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We introduce two operads based on the set of planar forests. With its usual product and

two other products defined by different types of graftings, the algebra of planar rooted

trees H becomes an algebra over these operads. The compatibility with the infinitesimal

coproduct of H and these structures is studied. As an application, an inductive way

of computing the dual basis of H for its infinitesimal pairing is given. Moreover, three

Cartier–Quillen–Milnor–Moore theorems are given for the operads of planar forests and

a rigidity theorem for one of them.

Introduction

The Connes–Kreimer Hopf algebra of rooted trees, introduced in [1, 7–9], is a commuta-

tive, noncocommutative Hopf algebra, its coproduct being given by admissible cuts of

trees. A noncommutative version, the Hopf algebra of planar rooted trees, is introduced

in [4, 6]. We furthemore introduced in [5] an infinitesimal version of this object, replacing

admissible cuts by left-admissible cuts: this last object is here denoted by H. Similarly,

with the Hopf case, H is a self-dual object and it owns a nondegenerate, symmetric Hopf

pairing, denoted by 〈−, −〉. This pairing is related to a partial order on the set of planar

rooted forests, making it isomorphic to the Tamari poset. As a consequence, H is given
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a dual basis denoted by ( fF )F∈F, indexed by the set F of planar forest. In particular, the

sub-family ( ft )t∈T indexed by the set of planar rooted trees T is a basis of the space of

primitive elements of H.

The aim of this text is to introduce two structures of operad on the space of planar

forests. We introduce two (nonsymmetric) operads P↘ and P↗ defined in the following

way:

(1) P↘ is generated by m and ↘∈ P↘(2), with relations:

⎧⎪⎪⎨
⎪⎪⎩

m ◦ (↘, I ) = ↘ ◦(I , m),

m ◦ (m, I ) = m ◦ (I , m),

↘ ◦(m, I ) = ↘ ◦(I , ↘).

(2) P↗ is generated by m and ↗∈ P↗(2), with relations:

⎧⎪⎪⎨
⎪⎪⎩

m ◦ (↗, I ) = ↗ ◦(I , m),

m ◦ (m, I ) = m ◦ (I , m),

↗ ◦(↗, I ) = ↗ ◦(I , ↗).

Note that these operads are not the operad of algebras with two compatible associative

products of [2], which is also described in terms of planar rooted trees. We then introduce

two products on H or on its augmentation ideal M, denoted by ↗ and ↘. The product

F ↗ G consists of grafting F on the left leaf of G and the product F ↘ G consists of

grafting F on the left root of G. Together with its usual product m, M becomes both a

P↘- and a P↗-algebra. More precisely, M is the free P↘- and P↗-algebra generated by

a single element � . As a consequence, P↘ and P↗ inherit a combinatorial representation

using planar forests, with composition iteratively described using the products ↘ and

↗.

We then give several applications of these operadic structures. For example, the

antipode of H is described in terms of the operad P↘. We show how to compute elements

fts, with t ∈ T, using the action of P↘, and the elements fF s, F ∈ F from the preceding

ones using the action of P↗. Combining all these results, it is possible to compute by

induction the basis ( fF )F∈F.

We finally study the compatibilities of products m, ↗, ↘, the coproduct �̃ and the

coproduct �̃↗ dual of ↗. This leads to the definition of two types of P↗-bialgebras, and

one type of P↘-bialgebras. Each type then defines a suboperad of P↗ or P↘ corresponding

to primitive elements of M, which are explicitly described:
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(1) The first one is a free operad, generated by the element �
� − � � ∈ P↗(2). As

a consequence, the space of primitive elements of H admits a basis (pt )t∈Tb

indexed by the set of planar binary trees. The link with the basis ( ft )t∈T is

given with the help of the Tamari order.

(2) The second one admits a combinatorial representation in terms of planar

rooted trees. It is generated by the corollas cn ∈ P↗(n), n ≥ 2, with the fol-

lowing relations: for all k, l ≥ 2:

ck ◦ (cl , I , . . . , I︸ ︷︷ ︸
k − 1 times

) = cl ◦ ( I , . . . , I︸ ︷︷ ︸
l − 1 times

, ck).

(3) The third one admits a combinatorial representation in terms of planar

rooted trees, and is freely generated by �
� ∈ P↘(2).

We also give the definition of a double P↗-bialgebra, combining the two types

of P↗-bialgebras already introduced. We then prove a rigidity theorem: any double

P↗-bialgebra connected as a coalgebra is isomorphic to a decorated version of M.

This text is organized as follows: the first section gives several recalls on the

infinitesimal Hopf algebra of planar rooted trees and its pairing. The two products

↘ and ↗ are introduced in Section 2, as well as the combinatorial representation of

the two associated operads. The applications to the computation of ( fF )F∈F is given in

Section 3. Section 4 is devoted to the study of the suboperads of primitive elements and

the last section deals with the rigidity theorem for double P↗-bialgebras.

Notations.

(1) We shall denote by K a commutative field, of any characteristic. Every vector

space, algebra, coalgebra, etc. will be taken over K.

(2) Let (A, �, ε) be a counitary coalgebra. Let 1 ∈ A, nonzero, such that �(1) =
1 ⊗ 1. We then define the noncounitary coproduct:

�̃ :

{
Ker(ε) −→ Ker(ε) ⊗ Ker(ε)

a −→ �̃(a) = �(a) − a ⊗ 1 − 1 ⊗ a.

We shall use the Sweedler notations �(a) = a(1) ⊗ a(2) and �̃(a) = a′ ⊗ a′′.

1 Planar Rooted Forests and Their Infinitesimal Hopf Algebra

We here recall some results and notations of [5].
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1.1 Planar trees and forests

(1) The set of planar trees is denoted by T, and the set of planar forests is denoted

by F. The weight of a planar forest is the number of its vertices. For all n ∈ N,

we denote by F(n) the set of planar forests of weight n.

Examples. Planar rooted trees of weight ≤ 5:

� , �
�
, �∨��

, �
�
�

, �∨�� �

, �∨��

�

, �∨��

�

,
�∨��

� , �
�
�
�

, �∨��

��� �
, �∨�� �

�

, �∨�� �

�

, �∨�� �

�

, �∨��

��

,

�∨��∨��

, �∨��∨� �

, �∨��

�

�

, �∨��

�

�

,
�∨��

�

�

,
�∨��

�

�

,
�∨��

�

�

, �

�

�∨� �

, �
�
�
�
�

.

Planar rooted forests of weight ≤ 4:

1, � , � � , �
�
, � � � , �

�
� , � �

�
, �∨��

, �
�
�

, � � � � , �
�
� � , � �

�
� , � � �

�
,

�∨��

� , � �∨��

, �
�
�

� , � �
�
�

, �
�

�
�
, �∨�� �

, �∨��

�

, �∨��

�

,
�∨��

� , �
�
�
�

.

(2) The algebra H is the free associative, unitary algebra generated by T. As a

consequence, a linear basis of H is given by F, and its product is given by the

concatenation of planar forests.

(3) We shall also need two partial orders and a total order on the set Vert(F )

of vertices of F ∈ F, defined in [4, 5]. We put F = t1 . . . tn, and let s, s′ be two

vertices of F .

(a) We shall say that s ≥high s′ if there exists a path from s′ to s in F , the

edges of F being oriented from the roots to the leaves. Note that ≥high is

a partial order, whose Hasse graph is the forest F .

(b) If s and s′ are not comparable for ≥high, we shall say that s ≥left s′ if one

of these assertions is satisfied:

(i) s is a vertex of ti and s′ is a vertex of t j, with i < j.

(ii) s and s′ are vertices of the same ti, and s ≥left s′ in the forest

obtained from ti by deleting its root.

This defines the partial order ≥left for all forests F , by induction on the

weight.

(c) We shall say that s ≥h,l s′ if s ≥high s′ or s ≥left s′. This defines a total order

on the vertices of F .
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1.2 Infinitesimal Hopf algebra of planar forests

(1) Let F ∈ F. An admissible cut is a nonempty cut of certain edges and trees of

F , such that each path in a noncut tree of F meets at most one cut edge. The

set of admissible cuts of F will be denoted by Adm(F ). If c is an admissible

cut of F , the forest of the vertices that are over the cuts of c will be denoted by

P c(t ) (branch of the cut c), and the remaining forest will be denoted by Rc(t )

(trunk of the cut). An admissible cut of F will be said to be left-admissible if,

for all vertices x and y of F , x ∈ P c(F ) and x ≤left y imply that y ∈ P c(F ). The

set of left-admissible cuts of F will be denoted by Adml (F ).

(2) H is given a coproduct by the following formula: for all F ∈ F:

�(F ) =
∑

c∈Adml (F )

P c(F ) ⊗ Rc(F ) + F ⊗ 1 + 1 ⊗ F .

Then (H, �) is an infinitesimal bialgebra, that is to say: for all x, y ∈ H,

�(xy) = (x ⊗ 1)�(y) + �(x)(1 ⊗ y) − x ⊗ y.

Examples.

�( � ) = � ⊗ 1 + 1 ⊗ � ,

�( � � ) = � � ⊗ 1 + 1 ⊗ � � + � ⊗ � ,

�( �
�
) = �

� ⊗ 1 + 1 ⊗ �
� + � ⊗ � ,

�( �
�
� ) = �

�
� ⊗ 1 + 1 ⊗ �

�
� + � ⊗ � � + �

� ⊗ � ,

�( �∨��

) = �∨�� ⊗ 1 + 1 ⊗ �∨�� + � � ⊗ � + � ⊗ �
�
,

�( �
�
�

) = �
�
�

⊗ 1 + 1 ⊗ �
�
�

+ �
� ⊗ � + � ⊗ �

�
,

�( � � � � ) = � � � � ⊗ 1 + 1 ⊗ � ⊗ � � � + � � ⊗ � � + � � � ⊗ � ,

�( �
�
� � ) = �

�
� � ⊗ 1 + 1 ⊗ �

�
� � + � ⊗ � � � + �

� ⊗ � � + �
�
� ⊗ � ,

�( � �
�
� ) = � �

�
� ⊗ 1 + 1 ⊗ � �

�
� + � ⊗ �

�
� + � � ⊗ � � + � �

� ⊗ � ,

�( � � �
�
) = � � �

� ⊗ 1 + 1 ⊗ � � �
� + � ⊗ � �

� + � � ⊗ �
� + � � � ⊗ � ,

�( � �∨��

) = � �∨�� ⊗ 1 + 1 ⊗ � �∨�� + � ⊗ �∨�� + � � ⊗ �
� + � � � ⊗ � ,

�( � �
�
�

) = � �
�
�

⊗ 1 + 1 ⊗ � �
�
�

+ � ⊗ �
�
�

+ � � ⊗ �
� + � �

� ⊗ � ,

�( �∨��

� ) = �∨��

� ⊗ 1 + 1 ⊗ �∨�� + � ⊗ �
�
� + � � ⊗ � � + �∨�� ⊗ � ,

�( �
�
�

� ) = �
�
�

� ⊗ 1 + 1 ⊗ �
�
�

+ � ⊗ �
�
� + �

� ⊗ � � + �
�
�

⊗ � ,

�( �
�

�
�
) = �

�
�
� ⊗ 1 + 1 ⊗ �

�
�
� + � ⊗ � �

� + �
� ⊗ �

� + �
�
� ⊗ � ,
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�( �∨�� �

) = �∨�� � ⊗ 1 + 1 ⊗ �∨�� � + � ⊗ �∨�� + � � ⊗ �
� + � � � ⊗ � ,

�( �∨��

�

) = �∨��

�

⊗ 1 + 1 ⊗ �∨��

�

+ � ⊗ �∨�� + �
� ⊗ �

� + �
�
� ⊗ � ,

�( �∨��

�

) = �∨��

�

⊗ 1 + 1 ⊗ �∨��

�

+ � ⊗ �
�
�

+ � � ⊗ �
� + � �

� ⊗ � ,

�(
�∨��

� ) = �∨��

� ⊗ 1 + 1 ⊗ �∨��

� � ⊗ �
�
�

+ � � ⊗ �
� + �∨�� ⊗ � ,

�( �
�
�
�

) = �
�
�
�

⊗ 1 + 1 ⊗ �
�
�
�

+ � ⊗ �
�
�

+ �
� ⊗ �

� + �
�
�

⊗ � .

We proved in [5] that H is an infinitesimal Hopf algebra, that is to say, it has an

antipode S. This antipode satisfies S(1) = 1, S(t ) ∈ Prim(H) for all t ∈ T, and S(F ) = 0 for

all F ∈ F − (T ∪ {1}).

1.3 Pairing on H

(1) We define the operator B+ : H −→ H, which associates, to a forest F ∈ F, the

tree obtained by grafting the roots of the trees of F on a common root. For

example, B+( �∨��

� ) = �∨��∨��

, and B+( � �∨��

) = �∨��∨� �

.

(2) The application γ is defined by

γ :

{
H −→ H
t1 . . . tn ∈ F −→ δt1, � t2 . . . tn.

(3) There exists a unique pairing 〈−, −〉 : H × H −→ K, satisfying:

(i) 〈1, x〉 = ε(x) for all x ∈ H.

(ii) 〈xy, z〉 = 〈y ⊗ x, �(z)〉 for all x, y, z ∈ H.

(iii) 〈B+(x), y〉 = 〈x, γ (y)〉 for all x, y ∈ H.

Moreover,

(iv) 〈−, −〉 is symmetric and nondegenerate.

(v) If x and y are homogeneous of different weights, 〈x, y〉 = 0.

(vi) 〈S(x), y〉 = 〈x, S(y)〉 for all x, y ∈ H.

This pairing admits a combinatorial interpretation using the partial orders

≥left and ≥high and is related to the Tamari order on planar binary trees; see

[5].

(4) We denote by ( fF )F∈F the dual basis of the basis of forests for the pairing

〈−, −〉. In other terms, for all F ∈ F, fF is defined by 〈 fF , G〉 = δF ,G , for all

forest G ∈ F. The family ( ft )t∈T is a basis of the space Prim(H) of primitive

elements of H.
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2 The Operads of Forests and Graftings

2.1 A few recalls on non-�-operads

(1) We shall work here with non-�-operads [12]. Recall that such an object is

a family P = (P(n))n∈N of vector spaces, together with a composition for all

n, k1, . . . , kn ∈ N:{
P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn) −→ P(k1 + · · · + kn)

p⊗ p1 ⊗ · · · ⊗ pn −→ p◦ (p1, . . . , pn).

The following associativity condition is satisfied: for all p ∈ P(n), p1 ∈
P(k1), . . ., pn ∈ P(kn), p1,1, . . . , pn,kn ∈ P,

(p◦ (p1, . . . , pn)) ◦ (p1,1, . . . , p1,k1 , . . . , pn,1, . . . , pn,kn )

= p◦ (p1 ◦ (p1,1, . . . , p1,k1 ), . . . , pn ◦ (pn,1, . . . , pn,kn )).

Moreover, there exists a unit element I ∈ P(1), satisfying: for all p ∈ P(n),

{
p◦ (I , . . . , I ) = p,

I ◦ p = p.

An operad is a non-�-operad P with a right action of the symmetric group

Sn on P(n) for all n, satisfying a certain compatibility with the composition.

(2) Let P be a non-�-operad. A P-algebra is a vector space A, together with an

action of P: {
P(n) ⊗ A⊗n −→ A

p⊗ a1 ⊗ · · · ⊗ an −→ p.(a1, . . . , an),

satisfying the following compatibility: for all p ∈ P(n), p1 ∈ P(k1), . . ., pn ∈
P(kn), for all a1,1, . . . , an,kn ∈ A,

(p◦ (p1, . . . , pn)).(a1,1, . . . , a1,k1 , . . . , an,1 . . . , an,kn )

= p.(p1.(a1,1, . . . , a1,k1 ), . . . , pn.(an,1, . . . , an,kn )).

Moreover, I.a = a for all a ∈ A.

In particular, if V is a vector space, the free P-algebra generated by V is

FP(V ) =
⊕
n∈N

P(n) ⊗ V⊗n,
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with the action of P given by

p.((p1 ⊗ a1,1 ⊗ . . . ⊗ a1,k1 ), . . . , (pn ⊗ an,1 ⊗ . . . ⊗ an,kn ))

= (p◦ (p1, . . . , pn)) ⊗ a1,1 ⊗ . . . ⊗ a1,k1 ⊗ . . . ⊗ an,1 ⊗ . . . ⊗ an,kn .

(3) Let Tb be the set of planar binary trees:

Tb =

⎧⎪⎨
⎪⎩ , ∨ , ∨∨ , ∨∨ , ∨∨

∨
, ∨∨

∨
, ∨∨

∨
, ∨∨

∨
, ��

. . .

⎫⎪⎬
⎪⎭ .

For all n ∈ N, Tb(n) is the vector space generated by the elements of Tb with

n leaves:

Tb(0) = (0),

Tb(1) = Vect( ),

Tb(2) = Vect(∨ ),

Tb(3) = Vect

⎛
⎝ ∨∨ , ∨∨

⎞
⎠ ,

Tb(4) = Vect

⎛
⎜⎝ ∨∨

∨
, ∨∨

∨
, ∨∨

∨
, ∨∨

∨
, ��

⎞
⎟⎠ .

The family of vector spaces Tb is given a structure of non-�-operad by graft-

ings on the leaves. More precisely, if t , t1, . . . , tn ∈ Tb, t with n leaves, then

t ◦ (t1, . . . , tn) is the binary tree obtained by grafting t1 on the first leaf of t , t2

on the second leaf of t , and so on (note that the leaves of t are ordered from

left to right). The unit is .

It is known that Tb is the free non-�-operad generated by ∨ ∈ Tb(2).

Similarly, given elements m1, . . . , mk in P(2), it is possible to describe the free

non-�-operad P generated by these elements in terms of planar binary trees

whose internal vertices are decorated by m1, . . . , mk.



The Infinitesimal Hopf Algebra and the Operads of Planar Forests 9

2.2 Presentations of the operads of forests

Definition 1.

(1) P↘ is the non-�-operad generated by m and ↘∈ P↘(2), with relations:⎧⎪⎪⎨
⎪⎪⎩

m ◦ (↘, I ) = ↘ ◦(I , m),

m ◦ (m, I ) = m ◦ (I , m),

↘ ◦(m, I ) = ↘ ◦(I , ↘).

(2) P↗ is the non-�-operad generated by m and ↗∈ P↗(2), with relations:⎧⎪⎪⎨
⎪⎪⎩

m ◦ (↗, I ) = ↗ ◦(I , m),

m ◦ (m, I ) = m ◦ (I , m),

↗ ◦(↗, I ) = ↗ ◦(I , ↗).

Remark. We shall prove in [3] that these quadratic operads are Koszul.

2.3 Grafting on the root

Let F , G ∈ F − {1}. We put G = t1 . . . tn and t1 = B+(G1). We define

F ↘ G = B+(F G1)t2 . . . tn.

In other terms, F is grafted on the root of the first tree of G, on the left. In particular,

F ↘ � = B+(F ).

Examples.

� � � ↘ �
� = �∨��

��� �
�
� ↘ � � � = �

�
�

� � � � ↘ � � � = �∨��

� � � � � ↘ � � = �∨�� �

�

� �
� ↘ �

� = �∨�� �

�

�
� ↘ � �

� = �
�
�

�
�

� � ↘ � �
� = �∨��

�
�

� �
� ↘ � � = �∨��

�

�

�
�
� ↘ �

� = �∨�� �

�

�
� ↘ �

�
� = �∨��

�

� � � ↘ �
�
� = �∨�� �

� �
�
� ↘ � � = �∨��

�

�

�∨�� ↘ �
� = �∨��∨��

�
� ↘ �∨�� = �∨�� �

�

� � ↘ �∨�� = �∨��

��� �
�∨�� ↘ � � = �∨��

� �

�
�
�

↘ �
� = �∨��

�

�

�
� ↘ �

�
�

= �∨��

��

� � ↘ �
�
�

= �∨�� �

�

�
�
�

↘ � � = �
�
�
�

�
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Obviously, ↘ can be inductively defined in the following way: for F , G, H ∈ F −
{1},

⎧⎪⎪⎨
⎪⎪⎩

F ↘ � = B+(F ),

F ↘ (G H ) = (F ↘ G)H

F ↘ B+(G) = B+(F G).

We denote by M the augmentation ideal of H, that is to say, the vector space

generated by the elements of F − {1}. We extend ↘: M ⊗ M −→ M by linearity.

Proposition 2. For all x, y, z ∈ M:

x ↘ (yz) = (x ↘ y)z, (1)

x ↘ (y ↘ z) = (xy) ↘ z. (2)

Proof. We can restrict ourselves to x, y, z ∈ F − {1}. Then (1) is immediate. In order to

prove (2), we put z = B+(z1)z2, z1, z2 ∈ F. Then

x ↘ (y ↘ z) = x ↘ (B+(yz1)z2) = B+(xyz1)z2 = (xy) ↘ (B+(z1)z2) = (xy) ↘ z,

which proves (2). �

Corollary 3. M is given a graded P↘-algebra structure by its products m and by ↘.

Proof. Immediate, by Proposition 2. �

2.4 Grafting on the left leaf

Let F , G ∈ F. Suppose that G �= 1. Then F ↗ G is the planar forest obtained by grafting F

on the leave of G, which is at most on the left. For G = 1, we put F ↗ 1 = F . In particular,

F ↗ � = B+(F ).
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Examples.

� � � ↗ �
� = �∨��

�

�

�
� ↗ � � � = �

�
�

� � � � ↗ � � � = �∨��

� � � � � ↗ � � = �∨�� �

�

� �
� ↗ �

� = �∨��

�

�

�
� ↗ � �

� = �
�
�

�
�

� � ↗ � �
� = �∨��

�
�

� �
� ↗ � � = �∨��

�

�

�
�
� ↗ �

� = �∨��

�

�

�
� ↗ �

�
� = �

�
�
�

� � � ↗ �
�
� = �∨��

� � �
�
� ↗ � � = �∨��

�

�

�∨�� ↗ �
� = �

�

�∨� �

�
� ↗ �∨�� = �∨��

�

�

� � ↗ �∨�� = �∨��∨��

�∨�� ↗ � � = �∨��

� �

�
�
�

↗ �
� = �

�
�
�
�

�
� ↗ �

�
�

= �
�
�
�
�

� � ↗ �
�
�

= �

�

�∨� �

�
�
�

↗ � � = �
�
�
�

�

In an obvious way, ↗ can be inductively defined in the following way: for F , G,

H ∈ F, ⎧⎪⎪⎨
⎪⎪⎩

F ↗ 1 = F ,

F ↗ (G H ) = (F ↗ G)H if G �= 1,

F ↗ B+(G) = B+(F ↗ G).

We extend ↗: H ⊗ H −→ H by linearity.

Proposition 4.

(1) For all x, z ∈ H, y ∈ M:

x ↗ (yz) = (x ↗ y)z. (3)

(2) For all x, y, z ∈ H:

x ↗ (y ↗ z) = (x ↗ y) ↗ z.

So (H, ↗) is an associative algebra, with unitary element 1.

Proof. Note that (3) is immediate for x, y, z ∈ F, with y �= 1. This implies the first point.

In order to prove the second point, we consider:

Z = {z ∈ H / ∀x, y ∈ H, x ↗ (y ↗ z) = (x ↗ y) ↗ z}.

Let us first prove that 1 ∈ Z : for all x, y ∈ H,

x ↗ (y ↗ 1) = x ↗ y = (x ↗ y) ↗ 1.
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Let z1, z2 ∈ Z . Let us show that z1z2 ∈ Z . By linearity, we can separate the proof into two

cases:

(1) z1 = 1. Then it is obvious.

(2) ε(z1) = 0. Let x, y ∈ H. By the first point,

x ↗ (y ↗ (z1z2)) = x ↗ ((y ↗ z1)z2))

= (x ↗ (y ↗ z1))z2

= ((x ↗ y) ↗ z1)z2

= (x ↗ y) ↗ (z1z2).

So Z is a subalgebra of H. Let us show that it is stable by B+. Let z ∈ Z , x, y ∈ H. Then

x ↗ (y ↗ B+(z)) = x ↗ B+(y ↗ z)

= B+(x ↗ (y ↗ z))

= B+((x ↗ y) ↗ z)

= (x ↗ y) ↗ B+(z).

So Z is a subalgebra of H, stable by B+. Hence, Z = H. �

Remarks.

(1) Equation (3) is equivalent to: for any x, y, z ∈ H,

x ↗ (yz) − ε(y)x ↗ z = (x ↗ y)z − ε(y)xz.

(2) Let F ∈ F − {1}. There exists a unique family ( � F1, . . . , � Fn) of elements of F

such that

F = ( � F1) ↗ . . . ↗ ( � Fn).

For example, �∨��∨��

�
�
� = ( � � ) ↗ ( � � ) ↗ ( � �

�
� ). As a consequence, (H, ↗) is freely

generated by �F as an associative algebra.

Corollary 5. M is given a graded P↗-algebra structure by its product m and by ↗.

Proof. Immediate, by Proposition 4. �
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2.5 Dimensions of P↘ and P↗

We now compute the dimensions of P↘(n) and P↗(n) for all n and deduce that M is the

free P↘- and P↗-algebra generated by � .

Notation. We denote by rn the number of planar rooted forests and we put R(X) =∑+∞
n=1 rn Xn. It is well known [4, 15] that R(X) = 1−2X−√

1−4X
2X . The coefficients rn are the

Catalan numbers; see sequence A000108 of [13].

Proposition 6. For
?→ ∈ {↘, ↗} and all n ∈ N

∗, in the P ?→-algebra M:

P ?→(n).( � , . . . , � ) = Vect(planar forests of weight n).

As a consequence, M is generated as a P ?→-algebra by � .

Proof. ⊆. Immediate, as M is a graded P ?→-algebra.

⊇. Induction on n. For n = 1, I.( � ) = � . For n ≥ 2, two cases are possible.

(1) F = F1 F2, weight(Fi) = ni < n. By the induction hypothesis, there exists

p1, p2 ∈ P ?→, such that F1 = p1.( � , . . . , � ) and F2 = p2.( � , . . . , � ). Then (m ◦
(p1, p2)).( � , . . . , � ) = m.(F1, F2) = F1 F2.

(2) F ∈ T. Let us put F = B+(G). Then there exists p ∈ P ?→, such that p.( � , . . . , � ) =
G. Then {

(↘ ◦(p, I )).( � , . . . , � ) = G ↘ � = F ,

(↗ ◦(p, I )).( � , . . . , � ) = G ↗ � = F .

Hence, in both cases, F ∈ P ?→(n).( � , . . . , � ). �

Corollary 7. For all
?→ ∈ {↘, ↗}, n ∈ N

∗, dim(P ?→(n)) ≥ rn.

Proof. Because we proved the surjectivity of the following application:

ev ?→ :

{
P ?→(n) −→ Vect(planar forests of weight n)

p −→ p.( � , . . . , � ). �

Lemma 8. For all
?→ ∈ {↘, ↗}, n ∈ N

∗, dim(P ?→(n)) ≤ rn.

Proof. We prove it for
?→ =↗. Let us fix n ∈ N

∗. Then P↗(n) is linearly generated by

planar binary trees whose internal vertices are decorated by m and ↗. The following
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relations hold:

��
��

↗
↗

=
�

�
�

�
↗

↗

,
��

��
m

↗

=
�

�
�

�
↗

m

,
��

��
m

m

=
�

�
�

�
m

m

.

In the sequel of the proof, we shall say that such a tree is admissible if it satisfies the

following conditions:

(1) For each internal vertex s decorated by m, the left child of s is a leaf.

(2) For each internal vertex s decorated by ↗, the left child of s is a leaf or is

decorated by m.

For example, here are the admissible trees with one, two, or three leaves:

,
��

m
,

��↗
,

��
��

↗
m

,
�

�
�

�
m

m

,
�

�
�

�
↗

m

,
�

�
�

�
m

↗

,
�

�
�

�
↗

↗

.

The preceding relations imply that P↗(n) is linearly generated by admissible trees

with n leaves. So dim(P↗(n)) is smaller than an, the number of admissible trees with n

leaves. For n ≥ 2, we denote by bn the number of admissible trees with n leaves whose

root is decorated by m, and by cn the number of admissible trees with n leaves whose

root is decorated by ↗. We also put b1 = 1 and c1 = 0. Finally, we define:

A(X) =
∑
n≥1

an Xn, B(X) =
∑
n≥1

bn Xn, C (X) =
∑
n≥1

cn Xn.

Immediately, A(X) = B(X) + C (X). Every admissible tree with n ≥ 2 leaves whose

root is decorated by m is of the form m ◦ (I , t ), where t is an admissible tree with

n − 1 leaves. Hence, B(X) = X A(X) + X. Moreover, every admissible tree with n ≥ 2 leaves

whose root is decorated by ↗ is of the form ↗ ◦(t1, t2), where t1 is an admissible tree

with k leaves whose eventual root is decorated by m and t2 an admissible tree with n − k

leaves (1 ≤ k ≤ n − 1). Hence, for all n ≥ 2, cn = ∑n−1
k=1 bkan−k, so C (X) = B(X)A(X). As a

conclusion, ⎧⎪⎪⎨
⎪⎪⎩

A(X) = B(X) + C (X),

B(X) = X A(X) + X,

C (X) = B(X)A(X).

So, A(X) = X A(X) + X + B(X)A(X) = X A(X) + X + X A(X)2 + X A(X), and

X A(X)2 + (2X − 1)A(X) + X = 0.



The Infinitesimal Hopf Algebra and the Operads of Planar Forests 15

As a1 = 1:

A(X) = 1 − 2X − √
1 − 4X

2X
= R(X).

So, for all n ≥ 1, dim(P↗(n)) ≤ an = rn. The proof is similar for P↘. �

As immediate consequences:

Theorem 9. For
?→ ∈ {↘, ↗}, n ∈ N

∗, dim(P ?→(n)) = rn. Moreover, the following applica-

tion is bijective:

ev ?→ :

{
P ?→(n) −→ Vect(planar forests of weight n) ⊆ M
p −→ p.( � , . . . , � ).

Corollary 10.

(1) (M, m, ↘) is the free P↘-algebra generated by � .

(2) (M, m, ↗) is the free P↗-algebra generated by � .

2.6 A combinatorial description of the composition

Let
?→ ∈ {↘, ↗}. We identify P ?→ and the vector space of nonempty planar forests via

Theorem 9. In other terms, we identify F ∈ F(n) and ev−1
?→

(F ) ∈ P ?→(n).

Notations.

(1) In order to distinguish the compositions in P↘ and P↗, we now denote:

(a) F↘◦ (F1, . . . , Fn) the composition of P↘,

(b) F↗◦ (F1, . . . , Fn) the composition of P↗.

(2) In order to distinguish the action of the operads P↘ and P↗ on M, we now

denote:

(a) F↘• (x1, . . . , xn) the action of P↘ on M,

(b) F↗• (x1, . . . , xn) the action of P↗ on M.

Our aim in this paragraph is to describe the compositions of P↘ and P↗ in terms

of forests. We shall prove the following result:
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Theorem 11.

(1) The composition of P↘ in the basis of planar forests can be inductively

defined in this way:

⎧⎪⎪⎨
⎪⎪⎩

�↘◦ (H ) = H ,

B+(F )↘◦ (H1, . . . , Hn+1) = (F↘◦ (H1, . . . , Hn)) ↘ Hn+1,

F G↘◦ (H1, . . . , Hn1+n2 ) = F↘◦ (H1, . . . , Hn1 )G↘◦ (Hn1+1, . . . , Hn1+n2 ).

(2) The composition of P↗ in the basis of planar forests can be inductively

defined in this way:

⎧⎪⎪⎨
⎪⎪⎩

�↗◦ (H ) = H ,

B+(F )↗◦ (H1, . . . , Hn+1) = (F↗◦ (H1, . . . , Hn)) ↗ Hn+1,

F G↗◦ (H1, . . . , Hn1+n2 ) = F↗◦ (H1, . . . , Hn1 )G↗◦ (Hn1+1, . . . , Hn1+n2 ).

Examples. Let F1, F2, F3 ∈ F − {1}.

� �↗◦ (F1, F2) = F1 F2 � �↘◦ (F1, F2) = F1 F2

�
� ↗◦ (F1, F2) = F1 ↗ F2 �

� ↘◦ (F1, F2) = F1 ↘ F2

� � �↗◦ (F1, F2, F3) = F1 F2 F3 � � �↘◦ (F1, F2, F3) = F1 F2 F3

� �
� ↗◦ (F1, F2, F3) = F1(F2 ↗ F3) � �

� ↘◦ (F1, F2, F3) = F1(F2 ↘ F3)

�
�
�↗◦ (F1, F2, F3) = (F1 ↗ F2)F3 �

�
�↘◦ (F1, F2, F3) = (F1 ↘ F2)F3

�∨�� ↗◦ (F1, F2, F3) = (F1 F2) ↗ F3 �∨�� ↘◦ (F1, F2, F3) = (F1 F2) ↘ F3

�
�
�

↗◦ (F1, F2, F3) = (F1 ↗ F2) ↗ F3 �
�
�

↘◦ (F1, F2, F3) = (F1 ↘ F2) ↘ F3

Proposition 12. Let
?→ ∈ {↘, ↗}.

(1) � is the unit element of P ?→.

(2) � � = m in P ?→(2). Consequently, in P ?→, � � ◦ (F , G) = F G for all F , G ∈ F − {1}.
(3) Let F , G ∈ F. In P ?→, �

� = ?→. Consequently, �
� ?→◦ (F , G) = F

?→G for all F , G ∈
F − {1}.

Proof.

(1) Indeed, ev ?→( � ) = � = ev ?→(I ). Hence, � = I .
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(2) By definition, ev ?→( � � ) = � � = ev ?→(m). So � � = m in P ?→(2). Moreover, for all

F , G ∈ F − {1}:

ev ?→(F G) = F G

= m
?→• (F , G)

= m
?→• (F

?→• ( � , . . . , � ), G
?→• ( � , . . . , � ))

=
(
m

?→◦ (F , G)
)

?→• ( � , . . . , � )

= ev ?→(m
?→◦ (F , G)).

So F G = m
?→◦ (F , G) = � �

?→◦ (F , G).

(3) Indeed, ev ?→( �
�
) = �

?→ � = ev ?→(
?→). So �

� = ?→ in P ?→(2). Moreover,

ev ?→(F
?→G) = F

?→G

= ?→ ?→• (F , G)

= ?→ ?→• (F
?→• ( � , . . . , � ), G

?→• ( � , . . . , � ))

= (
?→ ?→◦ (F , G)).( � , . . . , � )

= ev ?→(
?→ ?→◦ (F , G)).

So, F
?→G = ?→ ?→◦ (F , G) = �

� ?→◦ (F , G). �

Proposition 13.

(1) Let F , G ∈ F, different from 1, of respective weights n1 and n2. Let

H1,1, . . . , H1,n1 and H2,1, . . . , H2,n2 ∈ F − {1}. Let
?→ ∈ {↘, ↗}. Then, in P ?→:

(F G)
?→◦ (H1,1, . . . , H1,n1 , H2,1, . . . , H2,n2 ) = F

?→◦ (H1,1, . . . , H1,n1 )G
?→◦ (H2,1, . . . , H2,n2 ).

(2) Let F ∈ F, of weight n ≥ 1. Let H1, . . . , Hn+1 ∈ F. In P ?→:

B+(F )
?→◦ (H1, . . . , Hn+1) = (F

?→◦ (H1, . . . , Hn))
?→Hn+1.

Proof.

(1) Indeed, in P ?→:

(F G)
?→◦ (H1,1, . . . , H1,n1 , H2,1, . . . , H2,n2 )

= (m
?→◦ (F , G))

?→◦ (H1,1, . . . , H1,n1 , H2,1, . . . , H2,n2 )
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= m
?→◦ (F

?→◦ (H1,1, . . . , H1,n1 ), G
?→◦ (H2,1, . . . , H2,n2 ))

= F
?→◦ (H1,1, . . . , H1,n1 )G

?→◦ (H2,1, . . . , H2,n2 )).

(2) In P ?→:

B+(F )
?→◦ (H1, . . . , Hn+1) = (F

?→ � )
?→◦ (H1, . . . , Hn+1)

= ( �
� ?→◦ (F , � ))

?→◦ (H1, . . . , Hn+1)

= �
� ?→◦ (F

?→◦ (H1, . . . , Hn), �
?→◦ (Hn+1))

= �
� ?→◦ (F

?→◦ (H1, . . . , Hn), Hn+1)

= (F
?→◦ (H1, . . . , Hn))

?→Hn+1. �

Combining Propositions 12 and 13, we obtain Theorem 11.

3 Applications to the Infinitesimal Hopf Algebra H

3.1 Antipode of H

Here we give a description of the antipode of H in terms of the action ↘• of the operad P↘.

Notations. For all n ∈ N
∗, we denote ln = (B+)n(1) ∈ F(n). For example,

l1 = � , l2 = �
�
, l3 = �

�
�

, l4 = �
�
�
�

, l5 = �
�
�
�
�

. . .

Lemma 14. Let t ∈ T. There exists a unique k ∈ N
∗, and a unique family (t2 . . . , tk) ∈ Tk−1

such that

t = lk↘• ( � , t2, . . . , tk).

Proof. Induction on the weight n of t . If n = 1, then t = � , so k = 1 and the family is

empty. We suppose the result true at all rank < n. We put t = B+(s1 . . . sm). Necessarily,

tk = B+(s2 . . . sm) and ln−1↘• ( � , t2, . . . , tk−1) = s1. We conclude with the induction hypothe-

sis on s1. �
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Example.

�∨�� �∨� �∨� �

�

= l4↘• ( � , �
�
�

, �
�
, �∨��

).

Definition 15. For all n ∈ N
∗, we put pn = ∑n

k=1

∑
a1+···+ak=n

∀i, ai>0
(−1)kla1 . . . lak .

Examples.

p1 = � ,

p2 = − �
� + � � ,

p3 = − �
�
�

+ �
�
� + � �

� − � � � ,

p4 = − �
�
�
�

+ �
�
�

� + �
�

�
� + � �

�
�

− �
�
� � − � �

�
� − � � �

� + � � � � .

Remark that pn is in fact the antipode of ln in H. It is also the antipode of ln in the

noncommutative Connes–Kreimer Hopf algebra of planar trees [4].

Corollary 16. Let t ∈ T, written under the form t = lk↘• (t1, . . . , tk), with t1 = � . Then

S(t ) = pk↘• (t1, . . . , tk).

Proof. Corollary of Proposition 15 of [5], observing that left cuts are cuts on edges from

the root of ti to the root of ti+1 in t , for i = 1, . . . , n − 1. �

3.2 Inverse of the application γ

Proposition 17. The restriction γ : Prim(H) −→ H is bijective.

Proof. By Proposition 21 of [5]:

γ|Prim(H) :

{
Prim(H) −→ H
fB+(F ) (F ∈ F) −→ fF .

So this restriction is clearly bijective. �

We shall denote γ −1
|Prim(H) : H −→ Prim(H) the inverse of this restriction. Then, for

all F ∈ F, γ −1
|Prim(H)( fF ) = fB+(F ). Our aim is to express γ −1

|Prim(H) in the basis of forests.
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We define inductively a sequence (qn)n∈N∗ of elements of P↘:⎧⎪⎪⎨
⎪⎪⎩

q1 = � ∈ P↘(1),

q2 = � � − �
� ∈ P↘(2),

qn+1 = ( � � − �
�
)↘◦ (qn, � ) ∈ P↘(n + 1) for n ≥ 1.

For all F ∈ F, � �↘◦ (F , � ) = F � and �
� ↘◦ (F , � ) = B+(F ). So, qn can also be defined in the

following way: {
q1 = � ∈ P↘(1),

qn+1 = qn � − B+(qn) ∈ P↘(n + 1) for n ≥ 1.

Examples.

q3 = � � � − �
�
� − �∨�� + �

�
�

,

q4 = � � � � − �
�
� � − �∨��

� + �
�
�

� − �∨�� � + �∨��

�

+ �∨��

� − �
�
�
�

,

q5 = � � � � � − �
�
� � � − �∨��

� � + �
�
�

� � − �∨�� �

� + �∨��

�

� + �∨��

� � − �
�
�
�

�

− �∨��

��� � + �∨�� �

�

+ �∨��∨��

− �∨��

�

�

+ �∨��

�

�

− �∨��

�

�

− �

�

�∨� �

+ �
�
�
�
�

.

Lemma 18. Let F ∈ F − {1}, and t ∈ T. Then, in H:

�(F ↘ t ) = (F ↘ t ) ⊗ 1 + 1 ⊗ (F ↘ t ) + F ′ ⊗ F ′′ ↘ t + F t ′ ⊗ t ′′ + F ⊗ t.

Proof. The nonempty and nontotal left-admissible cuts of the tree F ↘ t are

– The cut on the edges relating F to t . For this cut c, P c(F ↘ t ) = F and Rc(F ↘ t ) = t .

– Cuts acting only on edges of F or on edges relating F to t , at the exception of the

preceding case. For such a cut, there exists a unique nonempty, nontotal left-admissible

cut c′ of F , such that P c(F ↘ t ) = P c′
(F ) and Rc(F ↘ t ) = Rc′

(F ) ↘ t .

– Cuts acting on edges of t . Then necessarily F ⊆ P c(F ↘ t ). For such a cut, there exists

a unique nonempty, nontotal left-admissible cut c′ of t , such that P c(F ↘ t ) = F P c′
(t )

and Rc(F ↘ t ) = Rc′
(t ).

Summing these cuts, we obtain the announced compatibility. �
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Proposition 19. Let F = t1 . . . tn ∈ F. Then

γ −1
|Prim(H)(F ) = qn+1↘• ( � , t1, . . . , tn).

Proof. First step. Let us show the following property: for all x ∈ Prim(H), t ∈ T, q2↘• (x, t )

is primitive. By Lemma 18, using the linearity in F :

�(x ↘ t ) = (x ↘ t ) ⊗ 1 + 1 ⊗ (x ↘ t ) + x ⊗ t + xt ′ ⊗ t ′′,

�(xt ) = xt ⊗ 1 + 1 ⊗ xt + x ⊗ t + xt ′ ⊗ t ′′.

Hence,

�(q2↘• (x, t )) = �(xt − x ↘ t ) = (xt − x ↘ t ) ⊗ 1 + 1 ⊗ (xt − x ↘ t ).

Second step. Let us show that for all x ∈ Prim(H), t1, . . . , tn ∈ T, qn+1↘• (x, t1, . . . , tn) ∈
Prim(H) by induction on n. This is obvious for n = 0, as q1↘• (x) = x. Suppose the result

at rank n − 1. Then

qn+1↘• (x, t1, . . . , tn) = (q2↘◦ (qn, I ))↘• (x, t1, . . . , tn)

= q2↘• (qn↘• (x, t1, . . . , tn−1)︸ ︷︷ ︸
∈Prim(H)

, tn) ∈ Prim(H)

by the first step. As the tree � is primitive, we deduce that, for all forest F = t1 . . . tn ∈ F,

qn+1↘• ( � , t1, . . . , tn) ∈ Prim(H).

Third step. Let us show that for all x, y ∈ M, γ (q2↘• (x, y)) = γ (x)y. We can limit ourselves

to x, y ∈ F − {1}. Then q2↘• (x, y) = xy − x ↘ y. Moreover, by definition of ↘, x ↘ y is a

forest whose first tree is not equal to � . Hence, γ (q2↘• (x, y)) = γ (xy) − 0 = γ (x)y.

Last step. Let us show by induction on n that γ (qn+1↘• ( � , t1, . . . , tn)) = t1 . . . tn. As q1↘• ( � ) =
� , this is obvious if n = 0. Let us suppose the result true at all rank n − 1. By the third

step:

γ (qn+1↘• ( � , t1, . . . , tn)) = γ (q2↘• (qn↘• ( � , t1, . . . , tn−1), tn))

= γ (qn↘• ( � , t1, . . . , tn−1))tn

= t1 . . . tn.

Consequently, x = qn+1↘• ( � , t1, . . . , tn) ∈ Prim(H), and satisfies γ (x) = t1 . . . tn, which

proves Proposition 19. �
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Examples. Let t1, t2, t3 ∈ T.

γ −1
|Prim(H)(t1) = �t1 − � ↘ t1,

γ −1
|Prim(H)(t1t2) = �t1t2 − ( � ↘ t1)t2 − ( �t1) ↘ t2 + ( � ↘ t1) ↘ t2,

γ −1
|Prim(H)(t1t2t3) = �t1t2t3 − ( � ↘ t1)t2t3 − ( �t1) ↘ t2t3 + ( � ↘ t1) ↘ t2t3 − ( �t1t2) ↘ t3

+ ( � ↘ t1t2) ↘ t3 + (( �t1) ↘ t2) ↘ t3 − (( � ↘ t1) ↘ t2) ↘ t3.

3.3 Elements of the dual basis

Lemma 20. For all x, y ∈ H, �(x ↗ y) = x ↗ y(1) ⊗ y(2) + x(1) ⊗ x(2) ↗ y − x ⊗ y. In other

terms, (H, ↗, �) is an infinitesimal Hopf algebra.

Proof. We restrict to x = F ∈ F − {1}, y = G ∈ F − {1}. The nonempty and nontotal left-

admissible cuts of the tree F ↗ G are

– The cut on the edges relating F to G. For this cut c, P c(F ↗ G) = F and Rc(F ↗ G) = G.

– Cuts acting only on edges of F or on edges relating F to G, at the exception of the

preceding case. For such a cut, there exists a unique nonempty, nontotal left-admissible

cut c′ of F , such that P c(F ↗ G) = P c′
(F ) and Rc(F ↗ G) = Rc′

(F ) ↗ G.

– Cuts acting on edges of G. Then necessarily F ⊆ P c(F ↗ G). For such a cut, there exists a

unique nonempty, nontotal left-admissible cut c′ of t , such that P c(F ↗ G) = F ↗ P c′
(G)

and Rc(F ↗ G) = Rc′
(G).

Summing these cuts, we obtain, denoting �(F ) = F ⊗ 1 + 1 ⊗ F + F ′ ⊗ F ′′ and �(G) = G ⊗
1 + 1 ⊗ G + G ′ ⊗ G ′′:

�̃(F ↗ G) = (F ↗ G) ⊗ 1 + 1 ⊗ (F ↗ G) + F ⊗ G + F ′ ⊗ F ′′ ↗ G + F ↗ G ′ ⊗ G ′′

= (F ⊗ 1) ↗ �(G) + �(F ) ↗ (1 ⊗ G) − F ⊗ G.

So (H, ↗, �) is an infinitesimal bialgebra. As it is graded and connected, it has an

antipode. �

Proposition 21. Let F = t1 . . . tn ∈ F. Then fF = ftn ↗ . . . ↗ ft1 .

Proof. First step. We show the following result: for all F ∈ F, t ∈ T, fF ↗ ft = ft F . We

proceed by induction on the weight n of F . If n = 0, then F = 1 and the result is obvious.

We now suppose that the result is true at all rank < n. Let be G ∈ F, and let us prove that
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〈 fF ↗ ft , G〉 = δt F ,G . Three cases are possible.

(1) G = 1. Then 〈 fF ↗ ft , G〉 = 〈 fF ↗ ft , 1〉 = ε( fF ↗ ft ) = 0 = δt F ,G .

(2) G = G1G2, Gi �= 1. Then, by Lemma 20:

〈 fF ↗ ft , G〉 = 〈�( fF ↗ ft ), G2 ⊗ G1〉
=

∑
F1 F2=F

〈 fF2 ⊗ fF1 ↗ ft , G2 ⊗ G1〉

+〈 fF ↗ ft ⊗ 1 + fF ↗ 1 ⊗ ft , G2 ⊗ G1〉 − 〈 fF ⊗ ft , G2 ⊗ G1〉
=

∑
F1 F2=F ,

weight(F1)<n

〈 fF2 ⊗ fF1 ↗ ft , G2 ⊗ G1〉 + 〈1 ⊗ fF ↗ ft , G2 ⊗ G1〉

+ 〈 fF ↗ ft ⊗ 1, G2 ⊗ G1〉 + 〈 fF ⊗ ft , G2 ⊗ G1〉
− 〈 fF ⊗ ft , G2 ⊗ G1〉

=
∑

F1 F2=F ,
weight(F1)<n

〈 fF2 ⊗ ft F1 , G2 ⊗ G1〉

=
∑

F1 F2=F ,
weight(F1)<n

δF2,G2δt F1,G1

= δt F ,G .

(3) G = B+(G1). Note that fF ↗ ft is a linear span of forests H1 ↗ H2, with H1,

H2 �= 1. By definition of ↗, the first tree of such a forest is not � . Hence,

γ ( fF ↗ ft ) = 0 and

〈 fF ⊗ ft , G〉 = 〈γ ( fF ⊗ ft ), G1〉 = 0 = δt F ,G ,

as t F /∈ T because F �= 1.

Second step. We now prove Proposition 21 by induction on n. It is obvious for n = 1.

Suppose the result true at all rank n − 1. By the first step:

ft1...tn = ft2...tn ↗ ft1 = ( ftn ↗ . . . ↗ ft2 ) ↗ ft1 = ftn ↗ . . . ↗ ft2 ↗ ft1 ,

using the induction hypothesis for the second equality. �

Remarks.

(1) As an immediate corollary, because ↗ is associative, for all forests

F1, . . . , Fk ∈ F, fF1...Fk = fFk ↗ . . . ↗ fF1 .

(2) In terms of operads, Proposition 21 can be rewritten in the following way:

Corollary 22. Let F1, . . . , Fn ∈ F. Then fF1...Fn = ln↗◦ ( fFn , . . . , fF1 ).
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Remark. Hence, the dual basis ( fF )F∈F can be inductively computed, using Proposition

21 of [5], together with Propositions 19 and 21 of the present text:⎧⎪⎪⎨
⎪⎪⎩

f1 = 1,

ft1...tn = ftn ↗ . . . ↗ ft1 ,

fB+(t1...tn) = γ −1
|Prim(H)( ft1...tn ).

For example,

f1 = 1 f � = �

f � � = �
�

f �
� = − �

� + � �

f � � � = �
�
�

f � �
� = − �

�
�

+ �∨��

f �
�
� = − �

�
�

+ �
�
� f

�∨�� = − �∨�� + � �
�

f
�
�
� = �

�
�

− �
�
� − � �

� + � � � f � � � � = �
�
�
�

f � � �
� = − �

�
�
�

+ �∨��

� f � �
�
� = − �

�
�
�

+ �∨��

�

f
� �∨�� = − �∨��

� + �∨��

�

f
� �
�
� = �

�
�
�

− �∨��

�

− �∨��

�

+ �∨�� �

f �
�
� � = − �

�
�
�

+ �
�
�

� f �
�

�
� = �

�
�
�

− �∨��

� − �
�
�

� + �∨��

�

f
�∨��

�
= − �∨��

�

+ �
�

�
�

f
�
�
�

�

= �
�
�
�

− �
�
�

� − �
�

�
� + �

�
� �

f
�∨�� � = − �∨��

�

+ � �
�
�

f
�∨��

� = �∨��

�

− �∨�� � − � �
�
�

+ � �∨��

f
�∨��

� = �∨��

� − �∨��

� − � �
�
�

+ � �
�
� f

�∨��

�

= �∨��

�

− �
�

�
� − � �∨�� + � � �

�

f

�
�
�
� = − �

�
�
�

+ �
�
�

� + �
�

�
� − �

�
� � + � �

�
�

− � �
�
� − � � �

� + � � � � .

4 Primitive Suboperads

4.1 Compatibilities between products and coproducts

We define another coproduct �↗ on H in the following way: for all x, y, z ∈ H,

〈�↗(x), y ⊗ z〉 = 〈x, z ↗ y〉.

Lemma 23. For all forests F ∈ F, �↗(F ) = ∑
F1,F2∈F
F1 F2=F

F1 ⊗ F2.
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Proof. Let F , G, H ∈ F. Then

〈�↗(F ), fG ⊗ fH 〉 = 〈F , fH ↗ fG〉
= 〈F , fG H 〉
= δF ,G H

=
∑

F1,F2∈F
F1 F2=F

〈F1 ⊗ F2, fG ⊗ fH 〉.

As ( fF )F∈F is a basis of H and 〈−, −〉 is nondegenerate, this proves the result. �

Remark. As a consequence, the elements of T are primitive for this coproduct.

We now have defined three products, namely, m, ↗, and ↘, and two coproducts,

namely, �̃ and �̃↗, on M, obtained from � and �↗ by subtracting their primitive parts.

The following properties sum up the different compatibilities.

Proposition 24. For all x, y ∈ M:

�̃(xy) = (x ⊗ 1)�̃(y) + �̃(x)(1 ⊗ y) + x ⊗ y, (4)

�̃(x ↗ y) = (x ⊗ 1) ↗ �̃(y) + �̃(x) ↗ (1 ⊗ y) + x ⊗ y, (5)

�̃↗(xy) = (x ⊗ 1)�̃↗(y) + �̃↗(x)(1 ⊗ y) + x ⊗ y, (6)

�̃↗(x ↗ y) = (x ⊗ 1) ↗ �̃↗(y), (7)

�̃↗(x ↘ y) = (x ⊗ 1) ↘ �̃↗(y). (8)

Proof. The compatibility between ↗ or ↘ and �̃↗ remains to be considered. Let F , G ∈
F − {1}. We put G = t1 . . . tn, where the tis are trees. Then F ↗ G = (F ↗ t1)t2 . . . tn, and

F ↗ t1 is a tree. Hence

�̃↗(F ↗ G) =
n−1∑
i=1

(F ↗ t1)t2 . . . ti ⊗ ti+1 . . . tn

=
n−1∑
i=1

F ↗ (t1t2 . . . ti) ⊗ ti+1 . . . tn

= (F ⊗ 1) ↗ �̃↗(G).

The proof is similar for F ↘ G. So all these compatibilities are satisfied. �
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Remark. There is no similar compatibility between �̃ and ↘. In particular, Lemma 19

is not true if t ∈ F \ T.

This justifies the following definitions:

Definition 25.

(1) A P↗-bialgebra of type 1 is a family (A, m, ↗, �̃), such that

(a) (A, m, ↗) is a P↗-algebra.

(b) (A, �̃) is a coassociative, noncounitary coalgebra.

(c) Compatibilities (4) and (5) are satisfied.

(2) A P↗-bialgebra of type 2 is a family (A, m, ↗, �̃↗), such that

(a) (A, m, ↗) is a P↗-algebra.

(b) (A, �̃↗) is a coassociative, noncounitary coalgebra.

(c) Compatibilities (6) and (7) are satisfied.

(3) A P↘-bialgebra is a family (A, m, ↘, �̃↗), such that

(a) (A, m, ↘) is a P↘-algebra.

(b) (A, �̃↗) is a coassociative, noncounitary coalgebra.

(c) Compatibilities (6) and (8) are satisfied.

Example. The augmentation ideal M of the infinitesimal Hopf algebra of trees H is

both a P↗-infinitesimal bialgebra of type 1 and 2, and also a P↘-infinitesimal bialgebra.

If Ais a bialgebra of such a type, we denote by Prim(A) the kernel of the coproduct.

We deduce the definition of the following suboperads:

Definition 26. Let n ∈ N. We put:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PRIM
(1)
↗ (n) =

⎧⎪⎪⎨
⎪⎪⎩p ∈ P↗(n) /

For all A, P↗-infinitesimal bialgebra of type 1,

and for a1, . . . , an ∈ Prim(A),

p.(a1, . . . , an) ∈ Prim(A).

⎫⎪⎪⎬
⎪⎪⎭ ,

PRIM
(2)
↗ (n) =

⎧⎪⎪⎨
⎪⎪⎩p ∈ P↗(n) /

For all A, P↗-infinitesimal bialgebra of type 2,

and for a1, . . . , an ∈ Prim↗(A),

p.(a1, . . . , an) ∈ Prim↗(A).

⎫⎪⎪⎬
⎪⎪⎭ ,

PRIM↘(n) =

⎧⎪⎪⎨
⎪⎪⎩p ∈ P↘(n) /

For all A, P↘-infinitesimal bialgebra,

and for a1, . . . , an ∈ Prim↗(A),

p.(a1, . . . , an) ∈ Prim↗(A).

⎫⎪⎪⎬
⎪⎪⎭ .
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We identify P↗(n) and P↘(n) with the homogeneous component of weight n of M.

We put Prim(M) = Ker(�̃) and Prim↗(M) = Ker(�̃↗). We obtain:

Proposition 27.

(1) For all n ∈ N:

PRIM
(1)
↗ (n) = {

p ∈ P↗(n) / p↗• ( � , . . . , � ) ∈ Prim(M)
} = P↗(n) ∩ Prim(M).

(2) For all n ∈ N:

PRIM
(2)
↗ (n) = {

p ∈ P↗(n) / p↗• ( � , . . . , � ) ∈ Prim↗(M)
} = P↗(n) ∩ Prim↗(M).

(3) For all n ∈ N:

PRIM↘(n) = {
p ∈ P↘(n) / p↘• ( � , . . . , � ) ∈ Prim↗(M)

} = P↘(n) ∩ Prim↗(M).

Proof. As M is a P↗-infinitesimal bialgebra, by definition,

PRIM
(1)
↗ (n) ⊆ {

p ∈ P↗(n) / p↗• ( � , . . . , � ) ∈ Prim(M)
}
.

Moreover,
{

p ∈ P↗(n) / p↗• ( � , . . . , � ) ∈ Prim(M)
} = P↗(n) ∩ Prim(M), as, for all p ∈ P↗(n),

p↗• ( � , . . . , � ) = p ∈ M.

We now show that
{

p ∈ P↗(n) / p↗• ( � , . . . , � ) ∈ Prim(M)
} ⊆ PRIM

(1)
↗ (n). We take p ∈

P↗(n), such that p↗• ( � , . . . , � ) ∈ Prim(M). Let D = {1, . . . , n} and let A be the free P↗-

algebra generated by D (with a unit). It can be described as the associative algebra HD

generated by the set of planar rooted trees decorated by D, and can be given a structure

of P↗-infinitesimal bialgebra. As M is freely generated by � as a P↗-algebra, there exists

a unique morphism of P↗-algebras from M to MD, augmentation ideal of HD:

ξ :

{
M −→ MD

� −→ � 1 + · · · + �n .

As � ∈ Prim(M) and � 1 + · · · + �n ∈ Prim(A), ξ is a P↗-infinitesimal bialgebra morphism

from M to MD. So, ξ (p↗• ( � , . . . , � )) ∈ Prim(A).

Let F ∈ A be a forest, and s1 ≥h,l . . . ≥h,l sk its vertices. For all i ∈ {1, . . . , k}, we

put di the decoration of si. The decoration word associated to F is the word d1 . . . dn. It

belongs to M(D), the free monoid generated by the elements of D. For all w ∈ M(D), Let

Aw be the subspace of A generated by forests whose decoration word is w. This defines

a M(D)-gradation of A, as a P↗-infinitesimal bialgebra of type 1.
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Consider the projection π1,...,n onto A1,...,n. We get:

π1,...,n ◦ ξ (p↗• ( � , . . . , � )) ∈ Prim(A),

= π1,...,n(p↗• (ξ ( � ), . . . , ξ ( � )))

= π1,...,n(p↗• ( � 1 + · · · + �n , . . . , � 1 + · · · + �n ))

= p↗• ( � 1 , . . . , �n ).

So p↗• ( � 1 , . . . , �n ) ∈ Prim(A).

Let B be a P↗-infinitesimal bialgebra and let a1, . . . , an ∈ Prim(B). As MD is freely

generated by the � i s, there exists a unique morphism of P↗-algebras:

χ :

{
A −→ B

� i −→ ai.

As the � i and the ais are primitive, χ is a P-infinitesimal bialgebra morphism. So

ξ (p↗• ( � 1 , . . . , �n )) = p.(ξ ( � 1 ), . . . , ξ ( �n )) = p.(a1, . . . , an) ∈ χ (prim(MD)) ⊆ Prim(A).

Hence, p ∈ PRIM
(1)
↗ (n). The proof is similar for PRIM

(2)
↗ and PRIM↘. �

4.2 Suboperad PRIM
(1)
↗

Lemma 28. We define inductively the following elements of P↗:{
q1 = � ,

qn+1 = ( � � − �
�
)↗◦ (qn, � ) = qn � − B+(qn), for n ≥ 1.

Then, for all n ≥ 1, qn belongs to PRIM
(1)
↗ . Moreover, for all x1, . . . , xn ∈ Prim(M):

γ (qn↗• (x1, . . . , xn)) = γ (x1)x2 . . . xn.

Remark. These qns are the same as the qns defined in Section 3.2.

Proof. Let us remark that f �
� = � � − �

� ∈ Prim(M). By Proposition 27, � � − �
� ∈ PRIM

(1)
↗ (2).

As PRIM
(1)
↗ is a suboperad of P↗, it follows that all the qns belong to PRIM

(1)
↗ (n).

Let x1, . . . , xn ∈ Prim(M). Let us show that γ (qn↗• (x1, . . . , xn)) = γ (x1)x2 . . . xn by

induction on n. If n = 1, this is immediate. For n = 2, q2↗• (x1x2) = x1x2 − x1 ↗ x2.

Moreover, x1 ↗ x2 is a linear span of forests whose first tree is not � . So
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γ (q2↗• (x1, x2)) = γ (x1x2) − 0 = γ (x1)x2.

Suppose now that the result is true at rank n − 1. Then

qn↗• (x1, . . . , xn) = q2↗• (qn−1↗• (x1, . . . , xn−1)︸ ︷︷ ︸
∈Prim(M)

, xn),

γ (qn↗• (x1, . . . , xn)) = γ (q2↗• (qn−1↗• (x1, . . . , xn−1), xn))

= γ (qn−1↗• (x1, . . . , xn−1))xn

= γ (x1)x2 . . . xn.

So the result holds for all n ≥ 1. �

Theorem 29. The non-�-operad PRIM
(1)
↗ is freely generated by �

� − � � .

Proof. Let us first show that the family (qn)n≥1 generates PRIM
(1)
↗ . Let P be the suboperad

of PRIM
(1)
↗ generated by the qns. Let us prove by induction on k that PRIM

(1)
↗ (k) = P(k).

If k = 1, P(1) = PRIM
(1)
↗ (1) = K � . Suppose the result at all ranks ≤ k − 1. By the rigidity

theorem for infinitesimal bialgebra of [11], a basis of H is ( ft1 . . . ftn )t1...tn∈F, so a basis of

Prim(M) is

(
γ −1

Prim(H)( ft1 . . . ftn )
)

t1...tn∈F
.

So, a basis of PRIM
(1)
↗ (k) is (γ −1

Prim(H)( ft1 . . . ftn )) t1...tn∈F
weight(t1...tn)=k−1

. By Lemma 28,

γ −1
Prim(H)( ft1 . . . ftn ) = qn+1↗• ( � , ft1 , . . . ftn ).

By the induction hypothesis, the fti s belong to P. So

γ −1
Prim(H)( ft1 . . . ftn ) = qn+1↗◦ ( � , ft1 , . . . ftn ) ∈ P(n).

So PRIM
(1)
↗ = P.

Moreover, if we denote by P
′ the suboperad of PRIM

(1)
↗ generated by q2, then,

immediately, P
′ ⊆ P. Finally, by induction on n, qn ∈ P

′(n) for all n ≥ 1 and P ⊆ P
′. So

P
′ = P = PRIM

(1)
↗ is generated by q2.
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Let Pq2 be the non-�-operad freely generated by q2. There is a non-�-operad

epimorphism:


 :

{
Pq2 −→ PRIM

(1)
↗

q2 −→ q2.

The dimension of Pq2 (n) is the number of planar binary rooted trees with n leaves, that

is to say the Catalan number cn = (2n−2)!
(n−1)!n! . On the other side, the dimension of PRIM

(1)
↗ (n)

is the number of planar rooted trees with n vertices, that is to say cn. So 
 is an

isomorphism. �

In other terms, in the language of [10]:

Theorem 30. The triple of operads (Ass, P�
↗, FREE2), where P

�
↗ is the symmetrization of

P↗ and FREE2, is the free operad generated by an element in FREE2(2), is a good triple

of operads.

Remark. Note that if A is a P↗-bialgebra of type 1, then (A, m, �̃) is a nonunitary

infinitesimal bialgebra. Hence, if (K ⊕ A, m, �) has an antipode S, then −S is an eulerian

idempotent for A.

4.3 Another basis of Prim(H)

Recall that Tb is freely generated (as a non-�-operad) by ∨ . In particular, if t1, t2 ∈ Tb,

we denote:

t1 ∨ t2 = ∨ ◦ (t1, t2).

Every element t ∈ Tb − { } can be uniquely written as t = tl ∨ tr.

There exists a morphism of operads:

� :

⎧⎨
⎩Tb −→ P↗

∨ −→ � � − �
�
.

By Theorem 29, � is injective and its image is PRIM
(1)
↗ . So, we obtain a basis of PRIM

(1)
↗

indexed by Tb, given by pt = �(t ). It is also a basis of Prim(M), which can be inductively
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computed by

{
p = � ,

pt1∨t2 = ( � � − �
�
)↗◦ (pt1 , pt2 ) = pt1 pt2 − pt1 ↗ pt2 .

Examples.

p = �

p∨ = � � − �
�

p
∨∨

= � � � − �
�
� − �∨�� + �

�
�

p
∨∨

= � � � − � �
� − �

�
� + �

�
�

p

∨∨
∨ = � � � � − �

�
� � − �∨��

� + �
�
�

� − �∨�� � + �∨��

�

+ �∨��

� − �
�
�
�

p

∨∨
∨ = � � � � − � �

�
� − �

�
� � + �

�
�

� − �∨�� � + �∨��

�

+ �∨��

�

− �
�
�
�

p

∨∨
∨ = � � � � − � �

�
� − � �∨�� + � �

�
�

− �
�
� � + �

�
�

� + �∨��

�

− �
�
�
�

b

∨∨
∨ = � � � � − � � �

� − � �
�
� − � � �

� + � �
�
�

+ �
�

�
� + �

�
�

� − �
�
�
�

b
��

= � � � � − �
�
� � − � � �

� + �
�

�
� − �∨��

� + �
�
�

� + �∨��

� − �
�
�
�

4.4 From the basis ( ft)t∈T to the basis ( pt)t∈Tb

We define inductively the application κ : Tb −→ T in the following way:

κ :

⎧⎪⎪⎨
⎪⎪⎩

Tb −→ T

−→ � ,

t1 ∨ t2 −→ κ(t2) ↘ κ(t1).
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Examples.

∨ −→ �
� ∨∨ −→ �∨�� ∨∨ −→ �

�
�

�� −→ �∨��

�

∨∨
∨

−→ �∨�� � ∨∨
∨

−→ �∨��

�

∨∨
∨

−→ �∨��

�
∨∨
∨

−→ �
�
�
�

It is easy to show that κ is bijective, with inverse given by

κ−1 :

⎧⎪⎪⎨
⎪⎪⎩

T −→ Tb

� −→ ,

B+(s1 . . . sm) −→ κ−1(B+(s2 . . . sm)) ∨ κ−1(s1).

Let us recall the partial order ≤, defined in [5], on the set F of planar forests,

making it isomorphic to the Tamari poset.

Definition 31. Let F ∈ F.

(1) An admissible transformation on F is a local transformation of F of one of

the following types (the part of F that is not in the frame remains unchanged):

First kind: �

�

��� ��
s

...

��� ���... ...

����
��...

−→
��
�

	
	
� �s

��� ���... ...









...

�
��

��
...

Second kind: ��
�

	
	
� �s

���...









...

�
��

��
...

−→
�

�

�
s

�
��

��
...

�
�
�
�
��

...



...

(2) Let F and G ∈ F. We shall say that F ≤ G if there exists a finite sequence

F0, . . . , Fk of elements of F such that:

(a) For all i ∈ {0, . . . , k − 1}, Fi+1 is obtained from Fi by an admissible trans-

formation.

(b) F0 = F .

(c) Fk = G.

The aim of this section is to prove the following result:
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Theorem 32. Let t ∈ Tb. Then pt = ∑
s∈T

s≤κ(t )
fs.

Proof. By induction on the number n of leaves of t . If n = 1, then t = and p = � = f � .

Suppose the result at all ranks ≤ n − 1. As pt is primitive, we can put

pt =
∑
s∈T

as fs.

Write t = t1 ∨ t2. By the induction hypothesis,

pt1 =
∑
s1∈T

s1≤κ(t1)

fs1 and pt2 =
∑
s2∈T

s2≤κ(t2)

fs2 .

As t = t1 ∨ t2, pt = ( � � − �
�
)↗◦ (pt1 , pt2 ) = pt1 pt2 − pt1 ↗ pt2 . So, for all s ∈ T, as s is primitive

for �↗,

as = 〈pt , s〉
= 〈pt1 pt2 − pt1 ↗ pt2 , s〉
= 〈pt2 ⊗ pt1 , �(s) − �↗(s)〉
= 〈pt2 ⊗ pt1 , �(s)〉
=

∑
s1∈T

s1≤κ(t1)

∑
s2∈T

s2≤κ(t2)

〈 fs2 ⊗ fs1 , �(s)〉.

So as is the number of left-admissible cuts c of s, such that P c(s) ≤ κ(t2) and Rc(s) ≤ κ(t1).

Suppose that as �= 0. Then, there exists a left-admissible cut c of s, such that

P c(s) ≤ κ(t2) and Rc(s) ≤ κ(t1). As s is a tree, s ≤ κ(t2) ↘ κ(t1) = κ(t ). Moreover, by consid-

ering the degree of P c(s), this cut c is unique, so as = 1. Reciprocally, if s ≤ κ(t ), if c is

the unique left-admissible cut such that weight(P c(s)) = weight(t2), then P c(s) ≤ κ(t2) and

Rc(s) ≤ κ(t1). So as �= 0. Hence, (s ≤ κ(t )) =⇒ (as �= 0) =⇒ (as = 1) =⇒ (s ≤ κ(t )). This proves

Theorem 32. �

Let μ be the Mbius function of the poset F [14, 15]. By the Mbius inversion

formula:

Corollary 33. Let s ∈ T. Then fs = ∑
t∈Tb, κ(t )≤s μ(κ(t ), s)pt .
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Examples.

p = f �

p∨ = f �
�

p
∨∨

= f
�
�
�

p
∨∨

= f
�∨�� + f

�
�
�

p

∨∨
∨ = f

�
�
�
�

p

∨∨
∨ = f

�∨��

�

+ f

�
�
�
�

p
��

= f
�∨��

� + f

�
�
�
�

p

∨∨
∨ = f

�∨��

� + f
�∨��

�

+ f

�
�
�
�

p

∨∨
∨ = f

�∨�� � + f
�∨��

� + f
�∨��

� + f
�∨��

�

+ f

�
�
�
�

4.5 Suboperad PRIM
(2)
↗

For all n ∈ N, we put cn+1 = B+( �n). In other terms, cn+1 is the corolla tree with n + 1

vertices, or equivalently with n leaves.

Examples. c1 = � , c2 = �
�
, c3 = �∨��

, c4 = �∨�� �

, c5 = �∨��

��� �
. . .

Lemma 34. The set T is a basis of the operad PRIM
(2)
↗ . As an operad, PRIM

(2)
↗ is generated

by the cns, n ≥ 2. Moreover, for all k, l ≥ 2,

ck↗◦ (cl , � , . . . , �︸ ︷︷ ︸
k − 1 times

) = cl↗◦ ( � , . . . , �︸ ︷︷ ︸
l − 1 times

, ck).

Proof. The operad PRIM
(2)
↗ is identified with Prim↗(M) by Proposition 27. So Prim↗(M)

is equal to Vect(T). Let P be the suboperad of PRIM
(2)
↗ generated by the corollas. Let t ∈ T,

of weight n. Let us prove that t ∈ P by induction on n. If n = 1, then t = � ∈ P. If n ≥ 2,



The Infinitesimal Hopf Algebra and the Operads of Planar Forests 35

we can suppose that t = B+(t1 . . . tk), with t1, . . . , tk ∈ P. Then, by Theorem 11:

ck+1↗◦ (t1, . . . , tk, � ) = ( �k↗◦ (t1, . . . , tk)) ↗ � = (t1 . . . tk) ↗ � = B+(t1 . . . tk) = t.

So t ∈ P. Hence, P = PRIM
(2)
↗ .

Let k, l ≥ 2. Then, by Theorem 11:

ck↗◦ (cl , � , . . . , � ) = ( �k−1↗◦ (cl , � , . . . , � )) ↗ �

= (cl �
k−2) ↗ �

= B+(cl �
k−2)

= B+(B+( � l−1) �k−2).

On the other hand,

cl↗◦ ( � , . . . , � , ck) = ( � l−1↗◦ ( � , . . . , � )) ↗ ck

= ( � l−1) ↗ ck

= ( � l−1) ↗ B+(ck−1)

= B+((( � l−1) ↗ � ) �k−2)

= B+(B+( � l−1) �k−2).

So, ck↗◦ (cl , � , . . . , � ) = cl↗◦ ( � , . . . , � , ck). �

Definition 35. The operad T is the non-�-operad generated by the elements cn ∈ T(n),

for n ≥ 2, and the following relations: for all k, l ≥ 2,

ck ◦ (cl , I , . . . , I︸ ︷︷ ︸
k − 1 times

) = cl ◦ ( I , . . . , I︸ ︷︷ ︸
l − 1 times

, ck).

In other terms, a T-algebra A has a family of n-multilinear products [., . . . , .] : A⊗n −→ A

for all n ≥ 2, with the associativity condition

[[a1, . . . , al ], al+1, . . . , al+k] = [a1, . . . , al−1, [al , . . . , al+k]].

In particular, [., .] is associative.

Theorem 36. The operads T and PRIM
(2)
↗ are isomorphic.
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Proof. By Lemma 34, there is an epimorphism of operads:

{
T −→ PRIM

(2)
↗

cn −→ cn.

In order to prove this is an isomorphism, it is enough to prove that dim(T(n)) ≤
dim(PRIM

(2)
↗ (n)) for all n ≥ 2. By Lemma 34, dim(PRIM

(2)
↗ (n)) is the nth Catalan num-

ber. Because of the defining relations, T(n) is generated as a vector space by elements of

the form cl ◦ (I , b2, . . . , bl ), with bi ∈ T(ni), such that n1 + · · · + nl = n − 1. Hence, we define

inductively the following subsets of the free non-�-operad generated by the cns, n ≥ 2:

X(n) =
{

{I } if n = 1,⋃n
l=2

⋃
i2+···+il=n−1 cl ◦ (I , X(i2), . . . , X(il )) if n ≥ 2.

Then the images of the elements of X(n) linearly generate T(n), so dim(T(n)) ≤ card(X(n))

for all n. We now put an = card(X(n)) and prove that an is the nth Catalan number. We

denote by A(h) their generating formal series. Then

{
a1 = 1,

an = ∑n
l=2

∑
i2+···+il=n−1 ai1 . . . ail if n ≥ 2.

In terms of generating series,

A(h) − a1h = h
A(x)

1 − A(x)
.

So A(h)2 − A(h) + h = 0. As A(h) = 1,

A(h) = 1 − √
1 − 4h

2
.

So an is the nth Catalan number for all n ≥ 1. �

In other terms:

Theorem 37. The triple of operads (Ass, P
�
↗, T

� ) is a good triple of operads.

Remark. Note that if A is a P↗-bialgebra of type 2, then (A, m, �̃↗) is a nonunitary

infinitesimal bialgebra. Hence, if (K ⊕ A, m, �↗) has an antipode S↗, then −S↗ is an

eulerian idempotent for A.
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4.6 Suboperad PRIM↘

Lemma 38. The set T is a basis of the operad PRIM↘. As an operad, PRIM↘ is generated

by �
�
.

Proof. Let P be the suboperad of PRIM↘ generated by �
�
. Let t ∈ T, of weight n. Let us

prove that t ∈ P by induction on n. If n = 1 or 2, this is obvious. If n ≥ 2, suppose that

t = B+(t1 . . . tk). By the induction hypothesis, t1 and B+(t2 . . . tk) belong to P. Then

t = t1 ↘ B+(t2 . . . tk) = �
� ↘◦ (t1, B+(t2 . . . tk)).

So t ∈ P. �

Theorem 39. The non-�-operad PRIM↘ is freely generated by �
�
.

Proof. Similar as the proof of Theorem 29. �

In other terms:

Theorem 40. The triple of operads (Ass, P�
↘, F2), where F2 is the free operad generated

by an element in F2(2), is a good triple of operads.

Remark. Note that if A is a P↘-bialgebra, then (A, m, �̃) is a nonunitary infinitesimal

bialgebra. Hence, if (K ⊕ A, m, �) has an antipode S, then −S is an eulerian idempotent

for A.

5 A Rigidity Theorem for P↗-Algebras

5.1 Double P↗-infinitesimal bialgebras

Definition 41. A double P↗-infinitesimal bialgebra is a family (A, m, ↗, �̃, �̃↗), where

m, ↗: A⊗ A −→ A, �̃, �̃↗ : A −→ A⊗ A, with the following compatibilities:

(1) (A, m, ↗) is a (nonunitary) P↗-algebra.

(2) For all x ∈ A: ⎧⎪⎪⎨
⎪⎪⎩

(�̃ ⊗ Id) ◦ �̃(x) = (Id ⊗ �̃) ◦ �̃(x),

(�̃↗ ⊗ Id) ◦ �̃↗(x) = (Id ⊗ �̃↗) ◦ �̃↗(x),

(�̃ ⊗ Id) ◦ �̃↗(x) = (Id ⊗ �̃↗) ◦ �̃(x).
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In other terms, (A, �̃cop, �̃cop
↗ ) is a P↗-coalgebra.

(3) (A, m, ↗, �̃) is a P↗-bialgebra of type 1.

(4) (A, m, ↗, �̃↗) is a P↗-bialgebra of type 2.

Remark. If (A, m, ↗, �̃, �̃↗) is a graded double P↗-infinitesimal bialgebra, with finite-

dimensional homogeneous components, then its graded dual (A∗, �̃∗,op, �̃∗,op
↗ , m∗,cop, ↗∗,cop)

also is.

Theorem 42. (M, m, ↗, �̃, �̃↗) is a double P-infinitesimal bialgebra.

Proof. We already know that (M, m, ↗) is a P↗-algebra. Moreover, (M, �̃cop, �̃cop
↗ ) is iso-

morphic to (M∗, m∗, ↗∗) via the pairing 〈−, −〉, so it is a P↗-coalgebra. It is already known

that (M, m, �̃) and (M, ↗, �̃) are infinitesimal bialgebras. As (M, ↗, �̃) is isomorphic to

(Mop, mop, �̃cop
↗ ) via the pairing 〈−, −〉, it is also an infinitesimal bialgebra. So all the

needed compatibilities are satisfied. �

Remarks.

(1) Via the pairing 〈−, −〉, M is isomorphic to its graded dual as a double P↗-

infinitesimal bialgebra. As a consequence, as M is the free P↗-algebra gen-

erated by � , then Mcop is also the cofree P↗-coalgebra cogenerated by � .

(2) All these results can be easily extended to infinitesimal Hopf algebras of

decorated planar rooted trees; in other terms, to every free P↗-algebras.

Lemma 43. In the double-infinitesimal P↗-algebra M, Ker(�̃) ∩ Ker(�̃↗) = Vect( � ).

Proof. ⊇. Obvious.

⊆. Let x ∈ Ker(�̃) ∩ Ker(�̃↗). Then �̃↗(x) = 0, so x is a linear span of trees. We

can write:

x =
∑
t∈T

att.

Consider the terms in M ⊗ � of �̃(x). We get
∑

t∈T−{ � } at B−(t ) ⊗ � = 0, where B−(t ) is the

forest obtained by deleting the root of t . So, if t �= � , then at = 0. So x ∈ vect( � ). �

Remark. This lemma can be extended to any free P↗-algebra: if V is a vector space, then

the free P↗-algebra FP↗ (V ) generated by V is given a structure of double P↗-infinitesimal

bialgebra by �̃(v) = �̃↗(v) = 0 for all v ∈ V . In this case, Ker(�̃) ∩ Ker(�̃↗) = V for FP↗ (V ).
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5.2 Connected double P↗-infinitesimal bialgebras

Notations. Let A be a double P↗-infinitesimal bialgebra. The iterated coproducts will

be denoted in the following way: for all n ∈ N,

�̃n :

{
A −→ A⊗(n+1)

a −→ a(1) ⊗ . . . ⊗ a(n+1),

�̃n
↗ :

{
A −→ A⊗(n+1)

a −→ a(1)
↗ ⊗ . . . ⊗ a(n+1)

↗ .

Definition 44. Let A be a double P↗-infinitesimal bialgebra. It will be called con-

nected if, for any a ∈ A, every iterated coproduct A −→ A⊗(n+1) vanishes on a for a great

enough n.

Theorem 45. Let A be a connected double P↗-infinitesimal bialgebra. Then A is iso-

morphic to the free P↗-algebra generated by Prim(A) = Ker(�̃) ∩ Ker(�̃↗) as a double

P↗-infinitesimal bialgebra.

Proof. First step. We shall use the results on infinitesimal Hopf algebras of [5]. We show

that A = Prim(A) + A.A+ A ↗ A. As (A, ↗, �̃) is a connected nonunitary infinitesimal

bialgebra, it (or more precisely its unitarization) has an antipode S↗, defined by

S↗ :

{
A −→ A

a −→ ∑∞
i=0(−1)i+1a(1) ↗ . . . ↗ a(i+1).

As (A, �̃) is connected, this makes sense. Moreover, −S↗ is the projector on Ker(�̃) in the

direct sum A = Ker(�̃) ⊕ A ↗ A.

In the same order of ideas, as (A, m, �̃↗) is a connected infinitesimal bialgebra,

we can define its antipode S↗ by

S↗ :

{
A −→ A

a −→ ∑∞
i=0(−1)i+1a(1)

↗ . . . a(i+1)
↗ ,

and −S↗ is the projector on Ker(�̃↗) in the direct sum A = Ker(�̃↗) ⊕ A.A.

Let a ∈ A, b ∈ Ker(�̃↗). Then �̃↗(a ↗ b) = (a ⊗ 1)�̃↗(b) = 0. So A ↗ Ker(�̃↗) is a

subset of Ker(�̃↗). Moreover, if �̃↗(a) = 0, then (Id ⊗ �̃↗) ◦ �̃(a) = (�̃ ⊗ Id) ◦ �̃↗(a) = 0.

So �̃(a) ∈ A⊗ Ker(�̃↗). As a consequence, if n ≥ 1,

�̃n(a) = (�̃n−1 ⊗ Id) ◦ �̃(a) ∈ A⊗n ⊗ Ker(�̃↗).
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Hence, for all n ∈ N, �̃n(Ker(�̃↗)) ∈ A⊗n ⊗ Ker(�̃↗). Finally, we deduce that S↗(Ker(�̃↗)) ⊆
Ker(�̃↗).

Let a ∈ A. Then S↗(a) ∈ Ker(�̃↗) and S↗ ◦ S↗(a) ∈ Ker(�̃) ∩ Ker(�̃↗) = Prim(A) by

the preceding point. Moreover,

S↗(a) = −a + A.A,

S↗ ◦ S↗(a) = −S↗(a) + A ↗ A,

S↗ ◦ S↗(a) = a + A.A+ A ↗ A.

This proves the first step.

Second step. As A is connected, it classically inherits a filtration of P↗-algebra given

by the kernels of the iterated coproducts. We denote by degp the associated degree. In

particular, for all x ∈ A, degp(x) ≤ 1 if, and only if, x ∈ Prim(A). Let B be the P↗-subalgebra

of A generated by Prim(A). Let a ∈ A, let us show that a ∈ B by induction on n = degp(a).

If n ≤ 1, then a ∈ Prim(A) ⊆ B. Suppose that the result is true at all ranks ≤ n − 1. Then,

by the first step, we can write

a = b +
∑

i

aibi +
∑

j

cjd j,

with b ∈ Prim(A), ai, bi, cj, dj ∈ A. Because of the filtration, we can suppose that degp(ai),

degp(bi), degp(cj), degp(dj) < n. By the induction hypothesis, they belong to B, so a ∈ B.

Last step. So, there is an epimorphism of P↗-algebras:

φ :

{
FP↗ (Prim(A)) −→ A

a ∈ Prim(A) −→ a,

where FP↗ (Prim(A)) is the free P↗-algebra generated by Prim(A). As the elements of

Prim(A) are primitive both in A and FP↗ (Prim(A)), this is a morphism of double P↗-

infinitesimal bialgebras. Suppose that it is not monic. Take then x ∈ Ker(φ), nonzero,

of minimal degree. Then it is primitive, so belongs to Prim(A) (Lemma 43). Hence,

φ(a) = a = 0: this is a contradiction. So φ is a bijection. �

In other terms:
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Corollary 46. The triple of operads ((P�
↗)op, P

�
↗, VECT) is a good triple. Here, VECT de-

notes the operad of vector spaces:

VECT(k) =
{

K I if k = 1,

0 if k �= 1,

where I is the unit of VECT.

We have also showed that S↗ ◦ S↗ is the projection on Prim(A) in the direct sum

A = Prim(A) ⊕ (A.A+ A ↗ A). So S↗ ◦ S↗ is the eulerian idempotent.
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