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Hopf subalgebras of rooted trees from Dyson-Schwinger
equations

Löıc Foissy

ABSTRACT. We consider the combinatorial Dyson-Schwinger equation X =
B+(f(X)) in the Connes-Kreimer Hopf algebra of rooted trees H, where B+ is
the operator of grafting on a root, and f a formal series. The unique solution X
of this equation generates a graded subalgebra Hf of H. We characterize here all
the formal series f such that Hf is a Hopf subalgebra. We obtain in this way a
2-parameter family of Hopf subalgebras of H, organized into three isomorphism
classes:

(1) A first (degenerate) one, restricted to a polynomial ring in one variable.
(2) A second one, restricted to the Hopf subalgebra of ladders, isomorphic to

the Hopf algebra of symmetric functions.
(3) A last (infinite) one, which gives a family of isomorphic Hopf subalgebras

of H. These Hopf algebras can be seen as the coordinate ring of the group
G of formal diffeomorphisms of the line tangent to the identity: in other
terms, we obtain a family of embeddings of the Faà di Bruno Hopf algebra
in H.

In the second and the third cases, Hf is the graded dual of the enveloping alge-
bra of a graded, connected Lie algebra g, such that the homogeneous components
gn of g are 1-dimensional when n ≥ 1. Under a condition of commutativity, we
prove that there exist three such Lie algebras:

(1) The Faà di Bruno Lie algebra, that is to say the Lie algebra of the group
of formal diffeomorphisms G.

(2) The Lie algebra of corollas.
(3) A third one.

Embeddings in H of the dual of the enveloping algebra of the first case are given by
the Dyson-Schwinger equations. For the second case, such an embedding is given
by the subalgebra generated by corollas. We also describe an embedding in H for
the third case.

Mathematics Subject Classification. Primary 16W30. Secondary 81T15, 81T18.

c© 2008 Clay Mathematics Institute

1
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Introduction

The Connes-Kreimer algebra H of rooted trees was introduced in [8]. This
graded Hopf algebra is commutative, non-cocommutative, and is given a linear
basis by the set of rooted forests. A particularly important operator of H is the
grafting on a root B+, which satisfies the following equation:

∆ ◦B+(x) = B+(x)⊗ 1 + (Id⊗B+) ◦∆(x).

In other words, B+ is a 1-cocycle for the Cartier-Quillen cohomology of coalgebras.
Moreover, the couple (H, B+) satisfies a universal property; see Theorem 3 of the
present text.

We consider here a family of subalgebras of H, associated to the combinatorial
Dyson-Schwinger equation [1, 9, 10]:

X = B+(f(X)),

where f(h) =
∑

pnhn is a formal series such that p0 = 1, and X is an element of
the completion of H for the topology given by the gradation of H. This equation
admits a unique solution X =

∑
xn, where xn is, for all n ≥ 1, a linear span of

rooted trees of weight n, inductively given by
x1 = p0 q ,

xn+1 =
n∑

k=1

∑
a1+···+ak=n

pkB+(xa1 · · ·xak
).

We denote by Hf the subalgebra of H generated by the xn’s.
For the usual Dyson-Schwinger equation, f(h) = (1−h)−1. It turns out that, in

this case, Hf is a Hopf subalgebra. This is not the case in general; we characterise
here the formal series f(h) such that Hf is Hopf. Namely, Hf is a Hopf subalgebra
of H if and only if there exists (α, β) ∈ K2, such that f(h) = 1 if α = 0, or
f(h) = eαh if β = 0, or f(h) = (1 − αβh)−

1
β if αβ 6= 0. We obtain in this way a

two-parameter family Hα,β of Hopf subalgebras of H and we explicitly describe a
system of generators of these algebras. In particular, if α = 0, then Hα,β = K[ q ];
if α 6= 0, then Hα,β = H1,β .

The Hopf algebra Hα,β is commutative, graded and connected. By the Milnor-
Moore theorem [11], its dual is the enveloping algebra of a Lie algebra gα,β . Com-
puting this Lie algebra, we find three isomorphism classes of Hα,β ’s:

(1) H0,1, equal to K[ q ].
(2) H1,−1, the subalgebra of ladders, isomorphic to the Hopf algebra of sym-

metric functions.
(3) The H1,β ’s, with β 6= −1, isomorphic to the Faà di Bruno Hopf algebra.
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Note that non-commutative versions of these results are presented in [6].

In particular, if Hα,β is non-cocommutative, it is isomorphic to the Faà di
Bruno Hopf algebra. We try to explain this fact in the third section of this text.
The dual Lie algebra gα,β satisfies the following properties:

(1) gα,β is graded and connected.
(2) The homogeneous component g(n) of degree n of g is 1-dimensional for

all n ≥ 1.

Moreover, if Hα,β is non-cocommutative, then [g(1), g(n)] 6= (0) if n ≥ 2. Such a
Lie algebra will be called a FdB Lie algebra. We prove here that there exist, up to
isomorphism, only three FdB Lie algebras:

(1) The Faà di Bruno Lie algebra, which is the Lie algebra of the group of
formal diffeomorphisms tangent to the identity at 0.

(2) The Lie algebra of corollas.
(3) A third Lie algebra.

In particular, with a stronger condition of non-commutativity, a FdB Lie algebra
is isomorphic to the Faà di Bruno Lie algebra, and this result can be applied to all
H1,β ’s when β 6= −1. The dual of the enveloping algebras of the two other FdB
Lie algebras can also be embedded in H, using corollas for the second, giving in a
certain way a limit of H1,β when β goes to ∞, and the third one with a different
construction.

Notation. We denote by K a commutative field of characteristic zero.

1. The Hopf algebra of rooted trees and Dyson-Schwinger equations

1.1. The Connes-Kreimer Hopf algebra. Let us first recall the construc-
tion of the Connes-Kreimer Hopf algebra of rooted trees.

Definition 1. [13, 14]

(1) A rooted tree is a finite graph, connected and without loops, with a special
vertex called the root.

(2) The weight of a rooted tree is the number of its vertices.
(3) The set of rooted trees will be denoted by T .

Examples. The rooted trees of weight ≤ 5 are

q , qq , q∨qq
, qqq , q∨qq q

, q∨qqq
,

q∨qq q , qqqq , q∨qq
�Hq q

, q∨qq qq
, q∨qq qq

, q∨qq∨qq
, q∨qqqq

,
q∨qq qq ,

q∨qq qq , qqq∨
q q
, qqqqq .

The Connes-Kreimer Hopf algebra of rooted trees H was introduced in [2]. As
an algebra, H is the free associative, commutative, unitary algebra generated by
the elements of T . In other terms, a K-basis of H is given by rooted forests, that is
to say not necessarily connected graphs F such that each connected component of
F is a rooted tree. The set of rooted forests will be denoted by F . The product of
H is given by the concatenation of rooted forests, and the unit is the empty forest,
denoted by 1.
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Examples. The rooted forests of weight ≤ 4 are

1, q , q q , qq , q q q , qq q , q∨qq
, qqq , q q q , qq q q , qq qq , q∨qq q , qqq q , q∨qq q

, q∨qqq
,

q∨qq q , qqqq .

In order to make H a bialgebra, we now introduce the notion of cut of a tree t.
A non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the
cut makes t into a forest, denoted by W c(t). The cut c is admissible if any oriented
path1 in the tree meets at most one cut edge. For such a cut, the tree of W c(t)
which contains the root of t is denoted by Rc(t) and the product of the other trees
of W c(t) is denoted by P c(t). We also add the total cut, which is by convention an
admissible cut such that Rc(t) = 1 and P c(t) = W c(t) = t. The set of admissible
cuts of t is denoted by Adm∗(t). Note that the empty cut of t is admissible; we
denote Adm(t) = Adm∗(t)− {empty cut, total cut}.

Example. Let us consider the rooted tree t = q∨qqq
. As it has 3 edges, it has

23 non-total cuts.

cut c q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq q∨qqq
total

Admissible? yes yes yes yes no yes yes no yes

W c(t) q∨qqq qq qq q q∨qq qqq q q q qq qq q q qq q q q q q q q∨qqq
Rc(t) q∨qqq qq q∨qq qqq × q qq × 1

P c(t) 1 qq q q × qq q q q × q∨qqq
The coproduct of H is defined as the unique algebra morphism from H to H⊗H

such that, for all rooted tree t ∈ T ,

∆(t) =
∑

c∈Adm∗(t)

P c(t)⊗Rc(t) = t⊗ 1 + 1⊗ t +
∑

c∈Adm(t)

P c(t)⊗Rc(t).

As H is the polynomial algebra generated by T , this makes sense.

Example.

∆( q∨qqq
) = q∨qqq

⊗ 1 + 1⊗ q∨qqq
+ qq ⊗ qq + q ⊗ q∨qq

+ q ⊗ qqq + qq q ⊗ q + q q ⊗ qq .
Theorem 2. [2] With this coproduct, H is a bialgebra. The counit of H is

given by

ε :
{

H −→ K
F ∈ F −→ δ1,F .

The antipode is the algebra endomorphism defined for all t ∈ T by

S(t) = −
∑

c non-total cut of t

(−1)ncW c(t),

where nc is the number of cut edges in c.

1The edges of the tree are oriented from the root to the leaves.
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1.2. Gradation of H and completion. We grade H by declaring the forests
of weight n homogeneous of degree n. We denote by H(n) the homogeneous com-
ponent of H of degree n. Then H is a graded bialgebra, that is to say

(1) For all i, j ∈ N, H(i)H(j) ⊆ H(i + j).
(2) For all k ∈ N, ∆(H(k)) ⊆

∑
i+j=k

H(i)⊗H(j).

We define, for all x, y ∈ H,
val(x) = max

n ∈ N | x ∈
⊕
k≥n

H(k)

 ,

d(x, y) = 2−val(x−y),

with the convention 2−∞ = 0. Then d is a distance on H. The metric space (H, d)
is not complete; its completion will be denoted by Ĥ. As a vector space,

Ĥ =
∏
n∈N

H(n).

The elements of Ĥ will be denoted
∑

xn, where xn ∈ H(n) for all n ∈ N. The
product m : H⊗H −→ H is homogeneous of degree 0, so is continuous. So it can
be extended from Ĥ ⊗ Ĥ to Ĥ, which is then an associative, commutative algebra.
Similarly, the coproduct of H can be extended as a map

∆ : Ĥ −→ H⊗̂H =
∏

i,j∈N
H(i)⊗H(j).

Let f(h) =
∑

pnhn ∈ K[[h]] be any formal series, and let X =
∑

xn ∈ Ĥ, such
that x0 = 0. The series of Ĥ of terms pnXn is Cauchy, so converges. Its limit will
be denoted by f(X). In other words, f(X) =

∑
yn, with

yn =
n∑

k=1

∑
a1+···+ak=n

pkxa1 · · ·xak
.

Remark. If f(h) ∈ K[[h]], g(h) ∈ K[[h]], without constant terms, and X ∈ Ĥ,
without constant terms, it is easy to show that (f ◦ g)(X) = f(g(X)).

1.3. 1-cocycle of H and Dyson-Schwinger equations. We define the op-
erator B+ : H −→ H, sending a forest t1 · · · tn to the tree obtained by grafting

t1, · · · , tn to a common root. For example, B+( qq q) = q∨qqq
. This operator satisfies

the following relation: for all x ∈ H,

(1) ∆ ◦B+(x) = B+(x)⊗ 1 + (Id⊗B+) ◦∆(x).

This means that B+ is a 1-cocycle for a certain cohomology, namely the Cartier-
Quillen cohomology for coalgebras, the notion dual to the Hochschild cohomology
[2]. Moreover, (H, B+) satisfies the following universal property:

Theorem 3 (Universal property). Let A be a commutative algebra and let
L : A −→ A be a linear map.

(1) There exists a unique algebra morphism φ : H −→ A, such that φ ◦B+ =
L ◦ φ.
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(2) If moreover A is a Hopf algebra and L satisfies (1), then φ is a Hopf
algebra morphism.

The operator B+ is homogeneous of degree 1, so is continuous. As a conse-
quence, it can be extended as an operator B+ : Ĥ −→ Ĥ. This operator still
satisfies (1).

Definition 4. [1, 9, 10] Let f ∈ K[[h]]. The Dyson-Schwinger equation
associated to f is

(2) X = B+(f(X)),

where X is an element of Ĥ, without constant term.

Proposition 5. The Dyson-Schwinger equation associated to the formal
series f(h) =

∑
pnhn admits a unique solution X =

∑
xn, inductively defined by

x0 = 0,
x1 = p0 q ,

xn+1 =
n∑

k=1

∑
a1+···+ak=n

pkB+(xa1 · · ·xak
).

Proof. It is enough to identify the homogeneous components of the two mem-
bers of (2). �

Definition 6. The subalgebra of H generated by the homogeneous com-
ponents xn of the unique solution X of the Dyson-Schwinger equation (2) associated
to f will be denoted by Hf .

The aim of this text is to give a necessary and sufficient condition on f for Hf

to be a Hopf subalgebra of H.

Remarks.

(1) If f(0) = 0, the unique solution of (2) is 0. As a consequence, Hf = K is
a Hopf subalgebra.

(2) For all α ∈ K, if X =
∑

xn is the solution of the Dyson-Schwinger equa-
tion associated to f , the unique solution of the Dyson-Schwinger equation
associated to αf is

∑
αnxn. As a consequence, if α 6= 0, Hf = Hαf . We

shall then suppose in the sequel that p0 = 1. In this case, x1 = q .
Examples.

(1) We take f(h) = 1 + h. Then x1 = q , x2 = qq , x3 = qqq , x4 = qqqq . More gen-
erally, xn is the ladder with n vertices, that is to say (B+)n(1) (Definition
7). As a consequence, for all n ≥ 1,

∆(xn) =
∑

i+j=n

xi ⊗ xj .

So H1+h is Hopf. Moreover, it is cocommutative.
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(2) We take f(h) = 1 + h + h2 + 2h3. Then
x1 = q ,
x2 = qq ,
x3 = q∨qq

+ qqq ,
x4 = 2 q∨qq q

+ 2 q∨qqq
+ q∨qq q + qqqq .

Hence

∆(x1) = x1 ⊗ 1 + 1⊗ x1,

∆(x2) = x2 ⊗ 1 + 1⊗ x2 + x1 ⊗ x1,

∆(x3) = x3 ⊗ 1 + 1⊗ x3 + x2
1 ⊗ x1 + 3x1 ⊗ x2 + x2 ⊗ x1,

∆(x4) = x4 ⊗ 1 + 1⊗ x4 + 10x2
1 ⊗ x2 + x3

1 ⊗ x1 + 3x2 ⊗ x2

+2x1x2 ⊗ x1 + x3 ⊗ x1 + x1 ⊗ (8 q∨qq
+ 5 qqq),

so Hf is not Hopf.

We shall need later these two families of rooted trees:

Definition 7. Let n ≥ 1.
(1) The ladder ln of weight n is the rooted tree (B+)n(1). For example,

l1 = q , l2 = qq , l3 = qqq , l4 = qqqq .

(2) The corolla cn of weight n is the rooted tree B+( qn−1). For example,

c1 = q , c2 = qq , c3 = q∨qq
, c4 = q∨qq q

.

The following lemma is an immediate corollary of proposition 5:

Lemma 8. The coefficient of the ladder of weight n in xn is pn−1
1 . The

coefficient of the corolla of weight n in xn is pn−1.

Using (1):

Lemma 9. For all n ≥ 1,

(1) ∆(ln) =
n∑

i=0

li ⊗ ln−i, with the convention l0 = 1.

(2) ∆(cn) = cn ⊗ 1 +
n−1∑
i=0

(
n− 1

i

) q i ⊗ cn−i.

2. Formal series giving Hopf subalgebras

2.1. Statement of the main theorem. The aim of this section is to prove
the following result:

Theorem 10. Let f(h) ∈ K[[h]], such that f(0) = 1. The following asser-
tions are equivalent:

(1) Hf is a Hopf subalgebra of H.
(2) There exists (α, β) ∈ K2 such that (1− αβh)f ′(h) = αf(h).
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(3) There exists (α, β) ∈ K2 such that f(h) = 1 if α = 0, or f(h) = eαh if
β = 0, or f(h) = (1− αβh)−

1
β if αβ 6= 0.

It is an easy exercise to prove that the second and the third statements are
equivalent.

2.2. Proof of (1) =⇒ (2). We suppose that Hf is Hopf.

Lemma 11. Let us suppose that p1 = 0. Then f(h) = 1, so (2) holds with
α = 0.

Proof. Let us suppose that pn 6= 0 for a certain n ≥ 2. Let us choose a
minimal n. Then x1 = q , x2 = · · · = xn = 0, and xn+1 = pncn+1. So

∆(xn+1) = xn+1 ⊗ 1 + 1⊗ xn+1 +
n∑

i=1

(
n

i

)
pn q i ⊗ cn+1−i ∈ Hf ⊗Hf .

In particular, for i = n− 1, c2 = qq ∈ Hf , so x2 6= 0: contradiction. �

We now assume that p1 6= 0. Let Z q : H −→ K, defined by Z q (F ) = δ q ,F for
all F ∈ F . This map Z q is homogeneous of degree −1, so is continuous and can be
extended to a map Z q : Ĥ −→ K. We put (Z q ⊗ Id) ◦∆(X) =

∑
yn, where X is

the unique solution of (2). A direct computation shows that yn can be computed
by induction with

y0 = 1,

yn+1 =
n∑

k=1

∑
a1+···+ak=n

(k + 1)pk+1B
+(xa1 · · ·xak

)

+
n∑

k=1

∑
a1+···+ak=n

kpkB+(ya1xa2 · · ·xak
).

As Hf is Hopf, yn ∈ Hf for all n ∈ N. Moreover, yn is a linear span of rooted trees
of weight n, so is a multiple of xn; we put yn = αnxn.

Let us consider the coefficient of the ladder of weight n in yn. By lemma 8,
this is αnpn−1

1 . So, for all n ≥ 1,

pn
1αn+1 = 2pn−1

1 p2 + pn
1αn.

As α1 = p1, for all n ≥ 1, αn = p1 + 2
p2

p1
(n− 1). Let us consider the coefficient of

the corolla of weight n in yn. By lemma 8, this is αnpn. So, for all n ≥ 1,

αnpn = (n + 1)pn+1 + npnp1.

Summing all these relations, putting α = p1 and β = 2
p2

p1
− 1, we obtain the

differential equation (1− αβh)f ′(h) = f(h), so (2) holds.

2.3. Proof of (2) =⇒ (1). Let us suppose (2) or, equivalently, (3). We now
write Hα,β instead of Hf . We first give a description of the xn’s.

Definition 12.
(1) Let F ∈ F . The coefficient sF is inductively computed by

s q = 1,
st

a1
1 ···tak

k
= a1! · · · ak!sa1

t1 · · · s
ak
tk

,

sB+(t
a1
1 ···tak

k ) = a1! · · · ak!sa1
t1 · · · s

ak
tk

,
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where t1, · · · , tk are distinct elements of T .
(2) Let F ∈ F . The coefficient eF is inductively computed by

e q = 1,

et
a1
1 ···tak

k
=

(a1 + · · ·+ ak)!
a1! · · · ak!

ea1
t1 · · · e

ak
tk

,

eB+(t
a1
1 ···tak

k ) =
(a1 + · · ·+ ak)!

a1! · · · ak!
ea1
t1 · · · e

ak
tk

,

where t1, · · · , tk are distinct elements of T .

Remarks.
(1) The coefficient sF is the number of symmetries of F , that is to say the

number of graph automorphisms of F respecting the roots.
(2) The coefficient eF is the number of embeddings of F in the plane, that is

to say the number of planar forests whose underlying rooted forest is F .
We now give β-equivalents of these coefficients. For all k ∈ N∗, we put [k]β =

1 + β(k − 1) and [k]β ! = [1]β · · · [k]β . We then inductively define [sF ]β and [eF ]β
for all F ∈ F by

[s q ]β = 1,
[st

a1
1 ···tak

k
]β = [a1]β ! · · · [ak]β ![st1 ]

a1
β · · · [stk

]ak

β ,

[sB+(t
a1
1 ···tak

k )]β = [a1]β ! · · · [ak]β ![st1 ]
a1
β · · · [stk

]ak

β ,
[e q ] = 1,

[et
a1
1 ···tak

k
]β =

[a1 + · · ·+ ak]β !
[a1]β ! · · · [ak]β !

[et1 ]
a1
β · · · [etk

]ak

β ,

[eB+(t
a1
1 ···tak

k )]β =
[a1 + · · ·+ ak]β !
[a1]β ! · · · [ak]β !

[et1 ]
a1
β · · · [etk

]ak

β ,

where t1, · · · , tk are distinct elements of T . In particular, [st]1 = st and [et]1 = et,
whereras [st]0 = 1 and [et]0 = 1 all t ∈ T .

Examples.
t st [st]β et [et]βq 1 1 1 1qq 1 1 1 1q∨qq

2 (1 + β) 1 1qqq 1 1 1 1q∨qq q
6 (1 + β)(1 + 2β) 1 1

q∨qqq
1 1 2 (1 + β)q∨qq q 2 (1 + β) 1 1

qqqq 1 1 1 1

Proposition 13. For all n ∈ N∗, in Hα,β,

xn = αn−1
∑

t∈T , weight(t)=n

[st]β [et]β
st

t.
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Examples.

x1 = q ,
x2 = α qq ,
x3 = α2

(
(1 + β)

2
q∨qq

+ qqq) ,

x4 = α3

(
(1 + 2β)(1 + β)

6
q∨qq q

+ (1 + β) q∨qqq
+

(1 + β)
2

q∨qq q + qqqq ) ,

x5 = α4



(1+3β)(1+2β)(1+β)
24

q∨qq
�Hq q + (1+2β)(1+β)

2
q∨qq qq

+(1 + β)2 q∨qq∨qq
+ (1 + β) q∨qqqq

+ (1+2β)(1+β)
6

q∨qq qq

+ (1+β)
2

q∨qq qq
+ (1 + β) q∨qq qq + (1+β)

2
qqq∨
q q

+ qqqqq


.

Proof. For any t ∈ T , we denote by bt the coefficient of t in xweight(t). Then
b q = 1. The formal series f(h) is given by

f(h) =
∞∑

n=0

αn [n]β !
n!

hn.

If t = B+(ta1
1 · · · tak

k ), where t1, · · · , tk are distinct elements of T , then

bt = αa1+···+ak
[a1 + · · ·+ ak]β !
(a1 + · · ·+ ak)!

(a1 + · · ·+ ak)!
a1! · · · ak!

ba1
t1 · · · b

ak
tk

.

The result comes from an easy induction. �

As a consequence, H0,β = K[ q ], so H0,β is a Hopf subalgebra. Moreover,
Hα,β = H1,β if α 6= 0. So we can restrict ourselves to the case α = 1. In order to
ease the notation, we put nt = stet and [nt]β = [st]β [et]β for all t ∈ T . Then{

n q = 1,
nB+(t1···tk) = k!nt1 · · ·ntk

,{
[n q ]β = 1,

[nB+(t1···tk)]β = [k]β ![nt1 ]β · · · [ntk
]β .

As a consequence, an easy induction proves that

nt =
∏

s vertex of t

(fertility of s)!, [nt]β =
∏

s vertex of t

[fertility of s]β !.

We shall use the following result, proved in [5, 7]:

Lemma 14. For all forests F ∈ F , G, H ∈ T , denote by n(F,G;H) the
coefficient of F ⊗ G in ∆(H), and by n′(F,G;H) the number of graftings of the
trees of F over G giving the tree H. Then n′(F,G;H)sH = n(F,G;H)sF sG.
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Lemma 15. Let k, n ∈ N∗. We put, in K[X1, · · · , Xn], S = X1 + · · ·+Xn.
Then ∑

α1+···+αn=k

n∏
i=1

Xi(Xi + 1) · · · (Xi + αi − 1)
αi

=
S(S + 1) · · · (S + k − 1)

k!
.

Proof. By induction on k, see [6]. �

Proposition 16. If α = 1,

∆(X) = X ⊗ 1 +
∞∑

n=1

(1− βX)−n(1/β+1)+1 ⊗ xn.

So H1,β is a Hopf subalgebra.

Proof. As for all n ≥ 1, xn is a linear span of trees, we can write

∆(X) = X ⊗ 1 +
∑

F∈F, t∈T
aF,tF ⊗ t.

Then, if F ∈ F , G ∈ T ,

aF,G =
∑
H∈T

[nH ]β
sH

n(F,G;H) =
∑
H∈T

[nH ]β
sF sG

n′(F,G;H).

We put F = t1 · · · tk, and we denote by s1, · · · , sn the vertices of the tree G, of
respective fertility f1, · · · , fn. Let us consider a grafting of F over G, such that αi

trees of F are grafted on the vertex si. Then α1 + · · · + αn = k. Denoting by H
the result of this grafting,

[nH ]β = [nG]β [nt1 ]β · · · [ntk
]β

[f1 + α1]β !
[f1]β !

· · · [fn + αn]β !
[fn]β !

.

Moreover, the number of such graftings is
k!

α1! · · ·αn!
. So, with lemma 15, putting

xi = fi + 1/β and s = x1 + · · ·+ xn,

aF,G =
∑

α1+···+αn=k

k!
α1! · · ·αk!

1
sF sG

[nG]β
k∏

i=1

[nti
]β

[f1 + αi]β !
[fi]β !

=
k![nG]β !
sGsF

(
k∏

i=1

[nti
]β

) ∑
α1+···+αn=k

n∏
i=1

(1 + fiβ) · · · (1 + (fi + αi − 1)β)
αi!

=
k![nG]β !
sGsF

(
k∏

i=1

[nti
]β

) ∑
α1+···+αn=k

n∏
i=1

βαi
xi(xi + 1) · · · (xi + αi + 1)

αi!

=
k![nG]β !
sGsF

(
k∏

i=1

[nti
]β

)
βk

∑
α1+···+αn=k

n∏
i=1

xi(xi + 1) · · · (xi + αi + 1)
αi!

=
k![nG]β !
sGsF

(
k∏

i=1

[nti
]β

)
βk s(s + 1) · · · (s + k − 1)

k!
.

Moreover, as G is a tree, s = f1 + · · ·+ fn + n/β = n− 1 + n/β = n(1 + 1/β)− 1.
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We now write F = t1 · · · tk = ua1
1 · · ·ual

l , where u1, · · · , ul are distinct elements
of T . Then

sF = sa1
u1
· · · sal

ul
a1! · · · al!,

so

k![nt1 ]β · · · [ntk
]β

sF
=

(a1 + · · ·+ al)!
a1! · · · al!

(
[nt1 ]β
st1

)a1

· · ·
(

[ntl
]β

stl

)al

.

As a conclusion, putting Qk(S) =
S(S + 1) · · · (S + k − 1)

k!
,

∆(X) =
∑
n≥1

∑
t
a1
1 ···tal

l ∈F

(a1 + · · ·+ al)!
a1! · · · al!

βa1+···+alQa1+···+al
(n(1 + 1/β)− 1)

(
[nt1 ]β
st1

t1

)a1

· · ·
(

[ntl
]β

stl

tl

)al

⊗

 ∑
G∈T

weight(G)=n

[nG]β !
sG

G

+ X ⊗ 1

= X ⊗ 1 +
∞∑

n=1

(1− βX)−n(1/β+1)+1 ⊗ xn.

So ∆(X) ∈ H⊗̂H. Projecting on the homogeneous component of degree n, we
obtain ∆(x) ∈ H ⊗H, so H1,β is a Hopf subalgebra. �

Remarks.

(1) For (α, β) = (1, 0), f(h) = eh and for all n ∈ N, xn =
∑
t∈T

weight(t)=n

1
st

t.

(2) For (α, β) = (1, 1), f(h) = (1−h)−1 and for all n ∈ N, xn =
∑
t∈T

weight(t)=n

ett.

(3) For (α, β) = (1,−1), f(h) = 1+h and, as [i]−1 = 0 if i ≥ 2, for all n ∈ N∗,
xn is the ladder of weight n.

2.4. What is Hα,β? If α = 0, then H0,β = K[ q ]. If α 6= 0, then obviously
Hα,β = H1,β ; let us suppose that α = 1. The Hopf algebra H1,β is graded, con-
nected and commutative. Dually, its graded dual H∗

1,β is a graded, connected,
cocommutative Hopf algebra. By the Milnor-Moore theorem [11], it is isomorphic
to the enveloping algebra of the Lie algebra of its primitive elements. We now
denote this Lie algebra by g1,β . The dual of g1,β is identified with the quotient
space

coPrim(H1,β) =
H1,β

(1)⊕Ker(ε)2
,

and the transposition of the Lie bracket is the Lie cobracket δ induced by

($ ⊗$) ◦ (∆−∆op),
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where $ is the canonical projection on coPrim(H1,β). As H1,β is the polynomial
algebra generated by the xn’s, a basis of coPrim(H1,β) is ($(xn))n∈N∗ . By Propo-
sition 16,

($ ⊗$) ◦∆(X) = ($ ⊗$)

( ∞∑
n=1

(1− βX)−n(1/β+1)+1 ⊗ xn

)
=

∑
n≥1

(n(1 + β)− β) $(X)⊗$(xn).

Projecting on the homogeneous component of degree k,

($ ⊗$) ◦∆(xk) =
k∑

i+j=k

(j(1 + β)− β) $(xi)⊗$(xj).

As a consequence,

δ($(xk)) =
∑

i+j=k

(1 + β)(j − i)$(xi)⊗$(xj).

Dually, the Lie algebra g1,β has the dual basis (Zn)n≥1, with bracket given by

[Zi, Zj ] = (1 + β)(j − i)Zi+j .

So, if β 6= −1, this Lie algebra is isomorphic to the Faà di Bruno Lie algebra gFdB,
which has a basis (fn)n≥1, and whose bracket defined by [fi, fj ] = (j − i)fi+j .
So H1,β is isomorphic to the Hopf algebra U(gFdB)∗, namely the Faà di Bruno
Hopf algebra [3], coordinate ring of the group of formal diffeomorphisms of the line
tangent to Id, that is to say

GFdB =
({∑

anhn ∈ K[[h]] | a0 = 0, a1 = 1
}

, ◦
)

.

Theorem 17. (1) If α 6= 0 and β 6= −1, Hα,β is isomorphic to the
Faà di Bruno Hopf algebra.

(2) If α 6= 0 and β = −1, Hα,β is isomorphic to the Hopf algebra of symmetric
functions.

(3) If α = 0, Hα,β = K[ q ].
Remark. If β and β′ 6= −1, then H1,β and H1,β′ are isomorphic but are not

equal, as shown by considering x3.

3. FdB Lie algebras

In the preceding section, we considered Hopf subalgebras of H, generated in
each degree by a linear span of trees. Their graded dual is then the enveloping
algebra of a Lie algebra g, graded, with Poincaré-Hilbert formal series

h

1− h
=

∞∑
n=1

hn.

Under a hypothesis of commutativity, we show that such a g is isomorphic to the
Faà di Bruno Lie algebra, so the considered Hopf subalgebra is isomorphic to the
Faà di Bruno Hopf algebra.

Remark. The proofs of this section were completed using MuPAD pro 4. The
notebook of the computations can be found at [4].
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3.1. Definitions and first properties.

Definition 18. Let g be an N-graded Lie algebra. For all n ∈ N, we
denote by g(n) the homogeneous component of degree n of g. We shall say that g
is FdB if

(1) g is connected, that is to say g(0) = (0).
(2) For all i ∈ N∗, g is one-dimensional.
(3) For all n ≥ 2, [g(1), g(n)] 6= (0).

Let g be a FdB Lie algebra. For all i ∈ N∗, we fix a non-zero element Zi of g(i).
By conditions (1) and (2), (Zi)i≥1 is a basis of g. By homogeneity of the bracket
of g, for all i, j ≥ 1, there exists an element λi,j ∈ K, such that

[Zi, Zj ] = λi,jZi+j .

The Jacobi relation gives, for all i, j, k ≥ 1,

(3) λi,jλi+j,k + λj,kλj+k,i + λk,iλk+i,j = 0.

Moreover, by antisymmetry, λj,i = −λi,j for all i, j ≥ 1. Condition (3) is expressed
by λ1,j 6= 0 for all j 6= 1.

Lemma 19. Up to a change of basis, we can suppose that λ1,j = 1 for all
j ≥ 2 and that λ2,3 ∈ {0, 1}.

Proof. We define a family of scalars by α1 = 1,
α2 6= 0,
αn = λ1,2 · · ·λ1,n−1α2 if n ≥ 3.

By condition (3), all these scalars are non-zero. We put Z ′
i = αiZi. Then, for all

j ≥ 2,

[Z ′
1, Z

′
j ] = αjλ1,jZ1+j =

αjλ1,j

αj+1
Z ′

1+j = Z ′
1+j .

So, replacing the Zi’s by the Z ′
i’s, we can suppose that λ1,j = 1 if j ≥ 2.

Let us suppose now that λ2,3 6= 0. We then choose

α2 =
λ1,3λ1,4

λ2,3
.

Then

[Z ′
2, Z

′
3] =

λ2,3α2α3

α5
Z ′

5 =
λ2,3α2λ1,2α2

λ1,2λ1,3λ1,4α2
Z ′

5 = Z ′
5.

So, replacing the Zi’s by the Z ′
i’s, we can suppose that λ2,3 = 1. �

Lemma 20. If i, j ≥ 2, λi,j =
i−2∑
k=0

(
i− 2

k

)
(−1)kλ2,j+k.

Proof. Let us write (3) with i = 1,

λ1,jλj+1,k + λj,kλj+k,1 + λk,1λk+1,j = 0.

If j, k ≥ 2, then λ1,j = −λk,1 = −λj+k,1 = 1, so

(4) λk+1,j = λk,j − λk,j+1.
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If k = 2, this gives the announced formula for i = 3.

Let us prove the result by induction on i. This is obvious for i = 2 and done
for i = 3. Let us assume the result at rank i− 1. Then, by (4),

λi,j = λi−1,j − λi−1,j+1

=
i−3∑
k=0

(
i− 3

k

)
(−1)kλ2,j+k −

i−3∑
k=0

(
i− 3

k

)
(−1)kλ2,j+1+k

=
i−3∑
k=0

(
i− 3

k

)
(−1)kλ2,j+k +

i−2∑
k=1

(
i− 3
k − 1

)
(−1)kλ2,j+k

= λ2,j +
i−3∑
k=1

(
i− 2

k

)
(−1)kλ2,j+k + (−1)i−2λ2,j+i−2

=
i−2∑
k=0

(
i− 2

k

)
(−1)kλ2,j+k.

So the result is true for all i ≥ 2. �

As a consequence, the λi,j ’s are entirely determined by the λ2,j ’s. We can
improve this result, using the following lemma:

Lemma 21. For all k ≥ 2, λ2,2k =
1

2k − 3

2k−4∑
l=0

(
2k − 2

l

)
(−1)lλ2,l+3.

Proof. Let us write the relation of Lemma 20 for (i, j) = (3, 2k) and (i, j) =
(2k, 3),

λ3,2k = λ2,2k − λ2,2k+1,

λ2k,3 =
2k−2∑
l=0

(
2k − 2

l

)
(−1)lλ2,3+l

= λ2,2k+1 − (2k − 2)λ2,2k +
2k−4∑
l=0

(
2k − 2

l

)
(−1)lλ2,3+l.

Summing these two relations,

−(2k − 3)λ2,2k +
2k−4∑
l=0

(
2k − 2

l

)
(−1)lλ2,3+l = 0.

This gives the announced result. �

As a consequence, the λi,j ’s are entirely determined by the λ2,j ’s, with j odd.
In order to ease the notation, we put µj = λ2,j for all j odd. Then, for example,

λ2,4 = µ3,
λ2,6 = 2µ5 − µ3,
λ2,8 = 3µ7 − 5µ5 + 3µ3,

λ2,10 = 4µ9 − 14µ7 + 28µ5 − 17µ3,
λ2,12 = 5µ11 − 30µ9 + 126µ7 − 255µ5 + 155µ3.
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Moreover, we showed that we can assume µ3 = 0 or 1.

Remark. The coefficient λ2,2k+4 is then a linear span of coefficients µ2i+3,
0 ≤ i ≤ k. We put, for all k ∈ N,

λ2,2k+4 =
k∑

i=0

ak,iµ2i+3.

We can prove inductively the following results:
(1) For all k ∈ N, ak,k = k + 1.
(2) For all k ≥ 1, ak,k−1 = − 1

4

(
2k+2

3

)
. Up to the sign, this is the sequence

A000330 of [12] (pyramidal numbers).
(3) For all k ≥ 2, ak,k−2 = 1

2

(
2k+2

5

)
. This is the sequence A053132 of [12].

(4) The sequence (−ak,0) is the sequence of signed Genocchi numbers, A001469
in [12].

It seems that for all i ≤ k,

ak,k−i =
22i+2 − 1

i + 1
B2i+2

(
2k + 2
2i + 1

)
,

where the B2n’s are the Bernoulli numbers (see sequence A002105 of [12]).

3.2. Case where µ3 = 1. In this case:

Lemma 22. Suppose that µ3 = 1. Then µ5 = 1 or
9
10

.

Proof. By relation (3) for (i, j, k) = (2, 3, 4),

5µ5 − 3µ7 + µ5µ7 − 3 = 0.

If µ5 = 3, we obtain 12 = 0, absurd. So µ7 = −5µ5 − 3
µ5 − 3

. By relation (3) for

(i, j, k) = (2, 3, 6),

−2
µ5 − 3

(
(2µ5 − 4)µ5µ9 + 3− 7µ5 + µ2

5 − 5µ3
5

)
= 0.

If µ5 = 0, we obtain 2 = 0, absurd. If µ5 = 2, we obtain 66 = 0, absurd. So

µ9 = −3− 7µ5 + µ2
5 − 5µ3

5

(2µ5 − 4)µ5
.

Writing relation (3) for (i, j, k) = (3, 4, 5),

−9(µ5 − 1)5(10µ5 − 9)
µ5(µ5 − 2)(µ5 − 3)2

= 0.

So µ5 = 1 or µ5 =
9
10

. �

Proposition 23. Let us suppose that µ3 = µ5 = 1. Then λ1,j = 1 if j ≥ 2,
λ2,j = 1 if j ≥ 3,
λi,j = 0 if i, j ≥ 3.



HOPF SUBALGEBRAS OF ROOTED TREES FROM DYSON-SCHWINGER EQUATIONS 17

Proof. Let us first prove inductively on j that λ2,j = 1 if j ≥ 3. This is
immediate if j = 3 or 5 and comes from λ2,4 = µ3 for j = 4. Let us suppose that
λ2,j = 1 for 3 ≤ j < n. If n = 2k is even, then

λ2,2k =
1

2k − 3

2k−4∑
l=0

(
2k − 2

l

)
(−1)l = 1 +

1
2k − 3

2k−2∑
l=0

(
2k − 2

l

)
(−1)l = 1.

If n = 2k + 1 is odd, write relation (3) for (i, j, k) = (2, 3, 2k − 2),

λ2,3λ5,2k−2 + λ3,2k−2λ2k+1,2 + λ2k−2,2λ2k,3 = 0,
3∑

l=0

(
3
l

)
(−1)lλ2,2k−2+l − λ2,2k−2 + λ2,2k−1 + λ2,2k−2(λ2,2k − λ2,2k+1) = 0,

λ2,2k−2 − 3λ2,2k−1 + 3λ2,2k − λ2,2k+1 + 1− λ2,2k+1 = 0,

1− 3 + 3− 2λ2,2k+1 + 1 = 0,

so λ2,2k+1 = 1. Finally, if i, j ≥ 3, λi,j =
i−2∑
k=0

(
i− 2

k

)
(−1)k = 0. �

Lemma 24. For all N ≥ 2,

SN =
N∑

l=0

(
N

l

)
(−1)l (l + 1)

(l + 2)(l + 3)
=

N − 1
(N + 3)(N + 2)(N + 1)

.

Proof. Indeed,

SN =
N∑

l=0

N !
(l + 3)!(N − l)!

(−1)l(l + 1)2

=
1

(N + 3)(N + 2)(N + 1)

N+3∑
j=3

(
N + 3

j

)
(−1)j(j − 2)2

=
1

(N + 3)(N + 2)(N + 1)

N+3∑
j=0

(
N + 3

j

)
(−1)j(j − 2)2

− 1
(N + 3)(N + 2)(N + 1)

(4− (N + 3))

= 0 +
N − 1

(N + 3)(N + 2)(N + 1)
.

�

Proposition 25. Let us suppose that µ3 = 1 and µ5 =
9
10

. Then, for all
i, j ≥ 1,

λi,j =
6(i− j)(i− 2)!(j − 2)!

(i + j − 2)!
.

Proof. We first prove that λ2,n =
6(n− 2)
(n− 1)n

. This is immediate for n = 1, 2,

3, 4, 5. Let us assume the result for all j < n, with n ≥ 6. If n = 2k is even, using
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Lemma 20,

λ2,2k =
6

2k − 3

2k−4∑
l=0

(
2k − 2

l

)
(−1)l l + 1

(l + 2)(l + 3)
.

Then Lemma 24 gives the result. If n = 2k + 3 is odd, let us write the relation (3)
with (i, j, k) = (2, 3, 2k),

λ2,3λ5,2k + λ3,2kλ2k+3,2 + λ2k,2λ2k+2,3 = 0.

So, with relation (4)

λ2,2k − 3λ2,2k+1 + 3λ2,2k+2 − λ2,2k+3

−λ2,2k+3(λ2,2k − λ2,2k+1) + λ2,2k(λ2,2k+2 − λ2,2k+3) = 0,

λ2,2k+3(−1− 2λ2,2k + λ2,2k+1) + λ2,2k − 3λ2,2k+1

+3λ2,2k+2 + λ2,2kλ2,2k+2 = 0,

−λ2,2k+3
(2k + 3)(k − 1)(2k + 5)

k(2k + 1)(2k − 1)
+

3(2k + 5)(k − 1)
k(k + 1)(2k − 1)

= 0,

which implies the result.
Let us now prove the result by induction on i. This is immediate if i = 1, and

the first part of this proof for i = 2. Let us assume the result at rank i. Then, by
relation (4),

λi+1,j = λi,j − λi,j+1

= 6
(j − i)(i− 2)!(j − 2)!

(i + j − 2)!
− 6

(j + 1− i)(i− 2)!(j − 1)!
(i + j − 1)!

= 6
(i− 1)!(j − 2)!(j + 1− i)

(i + j − 1)!
.

So the result is true for all i, j. �

3.3. Case where µ3 = 0. In this case:

Proposition 26. If µ3 = 0, then λi,j = 0 for all i, j ≥ 2.

Proof. We first prove that µ5 = 0. If not, by (3) for (i, j, k) = (2, 3, 4),
µ5µ7 = 0, so µ7 = 0. By (3) with (i, j, k) = (2, 3, 7), −5µ5(28µ5 + 4µ9) = 0, so
µ9 = −7µ5. By (3) with (i, j, k) = (3, 4, 5), −36µ2

5 = 0: contradiction. So µ5 = 0.
Let us then prove that all the µ2k+1’s, k ≥ 1, are zero. We assume that

µ3 = µ5 = · · · = µ2k−1 = 0, and µ2k+1 6= 0, with l ≥ 3. By lemma 21, λ2,2 =
· · · = λ2,2k−1 = λ2,2k = 0 and λ2,2k+1 6= 0. By relation (3) for (i, j, k) = (2, 3, n),
combined with (4),

λ2,3λ5,n + λ3,nλn+3,2 + λn,2λn+2,3 = 0,

−(λ2,n − λ2,n+1)λ2,n+3 + λ2,n(λ2,n+2 − λ2,n+3) = 0.

For n = 2k, this gives λ2,2k+1λ2,2k+3 = 0, so λ2,2k+3 = 0. For n = 2k + 2,

(5) λ2,2k+2(λ2,2k+4 − 2λ2,2k+5) = 0.
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By Lemma 21,

λ2,2k+2 =
1

2k − 1

(
2k

2k − 2

)
λ2,2k+1

= kλ2,2k+1,

λ2,2k+4 =
1

2k + 1

((
2k + 2

2k

)
λ2,2k+3 −

(
2k + 2
2k − 1

)
λ2,2k+2 +

(
2k + 2
2k − 2

)
λ2,2k+1

)
= −k(k + 1)(2k + 1)

6
λ2,2k+1.

With (5),

λ2,2k+5 = −k(k + 1)(2k + 1)
12

λ2,2k+1.

By relation (3) for (i, j, k) = (3, 4, 2k),

λ3,4λ7,2k + λ4,2kλ4+2k,3 + λ2k,3λ2k+3,4 = 0.

Moreover, using Lemma 20,
λ3,4 = λ2,4 − λ2,5 = 0,

λ4,2k = λ2,2k − 2λ2,2k+1 + λ2,2k+2,
λ3,4+2k = λ2,4+2k − λ2,5+2k,

λ2k,3 = −λ2,2k + λ2,2k+1,
λ3+2k,4 = −λ2,3+2k + 2λ2,4+2k − λ2,5+2k.

This gives
λ2

2,2k+1k(3k − 11)(2k + 1)(k + 1)
12

= 0,

so λ2,2k+1 = µ2k+1 = 0: contradiction. So all the µ2k+1, k ≥ 1, are zero. By Lemma
21, the λ2,i’s, i ≥ 2, are zero. By Lemma 20, the λi,j ’s, i, j ≥ 2, are zero. �

Theorem 27. Up to isomorphism, there are three FdB Lie algebras:
(1) The Faà di Bruno Lie algebra gFdB, with basis (ei)i≥1, and the bracket

given by [ei, ej ] = (j − i)ei+j for all i, j ≥ 1.
(2) The corolla Lie algebra gc, with basis (ei)i≥1, and the bracket given by

[e1, ej ] = ej+1 and [ei, ej ] = 0 for all i, j ≥ 2.
(3) Another Lie algebra g3, with basis (ei)i≥1, and the bracket given by [e1, ei] =

ei+1, [e2, ej ] = ej+2, and [ei, ej ] = 0 for all i ≥ 2, j ≥ 3.

Proof. We have first to prove that these are indeed Lie algebras: this is done
by direct computations. Let g be a FdB Lie algebra. We showed that three cases
are possible:

(1) µ3 = 1 and µ5 =
9
10

. By Proposition 25, putting ei =
Zi

6(i− 2)!
if i ≥ 2

and e1 = Z1, we obtain the Faà di Bruno Lie algebra.
(2) µ3 = µ5 = 1. By Proposition 23, we obtain the third Lie algebra.
(3) µ3 = 0. By Proposition 26, we obtain the corolla Lie algebra.

�

Corollary 28. Let g be a FdB Lie algebra, such that if i and j are two
distinct elements of N∗, then [g(i), g(j)] 6= (0). Then g is isomorphic to the Faà di
Bruno Lie algebra.
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4. Dual of enveloping algebras of FdB Lie algebras

We realized in the first section the Faà di Bruno Hopf algebra, the dual of the
enveloping algebra of the Faà di Bruno Lie algebra, as a Hopf subalgebra of H. We
now give a similar result for the two other FdB Lie algebra.

4.1. The corolla Lie algebra.

Definition 29. We denote by Hc the subalgebra of H generated by the
corollas.

Proposition 30. Hc is a graded Hopf subalgebra of H. Its dual is isomor-
phic to the enveloping algebra of the corolla Lie algebra.

Proof. The subalgebra Hc, being generated by homogeneous elements, is
graded. By Lemma 9, Hc is a Hopf subalgebra of H. As it is commutative, its
dual is the enveloping algebra of the Lie algebra Prim(H∗

c). The dual of this Lie

algebra is the Lie coalgebra coPrim(Hc) =
Hc

(1)⊕Ker(ε)2
, with cobracket δ induced

by ($⊗$) ◦ (∆−∆op). As Hc is generated by the corollas, a basis of coPrim(Hc)
is ($(cn))n≥1. Moreover, if n ≥ 1,

($ ⊗$) ◦∆(cn) = $(c1)⊗$(cn−1),
δ(cn) = $(c1)⊗$(cn−1)−$(cn−1)⊗$(c1).

Let (Zn)n≥1 be the basis of Prim(H∗
c), the dual of the basis ($(cn))n≥1. By duality,

for all i, j ∈ N∗, such that i 6= j,

[Zi, Zj ] =

 Z1+j if i = 1,
−Zi+1 if j = 1,
0 otherwise.

So Prim(H∗
c) is isomorphic to the corolla Lie algebra, via the isomorphism{

gc −→ Prim(H∗
c)

ei −→ Zi.

Dually, Hc is isomorphic to U(gc)∗. �

Remark. We work in K[T ][β]. The generators of H1,β then satisfy

xn+1 =
[n]β !
n!

cn+1 +O(βn−2).

Note that the degree of [n]β ! in β is n− 1. So

lim
β→∞

n!
[n]β !

xn+1 = cn+1.

In this sense, the Hopf algebra Hc is the limit of H1,β when β goes to infinity.

4.2. The third FdB Lie algebra. We consider the following element of Ĥ:

Y = B+

(
exp

( qq − 1
2

q2 + q)) =
∑
n≥1

yn.
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For example

y1 = q
y2 = qq ,
y3 = qqq ,
y4 = q∨qqq

− 1
3

q∨qq q
,

y5 =
1
2

q∨qq qq
− 1

12
q∨qq
�Hq q

.

Definition 31. We denote by H3 the subalgebra of H generated by the
yn’s.

Proposition 32. H3 is a graded Hopf subalgebra of H. Its dual is isomor-
phic to the enveloping algebra of the third FdB Lie algebra.

Proof. The subalgebra H3, being generated by homogeneous elements, is

graded. An easy computation proves that X = qq − 1
2

q2 + q is a primitive ele-

ment of H. As a consequence, in Ĥ, by (1),

∆(X) = X ⊗ 1 + 1⊗X,

∆(exp(X)) = exp(X ⊗ 1 + 1⊗X)
= exp(X ⊗ 1) exp(1⊗X)
= (exp(X)⊗ 1)(1⊗ exp(X))
= exp(X)⊗ exp(X),

∆(Y ) = ∆ ◦B+(exp(X))
= Y ⊗ 1 + exp(X)⊗ Y.

Moreover, X = y2 −
1
2
y2
1 + y1 ∈ H3, so taking the homogeneous component of

degree n of ∆(Y ), we obtain

∆(yn) = yn ⊗ 1 +
n∑

k=1

n−k∑
l=1

∑
a1+···+al=n−k

1
l!

xa1 · · ·xal
⊗ yk,

where x1 = q = y1, x2 = qq − 1
2

q q = y2 − 1
2y2

1 and xi = 0 if i ≥ 3, so ∆(yn) ∈
H3 ⊗ H3 and H3 is a Hopf subalgebra of H. As it is commutative, its dual is
the enveloping algebra of the Lie algebra Prim(H∗

3). The dual of this Lie algebra

is the Lie coalgebra coPrim(H3) =
H3

(1)⊕Ker(ε)2
, with cobracket δ induced by

($ ⊗ $) ◦ (∆ − ∆op). As H3 is generated by the yn’s, a basis of coPrim(H3) is
($(yn))n≥1. Moreover,

($ ⊗$) ◦∆(Y ) = $(exp(X))⊗$(Y )
= $(X)⊗$(Y )
= ($(y2) + $(y1))⊗$(Y ).
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Taking the homogeneous component of degree n, with the convention y−1 = y0 = 0,

($ ⊗$) ◦∆(yn) = $(y2)⊗$(yn−2) + $(y1)⊗$(yn−1),
δ($(yn)) = $(y2)⊗$(yn−2) + $(y1)⊗$(yn−1)

−$(yn−2)⊗$(y2)−$(yn−1)⊗$(y1).

Let (Zn)n≥1 be the basis of Prim(H∗
3) dual to the basis ($(cn))n≥1. By duality,

for all i, j ∈ N∗, such that i ≥ 2 and j ≥ 3, [Z1, Zi] = Z1+j ,
[Z2, Zj ] = Z2+j ,
[Zi, Zj ] = 0.

So Prim(H∗
3) is isomorphic to third FdB Lie algebra, via the morphism{

g3 −→ Prim(H∗
c)

ei −→ Zi.

Dually, H3 is isomorphic to U(g3)∗. �
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