Classification of systems of Dyson-Schwinger equations in the
Hopf algebra of decorated rooted trees
Loic Foissy*

Laboratoire de Mathématiques - FRE3111, Université de Reims
Moulin de la Housse - BP 1039 - 51687 Reims Cedex 2, France

ABSTRACT. We consider systems of combinatorial Dyson-Schwinger equations (briefly,

SDSE) X; = By (Fi(X1,...,XN)), ..., XNy = BY(Fn(X1,...,Xn)) in the Connes-Kreimer
Hopf algebra H; of rooted trees decorated by I = {1,..., N}, where B;r is the operator of graft-
ing on a root decorated by ¢, and F1, ..., Fiy are non-constant formal series. The unique solution

X = (Xj,...,Xn) of this equation generates a graded subalgebra Hg) of H;. We characterise
here all the families of formal series (F1,..., Fiv) such that Hgy is a Hopf subalgebra. More
precisely, we define three operations on SDSE (change of variables, dilatation and extension)
and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (.S)
such that H(g) is Hopf is the concatenation of several fundamental or cyclic systems after the
application of a change of variables, a dilatation and iterated extensions.

Mathematics Subject Classification. Primary 16W30. Secondary 81T15, 81T18.

Keywords. Hopf algebras of trees; Systems of Dyson-Schwinger equations; Pre-Lie algebras.

Contents

1 Preliminaries 5
1.1 Decorated rooted trees . . . . . . . . ... 5
1.2 Hopf algebras of decorated rooted trees . . . . . . . ... ... L. 5
1.3 Gradation of Hp and completion . . . . . . .. ... ... L. 6
1.4 Pre-Lie structure on thedual of Hp . . . . . . . . . . . . .. ... ... ... .. 7

2 Definitions and properties of SDSE 8
2.1 Unique solution of an SDSE . . . . . . . .. ... 8
2.2 Graph associated toan SDSE . . . . .. ..o o 9
2.3 Operations on Hopf SDSE . . . . . . ... . 9
2.4 Constant terms of the formal series . . . . . . . . . . . ... ... 12
2.5 Main theorem . . . . . . . .. 12

3 Characterisation and properties of Hopf SDSE 16
3.1 Subalgebras of Hp generated by spans of trees . . . . . . ... ... .. ... 16
3.2 Definition of the structure coefficients . . . . ... ... ... ... ... 17
3.3 Properties of the coefficients /\gf’]) ........................... 18

4 Level of a vertex 21
4.1 Definition of the level . . . . . . . . . . . 21
4.2 Vertices of level 0 . . . . . . . . . L 22
4.3 Verticesof level 1 . . . . . . . . . e 24

*e-mail: loic.foissy@univ-reims.fr; webpage: http://loic.foissy.free.fr/pageperso/accueil.html



4.4 Vertices of level > 2 . . . . . . e 25

5 Examples of Hopf SDSE 27
5.1 cycles and multicycles . . . . . .o oo 27
5.2 Fundamental SDSE . . . . . .. .o 28

6 Two families of Hopf SDSE 32
6.1 A lemma on non-self-dependent vertices . . . . . . . . ... ... L. 32
6.2 Symmetric Hopf SDSE . . . . . . . ... 32
6.3 Formal series of a self-dependent vertex . . . . ... ... ... ... .. ... 36
6.4 Hopf SDSE generated by self-dependent vertices. . . . . . .. .. ... ... ... 37

7 The structure theorem of Hopf SDSE 39
7.1 Connecting vertices . . . . . . . . . .. 39
7.2 Structure of connected Hopf SDSE . . . . . . . ... ... 40
7.3 Connected Hopf SDSE with a multicycle . . . . . ... ... ... ... ... 43
7.4 Connected Hopf SDSE with finite levels . . . . . ... ... ... ... ... 44

Introduction

The Connes-Kreimer Hopf algebra of rooted trees is introduced in [14] and studied in |2, 3, 5, 6,
7, 8, 13, 18]. This graded, commutative, non-cocommutative Hopf algebra is generated by the
set of rooted trees. We shall work here with a decorated version Hp of this algebra, where D
is a finite, non-empty set, replacing rooted trees by rooted trees with vertices decorated by the
elements of D. This algebra has a family of operators (B;)dep indexed by D, where B:{ sends a
forest F' to the rooted tree obtained by grafting the trees of F' on a common root decorated by
d. These operators satisfy the following equation: for all x € Hp,

AoBJ(z)=Bj(z)®1+ (Id® B}) o A(x).

As explained in [6], this means that B; is a 1-cocycle for a certain cohomology of coalgebras,
dual to the Hochschild cohomology.

We are interested here in systems of combinatorial Dyson-Schwinger equations (briefly, SDSE),
that is to say, if the set of decorations is {1,..., N}, a system (.5) of the form:

X, = Bf (Fi(Xy,...,Xn)),

Xy = BL(Fy(Xi,...,Xn)),

where Fy,..., Fx € K[[h1,...,hy]] are formal series in N indeterminates. These systems (in a
Feynman graph version) are used in Quantum Field Theory, as it is explained in [1, 15, 16]. They
possess a unique solution, which is a family of NV formal series in rooted trees, or equivalently
elements of a completion of Hp. The homogeneous components of these elements generate a
subalgebra H gy of Hp. Our problem here is to determine Hopf SDSE, that is to say SDSE (S5)
such that H gy is a Hopf subalgebra of Hp. In the case of a single combinatorial Dyson-Schwinger
equation, this question has been answered in [9].

In order to answer this, we first associate an oriented graph to any SDSE, reflecting the
dependence of the different X;’s; more precisely, the vertices of G(g) are the elements of I, and
there is an edge from i to j if F; depends on hj. We shall say that (S) is connected if G(g)
is connected. Noting that any SDSE is the disjoint union of several connected SDSE, we can
restrict our study to connected SDSE. We introduce three operations on Hopf SDSE:



e Change of variables, which replaces h; by A\;h; for all ¢ € I, where A; # 0 for all 4. This
operation replaces Hg) by an isomorphic Hopf algebra and does not change G g).

e Dilatation, which replaces each vertex of G(g) by several vertices. This operation increases
the number of vertices. For example, consider:

[ X1 = B (f(X1,X2)),
(5>-{ X, = BéL(g(X1,X2))7

where f, g € K[[h1, h2]]; then the following SDSE is a dilatation of (5):
X1 = Bf(f(Xi1+ X2+ X3, X4+ X5)),

Xo = By (f(X1+ X2+ X3, Xy + X5)),

(8):4 X3 = Bi(f(X1i+ Xao+ X3, X4+ X5)),

Xy = Bf(g(X1+ X2+ X3, X4+ X5)),

X5 = Bi(9(X1+ X+ X3, Xy + X5)),

e Extension, which adds a vertex 0 to G(g) with an affine formal series. This operation
increases the number of vertices by 1. For example, consider:

X1 = B (f(X1,X2)),
(S>-{ X, = B;L(f(XhXZ)),

where f € K[[h1, h2]] and a,b € K; then the following SDSE is an extension of (.5):

Xo = Bj(l1+aX;+bXs),
(8):9 X1 = B (f(X1,X2)),
Xo By (f(X1,X2)),

We then introduce two families of Hopf SDSE:

e Cycles, which are SDSE such that the associated graph is an oriented graph and all the
formal series of the system are affine; see theorem 28. For example, the following system

is a 4-cycle:
X; = Bf(1+Xo),
Xy = By (1+X3),
X3 = Bi(1+Xy),
X, = Bf(1+Xy)

The associated oriented graph is:
1
4

e Fundamental SDSE, described in theorem 30. Here is an example of fundamental SDSE:

-~

Xi = B (4 (00f g (4 Bha)1 = ha) 1= 1)),

Xo = B (o (X0futh)( - ) (0= ) ).

Xo = B (£ (4 9XDS s (14 B~ ki) ).

Xi = B (£ (4 XS s (14 B~ ) ).

Xo = B (£ o (4 MRS g (14 )1~ o) (1= k) ).



where (31,82 € K — {—1} and, for all 5 € K, f3 is the following formal series:

k=

0
The associated oriented graph is:  —
() -
l=——"—

(Pas)
L

The main result of this paper is theorem 14, which says that any connected Hopf SDSE is ob-
tained by a dilatation and a finite number of iterated extensions of a cycle or a fundamental SDSE.

X

Let us now give a few explanations on the way this result is obtained. An important tool is

given by a family indexed by I? of scalar sequences ()\gf g )) N associated to any Hopf SDSE.
n>1

They allow to reconstruct the coefficients of the formal series of (S), as explained in proposition
19. Particular cases of possible sequence (/\S 7 )) - are affine sequences, up to a finite number
n>
of terms: this leads to the notion of level of a vertex. It is shown that level decreases along
the oriented paths of G g (proposition 21), and this implies the following alternative if (S) is
connected: any vertex is of finite level or no vertex is of finite level. In particular, any vertex of
a fundamental SDSE is of finite level, whereas no vertex of a cycle is of finite level.
We then consider two special families of SDSE:

e We first assume that the graph associated to (S) does not contain any vertex related to
itself. This case includes cycles and their dilatations (called multicycles), and a special
case of fundamental SDSE called quasi-complete SDSE. We show, using graph-theoretical
considerations and the coefficients /\,(f’j ), that under an hypothesis of symmetry, they are
the only possibilities.

e We then assume that any vertex of (S) has an ascendant related to itself. We then prove
that (S) is fundamental.

This results are then unified in corollary 48. It says that any Hopf SDSE with a connected graph
contains a multicycle or a a fundamental SDSE (Sy) and is obtained from (Sp) by adding repeat-
edly a finite number of vertices. This result is precised for the multicycle case in theorem 49 and
for the fundamental case in theorem 50. The compilation of these results then proves theorem 14.

This text is organised as follows: the first section gives some recalls on the structure of Hopf
algebra of Hp and on the pre-Lie product on g(g) = Prim (H?S)) In the second section are

given the definitions of SDSE and their different operations: change of variables, dilatation and
extension. The main theorem of the text is also stated in this section. The following section
introduces the coefficients )\gf 9) and their properties, especially their link with the pre-Lie prod-
uct of g(g). The level of a vertex is defined in the fourth section, which also contains lemmas on
vertices of level 0, 1 or > 2, before that fundamental and multicyclic SDSE are introduced in the
fifth section. The next section contains preliminary results about graphs with no self-dependent
vertices or such that any vertex is the descendant of a self-dependent vertex, and the main the-

orem is finally proved in the seventh section.

Notations. We denote by K a commutative field of characteristic zero. All vector spaces,
algebras, coalgebras, Hopf algebras, etc. will be taken over K.
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1.1

Preliminaries

Decorated rooted trees

Definition 1 [19, 20]

1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t.

The weight of t is the number of its vertices. The set of rooted trees will be denoted by 7.

2. Let D be a non-empty set. A rooted tree decorated by D is a rooted tree with an application

from the set of its vertices into D. The set of rooted trees decorated by D will be denoted
by 7p.

3. Let ¢ € D. The set of rooted trees decorated by D with root decorated by ¢ will be denoted

by T3

Examples.

1. Rooted trees with weight smaller than 5:

vk b vl b by vl

2. Rooted trees decorated by D with weight smaller than 4:

ea; a €D, 1% (a,b) € D?; =V, ié, (a,b,c) € D3;

. b d b c c c c d d, c ig
b d b - o d - b d - d b b d d b
T = =t — g — o o N ol Y Y B (abe,d) e DA,

a

Definition 2

1. We denote by Hp the polynomial algebra generated by 7p.

2. Let t1,...,t, be elements of 7p and let d € D. We denote by B} (t1...t,) the rooted

tree obtained by grafting t1,...,t, on a common root decorated by d. This map Bd+ is
extended in an operator from Hp to Hp.

b
For example, BJ (1%..) = akfdc .

1.2 Hopf algebras of decorated rooted trees

In order to make Hp a bialgebra, we now introduce the notion of cut of a tree t € Tp. A
non-total cut ¢ of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes ¢
into a forest denoted by W€(t). The cut c is admissible if any oriented path in the tree meets
at most one cut edge. For such a cut, the tree of W¢(t) which contains the root of ¢ is denoted
by R¢(t) and the product of the other trees of W€(¢) is denoted by P¢(t). We also add the total

cut
set

, which is by convention an admissible cut such that R°(t) = 1 and P¢(t) = W¢(t) = t. The

of admissible cuts of t is denoted by Adm.(t). Note that the empty cut of ¢ is admissible; we

put Adm(t) = Adm.(t) — {empty cut, total cut}.



example. Let a,b,c,d € D and let us consider the rooted tree t = bkfdc . As it as 3 edges, it
has 23 non-total cuts.

cut ¢ bbdc ILI\/dC b‘&/dc b&fgc %c ZLIVYEC b‘&fgc %c total
Admissible? | yes | yes yes yes no yes yes no yes
Wc(t) Z)K/dc IgIﬁ 'cl,b\/dC Ig'c 'a'bzgl Ig'c'd 'aIg°c cagebeced bk/dC
Re(t) b&/j 15| e | X va 1 X 1
P<(t) 1 1 va e X 1ee | eaee X bk/;

The coproduct of Hp is defined as the unique algebra morphism from Hp to Hp ® Hp such
that for all rooted tree t € Tp:

Afty= > PORR@W)=tel+lot+ Y P()R().
cEAdm(t) ce Adm(t)

As Hp is the free associative commutative unitary algebra generated by 7p, this makes sense.
This coproduct makes Hp a Hopf algebra. Although it won’t play any role in this text, we recall
that the antipode S is the unique algebra automorphism of Hp such that for all ¢ € Tp:

Sty=— Y (=)W,

c cut of t

where n, is the number of cut edges of c.

Example.

al

A(bl/;) :%C ®1+1®%C PRI+ @V e 0l 1 © it e ® 1Y
A study of admissible cuts shows the following result:
Proposition 3 For all d € D, for all x € Hp:
AoBJ(z)=Bj(z)®1+ (Id® B}) o A(x).
Remarks.
1. In other words, B:{ is a 1-cocycle for a certain cohomology of coalgebras, see [6].
2. Tt € T\, then A(t) —t® 1€ Hp @ T

1.3 Gradation of Hp and completion

We grade Hp by declaring the forests with n vertices homogeneous of degree n. We denote by
Hp(n) the homogeneous component of Hp of degree n. Then Hp is a graded bialgebra, that is

to say:

e Foralli,jeN, Hp(i)H(j) C Hp(i + j).

o Forallk € N, A(Hp(k)) € > Hp(i) @ Hp(j).
it+j=k



We define, for all x € Hp:

val(zr) =max{n eN|z € @Hp(k:)

k>n

We then put, for all z,y € Hp, d(z,y) = 27"*==¥) with the convention 2-°° = 0. Then d is
a distance on Hp. The metric space (Hp,d) is not complete; its completion will be denoted by
Hp. As a vector space:

Hp = [[ Ho(n)

neN

The elements of ’I/-(; will be denoted by > x,, where x,, € Hp(n) for all n € N. The product
m: HD ® HD — Hp is homogeneous of degree 0, so is continuous: it can be extended from
’HD & HD to HD, which is then an associative, commutative algebra. Similarly, the coproduct
of Hp can be extended as a map:

A HD—>HD®HD— H Hp (i) @ Hp(j).
1,7JEN

Let f(h) = > pnh" € K[[h]] be any formal series, and let X = > x,, € Hp, such that 2o = 0.
The series of Hp of terms p, X™ is Cauchy, so converges. Its limit will be denoted by f(X). In
other words, f(X) = yp, with:

Yo = po,

Yn = Z Z PkTaq *** Tay ifn>1.

=1ai1+-+ar=n

1.4 Pre-Lie structure on the dual of Hp

By the Cartier-Quillen-Milnor-Moore theorem [17], the graded dual H}, of Hp is an enveloping
algebra. Its Lie algebra Prim(H},) has a basis (f;)ie7, indexed by 7p:

Hp — K

ft: tl...tn I {

0ifn #1,
5t,t1 ifn=1.

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra)
is a couple (A, x), where « is a bilinear product on A such that for all z,y, z € A:

(xxy)*z—axx(y*x2)=(y*x)*x2z—y* (T *2).

Pre-Lie algebras are Lie algebras, with bracket given by [z,y] = xxy —y * .

The Lie bracket of Prim(Hj,) is induced by a pre-Lie product % given in the following way:
if f,g € Prim(H3,), f * g is the unique element of Prim(H},) such that for all ¢t € 7p,

(fxg)(t) = (f®g)o(r@m)oA),

where 7 is the projection on Vect(7?) which vanishes on the forests which are not trees. In
other words, if t,t' € Tp:
fox fr =" n(t,t;t") fur,
t"eTp
where n(t,t’;t') is the number of admissible cuts ¢ of ¢ such that P¢(¢t") =t and R(t") =1t'. Tt
is proved that (prim(H}), %) is the free pre-Lie algebra generated by the ..4’s, d € D: see |3, 4].
Note that H7}, is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [10, 11, 12].



2 Definitions and properties of SDSE

2.1 Unique solution of an SDSE

Definition 4 Let I be a finite, non-empty set, and let F; € K[[h;,j € I]] be a non-constant
formal series for all i € I. The system of Dyson-Schwinger combinatorial equations (briefly, the
SDSE) associated to (F;)er is:

Viel, X; =B (fi(X;,j €1)),

where X; € 7/{\1 for all ¢ e 1.

In order to ease the notation, we shall often assume that I = {1,..., N} in the proofs, with-
out loss of generality.

Notations. We assume here that [ = {1,...,N}.

1. Let (S) be an SDSE. We shall denote, for all ¢ € I:

o (@) PL 3D
Iy = Z a(plw-,pN)hll. hNN'

p1, PN

2. Let 1 <j < N. Wepute; =(0,---,0,1,0,---,0) where the 1 is in position j. We shall

denote, for all 7 € I, ay) = ag.); for all j,k eI, a% = ag)ﬁk, and so on.

Remark. We assume that there is no constant F;. Indeed, if F; € K, then X; is a multiple
of .;. We shall always avoid this degenerated case in all this text.

N\
Proposition 5 Let (S) be an SDSE. Then it admits a unique solution (X;)ier € (HI) .

Proof. We assume here that I = {1,...,N}. If (X3,---, Xy) is a solution of S, then Xj is
a linear (infinite) span of rooted trees with a root decorated by i. We denote:

These coefficients are uniquely determined by the following formulas: if

_ p+ (P11 4PlLay | 4PN PNay
t = DB; <t1,1 g "IN N gy ) ,

where the ¢; ;’s are different trees, such that the root of ¢;; is decorated by 7 for all i € I,
1<j < g, then:

N
a — H (pm + ... +pi7qi)! a(z’) apm B 'apN,qN (1)
t pinl o Pig,! (P11 +P1,g 0 PN, 1H DN gy ) P11 INgn
/L:]. ’ 147
So (S) has a unique solution. O

Definition 6 Let (S) be an SDSE and let X = (X;);es be its unique solution. The subal-
gebra of H; generated by the homogeneous components X;(k)’s of the X;’s will be denoted by
Hs)- If H(g) is Hopf, the system (S) will be said to be Hopf.



2.2 Graph associated to an SDSE
We associate a oriented graph to each SDSE in the following way:
Definition 7 Let (S) be an SDSE.
1. We construct an oriented graph G(g) associated to (5) in the following way:

e The vertices of G(g) are the elements of I.

OF;
e There is an edge from ¢ to j if, and only if| a—hl # 0.
J
OF;

Oh;
dependent, there is a loop from ¢ to itself in G(g).

2. If

% 0, the vertex ¢ will be said to be self-dependent. In other words, if ¢ is self-

3. If G(g) is connected, we shall say that (S) is connected.

Remark. If (5) is not connected, then (S) is the union of SDSE (S1), - - -, (Sk) with disjoint
sets of indeterminates , so H(g) ~ Hg,) ® - @ Hg,). As a corollary, (S) is Hopf if, and only if,
for all j, (S5;) is Hopf.

Let (S) be an SDSE and let G(g) be the associated graph. Let i and j be two vertices of
G(s)- We shall say that j is a direct descendant of i (or 7 is a direct ascendant of j) if there is
an oriented edge from i to j; we shall say that j is a descendant of ¢ (or 7 is an ascendant of j) if
there is an oriented path from 7 to 7. We shall write "i — j" for "j is a direct descendant of 7".

2.3 Operations on Hopf SDSE

Proposition 8 (change of variables) Let (S) be the SDSE associated to (Fi(hj,j € I))icr-
Let \; and p; be non-zero scalars for all i € I. The system (S) is Hopf if, and only if, the SDSE
system (S') associated to (uiFi(Njhj, j € J))ier is Hopf.

Proof. We assume that [ = {1,..., N}. We consider the following morphism:

b H; — Hp
NV FeF — (mA)"@E . (uyAy)"vEOEF,

where n;(F') is the number of vertices of F' decorated by i. Then ¢ is a Hopf algebra automorphism
and for all i, ¢ o B = y;\i B o ¢. Moreover, if we put V; = %(b(X,) for all i:

1
Vi = 00 BF(F(X1, e X))
1
= xﬂi)\iB;r(Fi(Qb(Xl)»"' ,O(XN)))
= wB (F(AMY1, -, ANYN)).
So (Y1,---,Yy) is the solution of the system (S’). Moreover, ¢ sends H(g) onto Hgy. As ¢ is
a Hopt algebra automorphism, Hg) is a Hopt subalgebra of H; if, and only if, H g is. |

Remark. A change of variables does not change the graph associated to (.5).

Proposition 9 (restriction) Let (S) be the SDSE associated to (Fi(hj, j € I))icr and let
I' C I, non-empty. Let (S’) be the SDSE associated to (E(hj,j € I)lhj:07vj¢1/>' e If (S) is
icl’
Hopf, then (S') also is.



Proof. We consider the epimorphism ¢ of Hopf algebras from Hj to Hjs, obtained by sending
the forests with at least a vertex decorated by an element which is not in I’ to zero. Then ¢
sends H(g) to H(g). As ¢ is a morphism of Hopf algebras, if H g is a Hopf subalgebra of Hy,
H sy is a Hopf subalgebra of H. O

Remark. The restriction to a subset of vertices I’ changes G g) into the graph obtained by
deleting all the vertices j ¢ I’ and all the edges related to these vertices.

Proposition 10 (dilatation) Let (S) be the system associated to (F;)icr and (S’) be a

system associated to a famaily (Fj{)jej, such that there exists a partition J = U‘]i’ with the
il
following property: for all i € I, for all x € I;,

F=F Y hy jel
yel;

Then (S) is Hopf, if, and only if, (S’) is Hopf. We shall say that (S’) is a dilatation of (S).

Proof. We assume here that I = {1,...,N}.
=>. Let us assume that (5) is Hopf. For all i € I, we can then write:

AX) = P(Xy,-, Xn) @ Xi(n),
n>0

with the convention X;(0) = 1. Let ¢ : Hy — Hp be the morphism of Hopf algebras such that,
forall 1 <3< N:

¢oB = Bfog.

JEL

Then, immediately, for all 1 <¢ < N:

o(Xi) =) X

J€l;

As a consequence:

S A=Y R0 (S X 5] o xm)

JEIL; jel; n>0 kel kely
Conserving the terms of the form F' ® ¢, where ¢ is a tree with root decorated by j, for all j € I;:

AX)=>"PO Y Xf ) X | @ Xj(n).
n>0 kel keln
So (S”) is Hopf.
<. By restriction, choosing an element in each I;, if (S’) is Hopf, then (S) is Hopf. O

Remark. If (S’) is a dilatation of (S), then the set of vertices J of the graph G/ associated
to (S") admits a partition indexed by the vertices of G(s), and there is an edge from = € J; to
y € Jj in G(g) if, and only if, there is an edge from i to j in G(g).

10



Example. Let f,g € K[[h1, hs2]]. Let us consider the following SDSE:

o {3

X1
Xo
(S/) : X3
Xy
X5

Then (5’) is a dilatation of (5).

f(X1 + Xo+ X3, X4 + X5))
f(Xl + X9 + X3,X4 —+ X5))
f( X1+ Xo + X3, X4 + X5))
g(X1 + X9+ X3,X4 + X5))
g(X1+ Xo+ X3, X4 + X5))

)

9

)

)

Proposition 11 (extension) Let (S) be the SDSE associated to (F;)icr

(8) be associated to (F;)icruqoy, with:

FO =1 + Zago)hz

Then (S") is Hopf if, and only if, the two following conditions hold:

1. (S) is Hopf.

9. Foralli,j e IO = {j e1/d" ;Ao}, F, = F;.

If these two conditions hold, we shall say that (S") is an extension of (S).

Proof. We assume here that [ = {1,...,N}.
—. Let us assume that (S’) is Hopf. By restriction, (S) is Hopf. Moreover:

N
Xo =B (1 +3 "X,
=1

)

i=1

. Let 0 ¢ I and let

N
= o+ aBf o B (fi(X1,-+, Xx)).

As H(gry is a graded Hopf subalgebra, the projection on Hyg... ny ® Hyo,... n}(2) gives:

N

> a (X1, Xn) @ 15 € HisEH ().

=1

So this is of the form:

N
P®Xo(2)=P® (Za§°>zg> :
=1

for a certain P € H(g). As the 1§’s, ¢ € I, are linearly independent, we obtain that for all 4, j,
aEO)Fi(Xl, e XN) = aEO)P for all 4, and this implies the second item.

—

<. As (5) is Hopt, we can put for all 1 <i < N:

+oo
AX)=X;01+ Y PV @ Xq(k),

k=1

11



where Pr(f) is an element of the completion of H(g). By the second hypothesis, if i,j € I, as
F; = Fj, Pp = P,(Lj). We then denote by P, the common value of P,Si) for all : € I. So:

N
AXo) = «w®1+1®.0+ > a”AoBf (X))
=1

N N oo
= Xo®1+10Xo+ Y a1+ X) @0+ Y. Y a PV @ Bf (Xi()))
i=1 i=1 j=1

N N oo
= Xo®l+10Xo+ Y a1 +X) @0+ Y. > al P @ Bf (X()))
i=1 =1 j=1

N N 00
= X0®1+1®X0+Za50)(1+Xi)®.0 +ZPJ‘®BS_ ZaiO)Xz(J)
Py : "

N N
= Xo®1+10Xo+ Y a1+ X)® .0+ Pj@Xo(j +1).
=1 =1

This belongs to the completion of H (g ® Hgry, so (S”) is Hopf. |
Remarks.

L. If (S) is an extension of (S), then G(g) is obtained from G(gy by adding a non-self-
dependent vertex with no ascendant.

2. It 1 is reduced to a single element, then condition 2 is empty.

Definition 12 Let (S) a Hopf SDSE and let i € I. We shall say that i is an eztension vertex
if, denoting by J the set of descendants of 4, the restriction of (S) to J U {i} is an extension of
the restriction of (S) to J.

2.4 Constant terms of the formal series

Lemma 13 Let (S) be an Hopf SDSE. If F;(0,---,0) =0, then X; = 0.

Proof. If F;(0,---,0) = 0, then the homogeneous component of degree 1 of X; is zero, so
-i ¢ H(g). Considering the terms of the form F'®.; in A(X;), we obtain:

Fi(Xj, j e I) ® . € H(S) ®H(S)~
As .; ¢ Hg), necessarily Fi(X;, j € I) =0,s0 X; = 0. O

As a consequence, if F;(0,---,0) = 0, then Hg) = H(g), where (S’) is the restriction of
(S) to I —{i}. Using a Change of variables, we shall always suppose in the sequel that for all 7,
F(0,--+,0) = 1.

2.5 Main theorem

Notations. For all § € K, we put:

M

(149 (5= 1) (1= Bh)™5 if B #0,
r hif g=o0.

The main aim of this text is to prove the following result:

12



Theorem 14 Let (S) be a connected SDSE. It is Hopf if and only if one of the following
assertion holds:

1. (Ezxtended multicyclic SDSE). The set I admits a partition I = I5U-

U Iy indexed by the
elements of Z/NZ, N > 2, with the following conditions:

e Forallie Ii:
F=1+ Y a
j€hTT

e Ifi and i’ have a common direct ascendant in G(s), then F; = Fy (so0 i and i’ have
the same direct descendants).

2. (Eztended fundamental SDSE). There erists a partition:

I=|JZ|ul U4 | uKoUL UL UL,
i€lp i€Jo

with the following conditions:

o Ky, Iy, J1, I can be empty.
o The set of indices Iy U Jy is not empty.
e Foralli e IgU Jy, J; is not empty.

Up to a change of variables:

(a) For all i € Iy, there exists 5; € K, such that for all x € J;:

Fo=fa \ Yy | TI For (483 0| TT A D 1y

yeJ; jelo—{iy ‘1P yeJ; j€Jo yeJ;

(b) For alli € Jy, for all x € J;:

gg—Hfﬁ] A+8)> by | JI A D h

j€lo yeJ; jeJo—{i} yeJ;

(c) For alli € Ky:

Fo=T17 o (@) Xon | TLA |

1 h
j€ly +6; yeJ; j€Jo yeJ;

(d) For all i € I, there ex'ist v; € K and a family of scalars <a§i)>gelouJouK0’ with
(i # 1) or (3j € Io, &) # 1+ 8)) or (35 € Jo, o) # 1) or (3j € Ko, a) # 0).
Then, if v; # 0:

H f . vial) 3 by | T[T | wal? S my | TT fo (Vz'ay)h

1
j 1——'.
: o A v;
JEI() via J yeJ; jedo 7% yeJ; J€Ko

O

R OE S R o/ B ST R oI B SR 0P

jelo I yeJ; j€Jo yeJ; jeKo

13



(e) For alli € Jy, there ezists v; € K — {0} and a family of scalars (ay))

with the three following conditions:

JelpUJoUKoUIL ’

o 1) = {je/af) #0} is not empty
e Forallje Ifi), v; =1.

o Lorall 5,k € Iy), F; = Fy,. In particular, we put bgi) = agj) for any j € Iy), for
all t € InU Jy U K.

Then:

Fom CTI o (00 -1-m) S | T o [(50-1) X,

bjelo b\ -1-p yes; jedo b1 yeJ;
o (i) 1

H f0<bj hi)+ Y ahi+1 o

j€Ko jer®

(f) I =A{z1,...,zm} and for all 1 < k < m, there exist a set:

I(xk)g UJZ U UJZ UKQU[1UJ1U{$1,...,.%']€,1}
i€lp i€Jo

a(@k)

and a family of non-zero scalars ( )
T jerew

Then:

such that for all i,j € 1) Fy = F;.

jer@r)

Here is the graph of a system of an extended multicyclic SDSE, with NV = 5. The different
subset of the partition are indicated by the different colours. the multicycle corresponds to the
five boxes. An arrow between two boxes means that all vertices of the boxes are related by an
arrow.

Here is the graph of an extended fundamental SDSE. The vertices in J;, with i € Iy, are
green. There are two elements in Iy, one with 5; = —1 (light green vertices) and one with
Bi; # —1 (dark green vertex). There are two elements in Jy, corresponding to light blue and dark
blue vertices. The unique element of Ky is red; the unique element of I; is yellow; the unique
element of Jj is orange; the dark vertices are the elements of Is. An arrow between two boxes

14



means that all vertices of the boxes are related by an arrow.

For example, the SDSE associated to the following formal series has such a graph:

Fy
Fy=F}

Fy = Fy
Fy = Fo = Fy
Fy

AT

Fi9 = Fi3

Fis
Fig
Fi7
Fig
Fig

f5(h1) f1(ha + hs) f1(he + hr + hs)
(L+h2+hs)f o o + B)h1) fi(ha + hs) fi(he + h7 + hs)

((1
flf ((1 +ﬁ)h1) 1(h6+h7+h8)
flf( B)h1) f1(ha + hs)
flf (1 + B)h1) fi(ha + hs) fi(he + h7 + hs)

1f s <Va§10)h1> f% (I/aélo)(hg —|—h3)) fﬁ (Vail )(h4 +h5))
va§

VT (10)
l/(ll

vay

(uaélo)(hG + h7 + hg)) o (Vago)hg) 1 l’

1%

f

el

Vl’fagmﬁlﬂ ((agl()) -1
s (-

1
fo (a§n )+G%Mw+1—;

1+ a§0 )hw,

1+ a§é4)h13,

1+ a§125)h12 + a§§5)h13,
1+ a§156)h15,

1+ agw)hg,

1+ a§178)h177

1+ a%g)hn,

=) i) f oy (o a4 1))
(

1) (hg + h5)) f (aélo) - 1) (he + h7 + hs))

1 1
(10) (10)
ay -1 ag -1

where 8 # —1, v,/ # 0, and the coefficients aéi) are NON-Zero.
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3 Characterisation and properties of Hopf SDSE

3.1 Subalgebras of Hp generated by spans of trees

Let us fix a non-empty set D.

Lemma 15 Let V' be a subspace of Vect(Tp) and let us consider the subalgebra A of Hp
generated by V. Recall that for all d € D, f,, is the following linear map:

f{ Hp — K

tiotn — Otytneg-
Then A is a Hopf subalgebra if, and only if, the two following assertions are both satisfied:
1. Forallde D, (f,,®Id)oc A(V)CV + K.
2. Forallde D, (Id® f.,) o A(V) C A.

Proof. = . If A is Hopf, then A(V) CA®A. AsV C Vect(Tp), A(V) CH® (Vect(Tp) +
K). So:
AV)C(AANH® (Vect(Tp)+ K)) = A® (VO K).

This implies both assertions.

<—. We use here Sweedler’s notations: A(a) =a’ ® a’ and (A® Id) o Aa) =d ® " ® o
for all a € A.
First step. Let us consider the following subspace of Prim(H},):

B={f € Prim(Hy) / (f®Id)o A(V) CV + K}.

By hypothesis 1, f., € B for all d € D. We recall here that « is the pre-Lie product of Prim(H;,).
Let fand g€ B. Forallv e V:

(fxg®Id)oAv) = for(v')gom(v)".
AsfeB, for(vW' eV +K. Asge B, for(v)gor(v")v" € V+ K. So fxg € B, and B
is a sub-pre-Lie algebra of Prim(H}). As Prim(H}) is generated as a pre-Lie algebra by the
f.4’s, B = Prim(H}).
Second step. Let us consider the following subspace of H7:
B'={feHp/(feld)oA(A) C A}.

Let f € Prim(H},). By the first step, for all vq,--- ,v, € V:

n
(f@Id)oA(vr---vp) = f(0f v )of ---vfy = wro- f(O)v] -+ vp € 4,

i=1

so Prim(H},) C B'. Let f,g € B'. For all a € A:

(fg® Id)o Ala) = f(a')g(a")a".

As fe B, f(d)d" € A. As g e B, f(d')g(a")a” € A. So B’ is a subalgebra of H},. As it
contains Prim(H?%), it is equal to Hj,. So:

AA) CHp@ A+ (] Ker(f)®@Hp=Hp® A.
fems,
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Third step. Let us consider the following subspace of Prim(H%,):
C={fePrim(Hp)/(Id® f)o A(V) C A}.
By the second hypothesis, f,, € B for all d € D. Let us take f and g € C. For allv e V:
(Id® (f*g)) o A(v) = for(v")gonm(v").
Asge C,v'gom(v”) € A. Let us denote:
Vor(v") =Y vr-e v,
where v1,...,v, are elements of V. Then:
V' for(v")gom(v™) Zvl ol fom(vy - vl)gom(v™).
By the second step, as V' C Vect(7p):

A(V) C (Hp® A) N (Hp @ (Vect(Tp) + K)) = Hp @ (V + K).

So: .
Zvl vl @ (v - 1)7’{):ZZU1-~-02~--UH®W(1)£’).
i=1
Finally:
(Id® (f*g)) szl viv, @ fom(v)).

As f € B’, this belongs to A. So fxg € B’. As at the end of the first step, we conclude that
B’ = Prim(H%,).

Last step. As in the second step, we conclude that for all f € H},, (Id® f) o A(A) C A. So
A(A) CA®Hp,and A(A) C (Hp®A)N(A®@ Hp) = A® A. So Ais a Hopf subalgebra. O
3.2 Definition of the structure coefficients

Proposition 16 Let (S) be an SDSE. It is Hopf if, and only if, for alli,j € I, for alln > 1,
there exists a scalar A7) such that for all t' € T;(n):

Z nj(t,t')at = )\g’j)at/,

te7T;(n+1)
where n;(t,t') is the number of leaves | of t decorated by j such that the cut of I gives t'.

Proof. =>. Let us assume that () is Hopf. Then H gy is a Hopf subalgebra of H;. Let
us use lemma 15, with V' = Vect(X;(n), i € I, n > 1). So (f.; ® Id) o A(X;(n + 1)) belongs
to H(g), and is a linear span of trees of degree n with a root decorated by i, so is a multiple of
Xi(n). We then denote:

(f., ® Id) o A(X;(n+1)) = Z A0 gt

t'eT (n

By definition of the coproduct A:

(f., ® Id) o A(X;(n+1)) = > nj(t, t')agt’.
teT (n+1), €T (n)
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The result is proved by identifying the coefficients in the basis 7 (n) of these two expressions of
(f.; ® 1d) o A(X;(n +1)).

<. Let us prove that both conditions of lemma 15 are satisfied, with the same V" as before.
By hypothesis, for all 4,5 € I, for all n > 2, (f.;, ® Id) o A(X;(n)) = )\S_jin(n —-1) e V.
Moreover, (f,; ® Id) o A(X;(1)) = é;; € K, so the first condition is satisfied. For the second
one:

(Id® f.;) 0 A(X;) = (Id @ f.,;) o A(B (Fi(X;, j € 1)) = Fi(X;, j € I) € Hs).
So H(s) is a Hopf subalgebra of H;. O

3.3 Properties of the coefficients AGA)

The coefficients )\7(5 g are entirely determined by the agi)’

coefficients of the F;’s, as shown by the following result:

s and ag.i,)c’s, and determine the other

Lemma 17 Let us assume that (S) is Hopf, with I = {1,...,N}. Let us fir i € I.
1. For all sequence i =iy — -+ — ip of vertices of G(g)

n—1 (ip)

i) (in) Qjips1
)\S]) =a; " + Z(l + 5j,ip+1) (zl:; .
p=1 Dipir
In particular, )\gi’j) = ay).

2. For all pr,--- ,pny € N:

(i) __ 1
1, i on) pi+1 ( P+ tpy+1 Zpla ) %1, o)
J lel

Proof. 1. Let us consider a sequence i1, - - , i, of elements of I, such that 71 =4 and for all
1<p<n-— # 0. By definition of )\( ’])

Z+1

n—2 )
)\(Z’])CLIM . = ai%n +(1 ]zn a Vi _ 1+ g a '”p+1a
p=1 =i1

12 H tn—1 12
I i1 I ;2 I i1
1

Niaft - valv=) = afl) el el 4 (14 65,)al) - all)
n—2
+ Z(l + 5',ip+1)az(;1) o ag'fz)ﬂal(;il) o aginil)’
p=1
i) g
i) (in Jrip+1
M = a0 S
p=1 aierl

This proves the first point of the lemma.

2. Let us now fix p1,--- ,py € N. By definition, for ¢ = B;f (.71 \PN):

)‘(ll’i) ApN+1OB (1 Ny T (p; +1)aB+( 1Pl jPITL PN)
+Za3j(.1p1.--.lPrl-v-.NvNIZ)v
1
(4,9) (Z) _ ( ) (l)
)‘p1+ Apn+H1%py e py) T (p]+1) (p1,+,pi+1, pN)+Zpla(p1 o)

18



This proves the second point of the lemma. O

Remarks.
1. As a consequence of the second point, if (S) is Hopf and if agp) o) =05 then agl) ) =0
if 1 > p1,- ZN > pn- In particular, as there is no constant Fz, for all ¢, there exists a J

such that a 75 0.
2. So the sequences considered in the first point of lemma 17 always exist.

3. Moreover, for all vertices i, j of G(g), ¢ — j if and only if agi) £ 0.

4. Finally, for all ¢ € I, for all p > 1, X;(p) # 0.

Proposition 18 Let (S) be a Hopf SDSE.

1. Let i,j be verlices of G(gy, such that j is not a descendant of i. Then for alln > 1:

YA

n

2. Let (S) be a Hopf SDSE with set of vertices I and let (S’) be a Hopf SDSE with set of
vertices J. Then (S) is a dilatation of (S) if, and only if, J admits a partition indezed by
the elements of I and for alli,j € I, for all x € J;, y € Jj, for all n > 1:

A’SLZ’J) — Aqu’y)-

8. Let i € I such that:

Jel
Then for all direct descendant i’ of i, for all j, for allm > 1:

)

A

As a consequence, if i',i" are two direct descendants of i, Fy = Fn.

Proof. 1. Let us consider a sequence i = 1, - , i, of elements of I such that a;, (i) 7é 0 for
all 1 <k <n-—1. Then j is not a direct descendant of i1, -+ iy, S0 a§ ) — 0 and ayfk) , =0 for

all k. By lemma 17, A% = 0

2. =. From lemma 17-1, choosing an element x; in J; for all ¢ € [I.
<. Let us consider the dilatation (S”) of (S) corresponding to the partition of J. Then the
coefficients A7) of (S7) and (S”) are equal, so by lemma 17-2, (S') = (S”).

3. Let us consider a sequence 7,7’ = 41,--- ,1, of elements of I such that agz’jr)l 2% 0 for all

- () :
1 <k <n—1. By hypothesis on 1, a; ;= 0. By lemma 17-1:

a(lk)

A = 04 20 6 B
a;

k41

So, if ¢ and i"” are two direct descendants of i, for all k € I, for all n > 1, AR \GTR) By
lemma 17-2, Fyr = Fyn. O
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Proposition 19 Let (S) be an SDSE, with I = {1,...,N}. It is Hopf if, and only if, the
two following conditions are satisfied:

1. There exist scalars /\S’j) satisfying, for all 1 <1i,§5 < N, for all (py,--- ,pn) € NV:

(@) _ 1
Upr i1 oN) _pj—l—l (APH- +pn+1 ;pla ) %1, o)
S

2. Forallp > 1, foralli,j,dy,--- ,d, € I, such that al¥ = 0 where p; is the number of

. (p17.A.7pN)
dy’s equal to i, for all nq,--- ,ny, > 1:
(4,9) o (4,9) i) o (dr)
)‘n1+-~~+np+1 a; _)‘p—&-l_ +Z< 1,J z)
lel

Proof. Preliminary step. Let us assume the first point and let ¢’ € TD(i). We use the following

notations:
t = B:‘ H s"s

s€Tp
We also denote, for all j € I:
Pi= ) T
sETéj)
Then, by (1):
N
Hpj'
=1
Gy = m, “\PN) H ag’
H 7”3. s€Tp
s€Tp
Hence:

Yoot ae = ng | BE | T 8™ |20 ) apri, o

teTy) s€Tp
+ E Tsl +1 51782) B+<ﬂHsrs)
S1, SQETD 52
7‘5221

N
(pj + 1) [ [ »!
_ R = Re .
- (r°.7'+1)(7ﬂ +1) H r |a(p17"'7pj+17"'7pN)a.j H as
o S+

s€Tp

+ Z T51+1)ng(31732)
$1,52€Tp

CLEi) ) a

_ (pj+1) P1, Pty PN ag + Z nj<31732>7"32at’a81

0) .
(p1,+,pN) s1,52€Tp

Ts as
2 ay 1
s+ 1 7 as,

i) O]
)\p1+ pnl Zp] + Z n;j(s1,52) 7”52— ay.

51,52€7p
T'so >0
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—. Let us assume that (.5) is Hopf. We already prove the existence of the scalars )\53 7 We
obtain from the preceding computation:

(1/7]) _ 7]) l) 52 7])
)\weight(t’)at/ - Pl-‘r +pN+1 ij + Z T's2 wezght(SQ) '
s2€Tp
where d(s2) is the decoration of the root of sp. Let us choose p, i,7,dy, - ,dp, n1,--+ ,np as in

the hypotheses of the proposition. Let us choose for all 1 < j < p a tree s; with root decorated
by dj, of weight n;, such that as; # 0: this always exists (for example take a convenient ladder).

Let us take ¢ = B (s1---sp,). Then ay # 0 because aE 9 - o) # 0, so:

/\S1@~--+np+1 = )\pfl) Z < A(di7) (d,)) .

<. Let us show the condition of proposition 16 by induction on the weight n of . For

n =1, then ¢ = .;. Then, by hypothesis on the agp)h PN’ ag.i) = )\gi’j). So:

Z n;(t,t)a, = 1§ = a§i) = )\gi’j)a,i :

teT;(n+1)

Let us assume the result for all tree of weight < n. The preceding computation then gives:

, 1)
Z nj(tvt/)at: )\Sli 4pn+1 ij 2 + Z n] 51752 7“327 Qg .

(i) s1,89€7Tp
teTy N

The induction hypothesis and the condition on the coefficients )\( 7 then give that this is equal

to )\gejz)ght(t/)ﬂat/. So Hg) is a Hopf subalgebra of H;. O

4 Level of a vertex
(2)

The second item of proposition 19-2 is immediately satisfied if there exist scalars b; and a;

that A" = bj(n — 1) +a\” for all n > 1 and all ,j € I. This motivates the definition of the
level of a vertex.

such

4.1 Definition of the level

Definition 20 Let (S) be a Hopf SDSE, and let i be a vertex of G(g). It will be said to be
of level < M if for all vertex j, there exist scalar béi), &y), such that for all n > M:

i,5) _ (@) ~ (1)
AP =5 (n = 1) +a”.

n

The vertex 7 will be said to be of level M if it is of level < M and not of level < M — 1.

Remark. In order to prove that ¢ is of level < M, it is enough to consider the j’s which

are descendants of ¢. Indeed, if j is not a descendant of ¢, by proposition 18-1, A,(f 9 = 0 for all
n > 1.

Proposition 21 Let (S) be a Hopf SDSE, i a vertex of G(gy and j a direct descendant of
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1. i has level O or 1 if, and only if, 7 as level 0.

2. Let M > 2. Then i has level M if, and only if, j has level M — 1.

Moreover, if this holds, then for oll k € I, b( )~ b(])

Proof. Let i € G(g) and j be a direct descendant of i. As (S) is Hopf, let us use the second
point of proposition 19, with k =1 and d; = j. Then for all [, for all n > 1, as a 75 0:
N} = A 4 G0 D)
So for all M > 1,4 is of level < M if, and only if, j is of level < M — 1. Moreover, if this holds,
then b = bY) for all k.
The first point is a reformulation of the preceding result for M = 1. Let us assume that

M > 2. If i is of level M, then j is of level < M — 1. If j is of level < M — 2, then 7 is of level
< M — 1: contradiction. So j is of level M — 1. The converse is proved in the same way. O

Corollary 22 Let (S) be a connected Hopf SDSE. Then if one of the vertices of G gy is of

finite level, then all vertices of G g are of finite level. Moreover, the coefficients bgi) depend only
of j. They will now be denoted by b;.

Proposition 18-1 immediately implies the following result:

Lemma 23 Let (S) be a connected Hopf SDSE and let j be a vertex of Gy of finite level.
If there exists a vertez i in G(gy which is not a descendant of j, then b; = 0.

4.2 Vertices of level 0

Let (S) be a Hopf SDSE with I = {1,..., N}, and let us assume that i is a vertex of level 0. In

this case, the coefficients aa o) satisfy an induction of the following form:

N
a0 = L

(#) — ‘
Upr pilpn) Dj +1 ( J +Z”J pz) Upr,e o)

instead of a(i) and F instead of F;

In order to ease the notation, we shall write a( (1, )

in this section.

D1, PN)

Lemma 24 Under the preceding hypothesis:

1. Let us denote J = {j € I /| X\j = 0}. There exists a partition I = I; U---U Iy UJ, and
scalars B1, -+, Bur, such that for alli,je I\ J =1L U---Ulp:

G) _ | 01fi,j do not belong to the same I,
PTG G eI

2. Moreover F(hy,--- ,h H fs, Z Ahy
lel,
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Proof. Let us fix i # j. Then:

a(plv'“ Ppitlpi+1l, pN)

N

1 () )

= bt 1 (Ai—i-,uij +Z'“i DU O(py e pi+1,- pN)
=1

N N
1 (”) 0 0
= A+ > XA 1P agy e s
(pi+1)(pj+1) ( H l:1lu’ b J £ H; Pl (1, pN)

N N
1 (%) 0 0]
= Ny D o | N D i b | gy -
(pi +1)(p; +1) ( ’ ’ =

=1

For (pl, T 7PN) = (O, s ,0), as a0, ,0) = 1:
YR 2)

For (p1,---,pN) = €, we obtain:
(M4 1P+ 1) (3 + 1) de = (4 + 1+ 187) (i + 1)

So, if A\x # 0:
) (k i) (k
A = 00 o
If A\ =0, it is not difficult to prove inductively that a,, ... p) = 0if px > 0, so F'is an element
of K[[h1,--+ ,hg—1,hgs1,--- ,hn]]. Hence, up to a restriction to I \ J, we can suppose that all

%

: ()
the A\;’s are non-zero. We then put ) = M/\’—z for all i, j. Then (2) and (3) become: for all i, j, k,

y =, (4)
VZ-(j) (Vi(k)fyj(.k)) = 0. (5)

Let 1 <4,5 < N. We shall say that ¢ R j if ¢ = j or if Vi(j) # 0. Let us show that R is an
equivalence. By (4), it is clearly symmetric. Let us assume that iRj and jREk. Ifi=jor j =k
or i =k, then i R k. If 4, j, k are distinct, then I/i(]) =# 0 and y](k) # 0. By (5), Vl-(k) = V§k) £ 0, so

i R k. We denote by I1,--- , I the equivalence classes of R .

Let us assume that i R j, ¢ # j. Then VZ-(j) # 0, so for all k, y](k) = yi(k). In particular,

G _ 0

@ ;7. So, finally, there exists a family of scalars (Bi)1<i<m, such that:

_ @) _
v,h = =,

o If i, j € I}, then I/Z-(j) = [, and uz(j) = \i-
e If 7 and j are not in the same I;, then ui(j) = ,ugj) = 0.

An easy induction then proves:

p1 pn M
AP

a e —
(P1,+,pN) il pn! -

This implies the assertion on F. O
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4.3 Vertices of level 1

Let us now assume that 7 is of level 1. Then, up to a restriction to ¢ and its direct descendants,

the coefficients CLE;)l o) = Qpr o) satisfy an induction of the form:

M

CL(O7 .. ’Q ’ ‘
o) = ay),
i ! .
G = ot (3 ) )y K ) £ 00,
In order to ease the notation, we shall write a,, ... ;) instead of a&)l - pN) and F' instead of Fj

in this section.

Lemma 25 Under the preceding hypothesis, one of the following assertions holds:

1. There exists a partition I = [LU---UlpUJ, scalars 81, , By, a non-zero scalar v such
that:
F(hy, - ,hn Hfgp Zl/alhl -I-Zalhl-l-l——
lel, leJ

2. There ezists a partition {1,--- N} =1L U---U Iy UJ, scalars v, for 1 < p € M, such
that:

M

1
F(hy,---,hy)=1->» —In|1- h hi.
(ha,-, hn) ;;Vpn VpZazz —i—Zazl

leT, leJ

Proof. Let us compute a; in two different ways:
k
<>\j + /JE» )) ap = ()\k + N(]))

Aj —i—,u(k) a;

Ak + M(j) ag

In other words:

—0. (6)

Let us take J = {j / Vk, \; + M§k) = 0}. Let us consider an element j € J. Then an easy

induction proves that for all (p1,---,py) such that p1 +---+py > 2 and p; > 1, agy, ... py) = 0.
As a consequence:

F(hy,-- hn) = F(h1,--+ ,hj_1,0,hjt1, -+, hy) + ajh;.

So:
F=F(h,i¢ J)+Zajhj
jeJ
We now assume that, up to a restriction, J = (). Let us choose an i and let us put by, ... pr) =
(Pi + 1)ap, - pit1,- py)- Then, for all j € I, for all (p1,--- ,pn):

N
1 (i) ()
b(pl,--wpﬁl,--npzv) = P +1 (Aj +pt+ Zﬂj b b(pw-,pw)'
=1

We deduce from lemma 24 that there exist a partition I = Iy U---U I and scalars Sy, ..., O,
such that:

(l)

{ 0if 7,1 are not in the same Iy,
K

()\ + )mlfj,zak
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(2)

So p;* does not depend on 7 such that ,uy) # 0. So there exist scalars p; such that:

@ _ | 0if j,1 are not in the same Iy,
Fim =0 O + ) Be if 4,1 € I,

1. Let us assume that M > 2. Let us choose j € I1. Then for all k € I U---U Iy, (6) gives:

‘ Noa g,

Ak g

We denote Io U --- U I = {i1,--- ,ip}. We proved that the vectors (Aj, Aij,---, Ay, ) and
(aj,a,- -+ ,a;,) are colinear. Choosing then a j € I, we obtain that there exists a scalar

v, such that (A;)ier = v(ai)ier. Two cases are possible.

(a) If v # 0, putting a,(m,---,pzv) = Va(p, .. py) if (P17 ,pN) # (0,---,0) and a’(07_“70),

then the family (a’( satisfies the hypothesis of lemma 24. As a consequence,

Pl,“',PN)
F(hi,--- ,hy) satisfies the first case.

(b) If v =0, then we put, for all j, u; = v}a;. By (6), for j and k in the same I;, v} = v},
if 7 and k are in the same I;: this common value is now denoted v;. It is then not
difficult to prove that:

M

1
F(hy,--- ,hN):l—ZV—ln L—vp Y arhy

p=1 P lel,
This is a second case.

2. Let us assume that M = 1. Then (A\j + p;)01 = ugi) for all 4,5 € I.

(a) Let us suppose that §; # 1. Then, for all j,k € I p; = lf—fgl)\j. So, for all j,

Aj = fllilAj' So (6) implies that (\j);er and (a;);er are colinear. As in 1.(a),
this is a first case.

b) Let us assume that 81 = 1. So A\; =0 for all j. Asin 1.(b), this is a second case.
J

4.4 Vertices of level > 2

Lemma 26 Let (S) be a Hopf SDSE and let i be a vertex of G(g). We suppose that there
exists a vertex j, such that:

e j is a descendant of i.

o All oriented path from i to j are of length > 3.

Then F; =1+ Y af'h.

i—l

Proof. We assume here that I = {1,..., N}. Let L be the minimal length of the oriented
paths from 4 to j. By hypothesis, L > 3. Then the homogeneous component of degree L + 1 of
X; contains trees with a leave decorated by j, and all these trees are ladders (that is to say trees

with no ramification). By proposition 16, if ' € TD(Z)(L):

)\%’J)(Lt/ = Z nj(t,t/)at.
teTS (L+1)
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For a good-chosen ladder t', the second member is non-zero, so )\(Li’j) is non-zero. If ¢’ is not a
ladder, the second member is 0, so ay = 0. As a conclusion, X;(L) is a linear span of ladders.

Considering its coproduct, for all p < L, X;(p) is a linear span of ladders. In particular, X;(3) is

a linear span of ladders. But:
= S a0+ 3 afl
l,m

<m

(4)

so a;,. = 0 for all [,m. Hence, F; contains only terms of degree < 1. O

Remark. This lemma can be applied with ¢ = 7, if ¢ is not a self-dependent vertex.

Proposition 27 Let (S) be a Hopf SDSE and let i be a vertez of G(g) of level > 2. Then i
18 an extension vertec.

Proof. We denote by M the level of i. By proposition 21, all the descendants of ¢ are of
level < M — 1, so i is not a descendant of itself.

Let M be the level of ¢ and let us assume that M > 3. Let j be a direct descendant of ¢, k
be a direct descendant of j, [ be a direct descendant of k. Then j has level M — 1, k has level
M — 2, [ has level M — 3. So in the graph of the restriction to {i,j, k,{} is:

i—J k—lor i—>j—>k—>1_)
The result is then deduced from lemma 26.
Let us now assume that 7 is of level 2 and is not an extension vertex. Let j be a direct

descendant of ¢ and &k be a direct descendant of j. By proposition 21, j is of level 1 and k is of
level 0, so k is not a direct descendant of i. The graph of the restriction of (S5) to {i, 7, k} is:

First step. Let us first prove that there exists a direct descendant j of ¢ such that aéi]). # 0.
Let us assume that this is not true. As 4 is not an extension vertex, there exist j,j € I such

that a ;é 0, 7 # j'. Let k be a direct descendant of j. Considering the different levels, the
graph assoc1ated to the restriction to {i,7,5’, k} is:

SN NN N
ONSN TN

£
Up to a change of variables, we put:
Em~'o%m~'a@gwwm:1+m+@ww%@+om%

Then by proposition 16, )\(Z’]) = 2(17\/7 a}j =0, so )\g’j) = 0. On the other hand,
)\g ’])azg' = ]VJ, + aE] = b, so 0 = b: this contradicts a 7é 0.

Second step. Let us consider a vertex j such that a ;é 0. Up to a change of variables,

we can assume that ag-) = 1 and that for all direct descendant kofj,a (]) = 1. By lemma 23,
b = bj = 0. So, as 7 is of level 2, there exist scalars a, b, such that:

B lifn=1,
/\%”): aifn=2,
bif n > 3.
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Then proposition 19-1 implies:

b
Fi(0,-++,0,h;,0,++,0) =1+ hj + —h% + =

51 h3 + O(h3).

By hypothesis, a # 0. Moreover, by proposition 16, b = )\g’j)aik =a =a. So:

P
2 4 a’ 5 4
F;(0,---,0,h;,0,---,0) =1+ h; + 2'h] Ehj + O(h3).
As j has level 1, we put:

AGHR) — (])—11fn—1
" (n71)+d1fn22

where ¢(= by) and d are scalars. From proposition 19-1:

d d)(2¢ + d
Fj(o,---,o,hk,o,~--,0):1+hk+c; p2 4 et d2etd)

hy + O(hy).

L _ (ik)a _ (i,k) _ (k) e —
Moreover, )\ ij = aj\}f, s0 A\37'§ = a and A3 = 2. Then A4 E; = 2ak\{jk7 S0

¢+ d = 2. Similarly, using \V, , We obtain A(z M 3. Using YZ , We obtain:

c+d:3(c+d)(20+d).

3
2

Asc+d=2,2c+d=3,s0c=d=1 and /\53”“) =nforall n > 2. As )\gj’k) =1, Ag’k) =n for
all n > 1.
Let now [ € I which is not a direct descendant of j and let k be a direct descendant of j. For

all n > 1:
(k)

i) Gl _ —
M = Mg oy = agr ooty = (0= Dy

We proved that for any vertex [ of G(g), for all n > 1:

AGD —

n

n if [ is a direct descendant of j,
al(k) (n — 1) if [ is not a direct descendant of j,

where k is any direct descendant of j. This proves that j has level 0, so 4 has level 1: contradiction.
So 7 is an extension vertex. O

5 Examples of Hopf SDSE

5.1 cycles and multicycles

Notatlon We denote by [(i1,- - ,ip) the ladder with decorations, from the root to the leave,
i1, ,in. In other words:

Izn 1

I(ig, - ,Z'p):BZ."l'o--~oBlT";(1)—IZ2 .

Theorem 28 Let N > 2. The SDSE associated to the following formal series is Hopf:

Fi = 1+ ho,
Fno1 = 1+hy,
Fy = 1+4h.
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Proof. We identify {1,---, N} and Z/NZ, via the bijection i — 4. Then, for all n > 1 and
forall 1 <i< N, X;(n) =1(i,---t+n—1). As a consequence:

+00
p=1

So H(s) is Hopf. |

Note that the graph G(g) associated to such a system is an oriented cycle of length N, with
only non-self-dependent vertices.

Definition 29 Let (S) be a Hopf SDSE. It will be said to be multicyclic if, up to change of
variable, it is a dilatation of a system described in theorem 28.

The graph of a multicyclic SDSE will be called a multicycle. In other term, a N-multicycle
(N > 2) is such that the set I of its vertices admits a partition I = If U -- U Iy indexed by the
elements of Z/NZ, such that the direct descendants of a vertex i in I are the elements of Irry
for all j € Z/NZ. Moreover, up to a change of variables, for all i € G(s):

F,=1+ Z h;.
i—l

Here is an example of a 5-multicycle:

Note that if N =2, G(g) is a complete bipartite graph, that is to say that the set of vertices
of G(s) admits a partition into two parts, and for all vertices 7 and j, there is an edge from ¢ to
j if, and only if, ¢ and j are not in the same part of the partition.

5.2 Fundamental SDSE
Theorem 30 Let I be a set with a partition I = Iy U Jy U Ko U I1 U Jq, such that:
o Iy, Jo, Ko, I1, J1 can be empty.
o Iy U Jy is not empty.

The SDSE defined in the following way is Hopf:

1. For all i € Iy, there exists 3; € K, such that:

Fy=fa(hi) [ fo (@+8n) [] il

jelo Gy P jedo

2. Foralli e Jy:
Fi=]]fs (+8)h) [[ A

JEJO {i}
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8. Forallic Ky:

4. For all i € Iy, there exist v; € K, a family of scalars (ag»i))jejoujouj{o, such that (v; # 1)
or (3j € Iy, ay) # 14 3;) or (35 € Jo, agl) #1) or (35 € Ko, ay) #0). Then, if v; #0:

Hfﬁa (Vz )Hfl,(z )Hfo(vl )+1—l.

”
J€lo Vza7 J€Jo "laj JEKo !

—~
.

Z ln — hj) — Z ag-i) In(1 — hy) + Z ag-i)hj + 1.
el

j€Jo j€Kop

Q‘g

5. For all i € Jy, there exists v; € K — {0}, a family of scalars (ag-i))jelouJouKouIl; with the
following conditions:

o« 1" ={je I/ a}) #0} is not empty.
° FO’f’(lll]GI() vi =1.

o Forall j,k € IY), F; = F},. In particular, we put b() ]) for any j € I1 , for all
te lpUJyU K.

Then:

o= g T e (071 m)m) T (57 1)) L o (570)
' jelo by)*lfﬁj Jj€Jo bj J€Ko
+ Y aPm 1=
jert® ’

Proof. In order to simplify the notation, we assume that I = {1,..., N}. We shall use
proposition 19 with, for all 4,5 € I:

0D i —
\Ga) — ) o =1
" &\ +bj(n—1)if n>2,

the coefficients being given in the following arrays:

1. al(-j):
Z\] e Iy IS eKy |elh e Ji
G) | BV -1-8
€lo | (L+06:) =B | 14+6 |1+06: | o —
J
. (€2
e Jy 1 1-6,; | 1 |a? | 2
. [€D)]
€ Ko 0 0 0 |a? | X
]A
el 0 0 0o | o | oY
cJ 0 0 0 0 0
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2\] EI() EJ() EK@ el e i
cly | (L+06) =68 | 1+06; | 1+5; vjan) b(j) -1- 51‘
e Jo 1 1-6,; | 1 |ya? | 89—

€ Ko 0 0 0 |val? bgj)
el 0 0 0 0 0

e i 0 0 0 0 0

J e Iy cehl|leKyleh|e
b |18, 1 | 0 | 0| 0

The second item of proposition 19 is immediate. Let us prove for example the first item for
i€ Jyand j € Iy. Let us fix (p1,...,pn) € NY —{(0,...,0)}.

p1+ Apy+1 Za D

= bgi)—l—ﬂj—(lJrﬂj)sz— S A48+ Bipi— > a i
=1 lelgUJgUKg lelhUJy
= o)1=+ Y (148 -a)mr
leUJy

If there exists [ € ([1 U Jy) — y), such that p; # 0, then agp) it lpn) = 8))1 o) = 0 and
IRRRS) ] [RRRE) [RREE)

then the result is immediate. We now suppose that p; =0 for all l € (I; U J;) — I( ). Then:

p1+ Apy+1 Z“ b = ( —1—ﬁj+ﬁjp]+z (1—|—ﬁ]—a )pz

ter(”
= o)1=+ g+ (148, -00) o
ler”
1. If Z p; = 0, then:
terl®
(i) (@) W)
i _ Y1 A, P1,---,PN
The first item of proposition 19 is immediate.
2. If Z p; = 1, then a&)l it lpn) = 0 and )‘1(91713 Syt -3 ay)pl = 0. So the first item
[RRERY <) [EREY)
leI{”
of proposition 19 holds.
3. If Z p; > 2, then agp)l pitLpn) = aE;)l on) = 0, so the result is immediate.
ARG} ] ARG} ARG}
1er”
The other cases are proved in the same way, so this SDSE is Hopf. O
Remarks.
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1. For all A # 0:

k=0
The second side of this formula is equal to 1 if A = 0. So, formulas defining the SDSE of
theorem 30 are always defined.

2. The vertices of Io U Jy U K are of level 0. A vertex i of Iy is of level 0 if v; = 1; otherwise,
it is of level 1. The vertices of J; are of level 1.

Definition 31

1. A Hopf SDSE will be said to be fundamental if, up to a change of variables, it is the
dilatation of a system of theorem 30.

2. A fundamental Hopf SDSE (S) will be said to be abelian if for any vertex i € I, b; = 0.

Remark. In other words, (S) is abelian if Jy = () and if for any i € Iy, 5; = —1. Then, for
all i € Ky, F; = 1. As there is no constant Fj, we obtain Ky = (.

A particular case is obtained when I = Jy. Then we obtain the following systems:

Theorem 32 Let I be a finite subset which is not a singleton. The SDSE associated to the
following formal series is Hopf:

Fi=]J(a=hy)7", foralliel
J#i
The graph associated to such an SDSE is a complete graph with only non-self-dependent

vertices, that is to say that there is an edge from i to j in G(gif, and only if, ¢ # j. In particular,
if N =2, Gg)is 1 <— 2, as for the SDSE of theorem 28 with N = 2.

Definition 33 Let (S) be a Hopf SDSE. It will be said to be quasi-complete if, up to change
of variable, it is a dilatation of one of the systems described in theorem 32.

The graphs associated to quasi-complete SDSE shall be called quasi-complete. A quasi-
complete graph G has only non-self-dependent vertices; there exists a partition [ = [ U---U s
of the set I of vertices of G(g) such that, for all z,y € I, there is an edge from x to y if, and only
if,  and ¢ are not in the same I;. In particular, quasi complete graphs with M = 2 are complete
bipartite graphs. Moreover, if () is quasi-complete, up to a change of variables, for all x € I;:

-1

Fo=TL(1=> hy

J#i yel;

Here is an example of a 2-quasi-complete graph and a 3-quasi-complete graph:

Another particular case is the following: assume that I = Iy and that 8, = —1 for all x € Ij.
Then, for all x € I, F;, = 1+ h,. Note that G (g is not connected if [I| > 2, and this is the only
case where (i) is not connected. The dilatation of such an SDSE will be called a non-connected
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fundamental SDSE. For such an SDSE, the set of indices I admits a partition I = I; U---U I
(M > 2) and up to a change of variables, for all 1 <1i < M, for all z € I;:

=1+ hy.

yel;

Remark. Note that a dilatation replacing x € Ko U I; U J; by a set J, in a system of
theorem 30 also gives a system of theorem 30. The same remark applies when the dilatation
replaces x € Iy, with G, = 0, by a set J,. So we shall always assume that the dilatation giving a
fundamental SDSE from an SDSE of theorem 30 satisfies J, = {x} for any x € KoU I; U J; and
for any x € Iy such that G, = 0.

6 Two families of Hopf SDSE

We here first give characterisations of multicyclic and quasi-complete SDSE. We then consider
Hopf SDSE such that any vertex is a descendant of a self-dependent vertex. We prove that such
an SDSE is fundamental. The results of this section will be used to prove the main theorem 14.

6.1 A lemma on non-self-dependent vertices

Lemma 34 Let (S) be a Hopf SDSE and let i € I such that al@ =0. Let j, kandl € I
such that ay) # 0, @;(g]) # 0 and al(l) #0. Then a,(;) #0 or a,(ﬂl) #0.

Proof. Letusassumethataé)—o Asa #£0,j # k. Asalg)—() av =a

Then, from proposmon 16, a( ))\(Z k)~ /\(Z k)

atg —a}k —i—ajvk —ag)ag)—i—o hence, )\(Z R = al(j).

Moreover, As al ;é 0, I # k. Then, by proposfmon 16, al( ))\(Z " = /\g’k)a:g = afk' + al\fk =
al(l)a,(c) + 0, so )\g’k) () Hence, ak = a ;é 0. O

Remark. In other words, if (S) is Hopf, then, in G g:

fLH] — ’LH] or Z<]
l k Il —k l k
A special case is given by i = k:

~—< .
~ <> .

6.2 Symmetric Hopf SDSE

Proposition 35 Let (S) be a Hopf SDSE, such that G gy is a N-multicycle with N > 3.
Then (S) is a multicyclic SDSE.

Proof. Let I = IfU---U I be the partition of the set of vertices of the multicycle G(g). As
N >3, for all i € I, by lemma 26 with ¢ = j:

32



Let j,j/ € Im. Then any ¢ € I— is a direct ascendant of j and j’. By proposition 18-3,

F F In particular, for k € I, ag) = a( 7 We apply the change of variables sending hy

hk if k € I, where j is any element of I. Then, for any j € Im

Fj:1—|— Z hk.

k€Lt
So (S) is multicyclic. O

Proposition 36 Let (S) be a Hopf SDSE, such that G g is M-quasi-complete graph (M >
2). Then (S) is a 2-multicyclic or a quasi-complete SDSE.

Proof. First, let us choose two vertices  — y in G(g). Then y — z in G(g), and by propo-

sition 16, )\gy y)azx = aiy + ayV“ SO A(Qy’y)a,%’) = agjy)a?s z) + 0, and a(gc) = )\(y v) depends only
(),

on y. So, up to a change of variables, we can suppose that all the ay ’’s are equal to 0 or 1. We
first study three preliminary cases.

Furst preliminary case. Let us assume that G(g) =1 «— 2. We put:

Fy(hg) =) ashh, Fy(hy) =) _bihi,
i=0 i=0
mmap:m=1immA“”:M“)ﬁzﬂmylz%Qonmmmmhmdﬂm>w2_
1 1
2a , S0 2a2bs = 2a9: as = 0 or by = 1. Slmllarly, bo=0o0ras=1. Soaya =by=0o0r 1. In
2 2
the ﬁlrst case, Fi(hy) = 1+ hg and Fy(hy) = 1+ h;. In the second case, let us apply lemma 17-1
with (i1, ,in) = (1,2,1,2,---). If n = 2k is even, we obtain A\o? = 2+ 2(k — 1) = 2k = n.

If n =2k +1is odd, /\(1 2 =142k =n. So )\;1’2) = n for all n > 1. By proposition 19-1,

for all n > 1, apy1 = a,. So for all n > 0, a, = 1 and Fi(hs) = (1 — ho)~!. Similarly,
Fy(h1) = (1 —hy)7 !

Second preliminary case. Let us suppose that G gy is the following graph (which is 3-quasi-

complete):
1\\ //2
3
We put:
Fi(ha,h3) = 1+ hg+ hs+ ash? + agh? + a’hahg + O(R3),
Fy(h1,h3) = 14 hy+ hg+bih? + bgh3 +b'hihs + O(h3),
Fg(hl, hg) = 14+hy+ho+ Clh% + Cgh% + Clhth + O(hg)

By restriction, using the first preliminary case, restricting to {1,2}, {1,3} and {2,3},a2 = by,
as = c¢1 and b = c2 and all these elements are in {0, 1}. Moreover, by proposition 16, )\(1 2) a1? =
2a2v2 , SO )\(1’2) = 2ao. On the other hand, /\g1 2)a13 = a£2 + a2V3 , SO )\(1 2 _q + a’. Hence,
1+ a’ = 2ay. By symmetry, we obtain 1+ a’ = 2as, so ay = as. Slmllarly, b1 = b3 and ¢1 = co,
soa2—a3—b1—b3—cl—62:00r 1.

If they are all equal to 0, then ' = —1. Then )\(33’1)a£§ = a1, 8O )\gg’l) = 1. Moreover,
| bk
/\ég’l)a =a _,,S0 )\g}’l) = —1: this is a contradiction, so as = ag3 =b; = b3 =1 = ¢y = 1,

oo
W~

1\}2
3
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and @’ = 1. Similarly, ' =1 and ¢’ = 1. As in the first preliminary case, using lemma 17-1, we
prove that A" = n if i # j for all n > 1, and then that Fi(ha, hs) = (1 — ha)~*(1 — h3)~L.
Similarly, Fy(h1,h3) = (1 —h1)" (1 — h3)~! and F3(hy, he) = (1 — hy) "1 (1 — ho) L.

Third preliminary case. We now consider the 2-quasi-complete graph with three vertices
1 +—2+«— 3. Then I} = {1,3} and I» = {2}. We put:

Fg(hl, hs) =14 hy + hs + a(270)h% + a(oyg)hg + a(lyl)hlhg + O(hg)

Restricting to {1,2}, by the first preliminary case, we obtain Fj(he) = 1+ hg or Fi(hg) =
(1 — hg)_l.
1. Let us assume that Fj(he) = 1+ hy. Then by the first case, Fy(h1,0) = 1 + hy, so

a(2,0) = 0. Moreover, )\52’1)(1:5 =0, so /\gz’l)a:g = 3¢ aq,) = 0. Then )\52’3)(1:5 =

Ay ,5, SO )\9’3) = aq,;) = 0, and Agz’?’)a:g = 2a3V3: apg2) = 0. As a consequence,
F2(2h1, hs) = 14 hg + hs. Restricting to 2 «— 3, by the first point, F3(hg) =1+ ho.

2. Let us assume that Fy(hg) = (1 — hg)~!. Then Fy(h1,0) = (1 — hy)~! by the first point,
80 a(g2) = 1. By the first preliminary case, this implies that F»(0,h3) = (1 — h3)~! and
F3(ha) = (1 — hg)~!. Similarly with the first case, we prove that A2Y — pifi=1o0r3 for
all n > 1. By proposition 19-1:

m+n+1 m+n-+1

A(m41,n) = m+ 1 A(m,n)» A(m,n+1) = nt1 A(m,n)-

An easy induction proves that a,, ) = (mgn) for all m,n, so Fy(hy,h3) = (1 —hy —h3)~L.

We separate the proof of the general case into two subcases.
General case, first subcase. M = 2. We put I} = {x1,--- ,2,} and Iy = {y1,--- ,ys}. For

x; € I, we put:
_ (zp) s
Iy, = Z a(qfwqu)hgﬁ e hys
(g1, ,gs)

Restricting to the vertices z, and y,, by the first preliminary case, two cases are possible.

1. a?(jgf;q = 0. Then, by the third preliminary case, restricting to x,, y, and y,, for all y,, y4,
ag‘fy)q, = 0. So:

F,, = 1+Zhyq.
q

2. )\Efp’yQ) =n for all n > 1. Using proposition 19-1, we obtain:

a(l’p) _ 1+Q1+"'+QSG(IP)
(g1, gm+1,,gs) gm + 1 (g1, ,qs)°

An easy induction proves:
e (14 +gs)!

(Q17"' 7q5) - qll N qS'
So:

-1
F,, = (1 - Zhyq> :
q

A similar result holds for the y,’s. So, we prove that for any vertex i of G (g), one of the following
holds:

34



]
—1
2. Fi=|1-) h
1—]
Moreover, by the first preliminary case, if ¢ and j are related, they satisfy both (a) or both (b).
As the graph is connected, every vertex satisfies (a) or every vertex satisfies (b).

General case, second subcase. M > 3. Let us fix i € G and let us denote yq,--- ,y, its direct
descendants. Restricting to the vertices ¢ and y;, two cases are possible.

1. ag].),yj = 0. As M > 3, with a good choice of y;/, we can restrict to the second preliminary

case, and we obtain az(,,?yyj = 1: contradiction. So this case is impossible.
2. Aqu’yj) =n for all n > 1. Using proposition 19-1, we obtain, similarly with the case M = 2,
ifi € I,
-1

F=]11-> M

q#p lehq
So (.5) is quasi-complete. O
Definition 37
1. Let G be a graph. We shall say that G is symmetric if it has only non-self-dependent

vertices and if, for ¢ # j, there is an edge from ¢ to j if, and only if, there is an edge from
7 to 1.
2. Let (S) be an SDSE. We shall say that (5) is symmetric if G(g) is symmetric.

Theorem 38 Let (S) be a connected symmetric Hopf SDSE. Then (S) is 2-multicyclic or
quasi-complete.

Proof. By proposition 36, it is enough to prove that G(g) is a M-quasi-complete graph,
with M > 2. Let us consider a maximal quasi-complete subgraph G’ of G(s)- This exists, as
G (s) contains quasi-complete subgraphs (for example, two related vertices). Let us assume that
G+ G(s).- As G(g) is connected, there exists a vertex i € G(g), related to a vertex of G’. Let us
put I’ = I] U--- I}, be the partition of the set of vertices of G'.

First, if 4 is related to a vertex j of I, it is related to any vertex of I,. Indeed, let j" be
another vertex of I, and let k € I}, ¢ # p. By lemma 34, j' is related to i. As G(g) is symmetric,
i is related to j'.

Let us assume that 4 is not related to at least two I,’s. Let us take k, [ in G’, in two different
I,,)’s, not related to i. By the first step, j, k and [ are in different I,’s, so are related. By lemma
34, k or [ is related to i. As G(g) is symmetric, then i is related to k or I: contradiction. So i is
not related to at most one I,’s.

As a conclusion:

1. If 7 is related to every Ip,’s, by the first step i is related to every vertices of G/, so G' U {i}
is an M + l-quasi-complete graph, with partition I3 U---U Iy U{z}: this contradicts the
maximality of G'.

2. If i is related to every I,’s but one, we can suppose up to a reindexation that ¢ is not related
to Ins. Then, by the first step, 4 is related to every vertices of I; U---UIp—1. So G'U{x}
is an M-quasi-complete graph, with partition I; U --- U (Ipy U {x}): this contradicts the
maximality of G'.

In both cases, this is a contradiction, so G(g) = G’ is quasi-complete. O
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6.3 Formal series of a self-dependent vertex

Let (S) be a Hopf SDSE, and let us assume that i is a self-dependent vertex of G(g). Up to a
(i)

change of variables, we can suppose that a;> =0or1l for all j. In particular, we assume that

agi) =1.

Lemma 39 Under these hypotheses, i is of level 0 and for all j € I, bj = (1 + 6i7j)a§?.

Proof. We apply lemma 17-1, with i = ¢ for all i. We obtain, for all n > 1:
(4)

@i
(@)
a;

A — ag-i) +(1+6i;)(n—1)
So this proves the assertion. O

Remark. So all the descendants of ¢ are also of level 0.

Lemma 40 Under the former hypotheses, there exists a partition I = I} U---U Iy UJ (J
(k)

eventually empty), with i € Iy, such that the coefficients a;’ are gien in the following array:

J\Kk || I Iy |- | Im |J
L |1 +1] - | B+ |
L | 18] 1 |- 1 :
I3 : 1 1—03 :
. . ) . 1
Iy | 1] 1 S T R
J 1o 0 %
Moreover, for all j € Iy:
M
szl_[lfgp > M
p=

le,

Finally, the coefficients Agj’k) are given by /\g’k) =bp(n—1)+ al(j) for all n > 1 with:

k| L | L | Iu|J
be [Bi+1[ 1] ] 1]0
Proof. We can apply lemma 24 with \; = ag-i) and uy) = —a§l) + (1+ (5”)@52]) Then
I=1LU---IpUJ,such that —ag.k) + (1+9;5) aEZ]) is given for all j, k by the array:
NE| L | L | | Iy | T
L || 0 || 0 |x
Iy 10| B N
: 1. 0
Iy O |--- 0 | Bm | :

We assume that ¢ € I, without loss of generality. For the row j € J, the result comes from the

following observation: let j, k € I such that a§i) =0 and a,(;) = 0, then, by proposition 19-1:

(@) (4) (k i i)
aj,k = <a]~ - aj ) + az(’])-) alg = 0.
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(9) (4) (k) _
Asaj =0, thena”—(),soaj = 0.

Lemma 24 also gives:

F; = Hfﬁp th

lel,

So (1+0;)a) = fi+1if je L, 1if j € LU~ ULy, and 0if j € J. So " is given by for
all 5,k by the 1ndlcated array. We obtain in lemma 39 that:

O1+1if ke I,
b, = lifke lLbU---Ulyy,
0if ke J.

As a conclusion, if j € Iy, then for all 1 < k < N, a(]) = a,(j) and /\g’k) = /\g’k) for all n > 1.
By proposition 19, F; = Fj. O

6.4 Hopf SDSE generated by self-dependent vertices

Proposition 41 Let (S") be a Hopf SDSE, and let i be a self-dependent vertex of G(gr.
Let (S) be the restriction of (S') to i and all its descendants. Then (S) is fundamental, with
Ko=5L=J1=0.

~Proof. We use the notations of lemma 40. Note that if i,j are in the same Iy, then
)\(Z’k) = (j’k) for all n > 1, for all k € I. So, by proposition 18-2 the Hopf SDSE formed by 1
and its descendant is the dilatation of a system with the following coefficients )\(j ",

J\k 1 2 3 M
1 Lr+1)(n—1)+1 n n

2 (61 +1)n n — B n n

3 : n n— 33 :

: . : . . n
M (B1+1)n n n |n— 0By

with ¢ = 1. We already proved in lemma 40 that:

M
= H fﬂj (h])
j=1

If 5 #1, for all (ki, -+, kun):
O S S U )
(‘]]€1+1 k) = <(61 + 1) ; h + ﬁl +1- <ﬁ1 + 1) ; b = kl) kll’ —|: 1M
a(i;) .
= (51+1+ﬁ1k‘1)w7
. (j) o)
adﬂ,---,ijrl,---,kM) = (Z kl +1- /BJ Zkl t ﬁj ) ]{7 + 1M
ey

= (1_BJ+/8J ) k_l_klM)-
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Ifl#1and# j:

)
(4) } : kl;' (ke k) @k, kar)
oy, k1, k) ( ko — 2 :kl + Blkl) B+ 1 = (1+ Biki )ki—i-l

So, if j # 1:
Ly :fL((l—Fﬁl)hl)f 8 hi) T fa. ().

1451 ﬁ] k£1,j

Let us put Iy ={j >2/3; # 1} and J) = {j > 2/ 3; = 1}. Then, after the change of variables
hj — t=g;h; for all j € Iy

R —fglhlﬂfgj(_ )Hﬁ
JEI jedj
Fj = fo (A+80M)f 5 () ][] f@< )Hﬁ ) if j € Iy,
A = jEI’ 4y jes
1
Fy = [ ((0+80)h) [] £5 <1,hj> I A®yitieg.
1+51 P - ﬁ] /
jeI jedo—{s}
Putting v; = then, as 3; = and 1-p85= ﬁ
(o= () [ (i) H fi(hy)
jEIO ]eJO
Fj = [ (1 +51)h1)fvj(hj) [T Fo (i) TT Ahy) it j € I,
1+81 / g "
JGIO—{J} JET}
Fio= o (4 80m) [T/ (b)) TT A ifie .
46 :
\ JEI ! J€J’ {7}
So this a fundamental system, with Iy = {1} U I} and Jy = Jj. O

Corollary 42 Let (S) be a connected Hopf SDSE such that any vertez of G(g) is the descen-
dant of a self-dependent vertez. Then (S) is fundamental, with Koy =1, = J; = 0.

Proof. Let z be a self-dependent vertex of (S). Then the system formed by z and its
descendants is fundamental. We then put Iém) and J(()x) the partition of the set formed by = and
(x)

its descendants. We separate I

Io,lz{yef /By # }710,2={y61(()x)/ﬁy:—1}-

into two parts:

z)

Then, after elimination of an eventual dilatation by restriction, the direct descendants of x € I(g’Q

(z)

are z, the elements of Iéﬁ) and Jox); the direct descendants of x € Iéxl) are the elements of Iy

and Jéx); the direct descendants of x € Jé %) are the elements of Ié 1) and the elements of JO( 2)
except . Let us consider the following cases:

1. If there exists a vertex x, such that JO # 0, then, as G(g) is connected, for any self-

dependent vertex y, JO( v = Jéx). As a consequence, for any self-dependent vertex y,
I(gfcl) = 10(?1) . We then deduce that (S) is fundamental, with Jy = JO(I) for any self-dependent
vertex x.

(x)

2. If for any self-dependent vertex x, J; ' = (), and if there is a self-dependent vertex x such
that IOIQ # (), then by connectivity of G(s), for any self-dependent vertex y, Io(?z) = I(()g)
and I(()yl) ={y}, or I(g?é) is empty if y € I(()TQ). Then (S) is a fundamental, with Jy = (.
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3. If for any self-dependent vertex x, Jéx) =0 = Iég) . Then by connectivity, I = Iéﬁ) for any

self-dependent vertex. So (S) is fundamental, with Jy = 0.

In all cases, (S) is fundamental. O

7 The structure theorem of Hopf SDSE

7.1 Connecting vertices

Definition 43 Let (S) be an SDSE and let i € G (g).

1. We denote by Ggg) is the subgraph of G(g) formed by 7 and all its descendants.
2. The vertex i is a connecting verter of G(g) if GE — {4} is not connected.

Lemma 44 Let (S) be a Hopf SDSE and let i € G(g) be a connecting vertez. Then (i is the
descendant of a self-dependent vertex) or (i belongs to a symmetric subgraph of G gy) or (i is not
self-dependent and relates several components of a non-connected fundamental SDSE).

Proof. First step. If i is self-dependent, it is a descendant of itself and the conclusion holds.
Let us assume that ¢ is not self-dependent. Let Gy,---,Gjs be the connected components of

GE; —{i} (M > 2). Let x, € Gp be a direct descendant of i for all p. Let z, be a direct

descendant of x,,. Then x’ € Gp. Choosing ¢ # j and applying lemma 34, there is an edge from
(4)

i to xj,. Iterating this process, we deduce that any vertex of G (9) —{i} is a direct descendant of

(4)

t. If 4 is the direct descendant of a vertex j € G(S) — {i}, then i is included in the symmetric
subgraph ¢ «— j of GEQ), so the conclusion holds.

Second step. Let us now assume that ¢ is not the direct descendant of any j € G — {i}.

Letn22,j6Gp,andletz—>x2—>---—>xn1nGES)

(4,9) (4 _
An al(i,xg,---,wn) - aBj(.jz(m,...,xn))a

) where x2, -+, 2, € Gy, p # q. Them7 as i

(i) _ % (1)
s0 A7 = J(ff, and Ay’ does not
Qg

depend on n: we put )\g’j) = )\ for all j € G — {i}, n > 2. In other words, ¢ has level <1, and
b;j = 0 for all j.

is not related to any xy,

Third step. In order to simplify the writing of the proof, up to a reindexation, we shall
suppose that ¢ = 0 and the vertices of G( ) — {0} are the elements of {1,--- , N}. By a change of

variables, we can suppose that ag ) =1 for all 1 < j < N. By the second step, we can use lemma
25, with ,u,(l) = (l) forall 1 < j,0l < N and A\j = aﬂ for all j,k in two different connected
components of G 5) — {0}.

1. In the first case, we obtain the following values for a( ) and Aj

j\k| I, L || Iy | J
Il —V,Bl 0 tee 0 -V
IQ 0 —I/ﬂg : :
Iy 0 0 | —vBym | —v
J 0 0 0

39



jlnl [ | J

Nlvl-Tv]o
As there are no vertices with no descendants, necessarily v # 0 and 3, # 0 for all p. For
the same reason, [; U---U Iy =0 is( i)mpossible. If J # (), then any vertex of J is related

to every vertex of Iy U---U Iy, so G(g) — {0} is connected: impossible, as 0 is a connected

vertex. So J = (), and 0 connects several totally self-dependent subgraphs.

2. In the second case, we obtain the following values for a§k) and A;:

g\k| I | Iy |-+ ] Iy | J
Il —U 0 0 0
IQ 0 —U9 : :
: : R R 0 :
IM 0 0 —VM 0
j L) [ I | T
A[of--]ofo

As there are no vertices with no descendants, J = () and v; # 0 for all [.

Moreover, as bj = 14 3; = 0 for all j > 1, 0 connects several components of a non-connected
fundamental SDSE. O

7.2 Structure of connected Hopf SDSE

Lemma 45 Let (S) be a Hopf SDSE containing a multicycle with set of vertices I = I U
-+ U g7, Then any non-self-dependent vertex of G(g) has direct descendants in at most one If;.

Proof. Let us assume that the vertex 0 of G(g) have a direct descendant x € I and y € [}

with k # [. Then lemma 34 implies that any direct descendant of x is a direct descendant of 0,
so 0 has also a direct descendant in Iz77. Similarly, 0 has a direct descendant in ;7. Iterating
this process, 0 has direct descendants in all the I5’s. Up to a restriction, the situation is the

following:
0
1

/

Moreover, for all 1 <i < k, F;(hj+1) = 1+ hj;+1, with the convention hyi1 = hy.
We first assume M > 3. In order to ease the notation, we do not write the index (9 in the
sequel of the proof. By proposition 16, )\gm)azo = aEQ + a1v2, S0 )\éo’z) =1+ %2 On the
0

1
0

other hand, )\50,2)&:% = 2612,\/2 , SO /\gog) = 2°22. Hence:
0

ai,2 as2
1+ —==2——
ay a2
0,2 0,2 0,2
Moreover, )\:(3’ )aig a .., SO /\:(3’ ) = 2(%2. On the other hand, )\é ’ )aﬁ =a _,, SO
0 2\}2 0 2\}1
(02) 0 0
Ay =22 Hence:
ai
ai,2 az,2 a2
L) i T
al a9 al
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This is a contradiction.

Let us now prove the result for N = 2. We assume that there exists a Hopf SDSE with the

graph:
/ 0 \
1 2

and such that Fy =14 ho and F, = 1+ hy. We write:

Fo = Z a(i,j)hilhéa

(2]
with a1 ) and a(g 1) non-zero. Then A(O’l)azé = 2a1v1 , SO )\50’1) = 2;((1200) On the other hand,
0

)\go’l)az(% = al%2 + ai , SO )\éo,l) = ZE; i; + 1. We obtain:

2a a

(20 _ %y
a0 o)
(0.) SO )\éo’ ) = 2a(2 0> +1. On the other hand, )\(O b =2a

Moreover, A3 ar =a , —i—a%

.—0—.
oN =

SO )\:(30’1) = 24y
ag,1) "
Gy g 20 %y
@(0,1) a(1,0) a(0,1)

This is a contradiction. O

Lemma 46 Let (S) be a Hopf SDSE, such that any verter of G sy has a direct ascendant.
Let i be a vertex of G(gy. Then (i is a descendant of a self-dependent vertex) or (i belongs to a
multicycle of G(gy) or (i belongs to a symmetric subgraph of G(g)).

Proof. Let us first prove that i is the descendant of a vertex of a cycle of G(g). As any
vertex has a direct ascendant, it is possible to define inductively a sequence (x;);>( of vertices of
G(s), such that o =7 and z;1; is a direct ascendant of x; for all . As G/g) is finite, there exists
0 <1 < m, such that ; = . Then 2 «— 2141 «— -+ — Typ—1 «— Ty = 27 is a cycle of G(S),
and 4 is a descendant of any vertex of this cycle.

Let G' =21 — --+ — x5 — 11 be a cycle such that 7 is a descendant of a vertex of G’, chosen
with a minimal s. As s is minimal, there are no edges from x; to x, in Gg) if m # [ + 1, with
the convention xsy1 = 1. The situation is the following:

r —— - — Ty
yl Z/t—l Z

Three cases are possible:
1. If s =1, then i is the descendant of a self-dependent vertex.
2. If s = 2, the situation is the following:

Tl <=—> T2

l

Y1 Yt—1 7
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By minimality of s, there are no self-dependent vertex in {x1,x2,y1, -+ ,yt—1,1}. Applying
repeatedly lemma 34, there is an edge from y; to x1, then from ys to y1, - -+, then from ¢
to yt—1. So i belongs to a symmetric subgraph of G g).

3. If s > 3, then the subgraph formed by z1, -,z is a multicycle. Let G’ be a maximal
multicycle of length s of G, such that i is a descendant of a vertex of G’. We denote by I’
the set of vertices of G'. Let us assume that i ¢ G’. There exists x1 —y; — -+ — Y1 —
ye =1 in G, with t < 1, and x; € I’. Up to a reindexation, we can assume that z; € I%.
By lemma 34, y; is the direct descendant of any vertex of IT and the direct ascendant of
any vertex of I3. By lemma 45, y; is not the direct ascendant of any vertex of I% if k # 3.

So I'U{z} = I U (I%U {z}) U--- U IZ gives a multicycle of length s, such that ¢ is a
descendant of a vertex of I’ U {i}: this contradicts the maximality of G’. So i € I'.

O
By the preceding study of Hopf symmetric SDSE:

Corollary 47 Let (S) be connected Hopf SDSE, such that any vertex of G(gy has a direct
ascendant. Then (any verter of G(g) is the descendant of a self-dependent verter, so (S) is
fundamental) or ((S) is quasi-complete, so (S) is fundamental) or ((S) is multicyclic).

Corollary 48 Let (S) be a connected Hopf SDSE. Then there exists a sequence (G;)o<i<k of
subgraphs of G sy, such that:

o The system (So) associated to the F;’s, i € Go, is fundamental or is multicyclic.

L4 Gk = G(S)

o Forall 0 < i < k—1, Gjy1 ts obtained from G; by adding a non-self-dependent vertex
without any ascendant in G;.

If Gy is fundamental, any vertex is of finite level. If Go is multicyclic, no vertex is of finite level.

Proof. First step. Let us first prove the following (weaker) result: if (S) is a Hopf SDSE,
there exists a sequence (G)o<i<k of subgraphs of Gg), such that:

e (5 is the disjoint union of several fundamental systems or is multicyclic.
L4 Gk == G( S)-

e For all 0 < ¢ < k —1, Gj41 is obtained from G; by adding a non-self-dependent vertex
without any ascendant in Gj.

Let us proceed by induction on N. If N =1, then G(g) = Gy is formed by a single vertex which is
necessarily self-dependent, so () is fundamental. Let us assume the induction hypothesis at rank
< N — 1. If any vertex of G(g) has an ascendant, then by corollary 47, we can take G(g) = Go.
If it is not the case, let us take ¢ being a vertex with no ascendant. The induction hypothesis
can be applied to the components of G(gy — {i}. We complete the sequence (Go,--- ,G%) given
in this way by G+1 = G(g).

As a consequence, the set of descendants of any self-dependent vertex, every symmetric sub-
graph, every multicycle of G (g) is included in Gp.

Second step. Let us assume that G (g) is connected. If Go is connected, then it is fundamental
or multicyclic. If it is not, let us assume that it is not a non-connected abelian fundamental
SDSE. So one of the components H of Gg is not a fundamental abelian SDSE with I = Ij.
Then for a good choice of ¢, the vertex added to G;_1 to obtain G; is a connecting vertex,
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connecting a subgraph containing H and other subgraphs. By the first step, as it does not
belong to Gy, this vertex is not the descendant of a self-dependent vertex and does not belong
to a symmetric subgraph. By construction, it does not connect several components of a non-
connected fundamental SDSE: this is a contradiction with lemma 44. So Gy is of the announced
form. O

7.3 Connected Hopf SDSE with a multicycle

Let us precise the structure of connected Hopf SDSE containing a multicycle.

Theorem 49 Let (S) be a connected Hopf SDSE containing a N-multicyclic SDSE. Then I
admits a partition I = I3 U --- U I, with the following conditions:
1. If x € I, its direct descendants are all in I .

2. If x and x' have a common direct ascendant, then they have the same direct descendants.

Fo=1+ Y a{"h,
T—Y

If x and 2’ have a common direct ascendant, then F, = F,. Such an SDSE will be called an
extended multicyclic SDSE.

Moreover, for all x € I:

Proof. We use the notations of corollary 48. We proceed by induction on k. If £k = 0,
(S) is a multicycle and the result is immediate. Let us assume the result at rank & — 1 and
let (S) be the restriction of (S) to all the vertices except the last one, denoted by x. By the
induction hypothesis, the set of its vertices admits a partition I’ = I7U- - 'UIIN’ with the required
conditions. Let us first prove that all the direct descendants of x are in the same I'.. Let y € I;;
and z € I; be two direct descendants of z, with k # [. Let ¥/ € I w1 be a direct descendant of
y and 2’ € I +1 be a direct descendant of z. Lemma 34 implies that x is a direct ascendant of
Zz' and ¢/, as y can’t be a direct ascendant of 2’ and z can’t be a direct ascendant of ¢ because
k # 1. So we can replace y by 3/ and z by 2’. Iterating the process, we can assume that y and z
are in the multicycle: this contradicts lemma 45. So the direct descendants of x are all in I for
a good m. We then take [; = [Zl ifl#m—1and [— = = I’ U {x} and this proves the first
assertion on Gg).

We now prove the assertion on F,. We separate the proof into two subcases. Let us first

assume M > 3. There is an oriented path © — zm — -+ — w3, with a7 € I’ for all .
Moreover, there is no shorter oriented path from z to z 77— As M > 3, from lemma 26:
SRS W
r—>Yy
Let us secondly assume that M = 2. Let 1,...,p be the direct descendants of  and let 0 be
a direct descendant of 1. Then as 1,...,p are in the same part of the partition of I’, they are
not direct descendants of 1. Let us first restrict to {z,1,0}. By proposition 16, )\é’”’o)a}o =0 as
a[(fg = 0 by the induction hypothesis, )\gz’ ) —0. Moreover, 0 = )\(z O)alv1 —a \} , SO agl) = 0.
x 1 1
Similarly, 52) cee = ,(”2 = 0. Let usnow take 1 <14 < j < p. Then /\( Vg a1l =0, so )\gm) =0
and 0 = )\g ‘)azfz' = aE;'_ , SO aE? = 0. As a conclusion, F} is of the required form.
Proposition 18-3 irrirplies that I, = F,/ if x and 2’ have a common ascendant, and this implies
the second assertion on G(g). O

Remark. In particular, the vertex added to G; in order to obtain G;11 is an extension
vertex. By proposition 11, any such SDSE is Hopf.
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7.4 Connected Hopf SDSE with finite levels
We now prove the following theorem:

Theorem 50 Let (S) be a connected Hopf SDSE, such that any vertex of (S) has a finite level.
Then (S) is obtained from a fundamental system by a finite number (possibly 0) of extensions.
Such an SDSE will be called an extended fundamental SDSE.

Proof. Let (S) be a connected Hopf SDSE, such that any vertex of (5) is of finite level. We
use notations of corollary 48. We shall proceed by induction on k. If £ = 0, then S = Sy and
the result is obvious. Let us now assume the result at rank £ — 1. By the induction hypothesis,
the system (S’) associated to Gj_1 is a dilatation of a system of theorem 30. Moreover, G is
obtained from Gj_; by adding a vertex with all its direct descendants in Gj_1. Let us denote
by 0 this vertex. We separate the proof into three cases.

First case. Let us assume that 0 is of level 0. Then all the direct descendants of 0 are of level
0, so are in Io U Jy U I1, and v, = 1 for all direct descendants of = in J; with ¢ € I;. Moreover,
for all 2 € I, A0 = b,(n — 1) + i,

Let us take x,y € I. Using proposition 19-1 into two different ways:

azozj (b + a( ) — aém)) ag’) = (bx + ag)) — a;y)) aéo).

So, for all x,y € I:
(b - a(x)) o) = <bx - a(y)> aéo). (7)

If  and y are in the same I; with i € IoU Jy, then b —aqg 2) — by —a(y) £ 0, so a(o) = aé ) and for
alln > 1, )\EL ) _ )\%0 y). Hence, up to a restriction, we can assume that there is no dilatations
n (S).
Let ¢ € I. If v; # 1, we already know that a(o) = 0. Let us assume v; = 1 and let us choose
Jj € IpU Jy U Ky, such that a(l # bj. Then b; = a( D = 0, so (7) gives (b]- — agi)) a(O) =0. So
(0) = 0 for all ¢ € I;. So the direct descendants of 0 are all in Iy U Jy U K. Using proposition
19 1 with 7 € Iy U Jy U Kp:
a©

(0) _ (0) (4) %1, pn)
a(plv"' Pit1," PN) ai + bl(pl Tt pN) B Z blp] a ail bi #
jeIoUJoUKy—{i}

= (a(o) + (bz’ (z)> pz> agg)l,"',pzv)_
’ pit+1
So:
i R=]]/f i (ai > 1] /= ot ( hi) H fo (ago)hi> .
i€l "'i icJo % =0

So (S) is a system of theorem 30, with 0 € Ky U I;.

Second case. Let us assume that 0 is of level 1 and is not an extension vertex. Then all the
direct descendants of 0 are of level 0, S0 are in IpU Jy U I, and v, = 1 for all direct descendants
of z in Iy. Moreover, for all ¢ € I, )\go,z) = al(-o) and )\7(10’1) =bi(n—1)+ ELEO) if n > 2.

(0)

First item. Let us assume that a;” = 0. Then by proposition 19-1:

(0)

(P1,+,0,+,pN)

N
0 ~O j
TR LR TURRRE SIS U R

— ~(0) (0)
0 - aZ Z a p] a pl: 707"'apN).
jel
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If there is a j € Iy U Jy U Ky, such that a 7& 0, then for (p1,--- ,pn) = ey, we obtain d(o) =0.

If it is not the case, as 0 is not an extension vertex, there exists j,k € I1, a J k 7& 0 (so a 75 0

and a’k 7& O) Then, for <p17 7pN) - 6]7 (pla 7PN> = &k, and (p17 7pN) - 6] +€k7 we

obtain:

O 4 4 4 o

@1

al” + ol = al" 1 4
So &EO) = 0. So in all cases, &EO)
e a§0)

(2

= 0. Moreover, for (p1,--- ,pn) = ¢; for any j € I;, we obtain
= 0. As a conclusion, we proved:

L Forallicl, (ol =0) = (al” =0).

2. Let us put 1-1(0) = {z eh/ al(»o) #* O}. Then for 4 € I, such that az(o) =0, for all j € Il(o),
al(-j) =0.

Second item. Let us take ¢,5 € I. Using proposition 19-1 into two different ways:

al) = (bj +a® - a(-i)) al” = (bi + ELEO) - al(-j)) al”. (8)

0] j i )% J
Let us take 4,5 € I;. Then agi) = al(j) =b; =b; =0, so (8) gives:

dg-o)ago) = ago)ago)'

So (ELEO)) - and (ago)) , are colinear. By the first item, we deduce that there exists a scalar
i€l i€l

v € K, such that for all i € I, a a9 = yago). Let us now take 4,5 € Ip U Jog U Kq, with ¢ #£ j.

Z

Then b; = aZ(]) and b; = ag-l), so (8) gives:

So (&Z(o)) and <a§0)> are colinear. By the first item, we deduce that there
i€lpUJogUKo i€lgUJogUKg

exists a scalar v/ € K, such that for all i« € Iy U Jy U Ky, ~Z(-O) = u’al(o). Let us now take
i€ lgpUJgUKpand j € I;. Then b; = ag-i) =0, so vago)ago) (b +v ago) Ej)> ag.o). In other
words:

Vi€ lyUJy UK, Vi € I, (v —1)al”al” = (b; — al?)a!”). (9)
Third item. Let us assume that Ifo) = (. Then all the direct descendants of 0 are in
Iy U Jy U Kg. Moreover, if i € Io U Jy U Ko:

(0)

0 0 ' %p1, o)
jeIlopUJoUKo—{3}

(0) @), | Wt ow)

0 7 p1, PN

= (o + (b o) ) )

(uaz a;’ | p P

It is then not difficult to show that () is a system of theorem 30, with 0 € .

Fourth item. Let us assume that v = /. Let j € Il If v; # 1, then we already know that

5)—0 If v; = 1, then for a good choice of i, b; —a #Om( ), soa()—O then[ =,
and the result is proved in the third item.
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Fifth item. Let us assume that I(O) # (). By the preceding item, v # /. Let us take j € I(O)
By (9), for all i € Iy U Jy U Ky, a ( ) — bi — (v —1")a; 0 does not depend of j. As a consequence,
F; = F}, for all j,k € If ). We put b( ) = (]) for all ¢ € Iy U Jy U Kg, where j is any element of
Ifo). Let us use proposition 19-1. For all i € Iy U Jy U Ky, if (p1,--- ,pn) # (0,---,0):

0)
(0) _ |, @ ) pr, o)

]elfo)
For all j € I\ if (1, ,pn) # (0, ,0):

(0)

a
(0) “(p1,-,pN)
a = ra.: _—
(1, pit1, ,pN)

¢ pi+1
Letusfixi € IpUJyU Ky and j € Ifo). Then:
9 = < (0)+b ()) ago),

<o> = vl (Ve + b —al?).

(0) a9 gl

1,2, l ]

© _ 0,0

Gij = V@ G5

0y = vl (Va® +b = ol + (v = v)al").

(0)

2
Identifying the two expressions of i AV # v and a 7é 0, we obtain v (a(o)) = 0. If for

all i € IpU Jo UKo, a\”) = 0, then by the second item, for auj eIV, ol = 0, then F; = 1; this

is impossible. So there is an i € Iy U Jy U Ky, such that a 7é 0. As a consequence, v = 0. So
V' # 0, and we then easily obtain that:

P T (0= 0)) T (4 1)m) T (470)

—1-5; 1€Jo by -1 i€lp

(0 1
+ ) a hi+ 1 =
ier(”

So (5) is a system of theorem 30, with 0 € Jj.

Third case. 0 is a vertex of level > 2. By proposition 27, it is an extension vertex. O
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