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Introduction

Let D be a set. The Connes-Kreimer Hopf algebra of rooted trees HD
R is introduced in [5] in the

context of Quantum Field Theory and Renormalization. It is a graded, connected, commutative,
non-cocommutative Hopf algebra. If the characteristic of the base field is zero, the Cartier-
Quillen-Milnor-Moore theorem insures that its dual (HD

R)∗ is the enveloping algebra of a Lie
algebra, based on rooted trees (note that (HD

R)∗ is isomorphic to the Grossman-Larson Hopf
algebra [10, 11], as proved in [12, 16]). This Lie algebra admits an operadic interpretation: it
is the free pre-Lie algebra PL(D) generated by D, as shown in [4]; recall that a (left) pre-Lie
algebra, also called a Vinberg algebra or a left-symmetric algebra, is a vector space V with a
product ◦ satisfying:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).
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A non-commutative version of these objects is introduced in [9, 13]. Replacing rooted trees
by planar rooted trees, a Hopf algebra HD

PR is constructed. This self-dual Hopf algebra is
isomorphic to the Loday-Ronco free dendriform algebra based on planar binary trees [15], so by
the dendriform Milnor-Moore theorem [2, 18], the space of its primitive elements, or equivalently
the space of the primitive elements of its dual, admits a structure of brace algebra, described in
terms of trees in [8] by graftings of planar forests on planar trees, and is in fact the free brace
algebra Br(D) generated by D. This structure implies also a structure of pre-Lie algebra on
Br(D).

As a summary, the brace structure of Br(D) implies a pre-Lie structure on Br(D), which
implies a Lie structure on Br(D). It is already proved in several ways that PL(D) and Br(D)
are free Lie algebras in characteristic zero [3, 8]. A remaining question was the structure of Br(D)
as a pre-Lie algebra. The aim of the present text is to prove that Br(D) is a free pre-Lie algebra.
We use for this the notion of non-associative permutative algebra [14] and a manipulation of
formal series. More precisely, we introduce in the second section of this text a non-associative
permutative product ? on Br(D) and we show that (Br(D), ?) is free. As a corollary, we prove
that the abelianisation of HD

PR (which is not HD
R), is isomorphic to a Hopf algebra HD′

R for a
good choice of D′. This implies that (HD

PR)ab is a cofree coalgebra and we recover in a different
way the result of freeness of Br(D) as a Lie algebra in characteristic zero. Note that a similar
result for algebras with two compatible associative products is proved with the same pattern in
[6].

Notations. We denote by K a commutative field of characteristic zero. All objects (vector
spaces, algebras. . . ) will be taken over K.

1 A description of free pre-Lie and brace algebras

1.1 Rooted trees and planar rooted trees

Definition 1

1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t.
The weight of t is the number of its vertices. The set of rooted trees will be denoted by T .

2. A planar rooted tree t is a rooted tree with an imbedding in the plane. the set of planar
rooted trees will be denoted by TP .

3. Let D be a nonempty set. A rooted tree decorated by D is a rooted tree with an application
from the set of its vertices into D. The set of rooted trees decorated by D will be denoted
by T D.

4. Let D be a nonempty set. A planar rooted tree decorated by D is a planar tree with an
application from the set of its vertices into D. The set of planar rooted trees decorated by
D will be denoted by T DP .

Examples.

1. Rooted trees with weight smaller than 5:

q , qq , q∨qq
, qqq , q∨qq q

, q∨qqq
,

q∨qq q , qqqq , q∨qq
�Hq q

, q∨qq qq
, q∨qq qq

, q∨qq∨q q
, q∨qq qq

,
q∨qq qq ,

q∨qq qq , qqq∨
q q
, qqqqq .

2. Rooted trees decorated by D with weight smaller than 4:

qa , a ∈ D, qqab , (a, b) ∈ D2, q∨qq
a

cb = q∨qq
a

bc
, qqqabc , (a, b, c) ∈ D3,

q∨qq q
a
d

c
b = q∨qq q

a
c

d
b = q∨qq q

a
d

b
c = q∨qq q

a
b

d
c = q∨qq q

a
c

b
d = q∨qq q

a
b

c
d

, q∨qqq
a

db
c

,
q∨qq qabdc

= q∨qq qabcd

, qqqqabcd , (a, b, c, d) ∈ D4.
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3. Planar rooted trees with weight smaller than 5:

q , qq , q∨qq
, qqq , q∨qq q

, q∨qqq
, q∨qq q

,
q∨qq q , qqqq , q∨qq

�Hq q
, q∨qq qq

, q∨qq qq
, q∨qq q q

, q∨qq qq
, q∨qq∨qq

, q∨qq∨q q
, q∨qqqq

, q∨qq qq
,

q∨qq qq ,
q∨qq qq ,

q∨qq q q , qqq∨
q q
, qqqqq .

4. Planar rooted trees decorated by D with weight smaller than 4:

qa , a ∈ D, qqab , (a, b) ∈ D2, q∨qq
a

cb
, qqqabc , (a, b, c) ∈ D3,

q∨qq q
a
d

c
b

, q∨qqq
a

db
c

, q∨qq q
a

cb
d

,
q∨qq qabdc

, qqqqabcd , (a, b, c, d) ∈ D4.

Let t1, . . . , tn be elements of T D and let d ∈ D. We denote by Bd(t1 . . . tn) the rooted tree

obtained by grafting t1, . . . , tn on a common root decorated by d. For example, Bd( qqab qc ) = q∨qqq
d

ca
b

.
This application Bd can be extended in an operator:

Bd :
{

K[T D] −→ KT D
t1 . . . tn −→ Bd(t1 . . . tn),

where K[T D] is the polynomial algebra generated by T D over K and KT D is the K-vector space
generated by T D. This operator is monic, and moreover KT D is the direct sum of the images
of the Bd’s, d ∈ D.

Similarly, let t1, . . . , tn be elements of T DP and let d ∈ D. We denote by Bd(t1 . . . tn) the
planar rooted tree obtained by grafting t1, . . . , tn in this order from left to right on a common

root decorated by d. For example, Ba( qq bc qd) = q∨qqq
a

db
c

and Ba( qd qq bc ) = q∨qq q
a

bd
c

. This application Bd

can be extended in an operator:

Bd :
{

K〈T DP 〉 −→ KT DP
t1 . . . tn −→ Bd(t1 . . . tn),

where K〈T DP 〉 is the free associative algebra generated by T DP over K and KT DP is the K-vector
space generated by T DP . This operator is monic, and moreover KT DP is the direct sum of the
images of the Bd’s, d ∈ D.

1.2 Free pre-Lie algebras

Definition 2 A (left) pre-Lie algebra is a couple (A, ◦) where A is a vector space and ◦ :
A⊗A −→ A satisfying the following relation: for all x, y, z ∈ A,

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

Let D be a set. A description of the free pre-Lie algebra PL(D) generated by D is given
in [4]. As a vector space, it has a basis given by T D, and its pre-Lie product is given, for all
t1, t2 ∈ T D, by:

t1 ◦ t2 =
∑

s vertex of t2

grafting of t1 on s.

For example:

qa ◦ q∨qq
d

cb = q∨qq q
d
c

b
a + q∨qqq

d
cb

a

+ q∨qq q
d

cb
a

= q∨qq q
d
c

b
a + q∨qqq

d
cb

a

+ q∨qqq
d

bc
a

.

In other terms, the pre-Lie product can be inductively defined by:
t ◦ qd −→ Bd(t),

t ◦Bd(t1 . . . tn) −→ Bd(tt1 . . . tn) +
n∑

i=1

Bd(t1 . . . (t ◦ ti) . . . tn).
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Lemma 3 Let D a set. We suppose that D has a gradation (D(n))n∈N such that, for all
n ∈ N, D(n) is finite set of cardinality denoted by dn, and D(0) is empty. We denote by FD(x)
the Poincaré-Hilbert series of this set:

FD(x) =
∞∑

n=1

dnxn.

This gradation induces a gradation (PL(D)(n))n∈N of PL(D). Moreover, for all n ≥ 0, PL(D)(n)
is finite-dimensional. We denote by tDn its dimension. Then the Poincaré-Hilbert series of PL(D)
satisfies:

FPL(D)(x) =
∞∑

n=1

tDn xn =
FD(x)

∞∏
i=1

(1− xi)tDi

.

Proof. The formal series of the space K[T D] is given by:

F (x) =
∞∏
i=1

1

(1− xi)tDi
.

Moreover, for all d ∈ D(n), Bd is homogeneous of degree n, so the Poincaré-Hilbert series of
Im(Bd) is xnF (x). As PL(D) = KT D =

⊕
Im(Bd) as a graded vector space, its Poincaré-

Hilbert formal series is:

FPL(D)(x) = F (x)
∞∑

n=1

dnxn = F (x)FD(x),

which gives the announced result. 2

1.3 Free brace algebras

Definition 4 [1, 2, 18] A brace algebra is a couple (A, 〈〉) where A is a vector space and 〈〉
is a family of operators A⊗n −→ A defined for all n ≥ 2:{

A⊗n −→ A
a1 ⊗ . . .⊗ an −→ 〈a1, . . . , an−1; an〉,

with the following compatibilities: for all a1, . . . , am, b1, . . . , bn, c ∈ A,

〈a1, . . . , am; 〈b1, . . . , bn; c〉〉 =
∑

〈〈A0, 〈A1; b1〉, A2, 〈A3; b2〉, A4, . . . , A2n−2, 〈A2n−1; bn〉, A2n; c〉,

where this sum runs over partitions of the ordered set {a1, . . . , an} into (possibly empty) con-
secutive intervals A0 t . . . tA2n. We use the convention 〈a〉 = a for all a ∈ A.

For example, if A is a brace algebra and a, b, c ∈ A:

〈a; 〈b; c〉〉 = 〈a, b; c〉+ 〈b, a; c〉+ 〈〈a; b〉; c〉.

As an immediate corollary, (A, 〈−;−〉) is a pre-Lie algebra. Here is another example of relation
in a brace algebra: for all a, b, c, d ∈ A,

〈a, b; 〈c; d〉〉 = 〈a, b, c; d〉+ 〈a, 〈b; c〉; d〉+ 〈〈a, b; c〉; d〉+ 〈a, c, b; d〉+ 〈〈a; c〉, b; d〉+ 〈c, a, b; d〉.

Let D be a set. A description of the free brace algebra Br(D) generated by D is given in
[2, 9]. As a vector space, it has a basis given by T DP and the brace structure is given, for all
t1, . . . , tn ∈ T DP , by:

〈t1, . . . ; tn〉 =
∑

graftings of t1 . . . tn−1 over tn.
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Note that for any vertex s of tn, there are several ways of grafting a planar tree on s. For
example:

〈 qa , q b ; qqdc 〉 = q∨qq q
d
c

b
a + q∨qq q

d
ca
b

+ q∨qq q
d
b

c
a + q∨qq q

d
c

ba

+ q∨qqq
d

bc
a

+ q∨qq q
d
b

a
c

.

As a consequence, the pre-Lie product of Br(D) can be inductively defined in this way:
〈t; qd〉 −→ Bd(t),

〈t;Bd(t1 . . . tn)〉 −→
n∑

i=0

Bd(t1 . . . titti+1 . . . tn) +
n∑

i=1

Bd(t1 . . . ti−1〈t; ti〉ti+1 . . . tn).

Proposition 5 Br(D) is the free brace algebra generated by D.

Proof. From [2, 9]. 2

Lemma 6 Let D a set, with the hypotheses and notations of lemma 3. The gradation of
D induces a gradation (Br(D)(n))n∈N of Br(D). Moreover, for all n ≥ 0, Br(D)(n) is finite-
dimensional. Then the Poincaré-Hilbert series of Br(D) is:

FBr(D)(x) =
∞∑

n=1

t′Dn xn =
1−

√
1− 4FD(x)

2
.

Proof. The Poincaré-Hilbert formal series of K〈T DP 〉 is given by:

F (x) =
1

1− FBr(D)(x)
.

Moreover, for all d ∈ D(n), Bd is homogeneous of degree n, so the Poincaré-Hilbert series of
Im(Bd) is xnF (x). As Br(D) = KT DP =

⊕
Im(Bd) as a graded vector space, its Poincaré-

Hilbert formal series is:

FBr(D)(x) = F (x)
∞∑

n=1

dnxn = F (x)FD(x).

As a consequence, FBr(D)(x)− FBr(D)(x)2 = FD(x), which implies the announced result. 2

2 A non-associative permutative product on Br(D)

2.1 Definition and recalls

The following definition is introduced in [14]:

Definition 7 A (left) non-associative permutative algebra is a couple (A, ?), where A is a
vector space and ? : A⊗A −→ A satisfies the following property: for all x, y, z ∈ A,

x ? (y ? z) = y ? (x ? z).

Let D be a set. A description of the free non-associative permutative algebra NAPerm(D)
generated by D is given in [14]. As a vector space, NAPerm(D) is equal to KT D. The non-
associative permutative product is given in this way: for all t1 ∈ T D, t2 = Bd(F2) ∈ T D,

t1 ? t2 = Bd(t1F2).

In other terms, t1 ? t2 is the tree obtained by grafting t1 on the root of t2. As NAPerm(D) =
PL(D) as a vector space, lemma 3 is still true when one replaces PL(D) by NAPerm(D).
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2.2 Permutative structures on planar rooted trees

Let us fix now a non-empty set D. We define the following product on Br(D) = KT DP : for all
t ∈ T DP , t′ = Bd(t1 . . . tn) ∈ T DP ,

t ? t′ =
n∑

i=0

Bd(t1 . . . titti+1 . . . tn).

Proposition 8 (Br(D), ?) is a non-associative permutative algebra.

Proof. Let us give K〈T DP 〉 its shuffle product: for all t1, . . . , tm+n ∈ T DP ,

(t1 . . . tm) ∗ (tm+1 . . . tm+n) =
∑

σ∈Sh(m,n)

tσ−1(1) . . . tσ−1(m+n),

where Sh(m,n) is the set of permutations of Sm+n which are increasing on {1, . . . ,m} and
{m + 1, . . . ,m + n}. It is well known that ∗ is an associative, commutative product. For
example, for all t, t1, . . . , tn ∈ T DP :

t ∗ (t1 . . . tn) =
n∑

i=0

t1 . . . titti+1 . . . tn.

As a consequence, for all x ∈ KT DP , y ∈ K〈T DP 〉, d ∈ D:

x ? Bd(y) = Bd(x ∗ y). (1)

Let t1, t2, t3 = Bd(F3) ∈ T DP . Then, using (1):

t1 ? (t2 ? t3) = t1 ? Bd(t2 ∗ F3)
= Bd(t1 ∗ (t2 ∗ F3))
= Bd((t1 ∗ t2) ∗ F3)
= Bd((t2 ∗ t1) ∗ F3)
= Bd(t2 ∗ (t1 ∗ F3))
= t2 ? (t1 ? t3).

So ? is a non-associative permutative product on Br(D). 2

2.3 Freeness of Br(D) as a non-associative permutative algebra

We now assume that D is finite, of cardinality D. We can then assume that D = {1, . . . , D}.

Theorem 9 (Br(D), ?) is a free non-associative permutative algebra.

Proof. We graduate D by putting D(1) = D. Then Br(D) is graded, the degree of a tree
t ∈ T DP being the number of its vertices. By lemma 6, as the Poincaré-Hilbert series of D is
FD(x) = Dx, the Poincaré-Hilbert series of Br(D) is:

FBr(D)(x) =
∞∑
i=1

t′Di xi =
1−

√
1− 4Dx

2
. (2)

We consider the following isomorphism of vector spaces:

B :


(K〈T DP 〉)d −→ Br(D)

(F1, . . . , FD) −→
d∑

i=1

Bi(Fi).
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Let us fix a graded complement V of the graded subspace Br(D) ? Br(D) in Br(D). Because
Br(D) is a graded and connected (that is to say Br(D)(0) = (0)), V generates Br(D) as a
non-associative permutative algebra. By (1), Br(D) ? Br(D) = B((T DP ∗K〈T DP 〉)D).

Let us then consider T DP ∗K〈T DP 〉, that is to say the ideal of (K〈T DP 〉, ∗) generated by T DP .
It is known that (K〈T DP 〉, ∗) is isomorphic to a symmetric algebra (see [17]). Hence, there exists
a graded subspace W of K〈T DP 〉, such that (K〈T DP 〉, ∗) ≈ S(W ) as a graded algebra. We can
assume that W contains KT DP . As a consequence:

K〈T DP 〉
T DP ∗K〈T DP 〉

≈ S(W )
S(W )T DP

≈ S

(
W

KT DP

)
. (3)

We denote by wi the dimension of W (i) for all i ∈ N. Then, the Poincaré-Hilbert formal series
of S

(
W

KT DP

)
is:

F
S

(
W

KT D
P

)(x) =
∞∏
i=1

1

(1− xi)wi−t′Di
. (4)

Moreover, the Poincaré-Hilbert formal series of K〈T DP 〉 ≈ S(W ) is, by (2):

FS(W )(x) =
1

1− FBr(D)(x)
=

1−
√

1− 4Dx

2Dx
=

FBr(D)(x)
Dx

=
∞∏
i=1

1
(1− xi)wi

. (5)

So, from (3), using (4) and (5), the Poincaré-Hilbert series of T DP ∗K〈T DP 〉 is:

FT DP ∗K〈T DP 〉(x) = FS(W )(x)− F
S

(
W

KT D
P

)(x)

=
∞∏
i=1

1
(1− xi)wi

(
1−

∞∏
i=1

(1− xi)t′Di

)

=
FBr(D)(x)

Dx

(
1−

∞∏
i=1

(1− xi)t′Di

)
.

As B is homogeneous of degree 1, the Poincaré-Hilbert formal series of Br(D) ? Br(D) is:

FBr(D)?Br(D)(x) = DxFT DP ∗K〈T DP 〉(x) = FBr(D)(x)

(
1−

∞∏
i=1

(1− xi)t′Di

)
.

Finally, the Poincaré-Hilbert formal series of V is:

FV (x) = FBr(D)(x)− FBr(D)?Br(D)(x) = FBr(D)(x)
∞∏
i=1

(1− xi)t′Di .

Let us now fix a basis (vi)i∈I of V , formed of homogeneous elements. There is a unique
epimorphism of non-associative permutative algebras:

Θ :
{
NAPerm(I) −→ Br(D)q i −→ vi.

We give to i ∈ I the degree of vi ∈ Br(D). With the induced gradation of NAPerm(I), Θ is a
graded epimorphism. In order to prove that it is an isomorphism, it is enough to prove that the
Poincaré-Hilbert series of NAPerm(I) and Br(D) are equal. By lemma 3, the formal series of
NAPerm(I), or, equivalently, of PL(I), is:

FNAPerm(I)(x) =
∞∑

n=1

tDi xi =
FV (x)

∞∏
i=1

(1− xi)tDi

= FBr(D)(x)
∞∏
i=1

(1− xi)t′Di −tDi . (6)
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Let us prove inductively that tn = t′n for all n ∈ N. It is immediate if n = 0, as t0 = t′0 = 0. Let
us assume that tDi = t′Di for all i < n. Then:

∞∏
i=1

(1− xi)tDi −t′Di = 1 +O(xn).

As t′0 = 0, the coefficient of xn in (6) is tn = t′n. So FNAPerm(I)(x) = FS(W )(x), and Θ is an
isomorphism. 2

3 Freeness of Br(D) as a pre-Lie algebra

3.1 Main theorem

Theorem 10 Let D be a finite set. Then Br(D) is a free pre-Lie algebra.

Proof. We give a N2-gradation on Br(D) in the following way:

Br(D)(k, l) = V ect(t ∈ T DP / t has k vertices and the fertility of its root is l).

The following points are easy:

1. For all i, j, k, l ∈ N, Br(D)(i, j) ? Br(D)(k, l) ⊆ Br(D)(i + k, l + 1).

2. For all i, j, k, l ∈ N, t1 ∈ Br(D)(i, j), t2 ∈ Br(D)(k, l), 〈t1; t2〉 − t1 ? t2 ∈ Br(D)(i + k, l).

Let us fix a complement V of Br(D) ? Br(D) in Br(D) which is N2-graded. Then Br(D) is
isomorphic as a N-graded non-associative permutative algebra to NAPerm(V ), the free non-
associative permutative algebra generated by V .

Let us prove that V also generates Br(D) as a pre-Lie algebra. As Br(D) is N-graded, with
Br(D)(0), it is enough to prove that Br(D) = V + 〈Br(D);Br(D)〉. Let x ∈ Br(D)(k, l), let us
show that x ∈ V + 〈Br(D);Br(D)〉 by induction on l. If l = 0, then t ∈ Br(D)(1) = V (1). If
l = 1, we can suppose that x = Bd(t), where t ∈ T DP . Then x = 〈t; qd〉 ∈ 〈Br(D);Br(D)〉. Let us
assume the result for all l′ < l. As V generates (Br(D), ?), we can write x as:

x = x′ +
∑

i

xi ? yi,

where x′ ∈ V and xi, yi ∈ Br(D). By the first point, we can assume that:∑
i

xi ⊗ yi ∈
⊕

i+j=k

Br(D)(i)⊗ Br(D)(j, l − 1).

So, by the second point:

x− x′ −
∑

i

〈xi; yi〉 =
∑

i

xi ? yi − 〈xi; yi〉

∈
∑

i+j=k

Br(D)(i + j, l − 1)

∈ V + 〈Br(D);Br(D)〉,

by the induction hypothesis. So x ∈ V + 〈Br(D);Br(D)〉.
Hence, there is an homogeneous epimorphism:{

PL(V ) −→ Br(D)
v ∈ V −→ v.

As PL(V ), NAPerm(V ) and Br(D) have the same Poincaré-Hilbert formal series, this is an
isomorphism. 2

We now give the number of generators of Br(D) in degree n when card(D) = D for small
values of n, computed using lemmas 3 and 6:
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1. For n = 1, D.

2. For n = 2, 0.

3. For n = 3,
D2(D − 1)

2
.

4. For n = 4,
D2(2D − 1)(2D + 1)

3
.

5. For n = 5,
D2(31D3 − 2D2 − 3D − 2)

8
.

6. For n = 6,
D2(356D4 − 20D3 − 5D2 + 5D − 6)

30
.

7. For n = 7,
D2(5441D5 − 279D4 − 91D3 − 129D2 − 22D − 24)

144
.

3.2 Corollaries

Corollary 11 Let D be any set. Then Br(D) is a free pre-Lie algebra.

Proof. We graduate Br(D) by putting all the qd ’s homogeneous of degree 1. Let V be a
graded complement of 〈Br(D),Br(D)〉. There exists an epimorphism of graded pre-Lie algebras:

Θ :
{
PL(V ) −→ Br(D)qv −→ v.

Let x be in the kernel of Θ. There exists a finite subset D′ of D, such that all the decorations of
the vertices of the trees appearing in x belong to Br(D′). By the preceding theorem, as Br(D′)
is a free pre-Lie algebra, x = 0. So Θ is an isomorphism. 2

Corollary 12 Let D be a graded set, satisfying the conditions of lemma 3. There exists a
graded set D′, such that (HD

PR)ab is isomorphic, as a graded Hopf algebra, to HD′
R .

Proof. (HD
PR)ab is isomorphic, as a graded Hopf algebra, to U(Br(D))∗. For a good choice

of D′, Br(D) is isomorphic to PL(D′) as a pre-Lie algebra, so also as a Lie algebra. So U(Br(D))
is isomorphic to U(PL(D′)). Dually, (HD

PR)ab is isomorphic to HD′
R . 2

Corollary 13 Let D be graded set, satisfying the conditions of lemma 3. Then (HD
PR)ab is a

cofree coalgebra. Moreover, Br(D) is free as a Lie algebra.

Proof. It is proved in [7] that (HD′
R )∗ is a free algebra, so Prim((HD′

R )∗) = PL(D′) is a free
Lie algebra and HD′

R is a cofree coalgebra. So Prim((HD
PR)∗) = Br(D) is a free Lie algebra and

HD
PR is a cofree coalgebra. 2

References

[1] Marcelo Aguiar, Infinitesimal bialgebras, pre-Lie and dendriform algebras, Hopf algebras,
Lecture Notes in Pure and Appl. Math., vol. 237, Dekker, 2004, arXiv:math/0211074, pp. 1–
33.

[2] Frédéric Chapoton, Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres den-
driformes et les algèbres braces, J. Pure Appl. Algebra 168 (2002), no. 1, 1–18,
arXiv:math/0005253.

9



[3] , Free pre-lie algebras are free as lie algebras, arXiv:0704.2153, to appear in Bulletin
canadien de mathématiques, 2007.

[4] Frédéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Inter-
nat. Math. Res. Notices 8 (2001), 395–408, arXiv:math/0002069.

[5] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative ge-
ometry, Comm. Math. Phys 199 (1998), no. 1, 203–242, arXiv:hep-th/9808042.

[6] Vladimir Dotsenko, Compatible associative products and trees, arXiv:0809.1773, to appear
in Algebra and Number Theory, 2008.

[7] Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra
255 (2002), no. 1, 85–120, arXiv:math.QA/0105210.

[8] , Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002), no. 3,
193–239, arXiv:math.QA/0105212.

[9] , Les algèbres de Hopf des arbres enracinés, II, Bull. Sci. Math. 126 (2002), no. 4,
1249–288, arXiv:math.QA/0105212.

[10] Robert L. Grossman and Richard G. Larson, Hopf-algebraic structure of families of trees, J.
Algebra 126 (1989), no. 1, 184–210, arXiv:0711.3877.

[11] , Hopf-algebraic structure of combinatorial objects and differential operators, Israel
J. Math. 72 (1990), no. 1-2, 109–117.

[12] Michael E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math.
Soc. 355 (2003), no. 9, 3795–3811.

[13] Ralf Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (2003), no. 4,
368–383.

[14] Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006),
no. 1, 1–18, arXiv:math/0504296.

[15] Jean-Louis Loday and Maria O. Ronco, Hopf algebra of the planar binary trees, Adv. Math.
139 (1998), no. 2, 293–309.

[16] Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on
rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211–219.

[17] Rimhak Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68
(1958), 210–220.

[18] Maria Ronco, A Milnor-Moore theorem for dendriform Hopf algebras, C. R. Acad. Sci. Paris
Sér. I Math. 332 (2001), no. 2, 109–114.

10


