg, of [3]. We finally prove that Hr ~ gr(Hg), and
deduce a decomposition of the group of the Hopf algebra automorphisms of Hgr as a
semi-direct product.

2 Preliminaries

We will use notations of [3, 4]. Call a rooted tree t a connected and simply-connected
finite set of oriented edges and vertices such that there is one distinguished vertex with
no incoming edge; this vertex is called the root of t. The weight of t is the number of its
vertices. The fertility of a vertex v of a tree ¢ is the number of edges outgoing from v. A
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ladder is a rooted tree such that every vertex has fertility less than or equal to 1. There
is a unique ladder of weight 7; we denote it by ;.

We define the algebra Hp as the algebra of polynomials over QQ in rooted trees. The

monomials of Hr will be called forests. It is often useful to think of the unit 1 of Hp as
an empty forest.

L1 b b Y

Figure 1: the rooted trees of weight less than or equal to 4. The first, second, third and
fifth trees are ladders.

We are going to give a structure of Hopf algebra to Hyr. Before this, we define an
elementary cut of a rooted tree t as a cut at a single chosen edge. An admissible cut C of
a rooted tree t is an assignment of elementary cuts such that any path from any vertex of
the tree has at most one elementary cut. A cut maps a tree t into a forest t;...t,. One
of the t; contains the root of ¢: it will be denoted by R(t). The product of the others
will be denoted by PY(t). Then A is the morphism of algebras from Hp into Hr @ Hpg
such that

for any rooted tree t, A(t) =1@t+t® 1+ > PC(t) @ RE(t).
¢ admissible cut

admissible cuts: >Y \f< ><f< \4(.
ACX/ %:\{’®1+».®{—%.®{ +..0] + V' ®. +1®\f’

Figure 2: an example of coproduct.

The counit is given by (1) = 1, e(t) = 0 for any rooted tree ¢.
Then Hpg is a Hopf algebra, with antipode given by :

Sty= Y. (=) PYUHR()
all cuts of ¢

where n¢ is the number of elementary cuts in C.
Moreover, Hp is graded as Hopf algebra by degree(t) = weight(t).

For example, for all n € N*,

n—1

All) =1L +1, @1+ L@,

J=1



w1 T 7T ¥ O Y Y%
S(Y):_Y+.{+.}+\/.-..I R S

Figure 3: the antipode.

So the subalgebra of Hy generated by the ladders is a Hopf subalgebra; we will denote
it by %ladder-

We will use the Lie algebra of rooted trees £!. It is the linear span of the elements Z;
indexed by rooted trees. For t1, to, t rooted trees, one defines n(t1,ts;t) as the number of
elementary cuts of ¢ such that PY(t) = t; and R°(t) = t,. Then the Lie bracket on £ is
given by:

(Z0,, Z1,) = nlti tst)Z, = Y nlta, b t) 2.

t t

L' is graded as Lie algebra by degree(Z;) = weight(t). The enveloping algebra U(LY) is
graded as Hopf algebra with the corresponding gradation (see [4]). It is shown in [8, 12]
that U(L') and the Grossman-Larson Hopf algebra on rooted trees are isomorphic (see
[6, 7]).

3 Duality between Hp -comodules and U(£')-modules
We shall use the following result of [4]:

Theorem 3.1 There is a bilinear form on U(L') x Hg defined in the following way: for
every rooted tree t, for every forest I,

<LF> = ¢(F),
<Zy,F> = 0if F#t,
— 1 ifF =t
and < Z1Zs, P> = < Z1® Zy, A(P) > for any Z1,Zy € U(LY), P € Hp.

An easy induction on weight (P(t;)) proves the following property:

Lemma 3.2 Ifl € U(L') and P(t;) € Hgr are homogeneous of different degrees,
then < I, P(t;) >=0.

Let Z,, be the ideal of Hy generated by the homogeneous elements of weight greater
than or equal to n and J, the ideal of U(L') generated by the homogeneous elements
of weight greater than or equal to n. Let Hg™ = {f € H}/3n € N, f(Z,,) = (0)} and
ULV ={feU(LY/In eN, f(T,) = (0)}. One defines an algebra structure on Hz"?
by dualising the coproduct on Hp and a coalgebra structure on U (£')*9 by dualising the
product of U(L'). Then we have the following result:




Corollary 3.3

| Hr — ULY ot T - ULy — Hy
Let@.{P(ti) s (., P(t) andlt\If.{ I — ().

Then ® is a coalgebra isomorphism and ¥ s an algebra isomorphism.
One can now dualise Hz-comodules and U(£')-modules. First, we have:

Proposition 3.4 Let C be a Hr-comodule and A¢ its structure map: C — Hr ® C.
Then C* is a U(LY)-module with:

VIeU(L) Vf e C ¥z e C, Lf(x) =) (I,zD)f(z?)
(@)

where Ac(x) = Z W @ z®.
(z)

Proof: classical; see [14].

Proposition 3.5 Let M be a U(LY)-module. Let M*9 = {f € M*/3n € N, f(T. M) =
(0)}. Then M*9 is a Hr-comodule with Ay : M*9 — Hr @ M*9 defined by:

Vf € M9Vl € UL Vo € M, with Au(f) =Y fP @ @
(f)

Ay (f)-t@m)=> (1, fD)f@(m) = f(l.m).
(f)

Proof:
ULY @ M — UL @ M)*
Let o : ULHYO M — Q
1®g H { lem s f(l)g(m);

« is injective. If y is the structure map of M and u* its transpose (u : U(LY) @ M — M),
we have to show that Imu* C Ima. With the definition of M*9, one easily has:
Ima={feULY®M)*/IneN, f(T, ® M) = (0), f(A® T,M) = (0)}.

Let fe M9 lomeU(L) M. p*(f)(l@m)= f(l.m). As f € M*9, clearly pu*(f) is

in Ima.

Proposition 3.6 Let My, My two U(LY)-modules, with My C Msy; there exists an injec-
tion of comodules:
(MQ/M1>*Q — M;g

Proof: let p : My — M;/M; the canonical surjection; then it is easy to see that its
transpose is an injective morphism of comodules from (My/M;)*9 to M,?.

Proposition 3.7 Let C a finite-dimensional Hg-comodule. Then C* is a U(L')-module,
and (C*)™ is the whole of (C*)*. Moreover C and (C*)" are isomorphic Hr-comodules.



Proof: let l e U(LY), f € C*,x € C. Then (I.f)(z) = Z(x)(l,x(l)),f(x@)).

Let k; = max(y) (weight(x(l))) + 1. If [ is homogeneous of weight greater than k,, then
(I.f)(z) = 0 (lemma 3.2). As C is finite-dimensional, there exists k € N,k > k, Vx € C,
hence J;.C* = (0), and hence (C*)* = (C*)". It is then easy to show that the canonical
isomorphism between C and (C*)* is a comodule isomorphism.

We are now ready to prove the:

Theorem 3.8 Let C be a finite-dimensional Hg-comodule and n its dimension; then C

has a complete flag of comodules, that is to say:
Vie {1...n},3CY a subcomodule of C of dimension i, with CY c ...c C™ = (C.

Proof: it is enough to exhibit a subcomodule of dimension n — 1. By proposition 3.4,
C* is a U(L')-module, and there exists k € N, J,.C* = (0). Hence as a £'-module,
1.C* = (0) for every [ in £, homogeneous of weight greater than n. So C* is in fact a
module over the quotient of £! by the Lie ideal generated by these [, and it is clear that
this quotient is a finite-dimensional nilpotent Lie algebra. Moreover, every [ € £! is a
nilpotent endomorphism of C*. By Engel’s theorem, C* has a submodule C’ of dimension
1. Jp.(C*/C") = (0) because Jp.C* = (0), so (C*/C")*Y = (C*/C")*, and the dimension
of this comodule is n — 1. By proposition 3.7, C is isomorphic to (C*)" which has a
subcomodule of dimension n — 1 by proposition 3.6.

Remark: one can use the fact that £! acts by zero on C” (which is given by Engel’s
theorem), to show that the quotients % are trivial comodules, that is to say A(T) =

— Cc+1)

4 Natural growth

Let M, N be two forests of Hr. We define:

VTN — m > forests obtained by appending M to every node of N if N # 1
n M it N =1.

We extend .T. to a bilinear map from Hgr x Hpr into Hg.

IT\/:%k/Jr\)ﬂL\{/ : ..TEZ%\{/#\{/JFY;

Figure 4: the bilinear map T.

In the following we use the notation A(z) = A(z) — 1@z —x ® 1 for every = € Hp.

We have Prim(Hg) = Ker(A).



Lemma 4.1 Let x € Hgr and y be a primitive element of Hr. Then we have:

AaTy)=z0y+» 2 e (@®Ty)
@

where A(z) = 32, 2D @ 2.
Proof: see [3], section 5.4.

Definition 4.2 Let ¢+ € N* and py, ..., p; be primitive elements of Hz. By induction on
i we define p; T ... Tpy by (p; T ... Tp2) Tpr. And we define:

7. Prim(Hg)® Hr
Yl i ®...®@pr — pil . T
Lemma 4.3 Let py,...,p; be primitive elements of Hg.

j=i—1

7j=1

Proof: by induction, using 4.1.

One remarks easily that ~A is still coassociative. We define A = Idy . —1NOE, Al = A,
and by induction A* = (AF1 @ Id) o A.

Lemma 4.4 Let i € N*; then A= o F; = Idjp, e if k> i—1, AFo F; = 0.
Moreover, F; is injective, and the sum (1) 4+ >".° Im(F;) is direct.

Proof: one shows the first point by induction, using 4.3. The second point is an immediate
corollary. For the last point, let zy € Q, x; € Im(F;)Vi € {1...n}, with 2ol + 2z + ...+
z, = 0. Then £(0) = x5 = 0. Moreover, A" Y(z; + ... + z,) = A" (z,) = 0. As
x, = F,(y,) for a certain y,, we have y,, = 0, so x,, = 0. One concludes by an induction
on n.

5 Construction and parametrization of finite-dimensional
‘H p-comodules

Definition 5.1 Let (i,5) € (N*)?,i < j. We denote I, ; := {i...j}. A decomposition of
I, ; is a partition of I; ; in connected parts. We denote a decomposition in the following
way:

I;
we have 7;1; = j; + 1. We denote by D; ; the set of all decompositions of I; ;. There are
277" decompositions of I; ;.

i

g, With i =iy < jy < iy < ... <ip < jx =i

LJj1 e

Proposition 5.2 Let n > 1, (p;;)i<i<j<n any family of w primitive elements of Hg.

Let C be a vector space of dimension n + 1, with basis (e, ..., e,). We define:

Ac(60) = 1®60;
Jj=i—1

Ac(ei) = Z Z pzk,]k—l— e Tpihjl & €j + 1 ® €;.

7=0 \Liy.gy-+Lipp, €Pjt1,

Then (C, Ac) is a (left) Hr-comodule. We denote this comodule by Cl,, ).
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Proof: the axiom of counity is trivial.
Coassociativity: we have to show that ((A ® Id) o A¢)(e;) = (Id®@ Ac) o Ac)(e;) Vi. It
is trivial for ¢ = 0. For ¢ > 1, we have:

Jj=t l=j
(Id® Ac) o Ac)(er) = > Pia T Toaa | @ D g T Tog
J=01=0 \Djt1, Dit1,5
= Z Z A(pi’s’,jg’—r Ce Tpi’fdi’) & (&) (by 43)
1=0 Dyy1,4

= (A®Id)oAc)(e).

The following theorem gives a parametrization of the finite dimensional H z-comodules
by certain finite families of primitive elements:

Theorem 5.3 Let (C,A¢) be a finite-dimensional comodule. If the dimension of C' is 1,
then C' is trivial, that is to say Ac(x) = 1@z Vx € C. If the dimension of C isn, n > 2,
then there is a finite family (p; j)i1<i<j<n Of n(ntl) primitive elements of Hg such that C

2
is 1somorphic to Cyy, .

We shall use the following lemma:

Lemma 5.4 If x € Hp is such that A(x) =z ® x, then x =0 or 1.

Proof: suppose x # 0. As A is homogeneous of degree 0, x is of weight 0. It is then trivial
that x = 1.

Proof of the theorem: let C® C ... C C™ be a complete flag of subcomodules,
which exists by 3.8, and let (eg,...,e,) be an adapted basis to this flag. Then we
have a family (Q;;)1<j<i<n Of elements of Hp such that A(e;) = ;zg Qi; ®e;. (If

n = 0, then (Q;;)1<j<i<n is empty). The axiom of counity implies that ¢(Q;;) = 1, and
A(Qi;) = Zﬁi; Qi1 ® Q1; by the axiom of coassociativity. So by the lemma, Q;; = 1V,
which proves the theorem for n = 0. Moreover, Q;;_1 is primitive. If n =1, C' = Cy,, )
with p1; = @Q10. We end with an induction on n: by induction hypothesis on C’
spanned by (eq,...,en,—1), we have p;;, 1 < i < j <n—1. With p,, = Qnn_1, we
have Q-1 = ZDW Diju | -+« I Diyj,- Suppose we have built py, ,, ..., Pit1,, such that
Qni = EDHM Dinju | -+ I Diyj,- Then

l=n—1
A(Qni—1) = Z Z Pigge 1 -+ TPivjr | ® Zpi;.,j'rT---Tpi'l,j;
=i Dit1n Di,
= D AaaT-Trag).
Di,7l_{li,7l}

As Ker(A) = Prim(Hg), we take p;,, = Qni—1 — Z (i ju T oo Tpar )
Di,n_{li,n}

5.6 Remarks:

1. The family (p; ;) depends on the choice of the basis (e, ..., €,), hence is not unique.

® e
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Definition 6.1 Let (p;;)

2. By the following, we shall identify (p; ;)1<i<j<n With

0 pi1 - Din

=P e My (Prim(Hg))
0 -+ . Dun
0 -« .- 0

where M,,11(Prim(Hg)) is the space of square matrices of order n + 1 with entries
in Prim(Hg). With the notation of the proof of 5.3, we will write

Qo O - 0
Q= ' . ' ' € M1 (Hg)
Qn-10 -+ - 0
Qn,(] e e Qn,n

where M, 1(Hg) is the space of square matrices of order n + 1 with entries in Hg.
Recall that F; was defined in 4.2. Let m; be the projection on Prim(Hg) = Im(F})
in (1) ® @:=°Im(F;). Then Q;; € (1) ® &= Im(F;), and m(Qi ;) = pj41.4, OF in a
matricial form: P = 7 (QT) (here 7, acts on each entry of the matrix).

Classification of the finite-dimensional H z-comodules

1<i<j<n D€ a family of @ primitive elements of Hr and P

the associated matrix as in the remark 5.6. We say that (p;;) is reduced if there are

o, - - -, Cr € N* such that:
O\ Pia|-- | P
P —
0 -« | - | Pex
ol --- -1 0
where the diagonal zero blocs are in M (Hg), ..., M., (Hg) and the columns in each

bloc P;;, 1 < i <k, are linearly independent; (co, ..., c) is called the type of (p; ;).

Ezxample:

Let P = € Ms(Prim(Hg)).

S OO OO
O OO Ol

O OO O R

O Ol O R
O Ol O |

Suppose that a and b are linearly independent in the vector space Hpg, and < ccl ) and

(]

are linearly independent in the vector space H%. Then (p; ;) is a reduced family

of type (1,2,2).

Definition 6.2 Let C' be a Hg-comodule. One defines Cy = {x € C/Ac(x) =1 ® z}
and, by induction, C;y; the unique subcomodule of C' such that
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i) C; C Ciyq;

(&),

If C is finite-dimensional, then by 5.3, C is isomorphic to a C,, ,y and so Cp is a

Ci
G =(5)y 0 &

and we get in this way a flag of comodules: there is k£ € N, such that Cy & ... & C, = C.

C

C;

Civ1 __
o7

ii)

Cit1

non-zero subcomodule of C. Moreover, if 7 > 0, we have is non-zero

Proposition 6.3 Let (p;;)i<i<j<n be a reduced family of primitive elements of type (co, . . ., cx)

and (eo, ..., en) the basis of C, .,y as decribed in 5.2. Then for all 1 € {0.. .k},
(€0y- - s €eot..tei—1) 1S a basis of (C(Pi,j)>l'

Proof: as P = m (QT), we can write:

Id 0 0
0

0-— Q.1,o .
Q.0 Qr -1 | 1d

where the diagonal blocs are in M, (Hg), ..., M., (Hr). Because of coassociativity, the
elements in the blocs Q;,; 1 are primitive, so Q;;_; = PZTZ and the rows of the blocs
Q,.i—1 are linearly independent. We easily deduce that (e, ..., e,—1) is a basis of C;. We

conclude by induction on n, with the remark that c% is isomorphic to C(y, PL with:

0| Papo Pa i
P = . .
0 'Pk,k
0 0
so (p; ;) is a reduced family of type (c1,...,cp).

Proposition 6.4 Let C' be a comodule of finite dimension with a basis (e, ..., e,) such
that (eo, . . ., €gim(c,)—1) s a basis of C; for 0 < i < k. Let (p;;) be the family of primitive
elements built as in the proof of 5.3. Then (p;;) is a reduced family of type (co, ..., cx),
with cg = dim(Cy), ¢; = dim(C;) — dim(C;_y) for 1 <i < k.

Proof: as CC"'l is trivial, we have:

i—

Id 0 0
0

0- Q.l,O .
k.0 Q-1 | 1d

where the diagonal blocs are in M. (Hg), ..., M., (Hg), and the blocs Q;;_; are formed
of primitive elements. Suppose the rows of the bloc Q;;_; are not linearly independent.
Then we can build an element x € C;; — C;, with Ag(z) = 1® 2 [Hr ® C;_41], hence T
is a trivial element of %, which contradicts the definition of C;. We conclude using the

equality P = m(Q7).



Corollary 6.5 For any finite-dimensional comodule C, there exists a reduced family (p; ;)
such that C' is isomorphic to C,, ).

If (pi;) and (p;) are reduced families with C, ;) and Cy ) isomorphic, then (pi;) and
(p; ;) have the same type.

In the following, we call "type of a comodule C” the type of any reduced family (p; ;)

such that C' is isomorphic to Cj,, ;). Given (co, ..., ), we call
Jo,0 | o1 | " 4o,k
G(co ..... ck) — . . ) . . y Giyi S GLC,L (@) C GLco—l—...—l—ck (@)
O [+ | " | g1k
0 |- || grr
Glco,...cr) 18 a parabolic subgroup of GL¢+. 4, (Q), and it acts on the set of reduced

families of type (co,...,ck) by g.P = gPg~", where g € G (s, ), and P is the matrix of
a reduced family (p; ;).

Theorem 6.6 Let (p; ;) and (p;) be two reduced families of primitive elements of Hr,
and (co, ..., cx) be the type of (pi;). Then C, ) = Copy y if and only if (pi;), (b} ;) have
the same type and there exists g € Gq,...c), Such that P = g.P.

Proof: we put C = C(p, ,C" = Cpt ,)-

<: we have P’ = g.P, s0 Q = (¢7) " Q'¢". Let (¢7) " = (ai)ozijens 97 = (bis)o<ijen
and let (fo, ... f,) be the basis of C' defined by f; = >, bi je;. An easy direct computation
shows that Aq(f;) = Zj,k(bi,ij,kak,l) Ri=, Qi ® fi. So C=C".

=: then there exists A € GL,41(Q), with inverse B such that if f; = . b; e;, then
Ac(fi) = 22,91 ® fi. Then the same computation shows that Q;’l = Zj’k b; ;jQj ki
or equivalently: Q' = A“'QA. Hence, P = ATP AT As (pi;) is reduced, C; =
(f(], ey fCO+m+Ci—1) = (60, cey eCO+~~~+Ci—1> SO AT c G(Co _____ ck)-

We have now entirely proved the following theorem:

Theorem 6.7 Let P, ., be the set of the reduced families of primitive elements of Hr
of type (co, ..., cx), and O(q,,. ¢,y the orbit space under the action of the parabolic subgroup
Gleo,er) Of GLcyt..40,(Q). Then there is a bijection from O, . ¢, into the set of Hg-
comodules of type (co, . .., cx). Moreover there is a bijection from the disjoint union of the
Olco...c) s into the set of finite-dimensional comodules.

Ezample: let C be a comodule of dimension 2. Then its type can be (2) or (1,1). We

R (| R (P It

/

Let { 8 g } and { 8 % } € P(,1)- They are in the same orbit under the action of Gy 1)

if and only if I\ € Q*, p’ = Ap. Hence, O 1y is in bijection with the projective space
associated to Prim(Hg), and Oy is reduced to a single point, which corresponds to the
trivial comodule of dimension 2.

We now give a characterization of comodules of type (n+ 1) and type (1,...,1).
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Proposition 6.8 Let C' be a comodule of dimension n + 1.
1. C s of type (n+ 1) <~ (' is trivial.
2. Cisoftype (1,...,1) <= Vie{l...n+ 1}, C has a unique subcomodule
of dimension 1.
In particular, if C is of type (1,...,1), C" admits a unique complete flag of subcomodules.

Proof: 1. is obvious.
2. «: let C® be the unique subcomodule of dimension i + 1 of C. Let 2 € Cy, = # 0.
Then (z) is a subcomodule of dimension 1 of C, so (z) = C'© and we get Cy = C'(©.
Suppose that C;_; = C 1. Let x € C; — C;_y, then C;_; @ (x) is a subcomodule of
dimension i + 1 of C, so it is equal to C'¥) and we get C; = C'). Hence, the type of C' is
(1,...,1).

= let C" be a subcomodule of dimension 1 of C'. Then C’ is trivial, so C" C C.
As dim(Cy) = 1, C" = Cy. Suppose that C' has a unique subcomodule of dimension i.
Then it is C;_;. Let C” be a subcomodule of dimension 7 + 1. It has a subcomodule of
dimension 7, so C;_; C C". Moreover, % is trivial, so C” C C;. As they have the same
dimension, C” = C;.

To conclude this section, we indicate how finite-dimensional comodules can help in
renormalization. Recall the Toy model of [4]. For a rooted tree ¢ with n vertices, enumer-
ated such that the root has number one, we associate the integral

w1

>~ 1
xi(c) = / Y, “dyy . ..y “dyr, Ve > 0,
' 0 y1+cgyi+yj(i) !

where j(i) is the number of the vertex to which the i-th vertex is connected via its
incomming edge.

Let {ti,...,t,m = t} = {RY(t)/C cut of t}. We take the comodule C with basis
(x4, ... 1y, ), and structure map defined by

admissible cuts C of ¢;

With [M] = x,,(0) for M a non-empty forest, and [1] = 1, we consider the integral:
zi(c) = (([]®@ Id) o (S ® Id) o (Ac)) (x1)
Then the renormalized function is:
f(e) = 1 (7o) - 7).

We don’t have to worry anymore about non commutativity within the forests.

Example:
( ) / ]. —€
x,(c) = dy;,
l —_— c Yy A
( ) / ]_ ]. —e l —& j
T, \C = )
. o U1 C Y2 U Y2 U2t h
( ) / 1 1 1 —c l —€ l —5:1
T5(C Yy Ys 'y Y2y Y1-
’ o U1 C Yz Y1 Y3 Y2 s 2 !
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We take the comodule C with basis (x;,, 1,, 21,). We then get:
Ac(l’l3) =1® T, + ll ® T, + lg ® xy, -

So Ty, (¢) = @iy (c) — e ()], () = [, ()], (¢) + [, (), ()], (€),

. IR(C):hm< wp(0) = (@) — [Ep(en() + [z (Q)a, ()] (c)
s 20N ~[zy(e)] + [lw, ()], (c)] + [z (e)]ay (0)] — [ (e)xy ()], (c)]

7 Hpr as a comodule. Bigrading Hp

Here, we consider the (left-)comodule C' = (Hg,A). Of course it is not finite-
dimensional, but it is the union of finite-dimensional comodules (for example, the co-
modules linearly spanned by the forests of weight less than n,n € N).

Proposition 7.1 Cy = (1); if i > 1 then C; = (1) @ @;jllm(Fj).

Proof: Cy: let x € C;A(x) = 1® x. Then x = (Id ® €)(A(x)) = e(z)1l: x is constant.
i > 1: induction on i. Let x € Cip1, A(z) = 1@z +2@1+ ), Igl) ®:)3§-2). By hypothesis,
the 2%’s are in C; = (1) @ @gjfm(Fj). Suppose that x§2’ . .:cl(2) are in I'm(F;), the

J
others in C;_;. By coassociativity of A, xgl) . .a:l(l) are primitive.

j=l
Then A (3: — Fip (Z 2V ® F,.—l(asg.”))) =1®z[Hr® Ci_i],
j=1
j=1
sox—Fjq <Z x§»1) ® Fi_l(z§-2))) € C;. Hence, C;11 = C;+Im(F;;1). The result is then
=1
trivial.

Proposition 7.2 C = (1) & @gj’olm(Fj).

Proof: let H,, be the subspace of Hgr generated by the homogeneous elements of weight
n. Then &} H; is a subcomodule of C'. By 6.2, we have (®}_H;)r C Ck. For a k large
enough, we have: @ (H; = (B7_oHi)r C Ck. So as Hp = B H,;, we have the result.

It is now easy to see that C; = Ker(A?) @ (1). We recognize then the second grading
of [3], that is to say C; = {x € Hr/deg,(x) < i}, which defines deg,. Following [3], we
put Hy o = HnNC, hyg = dim(H, k), and 7, = dim(#H,). One has hgo =1 and h,o =0
if n # 0. Note that h, 1 = dim(H, N Prim(Hg)).

Proposition 7.3

bi+...+b,)!

Let ©, = —1 b1+"'+b"+1( ! nxbh o Xt € QIX X,
e bl+2b2-l;-nbn:n( ) bi!...by! ! o€ QX ]
k!
and Pnk = Z WX? N in c @[Xl y Xn]

b1+2ba+...4nby=n
bi+bo+...+bn=k

Then hyy = Oy (r1,...,1)Vn €N, and hy = @n (b1, ..., hn1) V0, k € N*.
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Proof:

by +...+0y)!
We also need ®,, = Z ( 1;' Jbr‘ ) X X e QX ... X))
10+ .. 0p:

b1+2bo+...4nbp=n

As the F; are homogeneous, we have H,, = @' | ®p,+.. +b;=n Fi(®?:17-lbj,1). As the F;
are injective, we find: r, = ®,(hy1,...,h,1). Let’s work in the algebra of formal power
series Q[[X1, ..., X,,...]]. In this algebra,we have:

(br+ ... +0,)! 4, by _ (b + ...+ ) Ly, )
2 RS D Dl BD'D A

(b1,.-.,bn)#(0,...,0) k#0 \bi+...+kby=Fk
= ) Ou(Xy,..., Xp)
k£0
- Z( 2. bI!...bk!Xll"'X’“k>
10 \b1+...4+by=l
!
_ Z(Z X.) _ ZipXi
1#0 \i#0 1_2#0){@'

We then get:

> X
— . (I)z —q_ i
E q)k(_q)la SRR _q)k) ZZ#O = BSOS = - § XZ

- o X
k#£0 1+ Z#O ®; L+ 1—2in i#0

Hence, by putting X; in weight ¢ and by comparing the homogeneous parts of each
member, we find ®p(—Py,...,—Py) = —Xj, or equivalently Ok(Pq,...,P;) = Xi. So
®k ((I)l(hl,1>7 Ceey (I)k(hl,la ey hk,l)) = @k(’/’l, N ,Tk) == th.

If & > 1, then Hor = ®eptovepmnFr(Heyas s Hepn). As F is injective, we find the
announced result.

We denote H(X,Y) = 3, hap X"YE, Hy(z) = ¥, hoy X7, R(X) = 5, X",
The second formula of 7.3 implies that H;(X) = H;(X)7,Vj € N. The first formula implies
that 1 — H(X) = ﬁ. We have then H(X,Y) =3 7 Hy(X)Y? =372 [Hi(X)Y] =

- Hll( v = 7 +(1}i(})/())1~2( SOk which is a reformulation of the main theorem of [3] (with a small

difference because of the different definitions of R(X)). We give the first values of r,, and
hy,.1 in the appendix (see also [13]).

8 The Lie algebra £!

Proposition 8.1 1. U(LY) is a free algebra;
2. Vi, ly e U(LY), weight(l1ly) = weight(l;) + weight(ls).

proof: let (p;)i>1 be a basis of Prim(Hg) such that the p;’s are homogeneous for the
weight. By proposition 7.2 and lemma 4.4, (p;, T ... TDi, )k>0,1....i,>1 1S a basis of Hr. We
define f;, . ;, € Hi by :

.....

) ) ) ) o 1 lf(jl,,jl):(ll,,lk)
fh ----- ]1(p21—|—' . Tka) B { 0 if (jla' : '>jl) 7é (Z.la' . alk)

13



As the (p;, T ... Tp;,)’s are homogeneous for the weight, (f;,
Hy.

(Fivviifitgns P T i) = (i @ fingn, Ao T2 i)

jl)kZOJL---JkZl is a basis of

-----

k
(firris @ 1. ijPilT---TPis®pis+1T---TPik)
s=0

L G ) = (i),
0 if Giryeos iy floesl) # (v, e in).

..........

i > 1, are isomorphic algebras. Moreover, the f;’s are homogeneous elements of H},
so we have weight(ff') = weight(f) + weight(f') Vf, f' € H}. As H} and U(L') are
isomorphic graded algebras, the proposition is proved.

Let A be the augmentation ideal of U (L"), that is to say A = ker(e).
Lemma 8.2 in the duality between U (L") and Hr, the orthogonal of A*®(1) is Prim(Hg).

Proof:

(A2 @ (1)) C Prim(Hg): let x € (A* @ (1))*, and I,ly € U(L'). One has to show that
(ll & lg, A(SL’)) = (ll &® lg, r X 1+1 (029 I‘), that is to say (l1l2,x) = 8([1)(12, .flf) + (ll,x)ﬁ(lg).
As U(LY) = (1) & ker(g), one has four cases to considerate:

1. e(ly) = e(lp) = 0: then L1y € A2, so (I1ls,z) = 0 =e(ly)(lg, x) + (11, x)e(l2);
2. ¢(l;) =0 and Il = 1: obvious;

3. Iy =1 and €(ly) = 0: obvious;

4. 1y = ly =1 : one has to show that (1,z) = 2(1,z); as (1,z) = 0 it is true.

Prim(Hg) C (A% @ (1))*: equivalently we show A2 @ (1) C (Prim(Hg))*t. Let p €
Prim(Hg), then (1,p) = e(p) =0, so 1 € (Prim(Hg))*. Let | € A% One can suppose
that | = l1ly, e(l1) = €(l2) = 0. Let p € Prim(Hg).

™

(Llg,p) = (L @1, p@1+1®p) =e(l1)(l2,p) + (l1,p)e(l2) = 0.

We denote by U(L'), the space of the homogeneous elements of U(L') of weight
n. We have dim(U(L'),) = dim(H,) = r,. Moreover, A = ®,>1U(L'),. We denote
A2 = A2NULY),. We have A* = @,>1.42. Now, observe that £' + A = U(L)
(it is obvious when one takes a Poincaré-Birkhoff-Witt basis of U(L')). So for every
n > 1, we can choose a subspace G,, of £!, such that U(L'), = G,, ® A2. By lemma 8.2,
dim(G,,) = dim(Prim(Hg) N H,) = hy1. We denote G = @,>1G,,.

Lemma 8.3 G generates the algebra U(LY).

Proof: we denote by < G > the subalgebra of U(L') generated by G. Let | € U(LY),
homogeneous of weight n; we proceed by induction on n. If n = 0, then [ is constant:
it is then obvious. Suppose that every element of weight less than n is in < G >. As
UL, = G, ® A%, one can suppose that | = [jly, with I;,l, € A. By lemma 8.1,
weight(l) = weight(ly) + weight(ly), so weight(ly) < n, and weight(ly) < n. Then

14



li,lp eE<G>,and |l e< G >.

We denote by F(G) the free associative algebra generated by the space G. The
gradation of G induces a gradation of the algebra F(G). By the last lemma, we have a
surjective algebra morphism:

[ F(G) — UL
T'{QEG — q.

Moreover, T is homogeneous of degree 0. We now calculate the dimension f, of the
homogeneous part of weight n of F(G) :

fn - Z h’a1,1 e hak,l

ai1+...4ax=n

a;>1Vi

= Z T T I

b1+2ba+...4nby=n

(For the second equality, b; is the number of the a;’s equal to 4; the third equality was
shown in the proof of proposition 7.3).

As the homogeneous parts of (L") and F(G) have the same finite dimension, and as YT
is surjective and homogeneous of degree 0, it is in fact an isomorphism.

We now put a Hopf algebra structure on F(G) by putting A(g) = g®1+1®g Vg € G.
As G C L', the elements of G are primitive in both U(£L') and F(G), so T is a Hopf
algebra isomorphism. Hence, it induces a Lie isomorphism between Prim(F(G)) and
Prim(U(LY)) = L. But Prim(F(G)) is isomorphic to the free Lie algebra generated by
G (see for example [1]), so we have the following result:

Theorem 8.4 L' is a free Lie algebra.

9 Primitive elements

9.1 Primitive elements of the Hopf Algebra H;,qier

First, we construct a family of primitive elements of H;,q4e-. For that, we introduce
the Hopf algebra Q[ X7, ..., X,,...] with coproduct defined by A(X;) = X; ® 1+ 1® X;.
In this algebra let

\I/n: Z Xfl...XS".

ail...ap!
a1+2as2...+nap=n 1 n

Lemma 9.1 A(V,) =370, ¥,_;.

Proof: one easily shows that:

n ki:ai
AXE X =YY (Zl) <Z")Xfl X X@R | ek,
1 n

i=0 k;=0
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n ki=a;
A(V,) = oYy —— - ( )...(Zz)x{ﬂ...Xﬁn@Xfl—kl...Xgn—’fn

a1+2az...+nap=n =0 k;=0
oy <b1;“>...<%:cn>

X X xo X
(bl + Cl) (b + Cn) " 1 "

b1+ Anbp+c1+...+ncn=n

1 j c1 Cn—j
=Z > Y TN e XX

bi+...+jbj=j c1t..+(n—j)en—j=n—j
j=0

We define a sequence (P;);>1 of elements in Hjagaer Dy:
P =10, P, =1,—-9,(P,...,P,_1,0) ¥n > 2.
As VU, = X, + ¥V, (Xq,...,X,1,0), we have [,, = U, (Py,...,P,_1, P).
Proposition: 9.2 P; is primitive for all i > 1.

Proof: induction on . It is trivial for ¢ = 1. Suppose it is true for each 7 <7 — 1. Then

j=i—1
Ay = > L@l
j=1
j=i—1
= Z\If Pl,..., )®\I]2 J(Pla-"vpi—j>

= A (U, (Py,...,P_1,0))

by 9.1, and the fact that Pp,..., P are primitive. So A(l,- -V, (P,...,P_1,0)) =
A(P;) = 0, hence P, is primitive.

We work again in Q[[X1,...,X,,...]]. In this algebra, we have:

X X0 X XD
> ﬁ22< 2 ﬁ)

18 ..

(b15-+-,b1)#(0,...,0) o k#0 \b1+2ba+...+kbr=Fk
= ) (X, Xp)
k#0

1 Il
:ZF( 2 bv...bk!Xfl”‘X’gk>

140 \bi+ba+...4+bp=l
l
_ 1 X
= D X
1£0 i£0
= (exp-—1) (ZX)
1#£0
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So In (1+2k¢0xyk(xl,...,xk)) —Tn <1+(6Xp—1) (Z#OXZ-» - (Z#OXZ-) . By

putting X; in weight ¢, and comparing the homogeneous parts, we find:

Z (—1)ar+taitl (a+... +a—1 Uit =X

a ! o)
a1+...+ta; =1 1 v

As W, (P, ..., P) =1;, we deduce:

Proposition 9.3

p= Y (cprerent (@t H 0T D

ail. .. a;!
a1+...+ta; =1 1 v

In H g, consider the projection 7. on the space spanned by rooted trees, which vanishes
on the space spanned by non connected forests. We have:

Lemma 9.4 let p € Hy be a primitive element such that w.(p) = 0. Then p = 0.

Proof: suppose p # 0, and let writep = > __ on) antyt ... t.*, where the t;’s are rooted

trees, Wlth ~ # 0. One can suppose that wezght(tk) > weight(t;) Vi. Let t* ... ¢3* such
that oy # 0 and aq # 0.

Let F' a forest such that in the basis (F1 ® F5) g and fmests of Hr ® Hp, the coeffi-
cient of #{* .. ;"' @t in A(F) is # 0. Then F = t{* .. t3*, and then this coefficient
is ay, or there ex1sts t" a rooted tree with weight(t') > wezght(t), such that 25 £ 0.
So the coefficient of ¢]* .. .tzf’l ® ty in A(p) is aga, # 0. As p is primitive, ¢, = 1 or
.. .tZl’“’l = 1. If t, = 1, then p is constant: this is a contradiction, because then p
would not be primitive. So ¢ ...#,*"' =1, and then m(p) # 0.

Theorem 9.5 (P,);en+ 1S a basis of the space of primitive elements in Hiaader-

Proof: let p be a primitive element in Hju44e,- Then m.(p) is a linear combination of
ladders, so there is a linear combination p’ of P; such that 7.(p) = 7.(p'). By the lemma,

p=17.

9.2 The operator m

Recall that m is the projection on I'm(Fy) = Prim(Hg) which vanishes on (1) ®
@jzalm(F;).

Theorem 9.6 Let F' be a non-empty forest.

We put A Z FO @ F® - then:
(F)

=F -y FOTm(F®).
F
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Proof: induction on weight(F"). If weight(F') = 1, it is obvious. Suppose the formula is
true for every forests of weight less than or equal to n — 1. Let F' be a forest of weight n.
Then weight(F®) < weight(F), so:

AF) = Y FOeF?
(F)

= S F0e [mE®) ¢ 0 (00T ((F2)?)

(F) (F@)

= Z FO @ m(F@) + Z (F(l))(l) ® [(F(l))(z)Tﬁl(F(Q))] (by coassociativity)
(F) (F)

= Y A(FITm(F®)) (by 4.1).
(F)

So F =Y FOTm(F®) € Im(Fy); as > FOTm(FP) € @;52Im(F}), we have
(F) (F)

the result for F'.

So we have an easy way to find a family who generates the space of primitive elements
of weight n, by induction on n. Moreover, we have relations between the 7 (F’), which
are given by m(F'Tp) = 0 for any non-empty forest F’ and for any primitive element
p we have ever found. So we easily have a basis of the space of homogeneous primitive
elements of weight n.

For example, for n = 1, we have m(l;) = [y; the basis is (I;); we have the relation
m1(F'Tl) = 0 VF' non-empty forest; so Ry : m(T') = 0 VT rooted tree of weight greater
than or equal to 2.

Hence, for n = 2, we only have to compute m,(1?) = I? — 21, Tm(ly) = I3 — 2ly. The
basis is (12 — 2l5), and we have: 7 (F'T(I3 — 1)) = 0, which gives: Ry: m (LT) = 0VT
rooted tree of weight greater than or equal to 2.

For n = 3, we have to compute 7 (3); the others are zero by R and R,. One finds
the basis (I — 31115+ 3l3) and the relation R3: m (I3T) = 7, (1,T) VT rooted tree of weight
greater than or equal to 2.

For n = 4, one would have to compute 7 (I}) and m;(I3), and so on.

Remark: by linearity, the formula of 9.6 is true for any x € Hg. For example, for
T = p1p2, with py, po primitive elements of Hg, one finds: m(x) = p1ps — p1 Tpe — P2 T p1;
hence, Si(p1) = m (=Y (p1)ly) with Y (F') = weight(F') F for all forest F', and S; defined
in [3].

10 Classification of the Hopf algebra endomorphisms
of Hp

In the sequel, we will denote by CT' the set of (connected) rooted trees.

18



Definition 10.1 Let (P;)cor be a family of primitive elements of Hr indexed by CT.
Let ®(p,) be the algebra endomorphism of Hg defined by induction on weight(T") by:

(P(Pt (ll) = Pll;
VT € CT, with A(T ZT QT

(I)(pt Z (I)(pt TPT @ | + Pr.

Then ®p,) is a bialgebra endomorphzsm of Hg.

Proof: one has to show (®(p,) ® ®p,)) © A(T) = A((I)(pt)(T)) VT € CT. We proceed by
induction on n = weight(T). It is obvious for n = 1, since then 7" = [; is primitive.
Suppose it is true for all rooted trees of weight < n. Then as ®(p,) is an algebra endo-
morphism, it is true for all non connected forests of weight < n. Let T be a rooted tree
of weight n. Then:

A(®p,)(T)) = ZA T Ppe)
= Z(D(Pt N®Pra |+ p)(TV) @ (D(p,) (T ) T Prs))

PSR DY (‘D(Pt)((T(Q))(l))TP(Tm))(”) + Py
(T@)
D @) (TM) @ By (TP).
(T)
We used the induction hypothesis and 4.1 for the second equality, and coassociativity
of A for the third.

Theorem 10.2 Let VU be an endomorphism of the bialgebra Hgr. Then there exists a
unique family (P;) of primitive elements, such that V = ®p,y.

Proof: one remarks that if (P;) and (Q;) are two families of primitive elements, such that
P, = @, if weight(t) < n, then ®(p,)(z) = Pg,)(z) for all z of weight < n. So we only
have to show that there exists a family (P;) such that if we denote:

P _ P, if  weight(T) <n
Bl 0 if weight(T) > n,
then ¥ (z) = q)(Pt(n))(x) for all = of weight < n. We take P, = ¥(ly), and then it is true

for n = 1. Suppose we have P; for all ¢ of weight < n. We put ¢ =&, . Let T

(7"
be a rooted tree of weight n.

ny N @ W(T®)
Zq)n 1 ®(I)n (T (2)) :A((I)n—l(T))'

We take Pr = ¥(T) — <I>n_1(T); then W(7T') = <I>(P(n))(T).
For the uniqueness of the family (P;), we have m (V(T")) = Pr, VT rooted tree.
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Proposition 10.3 Let W be an endomorphism of the bialgebra Hg; then ¥ is an endo-
morphism of the Hopf algebra Hg, that is to say Vo S = S o WU.

Let Bt be the operator of Hr which appends each term of a forest ¢;...%¢, to a
common root. One can show that for every x € Hp,

A(BT(z)) = BT () @ 1 + (Id ® BT)(A(x)).
Lemma 10.4 Let p be a primitive element of Hg and let x € Hp, with e(z) = 0. Then

S(xTp)=—aTp—S(z Z Sz (2P Tp) where A Zx(l ® z?.

In particular, for p =1y,

S(B*(x)) = =B (x) = S(z)ly — Y _ S(z)BF(z®).

(z)

Proof: we have (S ® Id) o A(z) = 0. Then we use 4.1 to conclude.

Proof of the proposition: let I’ be a forest in Hg.

Uo S(BYHF)) = F)TPR, — Z U(F)T Py gy — Pre(ry
— Z Vo S(FOYW(F®)TR,) Z Vo S(FOW(F)T Py (g
—VoS(F)P, — Z\IIOS PB+ F(2))

SoW(BY(F)) = S(¥(F)TH,) +ZS FO)T Py peny) + S(Ppr))
(F)

- TPll Z \Il TPB+(F(2) PB+(F)
- Z SoU(F NTPR,) Z S o W(FD) W (FO)T Pgy (pisy]

—SoU(F)P, — Zso\p PB+ F@)-
We conclude by an induction on the weight.

11 Associated graded algebra of Hp and coalgebra

endomorphisms
As it is shown in [3], H is filtered as Hopf algebra by deg,. What is the associated
graded algebra ?

The filtration is given by (’HR)%P) = {zr € Hp,deg,x <n} = (1)@ BTIm(F;) =C, =
Ker(A™)@(1). We put m; the projection on Im(F}) which vanishes on (1) @@mlm(Fj).
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Lemma 11.1 Let p1,...,Dj,Pj+1,--.,Pj+1 be primitive elements of Hr. Then

7Tj+l(pj+l—|— e ij_H.pjT e Tpl) = Z pg(j+l)—[— Ce Tpg(l),
o (7,1)-shuffle

where a (,0)-shuffle is a permutation o of {1,...,j+1} such that o(1) < 0(2) < ... < (j)
ando(j+1)<o(j+2)<...<a(j+1).

Proof: by induction we prove:

N pin T Tpjap T ) = D Pe @ O Do)
o (j,1)-shuffle

AT Z pa(j+l)T cee Tpcr(l)
o (j,1)-shuftle

So Pt T oo Tty To Toi— Y Pogany T Tooq B8 in (He)\)_),
o (j,1)-shuftle
which proves the lemma.

We naturally identify (’7’1(1;5)553)/(’;‘-[R)gi)1 with I'm(F,). We can now describe gr(Hg),
the associated graded Hopf algebra:

i) as vector space, gr(Hg) = (1) ® & Im(F;);

11) Vp]T e Tpl c Im(Fj), pj-l—lT Ce ij+1 c ]m(ﬂ),

(ijT . ij+1) * (p]T . Tpl) = Z pa(j-l—l)—l— e Tpa(l)>
o (j,1)-shuftle

where * is the product of gr(Hg);
iii) Vp,T... Tps € Im(E}),

Ap;T...Tp1) = 1@p;T...Tp1) +(p;T...T;m ®1)
k=

+ Z(pj—l— o Tok) @ (pea T ... Tpr);
k=2

iv) Vo € Im(F}),j > 1,e(z) = 0;
V) Vpu T ... Tp; € Im(Fy), Su(p; T ... Tp1) = (=1)py T... Tp;.

Clearly, the linear map from gr(Hg) into Hz which is the identity on every Im(F;)
is a coalgebra isomorphism. It is not an algebra morphism, although we shall prove later
that gr(Hg) and Hg are in fact isomorphic Hopf algebras, via another map.

We are going to classify the coalgebra endomorphisms Hy or indifferently gr(Hg).
First we fix a notation. Let u be a linear map from Prim(Hz)®" into Prim(Hg)®/. Then
7 is the linear map from I'm(F;) into Im(F;) defined by @ = Fj ouo F; .
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Theorem 11.2 For all i € N*, let u; : Prim(Hg)®" — Prim(Hg). Let O, be the
linear map defined by:

(I)(ui)(l) = 1'

Puy(nT... Tp) = Z Z (Ugy @ .- @ Ugy )(Pn T ... Tpy).

a1+...4ap=n

Then ®,,) is a coalgebra endomorphism of Hr (or gr(Hr)).
Moreover, if ® is a coalgebra endomorphism of Hgr (or gr(Hr)), then for all i € N*, there
exists a unique u; : Prim(Hg)® —— Prim(Hg), such that ® = ().

Proof: first we prove that ®,,) is a coalgebra endomorphism:

(I)(ui) X (I)(ui)(A(pnT .. Tpl)) =

>y > [0 ® T w0, ) ® (0, @B o T Tojsa) © (03T 1))

J ait..tag=j bi+..+b=n—j

=4 ( Z (Ua, ® - @ g, )(Pn T .. Tp1) = Un(pa T - ..Tp1)>

d1+---+dm:n

:A( Z (udl®...®udm)(pn—|—...—|—p1))—O

d1+---+dm—n
= A((I) (pnT Tpl))

Let @ be a coalgeabra endomorphism. A(®(1)) = ¢(1) ® ¢(1), so ¢(1) = 0 or 1. As
eod =g, &(1) = 1. We constuct u; by induction on i. For i = 1, u; is the restriction of
® on Prim(Hg). Suppose we have u; for ¢ < n. Then with u} = u; if i < n and ] = 0 if
i>n,®=oy)on (1)® &) Im(F;). So

A@p,T...Tp1)) = (@@®) o A(p,T...Tpy)
= (D) @ Puy) o A(pn T ... Tp1) = APy (P T ... Tp1)).

So we can take Wy, (p, T ... Tp1) = (@ — ) (n T ... Tpa).
For the uniqueness, observe that m o ® = u; on Im(F;).

We now give a criterion of inversibility of a coalgebra endomorphism:

Proposition 11.3 ®,,) is bijective if and only if the restriction uy of @,y to Prim(Hg)
18 bijective.

Proof: =: obvious.

<: we put ® = ®,,). Recall that C; = (1) & & Im(F;). As ®(C;) C C;, it is enough
to show that ® ¢, : C; — Cj is inversible Vi. For i = 1, it is the hypothesis. Suppose it
is true for a certain i — 1. Then ®(p; T ... Tpy) — (M)(pﬂ— ... Tp1) belongs to
Ci_1, so it belongs to Im(®); hence (u1 @ ... @uy )(C;) C Im(P). As (U1 ® ... ®@uy) is
surjective (because u, is surjective), ®|¢, is surjective.

Let z € C;, () = 0. o = z; +y, z; € Im(F;), y € C;—1. Then &(z) = 0 =
(w1 ® ... ®uy )(x;)+Ci—1,50 (U1 @ ... @ uy )(z;) = 0 (because it belongs to Im(F;)NC;_1).
As uy is injective, x; = 0, and x € C;_1. As ®|¢,_, is injective, x = 0: ®|¢, is injective.

We now give a criterion to know when a coalgebra endomorphism is in fact a bialgebra
endomorphism.
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Proposition 11.4 Let ® = ®(,,) be a coalgebra endomorphism. Let P = Puny be the
coalgebra endomorphism with u}! = w; if 1 <n, ul =0 if ¢t > n.

1. (case of Hr) ® is a bialgebra endomorphism if and only if for all z; € Im(F;),
z; € Im(F}), Ui (z; * ;) = ==V (z,.2;) + 0D (z,). 90+~ (7).

2. (case of gr(Hg)) ® is a bialgebra endomorphism if and only if for all x; € Im(F;),
z; € Im(F}), Ui (z; x ;) = — U (g % x;) + OO (1) * (I)(i—irj—l)(xj).

Proof: we study the case of Hp. Observe that ®(v;.2;) = Wi (z; * x;) + T~ (2,.25)
because x;.1; — x; * z; belongs to Cjy; 1. Moreover ® = ®(+=Y on C;,; ;. It is then
obvious. The proof in the case of gr(Hg) is analog, even easier.

12 Automorphisms of Hp

In the following, we shall identify gr(#Hg) and Hg as vector spaces via:
Id: Im(F;) C gr(Hg) — Im(F;) C Hg.
Now the vector space H g has two Hopf algebra structures: (Hg, ., A, S) and (Hg, *, A, S,).
Note that the coproduct is the same in both cases. Both are graded as Hopf algebras by
the weight. We still denote by H; the homogeneous components, which are the same for
both structures. (Hg,*,A,S,) is by construction graded as Hopf algebra by deg,, and
the homogeneous components are the Im(F;)’s.

We denote the augmentation ideal, which is the same for both structures, by M, and
its square in (Hg,.) by M2 We put M; = M NH; and M? = M? N H;. We have:

M = & M; and M? = @; M2

Obviously, Y3 HiNIm(Fy) = H;N Y Im(Fy) = H; if i < 1. So MZ+> . H;NIm(F;) =
H; = M,. Hence, we can choose V; ; C H;NIm(Fj}), such that M; = MZ?®®,V; ;. We put
Vi =®,Vij, and V = @, ;V; ;. Note that V; = H;. Moreover, for any = € M?, 7.(z) =0,
so by lemma 9.4, M?* N Im(F) = M? N Prim(Hg) = (0). So Viy = H; N Im(Fy).

Lemma 12.1 V generates the algebra (Hpg,.).

Proof: we denote by (V) the subalgebra of (Hg,.) generated by V.

We have to show that H; C (V) Vi > 1. We proceed by induction on 7. If ¢ = 1, then it
is true since V; = H;. Suppose it is true for any i/ <i—1. Let v € H; = M2 @ V. Tt is
obvious if x € V;. If z € M2, one can suppose that x = mims, with m; and my in M.
Then m; and my cannot be constant, so weight(m,) < i and weight(ms) < i. So they
are in (V), so z € (V).

Lemma 12.2 V generates the algebra (Hg, *).

Proof: we denote by (V'), the subalgebra of (Hg, *) generated by V.

Let x € Hi. Let j = deg,(x). If j = 1, then z € (V). since Im(Fy) = &;V;1. Sup-
pose that y € (V), for any y with deg,(y) < j. One can suppose that + € M =
M2 V. If z € V, then x € (V),. If z € M?, one can suppose that x = mims, with
my,me € M. Then deg,(x) = deg,(my) + degy(ms2), so deg,(my) < j and deg,(m2) < 7,
so my and mg are in (V),, and m; * me € (V),. By construction of the product s,
mymg = my *mg + (1) & Gr<;Im(F). So by induction hypothesis, x = m;msy € (V).

We denote by S(V') the symmetric algebra generated by V.

23



Lemma 12.3 1. Vi € N*, dim(V}) is the number of rooted trees of weight i.

2. There is an algebra isomorphism between (Hg,.) and S(V') which is the identity on
V.

Proof:

1. We have dim(V;) = dim(M;) — dim(M?). A basis of M; is formed by forests of
weight ¢, whereas a basis of M? is formed by non connected forests of weight 7. The first
point is then obvious.

2. As Hp is commutative, we have an algebra morphism:

L SV) — (Hg,.)
A'{:BGV — x

By lemma 12.1, A is surjective. S(V) is graded as algebra by putting V; in degree i. By
the first point, the homogeneous components of S(V') and Hpy (for the weight) have the
same (finite) dimensions. Moreover, A is homogeneous of degree zero; as it is surjective,
it is injective; so it is an isomorphism.

Using A, we define an algebra isomorphism:

= . (%Ra') — (HR>*)
Tl z eV — T

By lemma 12.2, = is surjective. Moreover, it is homogenous of degree zero for the
weight; as the homogeneous components have the same finite dimensions in (Hg,.) and
in (Hg, %), it is an isomorphism.

As the coproduct is the same for both Hopf algebra structures on ‘Hg, and since = fix
a system of generators, it is a bialgebra isomorphism. Moreover, ZoSo="!is an antipode
of (Hg,*,A), so it is equal to S,. Hence, = is a Hopf algebra isomorphism.

We have deg,(Z(z)) < deg,(x) Vx € Hpg, since it is true for any x € V. We get:

E({zr € Hpr/deg,(x) < j,weight(x) =i}) C {x € Hgr/deg,(z) < j,weight(x) =i} Vi, j.

As these spaces have the same finite dimension, they are in fact equal. We deduce:

E({z € Hr/degp(z) = j}) = {z € Hr/degp(z) = j}.
We have entirely proved:

Theorem 12.4 gr(Hg) and Hgr are isomorphic Hopf algebras; there is a Hopf alge-
bra isomorphism = : (Hg,.) — (Hg,*) such that weight(=Z(z)) = weight(x) and
deg,(Z(z)) = degy(z) for any v € Hpg.

We work now in gr(Hgz). We denote by M*? the square of the augmentation ideal
in this algebra. Let u; be a linear application from Prim(gr(#Hg)) into itself. Can we
extend it to a bialgebra endomorphism of gr(Hg)? With 11.4, one sees that w3 is entirely
determined on M**NIm(Fy), and we can extend it to the whole Im(F,) as we want. More
generally, ; is determined over M*?*NIm(F;). So in fact, if we fix a complement C' of M*?,
a bialgebra endomorphism @ is entirely determined by (71 0 @) : C' —— Prim(gr(Hg)).
Moreover, for any application L : C' —— Prim(gr(Hg)), there is a unique bialgebra
endomorphism ®;, such that (m; o @) = L. Because of 12.4, we have the same result
for Hg. In this case, two important choices of C' can be done:
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1. if we choose C' the subspace generated by the rooted trees: with notations of 10.1,

—  Prim(Hg)
— Dt

(T 0 Py)ie : { < rOOtei trees )

2. if we choose a complement C' which contains Prim(Hg), then we see that
{ Endbialgebra(HR) L ‘C(Prlm(HR))

) —
Because of 11.3, we have a surjection:

¥

We look for a lifting of GL(Prim(Hg)) into Autpiageatra(Hr). It is easier to work in
gr(Hg), for there is an obvious lifting: if u € GL(Prim(Hg)), we take u; = u, u; = 0 if
i > 2; then one proves easily that ®, = ®(,,) € Autpiagesra(Hr), and &, o &, = @y, So,
with 10.3 we have the following result:

is surjective.
(I)\Prim(HR)

AUtbialgeabra(HR) — GL(PTZm<HR)>
d — (I)|Prim('HR)

Theorem 12.5

AUtbialgebra(HR) = AutHopf(’HR) = KeT’(X) X GL(PT’Zm(HR))

13 Appendix

n [1]213[4][5]6] 7181 91 10 | 11 | 12 13 14 15
e | 12492048 115|286 | 719 | 1842 | 4766 | 12486 | 32973 | 87811 | 235381
Pma |L|1[1]2] 38|16 | 41 | 98 | 250 | 631 | 1646 | 4285 | 11338 | 30135
16 17 18 19 20 21 29 23
634847 | 1721159 | 4688676 | 12826228 | 35221832 | 97055181 | 268282855 | 743724984
80791 | 217673 | 590010 | 1606188 | 4392219 | 12055393 | 33206321 | 91752211
24 25 26 o7 28 29
2067174645 | 5759636510 | 16083734329 | 45007066269 | 126186554308 | 354426847597
254261363 | 706465999 | 1967743066 | 5493195530 | 15367129299 | 43073007846
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