Free brace algebras are free pre-Lie algebras

Loïc Foissy
Laboratoire de Mathématiques, FRE3111, Université de Reims
Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail : loic.foissy@univ-reims.fr

Abstract

Let \mathfrak{g} be a free brace algebra. This structure implies that \mathfrak{g} is also a pre-Lie algebra and a Lie algebra. It is already known that \mathfrak{g} is a free Lie algebra. We prove here that \mathfrak{g} is also a free pre-Lie algebra, using a description of \mathfrak{g} with the help of planar rooted trees, a permutative product, and manipulations on the Poincaré-Hilbert series of \mathfrak{g}.

KEYWORDS. Pre-Lie algebras, brace algebras.
AMS CLASSIFICATION. 17A30, 05C05, 16W30.

Contents

1 A description of free pre-Lie and brace algebras 2
1.1 Rooted trees and planar rooted trees 2
1.2 Free pre-Lie algebras 3
1.3 Free brace algebras 4
2 A non-associative permutative product on $\mathcal{B r}(\mathcal{D})$ 5
2.1 Definition and recalls 5
2.2 Permutative structures on planar rooted trees 6
2.3 Freeness of $\mathcal{B r}(\mathcal{D})$ as a non-associative permutative algebra 6
3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a pre-Lie algebra 8
3.1 Main theorem 8
3.2 Corollaries 9

Introduction

Let \mathcal{D} be a set. The Connes-Kreimer Hopf algebra of rooted trees $\mathcal{H}_{R}^{\mathcal{D}}$ is introduced in [5] in the context of Quantum Field Theory and Renormalization. It is a graded, connected, commutative, non-cocommutative Hopf algebra. If the characteristic of the base field is zero, the Cartier-Quillen-Milnor-Moore theorem insures that its dual $\left(\mathcal{H}_{R}^{\mathcal{D}}\right)^{*}$ is the enveloping algebra of a Lie algebra, based on rooted trees (note that $\left(\mathcal{H}_{R}^{\mathcal{D}}\right)^{*}$ is isomorphic to the Grossman-Larson Hopf algebra [10,11], as proved in $[12,16])$. This Lie algebra admits an operadic interpretation: it is the free pre-Lie algebra $\mathcal{P} \mathcal{L}(\mathcal{D})$ generated by \mathcal{D}, as shown in [4]; recall that a (left) pre-Lie algebra, also called a Vinberg algebra or a left-symmetric algebra, is a vector space V with a product o satisfying:

$$
(x \circ y) \circ z-x \circ(y \circ z)=(y \circ x) \circ z-y \circ(x \circ z) .
$$

A non-commutative version of these objects is introduced in [9, 13]. Replacing rooted trees by planar rooted trees, a Hopf algebra $\mathcal{H}_{P R}^{\mathcal{D}}$ is constructed. This self-dual Hopf algebra is isomorphic to the Loday-Ronco free dendriform algebra based on planar binary trees [15], so by the dendriform Milnor-Moore theorem [2, 18], the space of its primitive elements, or equivalently the space of the primitive elements of its dual, admits a structure of brace algebra, described in terms of trees in [8] by graftings of planar forests on planar trees, and is in fact the free brace algebra $\mathcal{B} r(\mathcal{D})$ generated by \mathcal{D}. This structure implies also a structure of pre-Lie algebra on $\mathcal{B} r(\mathcal{D})$.

As a summary, the brace structure of $\mathcal{B r}(\mathcal{D})$ implies a pre-Lie structure on $\mathcal{B} r(\mathcal{D})$, which implies a Lie structure on $\mathcal{B r}(\mathcal{D})$. It is already proved in several ways that $\mathcal{P} \mathcal{L}(\mathcal{D})$ and $\mathcal{B r}(\mathcal{D})$ are free Lie algebras in characteristic zero [3, 8]. A remaining question was the structure of $\mathcal{B r}(\mathcal{D})$ as a pre-Lie algebra. The aim of the present text is to prove that $\operatorname{Br}(\mathcal{D})$ is a free pre-Lie algebra. We use for this the notion of non-associative permutative algebra [14] and a manipulation of formal series. More precisely, we introduce in the second section of this text a non-associative permutative product \star on $\operatorname{Br}(\mathcal{D})$ and we show that $(\mathcal{B} r(\mathcal{D}), \star)$ is free. As a corollary, we prove that the abelianisation of $\mathcal{H}_{P R}^{\mathcal{D}}$ (which is not $\mathcal{H}_{R}^{\mathcal{D}}$), is isomorphic to a Hopf algebra $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$ for a good choice of \mathcal{D}^{\prime}. This implies that $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is a cofree coalgebra and we recover in a different way the result of freeness of $\mathcal{B} r(\mathcal{D})$ as a Lie algebra in characteristic zero. Note that a similar result for algebras with two compatible associative products is proved with the same pattern in [6].

Notations. We denote by K a commutative field of characteristic zero. All objects (vector spaces, algebras...) will be taken over K.

1 A description of free pre-Lie and brace algebras

1.1 Rooted trees and planar rooted trees

Definition 1

1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t. The weight of t is the number of its vertices. The set of rooted trees will be denoted by \mathcal{T}.
2. A planar rooted tree t is a rooted tree with an imbedding in the plane. the set of planar rooted trees will be denoted by \mathcal{T}_{P}.
3. Let \mathcal{D} be a nonempty set. A rooted tree decorated by \mathcal{D} is a rooted tree with an application from the set of its vertices into \mathcal{D}. The set of rooted trees decorated by \mathcal{D} will be denoted by $\mathcal{T}^{\mathcal{D}}$.
4. Let \mathcal{D} be a nonempty set. A planar rooted tree decorated by \mathcal{D} is a planar tree with an application from the set of its vertices into \mathcal{D}. The set of planar rooted trees decorated by \mathcal{D} will be denoted by $\mathcal{T}_{P}^{\mathcal{D}}$.

Examples.

1. Rooted trees with weight smaller than 5 :

$$
\ldots, \forall, v, \forall, \forall, \forall, \forall, \forall, \forall, \forall, \forall, \forall, \forall,
$$

2. Rooted trees decorated by \mathcal{D} with weight smaller than 4:

$$
\begin{aligned}
& { }_{\cdot}{ }_{a}, a \in \mathcal{D}, \quad \mathbf{:}_{a}^{b},(a, b) \in \mathcal{D}^{2}, \quad{ }^{b} \bigvee_{a}{ }^{c}={ }^{c} \bigvee_{a}{ }^{b}, \mathfrak{l}_{a}^{c},(a, b, c) \in \mathcal{D}^{3},
\end{aligned}
$$

3. Planar rooted trees with weight smaller than 5:

$$
.,: \vee, \sharp, \vee, \forall, \forall, Y, \vdots, v, \forall, \forall, \forall, \forall, \forall, \forall, \forall, \forall, Y, Y, \forall,: \downarrow
$$

4. Planar rooted trees decorated by \mathcal{D} with weight smaller than 4 :

$$
\begin{aligned}
& { }_{\cdot}, a \in \mathcal{D}, \quad \mathbf{:}_{a}^{b},(a, b) \in \mathcal{D}^{2}, \quad{ }^{b} \boldsymbol{V}_{a}^{c}, \mathfrak{!}_{a}^{c},(a, b, c) \in \mathcal{D}^{3},
\end{aligned}
$$

Let t_{1}, \ldots, t_{n} be elements of $\mathcal{T}^{\mathcal{D}}$ and let $d \in \mathcal{D}$. We denote by $B_{d}\left(t_{1} \ldots t_{n}\right)$ the rooted tree obtained by grafting t_{1}, \ldots, t_{n} on a common root decorated by d. For example, $B_{d}\left(:_{a}^{b} \cdot{ }_{c}\right)={ }^{b}{ }^{b}{ }_{d}{ }_{d}^{c}$. This application B_{d} can be extended in an operator:

$$
B_{d}:\left\{\begin{array}{rll}
K\left[\mathcal{T}^{\mathcal{D}}\right] & \longrightarrow & K \mathcal{T}^{\mathcal{D}} \\
t_{1} \ldots t_{n} & \longrightarrow & B_{d}\left(t_{1} \ldots t_{n}\right),
\end{array}\right.
$$

where $K\left[\mathcal{T}^{\mathcal{D}}\right]$ is the polynomial algebra generated by $\mathcal{T}^{\mathcal{D}}$ over K and $K \mathcal{T}^{\mathcal{D}}$ is the K-vector space generated by $\mathcal{T}^{\mathcal{D}}$. This operator is monic, and moreover $K \mathcal{T}^{\mathcal{D}}$ is the direct sum of the images of the B_{d} 's, $d \in \mathcal{D}$.

Similarly, let t_{1}, \ldots, t_{n} be elements of $\mathcal{T}_{P}^{\mathcal{D}}$ and let $d \in \mathcal{D}$. We denote by $B_{d}\left(t_{1} \ldots t_{n}\right)$ the planar rooted tree obtained by grafting t_{1}, \ldots, t_{n} in this order from left to right on a common root decorated by d. For example, $B_{a}\left(\mathfrak{:}_{b}^{c} \cdot{ }_{d}\right)={ }^{{ }^{c} \bigvee_{a}{ }^{d}}$ and $B_{a}\left(\cdot{ }_{d} \mathfrak{t}_{b}^{c}\right)={ }^{d} \boldsymbol{\bigvee}_{a}{ }^{c}$. This application B_{d} can be extended in an operator:

$$
B_{d}:\left\{\begin{array}{lll}
K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle & \longrightarrow & K \mathcal{T}_{P}^{\mathcal{D}} \\
t_{1} \ldots t_{n} & \longrightarrow & B_{d}\left(t_{1} \ldots t_{n}\right),
\end{array}\right.
$$

where $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ is the free associative algebra generated by $\mathcal{T}_{P}^{\mathcal{D}}$ over K and $K \mathcal{T}_{P}^{\mathcal{D}}$ is the K-vector space generated by $\mathcal{T}_{P}^{\mathcal{D}}$. This operator is monic, and moreover $K \mathcal{T}_{P}^{\mathcal{D}}$ is the direct sum of the images of the B_{d} 's, $d \in \mathcal{D}$.

1.2 Free pre-Lie algebras

Definition 2 A (left) pre-Lie algebra is a couple (A, \circ) where A is a vector space and \circ : $A \otimes A \longrightarrow A$ satisfying the following relation: for all $x, y, z \in A$,

$$
(x \circ y) \circ z-x \circ(y \circ z)=(y \circ x) \circ z-y \circ(x \circ z) .
$$

Let \mathcal{D} be a set. A description of the free pre-Lie algebra $\mathcal{P} \mathcal{L}(\mathcal{D})$ generated by \mathcal{D} is given in [4]. As a vector space, it has a basis given by $\mathcal{T}^{\mathcal{D}}$, and its pre-Lie product is given, for all $t_{1}, t_{2} \in \mathcal{T}^{\mathcal{D}}$, by:

$$
t_{1} \circ t_{2}=\sum_{s \text { vertex of } t_{2}} \text { grafting of } t_{1} \text { on } s .
$$

For example:

In other terms, the pre-Lie product can be inductively defined by:

$$
\left\{\begin{aligned}
t \circ \bullet_{d} & \longrightarrow B_{d}(t), \\
t \circ B_{d}\left(t_{1} \ldots t_{n}\right) & \longrightarrow B_{d}\left(t t_{1} \ldots t_{n}\right)+\sum_{i=1}^{n} B_{d}\left(t_{1} \ldots\left(t \circ t_{i}\right) \ldots t_{n}\right) .
\end{aligned}\right.
$$

Lemma 3 Let \mathcal{D} a set. We suppose that \mathcal{D} has a gradation $(\mathcal{D}(n))_{n \in \mathbb{N}}$ such that, for all $n \in \mathbb{N}, \mathcal{D}(n)$ is finite set of cardinality denoted by d_{n}, and $\mathcal{D}(0)$ is empty. We denote by $F_{\mathcal{D}}(x)$ the Poincaré-Hilbert series of this set:

$$
F_{\mathcal{D}}(x)=\sum_{n=1}^{\infty} d_{n} x^{n}
$$

This gradation induces a gradation $(\mathcal{P} \mathcal{L}(\mathcal{D})(n))_{n \in \mathbb{N}}$ of $\mathcal{P} \mathcal{L}(\mathcal{D})$. Moreover, for all $n \geq 0, \mathcal{P} \mathcal{L}(\mathcal{D})(n)$ is finite-dimensional. We denote by $t_{n}^{\mathcal{D}}$ its dimension. Then the Poincaré-Hilbert series of $\mathcal{P} \mathcal{L}(\mathcal{D})$ satisfies:

$$
F_{\mathcal{P L}(\mathcal{D})}(x)=\sum_{n=1}^{\infty} t_{n}^{\mathcal{D}} x^{n}=\frac{F_{\mathcal{D}}(x)}{\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\mathcal{D}}}}
$$

Proof. The formal series of the space $K\left[\mathcal{T}^{\mathcal{D}}\right]$ is given by:

$$
F(x)=\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{t_{i}^{D}}}
$$

Moreover, for all $d \in \mathcal{D}(n), B_{d}$ is homogeneous of degree n, so the Poincaré-Hilbert series of $\operatorname{Im}\left(B_{d}\right)$ is $x^{n} F(x)$. As $\mathcal{P} \mathcal{L}(\mathcal{D})=K \mathcal{T}^{\mathcal{D}}=\bigoplus \operatorname{Im}\left(B_{d}\right)$ as a graded vector space, its PoincaréHilbert formal series is:

$$
F_{\mathcal{P L}(\mathcal{D})}(x)=F(x) \sum_{n=1}^{\infty} d_{n} x^{n}=F(x) F_{\mathcal{D}}(x)
$$

which gives the announced result.

1.3 Free brace algebras

Definition $4[1,2,18]$ A brace algebra is a couple $(A,\langle \rangle)$ where A is a vector space and \rangle is a family of operators $A^{\otimes n} \longrightarrow A$ defined for all $n \geq 2$:

$$
\left\{\begin{aligned}
A^{\otimes n} & \longrightarrow A \\
a_{1} \otimes \ldots \otimes a_{n} & \longrightarrow\left\langle a_{1}, \ldots, a_{n-1} ; a_{n}\right\rangle
\end{aligned}\right.
$$

with the following compatibilities: for all $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}, c \in A$,

$$
\left\langle a_{1}, \ldots, a_{m} ;\left\langle b_{1}, \ldots, b_{n} ; c\right\rangle\right\rangle=\sum\left\langle\left\langle A_{0},\left\langle A_{1} ; b_{1}\right\rangle, A_{2},\left\langle A_{3} ; b_{2}\right\rangle, A_{4}, \ldots, A_{2 n-2},\left\langle A_{2 n-1} ; b_{n}\right\rangle, A_{2 n} ; c\right\rangle\right.
$$

where this sum runs over partitions of the ordered set $\left\{a_{1}, \ldots, a_{n}\right\}$ into (possibly empty) consecutive intervals $A_{0} \sqcup \ldots \sqcup A_{2 n}$. We use the convention $\langle a\rangle=a$ for all $a \in A$.

For example, if A is a brace algebra and $a, b, c \in A$:

$$
\langle a ;\langle b ; c\rangle\rangle=\langle a, b ; c\rangle+\langle b, a ; c\rangle+\langle\langle a ; b\rangle ; c\rangle .
$$

As an immediate corollary, $(A,\langle-;-\rangle)$ is a pre-Lie algebra. Here is another example of relation in a brace algebra: for all $a, b, c, d \in A$,

$$
\langle a, b ;\langle c ; d\rangle\rangle=\langle a, b, c ; d\rangle+\langle a,\langle b ; c\rangle ; d\rangle+\langle\langle a, b ; c\rangle ; d\rangle+\langle a, c, b ; d\rangle+\langle\langle a ; c\rangle, b ; d\rangle+\langle c, a, b ; d\rangle
$$

Let \mathcal{D} be a set. A description of the free brace algebra $\mathcal{B} r(\mathcal{D})$ generated by \mathcal{D} is given in $[2,9]$. As a vector space, it has a basis given by $\mathcal{T}_{P}^{\mathcal{D}}$ and the brace structure is given, for all $t_{1}, \ldots, t_{n} \in \mathcal{T}_{P}^{\mathcal{D}}$, by:

$$
\left\langle t_{1}, \ldots ; t_{n}\right\rangle=\sum \text { graftings of } t_{1} \ldots t_{n-1} \text { over } t_{n}
$$

Note that for any vertex s of t_{n}, there are several ways of grafting a planar tree on s. For example:

As a consequence, the pre-Lie product of $\mathcal{B} r(\mathcal{D})$ can be inductively defined in this way:

$$
\left\{\begin{aligned}
\left\langle t ; \cdot{ }_{d}\right\rangle & \longrightarrow B_{d}(t), \\
\left\langle t ; B_{d}\left(t_{1} \ldots t_{n}\right)\right\rangle & \longrightarrow \sum_{i=0}^{n} B_{d}\left(t_{1} \ldots t_{i} t t_{i+1} \ldots t_{n}\right)+\sum_{i=1}^{n} B_{d}\left(t_{1} \ldots t_{i-1}\left\langle t ; t_{i}\right\rangle t_{i+1} \ldots t_{n}\right) .
\end{aligned}\right.
$$

Proposition $5 \mathcal{B r}(\mathcal{D})$ is the free brace algebra generated by \mathcal{D}.
Proof. From [2, 9].
Lemma 6 Let \mathcal{D} a set, with the hypotheses and notations of lemma 3. The gradation of \mathcal{D} induces a gradation $(\mathcal{B r}(\mathcal{D})(n))_{n \in \mathbb{N}}$ of $\mathcal{B} r(\mathcal{D})$. Moreover, for all $n \geq 0, \mathcal{B} r(\mathcal{D})(n)$ is finitedimensional. Then the Poincaré-Hilbert series of $\mathcal{B} r(\mathcal{D})$ is:

$$
F_{\mathcal{B} r(\mathcal{D})}(x)=\sum_{n=1}^{\infty} t_{n}^{\prime \mathcal{D}} x^{n}=\frac{1-\sqrt{1-4 F_{\mathcal{D}}(x)}}{2}
$$

Proof. The Poincaré-Hilbert formal series of $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ is given by:

$$
F(x)=\frac{1}{1-F_{\mathcal{B} r(\mathcal{D})}(x)}
$$

Moreover, for all $d \in \mathcal{D}(n), B_{d}$ is homogeneous of degree n, so the Poincaré-Hilbert series of $\operatorname{Im}\left(B_{d}\right)$ is $x^{n} F(x)$. As $\mathcal{B} r(\mathcal{D})=K \mathcal{T}_{P}^{\mathcal{D}}=\bigoplus \operatorname{Im}\left(B_{d}\right)$ as a graded vector space, its PoincaréHilbert formal series is:

$$
F_{\mathcal{B} r(\mathcal{D})}(x)=F(x) \sum_{n=1}^{\infty} d_{n} x^{n}=F(x) F_{\mathcal{D}}(x)
$$

As a consequence, $F_{\mathcal{B} r(\mathcal{D})}(x)-F_{\mathcal{B} r(\mathcal{D})}(x)^{2}=F_{\mathcal{D}}(x)$, which implies the announced result.

2 A non-associative permutative product on $\mathcal{B} r(\mathcal{D})$

2.1 Definition and recalls

The following definition is introduced in [14]:
Definition 7 A (left) non-associative permutative algebra is a couple (A, \star), where A is a vector space and $\star: A \otimes A \longrightarrow A$ satisfies the following property: for all $x, y, z \in A$,

$$
x \star(y \star z)=y \star(x \star z)
$$

Let \mathcal{D} be a set. A description of the free non-associative permutative algebra $\mathcal{N} \mathcal{A} \mathcal{P e r m}(\mathcal{D})$ generated by \mathcal{D} is given in [14]. As a vector space, $\mathcal{N} \mathcal{A P} \operatorname{erm}(\mathcal{D})$ is equal to $K \mathcal{T}^{\mathcal{D}}$. The nonassociative permutative product is given in this way: for all $t_{1} \in \mathcal{T}^{D}, t_{2}=B_{d}\left(F_{2}\right) \in \mathcal{T}^{D}$,

$$
t_{1} \star t_{2}=B_{d}\left(t_{1} F_{2}\right)
$$

In other terms, $t_{1} \star t_{2}$ is the tree obtained by grafting t_{1} on the root of t_{2}. As $\mathcal{N} \mathcal{A P e r m}(\mathcal{D})=$ $\mathcal{P} \mathcal{L}(\mathcal{D})$ as a vector space, lemma 3 is still true when one replaces $\mathcal{P} \mathcal{L}(\mathcal{D})$ by $\mathcal{N} \mathcal{A P} \operatorname{erm}(\mathcal{D})$.

2.2 Permutative structures on planar rooted trees

Let us fix now a non-empty set \mathcal{D}. We define the following product on $\mathcal{B r}(\mathcal{D})=K \mathcal{T}_{P}^{\mathcal{D}}$: for all $t \in \mathcal{T}_{P}^{\mathcal{D}}, t^{\prime}=B_{d}\left(t_{1} \ldots t_{n}\right) \in \mathcal{T}_{P}^{\mathcal{D}}$,

$$
t \star t^{\prime}=\sum_{i=0}^{n} B_{d}\left(t_{1} \ldots t_{i} t t_{i+1} \ldots t_{n}\right) .
$$

Proposition $8(\mathcal{B} r(\mathcal{D}), \star)$ is a non-associative permutative algebra.
Proof. Let us give $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ its shuffle product: for all $t_{1}, \ldots, t_{m+n} \in \mathcal{T}_{P}^{\mathcal{D}}$,

$$
\left(t_{1} \ldots t_{m}\right) *\left(t_{m+1} \ldots t_{m+n}\right)=\sum_{\sigma \in S h(m, n)} t_{\sigma^{-1}(1)} \ldots t_{\sigma^{-1}(m+n)},
$$

where $\operatorname{Sh}(m, n)$ is the set of permutations of S_{m+n} which are increasing on $\{1, \ldots, m\}$ and $\{m+1, \ldots, m+n\}$. It is well known that $*$ is an associative, commutative product. For example, for all $t, t_{1}, \ldots, t_{n} \in \mathcal{T}_{P}^{\mathcal{D}}$:

$$
t *\left(t_{1} \ldots t_{n}\right)=\sum_{i=0}^{n} t_{1} \ldots t_{i} t t_{i+1} \ldots t_{n}
$$

As a consequence, for all $x \in K \mathcal{T}_{P}^{\mathcal{D}}, y \in K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, d \in \mathcal{D}$:

$$
\begin{equation*}
x \star B_{d}(y)=B_{d}(x * y) . \tag{1}
\end{equation*}
$$

Let $t_{1}, t_{2}, t_{3}=B_{d}\left(F_{3}\right) \in \mathcal{T}_{P}^{\mathcal{D}}$. Then, using (1):

$$
\begin{aligned}
t_{1} \star\left(t_{2} \star t_{3}\right) & =t_{1} \star B_{d}\left(t_{2} * F_{3}\right) \\
& =B_{d}\left(t_{1} *\left(t_{2} * F_{3}\right)\right) \\
& =B_{d}\left(\left(t_{1} * t_{2}\right) * F_{3}\right) \\
& =B_{d}\left(\left(t_{2} * t_{1}\right) * F_{3}\right) \\
& =B_{d}\left(t_{2} *\left(t_{1} * F_{3}\right)\right) \\
& =t_{2} \star\left(t_{1} \star t_{3}\right) .
\end{aligned}
$$

So \star is a non-associative permutative product on $\mathcal{B} r(\mathcal{D})$.

2.3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a non-associative permutative algebra

We now assume that \mathcal{D} is finite, of cardinality D. We can then assume that $\mathcal{D}=\{1, \ldots, D\}$.
Theorem $9(\mathcal{B r}(\mathcal{D}), \star)$ is a free non-associative permutative algebra.
Proof. We graduate \mathcal{D} by putting $\mathcal{D}(1)=\mathcal{D}$. Then $\mathcal{B} r(\mathcal{D})$ is graded, the degree of a tree $t \in \mathcal{T}_{P}^{\mathcal{D}}$ being the number of its vertices. By lemma 6 , as the Poincaré-Hilbert series of \mathcal{D} is $F_{\mathcal{D}}(x)=D x$, the Poincaré-Hilbert series of $\mathcal{B} r(\mathcal{D})$ is:

$$
\begin{equation*}
F_{\mathcal{B} r(\mathcal{D})}(x)=\sum_{i=1}^{\infty} t_{i}^{\prime \mathcal{D}} x^{i}=\frac{1-\sqrt{1-4 D x}}{2} . \tag{2}
\end{equation*}
$$

We consider the following isomorphism of vector spaces:

$$
B:\left\{\begin{aligned}
\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle\right)^{d} & \longrightarrow \mathcal{B} r(\mathcal{D}) \\
\left(F_{1}, \ldots, F_{D}\right) & \longrightarrow \sum_{i=1}^{d} B_{i}\left(F_{i}\right) .
\end{aligned}\right.
$$

Let us fix a graded complement V of the graded subspace $\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})$ in $\mathcal{B} r(\mathcal{D})$. Because $\mathcal{B r}(\mathcal{D})$ is a graded and connected (that is to say $\mathcal{B r}(\mathcal{D})(0)=(0)), V$ generates $\operatorname{Br}(\mathcal{D})$ as a non-associative permutative algebra. By (1), $\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})=B\left(\left(\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle\right)^{D}\right)$.

Let us then consider $\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$, that is to say the ideal of $\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, *\right)$ generated by $\mathcal{T}_{P}^{\mathcal{D}}$. It is known that $\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, *\right)$ is isomorphic to a symmetric algebra (see [17]). Hence, there exists a graded subspace W of $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$, such that $\left(K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle, *\right) \approx S(W)$ as a graded algebra. We can assume that W contains $K \mathcal{T}_{P}^{D}$. As a consequence:

$$
\begin{equation*}
\frac{K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle}{\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle} \approx \frac{S(W)}{S(W) \mathcal{T}_{P}^{\mathcal{D}}} \approx S\left(\frac{W}{K \mathcal{T}_{P}^{\mathcal{D}}}\right) . \tag{3}
\end{equation*}
$$

We denote by w_{i} the dimension of $W(i)$ for all $i \in \mathbb{N}$. Then, the Poincaré-Hilbert formal series of $S\left(\frac{W}{K \mathcal{T}_{P}^{D}}\right)$ is:

$$
\begin{equation*}
F_{S\left(\frac{W}{K \tau_{P}^{D}}\right)}(x)=\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{w_{i}-t_{i}^{\prime D}}} . \tag{4}
\end{equation*}
$$

Moreover, the Poincaré-Hilbert formal series of $K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle \approx S(W)$ is, by (2):

$$
\begin{equation*}
F_{S(W)}(x)=\frac{1}{1-F_{\mathcal{B r}(\mathcal{D})}(x)}=\frac{1-\sqrt{1-4 D x}}{2 D x}=\frac{F_{\mathcal{B r} r(\mathcal{D})}(x)}{D x}=\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{w_{i}}} . \tag{5}
\end{equation*}
$$

So, from (3), using (4) and (5), the Poincaré-Hilbert series of $\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle$ is:

$$
\begin{aligned}
F_{\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle}(x) & =F_{S(W)}(x)-F_{S\left(\frac{W}{K \mathcal{T}_{P}^{D}}\right)}(x) \\
& =\prod_{i=1}^{\infty} \frac{1}{\left(1-x^{i}\right)^{w_{i}}}\left(1-\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime \mathcal{D}}}\right) \\
& =\frac{F_{\mathcal{B r}(\mathcal{D})}(x)}{D x}\left(1-\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime \mathcal{D}}}\right) .
\end{aligned}
$$

As B is homogeneous of degree 1, the Poincaré-Hilbert formal series of $\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})$ is:

$$
F_{\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})}(x)=D x F_{\mathcal{T}_{P}^{\mathcal{D}} * K\left\langle\mathcal{T}_{P}^{\mathcal{D}}\right\rangle}(x)=F_{\mathcal{B} r(\mathcal{D})}(x)\left(1-\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\mathcal{D}}}\right) .
$$

Finally, the Poincaré-Hilbert formal series of V is:

$$
F_{V}(x)=F_{\mathcal{B} r(\mathcal{D})}(x)-F_{\mathcal{B} r(\mathcal{D}) \star \mathcal{B} r(\mathcal{D})}(x)=F_{\mathcal{B} r(\mathcal{D})}(x) \prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime \mathcal{D}}} .
$$

Let us now fix a basis $\left(v_{i}\right)_{i \in I}$ of V, formed of homogeneous elements. There is a unique epimorphism of non-associative permutative algebras:

$$
\Theta:\left\{\begin{aligned}
\mathcal{N} \mathcal{A} \mathcal{P e r m}(I) & \longrightarrow \mathcal{B} r(\mathcal{D}) \\
\cdot_{i} & \longrightarrow v_{i} .
\end{aligned}\right.
$$

We give to $i \in I$ the degree of $v_{i} \in \mathcal{B} r(\mathcal{D})$. With the induced gradation of $\mathcal{N} \mathcal{A} \mathcal{P} \operatorname{erm}(I), \Theta$ is a graded epimorphism. In order to prove that it is an isomorphism, it is enough to prove that the Poincaré-Hilbert series of $\mathcal{N} \mathcal{A} \mathcal{P} \operatorname{erm}(I)$ and $\mathcal{B r}(\mathcal{D})$ are equal. By lemma 3, the formal series of $\mathcal{N} \mathcal{A} \mathcal{P e r m}(I)$, or, equivalently, of $\mathcal{P} \mathcal{L}(I)$, is:

$$
\begin{equation*}
F_{\mathcal{N A P} \operatorname{erm}(I)}(x)=\sum_{n=1}^{\infty} t_{i}^{\mathcal{D}} x^{i}=\frac{F_{V}(x)}{\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{i}{ }_{i}^{\mathcal{D}}}=F_{\mathcal{B} r(\mathcal{D})}(x) \prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\prime \mathcal{D}}-t_{i}^{\mathcal{D}}} \tag{6}
\end{equation*}
$$

Let us prove inductively that $t_{n}=t_{n}^{\prime}$ for all $n \in \mathbb{N}$. It is immediate if $n=0$, as $t_{0}=t_{0}^{\prime}=0$. Let us assume that $t_{i}^{\mathcal{D}}=t_{i}^{\prime \mathcal{D}}$ for all $i<n$. Then:

$$
\prod_{i=1}^{\infty}\left(1-x^{i}\right)^{t_{i}^{\mathcal{D}}-t_{i}^{\prime \mathcal{D}}}=1+\mathcal{O}\left(x^{n}\right)
$$

As $t_{0}^{\prime}=0$, the coefficient of x^{n} in (6) is $t_{n}=t_{n}^{\prime}$. So $F_{\mathcal{N A P e r m}(I)}(x)=F_{S(W)}(x)$, and Θ is an isomorphism.

3 Freeness of $\mathcal{B} r(\mathcal{D})$ as a pre-Lie algebra

3.1 Main theorem

Theorem 10 Let \mathcal{D} be a finite set. Then $\operatorname{Br}(\mathcal{D})$ is a free pre-Lie algebra.
Proof. We give a \mathbb{N}^{2}-gradation on $\mathcal{B r}(\mathcal{D})$ in the following way:

$$
\mathcal{B} r(\mathcal{D})(k, l)=\operatorname{Vect}\left(t \in \mathcal{T}_{P}^{\mathcal{D}} / t \text { has } k \text { vertices and the fertility of its root is } l\right) .
$$

The following points are easy:

1. For all $i, j, k, l \in \mathbb{N}, \mathcal{B} r(\mathcal{D})(i, j) \star \mathcal{B} r(\mathcal{D})(k, l) \subseteq \mathcal{B} r(\mathcal{D})(i+k, l+1)$.
2. For all $i, j, k, l \in \mathbb{N}, t_{1} \in \mathcal{B} r(\mathcal{D})(i, j), t_{2} \in \mathcal{B} r(\mathcal{D})(k, l),\left\langle t_{1} ; t_{2}\right\rangle-t_{1} \star t_{2} \in \operatorname{Br}(\mathcal{D})(i+k, l)$.

Let us fix a complement V of $\mathcal{B r}(\mathcal{D}) \star \operatorname{Br} r(\mathcal{D})$ in $\mathcal{B} r(\mathcal{D})$ which is \mathbb{N}^{2}-graded. Then $\operatorname{Br}(\mathcal{D})$ is isomorphic as a \mathbb{N}-graded non-associative permutative algebra to $\mathcal{N} \mathcal{A P} \operatorname{Perm}(V)$, the free nonassociative permutative algebra generated by V.

Let us prove that V also generates $\mathcal{B} r(\mathcal{D})$ as a pre-Lie algebra. As $\mathcal{B} r(\mathcal{D})$ is \mathbb{N}-graded, with $\mathcal{B} r(\mathcal{D})(0)$, it is enough to prove that $\mathcal{B} r(\mathcal{D})=V+\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$. Let $x \in \mathcal{B} r(\mathcal{D})(k, l)$, let us show that $x \in V+\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B r}(\mathcal{D})\rangle$ by induction on l. If $l=0$, then $t \in \mathcal{B} r(\mathcal{D})(1)=V(1)$. If $l=1$, we can suppose that $x=B_{d}(t)$, where $t \in \mathcal{T}_{P}^{\mathcal{D}}$. Then $x=\left\langle t ; \cdot{ }_{d}\right\rangle \in\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$. Let us assume the result for all $l^{\prime}<l$. As V generates $(\mathcal{B r}(\mathcal{D}), \star)$, we can write x as:

$$
x=x^{\prime}+\sum_{i} x_{i} \star y_{i},
$$

where $x^{\prime} \in V$ and $x_{i}, y_{i} \in \mathcal{B} r(\mathcal{D})$. By the first point, we can assume that:

$$
\sum_{i} x_{i} \otimes y_{i} \in \bigoplus_{i+j=k} \mathcal{B} r(\mathcal{D})(i) \otimes \mathcal{B} r(\mathcal{D})(j, l-1) .
$$

So, by the second point:

$$
\begin{aligned}
x-x^{\prime}-\sum_{i}\left\langle x_{i} ; y_{i}\right\rangle & =\sum_{i} x_{i} \star y_{i}-\left\langle x_{i} ; y_{i}\right\rangle \\
& \in \sum_{i+j=k} \mathcal{B} r(\mathcal{D})(i+j, l-1) \\
& \in V+\langle\mathcal{B} r(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle,
\end{aligned}
$$

by the induction hypothesis. So $x \in V+\langle\mathcal{B r}(\mathcal{D}) ; \mathcal{B} r(\mathcal{D})\rangle$.
Hence, there is an homogeneous epimorphism:

$$
\left\{\begin{array}{rll}
\mathcal{P} \mathcal{L}(V) & \longrightarrow \mathcal{B} r(\mathcal{D}) \\
v \in V & \longrightarrow & v .
\end{array}\right.
$$

As $\mathcal{P} \mathcal{L}(V), \mathcal{N} \mathcal{A} \mathcal{P e r m}(V)$ and $\mathcal{B} r(\mathcal{D})$ have the same Poincaré-Hilbert formal series, this is an isomorphism.

We now give the number of generators of $\mathcal{B r}(\mathcal{D})$ in degree n when $\operatorname{card}(\mathcal{D})=D$ for small values of n, computed using lemmas 3 and 6 :

1. For $n=1, D$.
2. For $n=2,0$.
3. For $n=3, \frac{D^{2}(D-1)}{2}$.
4. For $n=4, \frac{D^{2}(2 D-1)(2 D+1)}{3}$.
5. For $n=5, \frac{D^{2}\left(31 D^{3}-2 D^{2}-3 D-2\right)}{8}$.
6. For $n=6, \frac{D^{2}\left(356 D^{4}-20 D^{3}-5 D^{2}+5 D-6\right)}{30}$.
7. For $n=7, \frac{D^{2}\left(5441 D^{5}-279 D^{4}-91 D^{3}-129 D^{2}-22 D-24\right)}{144}$.

3.2 Corollaries

Corollary 11 Let \mathcal{D} be any set. Then $\mathcal{B r}(\mathcal{D})$ is a free pre-Lie algebra.
Proof. We graduate $\mathcal{B} r(\mathcal{D})$ by putting all the $\cdot d^{\prime}$'s homogeneous of degree 1 . Let V be a graded complement of $\langle\mathcal{B} r(\mathcal{D}), \mathcal{B} r(\mathcal{D})\rangle$. There exists an epimorphism of graded pre-Lie algebras:

$$
\Theta:\left\{\begin{array}{rll}
\mathcal{P} \mathcal{L}(V) & \longrightarrow & \mathcal{B} r(\mathcal{D}) \\
\cdot v & \longrightarrow & v .
\end{array}\right.
$$

Let x be in the kernel of Θ. There exists a finite subset \mathcal{D}^{\prime} of \mathcal{D}, such that all the decorations of the vertices of the trees appearing in x belong to $\mathcal{B} r\left(\mathcal{D}^{\prime}\right)$. By the preceding theorem, as $\mathcal{B} r\left(\mathcal{D}^{\prime}\right)$ is a free pre-Lie algebra, $x=0$. So Θ is an isomorphism.

Corollary 12 Let \mathcal{D} be a graded set, satisfying the conditions of lemma 3. There exists a graded set \mathcal{D}^{\prime}, such that $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{\text {ab }}$ is isomorphic, as a graded Hopf algebra, to $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$.

Proof. $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is isomorphic, as a graded Hopf algebra, to $\mathcal{U}(\mathcal{B} r(\mathcal{D}))^{*}$. For a good choice of $\mathcal{D}^{\prime}, \mathcal{B} r(\mathcal{D})$ is isomorphic to $\mathcal{P} \mathcal{L}\left(\mathcal{D}^{\prime}\right)$ as a pre-Lie algebra, so also as a Lie algebra. $\operatorname{So} \mathcal{U}(\mathcal{B} r(\mathcal{D}))$ is isomorphic to $\mathcal{U}\left(\mathcal{P} \mathcal{L}\left(\mathcal{D}^{\prime}\right)\right)$. Dually, $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is isomorphic to $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$.

Corollary 13 Let \mathcal{D} be graded set, satisfying the conditions of lemma 3. Then $\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)_{a b}$ is a cofree coalgebra. Moreover, $\mathcal{B r}(\mathcal{D})$ is free as a Lie algebra.

Proof. It is proved in [7] that $\left(\mathcal{H}_{R}^{\mathcal{D}^{\prime}}\right)^{*}$ is a free algebra, so $\operatorname{Prim}\left(\left(\mathcal{H}_{R}^{\mathcal{D}^{\prime}}\right)^{*}\right)=\mathcal{P} \mathcal{L}\left(\mathcal{D}^{\prime}\right)$ is a free Lie algebra and $\mathcal{H}_{R}^{\mathcal{D}^{\prime}}$ is a cofree coalgebra. $\operatorname{So} \operatorname{Prim}\left(\left(\mathcal{H}_{P R}^{\mathcal{D}}\right)^{*}\right)=\mathcal{B} r(\mathcal{D})$ is a free Lie algebra and $\mathcal{H}_{P R}^{\mathcal{D}}$ is a cofree coalgebra.

References

[1] Marcelo Aguiar, Infinitesimal bialgebras, pre-Lie and dendriform algebras, Hopf algebras, Lecture Notes in Pure and Appl. Math., vol. 237, Dekker, 2004, arXiv:math/0211074, pp. 133.
[2] Frédéric Chapoton, Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces, J. Pure Appl. Algebra 168 (2002), no. 1, 1-18, arXiv:math/0005253.
[3] ___, Free pre-lie algebras are free as lie algebras, arXiv:0704.2153, to appear in Bulletin canadien de mathématiques, 2007.
[4] Frédéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 8 (2001), 395-408, arXiv:math/0002069.
[5] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/9808042.
[6] Vladimir Dotsenko, Compatible associative products and trees, arXiv:0809.1773, to appear in Algebra and Number Theory, 2008.
[7] Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), no. 1, 85-120, arXiv:math.QA/0105210.
[8] _L_, Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002), no. 3, 193-239, arXiv:math.QA/0105212.
[9] , Les algèbres de Hopf des arbres enracinés, II, Bull. Sci. Math. 126 (2002), no. 4, 1249-288, arXiv:math.QA/0105212.
[10] Robert L. Grossman and Richard G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126 (1989), no. 1, 184-210, arXiv:0711.3877.
[11] \qquad , Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math. 72 (1990), no. 1-2, 109-117.
[12] Michael E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3795-3811.
[13] Ralf Holtkamp, Comparison of Hopf algebras on trees, Arch. Math. (Basel) 80 (2003), no. 4, 368-383.
[14] Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), no. 1, 1-18, arXiv:math/0504296.
[15] Jean-Louis Loday and Maria O. Ronco, Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), no. 2, 293-309.
[16] Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211-219.
[17] Rimhak Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2) 68 (1958), 210-220.
[18] Maria Ronco, A Milnor-Moore theorem for dendriform Hopf algebras, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 2, 109-114.

