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ABSTRACT. Let g be a free brace algebra. This structure implies that g is also a pre-Lie
algebra and a Lie algebra. It is already known that g is a free Lie algebra. We prove here that
g is also a free pre-Lie algebra, using a description of g with the help of planar rooted trees, a
permutative product, and manipulations on the Poincaré-Hilbert series of g.
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Introduction

Let D be a set. The Connes-Kreimer Hopf algebra of rooted trees HE is introduced in [5] in the
context of Quantum Field Theory and Renormalization. It is a graded, connected, commutative,
non-cocommutative Hopf algebra. If the characteristic of the base field is zero, the Cartier-
Quillen-Milnor-Moore theorem insures that its dual (HE)* is the enveloping algebra of a Lie
algebra, based on rooted trees (note that (HE)* is isomorphic to the Grossman-Larson Hopf
algebra [10, 11|, as proved in [12, 16]). This Lie algebra admits an operadic interpretation: it
is the free pre-Lie algebra PL(D) generated by D, as shown in [4]; recall that a (left) pre-Lie
algebra, also called a Vinberg algebra or a left-symmetric algebra, is a vector space V with a
product o satisfying:

(zoy)oz—zo(yoz)=(yox)oz—yo(rox).



A non-commutative version of these objects is introduced in |9, 13]. Replacing rooted trees
by planar rooted trees, a Hopf algebra ’HER is constructed. This self-dual Hopf algebra is
isomorphic to the Loday-Ronco free dendriform algebra based on planar binary trees [15], so by
the dendriform Milnor-Moore theorem [2, 18], the space of its primitive elements, or equivalently
the space of the primitive elements of its dual, admits a structure of brace algebra, described in
terms of trees in [8] by graftings of planar forests on planar trees, and is in fact the free brace
algebra Br(D) generated by D. This structure implies also a structure of pre-Lie algebra on
Br(D).

As a summary, the brace structure of Br(D) implies a pre-Lie structure on Br(D), which
implies a Lie structure on Br(D). It is already proved in several ways that PL(D) and Br(D)
are free Lie algebras in characteristic zero [3, 8]. A remaining question was the structure of Br(D)
as a pre-Lie algebra. The aim of the present text is to prove that Br(D) is a free pre-Lie algebra.
We use for this the notion of non-associative permutative algebra [14] and a manipulation of
formal series. More precisely, we introduce in the second section of this text a non-associative
permutative product x on Br(D) and we show that (Br(D),*) is free. As a corollary, we prove
that the abelianisation of HBp (which is not HE), is isomorphic to a Hopf algebra Hg/ for a
good choice of D’. This implies that (HE5)ap is a cofree coalgebra and we recover in a different
way the result of freeness of Br(D) as a Lie algebra in characteristic zero. Note that a similar
result for algebras with two compatible associative products is proved with the same pattern in

[6].

Notations. We denote by K a commutative field of characteristic zero. All objects (vector
spaces, algebras...) will be taken over K.

1 A description of free pre-Lie and brace algebras

1.1 Rooted trees and planar rooted trees
Definition 1

1. A rooted tree t is a finite graph, without loops, with a special vertex called the root of t.
The weight of t is the number of its vertices. The set of rooted trees will be denoted by 7.

2. A planar rooted tree t is a rooted tree with an imbedding in the plane. the set of planar
rooted trees will be denoted by 7p.

3. Let D be a nonempty set. A rooted tree decorated by D is a rooted tree with an application
from the set of its vertices into D. The set of rooted trees decorated by D will be denoted
by 7P.

4. Let D be a nonempty set. A planar rooted tree decorated by D is a planar tree with an
application from the set of its vertices into D. The set of planar rooted trees decorated by
D will be denoted by TPD .

Examples.

1. Rooted trees with weight smaller than 5:

viv byl v by dy vl

2. Rooted trees decorated by D with weight smaller than 4:

v a€D, 1, (ab)eD: V=V 1 (ab0)eD,
c d b d b c c cqpd de pc d
b%d :b%c :c\Vad :c\Vab :d%c :d\Vab’ bk/ad7 YZ _ YZ 7 127 (a,b,c,d) €D4



3. Planar rooted trees with weight smaller than 5:

vt bV Yl b b e vy b v vyl

4. Planar rooted trees decorated by D with weight smaller than 4:

ea, @ €D, 1%, (a,b) € D?, AR Eé, (a,b,c) € D3,

c c d cq,d d
g, e e Y 13, (a,b,c,d) € D
Let t1,...,t, be elements of 7P and let d € D. We denote by By(t;...t,) the rooted tree

b
obtained by grafting t1, ..., %, on a common root decorated by d. For example, By(15..) = a&/f .
This application By can be extended in an operator:

5. KITP] — KTP
d: tl...tn — Bd(tlu-tn)a

where K[7P] is the polynomial algebra generated by 77 over K and K7 is the K-vector space
generated by 7P. This operator is monic, and moreover K7 is the direct sum of the images
of the By's, d € D.

Similarly, let t1,...,t, be elements of 7 and let d € D. We denote by By(t...t,) the
planar rooted tree obtained by grafting t¢1,...,%¢, in this order from left to right on a common

b

root decorated by d. For example, B,(1§.4) = K/ad and B, (.q15) = d\}ab . This application By

can be extended in an operator:

B, K(T®) — KT}
t1...t, — Bd(tl--~tn)a

where K (7, PD ) is the free associative algebra generated by TFZ,) over K and K TP? is the K-vector
space generated by 7, ]? . This operator is monic, and moreover K7, ]? is the direct sum of the
images of the By’s, d € D.

1.2 Free pre-Lie algebras

Definition 2 A (left) pre-Lie algebra is a couple (A, o) where A is a vector space and o :
A® A — A satistying the following relation: for all x,y,z € A,
(voy)oz—zo(yoz) = (yor)oz—yo(vox).

Let D be a set. A description of the free pre-Lie algebra PL(D) generated by D is given
in [4]. As a vector space, it has a basis given by 7P, and its pre-Lie product is given, for all
t1,t2 € TD7 by:

tioty = Z grafting of ¢; on s.

s vertex of to

For example:
b a' a b a' at
.aob\/dc :a\Vdc +b{/dc +b\}dc :a\Vdc +b&/dc +deb,
In other terms, the pre-Lie product can be inductively defined by:

tO.d e Bd(t),

n
toBg(ty...tn) — Ba(tti...tn)+ > Baltr...(tot).. .tn).
=1



Lemma 3 Let D a set. We suppose that D has a gradation (D(n))nen such that, for all
n € N, D(n) is finite set of cardinality denoted by d,,, and D(0) is empty. We denote by Fp(x)
the Poincaré-Hilbert series of this set:

x) = i dpz".
n=1

This gradation induces a gradation (PL(D)(n))nen of PL(D). Moreover, for alln > 0, PL(D)(n)
is finite-dimensional. We denote by tP its dimension. Then the Poincaré-Hilbert series of PL(D)

satisfies:
o0

Fprpy(x) =Y tha n:f%

n=1 H(l _ mi)t?

=1

Proof. The formal series of the space K[TP] is given by:

o0

=l

_z
1*11 l‘

Moreover, for all d € D(n), By is homogeneous of degree n, so the Poincaré-Hilbert series of
Im(By) is 2" F(z). As PL(D) = KTP = @ Im(B,) as a graded vector space, its Poincaré-
Hilbert formal series is:

Fprpy(x Z dpz" Fp(z),

which gives the announced result. O

1.3 Free brace algebras

Definition 4 [1, 2, 18] A brace algebra is a couple (A4, ()) where A is a vector space and ()
is a family of operators A®" — A defined for all n > 2:

A A
a1 ®...Q0a, — (a1,...,4p-1;0n),
with the following compatibilities: for all a1,...,am, b1,...,bn, c € A,
(a1, ... am; (b, ..., bnsc)) = Z<<A07 (A1;b1), A2, (A3;b2), Aa, ..., Aon—a, (A2p—15bp), Aoni ),

where this sum runs over partitions of the ordered set {ai,...,a,} into (possibly empty) con-
secutive intervals Ag Ll ... L Ag,. We use the convention (a) = a for all a € A.

For example, if A is a brace algebra and a,b,c € A:

(a; (b;0)) = (a,b;¢) + (b, a; c) + ((a; b); c).

As an immediate corollary, (A, (—; —)) is a pre-Lie algebra. Here is another example of relation
in a brace algebra: for all a,b,c,d € A,

(a,b; (c;d)) = (a,b,c;d) + (a, (b;¢); d) + ((a,b; ¢); d) + (a, ¢, b;d) + ((a; c),b; d) + (¢, a,b; d).

Let D be a set. A description of the free brace algebra Br(D) generated by D is given in
[2, 9]. As a vector space, it has a basis given by TPD and the brace structure is given, for all
t,...,tn € T2, by:

(t1,...5ty) = Z graftings of t1...t,_1 over t,

4



Note that for any vertex s of t,, there are several ways of grafting a planar tree on s. For
example:

b b c aq o b a a
(vayen; 18) = “V° +\}d 4 Ye +c{/d” + V.
As a consequence, the pre-Lie product of Br(D) can be inductively defined in this way:
<t; 'd> - Bd(t)v
n

(t; Ba(ty...tn)) — > Balti...tittij1...t +ZBd i1 () i - ).

Proposition 5 Br(D) is the free brace algebra generated by D.
Proof. From [2, 9. O

Lemma 6 Let D a set, with the hypotheses and notations of lemma 3. The gradation of
D induces a gradation (Br(D)(n))nen of Br(D). Moreover, for all n > 0, Br(D)(n) is finite-
dimensional. Then the Poincaré-Hilbert series of Br(D) is:

1—-4Fp(z
Fiop Ztmn: 5 ()_

Proof. The Poincaré-Hilbert formal series of K(7,P) is given by:

1

F(z) = W.

Moreover, for all d € D(n), By is homogeneous of degree n, so the Poincaré-Hilbert series of
Im(By) is 2"F(z). As Br(D) = KTF = @ Im(By) as a graded vector space, its Poincaré-
Hilbert formal series is:

Fa(p) Z dpx" Fp(x).
As a consequence, Fp.(p)(%) — Fpr(p) ()? = Fp(z), which implies the announced result. O

2 A non-associative permutative product on Br(D)

2.1 Definition and recalls

The following definition is introduced in [14]:

Definition 7 A (left) non-associative permutative algebra is a couple (A, *), where A is a
vector space and x: A ® A — A satisfies the following property: for all x,y,z € A,

*(yxz) =y*(x*2).

Let D be a set. A description of the free non-associative permutative algebra N APerm(D)
generated by D is given in [14]. As a vector space, NAPerm(D) is equal to K7P. The non-
associative permutative product is given in this way: for all t; € TP, t, = By(Fy) € TP,

t1xty = Bd(tlFQ).

In other terms, ¢ x t2 is the tree obtained by grafting ¢; on the root of to. As N APerm(D) =
PL(D) as a vector space, lemma 3 is still true when one replaces PL(D) by N APerm(D).



2.2 Permutative structures on planar rooted trees

Let us fix now a non-empty set D. We define the following product on Br(D) = K72 for all
te TP, t'=By(t1...tn) € TL,

n
txt = Z By(ty .. tittis1 ... tn).
=0

Proposition 8 (Br(D),*) is a non-associative permutative algebra.

Proof. Let us give K(TPD> its shuffle product: for all t1,...,tymin € 7,2,

(tl e tm) * (tm+1 e tm+n) = Z ta.—l(l) N to_l(ern)a
oc€eSh(m,n)
where Sh(m,n) is the set of permutations of Sp,4, which are increasing on {1,...,m} and
{m+1,...,m + n}. It is well known that % is an associative, commutative product. For
example, for all t,¢1,...,t, € TPD:

n

t(ty ... tn) :Ztl...tittm...tn.
=0

As a consequence, for all x € KT, y € K(T}), d € D:
x* By(y) = By(z x y). (1)
Let t1,t2,t3 = By(F3) € TF. Then, using (1):

t1 % (ta xt3) = t1 % Bg(te * F3)

By(t1 * (t2 x F3))

Bi((t1 % ta) * F3)
)
)

Bd((tg * tl) * F3
Bd(tg * (tl * Fg)
= l2% (tl *tg).

So * is a non-associative permutative product on Br(D). O

2.3 Freeness of Br(D) as a non-associative permutative algebra

We now assume that D is finite, of cardinality D. We can then assume that D = {1,...,D}.
Theorem 9 (Br(D),*) is a free non-associative permutative algebra.

Proof. We graduate D by putting D(1) = D. Then Br(D) is graded, the degree of a tree
t e ’T]? being the number of its vertices. By lemma 6, as the Poincaré-Hilbert series of D is
Fp(x) = Dz, the Poincaré-Hilbert series of Br(D) is:

itm ; 1—1—4Dz

Fgrpy(z) = )t 5 (2)

We consider the following isomorphism of vector spaces:

(K(T7))* — Br(D)

d
B:
(Fy,...,Fp) — Y Bi(F).
=1

6



Let us fix a graded complement V' of the graded subspace Br(D) + Br(D) in Br(D). Because
Br(D) is a graded and connected (that is to say Br(D)(0) = (0)), V generates Br(D) as a
non-associative permutative algebra. By (1), Br(D) x Br(D) = B((72 * K(TD)) ).

Let us then consider T2 x K(7/P), that is to say the ideal of (K(7),*) generated by T2 .
It is known that (K(Z2), ) is isomorphic to a symmetric algebra (see [17]). Hence, there exists
a graded subspace W of K(7}P), such that (K(T2),+) ~ S(W) as a graded algebra. We can
assume that W contains K7, 1? . As a consequence:

KPS0 s ()
TP« K(TP) = S(W)TP KTP)"

(3)

We denote by w; the dimension of W (i) for all i € N. Then, the Poincaré-Hilbert formal series
of § (K7D> is:

o

1
FS<W>(33):¢1_[1(1—$1M). (4)

KTpP
Moreover, the Poincaré-Hilbert formal series of K(7.F) ~ S(W) is, by (2):

1 71_m7FBT<D>(m>iﬁ 1
1— Fgypy(z) 2Dz -~ Dx  1ly

Fswy(r) =

So, from (3), using (4) and (5), the Poincaré-Hilbert series of T2 x K(7TF) is:

Fro.grpy (@) = Fsaw(z) - Fs(%) (x)
= Zl_[l(lxl)wl (1—21_11(1—33) )
_ Fpypy(2) O N
= Dy (1—}_[1(1—:2) )

As B is homogeneous of degree 1, the Poincaré-Hilbert formal series of Br(D) x Br(D) is:

00 gD
Fi(pyur(p) (¥) = DaFrp, gy (2) = Fgr(p) (2) (1 —Ja-ahn ) :
i=1
Finally, the Poincaré-Hilbert formal series of V' is:

0
t/D

Fy(2) = Fpyp)(2) — Farpyasro) (&) = Fpo(py(x) [J(1 — )"
=1

Let us now fix a basis (v;);er of V, formed of homogeneous elements. There is a unique

epimorphism of non-associative permutative algebras:

o - { NAPerm(I) — Br(D)

i — ;.

We give to i € I the degree of v; € Br(D). With the induced gradation of N APerm(I), © is a
graded epimorphism. In order to prove that it is an isomorphism, it is enough to prove that the
Poincaré-Hilbert series of N APerm(I) and Br(D) are equal. By lemma 3, the formal series of
N APerm(I), or, equivalently, of PL(I), is:

Fy(x) o0 o

> A » .

Enaperm(n (%) = E tPa! = ——~— = Fp,p I [ (1 — )i t! (©)
=1

n=1 H(l _ xi)tlp



Let us prove inductively that ¢, = ¢, for all n € N. It is immediate if n = 0, as to = t;, = 0. Let
us assume that tP = /P for all i < n. Then:

o0

[T -7~ =1+ 0@").

i=1
As ty = 0, the coefficient of 2™ in (6) is t, = t;,. So Fix aperm(n)(z) = Fswy(x), and © is an
isomorphism. O

3 Freeness of Br(D) as a pre-Lie algebra

3.1 Main theorem
Theorem 10 Let D be a finite set. Then Br(D) is a free pre-Lie algebra.
Proof. We give a N2-gradation on Br(D) in the following way:
Br(D)(k,1) = Vect(t € TE / t has k vertices and the fertility of its root is 1).
The following points are easy:
1. For all ¢,7,k,l € N, Br(D)(i, j) = Br(D)(k,l) C Br(D)(i + k,l + 1).
2. For all 4,j,k,l € N, t; € Br(D)(i,j), ta € Br(D)(k,l), (t1;t2) —t1 xta € Br(D)(i + k, ).

Let us fix a complement V of Br(D) x Br(D) in Br(D) which is N?-graded. Then Br(D) is
isomorphic as a N-graded non-associative permutative algebra to N APerm(V), the free non-
associative permutative algebra generated by V.

Let us prove that V also generates Br(D) as a pre-Lie algebra. As Br(D) is N-graded, with
Br(D)(0), it is enough to prove that Br(D) =V + (Br(D); Br(D)). Let € Br(D)(k,l), let us
show that € V + (Br(D); Br(D)) by induction on [. If [ = 0, then ¢t € Br(D)(1) = V(1). If
[ = 1, we can suppose that x = By(t), where t € 7. Then z = (t;..4) € (Br(D); Br(D)). Let us
assume the result for all I’ <. As V generates (Br(D),*), we can write z as:

/
rT=a + g T * Ys,
i

where o’ € V and z;,y; € Br(D). By the first point, we can assume that:
Y meye @ Br(D)i) @ Br(D)(j,l—1).
i i+j=k
So, by the second point:
o =Y (wiy) = Y wixyi— (i)
€ Y Br(D)(i+j,1-1)
itj=Fk

€ V +(Br(D);Br(D)),

by the induction hypothesis. So x € V + (Br(D); Br(D)).
Hence, there is an homogeneous epimorphism:

{PE(V) — Br(D)
veV — .

As PL(V), NAPerm(V) and Br(D) have the same Poincaré-Hilbert formal series, this is an
isomorphism. O

We now give the number of generators of Br(D) in degree n when card(D) = D for small
values of n, computed using lemmas 3 and 6:



1. Forn=1, D.

2. Forn=2,0.
D*(D —1
3. Forn =3, Q.
2

1 Forn — 4 D?(2D —1)(2D + 1)

: ) 3 :
5 Forn — 5 D%(31D3 —2D? — 3D — 2)

: =5, 2 .
6 F 6 D?(356D* — 20D — 5D? 4+ 5D — 6)

. or n = .

' 30

. . D?(5441D° — 279D* — 91D3 — 129D? — 22D — 24)

. Forn =1, .

144

3.2 Corollaries

Corollary 11 Let D be any set. Then Br(D) is a free pre-Lie algebra.

Proof. We graduate Br(D) by putting all the .,’s homogeneous of degree 1. Let V be a
graded complement of (Br(D), Br(D)). There exists an epimorphism of graded pre-Lie algebras:

o - PL(V) — Br(D)
' 0w — .
Let z be in the kernel of ©. There exists a finite subset D’ of D, such that all the decorations of
the vertices of the trees appearing in  belong to Br(D’). By the preceding theorem, as Br(D’)
is a free pre-Lie algebra, x = 0. So © is an isomorphism. O

Corollary 12 Let D be a graded set, satisfying the conditions of lemma 3. There exists a
graded set D', such that (H}DDR)ab is isomorphic, as a graded Hopf algebra, to Hg.

Proof. (HEy)p is isomorphic, as a graded Hopf algebra, to U(Br(D))*. For a good choice
of D', Br(D) is isomorphic to PL(D’) as a pre-Lie algebra, so also as a Lie algebra. So U(Br(D))
is isomorphic to U(PL(D')). Dually, (HB)a is isomorphic to HE . O

Corollary 13 Let D be graded set, satisfying the conditions of lemma 3. Then (HER)ab s a
cofree coalgebra. Moreover, Br(D) is free as a Lie algebra.

Proof. It is proved in [7] that (HE)* is a free algebra, so Prim((HE )*) = PL(D') is a free
Lie algebra and HE' is a cofree coalgebra. So Prim((HBp)*) = Br(D) is a free Lie algebra and
’H}DDR is a cofree coalgebra. O
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