Lie algebras associated to systems of Dyson-Schwinger equations

Loïc Foissy*

Laboratoire de Mathématiques, Université de Reims Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France

ABSTRACT. We consider systems of combinatorial Dyson-Schwinger equations in the Connes-Kreimer Hopf algebra \mathcal{H}_I of rooted trees decorated by a set I. Let $\mathcal{H}_{(S)}$ be the subalgebra of \mathcal{H}_I generated by the homogeneous components of the unique solution of this system. If it is a Hopf subalgebra, we describe it as the dual of the enveloping algebra of a Lie algebra $\mathfrak{g}_{(S)}$ of one of the following types:

- 1. $\mathfrak{g}_{(S)}$ is an associative algebra of paths associated to a certain oriented graph.
- 2. Or $\mathfrak{g}_{(S)}$ is an iterated extension of the Faà di Bruno Lie algebra.
- 3. Or $\mathfrak{g}_{(S)}$ is an iterated extension of an infinite-dimensional abelian Lie algebra.

We also describe the character groups of $\mathcal{H}_{(S)}$.

Keywords. Systems of Dyson-Schwinger equations, Hopf algebras of decorated trees, pre-Lie algebras.

Mathematics Subject Classification. Primary 16W30. Secondary 81T15, 81T18.

Contents

1	\mathbf{Pre}	liminaries	4
	1.1	Hopf algebras of decorated rooted trees	4
	1.2	Pre-Lie structure on the dual of $\mathcal{H}_{\mathcal{D}}$	5
2	Rec	alls on SDSE	5
	2.1	Unique solution of an SDSE	5
	2.2	Graph associated to an SDSE	6
	2.3	Classification of SDSE	7
3	\mathbf{Stru}	icture coefficients of the pre-Lie agebra $\mathfrak{g}_{(S)}$	8
3	Stru 3.1	$\begin{array}{l} \textbf{icture coefficients of the pre-Lie agebra } \mathfrak{g}_{(S)} \\ \textbf{Definition of the structure coefficients} \\ \end{array}$	
3	3.1		
	$\begin{array}{c} 3.1\\ 3.2 \end{array}$	Definition of the structure coefficients \dots Prelie structure on $\mathcal{H}^*_{(S)}$ \dots	8
	$\begin{array}{c} 3.1\\ 3.2 \end{array}$	Definition of the structure coefficients	8 9 11
	3.1 3.2 Lie	Definition of the structure coefficients \dots Prelie structure on $\mathcal{H}^*_{(S)}$ \dots algebra and group associated to $\mathcal{H}_{(S)}$, associative case	8 9 11 11

*e-mail: loic.foissy@univ-reims.fr; webpage: http://loic.foissy.free.fr/pageperso/accueil.html

5	Lie algebra and group associated to $\mathcal{H}_{(S)}$, non-abelian case				
	5.1 Modules over the Faà di Bruno Lie algebra	16			
	5.2 Description of the Lie algebra	17			
	5.3 Associated group	20			
6	Lie algebra and group associated to $\mathcal{H}_{(S)},$ abelian case	21			
6	Lie algebra and group associated to $\mathcal{H}_{(S)}$, abelian case 6.1 Modules over an abelian Lie algebra				
6		21			

Introduction

The Connes-Kreimer Hopf algebra of (decorated) rooted trees $h^{\mathcal{D}}$ is introduced in [16] and studied in [2, 3, 5, 6, 7, 8, 14, 21]. For any element d of the set of decorations D, we define an operator B_d^+ of $\mathcal{H}^{\mathcal{D}}$, sending a forest F to the rooted tree obtained by grafting the trees of F on a common root decorated by d. This operator satisfies the following equation: for all $x \in \mathcal{H}_{\mathcal{D}}$,

$$\Delta \circ B_d^+(x) = B_d^+(x) \otimes 1 + (Id \otimes B_d^+) \circ \Delta(x).$$

As explained in [6], this means that B_d^+ is a 1-cocycle for a certain cohomology of coalgebras, dual to the Hochschild cohomology.

We now take $D = \{1, ..., N\}$ as a set of decorations. A system of combinatorial Dyson-Schwinger equations (briefly, an SDSE), is a system (S) of the form:

$$\begin{cases} X_1 = B_1^+(F_1(X_1, \dots, X_N)), \\ \vdots \\ X_N = B_N^+(F_N(X_1, \dots, X_N)), \end{cases}$$

where $F_1, \ldots, F_N \in K[[h_1, \ldots, h_N]]$ are formal series in N indeterminates (see [1, 17, 18] for applications to Quantum Fields Theory). Such a system possesses a unique solution, which is a family of N formal series in rooted trees, or equivalently elements of a completion of $\mathcal{H}_{\mathcal{D}}$. The homogeneous components of these elements generate a subalgebra $\mathcal{H}_{(S)}$ of $\mathcal{H}_{\mathcal{D}}$. We determined in [10] the SDSE such that $\mathcal{H}_{(S)}$ is a Hopf subalgebra, generalizing the results of [9] for a single combinatorial Dyson-Schwinger equations. For this, we first associate an oriented graph to any SDSE, reflecting the dependence of the different X_i 's; more precisely, the vertices of $G_{(S)}$ are the elements of I, and there is an edge from i to j if F_i depends on h_j . The SDSE is said to be connected if its associated graph $G_{(S)}$ is connected. We then introduced several operations on SDSE, especially change of variables (proposition 4 of the present paper) and two families of SDSE, namely fundamental and multicyclic SDSE, here described in theorem 6. For example, the following system is multicyclic:

$$\begin{cases} X_1 &= B_1^+(1+X_2), \\ X_2 &= B_2^+(1+X_3), \\ X_3 &= B_3^+(1+X_4), \\ X_4 &= B_4^+(1+X_1). \end{cases}$$

The associated oriented graph is:

Let us take $\beta_1, \beta_2 \in K - \{-1\}$. For all $\beta \in K$, f_β is the following formal series:

$$f_{\beta}(h) = \sum_{k=0}^{\infty} \frac{(1+\beta)\cdots(1+(k-1)\beta)}{k!} h^k.$$

Here is an example of a fundamental SDSE:

$$\begin{cases} X_1 = B_1^+ \left(f_{\beta_1}(X_1) f_{\frac{\beta_2}{1+\beta_2}}((1+\beta_2)X_2)(1-X_3)^{-1}(1-X_4)^{-1} \right), \\ X_2 = B_2^+ \left(f_{\frac{\beta_1}{1+\beta_1}}(X_1) f_{\beta_2}(X_2)(1-X_3)^{-1}(1-X_4)^{-1} \right), \\ X_3 = B_3^+ \left(f_{\frac{\beta_1}{1+\beta_1}}((1+\beta_1)X_1) f_{\frac{\beta_2}{1+\beta_2}}((1+\beta_2)X_2)(1-X_4)^{-1} \right), \\ X_4 = B_4^+ \left(f_{\frac{\beta_1}{1+\beta_1}}((1+\beta_1)X_1) f_{\frac{\beta_2}{1+\beta_2}}((1+\beta_2)X_2)(1-X_3)^{-1} \right), \\ X_5 = B_5^+ \left(f_{\frac{\beta_1}{1+\beta_1}}((1+\beta_1)X_1) f_{\frac{\beta_2}{1+\beta_2}}((1+\beta_2)X_2)(1-X_3)^{-1}(1-X_4)^{-1} \right), \end{cases}$$

The associated oriented graph is:

The present paper is devoted to the description of the Hopf algebras $\mathcal{H}_{(S)}$. By the Cartier-Quillen-Milnor-Moore theorem, they are dual of enveloping algebra $\mathcal{U}(\mathfrak{g}_{(S)})$, and it turns out that $\mathfrak{g}_{(S)}$ is a pre-Lie algebra [4], that is to say it has a bilinear product \star such that for all $f, g, h \in \mathfrak{g}_{(S)}$:

$$(f \star g) \star h - f \star (g \star h) = (g \star f) \star h - g \star (f \star h).$$

In our case, $\mathfrak{g}_{(S)}$ has a basis $(f_i(k))_{i \in I, k \geq 1}$ and by proposition 10 its pre-Lie product is given by:

$$f_j(l) \star f_i(k) = \lambda_k^{(i,j)} f_i(k+l),$$

where the coefficients $\lambda_k^{(i,j)}$ are described in proposition 8; the Lie bracket of $\mathfrak{g}_{(S)}$ is the antisymmetrisation of \star . The product \star can be associative, for example in the multicyclic case. Then, up to a change of variables, $f_j(l) \star f_i(k) = f_i(k+l)$ if there is an oriented path of length k from i to j in the oriented graph associated to (S), or 0 otherwise; see proposition 15. The associative algebra $\mathfrak{g}_{(S)}$ can then be described using the graph $G_{(S)}$ associated to the studied SDSE.

The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra $\mathfrak{g}_{(S)}$ is described as an iterated semi-direct product of the Faà di Bruno Lie algebra by infinite dimensional modules; see theorems 20 and 21. Similarly, the character group of $\mathcal{H}_{(S)}$ is an iterated semi-direct product of the Faà di Bruno group of formal diffeomorphisms by modules of formal series:

$$Ch(\mathcal{H}_{(S)}) = G_m \rtimes (G_{m-1} \rtimes (\cdots G_2 \rtimes (G_1 \rtimes G_0) \cdots))$$

where G_0 is the Faà di Bruno group and G_1, \ldots, G_{m-1} are isomorphic to direct sums of (tK[[t]], +) as groups; see theorem 23. The second subcase is similar, replacing the Faà di Bruno Lie algebra by an abelian Lie algebra; see theorems 27 and 28 for the Lie algebra, and theorem 30 for the group of characters.

This text is organised as follows: the first section gives some recalls on the structure of Hopf algebra of $\mathcal{H}_{\mathcal{D}}$ and on the pre-Lie product on $\mathfrak{g}_{(S)} = Prim\left(\mathcal{H}^*_{(S)}\right)$. In the second section are recalled the definitions and properties of SDSE. The following section introduces the coefficients $\lambda_n^{(i,j)}$ and their properties, especially their link with the pre-Lie product of $\mathfrak{g}_{(S)}$. The next three sections deals with the description of the Lie algebra $\mathfrak{g}_{(S)}$ and the group $Ch\left(\mathcal{H}_{(S)}\right)$ when $\mathfrak{g}_{(S)}$ is associative, in the non-abelian, fundamental case and finally in the abelian, fundamental case.

Notations. We denote by K a commutative field of characteristic zero. All vector spaces, algebras, coalgebras, Hopf algebras, etc. will be taken over K.

1 Preliminaries

1.1 Hopf algebras of decorated rooted trees

Let \mathcal{D} be a non-empty set. We denote by $\mathcal{H}_{\mathcal{D}}$ the polynomial algebra generated by the set $\mathcal{T}_{\mathcal{D}}$ of rooted trees decorated by elements of \mathcal{D} . For example:

1. Rooted trees with 1, 2, 3,4 or 5 vertices:

$$., :, \vee, !, \forall, \forall, \forall, Y, !; \forall , \forall, \forall, \sqrt{}, \sqrt{}, \forall, Y, !;$$

2. Rooted trees decorated by \mathcal{D} with 1, 2, 3 or 4 vertices:

$$\mathbf{.}_{a}; a \in \mathcal{D}, \qquad \mathbf{!}_{a}^{b} (a, b) \in \mathcal{D}^{2}; \qquad {}^{b} \mathbf{V}_{a}^{c} = {}^{c} \mathbf{V}_{a}^{b}, \mathbf{!}_{a}^{c}, (a, b, c) \in \mathcal{D}^{3};$$
$${}^{b} \mathbf{\tilde{V}}_{a}^{d} = {}^{b} \mathbf{\tilde{V}}_{a}^{c} = {}^{c} \mathbf{\tilde{V}}_{a}^{b} = {}^{c} \mathbf{\tilde{V}}_{a}^{b}, \mathbf{!}_{a}^{c} = {}^{d} \mathbf{\tilde{V}}_{a}^{c}, \mathbf{!}_{a}^{c} =$$

Let t_1, \ldots, t_n be elements of $\mathcal{T}_{\mathcal{D}}$ and let $d \in \mathcal{D}$. We denote by $B_d^+(t_1 \ldots t_n)$ the rooted tree obtained by grafting t_1, \ldots, t_n on a common root decorated by d. This map B_d^+ is extended in an operator from $\mathcal{H}_{\mathcal{D}}$ to $\mathcal{H}_{\mathcal{D}}$. For example, $B_d^+(\mathfrak{l}_a \cdot \mathfrak{c}) = {}^{b} V_d^c$.

In order to make $\mathcal{H}_{\mathcal{D}}$ a bialgebra, we now introduce the notion of cut of a tree $t \in \mathcal{T}_{\mathcal{D}}$. A non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t into a forest denoted by $W^{c}(t)$. The cut c is admissible if any oriented path in the tree meets at most one cut edge. For such a cut, the tree of $W^{c}(t)$ which contains the root of t is denoted by $R^{c}(t)$ and the product of the other trees of $W^{c}(t)$ is denoted by $P^{c}(t)$. We also add the total cut, which is by convention an admissible cut such that $R^{c}(t) = 1$ and $P^{c}(t) = W^{c}(t) = t$. The set of admissible cuts of t is denoted by $Adm_{*}(t)$. Note that the empty cut of t is admissible; we put $Adm(t) = Adm_{*}(t) - \{\text{empty cut, total cut}\}.$

The coproduct of $\mathcal{H}_{\mathcal{D}}$ is defined as the unique algebra morphism from $\mathcal{H}_{\mathcal{D}}$ to $\mathcal{H}_{\mathcal{D}} \otimes \mathcal{H}_{\mathcal{D}}$ such that for all rooted tree $t \in \mathcal{T}_{\mathcal{D}}$:

$$\Delta(t) = \sum_{c \in Adm_*(t)} P^c(t) \otimes R^c(t) = t \otimes 1 + 1 \otimes t + \sum_{c \in Adm(t)} P^c(t) \otimes R^c(t).$$

Example.

$$\Delta(\overset{a\dagger}{\overset{b}{\mathsf{V}}}_{d}^{c}) = \overset{a\dagger}{\overset{b}{\mathsf{V}}}_{d}^{c} \otimes 1 + 1 \otimes \overset{a\dagger}{\overset{b}{\mathsf{V}}}_{d}^{c} + \mathfrak{l}_{b}^{a} \otimes \mathfrak{l}_{d}^{c} + \mathfrak{o} \otimes \overset{b}{\mathsf{V}}_{d}^{c} + \mathfrak{o} \otimes \overset{b}{\mathfrak{l}}_{d}^{a} + \mathfrak{o} \otimes \mathfrak{o} \otimes \mathfrak{o} + \mathfrak{o} \otimes \mathfrak{o} \otimes \mathfrak{o} \otimes \mathfrak{o} + \mathfrak{o} \otimes \mathfrak$$

We grade $\mathcal{H}_{\mathcal{D}}$ by declaring the forests with *n* vertices homogeneous of degree *n*. We denote by $\mathcal{H}_{\mathcal{D}}(n)$ the homogeneous component of $\mathcal{H}_{\mathcal{D}}$ of degree *n*. Then $\mathcal{H}_{\mathcal{D}}$ is a graded bialgebra. The completion $\widehat{\mathcal{H}_{\mathcal{D}}}$ of $\mathcal{H}_{\mathcal{D}}$ is the vector space:

$$\widehat{\mathcal{H}_{\mathcal{D}}} = \prod_{n \in \mathbb{N}} \mathcal{H}_{\mathcal{D}}(n).$$

The elements of $\mathcal{H}_{\mathcal{D}}$ will be denoted by $\sum x_n$, where $x_n \in \mathcal{H}_{\mathcal{D}}(n)$ for all $n \in \mathbb{N}$.

Let $f(h) = \sum p_n h^n \in K[[h]]$ be any formal series, and let $X = \sum x_n \in \widehat{\mathcal{H}_D}$, such that $x_0 = 0$. The series of $\widehat{\mathcal{H}_D}$ of terms $p_n X^n$ is Cauchy, so converges. Its limit will be denoted by f(X). In other words, $f(X) = \sum y_n$, with:

$$\begin{cases} y_0 = p_0, \\ y_n = \sum_{k=1}^n \sum_{a_1 + \dots + a_k = n} p_k x_{a_1} \cdots x_{a_k} \text{ if } n \ge 1. \end{cases}$$

1.2 Pre-Lie structure on the dual of $\mathcal{H}_{\mathcal{D}}$

By the Cartier-Quillen-Milnor-Moore theorem [20], the graded dual $\mathcal{H}^*_{\mathcal{D}}$ of $\mathcal{H}_{\mathcal{D}}$ is an enveloping algebra. Its Lie algebra $Prim(\mathcal{H}^*_{\mathcal{D}})$ has a basis $(f_t)_{t\in\mathcal{T}_{\mathcal{D}}}$ indexed by \mathcal{T}_D :

$$f_t: \left\{ \begin{array}{ccc} \mathcal{H}_{\mathcal{D}} & \longrightarrow & K \\ t_1 \dots t_n & \longrightarrow & \left\{ \begin{array}{ccc} 0 \text{ if } n \neq 1, \\ \delta_{t,t_1} \text{ if } n = 1. \end{array} \right. \end{array} \right.$$

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra) is a couple (A, \star) , where \star is a bilinear product on A such that for all $x, y, z \in A$:

$$(x \star y) \star z - x \star (y \star z) = (y \star x) \star z - y \star (x \star z).$$

Pre-Lie algebras are Lie algebras, with bracket given by $[x, y] = x \star y - y \star x$.

The Lie bracket of $Prim(\mathcal{H}_{\mathcal{D}}^*)$ is induced by a pre-Lie product \star given in the following way: if $f, g \in Prim(\mathcal{H}_{\mathcal{D}}^*), f \star g$ is the unique element of $Prim(\mathcal{H}_{\mathcal{D}}^*)$ such that for all $t \in \mathcal{T}_{\mathcal{D}}$,

$$(f \star g)(t) = (f \otimes g) \circ (\pi \otimes \pi) \circ \Delta(t),$$

where π is the projection on $Vect(\mathcal{T}^{\mathcal{D}})$ which vanishes on the forests which are not trees. In other words, if $t, t' \in \mathcal{T}_{\mathcal{D}}$:

$$f_t \star f_{t'} = \sum_{t'' \in \mathcal{T}_{\mathcal{D}}} n(t, t'; t'') f_{t''},$$

where n(t, t'; t') is the number of admissible cuts c of t'' such that $P^c(t'') = t$ and $R^c(t'') = t'$. It is proved that $(prim(\mathcal{H}^*_{\mathcal{D}}), \star)$ is the free pre-Lie algebra generated by the \cdot_d 's, $d \in \mathcal{D}$: see [3, 4].

Note. The Hopf algebra $\mathcal{H}^*_{\mathcal{D}}$ is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [11, 12, 13].

2 Recalls on SDSE

2.1 Unique solution of an SDSE

Definition 1 Let I be a finite, non-empty set, and let $F_i \in K[[h_j, j \in I]]$ be a non-constant formal series for all $i \in I$. The system of Dyson-Schwinger combinatorial equations (briefly, the SDSE) associated to $(F_i)_{i \in I}$ is:

$$\forall i \in I, X_i = B_i^+(f_i(X_j, j \in I)),$$

where $X_i \in \widehat{\mathcal{H}}_I$ for all $i \in I$.

In order to ease the notation, we shall often assume that $I = \{1, ..., N\}$ in the proofs, without loss of generality.

Notations. We assume here that $I = \{1, \ldots, N\}$.

1. Let (S) be an SDSE. We shall denote, for all $i \in I$, $F_i = \sum_{p_1, \dots, p_N} a_{(p_1, \dots, p_N)}^{(i)} h_1^{p_1} \cdots h_N^{p_N}$.

2. Let $1 \leq i, j \leq N$. We denote by $a_j^{(i)}$ the coefficient of h_j in F_i .

Proposition 2 Let (S) be an SDSE. Then it admits a unique solution $(X_i)_{i \in I} \in (\widehat{\mathcal{H}_I})^I$. We put $X_i = \sum_{t \in \mathcal{T}_I^{(i)}} a_t t$.

Definition 3 Let (S) be an SDSE and let $X = (X_i)_{i \in I}$ be its unique solution. The subalgebra of \mathcal{H}_I generated by the homogeneous components $X_i(k)$'s of the X_i 's will be denoted by $\mathcal{H}_{(S)}$. If $\mathcal{H}_{(S)}$ is Hopf, the system (S) will be said to be Hopf.

We proved in [10] the following results:

Proposition 4 (change of variables) Let (S) be the SDSE associated to $(F_i(h_j, j \in I))_{i \in I}$. Let λ_i and μ_i be non-zero scalars for all $i \in I$. The system (S) is Hopf if, and only if, the SDSE system (S') associated to $(\mu_i F_i(\lambda_j h_j, j \in J))_{i \in I}$ is Hopf.

Moreover, a change of variables replace $\mathcal{H}_{(S)}$ by an isomorphic Hopf algebra.

2.2 Graph associated to an SDSE

We associate a oriented graph to each SDSE in the following way:

Definition 5 Let (S) be an SDSE.

- 1. We construct an oriented graph $G_{(S)}$ associated to (S) in the following way:
 - The vertices of $G_{(S)}$ are the elements of I.
 - There is an edge from *i* to *j* if, and only if, $\frac{\partial F_i}{\partial h_i} \neq 0$.
- 2. If $\frac{\partial F_i}{\partial h_i} \neq 0$, the vertex *i* will be said to be *self-dependent*. In other words, if *i* is self-dependent, there is a loop from *i* to itself in $G_{(S)}$.
- 3. If $G_{(S)}$ is connected, we shall say that (S) is connected.

Let (S) be an SDSE and let $G_{(S)}$ be the associated graph. Let i and j be two vertices of $G_{(S)}$. We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is an oriented edge from i to j; we shall say that j is a descendant of i (or i is an ascendant of j) if there is an oriented path from i to j. We shall write " $i \longrightarrow j$ " for "j is a direct descendant of i".

Remark. An change of variables does not change the graph $G_{(S)}$.

2.3 Classification of SDSE

The following result is proved in [10]:

Theorem 6 Let (S) be a connected SDSE. It is Hopf if and only if, up to a change of variables, one of the following assertion holds:

- 1. (Extended multicyclic SDSE). The set I admits a partition $I = I_{\overline{1}} \cup \cdots \cup I_{\overline{N}}$ indexed by the elements of $\mathbb{Z}/N\mathbb{Z}$, $N \geq 2$, with the following conditions:
 - For all $i \in I_{\overline{k}}$:

$$F_i = 1 + \sum_{j \in I_{\overline{k+1}}} a_j^{(i)} h_j$$

- If i and i' have a common direct ascendant in $G_{(S)}$, then $F_i = F_{i'}$ (so i and i' have the same direct descendants).
- 2. (Extended fundamental SDSE). There exists a partition:

$$I = \left(\bigcup_{i \in I_0} J_i\right) \cup \left(\bigcup_{i \in J_0} J_i\right) \cup K_0 \cup I_1 \cup J_1 \cup I_2,$$

with the following conditions:

- K_0 , I_1 , J_1 , I_2 can be empty.
- The set of indices $I_0 \cup J_0$ is not empty.
- For all $i \in I_0 \cup J_0$, J_i is not empty.

Up to a change of variables:

(a) For all $x \in I_0$, there exists $\beta_x \in K$, such that for all $i \in J_x$:

$$F_i = f_{\beta_x} \left(\sum_{j \in J_x} h_j \right) \prod_{y \in I_0 - \{x\}} f_{\frac{\beta_y}{1 + \beta_y}} \left((1 + \beta_y) \sum_{j \in J_y} h_j \right) \prod_{y \in J_0} f_1 \left(\sum_{j \in J_y} h_j \right).$$

(b) For all $x \in J_0$, for all $i \in J_x$:

$$F_i = \prod_{y \in I_0} f_{\frac{\beta_y}{1+\beta_y}} \left((1+\beta_y) \sum_{j \in J_y} h_j \right) \prod_{y \in J_0 - \{x\}} f_1 \left(\sum_{j \in J_y} h_j \right).$$

(c) For all $i \in K_0$:

$$F_i = \prod_{y \in I_0} f_{\frac{\beta_y}{1+\beta_y}} \left((1+\beta_y) \sum_{j \in J_y} h_j \right) \prod_{y \in J_0} f_1 \left(\sum_{j \in J_y} h_j \right).$$

(d) For all $i \in I_1$, there exist $\nu_i \in K$ and a family of scalars $\left(a_j^{(i)}\right)_{j \in I_0 \cup J_0 \cup K_0}$, with $(\nu_i \neq 1)$ or $(\exists j \in I_0, a_j^{(i)} \neq 1 + \beta_j)$ or $(\exists j \in J_0, a_j^{(i)} \neq 1)$ or $(\exists j \in K_0, a_j^{(i)} \neq 0)$. Then, if $\nu_i \neq 0$:

$$F_{i} = \frac{1}{\nu_{i}} \prod_{y \in I_{0}} f_{\frac{\beta_{y}}{\nu_{i}a_{y}^{(i)}}} \left(\nu_{i}a_{y}^{(i)} \sum_{j \in J_{y}} h_{j} \right) \prod_{y \in J_{0}} f_{\frac{1}{\nu_{i}a_{y}^{(i)}}} \left(\nu_{i}a_{y}^{(i)} \sum_{j \in J_{y}} h_{j} \right) \prod_{j \in K_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{j \in I_{0}} f_{0} \left(\nu_{i}a_{j}^{(i)}h_{j} \right) + 1 - \frac{1}{\nu_{i}} \prod_{i$$

If $\nu_i = 0$ *:*

$$F_{i} = -\sum_{y \in I_{0}} \frac{a_{y}^{(i)}}{\beta_{y}} \ln\left(1 - \sum_{j \in J_{y}} h_{j}\right) - \sum_{y \in J_{0}} a_{y}^{(i)} \ln\left(1 - \sum_{j \in J_{y}} h_{j}\right) + \sum_{j \in K_{0}} a_{j}^{(i)} h_{j} + 1.$$

- (e) For all $i \in J_1$, there exists $\nu_i \in K \{0\}$ and a family of scalars $\left(a_j^{(i)}\right)_{j \in I_0 \cup J_0 \cup K_0 \cup I_1}$, with the three following conditions:
 - $I_1^{(i)} = \{j \in I_1 \mid a_j^{(i)} \neq 0\}$ is not empty.
 - For all $j \in I_1^{(i)}, \ \nu_j = 1$.
 - For all $j, k \in I_1^{(i)}, F_j = F_k$. In particular, we put $b_t^{(i)} = a_t^{(j)}$ for any $j \in I_1^{(i)}$, for all $t \in I_0 \cup J_0 \cup K_0$.

Then:

$$F_{i} = \frac{1}{\nu_{i}} \prod_{y \in I_{0}} f_{\frac{\beta_{y}}{b_{y}^{(i)} - 1 - \beta_{y}}} \left(\left(b_{y}^{(i)} - 1 - \beta_{y} \right) \sum_{j \in J_{y}} h_{j} \right) \prod_{y \in J_{0}} f_{\frac{\beta_{y}}{b_{y}^{(i)} - 1}} \left(\left(b_{y}^{(i)} - 1 \right) \sum_{j \in J_{y}} h_{j} \right) \prod_{j \in K_{0}} f_{0} \left(b_{j}^{(i)} h_{j} \right) + \sum_{j \in I_{1}^{(i)}} a_{j}^{(i)} h_{1} + 1 - \frac{1}{\nu_{i}}.$$

(f) $I_2 = \{x_1, \ldots, x_m\}$ and for all $1 \le k \le m$, there exist a set:

$$I^{(x_k)} \subseteq \left(\bigcup_{i \in I_0} J_i\right) \cup \left(\bigcup_{i \in J_0} J_i\right) \cup K_0 \cup I_1 \cup J_1 \cup \{x_1, \dots, x_{k-1}\}$$

and a family of non-zero scalars $(a_j^{(x_k)})_{j \in I^{(x_k)}}$ such that for all $i, j \in I^{(x_k)}$, $F_i = F_j$. Then:

$$F_{x_k} = 1 + \sum_{j \in I^{(x_k)}} a_j^{(x_k)} h_j.$$

The elements of I_2 will be called extension vertices. If $I_2 = \emptyset$, we shall say that (S) is a fundamental system.

Definition 7 An extended fundamental Hopf SDSE (S) will be said to be *abelian* if $J_0 = \emptyset$ and if for all $x \in I_0$, $\beta_x = -1$.

3 Structure coefficients of the pre-Lie agebra $\mathfrak{g}_{(S)}$

3.1 Definition of the structure coefficients

We here recall several results of [10].

Proposition 8 Let (S) be a Hopf SDSE. For all $i, j \in I$, for all $n \ge 1$, there exists a scalar $\lambda_n^{(i,j)}$ such that for all $t' \in \mathcal{T}_i(n)$:

$$\sum_{t \in \mathcal{T}_i(n+1)} n_j(t,t') a_t = \lambda_n^{(i,j)} a_{t'},$$

where $n_j(t, t')$ is the number of leaves l of t decorated by j such that the cut of l gives t'.

In the case of extended fundamental SDSE, the coefficients $\lambda_n^{(i,j)}$ are given, for all $i, j \notin I_2$, by:

$$\lambda_n^{(i,j)} = \begin{cases} a_j^{(i)} & \text{if } n = 1, \\ \tilde{a}_j^{(i)} + b_j(n-1) & \text{if } n \ge 2, \end{cases}$$

the coefficients being given in the following arrays:

• $a_i^{(j)}$:

$i \setminus j$	$\in J_y, y \in I_0$	$\in J_y, y \in J_0$	$\in K_0$	$\in I_1$	$\in J_1$
$\in J_x, x \in I_0$	$(1+\beta_x) - \delta_{x,y}\beta_x$	$1 + \beta_x$	$1 + \beta_x$	$a_x^{(j)}$	$\frac{b_x^{(j)}-1-eta_x}{ u_j}$
$\in J_x, x \in J_0$	1	$1 - \delta_{x,y}$	1	$a_x^{(j)}$	$\frac{b_x^{(j)}-1}{\nu_j}$
$\in K_0$	0	0	0	$a_i^{(j)}$	$\frac{b_i^{(j)}}{\nu_j}$
$\in I_1$	0	0	0	0	$a_i^{(j)}$
$\in J_1$	0	0	0	0	0

•
$$\tilde{a}_i^{(j)}$$
:

$i \setminus j$	$\in J_y, y \in I_0$	$\in J_y, y \in J_0$	$\in K_0$	$\in I_1$	$\in J_1$
$\in J_x, x \in I_0$	$(1+\beta_x) - \delta_{x,y}\beta_x$	$1 + \beta_x$	$1+\beta_x$	$ u_j a_x^{(j)} $	$b_x^{(j)} - 1 - \beta_x$
$\in J_x, x \in J_0$	1	$1 - \delta_{x,y}$	1	$\nu_j a_i^{(j)}$	$b_i^{(j)} - 1$
$\in K_0$	0	0	0	$\nu_j a_i^{(j)}$	$b_i^{(j)}$
$\in I_1$	0	0	0	0	0
$\in J_1$	0	0	0	0	0

• *b_j*:

j	$\in J_y, y \in I_0$	$\in J_y, y \in J_0$	$\in K_0$	$\in I_1$	$\in J_1$
b_j	$1 + \beta_y$	1	0	0	0

If $i \notin I_2$ and $j \in I_2$, then $\lambda_n^{(i,j)} = 0$ for all $n \ge 1$. Moreover, if $i \in I_2$, let i' be a direct descendant of i. Then for all $j \in I$, for all $n \ge 2$, $\lambda_n^{(i,j)} = \lambda_{n-1}^{(i',j)}$.

3.2 Prelie structure on $\mathcal{H}^*_{(S)}$

Let us consider a Hopf SDSE (S). Then $\mathcal{H}_{(S)}^*$ is the enveloping algebra of the Lie algebra $\mathfrak{g}_{(S)} = Prim\left(\mathcal{H}_{(S)}^*\right)$. By [19], it inherits from $Prim(\mathcal{H}_{\mathcal{D}}^*)$ a pre-Lie product given in the following way: for all $f, g \in G_{(S)}$, for all $x \in \mathcal{H}_{(S)}$, $f \star g$ is the unique element of $\mathfrak{g}_{(S)}$ such that for all $x \in vect(X_i(n) \mid i \in I, n \geq 1)$,

$$(f \star g)(x) = (f \otimes g) \circ (\pi \otimes \pi) \circ \Delta(x).$$

Let $(f_i(p))_{i \in I, p \ge 1}$ be the basis of $\mathfrak{g}_{(S)}$, dual of the basis $(X_i(p))_{i \in I, p \ge 1}$. By homogeneity of Δ , and as $\Delta(X_i(n))$ is a linear span of elements $- \otimes X_i(p)$, $0 \le p \le n$, we obtain the existence of coefficients $a_{k,l}^{(i,j)}$ such that, for all $i, j \in I, k, l \ge 1$:

$$f_j(l) \star f_i(k) = a_{k,l}^{(i,j)} f_i(k+l).$$

By duality, $a_{k,l}^{(i,j)}$ is the coefficient of $X_j(l) \otimes X_i(k)$ in $\Delta(X_i(k+l))$, so is uniquely determined in the following way: for all $t' \in \mathcal{T}_{\mathcal{D}}^{(j)}(l), t'' \in \mathcal{T}_{\mathcal{D}}^{(i)}(k)$,

$$\sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n(t', t''; t) a_t = a_{k,l}^{(i,j)} a_{t'} a_{t''}$$

Lemma 9 For all $t' \in \mathcal{T}_{\mathcal{D}}^{(j)}(l), t'' \in \mathcal{T}_{\mathcal{D}}^{(i)}(k), \sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n(t', t''; t) a_t = \lambda_k^{(i,j)} a_{t'} a_{t''}.$

Proof. By induction on k. If k = 1, then $t'' = \cdot_i$, so:

$$\sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n(t',t'';t)a_t = a_{B_i^+(t'')} = a_j^{(i)}a_{t'} = \lambda_1^{(i,j)}a_{t'}a_{t''},$$

as $a_{t''} = 1$. Let us assume the result at all rank $\leq k - 1$. We put $t'' = B_i^+ (\prod_{s \in \mathcal{T}_D} s^{r_s})$. We put $m = \sum_{s \in \mathcal{T}_D} r_s$ for all $i \in I$. Then:

$$\begin{split} p_{j} &= \sum_{s \in \mathcal{T}_{D}^{(j)}} r_{s} \text{ for all } j \in I. \text{ Then:} \\ &= \sum_{t \in \mathcal{T}_{D}^{(j)}(k+l)} n(t',t'';t)a_{t} \\ &= n\left(t',t'',B_{i}^{+}\left(\cdot_{j}\prod_{s \in \mathcal{T}_{D}} s^{r_{s}}\right)\right) a_{B_{i}^{+}(t'\prod s^{r_{s}})} + \sum_{\substack{s_{1},s_{2} \in \mathcal{T}_{D} \\ r_{s_{2}} \geq 1}} (r_{s_{1}}+1)n(t',s_{2};s_{1})a_{B_{i}^{+}\left(\frac{s_{1}}{s_{2}}\prod s^{r_{s}}\right)} \\ &= (r_{t'+1})\frac{(p_{j}+1)\prod_{j=1}^{N} p_{j}!}{(r_{t'+1})\prod_{s \in \mathcal{T}_{D}} r_{s}!}a_{(p_{1},\cdots,p_{j+1},\cdots,p_{N})}^{(i)}a_{t'}\prod_{s \in \mathcal{T}_{D}} a_{s}^{r_{s}} + \sum_{s_{1},s_{2} \in \mathcal{T}_{D}} (r_{s_{1}}+1)n_{j}(s_{1},s_{2})\frac{r_{s_{2}}}{r_{s_{1}}+1}a_{t''}\frac{a_{s_{1}}}{a_{s_{2}}} \\ &= (p_{j}+1)\frac{a_{(p_{1},\cdots,p_{j+1},\cdots,p_{N})}^{(i)}}{a_{(p_{1},\cdots,p_{N})}^{(i)}}a_{t'}a_{t''} + \sum_{s_{1},s_{2} \in \mathcal{T}_{D}} n_{j}(s_{1},s_{2})r_{s_{2}}\frac{a_{s_{1}}}{a_{s_{2}}} \\ &= \left(\lambda_{p_{1}+\cdots+p_{N}+1}^{(i)} - \sum_{l=1}^{N} p_{j}a_{j}^{(l)} + \sum_{s_{1},s_{2} \in \mathcal{T}_{D}} n_{j}(s_{1},s_{2})r_{s_{2}}\frac{a_{s_{1}}}{a_{s_{2}}}\right)a_{t'}a_{t''} \\ &= \left(\lambda_{p_{1}+\cdots+p_{N}+1}^{(i,j)} - \sum_{l=1}^{N} p_{j}a_{j}^{(l)} + \sum_{s_{2} \in \mathcal{T}_{D}} r_{s_{2}}\lambda_{|s_{2}|}^{(r(s_{2}),j)}\right)a_{t'}a_{t''}, \end{split}$$

using the induction hypothesis on s_2 , denoting by $r(s_2)$ the decoration of the root of s_2 . As $a_{t'} \neq 0, a_{(p_1, \dots, p_n)}^{(i)} \neq 0$, proposition 19-3 of [10] implies:

$$\begin{split} \lambda_{1+\sum r_{s}|s|}^{(i,j)} &= \lambda_{1+\sum r_{s}}^{(i,j)} + \sum_{s} r_{s} \left(\lambda_{|s|}^{(r(s),j)} - a_{j}^{(r(s))} \right) \\ \lambda_{|t''|}^{(i,j)} &= \lambda_{p_{1}+\dots+p_{N}+1}^{(i,j)} + \sum_{s} r_{s} \lambda_{|s|}^{(r(s),j)} - \sum_{l} p_{l} a_{j}^{(l)}. \end{split}$$

So the induction hypothesis is proved at rank n.

Combining this lemma with the preceding observations:

Proposition 10 Let (S) be a Hopf SDSE. The pre-Lie algebra $\mathfrak{g}_{(S)} = Prim\left(\mathcal{H}_{(S)}^*\right)$ has a basis $(f_i(k))_{i\in I,k\geq 1}$, and the pre-Lie product of two elements of this basis is given by:

$$f_j(l) \star f_i(k) = \lambda_k^{(i,j)} f_i(k+l).$$

Remark. Let us consider a fundamental SDSE (S), with $I_1 = J_1 = I_2 = \emptyset$. Combining proposition 10 with the arrays following proposition 8, then for all $i, j \in I$, for all $k, l \ge 1$:

$$[f_j(l), f_i(k)] = b_j k f_i(k+l) - b_i l f_j(k+l).$$

We assume that $I = \{1, ..., N\}$. Let $\mathbf{W} = Der(K[x_1^{\pm 1}, ..., x_N^{\pm 1}])$ be the Lie algebra of derivations of a Laurent polynomial algebra; \mathbf{W} is a Lie algebra of generalized-Witt type [15]. It is not difficult to show that there is a Lie algebra morphism:

$$\begin{cases} \mathfrak{g}_{(S)} \longrightarrow \mathbf{W} \\ f_i(k) \longrightarrow b_i(x_1 \dots x_N)^k x_i \frac{\partial}{\partial x_i} \end{cases}$$

This morphism is injective if, and only if, $b_1, \ldots, b_N \neq 0$. If this holds, $\mathfrak{g}_{(S)}$ can be identified with a Lie subalgebra of the positive part of \mathbf{W} .

4 Lie algebra and group associated to $\mathcal{H}_{(S)}$, associative case

Let us consider a connected Hopf SDSE (S). We now study the pre-Lie algebra $\mathfrak{g}_{(S)}$ of proposition 10. We separate this study into three cases:

- Associative case: the pre-Lie algebra $\mathfrak{g}_{(S)}$ is associative. This holds in particular if (S) is an extended multicyclic SDSE.
- Abelian case: (S) is an extended fundamental, abelian SDSE, see definition 7.
- Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.

We first treat the associative case.

4.1 Characterization of the associative case

Proposition 11 Let (S) be a Hopf SDSE. Then the pre-Lie algebra $\mathfrak{g}_{(S)}$ is associative if, and only if, for all $i \in I$:

$$F_i = 1 + \sum_{i \longrightarrow j} a_j^{(i)} h_j.$$

Proof. \Longrightarrow . Let us assume that \star is associative. Let $i, j, k \in I$, let us show that $a_{j,k}^{(i)} = 0$. If $a_j^{(i)} = 0$ or $a_k^{(i)} = 0$, then $a_{j,k}^{(i)} = 0$. Let us suppose that $a_j^{(i)} \neq 0$ and $a_k^{(i)} \neq 0$. Then:

$$0 = (f_k(1) \star f_j(1)) \star f_i(1) - f_k(1) \star (f_j(1) \star f_i(1))$$

= $\left(\lambda_1^{(j,k)} \lambda_1^{(i,j)} - \lambda_1^{(i,j)} \lambda_2^{(i,k)}\right) f_i(3)$
= $\lambda_1^{(i,j)} \left(\lambda_1^{(j,k)} - \lambda_2^{(i,k)}\right) f_i(3)$
= $a_j^{(i)} \left(a_k^{(j)} - \lambda_2^{(i,k)}\right) f_i(3).$

So $\lambda_2^{(i,k)} = a_k^{(j)}$. Moreover, by proposition 8:

$$a_{j}^{(i)}a_{k}^{(j)} = \lambda_{2}^{(i,k)}a_{\sharp_{i}^{j}} = a_{\sharp_{i}^{k}} + (1+\delta_{j,k})a_{j} V_{i}^{k} = a_{j}^{(i)}a_{k}^{(j)} + (1+\delta_{j,k})a_{j,k}^{(i)}$$

So $a_{j,k}^{(i)} = 0$. As a consequence, $F_i = 1 + \sum_{i \longrightarrow j} a_j^{(i)} h_j$.

 \Leftarrow . Then $X_i(n)$ is a linear span of ladders of weight n for all $n \ge 1$, for all $i \in I$. As a consequence, if $x \in Vect(X_i(n) \mid i \in I, n \ge 1)$, for all $f, g \in \mathfrak{g}_{(S)}$, denoting $\Delta(x) = x' \otimes x''$ and $(\Delta \otimes Id) \circ \Delta(x) = x' \otimes x'' \otimes x'''$:

$$(f \star g)(x) = (f \otimes g) \circ (\pi \otimes \pi) \circ \Delta(x) = (f \otimes g) \circ \Delta(x) = f(x')g(x'').$$

So if $f, g, h \in G_{(S)}$, for all $x \in Vect(X_i(n) \mid i \in I, n \ge 1)$:

$$((f \star g) \star h)(x) = f(x')g(x'')h(x''') = (f \star (g \star h))(x).$$

So $(f \star g) \star h = f \star (g \star h)$: $\mathfrak{g}_{(S)}$ is an associative algebra.

Corollary 12 Let (S) be a connected Hopf SDSE. Then $\mathfrak{g}_{(S)}$ is associative if, and only if one of the following assertions holds:

- 1. (S) is an extended multicyclic SDSE.
- 2. (S) is an extended fundamental SDSE, with:
 - For all $i \in I_0$, $\beta_i = -1$.
 - J_0 , K_0 , I_1 and J_1 are empty.

If the second assertion holds, then (S) is also an extended fundamental abelian SDSE, and another interpretation of $\mathfrak{g}_{(S)}$ can be given; see theorem 28.

4.2 An algebra associated to an oriented graph

Notations. Let G an oriented graph, $i, j \in G$, and $n \ge 1$. We shall denote $i \xrightarrow{n} j$ if there is an oriented path from i to j of length n in G.

Definition 13 Let G be an oriented graph, with set of vertices denoted by I. The associative, non-unitary algebra A_G is generated by $P_i(1)$, $i \in I$, and the following relations:

- If j is not a direct descendant of i in G, $P_i(1)P_i(1) = 0$.
- If $i_1 \to i_2 \to \cdots \to i_n$ and $i_1 \to i'_2 \to \cdots \to i'_n$ in G, then:

$$P_{i_n}(1)\cdots P_{i_2}(1)P_{i_1}(1) = P_{i'_n}(1)\cdots P_{i'_n}(1)P_{i_1}(1).$$

Let G be an oriented graph, and let $i \in I$ and $n \geq 1$. For any oriented path $i \to i_2 \to \cdots \to i_n$ in G, we denote $P_i(n) = P_{i_n}(1) \cdots P_{i_2}(1)P_i(1)$. If there is no such an oriented path, we put $P_i(n) = 0$. By definition of A_G (second family of relations), this does not depend of the choice of the path. Graphically, $P_i(n)$ should be seen as representing any path from the vertex *i* of length n.

Lemma 14 Let G be an oriented graph. Then the $P_i(n)$'s, $i \in I$, $n \ge 1$, linearly generate A_G . Moreover, if $P_i(m)$ and $P_j(n)$ are non-zero, then:

$$P_j(n)P_i(m) = \begin{cases} P_i(m+n) & \text{if } i \xrightarrow{m} j, \\ 0 & \text{if not.} \end{cases}$$

Proof. By the first relation, $P_i(n) = P_{i_n}(1) \cdots P_{i_2}(1)P_i(1) = 0$ if (i, i_1, \ldots, i_n) is not an oriented path in G. So the $P_i(n)$'s, $i \in I$, $n \ge 1$, linearly generate A_G .

let us fix $P_i(m) = P_{i_m}(1) \cdots P_{i_2}(1) P_i(1)$ and $P_j(n) = P_{j_n}(1) \cdots P_{j_2}(1) P_j(1)$ both non-zero. If $i \xrightarrow{m} j$ we can choose i_2, \ldots, i_m such that $i \to i_2 \to \cdots \to i_m \to j$. Then:

$$P_j(n)P_i(m) = P_{j_n}(1)\cdots P_{j_2}(1)P_j(1)P_{i_m}(1)\cdots P_{i_2}(1)P_i(1) = P_i(m+n).$$

If this is not the case, then j is not a direct descendant of i_m , so $P_j(1)P_{i_m}(1) = 0$ and $P_j(n)P_i(m) = 0$.

Proposition 15 Let G be an oriented graph.

- 1. The following conditions are equivalent:
 - (a) The family $(P_i(n))_{i \in I, n \geq 1}$ is a basis of A_G .
 - (b) All the $P_i(n)$ are non-zero.
 - (c) The graph G satisfies the following conditions:
 - Any vertex of G has a direct descendant.
 - If two vertices of G have a common direct ascendant, then they have the same direct descendants.
 - (d) The SDSE associated to the following formal series is Hopf:

$$\forall i \in I, \ F_i = 1 + \sum_{i \to j} h_j.$$

2. If this holds, then A_G is generated by $P_i(1)$, $i \in I$, and the following relations:

- If j is not a direct descendant of i in G, $P_i(1)P_i(1) = 0$.
- If $i \to j$ and $i \to k$ in G, then $P_i(1)P_i(1) = P_k(1)P_i(1)$.

The product of A_G is given by:

$$P_j(n)P_i(m) = \begin{cases} P_i(m+n) & \text{if } i \xrightarrow{m} j, \\ 0 & \text{if not.} \end{cases}$$

Moreover, if (S) is the system of condition (d), $\mathfrak{g}_{(S)}$ is associative and isomorphic to A_G .

Proof. 1. $(a) \Longrightarrow (b)$ is obvious.

 $(b) \implies (c)$. Let us assume (b). Then for all $i \in I$, $P_i(2) \neq 0$, so there exists a j such that $i \to j$ in G: any vertex of G has a direct descendant. Let us assume $i \to j$ and $i \to j'$ in G. Let k be a direct descendant of j. Then $P_i(2) = P_j(1)P_i(i) = P_{j'}(1)P_i(1)$ and $P_i(3) = P_k(1)P_j(1)P_i(1) = P_k(1)P_i(2) \neq 0$, so $P_k(1)P_i(2) = P_k(1)P_{j'}(1)P_i(1) \neq 0$. As a consequence, $P_k(1)P_{j'}(1) \neq 0$ and k is a direct descendant of j'. By symmetry, the direct descendants of j' are also direct descendants of j: two direct descendants of a same vertex have the same direct descendants.

 $(c) \Longrightarrow (d)$. Then for all $i \in I$, for all $n \ge 1$, $X_i(n) = \sum l(i, i_2, \dots, i_n)$, where the sum runs on all oriented paths $i \to i_2 \to \dots \to i_n$ in $G_{(S)}$. So:

$$\Delta(X_i(n)) = \sum \sum_{k=0}^n l(i_{k+1}, \dots, i_n) \otimes l(i, i_2, \dots, i_k).$$

If $i \to i_2 \cdots \to i_k \to i_{k+1}$ and $i \to i'_2 \cdots \to i'_k \to i'_{k+1}$, the second condition on G implies that i_3 and i'_3 are direct descendants of i_2 and i'_2, \ldots, i_{k+1} and i'_{k+1} are direct descendants of i_k and i'_k . So:

$$\Delta(X_i(n)) = \sum_{k=0}^n \sum_{\substack{i \to \dots \to i_k, \\ i \stackrel{k}{\longrightarrow} i_{k+1}, \\ i_{k+1} \to \dots \to i_n}} l(i_{k+1}, \dots, i_n) \otimes l(i, i_2, \dots, i_k) = \sum_{k=0}^n \sum_{\substack{i \stackrel{k}{\longrightarrow} j}} X_j(n-k) \otimes X_i(k).$$

So (S) is Hopf.

 $(d) \Longrightarrow (a)$. Then, for all $i \in I$, for all $n \ge 1$, $X_i(n) = \sum l(i, i_2, \dots, i_n)$, where the sum runs on all oriented paths $i \to i_2 \to \dots \to i_n$ in $G_{(S)}$. By proposition 11, $\mathfrak{g}_{(S)}$ is associative. Moreover, it is quite immediate to prove that in $\mathfrak{g}_{(S)}$:

- If j is not a direct descendant of i in G, $f_j(1)f_i(1) = 0$.
- If $i_1 \to i_2 \to \cdots \to i_n$ and $i_1 \to i'_2 \to \cdots \to i'_n$ in G, then:

$$f_{i_n}(1)\cdots f_{i_2}(1)f_{i_1}(1) = f_{i'_n}(1)\cdots f_{i'_2}(1)f_{i_1}(1) = f_{i_1}(n).$$

So there is a morphism of algebras from A_G to $\mathfrak{g}_{(S)}$, sending $P_i(1)$ to $f_i(1)$. This morphism sends $P_i(n)$ to $f_i(n)$. As the $f_i(n)$'s are linearly independent, so are the $P_i(n)$'s.

2. Let A'_G be the associative, non-unitary algebra generated by the relations of proposition 15-2. As these relation are immediatly satisfied in A_G , there is a unique morphism of algebras:

$$\Phi: \left\{ \begin{array}{ccc} A'_G & \longrightarrow & A_G \\ P_i(1) & \longrightarrow & P_i(1) \end{array} \right.$$

Let $i_1 \to i_2 \to \cdots \to i_n$ and $i_1 \to i'_2 \to \cdots \to i'_n$ in G. Let us prove that $P_{i_k}(1) \cdots P_{i_2}(1)P_{i_1}(1) = P_{i'_k}(1) \cdots P_{i'_2}(1)P_{i_1}(1)$ in A'_G by induction on k. For k = 2, this is implied by the second family of relations defining A'_G . Let us assume the result at rank k. Then, both in A_G and A'_G :

$$P_{i_{k+1}}(1)P_{i_k}(1)\cdots P_{i_2}(1)P_{i_1}(1) = P_{i_{k+1}}(1)P_{i'_k}(1)\cdots P_{i'_2}(1)P_{i_1}(1).$$

This is equal to $P_i(k+1)$ in A_G , so is non-zero. As a consequence, $P_{i_{k+1}}(1)P_{i'_k}(1) \neq 0$ in A_G , so $i'_k \to i_{k+1}$ in G. By definition of A'_G , $P_{i_{k+1}}(1)P_{i'_k}(1) = P_{i'_{k+1}}(1)P_{i'_k}(1)$ in A'_G , so:

$$P_{i_{k+1}}(1)P_{i_k}(1)\cdots P_{i_2}(1)P_{i_1}(1) = P_{i'_{k+1}}(1)P_{i'_k}(1)\cdots P_{i'_2}(1)P_{i_1}(1)$$

So the relations defining A_G are also satisfied in A'_G , so there is a morphism of algebras:

$$\Psi: \left\{ \begin{array}{ccc} A_G & \longrightarrow & A'_G \\ P_i(1) & \longrightarrow & P_i(1). \end{array} \right.$$

It is clear that Φ and Ψ are inverse isomorphisms of algebras.

Corollary 16 Let (S) a Hopf SDSE. If $\mathfrak{g}_{(S)}$ is associative, then the graph $G_{(S)}$ satisfies condition (c) of proposition 15 and $\mathfrak{g}_{(S)}$ is isomorphic to $A_{G_{(S)}}$.

Proof. First step. Let i, j, k be vertices of $G_{(S)}$ and $n \ge 1$ such that $i \xrightarrow{n} j$ and $i \xrightarrow{n} k$. Let us prove that $F_j = F_k$ by induction on n. If n = 1, by proposition 18-3 of [10], $F_j = F_k$. If $n \ge 2$, then there exists vertices of $G_{(S)}$ such that:

$$i \to j_1 \to \ldots \to j_{n-1} \to j, \qquad i \to k_1 \to \ldots \to k_{n-1} \to k$$

The case n = 1 implies that $F_{j_1} = F_{k_1}$, so $j_1 \xrightarrow{n-1} j$ and $j_1 \xrightarrow{n-1} k$. By the induction hypothesis, $F_j = F_k$. In other words, if $i \xrightarrow{n} j$ and $i \xrightarrow{n} k$, then $a_l^{(j)} = a_l^{(k)}$ for all $l \in I$.

Second step. Then, for all $i \in I$, for all $n \ge 1$:

$$X_i(n) = \sum a_{i_1}^{(i)} \cdots a_{i_n}^{(i_{n-1})} l(i, i_2, \cdots, i_n),$$

where the sum runs on all oriented paths $i \to i_2 \to \cdots \to i_n$ in $G_{(S)}$. The first step implies that $a_{i_1}^{(i)} \dots a_{i_n}^{(i_{n-1})}$ depends only of *i* and *n*: we denote it by $a_n^{(i)}$. Then:

$$X_i(n) = \sum a_n^{(i)} l(i, i_2, \cdots, i_n),$$

$$\Delta(X_i(n)) = \sum_{k+l=n} \sum_{\substack{i \ l \ j}} \frac{a_n^{(i)}}{a_l^{(i)} a_k^{(j)}} X_j(k) \otimes X_i(l).$$

Dually, putting $p_i(n) = a_n^{(i)} f_i(n)$ for all $1 \le i \le N$, $n \ge 1$, the pre-Lie product of $\mathfrak{g}_{(S)}$ is given by:

$$f_{j}(n) \star f_{i}(m) = \begin{cases} \frac{a_{m+n}^{(i)}}{a_{m}^{(i)}a_{n}^{(j)}}f_{i}(m+n) \text{ if } i \xrightarrow{m} j, \\ 0 \text{ otherwise}; \end{cases}$$

$$p_{j}(n) \star p_{i}(m) = \begin{cases} p_{i}(m+n) \text{ if } i \xrightarrow{m} j, \\ 0 \text{ otherwise}. \end{cases}$$

Last step. It is then clear that the associative algebra $\mathfrak{g}_{(S)}$ is generated by the $p_i(1), i \in I$, and that these elements satisfy the relations defining $A_{G_{(S)}}$. So there is an epimorphism of algebras:

$$\Theta: \left\{ \begin{array}{ccc} A_{G_{(S)}} & \longrightarrow & \mathfrak{g}_{(S)} \\ P_i(1) & \longrightarrow & p_i(1). \end{array} \right.$$

This morphism sends $P_i(n)$ to $p_i(n)$ for all $n \ge 1$. As the $p_i(n)$'s are a basis of $A_{G(S)}$, the $P_i(n)$'s are linearly independent in $A_{G(S)}$, so the graph $G_{(S)}$ satisfies condition (c) of proposition 15. Moreover, Θ is an isomorphism.

4.3 Group of characters

The non-unitary, associative algebra $\mathfrak{g}_{(S)}$ is graded, with $p_i(k)$ homogeneous of degree k for all $k \geq 1$. Moreover, $\mathfrak{g}_{(S)}(0) = (0)$. The completion $\widehat{\mathfrak{g}_{(S)}}$ is then an associative non-unitary algebra. We add it a unit and obtain an associative unitary algebra $K \oplus \widehat{\mathfrak{g}_{(S)}}$. It is then not difficult to show that the following set is a subgroup of the units of $K \oplus \widehat{\mathfrak{g}_{(S)}}$:

$$G = \left\{ 1 + \sum_{k \ge 1} x_k \mid \forall k \ge 1, \ x_k \in \mathfrak{g}_{(S)}(k) \right\}.$$

Proposition 17 The group of characters $Ch(\mathcal{H}_{(S)})$ is isomorphic to G.

Proof. We put $V = Vect(X_i(k)|i \in I, k \geq 1)$. Let $g \in V^*$. Then g can be uniquely extended in a map \widehat{g} from $\mathcal{H}_{(S)}$ to K by $g((1) + Ker(\varepsilon)^2) = (0)$, where ε is the counit of $\mathcal{H}_{(S)}$. Moreover, $\widehat{g} \in \widehat{\mathfrak{g}_{(S)}}$. This construction implies a bijection:

$$\Omega: \left\{ \begin{array}{ccc} Ch\left(\mathcal{H}_{(S)}\right) & \longrightarrow & G \\ f & \longrightarrow & 1 + \widehat{f_{|V|}} \end{array} \right.$$

Let $f_1, f_2 \in Ch(\mathcal{H}_{(S)})$. For all $x \in V$, we put $\Delta(x) = x \otimes 1 + 1 \otimes x + x' \otimes x''$. As x is a linear span of ladders, $x' \otimes x'' \in V \otimes V$. So:

$$(f_1.f_2)(x) = (f_1 \otimes f_2) \circ \Delta(x)$$

= $f_1(x) + f_2(x) + f_1(x')f_1(x'')$
= $f_{1|V}(x) + f_{2|V}(x) + f_{1|V}(x')f_{2|V}(x'')$
= $\widehat{f_{1|V}}(x) + \widehat{f_{2|V}}(x) + \widehat{f_{1|V}}(x')\widehat{f_{2|V}}(x'')$
= $\widehat{f_{1|V}}(x) + \widehat{f_{2|V}}(x) + \left(\widehat{f_{1|V}} \star \widehat{f_{2|V}}\right)(x).$

So $(\widehat{f_1.f_2})_{|V} = \widehat{f_1|_V} + \widehat{f_2|_V} + \widehat{f_1|_V} \star \widehat{f_2|_V}$. This implies that Ω is a group isomorphism.

5 Lie algebra and group associated to $\mathcal{H}_{(S)}$, non-abelian case

5.1 Modules over the Faà di Bruno Lie algebra

Let \mathfrak{g}_{FdB} be the Faà di Bruno Lie algebra. Recall that it has a basis $(e(k))_{k\geq 1}$, with bracket given by:

$$[e(k), e(l)] = (l - k)e(k + l).$$

The \mathfrak{g}_{FdB} -module V_0 has a basis $(f(k))_{k\geq 1}$, and the action of \mathfrak{g}_{FdB} is given by:

$$e(k).f(l) = lf(k+l).$$

We can then construct a semi-direct product $V_0^M \lhd \mathfrak{g}_{FdB},$ described in the following proposition:

Proposition 18 Let $M \in \mathbb{N}^*$. The Lie algebra $V_0^M \triangleleft \mathfrak{g}_{FdB}$ has a basis:

$$\left(f^{(i)}(k)\right)_{1\leq i\leq M,\,k\geq 1}\cup(e(k))_{k\geq 1},$$

and its Lie bracket given by:

$$\left\{ \begin{array}{rcl} [e(k), e(l)] &=& (l-k)e(k+l), \\ [e(k), f^{(i)}(l)] &=& lf^{(i)}(k+l), \\ [f^{(i)}(k), f^{(j)}(l)] &=& 0. \end{array} \right.$$

We now take $\mathfrak{g} = V_0^{\oplus M} \triangleleft \mathfrak{g}_{FdB}$. We define a family of \mathfrak{g} -modules. Let $c \in K$ and $v = (v_1, \ldots, v_M) \in K^M$. The module $W_{c,v}$ has a basis $(g(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$\begin{cases} e(k).g(l) &= (l+c)g(k+l), \\ f^{(i)}(k).g(l) &= v_i g(k+l). \end{cases}$$

The semi-direct product is given in the following proposition:

Proposition 19 Let \mathfrak{g} be the Lie algebra $\left(W_{c_1,\upsilon^{(1)}} \oplus \ldots \oplus W_{c_N,\upsilon^{(N)}}\right) \triangleleft \left(V_0^M \triangleleft \mathfrak{g}_{FdB}\right)$. It has a basis:

$$\left(g^{(j)}(k)\right)_{1 \le j \le N, \, k \ge 1} \cup \left(f^{(i)}(k)\right)_{1 \le i \le M, \, k \ge 1} \cup (e(k))_{k \ge 1},$$

and its bracket is given by:

$$\begin{cases} [e(k), e(l)] &= (l-k)e(k+l), \\ [e(k), f^{(i)}(l)] &= lf^{(i)}(k+l), \\ [e(k), g^{(i)}(l)] &= (l+c'_i)g^{(i)}(k+l), \\ [f^{(i)}(k), f^{(j)}(l)] &= 0, \\ [f^{(i)}(k), g^{(j)}(l)] &= v_i^{(j)}g^{(j)}(k+l), \\ [g^{(i)}(k), g^{(j)}(l)] &= 0. \end{cases}$$

Let us take \mathfrak{g} as in this proposition. We define three families of modules over \mathfrak{g} :

1. Let $\nu = (\nu_1, \ldots, \nu_M) \in K^M$. The module $W'_{\nu,0}$ has a basis $(h(k))_{k\geq 1}$, and the action of \mathfrak{g} is given by:

$$\begin{cases} e(k).g(l) = (l-1)h(k+l), \\ f^{(i)}(k).h(1) = \nu_i h(k+1), \\ f^{(i)}(k).h(l) = 0 \text{ if } l \ge 2, \\ g^{(i)}(k).h(l) = 0. \end{cases}$$

2. Let $\nu = (\nu_1, \ldots, \nu_M) \in K^M$. The module $W'_{\nu,1}$ has a basis $(h(k))_{k\geq 1}$, and the action of \mathfrak{g} is given by:

$$\begin{cases} e(k).h(1) &= h(k+1), \\ e(k).h(l) &= (l-1)h(k+l) \text{ if } l \ge 2, \\ f^{(i)}(k).h(1) &= \nu_i h(k+1), \\ f^{(i)}(k).h(l) &= 0 \text{ if } l \ge 2, \\ g^{(i)}(k).h(l) &= 0. \end{cases}$$

3. Let $c \in K$, $\nu = (\nu_1, \ldots, \nu_M) \in K^M$, $\mu = (\mu_1, \ldots, \mu_N) \in K^N$. The module $W''_{c,\nu,\mu}$ has a basis $(h(k))_{k\geq 1}$, and the action of \mathfrak{g} is given by:

$$\begin{cases} e(k).h(l) &= (l+c)h(k+l), \\ f^{(i)}(k).h(l) &= \nu_i h(k+l), \\ g^{(i)}(k).h(1) &= \mu_i h(k+1), \\ g^{(i)}(k).h(l) &= 0 \text{ if } l \ge 2. \end{cases}$$

5.2 Description of the Lie algebra

Theorem 20 Let us consider a fundamental non-abelian SDSE. Then $\mathfrak{g}_{(S)}$ has the following form:

$$\mathfrak{g}_{(S)} \approx W \triangleleft \left(\left(W_{c_1, \upsilon^{(1)}} \oplus \ldots \oplus W_{c_N, \upsilon^{(N)}} \right) \triangleleft \left(V_0^M \triangleleft \mathfrak{g}_{FdB} \right) \right),$$

where W is a direct sum of $W'_{\nu,0}$, $W'_{\nu,1}$ and $W''_{c,\nu,\mu}$.

Proof. First step. We first consider a fundamental Hopf SDSE (S) such that $I_1 = J_1 = I_2 = \emptyset$. The set J of the vertices of $G_{(S)}$ admits a partition $J = (J_x)_{x \in I_0} \cup (J_x)_{x \in J_0} \cup (J_x)_{x \in K_0}$. We put:

$$A = \{ j \in J / b_j \neq 0 \}, B = \{ j \in J / b_j = 0 \}.$$

In other terms, $i \in A$ if, and only if, $(i \in J_x)$, with $x \in I_0$ such that $b_x \neq -1$) or $(i \in J_x)$, with $x \in J_0$. As we are in the non-abelian case, $A \neq \emptyset$. Let us choose $i_x \in J_x$ for all $x \in I$, and $i_{x_0} \in A$. In order to enlighten the notations, we put $i_0 = i_{x_0}$. We define, for all $k \ge 1$:

$$\begin{cases} p_{i_0}(k) &= \frac{1}{b_{x_0}} f_{i_0}(k), \\ p_i(k) &= \frac{1}{b_{x_0}} (f_i(k) - f_{i_0}(k)) \text{ if } i \in J_{x_0} - \{i_0\}, \\ p_{i_x}(k) &= \frac{1}{b_x} f_i(k) - \frac{1}{b_{x_0}} f_{i_0}(k) \text{ if } x \neq x_0 \text{ and } x \in A, \\ p_{i_x}(k) &= f_i(k) \text{ if } x \in B, \\ p_i(k) &= \frac{1}{b_x} (f_i(k) - f_{i_x}(k)) \text{ if } i \in J_x - \{i_x\}, x \neq x_0 \text{ and } x \in A, \\ p_i(k) &= f_i(k) - f_{i_x}(k) \text{ if } i \in J_x - \{i_x\}, x \in B. \end{cases}$$

Then direct computations show that the Lie bracket of $\mathfrak{g}_{(S)}$ is given in the following way: for all $k, l \geq 1$,

•
$$[p_{i_0}(k), p_{i_0}(l)] = (l-k)p_{i_0}(k+l).$$

• For all
$$i \in I$$
, $[p_{i_0}(k), p_i(l)] = \begin{cases} (l+d_{x_0})p_i(k+l) \text{ if } i \in J_{x_0} - \{i_0\}, \\ lp_i(k+l) \text{ if } i \notin J_{x_0}. \end{cases}$

• For all
$$i \in J_{x_0} - \{i_0\}$$
, for all $x \neq x_0$, $[p_{i_x}(k), p_i(l)] = \begin{cases} -d_{x_0}p_i(k+l) & \text{if } x \in A, \\ 0 & \text{if } x \in B. \end{cases}$

• For all $x, x' \in I - \{x_0\}, [p_{i_x}(k), p_{i_{x'}}(l)] = 0.$

- For all $x, x' \in I \{x_0\}, i \in J_{x'} \{i_{x'}\}, [p_{i_x}(k), p_i(l)] = \begin{cases} 0 \text{ if } x \neq x', \\ d_x p_i(k+l) \text{ if } x = x'. \end{cases}$
- For all $x, x' \in I \{x_0\}, i \in J_x \{i_x\}, j \in J_{x'} \{i_{x'}\}, [p_i(k), p_j(l)] = 0.$

We used the following notations:

$$d_x = \begin{cases} \frac{-\beta_x}{1+\beta_x} & \text{if } x \in I_0, \ \beta_x \neq -1\\ 1 & \text{if } x \in I_0, \ \beta_x = -1, \\ -1 & \text{if } x \in J_0, \\ 0 & \text{if } x \in K_0. \end{cases}$$

So the Lie algebra $\mathfrak{g}_{(S)}$ is isomorphic to:

$$\left(W_{d_{x_0},(-d_{x_0},\cdots,-d_{x_0},0,\cdots,0)}^{|J_{x_0}|-1} \oplus \bigoplus_{x \in I - \{x_0\}} W_{0,(0,\cdots,0,d_x,0,\cdots,0)}^{|I_{x}|-1}\right) \triangleleft \left(V_0^{|I|-1} \triangleleft \mathfrak{g}_{FdB}\right).$$

A basis adapted to this decomposition is:

$$(p_i(k))_{i \in J_{x_0} - \{i_0\}, k \ge 1} \cup \left(\bigcup_{x \in I - \{x_0\}} (p_i(k))_{i \in J_x - \{i_x\}, k \ge 1} \right) \cup \left(\bigcup_{x \in I - \{x_0\}} (p_{i_x}(k))_{k \ge 1} \right) \cup (p_{i_0}(k))_{k \ge 1}.$$

Second step. We now assume that $I_1 \neq \emptyset$. Then the descendants of $j \in I_1$ form a system of the first step, so $\mathfrak{g}_{(S)} = W_{I_1} \triangleleft \mathfrak{g}_{(S_0)}$, where $W_{I_1} = Vect(f_j(k) / j \in I_1, k \ge 1)$ and (S_0) is a restriction of (S) as in the first step. Let us fix $j \in I_1$ and let us consider the $\mathfrak{g}_{(S_0)}$ -module $W_j = Vect(f_j(k) / k \ge 1)$. With the notations of the preceding step:

• $[p_{i_0}(k), f_j(l)] = \left(l - 1 + \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) f_j(k+l)$ if l = 1. • $[p_{i_0}(k), f_j(l)] = \left(l - 1 + \nu_j \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) f_j(k+l)$ if $l \ge 2$. • $[p_{i_x}(k), f_j(l)] = \left(\frac{a_{i_x}^{(j)}}{b_x} - \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) f_j(k+l)$ if $l = 1, x \in A$.

•
$$[p_{i_x}(k), f_j(l)] = \nu_j \left(\frac{a_{i_x}^{(j)}}{b_x} - \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) f_j(k+l) \text{ if } l \ge 2, x \in A$$

•
$$[p_{i_x}(k), f_j(l)] = a_{i_x}^{(j)} f_j(k+l)$$
 if $l = 1, x \in B$.

- $[p_{i_x}(k), f_j(l)] = \nu_j a_{i_x}^{(j)} f_j(k+l)$ if $l \ge 2, x \in B$.
- $[p_i(x), f_j(l)] = 0$ if i is not a i_x .

If $\nu_j \neq 0$, we put $p_j(k) = f_j(k)$ if $k \geq 2$ and $p_j(1) = \nu_j f_j(1)$. Then, for all l:

•
$$[p_{i_0}(k), p_j(l)] = \left(l - 1 + \nu_j \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) p_j(k+l).$$

- $[p_{i_x}(k), p_j(l)] = \nu_j \left(\frac{a_{i_x}^{(j)}}{b_x} \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) p_j(k+l)$ if $x \in A$.
- $[p_{i_x}(k), p_j(l)] = \nu_j a_{i_x}^{(j)} p_j(k+l)$ if $x \in B$.
- $[p_i(x), p_j(l)] = 0$ if *i* is not a i_x .

So W_j is a module $W_{c,v}$. If $\nu_j = 0$ and $a_{i_0}^{(j)} \neq 0$, we put $p_j(k) = f_j(k)$ if $k \ge 2$ and $p_j(1) = \frac{b_{x_0}}{a_{i_0}^{(j)}} f_j(1)$. Then:

- $[p_{i_0}(k), p_j(l)] = p_j(k+l)$ if l = 1.
- $[p_{i_0}(k), p_j(l)] = (l-1)p_j(k+l)$ if $l \ge 2$.

•
$$[p_{i_x}(k), f_j(l)] = \left(\frac{a_{i_x}^{(j)}}{b_x} - \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) f_j(k+l) \text{ if } l = 1, x \in A.$$

•
$$[p_{i_x}(k), f_j(l)] = 0$$
 if $l \ge 2, x \in A$.

- $[p_{i_x}(k), f_j(l)] = a_{i_x}^{(j)} f_j(k+l)$ if $l = 1, x \in B$.
- $[p_{i_x}(k), f_j(l)] = 0$ if $l \ge 2, x \in B$.
- $[p_i(x), p_j(l)] = 0$ if *i* is not a i_x .

So W_j is a module $W'_{\nu,1}$. If $\nu_j = 0$ and $a_{i_0}^{(j)} = 0$, we put $p_j(k) = f_j(k)$ for all $k \ge 1$. Then:

• $[p_{i_0}(k), p_j(l)] = (l-1)p_j(k+l).$

•
$$[p_{i_x}(k), f_j(l)] = \left(\frac{a_{i_x}^{(j)}}{b_x} - \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) f_j(k+l) \text{ if } l = 1, x \in A.$$

- $[p_{i_x}(k), f_j(l)] = 0$ if $l \ge 2, x \in A$.
- $[p_{i_x}(k), f_j(l)] = a_{i_x}^{(j)} f_j(k+l)$ if $l = 1, x \in B$.
- $[p_{i_x}(k), f_j(l)] = 0$ if $l \ge 2, x \in B$.
- $[p_i(x), p_j(l)] = 0$ if *i* is not a i_x .

So W_j is a module $W'_{\nu,0}$.

Last step. We now consider vertices in J_1 . If $j \in J_1$, then its descendants are vertices of the first step and *i* elements of I_1 such that $\nu_i = 1$. As before, $\mathfrak{g}_{(S)} = W_{J_1} \triangleleft \mathfrak{g}_{(S_1)}$, where $W_{J_1} = Vect(f_j(k) / j \in J_1, k \ge 1)$ and (S_1) is a restriction of (S) as in the second step. Let us fix $j \in J_1$ and let us consider the $\mathfrak{g}_{(S_1)}$ -module $W_j = Vect(f_j(k) / k \ge 1)$. As $\nu_j \ne 0$, putting $p_j(k) = f_j(k)$ if $k \ge 2$ and $p_j(1) = \nu_j f_j(1)$:

•
$$[p_{i_0}(k), p_j(l)] = \left(l - 1 + \nu_j \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) p_j(k+l).$$

•
$$[p_{i_x}(k), p_j(l)] = \nu_j \left(\frac{a_{i_x}^{(j)}}{b_x} - \frac{a_{i_0}^{(j)}}{b_{x_0}}\right) p_j(k+l) \text{ if } x \in A.$$

- $[p_{i_x}(k), p_j(l)] = \nu_j a_{i_x}^{(j)} p_j(k+l)$ if $x \in B$.
- $[p_i(k), p_j(l)] = \nu_j a_i^{(j)} p_j(k+l)$ if $l = 1, i \in I_1$, with $\nu_i = 1$.
- $[p_i(k), p_j(l)] = 0$ if $l \ge 2, i \in I_1$.
- $[p_i(x), p_j(l)] = 0$ if $i \notin I_1$ and is not a i_x .

So W_j is a module $W''_{c,\nu,\mu}$.

Theorem 21 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the Lie algebra $\mathfrak{g}_{(S)}$ is of the form:

$$\mathfrak{g}_m \triangleleft (\mathfrak{g}_{m-1} \triangleleft (\cdots \mathfrak{g}_2 \triangleleft (\mathfrak{g}_1 \triangleleft \mathfrak{g}_0) \cdots)),$$

where \mathfrak{g}_0 is the Lie algebra associated to the restriction of (S) to the vertices which are not extension vertices (so \mathfrak{g}_0 is described in theorem 20) and, for $j \geq 1$, \mathfrak{g}_j is an abelian $(\mathfrak{g}_{j-1} \triangleleft (\cdots \mathfrak{g}_2 \triangleleft (\mathfrak{g}_1 \triangleleft \mathfrak{g}_0) \cdots)$ -module having a basis $(h^{(j)}(k))_{k>1}$.

Proof. The Lie algebra \mathfrak{g}_j is the Lie algebra $Vect(f_{x_j}(k) / k \ge 1)$, where $J_2 = \{x_1, \ldots, x_m\}$, with the notations of theorem 6.

5.3 Associated group

Let us now consider the character group $Ch(\mathcal{H}_{(S)})$ of $\mathcal{H}_{(S)}$. In the preceding cases, $\mathfrak{g}_{(S)}$ contains a sub-Lie algebra isomorphic to the Faà di Bruno Lie algebra, so $Ch(\mathcal{H}_{(S)})$ contains a subgroup isomorphic to the Faà di Bruno subgroup:

$$G_{FdB} = \{x + a_1 x^2 + a_2 x^3 + \dots \mid \forall i, \ a_i \in K\},\$$

with the product defined by $A(x).B(x) = B \circ A(x)$. Moreover, each modules earlier defined on \mathfrak{g}_{FdB} corresponds to a module over G_{FdB} by exponentiation:

Definition 22

1. The module \mathbb{V}_0 is isomorphic to yK[[y]] as a vector space, and the action of G_{FdB} is given by:

$$A(x).P(y) = P \circ A(y).$$

2. Let $G = \left(\mathbb{V}_0^{\oplus M}\right) \rtimes G_{FdB}$. Let $c \in K$, and $v = (v_1, \cdots, v_M) \in K^M$. Then $\mathbb{W}_{c,v}$ is zK[[z]] as a vector space, and the action of G is given by:

$$(P_1(y), \cdots, P_M(y), A(x)).Q(z) = exp\left(\sum_{i=1}^M v_i P_i(z)\right) \left(\frac{A(z)}{z}\right)^c Q \circ A(z).$$

3. Let us consider the semi-direct product $G = \left(\mathbb{W}_{c_1,\varepsilon^{(1)}} \oplus \cdots \oplus \mathbb{W}_{c_N,\varepsilon^{(N)}} \right) \triangleleft \left(\mathbb{V}_0^{\oplus M} \triangleleft G_{FdB} \right).$

(a) Let $\nu = (\nu_1, \dots, \nu_M) \in K^M$. Then $\mathbb{W}'_{\nu,0}$ is tK[[t]] as a vector space, and for all $X = (Q_1(z), \dots, Q_N(z), P_1(y), \dots, P_M(y), A(x)) \in G$:

$$X.t = \left(1 + \sum_{i=1}^{M} \nu_i P_i(t)\right) t$$
$$X.R(t) = \left(\frac{t}{A(t)}\right) R \circ A(t),$$

for all $R(t) \in t^2 K[[t]]$.

(b) Let $\nu = (\nu_1, \dots, \nu_M) \in K^M$. Then $\mathbb{W}'_{\nu,1}$ is tK[[t]] as a vector space, and for all $X = (Q_1(z), \dots, Q_N(z), P_1(y), \dots, P_M(y), A(x)) \in G$:

$$X.t = \left(1 + \sum_{i=1}^{M} \nu_i P_i(t)\right) \left(t + t \ln\left(\frac{A(t)}{t}\right)\right),$$

$$X.R(t) = \left(\frac{t}{A(t)}\right) R \circ A(t),$$

for all $R(t) \in t^2 K[[t]]$.

(c) Let $c \in K$, $\nu = (\nu_1, \dots, \nu_M) \in K^M$, $\mu = (\mu_1, \dots, \mu_N) \in K^N$. Then $\mathbb{W}''_{c,\nu,\mu}$ is tK[[t]] as a vector space, and for all $X = (Q_1(z), \dots, Q_N(z), P_1(y), \dots, P_M(y), A(x)) \in G$:

$$\begin{aligned} X.t &= \left(\frac{A(t)}{t}\right)^c exp\left(\sum_{i=1}^M \mu_i P_i(t)\right) \left(1 + \sum_{i=1}^M \mu_i Q_i(t)\right) A(t), \\ X.R(t) &= \left(\frac{t}{A(t)}\right)^c exp\left(\sum_{i=1}^M \mu_i P_i(t)\right) R \circ A(t), \end{aligned}$$

for all $R(t) \in t^2 K[[t]]$.

Direct computations prove that they are indeed modules.

Theorem 23 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the group $Ch(\mathcal{H}_{(S)})$ is of the form:

$$G_m \rtimes (G_{m-1} \rtimes (\cdots G_2 \rtimes (G_1 \rtimes G_0) \cdots)),$$

where G_0 is a semi-direct product of the form:

$$G_0 = \mathbb{W}' \rtimes (\mathbb{W} \rtimes (\mathbb{V} \rtimes G_{FdB})),$$

where \mathbb{V} is a direct sum of modules \mathbb{V}_0 , \mathbb{W} a direct sum of modules $\mathbb{W}_{c,v}$, and \mathbb{W}' a direct sum of modules $\mathbb{W}'_{\nu,0}$, $\mathbb{W}'_{\nu,1}$ and $\mathbb{W}''_{c,\nu,\mu}$. Moreover, for all $m \ge 1$, $G_m = (tK[[t]], +)$ as a group.

Proof. The group $Ch(\mathcal{H}_{(S)})$ is isomorphic to the group of characters of $\mathcal{U}(\mathfrak{g})^*$, where \mathfrak{g} is described in theorem 21. This implies that this group has a structure of semi-direct product as described in theorem 23. Let us consider the Hopf algebra \mathcal{H} of coordinates of G_0 . It is a graded Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of \mathfrak{g}_0 of theorem 21. So \mathcal{H} is isomorphic to $\mathcal{H}_{(S_0)}$.

6 Lie algebra and group associated to $\mathcal{H}_{(S)}$, abelian case

We now treat the abelian case. Recall that in this case, $J_0 = K_0 = \emptyset$ and, for all $i \in I_0$, $\beta_i = -1$.

6.1 Modules over an abelian Lie algebra

Let \mathfrak{g}_{ab} be an abelian Lie algebra, with basis $(e^{(i)}(k))_{1 \leq i \leq M, k \geq 1}$. We define a family of modules over this Lie algebra:

Definition 24 Let $v = (v_1, \dots, v_M) \in K^M$. Then V_v has a basis $(f(k))_{k\geq 1}$, and the action of \mathfrak{g}_{ab} is given by:

$$e^{(i)}(k).f(l) = v_i f(k+l).$$

We can then describe the semi-direct product:

Proposition 25 Let
$$\mathfrak{g}$$
 be the Lie algebra $\left(\bigoplus_{i=1}^{N} V_{\upsilon^{(i)}}\right) \triangleleft \mathfrak{g}_{ab}$. It has a basis:
 $(e^{(i)}(k))_{1 \leq i \leq M, k \geq 1} \cup (f^{(i)}(k))_{1 \leq i \leq N, k \geq 1},$

and its Lie bracket is given by:

$$\begin{cases} [e^{(i)}(k), e^{(j)}(l)] &= 0, \\ [e^{(i)}(k), f^{(j)}(l)] &= v_i^{(j)} f^{(j)}(k+l), \\ [f^{(i)}(k), f^{(j)}(l)] &= 0. \end{cases}$$

We now define two families of modules over such a Lie algebra.

Definition 26 Let \mathfrak{g} be a Lie algebra of proposition 25.

1. Let $\nu = (\nu_1, \ldots, \nu_M) \in K^M$. The module W_{ν} has a basis $(g(k))_{k \ge 1}$, and the action of \mathfrak{g} is given by:

$$\begin{cases} e^{(i)}(k).g(1) &= \nu_i g(k+1), \\ e^{(i)}(k).g(l) &= 0 \text{ if } l \ge 2, \\ f^{(i)}(k).g(l) &= 0. \end{cases}$$

2. Let $\nu = (\nu_1, \ldots, \nu_M) \in K^M$ and $\mu = (\mu_1, \ldots, \mu_N) \in K^N$, such that for all $1 \le i \le M$, for all $1 \le j \le N$, $\mu_j \left(\nu_i - \nu_i^{(j)}\right) = 0$. The module $W'_{\nu,\mu}$ has a basis $(g(k))_{k\ge 1}$, and the action of \mathfrak{g} is given by:

$$\begin{cases} e^{(i)}(k).g(l) = \nu_i g(k+l), \\ f^{(j)}(k).g(1) = \mu_j g(k+1), \\ f^{(j)}(k).g(l) = 0 \text{ if } l \ge 2. \end{cases}$$

Remark. The condition $\mu_j \left(\nu_i - \nu_i^{(j)}\right) = 0$ is necessary for $W'_{\nu,\mu}$ to be a g-module. Indeed:

$$[e^{(i)}(k), f^{(j)}(l)].g(1) = v_i^{(j)} \mu_j g(k+l+1),$$

$$e^{(i)}(k). \left(f^{(j)}(l).g(1)\right) - f^{(j)}(l). \left(e^{(i)}(k).g(1)\right) = \mu_j \nu_i g(k+l+1).$$

6.2 Description of the Lie algebra

We here consider a connected Hopf SDSE (S) in the abelian case.

Theorem 27 Let us consider a Hopf SDSE of abelian fundamental type, with no extension vertices. Then $\mathfrak{g}_{(S)}$ has the following form:

$$\mathfrak{g}_{(S)} \approx W \triangleleft \left(\left(V_{v^{(1)}} \oplus \ldots \oplus V_{v^{(N)}} \right) \triangleleft \mathfrak{g}_{ab} \right),$$

where W is a direct sum of W_{ν} and $W'_{\nu,\mu}$.

Proof. First step. We first consider an abelian Hopf SDSE such that $J_0 = K_0 = I_1 = J_1 = I_2 = \emptyset$. For all $x \in I_0$, let us fix $i_x \in J_x$. We put $p_{i_x}(k) = f_{i_x}(k)$ and $p_i(k) = f_i(k) - f_{i_x}(k)$ if $i \in J_x - \{i_x\}$. Then direct computations show that:

- $[p_{i_x}(k), p_{i_{x'}(l)}] = 0.$
- $[p_{i_x}(k), p_j(l)] = \delta_{x,x'} p_j(k+l)$ if $j \in J_{x'} \{i_{x'}\}.$
- $[p_i(k), p_j(l)] = 0$ if i, j are not i_x 's.

So
$$\mathfrak{g}_{(S)} \approx \left(\bigoplus_{x \in I_0} V_{(0,\dots,0,1,0,\dots,0)}^{\oplus |J_x|-1} \right) \triangleleft \mathfrak{g}_{ab}$$
, where $\mathfrak{g}_{ab} = Vect(p_{i_x}(k) \mid x \in I_0, k \ge 1)$.

Second step. We now assume that $I_1 \neq \emptyset$. Then the descendants of $j \in I_1$ form a system as in the first step, so $\mathfrak{g}_{(S)} = W_{I_1} \triangleleft \mathfrak{g}_{(S_0)}$, where $W_{I_1} = Vect(f_j(k) / j \in I_1, k \ge 1)$ and (S_0) is the restriction of (S) to the regular vertices. Let us fix $j \in I_1$ and let us consider the $\mathfrak{g}_{(S_0)}$ -module $W_j = Vect(f_j(k) / k \ge 1)$. With the notations of the preceding step:

- $[p_{i_x}(k), f_j(l)] = a_{i_x}^{(j)} f_j(k+l)$ if l = 1.
- $[p_{i_x}(k), f_j(l)] = \nu_j a_{i_x}^{(j)} f_j(k+l)$ if $l \ge 2$.

• $[p_i(x), f_i(l)] = 0$ if *i* is not a i_x .

If $\nu_j \neq 0$, we put $p_j(k) = f_j(k)$ if $k \geq 2$ and $p_j(1) = \nu_j f_j(1)$. Then, for all l:

- $[p_{i_x}(k), f_j(l)] = \nu_j a_{i_x}^{(j)} f_j(k+l).$
- $[p_i(x), f_i(l)] = 0$ if *i* is not a i_x .

So W_j is a module V_v . If $\nu_j = 0$, we put $p_j(k) = f_j(k)$ for all $k \ge 1$. Then:

- $[p_{i_x}(k), f_j(l)] = a_{i_x}^{(j)} f_j(k+l)$ if l = 1.
- $[p_{i_x}(k), f_j(l)] = 0$ if $l \ge 2$.
- $[p_i(x), f_j(l)] = 0$ if *i* is not a i_x .

So W_i is a module W_{ν} .

Last step. We now consider vertices in J_1 . If $j \in J_1$, then its descendants are vertices of the first step and vertices in I_1 such that $\nu_i = 1$. As before, $\mathfrak{g}_{(S)} = W_{J_1} \triangleleft \mathfrak{g}_{(S_1)}$, where $W_{J_1} = Vect(f_j(k) / j \in J_1, k \ge 1)$ and (S_1) is the restriction of (S) to the regular vertices and the vertices of I_1 . Let us fix $j \in J_1$ and let us consider the $\mathfrak{g}_{(S_1)}$ -module $W_j = Vect(f_j(k)/k \ge 1)$. As $\nu_j \ne 0$, putting $p_j(k) = f_j(k)$ if $k \ge 2$ and $p_j(1) = \nu_j f_j(1)$:

- $[p_{i_x}(k), p_j(l)] = \nu_j a_{i_x}^{(j)} p_j(k+l).$
- $[p_i(k), p_j(l)] = 0$ if $i \in J_x \{i_x\}.$
- $[p_i(k), p_j(l)] = \nu_j a_i^{(j)} p_j(k+l)$ if l = 1 and $i \in I_1$.
- $[p_i(k), p_j(l)] = 0$ if $l \ge 2$ and $i \in I_1$.

So W_j is a module $W'_{\nu,\mu}$.

Theorem 28 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the Lie algebra $\mathfrak{g}_{(S)}$ is of the form:

$$\mathfrak{g}_m \triangleleft (\mathfrak{g}_{m-1} \triangleleft (\cdots \mathfrak{g}_2 \triangleleft (\mathfrak{g}_1 \triangleleft \mathfrak{g}_0) \cdots)),$$

where \mathfrak{g}_0 is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so is described in theorem 27), and, for $j \geq 1$, \mathfrak{g}_j is an abelian $(\mathfrak{g}_{j-1} \triangleleft (\cdots \mathfrak{g}_2 \triangleleft (\mathfrak{g}_1 \triangleleft \mathfrak{g}_0) \cdots)$ -module having a basis $(h^{(j)}(k))_{k\geq 1}$.

Proof. Similar to the proof of theorem 20.

6.3 Associated group

Let us now consider the character group $Ch(\mathcal{H}_{(S)})$ of $\mathcal{H}_{(S)}$. In the preceding cases, $\mathfrak{g}_{(S)}$ contains an abelian sub-Lie algebra \mathfrak{g}_{ab} , so $Ch(\mathcal{H}_{(S)})$ contains a subgroup isomorphic to the group:

$$G_{ab} = \left\{ \left(a_1^{(i)} x + a_2^{(i)} x^2 + \cdots \right)_{1 \le i \le M}, \, | \, \forall 1 \le i \le M, \forall k \ge 1, \, a_k^{(i)} \in K \right\},$$

with the product defined by $(A^{(i)}(x))_{i\in I} \cdot (B^{(i)}(x))_{i\in I} = (A^{(i)}(x) + B^{(i)}(x) + A^{(i)}(x)B^{(i)}(x))_{i\in I}$. Note that G_{ab} is isomorphic to the following subgroup of the following group of the units of the ring $K[[x]]^M$:

$$G_1 = \left\{ \begin{pmatrix} 1+xf_1(x) \\ \vdots \\ 1+xf_M(x) \end{pmatrix} \mid f_1(x), \dots, f_M(x) \in K[[x]] \right\}.$$

The isomorphism is given by:

$$\begin{cases} G_{ab} \longrightarrow G_1 \\ \left(a_1^{(i)}x + a_2^{(i)}x^2 + \cdots\right)_{1 \le i \le M} \longrightarrow \begin{pmatrix} 1 + a_1^{(1)}x + a_2^{(1)}x^2 + \dots \\ \vdots \\ 1 + a_1^{(M)}x + a_2^{(M)}x^2 + \dots \end{pmatrix}.$$

Moreover, each modules earlier defined on \mathfrak{g}_{ab} corresponds to a module over G_{ab} by exponentiation, as explained in the following definition:

Definition 29

1. Let $v = (v_1, \ldots, v_M) \in K^M$. The module \mathbb{V}_v is isomorphic to yK[[y]] as a vector space, and the action of G_{ab} is given by:

$$(A^{(i)}(x))_{1 \le i \le M} \cdot P(y) = exp\left(\sum_{i=1}^{M} v_i A^{(i)}(y)\right) P(y).$$

2. Let us consider the semi-direct product $G = \left(\bigoplus_{i=1}^{N} \mathbb{V}_{\upsilon^{(i)}} \right) \triangleleft G_{ab}.$

(a) Let $\nu = (\nu_1, \dots, \nu_M) \in K^M$. The module \mathbb{W}_{ν} is zK[[z]] as a vector space, and the action of G is given in the following way: for all $X = (P_1(y), \dots, P_N(y), A_1(x), \dots, A_m(x)) \in G$,

$$\begin{cases} X.z = \left(1 + \sum_{i=1}^{M} \nu_i A_i(z)\right) z, \\ X.z^2 R(z) = z^2 R(z), \end{cases}$$

for all $R(z) \in K[[z]]$.

(b) Let $\nu = (\nu_1, \ldots, \nu_M) \in K^M$ and $\mu = (\mu_1, \ldots, \mu_N) \in K^N$, such that for all $1 \leq i \leq M$, for all $1 \leq j \leq N$, $\mu_j \left(\nu_i - \nu_i^{(j)}\right) = 0$. The module $\mathbb{W}'_{\nu,\mu}$ is zK[[z]] as a vector space, and the action of G is given in the following way: for all $X = (P_1(y), \ldots, P_N(y), A_1(x), \ldots, A_m(x)) \in G$,

$$\begin{cases} X.z &= exp\left(\sum_{i=1}^{M} \nu_i A_i(z)\right) \left(1 + \sum_{i=1}^{N} \mu_i P_i(z)\right) z, \\ X.z^2 R(z) &= exp\left(\sum_{i=1}^{M} \nu_i A_i(z)\right) z^2 R(z), \end{cases}$$

for all $R(z) \in K[[z]]$.

Direct computations prove that they are indeed modules. The condition $\mu_j \left(\nu_i - v_i^{(j)}\right) = 0$ is necessary for $\mathbb{W}'_{\nu,\mu}$ to be a module. Indeed:

$$\begin{aligned} A_i(x).(P_j(y).z) &= (exp(\nu_i A_i(z)) + \mu_j exp(\nu_i A_i(z)) P_j(z)) z, \\ (A_i(x)P_j(y)).z &= \left(exp(\nu_i^{(j)}A_i(y)) P_j(y) A_i(x)\right) .z \\ &= \left(1 + exp(\nu_i^{(j)}A_i(z)) P_j(z)\right) z + (exp(\nu_i A_i(z)) - 1) z \\ &= \left(exp(\nu_i A_i(z)) + \mu_j exp(\nu_i^{(j)}A_i(z)) P_j(z)\right) z. \end{aligned}$$

Theorem 30 Let (S) be a connected Hopf SDSE in the abelian case. Then the group $Ch(\mathcal{H}_{(S)})$ is of the form:

$$G_N \rtimes (G_{N-1} \rtimes (\cdots G_2 \rtimes (G_1 \rtimes G_0) \cdots)),$$

where G_0 is a semi-direct product of the form:

$$G_0 = \mathbb{W} \rtimes (\mathbb{V} \rtimes G_{ab}),$$

where \mathbb{V} is a direct sum of modules \mathbb{V}_{ν} , and \mathbb{W} a direct sum of modules \mathbb{W}_{ν} and $\mathbb{W}'_{\nu,\mu}$. Moreover, for all $m \geq 1$, $G_m = (tK[[t]], +)$ as a group.

Proof. Similar to the proof of theorem 23.

References

- Christoph Bergbauer and Dirk Kreimer, Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor. Phys., vol. 10, Eur. Math. Soc., Zürich, 2006, arXiv:hep-th/0506190.
- [2] D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees, Comm. Math. Phys. 215 (2000), no. 1, 217–236, arXiv:hep-th/0001202.
- [3] Frédéric Chapoton, Algèbres pré-lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 8, 681–684.
- [4] Frédéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 8 (2001), 395-408, arXiv:math/0002069.
- [5] C. Chryssomalakos, H. Quevedo, M. Rosenbaum, and J. D. Vergara, Normal coordinates and primitive elements in the Hopf algebra of renormalization, Comm. Math. Phys. 255 (2002), no. 3, 465–485, arXiv:hep-th/0105259.
- [6] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/9808042.
- [7] Héctor Figueroa and José M. Gracia-Bondia, On the antipode of Kreimer's Hopf algebra, Modern Phys. Lett. A 16 (2001), no. 22, 1427–1434, arXiv:hep-th/9912170.
- [8] Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), no. 1, 85–120, arXiv:math.QA/0105210.
- [9] _____, Faà di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations, Advances in Mathematics 218 (2008), 136–162, ArXiv:0707.1204.
- [10] _____, Classification of systems of combinatorial Dyson-Schwinger equations in the Hopf algebras of decorated rooted trees, Advances in Mathematics **224** (2010), 2094–2150.
- [11] Robert L. Grossman and Richard G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126 (1989), no. 1, 184–210, arXiv:0711.3877.
- [12] _____, Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math. 72 (1990), no. 1-2, 109–117.
- [13] _____, Differential algebra structures on families of trees, Adv. in Appl. Math. 35 (2005), no. 1, 97–119, arXiv:math/0409006.

- [14] Michael E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3795–3811.
- [15] Naihong Hu and Xiuling Wang, Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case, J. Algebra 312 (2007), no. 2, 902–929, arXiv:math/0602281.
- [16] Dirk Kreimer, Combinatorics of (perturbative) Quantum Field Theory, Phys. Rep. 4–6 (2002), 387–424, arXiv:hep-th/0010059.
- [17] _____, Dyson-Schwinger equations: from Hopf algebras to number theory, Universality and renormalization, Fields Inst. Commun., no. 50, Amer. Math. Soc., Providence, RI, 2007, arXiv:hep-th/0609004.
- [18] Dirk Kreimer and Karen Yeats, An étude in non-linear Dyson-Schwinger equations, Nuclear Phys. B Proc. Suppl. 160 (2006), 116–121, arXiv:hep-th/0605096.
- [19] Jean-Louis Loday and Maria Ronco, Combinatorial Hopf algebras, arXiv:0810.0435, 2008.
- [20] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264.
- [21] Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211–219.