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ABSTRACT. We consider systems of combinatorial Dyson-Schwinger equations (brie�y,
SDSE) X1 = B+

1 (F1(X1, . . . , XN )), . . ., XN = B+
N (FN (X1, . . . , XN )) in the Connes-Kreimer

Hopf algebra HI of rooted trees decorated by I = {1, . . . , N}, where B+
i is the operator of graft-

ing on a root decorated by i, and F1, . . . , FN are non-constant formal series. The unique solution
X = (X1, . . . , XN ) of this equation generates a graded subalgebra H(S) of HI . We characterise
here all the families of formal series (F1, . . . , FN ) such that H(S) is a Hopf subalgebra. More
precisely, we de�ne three operations on SDSE (change of variables, dilatation and extension)
and give two families of SDSE (cyclic and fundamental systems), and prove that any SDSE (S)
such that H(S) is Hopf is the concatenation of several fundamental or cyclic systems after the
application of a change of variables, a dilatation and iterated extensions.
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Introduction

The Connes-Kreimer Hopf algebra of rooted trees is introduced in [14] and studied in [2, 3, 5, 6,
7, 8, 13, 18]. This graded, commutative, non-cocommutative Hopf algebra is generated by the
set of rooted trees. We shall work here with a decorated version HD of this algebra, where D
is a �nite, non-empty set, replacing rooted trees by rooted trees with vertices decorated by the
elements of D. This algebra has a family of operators (B+

d )d∈D indexed by D, where B+
d sends a

forest F to the rooted tree obtained by grafting the trees of F on a common root decorated by
d. These operators satisfy the following equation: for all x ∈ HD,

∆ ◦B+
d (x) = B+

d (x)⊗ 1 + (Id⊗B+
d ) ◦∆(x).

As explained in [6], this means that B+
d is a 1-cocycle for a certain cohomology of coalgebras,

dual to the Hochschild cohomology.

We are interested here in systems of combinatorial Dyson-Schwinger equations (brie�y, SDSE),
that is to say, if the set of decorations is {1, . . . , N}, a system (S) of the form:

X1 = B+
1 (F1(X1, . . . , XN )),

...
XN = B+

N (FN (X1, . . . , XN )),

where F1, . . . , FN ∈ K[[h1, . . . , hN ]] are formal series in N indeterminates. These systems (in a
Feynman graph version) are used in Quantum Field Theory, as it is explained in [1, 15, 16]. They
possess a unique solution, which is a family of N formal series in rooted trees, or equivalently
elements of a completion of HD. The homogeneous components of these elements generate a
subalgebra H(S) of HD. Our problem here is to determine Hopf SDSE, that is to say SDSE (S)
such thatH(S) is a Hopf subalgebra ofHD. In the case of a single combinatorial Dyson-Schwinger
equation, this question has been answered in [9].

In order to answer this, we �rst associate an oriented graph to any SDSE, re�ecting the
dependence of the di�erent Xi's; more precisely, the vertices of G(S) are the elements of I, and
there is an edge from i to j if Fi depends on hj . We shall say that (S) is connected if G(S)

is connected. Noting that any SDSE is the disjoint union of several connected SDSE, we can
restrict our study to connected SDSE. We introduce three operations on Hopf SDSE:
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• Change of variables, which replaces hi by λihi for all i ∈ I, where λi 6= 0 for all i. This
operation replaces H(S) by an isomorphic Hopf algebra and does not change G(S).

• Dilatation, which replaces each vertex of G(S) by several vertices. This operation increases
the number of vertices. For example, consider:

(S) :
{
X1 = B+

1 (f(X1, X2)),
X2 = B+

2 (g(X1, X2)),

where f, g ∈ K[[h1, h2]]; then the following SDSE is a dilatation of (S):

(S′) :


X1 = B+

1 (f(X1 +X2 +X3, X4 +X5)),
X2 = B+

2 (f(X1 +X2 +X3, X4 +X5)),
X3 = B+

3 (f(X1 +X2 +X3, X4 +X5)),
X4 = B+

4 (g(X1 +X2 +X3, X4 +X5)),
X5 = B+

5 (g(X1 +X2 +X3, X4 +X5)),

• Extension, which adds a vertex 0 to G(S) with an a�ne formal series. This operation
increases the number of vertices by 1. For example, consider:

(S) :
{
X1 = B+

1 (f(X1, X2)),
X2 = B+

2 (f(X1, X2)),

where f ∈ K[[h1, h2]] and a, b ∈ K; then the following SDSE is an extension of (S):

(S′) :


X0 = B+

0 (1 + aX1 + bX2),
X1 = B+

1 (f(X1, X2)),
X2 = B+

2 (f(X1, X2)),

We then introduce two families of Hopf SDSE:

• Cycles, which are SDSE such that the associated graph is an oriented graph and all the
formal series of the system are a�ne; see theorem 28. For example, the following system
is a 4-cycle: 

X1 = B+
1 (1 +X2),

X2 = B+
2 (1 +X3),

X3 = B+
3 (1 +X4),

X4 = B+
4 (1 +X1).

The associated oriented graph is:

1 // 2

��
4

OO

3oo

• Fundamental SDSE, described in theorem 30. Here is an example of fundamental SDSE:

X1 = B+
1

(
fβ1(X1)f β2

1+β2

((1 + β2)h2)(1− h3)−1(1− h4)−1

)
,

X2 = B+
2

(
f β1

1+β1

(X1)fβ2(h2)(1− h3)−1(1− h4)−1

)
,

X3 = B+
3

(
f β1

1+β1

((1 + β1)X1)f β2
1+β2

((1 + β2)h2)(1− h4)−1

)
,

X4 = B+
4

(
f β1

1+β1

((1 + β1)X1)f β2
1+β2

((1 + β2)h2)(1− h3)−1

)
,

X5 = B+
5

(
f β1

1+β1

((1 + β1)X1)f β2
1+β2

((1 + β2)h2)(1− h3)−1(1− h4)−1

)
,
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where β1, β2 ∈ K − {−1} and, for all β ∈ K, fβ is the following formal series:

fβ(h) =
∞∑
k=0

(1 + β) · · · (1 + (k − 1)β)
k!

hk.

The associated oriented graph is:

1
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oo //

OO

��

gg

''NNNNNNNNNNNNNN 2
��

OO

��

77

wwpppppppppppppp

3 oo // 4

5

EE YY

^^>>>>>>>

@@�������

The main result of this paper is theorem 14, which says that any connected Hopf SDSE is ob-
tained by a dilatation and a �nite number of iterated extensions of a cycle or a fundamental SDSE.

Let us now give a few explanations on the way this result is obtained. An important tool is

given by a family indexed by I2 of scalar sequences
(
λ

(i,j)
n

)
n≥1

associated to any Hopf SDSE.

They allow to reconstruct the coe�cients of the formal series of (S), as explained in proposition

19. Particular cases of possible sequence
(
λ

(i,j)
n

)
n≥1

are a�ne sequences, up to a �nite number

of terms: this leads to the notion of level of a vertex. It is shown that level decreases along
the oriented paths of G(S) (proposition 21), and this implies the following alternative if (S) is
connected: any vertex is of �nite level or no vertex is of �nite level. In particular, any vertex of
a fundamental SDSE is of �nite level, whereas no vertex of a cycle is of �nite level.

We then consider two special families of SDSE:

• We �rst assume that the graph associated to (S) does not contain any vertex related to
itself. This case includes cycles and their dilatations (called multicycles), and a special
case of fundamental SDSE called quasi-complete SDSE. We show, using graph-theoretical

considerations and the coe�cients λ
(i,j)
n , that under an hypothesis of symmetry, they are

the only possibilities.

• We then assume that any vertex of (S) has an ascendant related to itself. We then prove
that (S) is fundamental.

This results are then uni�ed in corollary 48. It says that any Hopf SDSE with a connected graph
contains a multicycle or a a fundamental SDSE (S0) and is obtained from (S0) by adding repeat-
edly a �nite number of vertices. This result is precised for the multicycle case in theorem 49 and
for the fundamental case in theorem 50. The compilation of these results then proves theorem 14.

This text is organised as follows: the �rst section gives some recalls on the structure of Hopf

algebra of HD and on the pre-Lie product on g(S) = Prim
(
H∗(S)

)
. In the second section are

given the de�nitions of SDSE and their di�erent operations: change of variables, dilatation and
extension. The main theorem of the text is also stated in this section. The following section

introduces the coe�cients λ
(i,j)
n and their properties, especially their link with the pre-Lie prod-

uct of g(S). The level of a vertex is de�ned in the fourth section, which also contains lemmas on
vertices of level 0, 1 or ≥ 2, before that fundamental and multicyclic SDSE are introduced in the
�fth section. The next section contains preliminary results about graphs with no self-dependent
vertices or such that any vertex is the descendant of a self-dependent vertex, and the main the-
orem is �nally proved in the seventh section.

Notations. We denote by K a commutative �eld of characteristic zero. All vector spaces,
algebras, coalgebras, Hopf algebras, etc. will be taken over K.
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1 Preliminaries

1.1 Decorated rooted trees

De�nition 1 [19, 20]

1. A rooted tree t is a �nite graph, without loops, with a special vertex called the root of t.
The weight of t is the number of its vertices. The set of rooted trees will be denoted by T .

2. Let D be a non-empty set. A rooted tree decorated by D is a rooted tree with an application
from the set of its vertices into D. The set of rooted trees decorated by D will be denoted
by TD.

3. Let i ∈ D. The set of rooted trees decorated by D with root decorated by i will be denoted

by T (i)
D .

Examples.

1. Rooted trees with weight smaller than 5:

q ; qq ; q∨qq
, qqq ; q∨qq q

, q∨qqq
,

q∨qq q , qqqq ; q∨qq
�H

q q
, q∨qq qq

, q∨qq qq
, q∨qq∨q q

, q∨qq qq
,

q∨qq qq , q∨qq qq , qqq∨
q q
, qqqqq .

2. Rooted trees decorated by D with weight smaller than 4:

qa ; a ∈ D, qqab (a, b) ∈ D2; q∨qq
a
cb = q∨qq

a
bc
, qqqabc , (a, b, c) ∈ D3;

q∨qq q
a
d

c
b = q∨qq q

a
c

d
b = q∨qq q

a
d

b
c = q∨qq q

a
b

d
c = q∨qq q

a
c

b
d = q∨qq q

a
b

c
d

, q∨qqq
a
db

c

= q∨qq q
a
bd
c

,
q∨qq q
a
b

dc

= q∨qq q
a
b

cd

, qqqqabcd , (a, b, c, d) ∈ D4.

De�nition 2

1. We denote by HD the polynomial algebra generated by TD.

2. Let t1, . . . , tn be elements of TD and let d ∈ D. We denote by B+
d (t1 . . . tn) the rooted

tree obtained by grafting t1, . . . , tn on a common root decorated by d. This map B+
d is

extended in an operator from HD to HD.

For example, B+
d ( qqab qc ) = q∨qqq

d
ca

b

.

1.2 Hopf algebras of decorated rooted trees

In order to make HD a bialgebra, we now introduce the notion of cut of a tree t ∈ TD. A
non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t
into a forest denoted by W c(t). The cut c is admissible if any oriented path in the tree meets
at most one cut edge. For such a cut, the tree of W c(t) which contains the root of t is denoted
by Rc(t) and the product of the other trees of W c(t) is denoted by P c(t). We also add the total
cut, which is by convention an admissible cut such that Rc(t) = 1 and P c(t) = W c(t) = t. The
set of admissible cuts of t is denoted by Adm∗(t). Note that the empty cut of t is admissible; we
put Adm(t) = Adm∗(t)− {empty cut, total cut}.
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example. Let a, b, c, d ∈ D and let us consider the rooted tree t = q∨qqq
d
cb

a

. As it as 3 edges, it
has 23 non-total cuts.

cut c q∨qqq
d
cb

a q∨qqq
d
cb

a q∨qqq
d
cb

a q∨qqq
d
cb

a q∨qqq
d
cb

a q∨qqq
d
cb

a q∨qqq
d
cb

a q∨qqq
d
cb

a

total

Admissible? yes yes yes yes no yes yes no yes

W c(t) q∨qqq
d
cb

a qq ba qqdc qa q∨qq
d
cb qqqdba qc qa q b qqdc qq ba qc qd qa qqdb qc qa q b qc qd q∨qqq

d
cb

a

Rc(t) q∨qqq
d
cb

a qqdc q∨qq
d
cb qqqdba × qd qqdb × 1

P c(t) 1 qq ba qa qc × qq ba qc qa qc × q∨qqq
d
cb

a

The coproduct of HD is de�ned as the unique algebra morphism from HD to HD ⊗HD such
that for all rooted tree t ∈ TD:

∆(t) =
∑

c∈Adm∗(t)

P c(t)⊗Rc(t) = t⊗ 1 + 1⊗ t+
∑

c∈Adm(t)

P c(t)⊗Rc(t).

As HD is the free associative commutative unitary algebra generated by TD, this makes sense.
This coproduct makes HD a Hopf algebra. Although it won't play any role in this text, we recall
that the antipode S is the unique algebra automorphism of HD such that for all t ∈ TD:

S(t) = −
∑

c cut of t

(−1)ncWc(t),

where nc is the number of cut edges of c.

Example.

∆( q∨qqq
d
cb

a

) = q∨qqq
d
cb

a

⊗ 1 + 1⊗ q∨qqq
d
cb

a

+ qq ba ⊗ qqdc + qa ⊗ q∨qq
d
cb + qc ⊗ qqqdba + qq ba qc ⊗ qd + qa qc ⊗ qqdb .

A study of admissible cuts shows the following result:

Proposition 3 For all d ∈ D, for all x ∈ HD:

∆ ◦B+
d (x) = B+

d (x)⊗ 1 + (Id⊗B+
d ) ◦∆(x).

Remarks.

1. In other words, B+
d is a 1-cocycle for a certain cohomology of coalgebras, see [6].

2. If t ∈ T (i)
D , then ∆(t)− t⊗ 1 ∈ HD ⊗ T (i)

D .

1.3 Gradation of HD and completion

We grade HD by declaring the forests with n vertices homogeneous of degree n. We denote by
HD(n) the homogeneous component of HD of degree n. Then HD is a graded bialgebra, that is
to say:

• For all i, j ∈ N, HD(i)H(j) ⊆ HD(i+ j).

• For all k ∈ N, ∆(HD(k)) ⊆
∑
i+j=k

HD(i)⊗HD(j).
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We de�ne, for all x ∈ HD:

val(x) = max

n ∈ N | x ∈
⊕
k≥n
HD(k)

 .

We then put, for all x, y ∈ HD, d(x, y) = 2−val(x−y), with the convention 2−∞ = 0. Then d is
a distance on HD. The metric space (HD, d) is not complete; its completion will be denoted by

ĤD. As a vector space:

ĤD =
∏
n∈N
HD(n).

The elements of ĤD will be denoted by
∑
xn, where xn ∈ HD(n) for all n ∈ N. The product

m : HD ⊗ HD −→ HD is homogeneous of degree 0, so is continuous: it can be extended from
ĤD ⊗ ĤD to ĤD, which is then an associative, commutative algebra. Similarly, the coproduct
of HD can be extended as a map:

∆ : ĤD −→ HD⊗̂HD =
∏
i,j∈N

HD(i)⊗HD(j).

Let f(h) =
∑
pnh

n ∈ K[[h]] be any formal series, and let X =
∑
xn ∈ ĤD, such that x0 = 0.

The series of ĤD of terms pnX
n is Cauchy, so converges. Its limit will be denoted by f(X). In

other words, f(X) =
∑
yn, with:
y0 = p0,

yn =
n∑
k=1

∑
a1+···+ak=n

pkxa1 · · ·xak if n ≥ 1.

1.4 Pre-Lie structure on the dual of HD
By the Cartier-Quillen-Milnor-Moore theorem [17], the graded dual H∗D of HD is an enveloping
algebra. Its Lie algebra Prim(H∗D) has a basis (ft)t∈TD indexed by TD:

ft :


HD −→ K

t1 . . . tn −→
{

0 if n 6= 1,
δt,t1 if n = 1.

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra)
is a couple (A, ?), where ? is a bilinear product on A such that for all x, y, z ∈ A:

(x ? y) ? z − x ? (y ? z) = (y ? x) ? z − y ? (x ? z).

Pre-Lie algebras are Lie algebras, with bracket given by [x, y] = x ? y − y ? x.

The Lie bracket of Prim(H∗D) is induced by a pre-Lie product ? given in the following way:
if f, g ∈ Prim(H∗D), f ? g is the unique element of Prim(H∗D) such that for all t ∈ TD,

(f ? g)(t) = (f ⊗ g) ◦ (π ⊗ π) ◦∆(t),

where π is the projection on V ect(T D) which vanishes on the forests which are not trees. In
other words, if t, t′ ∈ TD:

ft ? ft′ =
∑
t′′∈TD

n(t, t′; t′′)ft′′ ,

where n(t, t′; t′) is the number of admissible cuts c of t′′ such that P c(t′′) = t and Rc(t′′) = t′. It
is proved that (prim(H∗D), ?) is the free pre-Lie algebra generated by the qd 's, d ∈ D: see [3, 4].
Note that H∗D is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [10, 11, 12].
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2 De�nitions and properties of SDSE

2.1 Unique solution of an SDSE

De�nition 4 Let I be a �nite, non-empty set, and let Fi ∈ K[[hj , j ∈ I]] be a non-constant
formal series for all i ∈ I. The system of Dyson-Schwinger combinatorial equations (brie�y, the
SDSE) associated to (Fi)i∈I is:

∀i ∈ I, Xi = B+
i (fi(Xj , j ∈ I)),

where Xi ∈ ĤI for all i ∈ I.

In order to ease the notation, we shall often assume that I = {1, . . . , N} in the proofs, with-
out loss of generality.

Notations. We assume here that I = {1, . . . , N}.

1. Let (S) be an SDSE. We shall denote, for all i ∈ I:

Fi =
∑

p1,··· ,pN

a
(i)
(p1,··· ,pN )h

p1
1 · · ·h

pN
N .

2. Let 1 ≤ j ≤ N . We put εj = (0, · · · , 0, 1, 0, · · · , 0) where the 1 is in position j. We shall

denote, for all i ∈ I, a(i)
j = a

(i)
εj ; for all j, k ∈ I, a

(i)
j,k = a

(i)
εj+εk

, and so on.

Remark. We assume that there is no constant Fi. Indeed, if Fi ∈ K, then Xi is a multiple
of q i . We shall always avoid this degenerated case in all this text.

Proposition 5 Let (S) be an SDSE. Then it admits a unique solution (Xi)i∈I ∈
(
ĤI
)I
.

Proof. We assume here that I = {1, . . . , N}. If (X1, · · · , XN ) is a solution of S, then Xi is
a linear (in�nite) span of rooted trees with a root decorated by i. We denote:

Xi =
∑
t∈T (i)

I

att.

These coe�cients are uniquely determined by the following formulas: if

t = B+
i

(
t
p1,1
1,1 · · · t

p1,q1
1,q1
· · · tpN,1N,1 · · · t

pN,qN
N,qN

)
,

where the ti,j 's are di�erent trees, such that the root of ti,j is decorated by i for all i ∈ I,
1 ≤ j ≤ qi, then:

at =

(
N∏
i=1

(pi,1 + · · ·+ pi,qi)!
pi,1! · · · pi,qi !

)
a

(i)
(p1,1+···+p1,q1 ,··· ,pN,1+···+pN,qN )a

p1,1
t1,1
· · · apN,qNtN,qN

. (1)

So (S) has a unique solution. 2

De�nition 6 Let (S) be an SDSE and let X = (Xi)i∈I be its unique solution. The subal-
gebra of HI generated by the homogeneous components Xi(k)'s of the Xi's will be denoted by
H(S). If H(S) is Hopf, the system (S) will be said to be Hopf.
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2.2 Graph associated to an SDSE

We associate a oriented graph to each SDSE in the following way:

De�nition 7 Let (S) be an SDSE.

1. We construct an oriented graph G(S) associated to (S) in the following way:

• The vertices of G(S) are the elements of I.

• There is an edge from i to j if, and only if,
∂Fi
∂hj
6= 0.

2. If
∂Fi
∂hi

6= 0, the vertex i will be said to be self-dependent. In other words, if i is self-

dependent, there is a loop from i to itself in G(S).

3. If G(S) is connected, we shall say that (S) is connected.

Remark. If (S) is not connected, then (S) is the union of SDSE (S1), · · · , (Sk) with disjoint
sets of indeterminates , so H(S) ≈ H(S1)⊗ · · · ⊗H(Sk). As a corollary, (S) is Hopf if, and only if,
for all j, (Sj) is Hopf.

Let (S) be an SDSE and let G(S) be the associated graph. Let i and j be two vertices of
G(S). We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is
an oriented edge from i to j; we shall say that j is a descendant of i (or i is an ascendant of j) if
there is an oriented path from i to j. We shall write "i −→ j" for "j is a direct descendant of i".

2.3 Operations on Hopf SDSE

Proposition 8 (change of variables) Let (S) be the SDSE associated to (Fi(hj , j ∈ I))i∈I .
Let λi and µi be non-zero scalars for all i ∈ I. The system (S) is Hopf if, and only if, the SDSE

system (S′) associated to (µiFi(λjhj , j ∈ J))i∈I is Hopf.

Proof. We assume that I = {1, . . . , N}. We consider the following morphism:

φ :
{

HI −→ HI
F ∈ F −→ (µ1λ1)n1(F ) · · · (µNλN )nN (F )F,

where ni(F ) is the number of vertices of F decorated by i. Then φ is a Hopf algebra automorphism
and for all i, φ ◦B+

i = µiλiB
+
i ◦ φ. Moreover, if we put Yi = 1

λi
φ(Xi) for all i:

Yi =
1
λi
φ ◦B+

i (Fi(X1, · · · , XN ))

=
1
λi
µiλiB

+
i (Fi(φ(X1), · · · , φ(XN )))

= µiB
+
i (Fi(λ1Y1, · · · , λNYN )).

So (Y1, · · · , YN ) is the solution of the system (S′). Moreover, φ sends H(S) onto H(S′). As φ is
a Hopf algebra automorphism, H(S) is a Hopf subalgebra of HI if, and only if, H(S′) is. 2

Remark. A change of variables does not change the graph associated to (S).

Proposition 9 (restriction) Let (S) be the SDSE associated to (Fi(hj , j ∈ I))i∈I and let

I ′ ⊆ I, non-empty. Let (S′) be the SDSE associated to
(
Fi(hj , j ∈ I)|hj=0, ∀j /∈I′

)
i∈I′

. If (S) is

Hopf, then (S′) also is.

9



Proof. We consider the epimorphism φ of Hopf algebras fromHI toHI′ , obtained by sending
the forests with at least a vertex decorated by an element which is not in I ′ to zero. Then φ
sends H(S) to H(S′). As φ is a morphism of Hopf algebras, if H(S) is a Hopf subalgebra of HI ,
H(S′) is a Hopf subalgebra of HI′ . 2

Remark. The restriction to a subset of vertices I ′ changes G(S) into the graph obtained by
deleting all the vertices j /∈ I ′ and all the edges related to these vertices.

Proposition 10 (dilatation) Let (S) be the system associated to (Fi)i∈I and (S′) be a

system associated to a family (F ′j)j∈J , such that there exists a partition J =
⋃
i∈I

Ji, with the

following property: for all i ∈ I, for all x ∈ Ii,

F ′x = Fi

∑
y∈Ij

hy, j ∈ I

 .

Then (S) is Hopf, if, and only if, (S′) is Hopf. We shall say that (S′) is a dilatation of (S).

Proof. We assume here that I = {1, . . . , N}.
=⇒. Let us assume that (S) is Hopf. For all i ∈ I, we can then write:

∆(Xi) =
∑
n≥0

P (i)
n (X1, · · · , XN )⊗Xi(n),

with the convention Xi(0) = 1. Let φ : HI −→ HI′ be the morphism of Hopf algebras such that,
for all 1 ≤ i ≤ N :

φ ◦B+
i =

∑
j∈Ii

B+
j ◦ φ.

Then, immediately, for all 1 ≤ i ≤ N :

φ(Xi) =
∑
j∈Ii

X ′j .

As a consequence:

∑
j∈Ii

∆(X ′j) =
∑
j∈Ii

∑
n≥0

P (i)
n

∑
k∈I1

X ′k, · · · ,
∑
k∈IN

X ′k

⊗X ′j(n).

Conserving the terms of the form F ⊗ t, where t is a tree with root decorated by j, for all j ∈ Ii:

∆(X ′j) =
∑
n≥0

P (i)
n

∑
k∈I1

X ′k, · · · ,
∑
k∈IN

X ′k

⊗X ′j(n).

So (S′) is Hopf.

⇐=. By restriction, choosing an element in each Ii, if (S′) is Hopf, then (S) is Hopf. 2

Remark. If (S′) is a dilatation of (S), then the set of vertices J of the graph G(S′) associated
to (S′) admits a partition indexed by the vertices of G(S), and there is an edge from x ∈ Ji to
y ∈ Jj in G(S′) if, and only if, there is an edge from i to j in G(S).
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Example. Let f, g ∈ K[[h1, h2]]. Let us consider the following SDSE:

(S) :
{
X1 = B+

1 (f(X1, X2)),
X2 = B+

2 (g(X1, X2)),

(S′) :


X1 = B+

1 (f(X1 +X2 +X3, X4 +X5)),
X2 = B+

2 (f(X1 +X2 +X3, X4 +X5)),
X3 = B+

3 (f(X1 +X2 +X3, X4 +X5)),
X4 = B+

4 (g(X1 +X2 +X3, X4 +X5)),
X5 = B+

5 (g(X1 +X2 +X3, X4 +X5)).

Then (S′) is a dilatation of (S).

Proposition 11 (extension) Let (S) be the SDSE associated to (Fi)i∈I . Let 0 /∈ I and let

(S′) be associated to (Fi)i∈I∪{0}, with:

F0 = 1 +
∑
i∈I

a
(0)
i hi.

Then (S′) is Hopf if, and only if, the two following conditions hold:

1. (S) is Hopf.

2. For all i, j ∈ I(0) =
{
j ∈ I / a(0)

j 6= 0
}
, Fi = Fj.

If these two conditions hold, we shall say that (S′) is an extension of (S).

Proof. We assume here that I = {1, . . . , N}.
=⇒. Let us assume that (S′) is Hopf. By restriction, (S) is Hopf. Moreover:

X0 = B+
0

(
1 +

N∑
i=1

a
(0)
i Xi

)
= q0 +

N∑
i=1

a
(0)
i B+

0 ◦B
+
i (fi(X1, · · · , XN )).

As H(S′) is a graded Hopf subalgebra, the projection on H{0,··· ,N} ⊗H{0,··· ,N}(2) gives:

N∑
i=1

a
(0)
i Fi(X1, · · · , XN )⊗ qq0i ∈ H(S′)⊗̂H(S′).

So this is of the form:

P ⊗X0(2) = P ⊗

(
N∑
i=1

a
(0)
i

qq0i ) ,
for a certain P ∈ Ĥ(S′). As the qq0i 's, i ∈ I, are linearly independent, we obtain that for all i, j,

a
(0)
i Fi(X1, · · · , XN ) = a

(0)
i P for all i, and this implies the second item.

⇐=. As (S) is Hopf, we can put for all 1 ≤ i ≤ N :

∆(Xi) = Xi ⊗ 1 +
+∞∑
k=1

P
(i)
k ⊗Xi(k),

11



where P
(i)
n is an element of the completion of H(S). By the second hypothesis, if i, j ∈ I, as

Fi = Fj , P
(i)
n = P

(j)
n . We then denote by Pn the common value of P

(i)
n for all i ∈ I. So:

∆(X0) = q0 ⊗ 1 + 1⊗ q0 +
N∑
i=1

a
(0)
i ∆ ◦B+

0 (Xi)

= X0 ⊗ 1 + 1⊗X0 +
N∑
i=1

a
(0)
i (1 +Xi)⊗ q0 +

N∑
i=1

∞∑
j=1

a
(0)
i P

(i)
j ⊗B

+
0 (Xi(j))

= X0 ⊗ 1 + 1⊗X0 +
N∑
i=1

a
(0)
i (1 +Xi)⊗ q0 +

N∑
i=1

∞∑
j=1

a
(0)
i Pj ⊗B+

0 (Xi(j))

= X0 ⊗ 1 + 1⊗X0 +
N∑
i=1

a
(0)
i (1 +Xi)⊗ q0 +

N∑
i=1

Pj ⊗B+
0

 ∞∑
j=1

a
(0)
i Xi(j)


= X0 ⊗ 1 + 1⊗X0 +

N∑
i=1

a
(0)
i (1 +Xi)⊗ q0 +

N∑
i=1

Pj ⊗X0(j + 1).

This belongs to the completion of H(S′) ⊗H(S′), so (S′) is Hopf. 2

Remarks.

1. If (S) is an extension of (S′), then G(S) is obtained from G(S′) by adding a non-self-
dependent vertex with no ascendant.

2. If I(0) is reduced to a single element, then condition 2 is empty.

De�nition 12 Let (S) a Hopf SDSE and let i ∈ I. We shall say that i is an extension vertex

if, denoting by J the set of descendants of i, the restriction of (S) to J ∪ {i} is an extension of
the restriction of (S) to J .

2.4 Constant terms of the formal series

Lemma 13 Let (S) be an Hopf SDSE. If Fi(0, · · · , 0) = 0, then Xi = 0.

Proof. If Fi(0, · · · , 0) = 0, then the homogeneous component of degree 1 of Xi is zero, soq i /∈ H(S). Considering the terms of the form F ⊗ q i in ∆(Xi), we obtain:

Fi(Xj , j ∈ I)⊗ q i ∈ H(S) ⊗H(S).

As q i /∈ H(S), necessarily Fi(Xj , j ∈ I) = 0, so Xi = 0. 2

As a consequence, if Fi(0, · · · , 0) = 0, then H(S) = H(S′), where (S′) is the restriction of
(S) to I − {i}. Using a change of variables, we shall always suppose in the sequel that for all i,
Fi(0, · · · , 0) = 1.

2.5 Main theorem

Notations. For all β ∈ K, we put:

fβ(h) =
+∞∑
k=0

(1 + β) · · · (1 + β(k − 1))
k!

hk =

{
(1− βh)−

1
β if β 6= 0,

eh if β = 0.

The main aim of this text is to prove the following result:
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Theorem 14 Let (S) be a connected SDSE. It is Hopf if and only if one of the following

assertion holds:

1. (Extended multicyclic SDSE). The set I admits a partition I = I1 ∪ · · · ∪ IN indexed by the

elements of Z/NZ, N ≥ 2, with the following conditions:

• For all i ∈ Ik:
Fi = 1 +

∑
j∈Ik+1

a
(i)
j hj .

• If i and i′ have a common direct ascendant in G(S), then Fi = Fi′ (so i and i
′ have

the same direct descendants).

2. (Extended fundamental SDSE). There exists a partition:

I =

⋃
i∈I0

Ji

 ∪
⋃
i∈J0

Ji

 ∪K0 ∪ I1 ∪ J1 ∪ I2,

with the following conditions:

• K0, I1, J1, I2 can be empty.

• The set of indices I0 ∪ J0 is not empty.

• For all i ∈ I0 ∪ J0, Ji is not empty.

Up to a change of variables:

(a) For all i ∈ I0, there exists βi ∈ K, such that for all x ∈ Ji:

Fx = fβi

∑
y∈Ji

hy

 ∏
j∈I0−{i}

f βj
1+βj

(1 + βj)
∑
y∈Jj

hy

 ∏
j∈J0

f1

∑
y∈Jj

hy

 .

(b) For all i ∈ J0, for all x ∈ Ji:

Fx =
∏
j∈I0

f βj
1+βj

(1 + βj)
∑
y∈Jj

hy

 ∏
j∈J0−{i}

f1

∑
y∈Jj

hy

 .

(c) For all i ∈ K0:

Fi =
∏
j∈I0

f βj
1+βj

(1 + βj)
∑
y∈Jj

hy

 ∏
j∈J0

f1

∑
y∈Jj

hy

 .

(d) For all i ∈ I1, there exist νi ∈ K and a family of scalars
(
a

(i)
j

)
j∈I0∪J0∪K0

, with

(νi 6= 1) or (∃j ∈ I0, a(i)
j 6= 1 + βj) or (∃j ∈ J0, a

(i)
j 6= 1) or (∃j ∈ K0, a

(i)
j 6= 0).

Then, if νi 6= 0:

Fi =
1
νi

∏
j∈I0

f βj

νia
(i)
j

νia(i)
j

∑
y∈Jj

hy

 ∏
j∈J0

f 1

νia
(i)
j

νia(i)
j

∑
y∈Jj

hy

 ∏
j∈K0

f0

(
νia

(i)
j hj

)
+1− 1

νi
.

If νi = 0:

Fi = −
∑
j∈I0

a
(i)
j

βj
ln

1−
∑
y∈Jj

hy

−∑
j∈J0

a
(i)
j ln

1−
∑
y∈Jj

hy

+
∑
j∈K0

a
(i)
j hj + 1.
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(e) For all i ∈ J1, there exists νi ∈ K − {0} and a family of scalars
(
a

(i)
j

)
j∈I0∪J0∪K0∪I1

,

with the three following conditions:

• I(i)
1 = {j ∈ I1 / a(i)

j 6= 0} is not empty.

• For all j ∈ I(i)
1 , νj = 1.

• For all j, k ∈ I(i)
1 , Fj = Fk. In particular, we put b

(i)
t = a

(j)
t for any j ∈ I(i)

1 , for

all t ∈ I0 ∪ J0 ∪K0.

Then:

Fi =
1
νi

∏
j∈I0

f βj

b
(i)
j
−1−βj

(b(i)j − 1− βj
)∑
y∈Jj

hy

 ∏
j∈J0

f βj

b
(i)
j
−1

(b(i)j − 1
)∑
y∈Jj

hy


∏
j∈K0

f0

(
b
(i)
j hj

)
+
∑
j∈I(i)1

a
(i)
j h1 + 1− 1

νi
.

(f) I2 = {x1, . . . , xm} and for all 1 ≤ k ≤ m, there exist a set:

I(xk) ⊆

⋃
i∈I0

Ji

 ∪
⋃
i∈J0

Ji

 ∪K0 ∪ I1 ∪ J1 ∪ {x1, . . . , xk−1}

and a family of non-zero scalars
(
a

(xk)
j

)
j∈I(xk)

such that for all i, j ∈ I(xk), Fi = Fj.

Then:

Fxk = 1 +
∑

j∈I(xk)

a
(xk)
j hj .

Here is the graph of a system of an extended multicyclic SDSE, with N = 5. The di�erent
subset of the partition are indicated by the di�erent colours. the multicycle corresponds to the
�ve boxes. An arrow between two boxes means that all vertices of the boxes are related by an
arrow.

Here is the graph of an extended fundamental SDSE. The vertices in Ji, with i ∈ I0, are
green. There are two elements in I0, one with βi = −1 (light green vertices) and one with
βi 6= −1 (dark green vertex). There are two elements in J0, corresponding to light blue and dark
blue vertices. The unique element of K0 is red; the unique element of I1 is yellow; the unique
element of J1 is orange; the dark vertices are the elements of I2. An arrow between two boxes
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means that all vertices of the boxes are related by an arrow.

For example, the SDSE associated to the following formal series has such a graph:

F1 = fβ(h1)f1(h4 + h5)f1(h6 + h7 + h8)
F2 = F3 = (1 + h2 + h3)f β

1+β
((1 + β)h1)f1(h4 + h5)f1(h6 + h7 + h8)

F4 = F5 = f β
1+β

((1 + β)h1)f1(h6 + h7 + h8)

F6 = F7 = F8 = f β
1+β

((1 + β)h1)f1(h4 + h5)

F9 = f β
1+β

((1 + β)h1)f1(h4 + h5)f1(h6 + h7 + h8)

F10 =
1
ν
f β

νa
(10)
1

(
νa

(10)
1 h1

)
f −1

νa
(10)
2

(
νa

(10)
2 (h2 + h3)

)
f 1

νa
(10)
4

(
νa

(10)
4 (h4 + h5)

)
f 1

νa
(10)
6

(
νa

(10)
6 (h6 + h7 + h8)

)
f0

(
νa

(10)
9 h9

)
+ 1− 1

ν
,

F11 =
1
ν ′
f β

a
(10)
1 −1−β

((
a

(10)
1 − 1− β

)
h1

)
f −1

a
(10)
2

(
a

(10)
2 (h2 + h3)

)
f 1

a
(10)
4 −1

((
a

(10)
4 − 1

)
(h4 + h5)

)
f 1

a
(10)
6 −1

((
a

(10)
6 − 1

)
(h6 + h7 + h8)

)
f0

(
a

(10)
9 h9

)
+ a

(11)
10 h10 + 1− 1

ν ′
,

F12 = F13 = 1 + a
(12)
10 h10,

F14 = 1 + a
(14)
13 h13,

F15 = 1 + a
(15)
12 h12 + a

(15)
13 h13,

F16 = 1 + a
(16)
15 h15,

F17 = 1 + a
(17)
2 h2,

F18 = 1 + a
(18)
17 h17,

F19 = 1 + a
(19)
17 h17,

where β 6= −1, ν, ν ′ 6= 0, and the coe�cients a
(i)
j are non-zero.

15



3 Characterisation and properties of Hopf SDSE

3.1 Subalgebras of HD generated by spans of trees

Let us �x a non-empty set D.

Lemma 15 Let V be a subspace of V ect(TD) and let us consider the subalgebra A of HD
generated by V . Recall that for all d ∈ D, f qd is the following linear map:

f qd :
{

HD −→ K
t1 · · · tn −→ δt1···tn, qd .

Then A is a Hopf subalgebra if, and only if, the two following assertions are both satis�ed:

1. For all d ∈ D, (f qd ⊗ Id) ◦∆(V ) ⊆ V +K.

2. For all d ∈ D, (Id⊗ f qd ) ◦∆(V ) ⊆ A.

Proof. =⇒. If A is Hopf, then ∆(V ) ⊆ A⊗A. As V ⊆ V ect(TD), ∆(V ) ⊆ H⊗ (V ect(TD) +
K). So:

∆(V ) ⊆ (A⊗A) ∩ (H⊗ (V ect(TD) +K)) = A⊗ (V ⊕K).

This implies both assertions.

⇐=. We use here Sweedler's notations: ∆(a) = a′ ⊗ a′′ and (∆⊗ Id) ◦∆(a) = a′ ⊗ a′′ ⊗ a′′′
for all a ∈ A.

First step. Let us consider the following subspace of Prim(H∗D):

B = {f ∈ Prim(H∗D) / (f ⊗ Id) ◦∆(V ) ⊆ V +K}.

By hypothesis 1, f qd ∈ B for all d ∈ D. We recall here that ? is the pre-Lie product of Prim(H∗D).
Let f and g ∈ B. For all v ∈ V :

(f ? g ⊗ Id) ◦∆(v) = f ◦ π(v′)g ◦ π(v′′)v′′′.

As f ∈ B, f ◦ π(v′)v′′ ∈ V +K. As g ∈ B, f ◦ π(v′)g ◦ π(v′′)v′′′ ∈ V +K. So f ? g ∈ B, and B
is a sub-pre-Lie algebra of Prim(H∗D). As Prim(H∗D) is generated as a pre-Lie algebra by the
f qd 's, B = Prim(H∗D).

Second step. Let us consider the following subspace of H∗D:

B′ = {f ∈ H∗D / (f ⊗ Id) ◦∆(A) ⊆ A}.

Let f ∈ Prim(H∗D). By the �rst step, for all v1, · · · , vn ∈ V :

(f ⊗ Id) ◦∆(v1 · · · vn) = f(v′1 · · · v′n)v′′1 · · · v′′n =
n∑
i=1

v1 · · · f(v′i)v
′′
i · · · vn ∈ A,

so Prim(H∗D) ⊆ B′. Let f, g ∈ B′. For all a ∈ A:

(fg ⊗ Id) ◦∆(a) = f(a′)g(a′′)a′′′.

As f ∈ B′, f(a′)a′′ ∈ A. As g ∈ B′, f(a′)g(a′′)a′′′ ∈ A. So B′ is a subalgebra of H∗D. As it
contains Prim(H∗D), it is equal to H∗D. So:

∆(A) ⊆ HD ⊗A+
⋂

f∈H∗D

Ker(f)⊗HD = HD ⊗A.
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Third step. Let us consider the following subspace of Prim(H∗D):

C = {f ∈ Prim(H∗D) / (Id⊗ f) ◦∆(V ) ⊆ A}.

By the second hypothesis, f qd ∈ B for all d ∈ D. Let us take f and g ∈ C. For all v ∈ V :

(Id⊗ (f ? g)) ◦∆(v) = v′f ◦ π(v′′)g ◦ π(v′′′).

As g ∈ C, v′g ◦ π(v′′) ∈ A. Let us denote:

v′ ◦ π(v′′) =
∑

v1 · · · vn,

where v1, . . . , vn are elements of V . Then:

v′f ◦ π(v′′)g ◦ π(v′′′) =
∑

v′1 · · · v′nf ◦ π(v′′1 · · · v′′n)g ◦ π(v′′′).

By the second step, as V ⊆ V ect(TD):

∆(V ) ⊆ (HD ⊗A) ∩ (HD ⊗ (V ect(TD) +K)) = HD ⊗ (V +K).

So: ∑
v′1 · · · v′n ⊗ π(v′′1 · · · v′′n) =

∑ n∑
i=1

v1 · · · v′i · · · vn ⊗ π(v′′i ).

Finally:

(Id⊗ (f ? g)) ◦∆(v) =
∑ n∑

i=1

v1 · · · v′i · · · vn ⊗ f ◦ π(v′′i ).

As f ∈ B′, this belongs to A. So f ? g ∈ B′. As at the end of the �rst step, we conclude that
B′ = Prim(H∗D).

Last step. As in the second step, we conclude that for all f ∈ H∗D, (Id⊗ f) ◦∆(A) ⊆ A. So
∆(A) ⊆ A⊗HD, and ∆(A) ⊆ (HD ⊗A) ∩ (A⊗HD) = A⊗A. So A is a Hopf subalgebra. 2

3.2 De�nition of the structure coe�cients

Proposition 16 Let (S) be an SDSE. It is Hopf if, and only if, for all i, j ∈ I, for all n ≥ 1,
there exists a scalar λ

(i,j)
n such that for all t′ ∈ Ti(n):∑

t∈Ti(n+1)

nj(t, t′)at = λ(i,j)
n at′ ,

where nj(t, t′) is the number of leaves l of t decorated by j such that the cut of l gives t′.

Proof. =⇒. Let us assume that (S) is Hopf. Then H(S) is a Hopf subalgebra of HI . Let
us use lemma 15, with V = V ect(Xi(n), i ∈ I, n ≥ 1). So (f q j ⊗ Id) ◦ ∆(Xi(n + 1)) belongs
to H(S), and is a linear span of trees of degree n with a root decorated by i, so is a multiple of
Xi(n). We then denote:

(f q j ⊗ Id) ◦∆(Xi(n+ 1)) = λ(i,j)
n Xi(n) =

∑
t′∈T (n)

λ(i,j)
n at′t

′.

By de�nition of the coproduct ∆:

(f q j ⊗ Id) ◦∆(Xi(n+ 1)) =
∑

t∈T (n+1), t′∈T (n)

nj(t, t′)att′.
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The result is proved by identifying the coe�cients in the basis T (n) of these two expressions of
(f q j ⊗ Id) ◦∆(Xi(n+ 1)).

⇐=. Let us prove that both conditions of lemma 15 are satis�ed, with the same V as before.

By hypothesis, for all i, j ∈ I, for all n ≥ 2, (f q j ⊗ Id) ◦ ∆(Xi(n)) = λ
(i,j)
n−1Xi(n − 1) ∈ V .

Moreover, (f q j ⊗ Id) ◦ ∆(Xi(1)) = δi,j ∈ K, so the �rst condition is satis�ed. For the second
one:

(Id⊗ f q j ) ◦∆(Xi) = (Id⊗ f q j ) ◦∆(B+
i (Fi(Xj , j ∈ I))) = Fi(Xj , j ∈ I) ∈ H(S).

So H(S) is a Hopf subalgebra of HI . 2

3.3 Properties of the coe�cients λ
(i,j)
n

The coe�cients λ
(i,j)
n 's are entirely determined by the a

(i)
j 's and a

(i)
j,k's, and determine the other

coe�cients of the Fi's, as shown by the following result:

Lemma 17 Let us assume that (S) is Hopf, with I = {1, . . . , N}. Let us �x i ∈ I.

1. For all sequence i = i1 −→ · · · −→ in of vertices of G(S):

λ(i,j)
n = a

(in)
j +

n−1∑
p=1

(1 + δj,ip+1)
a

(ip)
j,ip+1

a
(ip)
ip+1

.

In particular, λ
(i,j)
1 = a

(i)
j .

2. For all p1, · · · , pN ∈ N:

a
(i)
(p1,··· ,pj+1,··· ,pN ) =

1
pj + 1

(
λ

(i,j)
p1+···+pN+1 −

∑
l∈I

pla
(l)
j

)
a

(i)
(p1,··· ,pN ).

Proof. 1. Let us consider a sequence i1, · · · , in of elements of I, such that i1 = i and for all

1 ≤ p ≤ n− 1, a(ip)
ip+1
6= 0. By de�nition of λ

(i,j)
n :

λ(i,j)
n a qq...qq i1i2in−1

in = a qq...qq
q
i1
i2

in−1
in
j + (1 + δj,in)a qq...q∨

qq
i1
i2

in−1

inj

+
n−2∑
p=1

a q...q∨qq ...q
i1

ip

ip+1

in
j ,

λ(i,j)
n a

(i1)
i2
· · · a(in−1)

in
= a

(i1)
i2
· · · a(in−1)

in
a

(in)
j + (1 + δj,in)a(i1)

i2
· · · a(in−1)

in,j

+
n−2∑
p=1

(1 + δj,ip+1)a(i1)
i2
· · · a(ip)

j,ip+1
a

(ip+1)
ip+2

· · · a(in−1)
in

,

λ(i,j)
n = a

(in)
j +

n−1∑
p=1

(1 + δj,ip+1)
a

(ip)
j,ip+1

a
(ip)
ip+1

.

This proves the �rst point of the lemma.

2. Let us now �x p1, · · · , pN ∈ N. By de�nition, for t′ = B+
i ( q1 p1 · · · qNpN ):

λ
(i,j)
p1+···+pN+1aB+

i ( q1 p1 ··· qNpN ) = (pj + 1)a
B+
i ( q1 p1 ··· q j pj+1··· qNpN )

+
N∑
l=1

aB+
i ( q1 p1 ··· q l pl−1··· qNpN qq lj ),

λ
(i,j)
p1+···+pN+1a

(i)
(p1,··· ,pN ) = (pj + 1)a(i)

(p1,··· ,pj+1,··· ,pN ) +
N∑
l=1

pla
(i)
(p1,··· ,pN )a

(l)
j .
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This proves the second point of the lemma. 2

Remarks.

1. As a consequence of the second point, if (S) is Hopf and if a(i)
(p1,··· ,pN ) = 0, then a(i)

(l1,··· ,lN ) = 0
if l1 ≥ p1, · · · , lN ≥ pN . In particular, as there is no constant Fi, for all i, there exists a j

such that a
(i)
j 6= 0.

2. So the sequences considered in the �rst point of lemma 17 always exist.

3. Moreover, for all vertices i, j of G(S), i→ j if and only if a
(i)
j 6= 0.

4. Finally, for all i ∈ I, for all p ≥ 1, Xi(p) 6= 0.

Proposition 18 Let (S) be a Hopf SDSE.

1. Let i, j be vertices of G(S), such that j is not a descendant of i. Then for all n ≥ 1:

λ(i,j)
n = 0.

2. Let (S) be a Hopf SDSE with set of vertices I and let (S′) be a Hopf SDSE with set of

vertices J . Then (S′) is a dilatation of (S) if, and only if, J admits a partition indexed by

the elements of I and for all i, j ∈ I, for all x ∈ Ji, y ∈ Jj, for all n ≥ 1:

λ(i,j)
n = λ(x,y)

n .

3. Let i ∈ I such that:

Fi = 1 +
∑
j∈I

a
(i)
j hj .

Then for all direct descendant i′ of i, for all j, for all n ≥ 1:

λ
(i,j)
n+1 = λ(i′,j)

n .

As a consequence, if i′, i′′ are two direct descendants of i, Fi′ = Fi′′ .

Proof. 1. Let us consider a sequence i = i1, · · · , in of elements of I such that a
(ik)
ik+1
6= 0 for

all 1 ≤ k ≤ n− 1. Then j is not a direct descendant of i1, · · · , in, so a(in)
j = 0 and a

(ik)
j,ik+1

= 0 for

all k. By lemma 17, λ
(i,j)
n = 0.

2. =⇒. From lemma 17-1, choosing an element xi in Ji for all i ∈ I.
⇐=. Let us consider the dilatation (S′′) of (S) corresponding to the partition of J . Then the

coe�cients λ
(i,j)
n of (S′) and (S′′) are equal, so by lemma 17-2, (S′) = (S′′).

3. Let us consider a sequence i, i′ = i1, · · · , in of elements of I such that a
(ik)
ik+1
6= 0 for all

1 ≤ k ≤ n− 1. By hypothesis on i, a
(i)
j,i′ = 0. By lemma 17-1:

λ
(i,j)
n+1 = a

(in)
j + 0 +

n−1∑
k=1

(1 + δj,ik+1
)
a

(ik)
j,ik+1

a
(ik)
ik+1

= λ(i′,j)
n .

So, if i′ and i′′ are two direct descendants of i, for all k ∈ I, for all n ≥ 1, λ(i′,k)
n = λ

(i′′,k)
n . By

lemma 17-2, Fi′ = Fi′′ . 2
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Proposition 19 Let (S) be an SDSE, with I = {1, . . . , N}. It is Hopf if, and only if, the

two following conditions are satis�ed:

1. There exist scalars λ
(i,j)
n satisfying, for all 1 ≤ i, j ≤ N , for all (p1, · · · , pN ) ∈ NN :

a
(i)
(p1,··· ,pj+1,··· ,pN ) =

1
pj + 1

(
λ

(i,j)
p1+···+pN+1 −

∑
l∈I

pla
(l)
j

)
a

(i)
(p1,··· ,pN ).

2. For all p ≥ 1, for all i, j, d1, · · · , dp ∈ I, such that a
(i)
(p1,··· ,pN ) 6= 0 where pi is the number of

dp's equal to i, for all n1, · · · , np ≥ 1:

λ
(i,j)
n1+···+np+1 − a

(i)
j = λ

(i,j)
p+1 − a

(i)
j +

∑
l∈I

(
λ(dl,j)
nl

− a(dl)
j

)
.

Proof. Preliminary step. Let us assume the �rst point and let t′ ∈ T (i)
D . We use the following

notations:

t′ = B+
i

∏
s∈TD

srs

 .

We also denote, for all j ∈ I:
pj =

∑
s∈T (j)
D

rs.

Then, by (1):

at′ =

N∏
j=1

pj !∏
s∈TD

rs!
a

(i)
(p1,··· ,pN )

∏
s∈TD

arss .

Hence:

∑
t∈T (i)
D

nj(t, t′)at = nj

B+
i

 q j ∏
s∈TD

srs

 , t′

 aB+
i ( q j ∏ srs )

+
∑

s1,s2∈TD
rs2≥1

(rs1 + 1)nj(s1, s2)a
B+
i

(
s1
s2

∏
srs
)

= (r q j+1)

(pj + 1)
N∏
j=1

pj !

(r q j+1)
∏
s∈TD

rs!
a

(i)
(p1,··· ,pj+1,··· ,pN )a q j ∏

s∈TD

arss

+
∑

s1,s2∈TD

(rs1 + 1)nj(s1, s2)
rs2

rs1 + 1
at′
as1
as2

= (pj + 1)
a

(i)
(p1,··· ,pj+1,··· ,pN )

a
(i)
(p1,··· ,pN )

at′ +
∑

s1,s2∈TD

nj(s1, s2)rs2at′
as1
as2

=

λ(i,j)
p1+···+pN+1 −

N∑
l=1

pja
(l)
j +

∑
s1,s2∈TD
rs2>0

nj(s1, s2)rs2
as1
as2

 at′ .
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=⇒. Let us assume that (S) is Hopf. We already prove the existence of the scalars λ
(i,j)
n . We

obtain from the preceding computation:

λ
(i,j)
weight(t′)at′ =

λ(i,j)
p1+···+pN+1 −

N∑
l=1

pja
(l)
j +

∑
s2∈TD

rs2λ
(d(s2),j)
weight(s2)

 at′ ,

where d(s2) is the decoration of the root of s2. Let us choose p, i, j, d1, · · · , dp, n1, · · · , np as in
the hypotheses of the proposition. Let us choose for all 1 ≤ j ≤ p a tree sj with root decorated
by dj , of weight nj , such that asj 6= 0: this always exists (for example take a convenient ladder).

Let us take t′ = B+
i (s1 · · · sp). Then at′ 6= 0 because a

(i)
(p1,··· ,pN ) 6= 0, so:

λ
(i,j)
n1+···+np+1 = λ

(i,j)
p+1 +

p∑
l=1

(
λ(dl,j)
nl

− a(dl)
j

)
.

⇐=. Let us show the condition of proposition 16 by induction on the weight n of t′. For

n = 1, then t′ = q i . Then, by hypothesis on the a
(i)
(p1,··· ,pN ), a

(i)
j = λ

(i,j)
1 . So:∑

t∈Ti(n+1)

nj(t, t′)at = qq ij = a
(i)
j = λ

(i,j)
1 a q i .

Let us assume the result for all tree of weight < n. The preceding computation then gives:

∑
t∈T (i)
D

nj(t, t′)at =

λ(i,j)
p1+···+pN+1 −

N∑
l=1

pja
(l)
j +

∑
s1,s2∈TD
rs2>0

nj(s1, s2)rs2
as1
as2

 at′ .

The induction hypothesis and the condition on the coe�cients λ
(i,j)
n then give that this is equal

to λ
(i,j)
weight(t′)+1at′ . So H(S) is a Hopf subalgebra of HI . 2

4 Level of a vertex

The second item of proposition 19-2 is immediately satis�ed if there exist scalars bj and a
(i)
j such

that λ
(i,j)
n = bj(n − 1) + a

(i)
j for all n ≥ 1 and all i, j ∈ I. This motivates the de�nition of the

level of a vertex.

4.1 De�nition of the level

De�nition 20 Let (S) be a Hopf SDSE, and let i be a vertex of G(S). It will be said to be

of level ≤M if for all vertex j, there exist scalar b
(i)
j , ã

(i)
j , such that for all n > M :

λ(i,j)
n = b

(i)
j (n− 1) + ã

(i)
j .

The vertex i will be said to be of level M if it is of level ≤M and not of level ≤M − 1.

Remark. In order to prove that i is of level ≤ M , it is enough to consider the j's which

are descendants of i. Indeed, if j is not a descendant of i, by proposition 18-1, λ
(i,j)
n = 0 for all

n ≥ 1.

Proposition 21 Let (S) be a Hopf SDSE, i a vertex of G(S) and j a direct descendant of

G(S).
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1. i has level 0 or 1 if, and only if, j as level 0.

2. Let M ≥ 2. Then i has level M if, and only if, j has level M − 1.

Moreover, if this holds, then for all k ∈ I, b(i)k = b
(j)
k .

Proof. Let i ∈ G(S) and j be a direct descendant of i. As (S) is Hopf, let us use the second

point of proposition 19, with k = 1 and d1 = j. Then for all l, for all n ≥ 1, as a(i)
j 6= 0:

λ
(i,l)
n+1 = λ

(i,l)
2 + λ(j,l)

n − a(j)
l .

So for all M ≥ 1, i is of level ≤M if, and only if, j is of level ≤M − 1. Moreover, if this holds,

then b
(i)
k = b

(j)
k for all k.

The �rst point is a reformulation of the preceding result for M = 1. Let us assume that
M ≥ 2. If i is of level M , then j is of level ≤ M − 1. If j is of level ≤ M − 2, then i is of level
≤M − 1: contradiction. So j is of level M − 1. The converse is proved in the same way. 2

Corollary 22 Let (S) be a connected Hopf SDSE. Then if one of the vertices of G(S) is of

�nite level, then all vertices of G(S) are of �nite level. Moreover, the coe�cients b
(i)
j depend only

of j. They will now be denoted by bj.

Proposition 18-1 immediately implies the following result:

Lemma 23 Let (S) be a connected Hopf SDSE and let j be a vertex of G(S) of �nite level.

If there exists a vertex i in G(S) which is not a descendant of j, then bj = 0.

4.2 Vertices of level 0

Let (S) be a Hopf SDSE with I = {1, . . . , N}, and let us assume that i is a vertex of level 0. In
this case, the coe�cients a

(i)
(p1,··· ,pN ) satisfy an induction of the following form:

a
(i)
(0,··· ,0) = 1,

a
(i)
(p1,··· ,pj+1,··· ,pN ) =

1
pj + 1

(
λj +

N∑
l=1

µ
(l)
j pl

)
a

(i)
(p1,··· ,pN ).

In order to ease the notation, we shall write a(p1,··· ,pN ) instead of a
(i)
(p1,··· ,pN ) and F instead of Fi

in this section.

Lemma 24 Under the preceding hypothesis:

1. Let us denote J = {j ∈ I / λj = 0}. There exists a partition I = I1 ∪ · · · ∪ IM ∪ J , and
scalars β1, · · · , βM , such that for all i, j ∈ I \ J = I1 ∪ · · · ∪ IM :

µ
(j)
i =

{
0 if i, j do not belong to the same Il,
λiβl if i, j ∈ Il.

2. Moreover F (h1, · · · , hN ) =
M∏
p=1

fβp

∑
l∈Ip

λlhl

.
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Proof. Let us �x i 6= j. Then:

a(p1,··· ,pi+1,··· ,pj+1,··· ,pN )

=
1

pi + 1

(
λi + µ

(j)
i +

N∑
l=1

µ
(l)
i pl

)
a(p1,··· ,pj+1,··· ,pN )

=
1

(pi + 1)(pj + 1)

(
λi + µ

(j)
i +

N∑
l=1

µ
(l)
i pl

)(
λj +

N∑
l=1

µ
(l)
j pl

)
a(p1,··· ,pN ),

=
1

(pi + 1)(pj + 1)

(
λj + µ

(i)
j +

N∑
l=1

µ
(l)
j pl

)(
λi +

N∑
l=1

µ
(l)
i pl

)
a(p1,··· ,pN ).

For (p1, · · · , pN ) = (0, · · · , 0), as a(0,··· ,0) = 1:

µ
(j)
i λj = µ

(i)
j λi. (2)

For (p1, · · · , pN ) = εk, we obtain:(
λi + µ

(j)
i + µ

(k)
i

)(
λj + µ

(k)
j

)
λk =

(
λj + µ

(i)
j + µ

(k)
j

)(
λi + µ

(k)
i

)
λk.

So, if λk 6= 0:

µ
(j)
i µ

(k)
j = µ

(i)
j µ

(k)
i . (3)

If λk = 0, it is not di�cult to prove inductively that a(p1,··· ,pN ) = 0 if pk > 0, so F is an element
of K[[h1, · · · , hk−1, hk+1, · · · , hN ]]. Hence, up to a restriction to I \ J , we can suppose that all

the λk's are non-zero. We then put ν
(j)
i = µ

(j)
i
λi

for all i, j. Then (2) and (3) become: for all i, j, k,

ν
(j)
i = ν

(i)
j , (4)

ν
(j)
i

(
ν

(k)
i − ν

(k)
j

)
= 0. (5)

Let 1 ≤ i, j ≤ N . We shall say that iR j if i = j or if ν
(j)
i 6= 0. Let us show that R is an

equivalence. By (4), it is clearly symmetric. Let us assume that iR j and jRk. If i = j or j = k

or i = k, then iR k. If i, j, k are distinct, then ν
(j)
i 6= 0 and ν

(k)
j 6= 0. By (5), ν

(k)
i = ν

(k)
j 6= 0, so

iR k. We denote by I1, · · · , IM the equivalence classes of R .

Let us assume that i R j, i 6= j. Then ν
(j)
i 6= 0, so for all k, ν

(k)
j = ν

(k)
i . In particular,

ν
(i)
j = ν

(i)
i = ν

(j)
i = ν

(j)
j . So, �nally, there exists a family of scalars (βi)1≤i≤M , such that:

• If i, j ∈ Il, then ν
(j)
i = βl, and µ

(j)
i = λiβl.

• If i and j are not in the same Il, then ν
(j)
i = µ

(j)
i = 0.

An easy induction then proves:

a(p1,··· ,pN ) =
λp11 · · ·λ

pN
N

p1! · · · pN !

M∏
p=1

(1 + βp) · · ·

1 + βp

∑
l∈Ip

pl − 1

 .

This implies the assertion on F . 2
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4.3 Vertices of level 1

Let us now assume that i is of level 1. Then, up to a restriction to i and its direct descendants,

the coe�cients a
(i)
(p1,··· ,pN ) = a(p1,··· ,pN ) satisfy an induction of the form:

a
(i)
(0,··· ,0) = 1,

a
(i)
εj = a

(i)
j ,

a
(i)
(p1,··· ,pj+1,··· ,pN ) =

1
pj + 1

(
λj +

N∑
l=1

µ
(l)
j pl

)
a

(i)
(p1,··· ,pN ) if (p1, · · · , pN ) 6= (0, · · · , 0).

In order to ease the notation, we shall write a(p1,··· ,pN ) instead of a
(i)
(p1,··· ,pN ) and F instead of Fi

in this section.

Lemma 25 Under the preceding hypothesis, one of the following assertions holds:

1. There exists a partition I = I1 ∪ · · · ∪ IM ∪J , scalars β1, · · · , βM , a non-zero scalar ν such

that:

F (h1, · · · , hN ) =
1
ν

M∏
p=1

fβp

∑
l∈Ip

νalhl

+
∑
l∈J

alhl + 1− 1
ν
.

2. There exists a partition {1, · · · , N} = I1 ∪ · · · ∪ IM ∪ J , scalars νp for 1 ≤ p ∈ M , such

that:

F (h1, · · · , hN ) = 1−
M∑
p=1

1
νp

ln

1− νp
∑
l∈Ip

alhl

+
∑
l∈J

alhl.

Proof. Let us compute aj,k in two di�erent ways:(
λj + µ

(k)
j

)
ak =

(
λk + µ

(j)
k

)
aj .

In other words: ∣∣∣∣∣ λj + µ
(k)
j aj

λk + µ
(j)
k ak

∣∣∣∣∣ = 0. (6)

Let us take J = {j / ∀k, λj + µ
(k)
j = 0}. Let us consider an element j ∈ J . Then an easy

induction proves that for all (p1, · · · , pN ) such that p1 + · · ·+ pN ≥ 2 and pj ≥ 1, a(p1,··· ,pN ) = 0.
As a consequence:

F (h1, · · · , hN ) = F (h1, · · · , hj−1, 0, hj+1, · · · , hN ) + ajhj .

So:
F = F̃ (hi, i /∈ J) +

∑
j∈J

ajhj .

We now assume that, up to a restriction, J = ∅. Let us choose an i and let us put b(p1,··· ,pN ) =
(pi + 1)a(p1,··· ,pi+1,··· ,pN ). Then, for all j ∈ I, for all (p1, · · · , pN ):

b(p1,··· ,pj+1,··· ,pN ) =
1

pj + 1

(
λj + µ

(i)
j +

N∑
l=1

µ
(l)
j pl

)
b(p1,··· ,pN ).

We deduce from lemma 24 that there exist a partition I = I1 ∪ · · · ∪ IM and scalars β1, . . . , βM ,
such that:

µ
(l)
j =

{
0 if j, l are not in the same Ik,(
λj + µ

(i)
j

)
βk if j, l ∈ Ik.
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So µ
(i)
j does not depend on i such that µ

(i)
j 6= 0. So there exist scalars µj such that:

µ
(l)
j =

{
0 if j, l are not in the same Ik,
(λj + µj)βk if j, l ∈ Ik.

1. Let us assume that M ≥ 2. Let us choose j ∈ I1. Then for all k ∈ I2 ∪ · · · ∪ IM , (6) gives:∣∣∣∣ λj aj
λk ak

∣∣∣∣ = 0.

We denote I2 ∪ · · · ∪ Ik = {i1, · · · , iM}. We proved that the vectors (λj , λi1 , · · · , λiM ) and
(aj , ai1 , · · · , aiM ) are colinear. Choosing then a j ∈ I2, we obtain that there exists a scalar
ν, such that (λi)i∈I = ν(ai)i∈I . Two cases are possible.

(a) If ν 6= 0, putting a′(p1,··· ,pN ) = νa(p1,··· ,pN ) if (p1, · · · , pN ) 6= (0, · · · , 0) and a′(0,··· ,0),

then the family
(
a′(p1,··· ,pN )

)
satis�es the hypothesis of lemma 24. As a consequence,

F (h1, · · · , hN ) satis�es the �rst case.

(b) If ν = 0, then we put, for all j, µj = ν ′jaj . By (6), for j and k in the same Il, ν
′
j = ν ′k

if j and k are in the same Il: this common value is now denoted νl. It is then not
di�cult to prove that:

F (h1, · · · , hN ) = 1−
M∑
p=1

1
νp

ln

1− νp
∑
l∈Ip

alhl

 .

This is a second case.

2. Let us assume that M = 1. Then (λj + µj)β1 = µ
(i)
j for all i, j ∈ I.

(a) Let us suppose that β1 6= 1. Then, for all j, k ∈ I µj = β1

1−β1
λj . So, for all j,

λj + µj = 1
1−β1

λj . So (6) implies that (λj)j∈I and (aj)j∈I are colinear. As in 1.(a),
this is a �rst case.

(b) Let us assume that β1 = 1. So λj = 0 for all j. As in 1.(b), this is a second case.

2

4.4 Vertices of level ≥ 2

Lemma 26 Let (S) be a Hopf SDSE and let i be a vertex of G(S). We suppose that there

exists a vertex j, such that:

• j is a descendant of i.

• All oriented path from i to j are of length ≥ 3.

Then Fi = 1 +
∑
i−→l

a
(i)
l hl.

Proof. We assume here that I = {1, . . . , N}. Let L be the minimal length of the oriented
paths from i to j. By hypothesis, L ≥ 3. Then the homogeneous component of degree L+ 1 of
Xi contains trees with a leave decorated by j, and all these trees are ladders (that is to say trees

with no rami�cation). By proposition 16, if t′ ∈ T (i)
D (L):

λ
(i,j)
L at′ =

∑
t∈T (i)
D (L+1)

nj(t, t′)at.
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For a good-chosen ladder t′, the second member is non-zero, so λ
(i,j)
L is non-zero. If t′ is not a

ladder, the second member is 0, so at′ = 0. As a conclusion, Xi(L) is a linear span of ladders.
Considering its coproduct, for all p ≤ L, Xi(p) is a linear span of ladders. In particular, Xi(3) is
a linear span of ladders. But:

Xi(3) =
∑
l,m

a
(i)
l a

(l)
m qqq ilm +

∑
l≤m

a
(i)
l,m

q∨qq
i
ml
,

so a
(i)
l,m = 0 for all l,m. Hence, Fi contains only terms of degree ≤ 1. 2

Remark. This lemma can be applied with i = j, if i is not a self-dependent vertex.

Proposition 27 Let (S) be a Hopf SDSE and let i be a vertex of G(S) of level ≥ 2. Then i
is an extension vertex.

Proof. We denote by M the level of i. By proposition 21, all the descendants of i are of
level ≤M − 1, so i is not a descendant of itself.

Let M be the level of i and let us assume that M ≥ 3. Let j be a direct descendant of i, k
be a direct descendant of j, l be a direct descendant of k. Then j has level M − 1, k has level
M − 2, l has level M − 3. So in the graph of the restriction to {i, j, k, l} is:

i // j // k // l or i // j // k // l cc

The result is then deduced from lemma 26.

Let us now assume that i is of level 2 and is not an extension vertex. Let j be a direct
descendant of i and k be a direct descendant of j. By proposition 21, j is of level 1 and k is of
level 0, so k is not a direct descendant of i. The graph of the restriction of (S) to {i, j, k} is:

i // j // k or i // j // k ee

First step. Let us �rst prove that there exists a direct descendant j of i such that a
(i)
j,j 6= 0.

Let us assume that this is not true. As i is not an extension vertex, there exist j, j′ ∈ I such

that a
(i)
j,j′ 6= 0, j 6= j′. Let k be a direct descendant of j. Considering the di�erent levels, the

graph associated to the restriction to {i, j, j′, k} is:

i

��========

����������

j

��<<<<<<<< j′

���������

k

or i

��========

����������

j

��<<<<<<<< j′

���������

k ee

or i

��========

����������

j

��<<<<<<<< j′

k

or i

��========

����������

j

��<<<<<<<< j′

k ee

Up to a change of variables, we put:

Fi(0, · · · , 0, hj , 0, · · · , 0, hj′ , 0, · · · , 0) = 1 + hj + hj′ + bhjhj′ +O(h3).

Then by proposition 16, λ
(i,j)
2 a qq ij = 2a q∨qq

i
jj + a qqq ijj = 0, so λ

(i,j)
2 = 0. On the other hand,

λ
(i,j)
2 a qq ij′ = a q∨qq

i
j′j + a qqq ij′j = b, so 0 = b: this contradicts a

(i)
j,j′ 6= 0.

Second step. Let us consider a vertex j such that a
(i)
j,j 6= 0. Up to a change of variables,

we can assume that a
(i)
j = 1 and that for all direct descendant k of j, a

(j)
k = 1. By lemma 23,

bi = bj = 0. So, as i is of level 2, there exist scalars a, b, such that:

λ(i,j)
n =


1 if n = 1,
a if n = 2,
b if n ≥ 3.
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Then proposition 19-1 implies:

Fi(0, · · · , 0, hj , 0, · · · , 0) = 1 + hj +
a

2!
h2
j +

ab

6
h3
j +O(h4

j ).

By hypothesis, a 6= 0. Moreover, by proposition 16, b = λ
(i,j)
3 a qqq ijk = a q∨qq q

i
jj
k

= a. So:

Fi(0, · · · , 0, hj , 0, · · · , 0) = 1 + hj +
a

2!
h2
j +

a2

6
h3
j +O(h4

j ).

As j has level 1, we put:

λ(j,k)
n =

{
a

(j)
k = 1 if n = 1,

c(n− 1) + d if n ≥ 2,

where c(= bk) and d are scalars. From proposition 19-1:

Fj(0, · · · , 0, hk, 0, · · · , 0) = 1 + hk +
c+ d

2!
h2
k +

(c+ d)(2c+ d)
6

h3
k +O(h4

k).

Moreover, λ
(i,k)
3 a q∨qq

i
jj = a q∨qq q

i
jj
k
, so λ

(i,k)
3

a
2 = a and λ

(i,k)
3 = 2. Then λ

(i,k)
3 a qqq ijk = 2a q∨qq q

i
j

kk , so

c+ d = 2. Similarly, using q∨qq q
i
j

j
j

, we obtain λ
(i,k)
4 = 3. Using q∨qq q

i
j

kk

, we obtain:

3
c+ d

2
= 3

(c+ d)(2c+ d)
6

.

As c+ d = 2, 2c+ d = 3, so c = d = 1 and λ
(j,k)
n = n for all n ≥ 2. As λ(j,k)

1 = 1, λ(j,k)
n = n for

all n ≥ 1.
Let now l ∈ I which is not a direct descendant of j and let k be a direct descendant of j. For

all n ≥ 1:
λ(j,l)
n = λ(j,l)

n aB+
j ( qkn−1) = aB+

j ( qkn−1 qqkl ) = (n− 1)a(k)
l .

We proved that for any vertex l of G(S), for all n ≥ 1:

λ(j,l)
n =

{
n if l is a direct descendant of j,

a
(k)
l (n− 1) if l is not a direct descendant of j,

where k is any direct descendant of j. This proves that j has level 0, so i has level 1: contradiction.
So i is an extension vertex. 2

5 Examples of Hopf SDSE

5.1 cycles and multicycles

Notation. We denote by l(i1, · · · , in) the ladder with decorations, from the root to the leave,
i1, · · · , in. In other words:

l(i1, · · · , ip) = B+
i1
◦ · · · ◦B+

in
(1) = qq...qq i1i2in−1

in

.

Theorem 28 Let N ≥ 2. The SDSE associated to the following formal series is Hopf:
F1 = 1 + h2,

...

FN−1 = 1 + hN ,
FN = 1 + h1.
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Proof. We identify {1, · · · , N} and Z/NZ, via the bijection i −→ i. Then, for all n ≥ 1 and
for all 1 ≤ i ≤ N , Xi(n) = l(i, · · · i+ n− 1). As a consequence:

∆(Xi) = Xi ⊗ 1 + 1⊗Xi +
+∞∑
p=1

Xi+p ⊗Xi(p).

So H(S) is Hopf. 2

Note that the graph G(S) associated to such a system is an oriented cycle of length N , with
only non-self-dependent vertices.

De�nition 29 Let (S) be a Hopf SDSE. It will be said to be multicyclic if, up to change of
variable, it is a dilatation of a system described in theorem 28.

The graph of a multicyclic SDSE will be called a multicycle. In other term, a N -multicycle
(N ≥ 2) is such that the set I of its vertices admits a partition I = I1 ∪ · · · ∪ IN indexed by the
elements of Z/NZ, such that the direct descendants of a vertex i in Ij are the elements of Ij+1

for all j ∈ Z/NZ. Moreover, up to a change of variables, for all i ∈ G(S):

Fi = 1 +
∑
i−→l

hl.

Here is an example of a 5-multicycle:

Note that if N = 2, G(S) is a complete bipartite graph, that is to say that the set of vertices
of G(S) admits a partition into two parts, and for all vertices i and j, there is an edge from i to
j if, and only if, i and j are not in the same part of the partition.

5.2 Fundamental SDSE

Theorem 30 Let I be a set with a partition I = I0 ∪ J0 ∪K0 ∪ I1 ∪ J1, such that:

• I0, J0, K0, I1, J1 can be empty.

• I0 ∪ J0 is not empty.

The SDSE de�ned in the following way is Hopf:

1. For all i ∈ I0, there exists βi ∈ K, such that:

Fi = fβi(hi)
∏

j∈I0−{i}

f βj
1+βj

((1 + βj)hj)
∏
j∈J0

f1(hj).

2. For all i ∈ J0:

Fi =
∏
j∈I0

f βj
1+βj

((1 + βj)hj)
∏

j∈J0−{i}

f1(hj).
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3. For all i ∈ K0:

Fi =
∏
j∈I0

f βj
1+βj

((1 + βj)hj)
∏
j∈J0

f1(hj).

4. For all i ∈ I1, there exist νi ∈ K, a family of scalars (a(i)
j )j∈I0∪J0∪K0, such that (νi 6= 1)

or (∃j ∈ I0, a(i)
j 6= 1 + βj) or (∃j ∈ J0, a

(i)
j 6= 1) or (∃j ∈ K0, a

(i)
j 6= 0). Then, if νi 6= 0:

Fi =
1
νi

∏
j∈I0

f βj

νia
(i)
j

(
νia

(i)
j hj

) ∏
j∈J0

f 1

νia
(i)
j

(
νia

(i)
j hj

) ∏
j∈K0

f0

(
νia

(i)
j hj

)
+ 1− 1

νi
.

If νi = 0:

Fi = −
∑
j∈I0

a
(i)
j

βj
ln(1− hj)−

∑
j∈J0

a
(i)
j ln(1− hj) +

∑
j∈K0

a
(i)
j hj + 1.

5. For all i ∈ J1, there exists νi ∈ K − {0}, a family of scalars (a(i)
j )j∈I0∪J0∪K0∪I1 , with the

following conditions:

• I(i)
1 = {j ∈ I1 / a(i)

j 6= 0} is not empty.

• For all j ∈ I(i)
1 , νj = 1.

• For all j, k ∈ I(i)
1 , Fj = Fk. In particular, we put b

(i)
t = a

(j)
t for any j ∈ I(i)

1 , for all

t ∈ I0 ∪ J0 ∪K0.

Then:

Fi =
1
νi

∏
j∈I0

f βj

b
(i)
j
−1−βj

((
b
(i)
j − 1− βj

)
hj

) ∏
j∈J0

f 1

b
(i)
j
−1

((
b
(i)
j − 1

)
hj

) ∏
j∈K0

f0

(
b
(i)
j hj

)
+
∑
j∈I(i)1

a
(i)
j h1 + 1− 1

νi
.

Proof. In order to simplify the notation, we assume that I = {1, . . . , N}. We shall use
proposition 19 with, for all i, j ∈ I:

λ(i,j)
n =

{
a

(i)
j if n = 1,
ã

(i)
j + bj(n− 1) if n ≥ 2,

the coe�cients being given in the following arrays:

1. a
(j)
i :

i \ j ∈ I0 ∈ J0 ∈ K0 ∈ I1 ∈ J1

∈ I0 (1 + βi)− δi,jβi 1 + βi 1 + βi a
(j)
i

b
(j)
i −1−βi

νj

∈ J0 1 1− δi,j 1 a
(j)
i

b
(j)
i −1
νj

∈ K0 0 0 0 a
(j)
i

b
(j)
i
νj

∈ I1 0 0 0 0 a
(j)
i

∈ J1 0 0 0 0 0
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2. ã
(j)
i :

i \ j ∈ I0 ∈ J0 ∈ K0 ∈ I1 ∈ J1

∈ I0 (1 + βi)− δi,jβi 1 + βi 1 + βi νja
(j)
i b

(j)
i − 1− βi

∈ J0 1 1− δi,j 1 νja
(j)
i b

(j)
i − 1

∈ K0 0 0 0 νja
(j)
i b

(j)
i

∈ I1 0 0 0 0 0
∈ J1 0 0 0 0 0

3. bj :

j ∈ I0 ∈ J0 ∈ K0 ∈ I1 ∈ J1

bj 1 + βj 1 0 0 0

The second item of proposition 19 is immediate. Let us prove for example the �rst item for
i ∈ J1 and j ∈ I0. Let us �x (p1, . . . , pN ) ∈ NN − {(0, . . . , 0)}.

λ
(i,j)
p1+...+pN+1 −

∑
l

a
(l)
j pl

= b
(i)
j − 1− βj − (1 + βj)

N∑
l=1

pl −
∑

l∈I0∪J0∪K0

(1 + βj)pl + βjpj −
∑

l∈I1∪J1

a
(l)
j pl

= b
(i)
j − 1− βj + βjpj +

∑
l∈I1∪J1

(
1 + βj − a(l)

j

)
pl.

If there exists l ∈ (I1 ∪ J1) − I(i)
1 , such that pl 6= 0, then a(i)

(p1,...,pj+1,...,pN ) = a
(i)
(p1,...,pN ) = 0 and

then the result is immediate. We now suppose that pl = 0 for all l ∈ (I1 ∪ J1)− I(i)
1 . Then:

λ
(i,j)
p1+...+pN+1 −

∑
l

a
(l)
j pl = b

(i)
j − 1− βj + βjpj +

∑
l∈I(i)1

(
1 + βj − a(l)

j

)
pl

= b
(i)
j − 1− βj + βjpj +

(
1 + βj − b(i)j

) ∑
l∈I(i)1

pl.

1. If
∑
l∈I(i)1

pl = 0, then:

a
(i)
(p1,...,pj+1,...,pN ) =

(
b
(i)
j − 1− βjpj

) a(i)
(p1,...,pN )

pj + 1
.

The �rst item of proposition 19 is immediate.

2. If
∑
l∈I(i)1

pl = 1, then a(i)
(p1,...,pj+1,...,pN ) = 0 and λ

(i,j)
p1+...+pN+1−

∑
l a

(l)
j pl = 0. So the �rst item

of proposition 19 holds.

3. If
∑
l∈I(i)1

pl ≥ 2, then a(i)
(p1,...,pj+1,...,pN ) = a

(i)
(p1,...,pN ) = 0, so the result is immediate.

The other cases are proved in the same way, so this SDSE is Hopf. 2

Remarks.
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1. For all λ 6= 0:

fβ
λ

(λh) =
∞∑
k=0

λ(λ+ β) · · · (λ+ (k − 1)β)
k!

hk.

The second side of this formula is equal to 1 if λ = 0. So, formulas de�ning the SDSE of
theorem 30 are always de�ned.

2. The vertices of I0 ∪ J0 ∪K0 are of level 0. A vertex i of I1 is of level 0 if νi = 1; otherwise,
it is of level 1. The vertices of J1 are of level 1.

De�nition 31

1. A Hopf SDSE will be said to be fundamental if, up to a change of variables, it is the
dilatation of a system of theorem 30.

2. A fundamental Hopf SDSE (S) will be said to be abelian if for any vertex i ∈ I, bi = 0.

Remark. In other words, (S) is abelian if J0 = ∅ and if for any i ∈ I0, βi = −1. Then, for
all i ∈ K0, Fi = 1. As there is no constant Fi, we obtain K0 = ∅.

A particular case is obtained when I = J0. Then we obtain the following systems:

Theorem 32 Let I be a �nite subset which is not a singleton. The SDSE associated to the

following formal series is Hopf:

Fi =
∏
j 6=i

(1− hj)−1, for all i ∈ I.

The graph associated to such an SDSE is a complete graph with only non-self-dependent
vertices, that is to say that there is an edge from i to j in G(S)if, and only if, i 6= j. In particular,
if N = 2, G(S) is 1←→ 2, as for the SDSE of theorem 28 with N = 2.

De�nition 33 Let (S) be a Hopf SDSE. It will be said to be quasi-complete if, up to change
of variable, it is a dilatation of one of the systems described in theorem 32.

The graphs associated to quasi-complete SDSE shall be called quasi-complete. A quasi-
complete graph G has only non-self-dependent vertices; there exists a partition I = I1 ∪ · · · ∪ IM
of the set I of vertices of G(S) such that, for all x, y ∈ I, there is an edge from x to y if, and only
if, x and i are not in the same Ii. In particular, quasi complete graphs with M = 2 are complete
bipartite graphs. Moreover, if (S) is quasi-complete, up to a change of variables, for all x ∈ Ii:

Fx =
∏
j 6=i

1−
∑
y∈Ij

hy

−1

.

Here is an example of a 2-quasi-complete graph and a 3-quasi-complete graph:

Another particular case is the following: assume that I = I0 and that βx = −1 for all x ∈ I0.
Then, for all x ∈ I, Fx = 1 + hx. Note that G(S) is not connected if |I| ≥ 2, and this is the only
case where G(S) is not connected. The dilatation of such an SDSE will be called a non-connected
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fundamental SDSE. For such an SDSE, the set of indices I admits a partition I = I1 ∪ · · · ∪ IM
(M ≥ 2) and up to a change of variables, for all 1 ≤ i ≤M , for all x ∈ Ii:

Fx = 1 +
∑
y∈Ii

hy.

Remark. Note that a dilatation replacing x ∈ K0 ∪ I1 ∪ J1 by a set Jx in a system of
theorem 30 also gives a system of theorem 30. The same remark applies when the dilatation
replaces x ∈ I0, with βx = 0, by a set Jx. So we shall always assume that the dilatation giving a
fundamental SDSE from an SDSE of theorem 30 satis�es Jx = {x} for any x ∈ K0 ∪ I1 ∪ J1 and
for any x ∈ I0 such that βx = 0.

6 Two families of Hopf SDSE

We here �rst give characterisations of multicyclic and quasi-complete SDSE. We then consider
Hopf SDSE such that any vertex is a descendant of a self-dependent vertex. We prove that such
an SDSE is fundamental. The results of this section will be used to prove the main theorem 14.

6.1 A lemma on non-self-dependent vertices

Lemma 34 Let (S) be a Hopf SDSE and let i ∈ I such that a
(i)
i = 0. Let j, k and l ∈ I

such that a
(i)
j 6= 0, a(j)

k 6= 0 and a
(i)
l 6= 0. Then a(i)

k 6= 0 or a
(l)
k 6= 0.

Proof. Let us assume that a
(i)
k = 0. As a

(i)
j 6= 0, j 6= k. As a

(i)
k = 0, a q∨qq

i
kj = a

(i)
j,k = 0.

Then, from proposition 16, a
(i)
j λ

(i,k)
2 = λ

(i,k)
2 a qq ij = a qqq ijk +a q∨qq

i
kj = a

(i)
j a

(j)
k +0; hence, λ(i,k)

2 = a
(j)
k .

Moreover, As a
(i)
l 6= 0, l 6= k. Then, by proposition 16, a

(i)
l λ

(i,k)
2 = λ

(i,k)
2 a qq il = a qqq ilk + a q∨qq

i
kl =

a
(i)
l a

(l)
k + 0, so λ(i,k)

2 = a
(l)
k . Hence, a

(l)
k = a

(j)
k 6= 0. 2

Remark. In other words, if (S) is Hopf, then, in G(S):

i //

��

j

��
l k

=⇒ i //

��

j

��
l // k

or i //

�� ��<<<<<<<< j

��
l k

.

A special case is given by i = k:

i oo //

��

j

l

=⇒ i oo //
OO

��

j

l

.

6.2 Symmetric Hopf SDSE

Proposition 35 Let (S) be a Hopf SDSE, such that G(S) is a N -multicycle with N ≥ 3.
Then (S) is a multicyclic SDSE.

Proof. Let I = I1 ∪ · · · ∪ IN be the partition of the set of vertices of the multicycle G(S). As
N ≥ 3, for all i ∈ I, by lemma 26 with i = j:

Fi = 1 +
∑
i−→j

a
(i)
j hj .
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Let j, j′ ∈ Im. Then any i ∈ Im−1 is a direct ascendant of j and j′. By proposition 18-3,

Fj = Fj′ . In particular, for k ∈ Im+1, a
(j)
k = a

(j′)
k . We apply the change of variables sending hk

to 1

a
(j)
k

hk if k ∈ Im+1, where j is any element of Im. Then, for any j ∈ Im:

Fj = 1 +
∑

k∈Im+1

hk.

So (S) is multicyclic. 2

Proposition 36 Let (S) be a Hopf SDSE, such that G(S) is M -quasi-complete graph (M ≥
2). Then (S) is a 2-multicyclic or a quasi-complete SDSE.

Proof. First, let us choose two vertices x→ y in G(S). Then y → x in G(S), and by propo-

sition 16, λ
(y,y)
2 a qqyx = a qqqyxy + a q∨qq

y
xy , so λ

(y,y)
2 a

(y)
x = a

(y)
x a

(x)
y + 0, and a(x)

y = λ
(y,y)
2 depends only

on y. So, up to a change of variables, we can suppose that all the a
(x)
y 's are equal to 0 or 1. We

�rst study three preliminary cases.

First preliminary case. Let us assume that G(S) = 1←→ 2. We put:

F1(h2) =
∞∑
i=0

aih
i
2, F2(h1) =

∞∑
i=0

bih
i
1,

with a1 = b1 = 1. Then λ
(1,1)
3 = λ

(1,1)
3 a qqq121 = 2a q∨qq q

1
2

11 = 2b2. On the other hand, λ
(1,1)
3 a q∨qq

1
22 =

2a q∨qq q
1
22
1
, so 2a2b2 = 2a2: a2 = 0 or b2 = 1. Similarly, b2 = 0 or a2 = 1. So a2 = b2 = 0 or 1. In

the �rst case, F1(h2) = 1 + h2 and F2(h1) = 1 + h1. In the second case, let us apply lemma 17-1

with (i1, · · · , in) = (1, 2, 1, 2, · · · ). If n = 2k is even, we obtain λ
(1,2)
n = 2 + 2(k − 1) = 2k = n.

If n = 2k + 1 is odd, λ
(1,2)
n = 1 + 2k = n. So λ

(1,2)
n = n for all n ≥ 1. By proposition 19-1,

for all n ≥ 1, an+1 = an. So for all n ≥ 0, an = 1 and F1(h2) = (1 − h2)−1. Similarly,
F2(h1) = (1− h1)−1.

Second preliminary case. Let us suppose that G(S) is the following graph (which is 3-quasi-
complete):

1 oo //
^^

��>>>>>>> 2@@

���������

3

We put: 
F1(h2, h3) = 1 + h2 + h3 + a2h

2
2 + a3h

2
3 + a′h2h3 +O(h3),

F2(h1, h3) = 1 + h1 + h3 + b1h
2
1 + b3h

2
3 + b′h1h3 +O(h3),

F3(h1, h2) = 1 + h1 + h2 + c1h
2
1 + c2h

2
2 + c′h1h2 +O(h3).

By restriction, using the �rst preliminary case, restricting to {1, 2}, {1, 3} and {2, 3},a2 = b1,

a3 = c1 and b3 = c2 and all these elements are in {0, 1}. Moreover, by proposition 16, λ
(1,2)
2 a qq12 =

2a q∨qq
1
22 , so λ

(1,2)
2 = 2a2. On the other hand, λ

(1,2)
2 a qq13 = a qqq132 + a q∨qq

1
32 , so λ

(1,2)
2 = 1 + a′. Hence,

1 + a′ = 2a2. By symmetry, we obtain 1 + a′ = 2a3, so a2 = a3. Similarly, b1 = b3 and c1 = c2,
so a2 = a3 = b1 = b3 = c1 = c2 = 0 or 1.

If they are all equal to 0, then a′ = −1. Then λ
(3,1)
3 a qqq312 = a qqqq3121 , so λ

(3,1)
3 = 1. Moreover,

λ
(3,1)
3 a qqq321 = a q∨qq q

3
21
1
, so λ

(3,1)
3 = −1: this is a contradiction, so a2 = a3 = b1 = b3 = c1 = c2 = 1,
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and a′ = 1. Similarly, b′ = 1 and c′ = 1. As in the �rst preliminary case, using lemma 17-1, we

prove that λ
(i,j)
n = n if i 6= j for all n ≥ 1, and then that F1(h2, h3) = (1 − h2)−1(1 − h3)−1.

Similarly, F2(h1, h3) = (1− h1)−1(1− h3)−1 and F3(h1, h2) = (1− h1)−1(1− h2)−1.

Third preliminary case. We now consider the 2-quasi-complete graph with three vertices
1←→ 2←→ 3. Then I1 = {1, 3} and I2 = {2}. We put:

F2(h1, h3) = 1 + h1 + h3 + a(2,0)h
2
1 + a(0,2)h

2
3 + a(1,1)h1h3 +O(h3).

Restricting to {1, 2}, by the �rst preliminary case, we obtain F1(h2) = 1 + h2 or F1(h2) =
(1− h2)−1.

1. Let us assume that F1(h2) = 1 + h2. Then by the �rst case, F2(h1, 0) = 1 + h1, so

a(2,0) = 0. Moreover, λ
(2,1)
2 a qq21 = 0, so λ(2,1)

2 a qq23 = a q∨qq
2
31 : a(1,1) = 0. Then λ

(2,3)
2 a qq21 =

a q∨qq
2
31 , so λ

(2,3)
2 = a(1,1) = 0, and λ

(2,3)
2 a qq23 = 2a q∨qq

2
33 : a(0,2) = 0. As a consequence,

F2(h1, h3) = 1 + h2 + h3. Restricting to 2←→ 3, by the �rst point, F3(h2) = 1 + h2.

2. Let us assume that F1(h2) = (1 − h2)−1. Then F2(h1, 0) = (1 − h2)−1 by the �rst point,
so a(0,2) = 1. By the �rst preliminary case, this implies that F2(0, h3) = (1 − h3)−1 and

F3(h2) = (1− h2)−1. Similarly with the �rst case, we prove that λ
(2,i)
n = n if i = 1 or 3 for

all n ≥ 1. By proposition 19-1:

a(m+1,n) =
m+ n+ 1
m+ 1

a(m,n), a(m,n+1) =
m+ n+ 1
n+ 1

a(m,n).

An easy induction proves that a(m,n) =
(
m+n
m

)
for all m,n, so F2(h1, h3) = (1−h1−h3)−1.

We separate the proof of the general case into two subcases.

General case, �rst subcase. M = 2. We put I1 = {x1, · · · , xr} and I2 = {y1, · · · , ys}. For
xi ∈ I1, we put:

Fxp =
∑

(q1,··· ,qs)

a
(xp)
(q1,··· ,qs)h

q1
y1 · · ·h

qs
ys .

Restricting to the vertices xp and yq, by the �rst preliminary case, two cases are possible.

1. a
(xp)
yq ,yq = 0. Then, by the third preliminary case, restricting to xp, yq and yq′ , for all yq, yq′ ,

a
(xp)
yq ,yq′ = 0. So:

Fxp = 1 +
∑
q

hyq .

2. λ
(xp,yq)
n = n for all n ≥ 1. Using proposition 19-1, we obtain:

a
(xp)
(q1,··· ,qm+1,··· ,qs) =

1 + q1 + · · ·+ qs
qm + 1

a
(xp)
(q1,··· ,qs).

An easy induction proves:

a
(xp)
(q1,··· ,qs) =

(q1 + · · ·+ qs)!
q1! · · · qs!

.

So:

Fxp =

(
1−

∑
q

hyq

)−1

.

A similar result holds for the yq's. So, we prove that for any vertex i of G(S), one of the following
holds:
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1. Fi = 1 +
∑
i−→j

hj .

2. Fi =

1−
∑
i−→j

hj

−1

.

Moreover, by the �rst preliminary case, if i and j are related, they satisfy both (a) or both (b).
As the graph is connected, every vertex satis�es (a) or every vertex satis�es (b).

General case, second subcase. M ≥ 3. Let us �x i ∈ G and let us denote y1, · · · , yq its direct
descendants. Restricting to the vertices i and yj , two cases are possible.

1. a
(i)
yj ,yj = 0. As M ≥ 3, with a good choice of yj′ , we can restrict to the second preliminary

case, and we obtain a
(i)
yj ,yj = 1: contradiction. So this case is impossible.

2. λ
(x,yj)
n = n for all n ≥ 1. Using proposition 19-1, we obtain, similarly with the caseM = 2,

if i ∈ Ip:

Fi =
∏
q 6=p

1−
∑
l∈hq

hl

−1

.

So (S) is quasi-complete. 2

De�nition 37

1. Let G be a graph. We shall say that G is symmetric if it has only non-self-dependent
vertices and if, for i 6= j, there is an edge from i to j if, and only if, there is an edge from
j to i.

2. Let (S) be an SDSE. We shall say that (S) is symmetric if G(S) is symmetric.

Theorem 38 Let (S) be a connected symmetric Hopf SDSE. Then (S) is 2-multicyclic or

quasi-complete.

Proof. By proposition 36, it is enough to prove that G(S) is a M -quasi-complete graph,
with M ≥ 2. Let us consider a maximal quasi-complete subgraph G′ of G(S). This exists, as
G(S) contains quasi-complete subgraphs (for example, two related vertices). Let us assume that
G′ 6= G(S). As G(S) is connected, there exists a vertex i ∈ G(S), related to a vertex of G′. Let us
put I ′ = I ′1 ∪ · · · I ′M be the partition of the set of vertices of G′.

First, if i is related to a vertex j of I ′p, it is related to any vertex of I ′p. Indeed, let j′ be
another vertex of I ′p and let k ∈ I ′q, q 6= p. By lemma 34, j′ is related to i. As G(S) is symmetric,
i is related to j′.

Let us assume that i is not related to at least two Ip's. Let us take k, l in G
′, in two di�erent

Ip's, not related to i. By the �rst step, j, k and l are in di�erent Ip's, so are related. By lemma
34, k or l is related to i. As G(S) is symmetric, then i is related to k or l: contradiction. So i is
not related to at most one Ip's.

As a conclusion:

1. If i is related to every Ip's, by the �rst step i is related to every vertices of G′, so G′ ∪ {i}
is an M + 1-quasi-complete graph, with partition I1 ∪ · · · ∪ IM ∪ {x}: this contradicts the
maximality of G′.

2. If i is related to every Ip's but one, we can suppose up to a reindexation that i is not related
to IM . Then, by the �rst step, i is related to every vertices of I1 ∪ · · · ∪ IM−1. So G

′ ∪ {x}
is an M -quasi-complete graph, with partition I1 ∪ · · · ∪ (IM ∪ {x}): this contradicts the
maximality of G′.

In both cases, this is a contradiction, so G(S) = G′ is quasi-complete. 2
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6.3 Formal series of a self-dependent vertex

Let (S) be a Hopf SDSE, and let us assume that i is a self-dependent vertex of G(S). Up to a

change of variables, we can suppose that a
(i)
j = 0 or 1 for all j. In particular, we assume that

a
(i)
i = 1.

Lemma 39 Under these hypotheses, i is of level 0 and for all j ∈ I, bj = (1 + δi,j)a
(i)
i,j .

Proof. We apply lemma 17-1, with ik = i for all i. We obtain, for all n ≥ 1:

λ(i,j)
n = a

(i)
j + (1 + δi,j)(n− 1)

a
(i)
i,j

a
(i)
i

.

So this proves the assertion. 2

Remark. So all the descendants of i are also of level 0.

Lemma 40 Under the former hypotheses, there exists a partition I = I1 ∪ · · · ∪ IM ∪ J (J

eventually empty), with i ∈ I1, such that the coe�cients a
(k)
j are given in the following array:

j \ k I1 I2 I3 · · · IM J

I1 1 β1 + 1 · · · · · · β1 + 1 ∗

I2
... 1− β2 1 · · · 1

...

I3
... 1 1− β3

. . .
...

...
...

...
...

. . .
. . . 1

...

IM 1 1 · · · 1 1− βM
...

J 0 · · · · · · · · · 0 ∗

Moreover, for all j ∈ I1:

Fj =
M∏
p=1

fβp

∑
l∈Ip

hl

 .

Finally, the coe�cients λ
(j,k)
n are given by λ

(j,k)
n = bk(n− 1) + a

(j)
k for all n ≥ 1 with:

k I1 I2 · · · IM J

bk β1 + 1 1 · · · 1 0

Proof. We can apply lemma 24 with λj = a
(i)
j and µ

(l)
j = −a(l)

j + (1 + δi,j) a
(i)
i,j . Then

I = I1 ∪ · · · IM ∪ J , such that −a(k)
j + (1 + δi,j) a

(i)
i,j is given for all j, k by the array:

j \ k I1 I2 · · · IM J

I1 β1 0 · · · 0 ∗

I2 0 β2
. . .

...
...

...
...

. . .
. . . 0

...

IM 0 · · · 0 βM
...

J 0 · · · · · · 0 ∗

We assume that i ∈ I1, without loss of generality. For the row j ∈ J , the result comes from the

following observation: let j, k ∈ I such that a
(i)
j = 0 and a

(i)
k 6= 0, then, by proposition 19-1:

a
(i)
j,k =

(
a

(i)
j − a

(k)
j + a

(i)
i,j

)
a

(i)
k = 0.
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As a
(i)
j = 0, then a(i)

i,j = 0, so a(k)
j = 0.

Lemma 24 also gives:

Fi =
k∏
p=1

fβp

∑
l∈Ip

hl

 .

So (1 + δi,j)a
(i)
i,j = β1 + 1 if j ∈ I1, 1 if j ∈ I2 ∪ · · · ∪ IM , and 0 if j ∈ J . So a(k)

j is given by for
all j, k by the indicated array. We obtain in lemma 39 that:

bk =


β1 + 1 if k ∈ I1,
1 if k ∈ I2 ∪ · · · ∪ IM ,
0 if k ∈ J.

As a conclusion, if j ∈ I1, then for all 1 ≤ k ≤ N , a
(j)
k = a

(i)
k and λ

(j,k)
n = λ

(i,k)
n for all n ≥ 1.

By proposition 19, Fi = Fj . 2

6.4 Hopf SDSE generated by self-dependent vertices

Proposition 41 Let (S′) be a Hopf SDSE, and let i be a self-dependent vertex of G(S′).

Let (S) be the restriction of (S′) to i and all its descendants. Then (S) is fundamental, with

K0 = I1 = J1 = ∅.

Proof. We use the notations of lemma 40. Note that if i, j are in the same Ik, then

λ
(i,k)
n = λ

(j,k)
n for all n ≥ 1, for all k ∈ I. So, by proposition 18-2 the Hopf SDSE formed by i

and its descendant is the dilatation of a system with the following coe�cients λ
(j,k)
n :

j \ k 1 2 3 · · · M

1 (β1 + 1)(n− 1) + 1 n · · · · · · n

2 (β1 + 1)n n− β2 n · · · n

3
... n n− β3

. . .
...

...
...

...
. . .

. . . n

M (β1 + 1)n n · · · n n− βM

with i = 1. We already proved in lemma 40 that:

F1 =
M∏
j=1

fβj (hj).

If j 6= 1, for all (k1, · · · , kM ):

a
(j)
(k1+1,··· ,kM ) =

(
(β1 + 1)

M∑
l=1

kl + β1 + 1− (β1 + 1)
M∑
l=1

kl − k1

)
a

(j)
(k1,··· ,kM )

k1 + 1

= (β1 + 1 + β1k1)
a

(j)
(k1,··· ,kM )

k1 + 1
,

a
(j)
(k1,··· ,kj+1,··· ,kM ) =

(
M∑
l=1

kl + 1− βj −
M∑
l=1

kl + βjkj

)
a

(j)
(k1,··· ,kM )

kj + 1

= (1− βj + βjkj)
a

(j)
(k1,··· ,kM )

kj + 1
.
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If l 6= 1 and l 6= j:

a
(j)
(k1,··· ,kl+1,··· ,kM ) =

(
M∑
l=1

kl −
M∑
l=1

kl + βlkl

)
a

(j)
(k1,··· ,kM )

kl + 1
= (1 + βlkl)

a
(j)
(k1,··· ,kM )

kl + 1
.

So, if j 6= 1:
Fj = f β1

1+β1

((1 + β1)h1)f βj
1−βj

((1− βj)hj)
∏
k 6=1,j

fβk(hk).

Let us put I ′0 = {j ≥ 2 / βj 6= 1} and J ′0 = {j ≥ 2 / βj = 1}. Then, after the change of variables
hj −→ 1

1−βj hj for all j ∈ I
′
0:

F1 = fβ1(h1)
∏
j∈I′0

fβj

(
1

1− βj
hj

) ∏
j∈J ′0

f1(hj),

Fj = f β1
1+β1

((1 + β1)h1)f βj
1−βj

(hj)
∏

j∈I′0−{j}

fβj

(
1

1− βj
hj

) ∏
j∈J ′0

f1(hj) if j ∈ I ′0,

Fj = f β1
1+β1

((1 + β1)h1)
∏
j∈I′0

fβj

(
1

1− βj
hj

) ∏
j∈J ′0−{j}

f1(hj) if j ∈ J ′0.

Putting γj = βj
1−βj for all j ∈ I0, then, as βj = γj

1+γj
and 1− βj = 1

1+γj
:

F1 = fβ1(h1)
∏
j∈I′0

f γj
1+γj

((1 + γj)hj)
∏
j∈J ′0

f1(hj),

Fj = f β1
1+β1

((1 + β1)h1)fγj (hj)
∏

j∈I′0−{j}

f γj
1+γj

((1 + γj)hj)
∏
j∈J ′0

f1(hj) if j ∈ I ′0,

Fj = f β1
1+β1

((1 + β1)h1)
∏
j∈I′0

f γj
1+γj

((1 + γj)hj)
∏

j∈J ′0−{j}

f1(hj) if j ∈ J ′0.

So this a fundamental system, with I0 = {1} ∪ I ′0 and J0 = J ′0. 2

Corollary 42 Let (S) be a connected Hopf SDSE such that any vertex of G(S) is the descen-

dant of a self-dependent vertex. Then (S) is fundamental, with K0 = I1 = J1 = ∅.

Proof. Let x be a self-dependent vertex of (S). Then the system formed by x and its

descendants is fundamental. We then put I
(x)
0 and J

(x)
0 the partition of the set formed by x and

its descendants. We separate I
(x)
0 into two parts:

I0,1 =
{
y ∈ I(x)

0 /βy 6= −1
}
, I0,2 =

{
y ∈ I(x)

0 /βy = −1
}
.

Then, after elimination of an eventual dilatation by restriction, the direct descendants of x ∈ I(x)
0,2

are x, the elements of I
(x)
0,1 and J

(x)
0 ; the direct descendants of x ∈ I(x)

0,1 are the elements of I
(x)
0,1

and J
(x)
0 ; the direct descendants of x ∈ J (x)

0 are the elements of I
(x)
0,1 and the elements of J

(x)
0

except x. Let us consider the following cases:

1. If there exists a vertex x, such that J
(x)
0 6= ∅, then, as G(S) is connected, for any self-

dependent vertex y, J
(y)
0 = J

(x)
0 . As a consequence, for any self-dependent vertex y,

I
(x)
0,1 = I

(y)
0,1 . We then deduce that (S) is fundamental, with J0 = J

(x)
0 for any self-dependent

vertex x.

2. If for any self-dependent vertex x, J
(x)
0 = ∅, and if there is a self-dependent vertex x such

that I
(x)
0,2 6= ∅, then by connectivity of G(S), for any self-dependent vertex y, I

(y)
0,2 = I

(x)
0,2

and I
(y)
0,1 = {y}, or I(y)

0,2 is empty if y ∈ I(x)
0,2 . Then (S) is a fundamental, with J0 = ∅.
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3. If for any self-dependent vertex x, J
(x)
0 = ∅ = I

(x)
0,2 . Then by connectivity, I = I

(x)
0,1 for any

self-dependent vertex. So (S) is fundamental, with J0 = ∅.

In all cases, (S) is fundamental. 2

7 The structure theorem of Hopf SDSE

7.1 Connecting vertices

De�nition 43 Let (S) be an SDSE and let i ∈ G(S).

1. We denote by G
(i)
(S) is the subgraph of G(S) formed by i and all its descendants.

2. The vertex i is a connecting vertex of G(S) if G
(i)
(S) − {i} is not connected.

Lemma 44 Let (S) be a Hopf SDSE and let i ∈ G(S) be a connecting vertex. Then (i is the
descendant of a self-dependent vertex) or (i belongs to a symmetric subgraph of G(S)) or (i is not
self-dependent and relates several components of a non-connected fundamental SDSE).

Proof. First step. If i is self-dependent, it is a descendant of itself and the conclusion holds.
Let us assume that i is not self-dependent. Let G1, · · · , GM be the connected components of

G
(i)
(S) − {i} (M ≥ 2). Let xp ∈ Gp be a direct descendant of i for all p. Let x′p be a direct

descendant of xp. Then x
′
p ∈ Gp. Choosing q 6= j and applying lemma 34, there is an edge from

i to x′p. Iterating this process, we deduce that any vertex of G
(i)
(S) − {i} is a direct descendant of

i. If i is the direct descendant of a vertex j ∈ G(i)
(S) − {i}, then i is included in the symmetric

subgraph i←→ j of G
(i)
(S), so the conclusion holds.

Second step. Let us now assume that i is not the direct descendant of any j ∈ G(i)
(S) − {i}.

Let n ≥ 2, j ∈ Gp, and let i→ x2 → · · · → xn in G
(i)
(S), where x2, · · · , xn ∈ Gq, p 6= q. Then, as i

is not related to any xl, λ
(i,j)
n a

(i)
l(i,x2,··· ,xn) = aB+

i ( q j l(x2,··· ,xn)), so λ
(i,j)
n =

a
(i)
j,x2

a
(i)
x2

, and λ
(i,j)
n does not

depend on n: we put λ
(i,j)
n = λj for all j ∈ G− {i}, n ≥ 2. In other words, i has level ≤ 1, and

bj = 0 for all j.

Third step. In order to simplify the writing of the proof, up to a reindexation, we shall

suppose that i = 0 and the vertices of G
(0)
(S)−{0} are the elements of {1, · · · , N}. By a change of

variables, we can suppose that a
(0)
j = 1 for all 1 ≤ j ≤ N . By the second step, we can use lemma

25, with µ
(l)
j = −a(l)

j for all 1 ≤ j, l ≤ N and λj = a
(0)
j,k for all j, k in two di�erent connected

components of G
(0)
(S) − {0}.

1. In the �rst case, we obtain the following values for a
(k)
j and λj :

j \ k I1 I2 · · · IM J

I1 −νβ1 0 · · · 0 −ν

I2 0 −νβ2
. . .

...
...

...
...

. . .
. . . 0

...

IM 0 · · · 0 −νβM −ν
J 0 · · · · · · 0 0
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j I1 · · · IM J

λj ν · · · ν 0

As there are no vertices with no descendants, necessarily ν 6= 0 and βp 6= 0 for all p. For
the same reason, I1 ∪ · · · ∪ IM = ∅ is impossible. If J 6= ∅, then any vertex of J is related

to every vertex of I1 ∪ · · · ∪ IM , so G
(0)
(S)−{0} is connected: impossible, as 0 is a connected

vertex. So J = ∅, and 0 connects several totally self-dependent subgraphs.

2. In the second case, we obtain the following values for a
(k)
j and λj :

j \ k I1 I2 · · · IM J

I1 −ν1 0 · · · 0 0

I2 0 −ν2
. . .

...
...

...
...

. . .
. . . 0

...

IM 0 · · · 0 −νM 0
J 0 · · · · · · 0 0

j I1 · · · IM J

λj 0 · · · 0 0

As there are no vertices with no descendants, J = ∅ and νl 6= 0 for all l.

Moreover, as bj = 1 + βj = 0 for all j ≥ 1, 0 connects several components of a non-connected
fundamental SDSE. 2

7.2 Structure of connected Hopf SDSE

Lemma 45 Let (S) be a Hopf SDSE containing a multicycle with set of vertices I = I1 ∪
· · · ∪ IM , Then any non-self-dependent vertex of G(S) has direct descendants in at most one Ik.

Proof. Let us assume that the vertex 0 of G(S) have a direct descendant x ∈ Ik and y ∈ Il
with k 6= l. Then lemma 34 implies that any direct descendant of x is a direct descendant of 0,
so 0 has also a direct descendant in Ik+1. Similarly, 0 has a direct descendant in Il+1. Iterating
this process, 0 has direct descendants in all the Ii's. Up to a restriction, the situation is the
following:

0

�� ��=======

''NNNNNNNNNNNNNN

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

1 // 2 // 3 // · · · // Nff

Moreover, for all 1 ≤ i ≤ k, Fi(hi+1) = 1 + hi+1, with the convention hN+1 = h1.
We �rst assume M ≥ 3. In order to ease the notation, we do not write the index (0) in the

sequel of the proof. By proposition 16, λ
(0,2)
2 a qq01 = a qqq012 + a q∨qq

0
21 , so λ

(0,2)
2 = 1 + a1,2

a1
. On the

other hand, λ
(0,2)
2 a qq02 = 2a q∨qq

0
22 , so λ

(0,2)
2 = 2a2,2

a2
. Hence:

1 +
a1,2

a1
= 2

a2,2

a2
.

Moreover, λ
(0,2)
3 a qqq023 = a q∨qq q

0
22
3
, so λ

(0,2)
3 = 2a2,2

a2
. On the other hand, λ

(0,2)
3 a qqq012 = a q∨qq q

0
12
2
, so

λ
(0,2)
3 = a1,2

a1
. Hence:

a1,2

a1
= 2

a2,2

a2
= 1 +

a1,2

a1
.
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This is a contradiction.

Let us now prove the result for N = 2. We assume that there exists a Hopf SDSE with the
graph:

0

��>>>>>>>

���������

1 oo // 2

and such that F1 = 1 + h2 and F2 = 1 + h1. We write:

F0 =
∑
i,j

a(i,j)h
i
1h
j
2,

with a(1,0) and a(0,1) non-zero. Then λ
(0,1)
2 a qq01 = 2a q∨qq

0
11 , so λ

(0,1)
2 = 2a(2,0)

a(1,0)
. On the other hand,

λ
(0,1)
2 a qq02 = a q∨qq

0
21 + a qqq021 , so λ(0,1)

2 = a(1,1)

a(0,1)
+ 1. We obtain:

2a(2,0)

a(1,0)
=
a(1,1)

a(0,1)
+ 1.

Moreover, λ
(0,1)
3 a qqq012 = a q∨qq q

0
11
2

+a qqqq0121 , so λ
(0,1)
3 = 2a(2,0)

a(1,0)
+1. On the other hand, λ

(0,1)
3 a qqq021 = 2a q∨qq q

0
21
1
,

so λ
(0,1)
3 = a(1,1)

a(0,1)
. So:

a(1,1)

a(0,1)
+ 1 =

2a(2,0)

a(1,0)
=
a(1,1)

a(0,1)
− 1.

This is a contradiction. 2

Lemma 46 Let (S) be a Hopf SDSE, such that any vertex of G(S) has a direct ascendant.

Let i be a vertex of G(S). Then (i is a descendant of a self-dependent vertex) or (i belongs to a

multicycle of G(S)) or (i belongs to a symmetric subgraph of G(S)).

Proof. Let us �rst prove that i is the descendant of a vertex of a cycle of G(S). As any
vertex has a direct ascendant, it is possible to de�ne inductively a sequence (xl)l≥0 of vertices of
G(S), such that x0 = i and xl+1 is a direct ascendant of xl for all l. As G(S) is �nite, there exists
0 ≤ l < m, such that xl = xm. Then xl ← xl+1 ← · · · ← xm−1 ← xm = xl is a cycle of G(S),
and i is a descendant of any vertex of this cycle.

Let G′ = x1 → · · · → xs → x1 be a cycle such that i is a descendant of a vertex of G′, chosen
with a minimal s. As s is minimal, there are no edges from xl to xm in G(S) if m 6= l + 1, with
the convention xs+1 = x1. The situation is the following:

x1 //

��

· · · // xs
vv

y1 // · · · // yt−1 // i

Three cases are possible:

1. If s = 1, then i is the descendant of a self-dependent vertex.

2. If s = 2, the situation is the following:

x1 oo //

��

x2

y1 // · · · // yt−1 // i
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By minimality of s, there are no self-dependent vertex in {x1, x2, y1, · · · , yt−1, i}. Applying
repeatedly lemma 34, there is an edge from y1 to x1, then from y2 to y1, · · · , then from i
to yt−1. So i belongs to a symmetric subgraph of G(S).

3. If s ≥ 3, then the subgraph formed by x1, · · · , xs is a multicycle. Let G′ be a maximal
multicycle of length s of G, such that i is a descendant of a vertex of G′. We denote by I ′

the set of vertices of G′. Let us assume that i /∈ G′. There exists x1 → y1 → · · · → yt−1 →
yt = i in G, with t ≤ 1, and x1 ∈ I ′. Up to a reindexation, we can assume that x1 ∈ I ′1.
By lemma 34, y1 is the direct descendant of any vertex of I1 and the direct ascendant of
any vertex of I3. By lemma 45, y1 is not the direct ascendant of any vertex of I ′

k
if k 6= 3.

So I ′ ∪ {x} = I ′
1
∪
(
I ′
2
∪ {i}

)
∪ · · · ∪ I ′s gives a multicycle of length s, such that i is a

descendant of a vertex of I ′ ∪ {i}: this contradicts the maximality of G′. So i ∈ I ′.

2

By the preceding study of Hopf symmetric SDSE:

Corollary 47 Let (S) be connected Hopf SDSE, such that any vertex of G(S) has a direct

ascendant. Then (any vertex of G(S) is the descendant of a self-dependent vertex, so (S) is

fundamental) or ((S) is quasi-complete, so (S) is fundamental) or ((S) is multicyclic).

Corollary 48 Let (S) be a connected Hopf SDSE. Then there exists a sequence (Gi)0≤i≤k of
subgraphs of G(S), such that:

• The system (S0) associated to the Fi's, i ∈ G0, is fundamental or is multicyclic.

• Gk = G(S).

• For all 0 ≤ i ≤ k − 1, Gi+1 is obtained from Gi by adding a non-self-dependent vertex

without any ascendant in Gi.

If G0 is fundamental, any vertex is of �nite level. If G0 is multicyclic, no vertex is of �nite level.

Proof. First step. Let us �rst prove the following (weaker) result: if (S) is a Hopf SDSE,
there exists a sequence (Gi)0≤i≤k of subgraphs of G(S), such that:

• G0 is the disjoint union of several fundamental systems or is multicyclic.

• Gk = G(S).

• For all 0 ≤ i ≤ k − 1, Gi+1 is obtained from Gi by adding a non-self-dependent vertex
without any ascendant in Gi.

Let us proceed by induction on N . If N = 1, then G(S) = G0 is formed by a single vertex which is
necessarily self-dependent, so (S) is fundamental. Let us assume the induction hypothesis at rank
≤ N − 1. If any vertex of G(S) has an ascendant, then by corollary 47, we can take G(S) = G0.
If it is not the case, let us take i being a vertex with no ascendant. The induction hypothesis
can be applied to the components of G(S) − {i}. We complete the sequence (G0, · · · , Gk) given
in this way by Gk+1 = G(S).

As a consequence, the set of descendants of any self-dependent vertex, every symmetric sub-
graph, every multicycle of G(S) is included in G0.

Second step. Let us assume that G(S) is connected. If G0 is connected, then it is fundamental
or multicyclic. If it is not, let us assume that it is not a non-connected abelian fundamental
SDSE. So one of the components H of G0 is not a fundamental abelian SDSE with I = I0.
Then for a good choice of i, the vertex added to Gi−1 to obtain Gi is a connecting vertex,
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connecting a subgraph containing H and other subgraphs. By the �rst step, as it does not
belong to G0, this vertex is not the descendant of a self-dependent vertex and does not belong
to a symmetric subgraph. By construction, it does not connect several components of a non-
connected fundamental SDSE: this is a contradiction with lemma 44. So G0 is of the announced
form. 2

7.3 Connected Hopf SDSE with a multicycle

Let us precise the structure of connected Hopf SDSE containing a multicycle.

Theorem 49 Let (S) be a connected Hopf SDSE containing a N -multicyclic SDSE. Then I
admits a partition I = I1 ∪ · · · ∪ IN , with the following conditions:

1. If x ∈ Ik, its direct descendants are all in Ik+1.

2. If x and x′ have a common direct ascendant, then they have the same direct descendants.

Moreover, for all x ∈ I:
Fx = 1 +

∑
x−→y

a(x)
y hy.

If x and x′ have a common direct ascendant, then Fx = Fx′ . Such an SDSE will be called an

extended multicyclic SDSE.

Proof. We use the notations of corollary 48. We proceed by induction on k. If k = 0,
(S) is a multicycle and the result is immediate. Let us assume the result at rank k − 1 and
let (S′) be the restriction of (S) to all the vertices except the last one, denoted by x. By the
induction hypothesis, the set of its vertices admits a partition I ′ = I ′

1
∪· · ·∪I ′

N
, with the required

conditions. Let us �rst prove that all the direct descendants of x are in the same I ′m. Let y ∈ Ik
and z ∈ Il be two direct descendants of x, with k 6= l. Let y′ ∈ Ik+1 be a direct descendant of
y and z′ ∈ Il+1 be a direct descendant of z. Lemma 34 implies that x is a direct ascendant of
z′ and y′, as y can't be a direct ascendant of z′ and z can't be a direct ascendant of y′ because
k 6= l. So we can replace y by y′ and z by z′. Iterating the process, we can assume that y and z
are in the multicycle: this contradicts lemma 45. So the direct descendants of x are all in Im for
a good m. We then take Il = I ′

l
if l 6= m− 1 and Im−1 = I ′

m−1
∪ {x} and this proves the �rst

assertion on G(S).
We now prove the assertion on Fx. We separate the proof into two subcases. Let us �rst

assume M ≥ 3. There is an oriented path x → xm → · · · → xm+M−1, with xi ∈ I ′i for all i.
Moreover, there is no shorter oriented path from x to xm+M−1. As M ≥ 3, from lemma 26:

Fx = 1 +
∑
x−→y

a(x)
y hy.

Let us secondly assume that M = 2. Let 1, . . . , p be the direct descendants of x and let 0 be
a direct descendant of 1. Then as 1, . . . , p are in the same part of the partition of I ′, they are

not direct descendants of 1. Let us �rst restrict to {x, 1, 0}. By proposition 16, λ
(x,0)
3 a qqqx10 = 0 as

a
(1)
0,0 = 0 by the induction hypothesis, λ

(x,0)
3 = 0. Moreover, 0 = λ

(x,0)
3 a q∨qq

x
11 = a q∨qq q

x
11
0
, so a

(x)
1,1 = 0.

Similarly, a
(x)
2,2 = · · · = a

(x)
p,p = 0. Let us now take 1 ≤ i < j ≤ p. Then λ(x,i)

2 a qqxi = 0, so λ(x,i)
2 = 0

and 0 = λ
(x,i)
2 a qqxj = a qqqxji , so a(x)

i,j = 0. As a conclusion, Fx is of the required form.

Proposition 18-3 implies that Fx = Fx′ if x and x
′ have a common ascendant, and this implies

the second assertion on G(S). 2

Remark. In particular, the vertex added to Gi in order to obtain Gi+1 is an extension
vertex. By proposition 11, any such SDSE is Hopf.
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7.4 Connected Hopf SDSE with �nite levels

We now prove the following theorem:

Theorem 50 Let (S) be a connected Hopf SDSE, such that any vertex of (S) has a �nite level.
Then (S) is obtained from a fundamental system by a �nite number (possibly 0) of extensions.
Such an SDSE will be called an extended fundamental SDSE.

Proof. Let (S) be a connected Hopf SDSE, such that any vertex of (S) is of �nite level. We
use notations of corollary 48. We shall proceed by induction on k. If k = 0, then S = S0 and
the result is obvious. Let us now assume the result at rank k − 1. By the induction hypothesis,
the system (S′) associated to Gk−1 is a dilatation of a system of theorem 30. Moreover, G is
obtained from Gk−1 by adding a vertex with all its direct descendants in Gk−1. Let us denote
by 0 this vertex. We separate the proof into three cases.

First case. Let us assume that 0 is of level 0. Then all the direct descendants of 0 are of level
0, so are in I0 ∪ J0 ∪ I1, and νx = 1 for all direct descendants of x in Ji with i ∈ I1. Moreover,

for all x ∈ I, λ(0,x)
n = bx(n− 1) + a

(0)
x .

Let us take x, y ∈ I. Using proposition 19-1 into two di�erent ways:

a(0)
x,y =

(
by + a(0)

y − a(x)
y

)
a(0)
x =

(
bx + a(0)

x − a(y)
x

)
a(0)
y .

So, for all x, y ∈ I: (
by − a(x)

y

)
a(0)
x =

(
bx − a(y)

x

)
a(0)
y . (7)

If x and y are in the same Ii with i ∈ I0∪J0, then by−a(x)
y = bx−a(y)

x 6= 0, so a(0)
x = a

(0)
y and for

all n ≥ 1, λ(0,x)
n = λ

(0,y)
n . Hence, up to a restriction, we can assume that there is no dilatations

on (S′).
Let i ∈ I1. If νi 6= 1, we already know that a

(0)
i = 0. Let us assume νi = 1 and let us choose

j ∈ I0 ∪ J0 ∪K0, such that a
(i)
j 6= bj . Then bi = a

(j)
i = 0, so (7) gives

(
bj − a(i)

j

)
a

(0)
i = 0. So

a
(0)
i = 0 for all i ∈ I1. So the direct descendants of 0 are all in I0 ∪ J0 ∪K0. Using proposition
19-1 with i ∈ I0 ∪ J0 ∪K0:

a
(0)
(p1,··· ,pi+1,··· ,pN ) =

a(0)
i + bi(p1 + · · ·+ pN )−

∑
j∈I0∪J0∪K0−{i}

bipj − a(i)
i pi

 a
(0)
(p1,··· ,pN )

pi + 1

=
(
a

(0)
i +

(
bi − a(i)

i

)
pi

) a(0)
(p1,··· ,pN )

pi + 1
.

So:
F0 =

∏
i∈I0

f βi

a
(0)
i

(
a

(0)
i hi

) ∏
i∈J0

f 1

a
(0)
i

(
a

(0)
i hi

) ∏
i∈K0

f0

(
a

(0)
i hi

)
.

So (S) is a system of theorem 30, with 0 ∈ K0 ∪ I1.

Second case. Let us assume that 0 is of level 1 and is not an extension vertex. Then all the
direct descendants of 0 are of level 0, so are in I0 ∪ J0 ∪ I1, and νx = 1 for all direct descendants

of x in I1. Moreover, for all i ∈ I, λ(0,i)
1 = a

(0)
i and λ

(0,i)
n = bi(n− 1) + ã

(0)
i if n ≥ 2.

First item. Let us assume that a
(0)
i = 0. Then by proposition 19-1:

a
(0)
(p1,··· ,1,··· ,pN ) =

ã(0)
i + bi(p1 + · · ·+ pN )−

N∑
j=1

a
(j)
i pj

 a
(0)
(p1,··· ,0,··· ,pN )

0 =

ã(0)
i −

∑
j∈I1

a
(j)
i pj

 a
(0)
(p1,··· ,0,··· ,pN ).
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If there is a j ∈ I0 ∪ J0 ∪K0, such that a
(0)
j 6= 0, then for (p1, · · · , pN ) = εj , we obtain ã

(0)
i = 0.

If it is not the case, as 0 is not an extension vertex, there exists j, k ∈ I1, a(0)
j,k 6= 0 (so a

(0)
j 6= 0

and a
(0)
k 6= 0). Then, for (p1, · · · , pN ) = εj , (p1, · · · , pN ) = εk, and (p1, · · · , pN ) = εj + εk, we

obtain:

ã
(0)
i + a

(j)
i = ã

(0)
i + a

(k)
i = ã

(0)
i + a

(j)
i + a

(k)
i = 0.

So ã
(0)
i = 0. So in all cases, ã

(0)
i = 0. Moreover, for (p1, · · · , pN ) = εj for any j ∈ I1, we obtain

a
(j)
i a

(0)
j = 0. As a conclusion, we proved:

1. For all i ∈ I,
(
a

(0)
i = 0

)
=⇒

(
ã

(0)
i = 0

)
.

2. Let us put I
(0)
1 =

{
i ∈ I1 / a(0)

i 6= 0
}
. Then for i ∈ I, such that a

(0)
i = 0, for all j ∈ I(0)

1 ,

a
(j)
i = 0.

Second item. Let us take i, j ∈ I. Using proposition 19-1 into two di�erent ways:

a
(0)
i,j =

(
bj + ã

(0)
j − a

(i)
j

)
a

(0)
i =

(
bi + ã

(0)
i − a

(j)
i

)
a

(0)
j . (8)

Let us take i, j ∈ I1. Then a(i)
j = a

(j)
i = bi = bj = 0, so (8) gives:

ã
(0)
j a

(0)
i = ã

(0)
i a

(0)
j .

So
(
ã

(0)
i

)
i∈I1

and
(
a

(0)
i

)
i∈I1

are colinear. By the �rst item, we deduce that there exists a scalar

ν ∈ K, such that for all i ∈ I1, ã(0)
i = νa

(0)
i . Let us now take i, j ∈ I0 ∪ J0 ∪ K0, with i 6= j.

Then bi = a
(j)
i and bj = a

(i)
j , so (8) gives:

ã
(0)
j a

(0)
i = ã

(0)
i a

(0)
j .

So
(
ã

(0)
i

)
i∈I0∪J0∪K0

and
(
a

(0)
i

)
i∈I0∪J0∪K0

are colinear. By the �rst item, we deduce that there

exists a scalar ν ′ ∈ K, such that for all i ∈ I0 ∪ J0 ∪ K0, ã
(0)
i = ν ′a

(0)
i . Let us now take

i ∈ I0 ∪ J0 ∪K0 and j ∈ I1. Then bj = a
(i)
j = 0, so νa(0)

j a
(0)
i =

(
bi + ν ′a

(0)
i − a

(j)
i

)
a

(0)
j . In other

words:

∀i ∈ I0 ∪ J0 ∪K0, ∀j ∈ I1, (ν − ν ′)a(0)
i a

(0)
j = (bi − a(j)

i )a(0)
j . (9)

Third item. Let us assume that I
(0)
1 = ∅. Then all the direct descendants of 0 are in

I0 ∪ J0 ∪K0. Moreover, if i ∈ I0 ∪ J0 ∪K0:

a
(0)
(p1,··· ,pi+1,··· ,pN ) =

νa(0)
i + bi(p1 + · · ·+ pN )−

∑
j∈I0∪J0∪K0−{i}

bipj − a(i)
i pi

 a
(0)
(p1,··· ,pN )

pi + 1

=
(
νa

(0)
i +

(
bi − a(i)

i

)
pi

) a(0)
(p1,··· ,pN )

pi + 1
.

It is then not di�cult to show that (S) is a system of theorem 30, with 0 ∈ I1.

Fourth item. Let us assume that ν = ν ′. Let j ∈ I1. If νj 6= 1, then we already know that

a
(0)
j = 0. If νj = 1, then for a good choice of i, bi − a(j)

i 6= 0 in (9), so a
(0)
j = 0: then I(0)

1 = ∅,
and the result is proved in the third item.
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Fifth item. Let us assume that I
(0)
1 6= ∅. By the preceding item, ν 6= ν ′. Let us take j ∈ I(0)

1 .

By (9), for all i ∈ I0 ∪ J0 ∪K0, a
(j)
i = bi − (ν − ν ′)a(0)

i does not depend of j. As a consequence,

Fj = Fk for all j, k ∈ I(0)
1 . We put b

(0)
i = a

(j)
i for all i ∈ I0 ∪ J0 ∪K0, where j is any element of

I
(0)
1 . Let us use proposition 19-1. For all i ∈ I0 ∪ J0 ∪K0, if (p1, · · · , pN ) 6= (0, · · · , 0):

a
(0)
(p1,··· ,pi+1,··· ,pN ) =

ν ′a(0)
i +

(
bi − a(i)

i

)
pi + (ν − ν ′)a(0)

i

∑
j∈I(0)1

pj

 a
(0)
(p1,··· ,pN )

pi + 1
.

For all j ∈ I(0)
1 , if (p1, · · · , pN ) 6= (0, · · · , 0):

a
(0)
(p1,··· ,pi+1,··· ,pN ) = νa

(0)
i

a
(0)
(p1,··· ,pN )

pi + 1
.

Let us �x i ∈ I0 ∪ J0 ∪K0 and j ∈ I(0)
1 . Then:

a
(0)
i,i =

(
ν ′a

(0)
i + bi − a(i)

i

)
a

(0)
i ,

a
(0)
i,i,j = νa

(0)
i a

(0)
j

(
ν ′a

(0)
i + bi − a(i)

i

)
,

a
(0)
i,j = νa

(0)
i a

(0)
j ,

a
(0)
i,i,j = νa

(0)
i a

(0)
j

(
ν ′a

(0)
i + bi − a(i)

i + (ν − ν ′)a(0)
i

)
.

Identifying the two expressions of a
(0)
i,i,j , as ν 6= ν ′ and a

(0)
j 6= 0, we obtain ν

(
a

(0)
i

)2
= 0. If for

all i ∈ I0 ∪ J0 ∪K0, a
(0)
i = 0, then by the second item, for all j ∈ I(0)

1 , a
(j)
i = 0, then Fj = 1; this

is impossible. So there is an i ∈ I0 ∪ J0 ∪K0, such that a
(0)
i 6= 0. As a consequence, ν = 0. So

ν ′ 6= 0, and we then easily obtain that:

F0 =
1
ν ′

∏
i∈I0

f βi

b
(0)
i
−1−βi

((
b
(0)
i − 1− βi

)
hi

) ∏
i∈J0

f 1

b
(0)
i
−1

((
b
(0)
i − 1

)
hi

)∏
i∈I0

f0

(
b
(0)
i hi

)
+
∑
i∈I(0)1

a
(0)
i hi + 1− 1

ν ′
.

So (S) is a system of theorem 30, with 0 ∈ J1.

Third case. 0 is a vertex of level ≥ 2. By proposition 27, it is an extension vertex. 2
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