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ABSTRACT.We consider systems of combinatorial Dyson-Schwinger equations in the Connes-
Kreimer Hopf algebra HI of rooted trees decorated by a set I. Let H(S) be the subalgebra of HI
generated by the homogeneous components of the unique solution of this system. If it is a Hopf
subalgebra, we describe it as the dual of the enveloping algebra of a Lie algebra g(S) of one of
the following types:

1. g(S) is an associative algebra of paths associated to a certain oriented graph.

2. Or g(S) is an iterated extension of the Faà di Bruno Lie algebra.

3. Or g(S) is an iterated extension of an in�nite-dimensional abelian Lie algebra.

We also describe the character groups of H(S).
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Introduction

The Connes-Kreimer Hopf algebra of (decorated) rooted trees hD is introduced in [16] and studied
in [2, 3, 5, 6, 7, 8, 14, 21]. For any element d of the set of decorations D, we de�ne an operator
B+
d of HD, sending a forest F to the rooted tree obtained by grafting the trees of F on a common

root decorated by d. This operator satis�es the following equation: for all x ∈ HD,

∆ ◦B+
d (x) = B+

d (x)⊗ 1 + (Id⊗B+
d ) ◦∆(x).

As explained in [6], this means that B+
d is a 1-cocycle for a certain cohomology of coalgebras,

dual to the Hochschild cohomology.

We now take D = {1, . . . , N} as a set of decorations. A system of combinatorial Dyson-
Schwinger equations (brie�y, an SDSE), is a system (S) of the form:

X1 = B+
1 (F1(X1, . . . , XN )),

...
XN = B+

N (FN (X1, . . . , XN )),

where F1, . . . , FN ∈ K[[h1, . . . , hN ]] are formal series in N indeterminates (see [1, 17, 18] for
applications to Quantum Fields Theory). Such a system possesses a unique solution, which is a
family of N formal series in rooted trees, or equivalently elements of a completion of HD. The
homogeneous components of these elements generate a subalgebra H(S) of HD. We determined
in [10] the SDSE such that H(S) is a Hopf subalgebra, generalizing the results of [9] for a single
combinatorial Dyson-Schwinger equations. For this, we �rst associate an oriented graph to any
SDSE, re�ecting the dependence of the di�erent Xi's; more precisely, the vertices of G(S) are
the elements of I, and there is an edge from i to j if Fi depends on hj . The SDSE is said to
be connected if its associated graph G(S) is connected. We then introduced several operations
on SDSE, especially change of variables (proposition 4 of the present paper) and two families of
SDSE, namely fundamental and multicyclic SDSE, here described in theorem 6. For example,
the following system is multicyclic:

X1 = B+
1 (1 +X2),

X2 = B+
2 (1 +X3),

X3 = B+
3 (1 +X4),

X4 = B+
4 (1 +X1).

The associated oriented graph is:

1 // 2
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Let us take β1, β2 ∈ K − {−1} . For all β ∈ K, fβ is the following formal series:

fβ(h) =
∞∑
k=0

(1 + β) · · · (1 + (k − 1)β)
k!

hk.

Here is an example of a fundamental SDSE:

X1 = B+
1

(
fβ1(X1)f β2

1+β2

((1 + β2)X2)(1−X3)−1(1−X4)−1

)
,

X2 = B+
2

(
f β1

1+β1

(X1)fβ2(X2)(1−X3)−1(1−X4)−1

)
,

X3 = B+
3

(
f β1

1+β1

((1 + β1)X1)f β2
1+β2

((1 + β2)X2)(1−X4)−1

)
,

X4 = B+
4

(
f β1

1+β1

((1 + β1)X1)f β2
1+β2

((1 + β2)X2)(1−X3)−1

)
,

X5 = B+
5

(
f β1

1+β1

((1 + β1)X1)f β2
1+β2

((1 + β2)X2)(1−X3)−1(1−X4)−1

)
,

The associated oriented graph is:
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The present paper is devoted to the description of the Hopf algebras H(S). By the Cartier-
Quillen-Milnor-Moore theorem, they are dual of enveloping algebra U(g(S)), and it turns out
that g(S) is a pre-Lie algebra [4], that is to say it has a bilinear product ? such that for all
f, g, h ∈ g(S):

(f ? g) ? h− f ? (g ? h) = (g ? f) ? h− g ? (f ? h).

In our case, g(S) has a basis (fi(k))i∈I,k≥1 and by proposition 10 its pre-Lie product is given by:

fj(l) ? fi(k) = λ
(i,j)
k fi(k + l),

where the coe�cients λ
(i,j)
k are described in proposition 8; the Lie bracket of g(S) is the antisym-

metrisation of ?. The product ? can be associative, for example in the multicyclic case. Then,
up to a change of variables, fj(l) ? fi(k) = fi(k+ l) if there is an oriented path of length k from i
to j in the oriented graph associated to (S), or 0 otherwise; see proposition 15. The associative
algebra g(S) can then be described using the graph G(S) associated to the studied SDSE.

The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra
g(S) is described as an iterated semi-direct product of the Faà di Bruno Lie algebra by in�nite
dimensional modules; see theorems 20 and 21. Similarly, the character group of H(S) is an
iterated semi-direct product of the Faà di Bruno group of formal di�eomorphisms by modules of
formal series:

Ch(H(S)) = Gm o (Gm−1 o (· · ·G2 o (G1 oG0) · · · ),

whereG0 is the Faà di Bruno group andG1, . . . , Gm−1 are isomorphic to direct sums of (tK[[t]],+)
as groups; see theorem 23. The second subcase is similar, replacing the Faà di Bruno Lie algebra
by an abelian Lie algebra; see theorems 27 and 28 for the Lie algebra, and theorem 30 for the
group of characters.
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This text is organised as follows: the �rst section gives some recalls on the structure of Hopf

algebra of HD and on the pre-Lie product on g(S) = Prim
(
H∗(S)

)
. In the second section are

recalled the de�nitions and properties of SDSE. The following section introduces the coe�cients

λ
(i,j)
n and their properties, especially their link with the pre-Lie product of g(S). The next three

sections deals with the description of the Lie algebra g(S) and the group Ch
(
H(S)

)
when g(S) is

associative, in the non-abelian, fundamental case and �nally in the abelian, fundamental case.

Notations. We denote by K a commutative �eld of characteristic zero. All vector spaces,
algebras, coalgebras, Hopf algebras, etc. will be taken over K.

1 Preliminaries

1.1 Hopf algebras of decorated rooted trees

Let D be a non-empty set. We denote by HD the polynomial algebra generated by the set TD of
rooted trees decorated by elements of D. For example:

1. Rooted trees with 1, 2, 3,4 or 5 vertices:

q ; qq ; q∨qq
, qqq ; q∨qq q

, q∨qqq
,

q∨qq q , qqqq ; q∨qq
�Hq q
, q∨qq qq

, q∨qq qq
, q∨qq∨q q

, q∨qq qq
,

q∨qq qq , q∨qq qq , qqq∨
q q
, qqqqq .

2. Rooted trees decorated by D with 1, 2, 3 or 4 vertices:

qa ; a ∈ D, qqab (a, b) ∈ D2; q∨qq
a
cb = q∨qq

a
bc
, qqqabc , (a, b, c) ∈ D3;

q∨qq q
a
d

c
b = q∨qq q

a
c

d
b = q∨qq q

a
d

b
c = q∨qq q

a
b

d
c = q∨qq q

a
c

b
d = q∨qq q

a
b

c
d

, q∨qqq
a
db

c

= q∨qq q
a
bd
c

,
q∨qq q
a
b

dc

= q∨qq q
a
b

cd

, qqqqabcd , (a, b, c, d) ∈ D4.

Let t1, . . . , tn be elements of TD and let d ∈ D. We denote by B+
d (t1 . . . tn) the rooted tree

obtained by grafting t1, . . . , tn on a common root decorated by d. This map B+
d is extended in

an operator from HD to HD. For example, B+
d ( qqab qc ) = q∨qqq

d
ca

b

.

In order to make HD a bialgebra, we now introduce the notion of cut of a tree t ∈ TD. A
non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t
into a forest denoted by W c(t). The cut c is admissible if any oriented path in the tree meets
at most one cut edge. For such a cut, the tree of W c(t) which contains the root of t is denoted
by Rc(t) and the product of the other trees of W c(t) is denoted by P c(t). We also add the total
cut, which is by convention an admissible cut such that Rc(t) = 1 and P c(t) = W c(t) = t. The
set of admissible cuts of t is denoted by Adm∗(t). Note that the empty cut of t is admissible; we
put Adm(t) = Adm∗(t)− {empty cut, total cut}.

The coproduct of HD is de�ned as the unique algebra morphism from HD to HD ⊗HD such
that for all rooted tree t ∈ TD:

∆(t) =
∑

c∈Adm∗(t)

P c(t)⊗Rc(t) = t⊗ 1 + 1⊗ t+
∑

c∈Adm(t)

P c(t)⊗Rc(t).

Example.

∆( q∨qqq
d
cb

a

) = q∨qqq
d
cb

a

⊗ 1 + 1⊗ q∨qqq
d
cb

a

+ qq ba ⊗ qqdc + qa ⊗ q∨qq
d
cb + qc ⊗ qqqdba + qq ba qc ⊗ qd + qa qc ⊗ qqdb .

4



We grade HD by declaring the forests with n vertices homogeneous of degree n. We denote
by HD(n) the homogeneous component of HD of degree n. Then HD is a graded bialgebra. The

completion ĤD of HD is the vector space:

ĤD =
∏
n∈N
HD(n).

The elements of ĤD will be denoted by
∑
xn, where xn ∈ HD(n) for all n ∈ N.

Let f(h) =
∑
pnh

n ∈ K[[h]] be any formal series, and let X =
∑
xn ∈ ĤD, such that x0 = 0.

The series of ĤD of terms pnX
n is Cauchy, so converges. Its limit will be denoted by f(X). In

other words, f(X) =
∑
yn, with:
y0 = p0,

yn =
n∑
k=1

∑
a1+···+ak=n

pkxa1 · · ·xak if n ≥ 1.

1.2 Pre-Lie structure on the dual of HD
By the Cartier-Quillen-Milnor-Moore theorem [20], the graded dual H∗D of HD is an enveloping
algebra. Its Lie algebra Prim(H∗D) has a basis (ft)t∈TD indexed by TD:

ft :


HD −→ K

t1 . . . tn −→
{

0 if n 6= 1,
δt,t1 if n = 1.

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra)
is a couple (A, ?), where ? is a bilinear product on A such that for all x, y, z ∈ A:

(x ? y) ? z − x ? (y ? z) = (y ? x) ? z − y ? (x ? z).

Pre-Lie algebras are Lie algebras, with bracket given by [x, y] = x ? y − y ? x.
The Lie bracket of Prim(H∗D) is induced by a pre-Lie product ? given in the following way:

if f, g ∈ Prim(H∗D), f ? g is the unique element of Prim(H∗D) such that for all t ∈ TD,

(f ? g)(t) = (f ⊗ g) ◦ (π ⊗ π) ◦∆(t),

where π is the projection on V ect(T D) which vanishes on the forests which are not trees. In
other words, if t, t′ ∈ TD:

ft ? ft′ =
∑
t′′∈TD

n(t, t′; t′′)ft′′ ,

where n(t, t′; t′) is the number of admissible cuts c of t′′ such that P c(t′′) = t and Rc(t′′) = t′.
It is proved that (prim(H∗D), ?) is the free pre-Lie algebra generated by the qd 's, d ∈ D: see [3, 4].

Note. The Hopf algebra H∗D is isomorphic to the Grossman-Larson Hopf algebra of rooted
trees [11, 12, 13].

2 Recalls on SDSE

2.1 Unique solution of an SDSE

De�nition 1 Let I be a �nite, non-empty set, and let Fi ∈ K[[hj , j ∈ I]] be a non-constant
formal series for all i ∈ I. The system of Dyson-Schwinger combinatorial equations (brie�y, the
SDSE) associated to (Fi)i∈I is:

∀i ∈ I, Xi = B+
i (fi(Xj , j ∈ I)),

where Xi ∈ ĤI for all i ∈ I.

5



In order to ease the notation, we shall often assume that I = {1, . . . , N} in the proofs, with-
out loss of generality.

Notations. We assume here that I = {1, . . . , N}.

1. Let (S) be an SDSE. We shall denote, for all i ∈ I, Fi =
∑

p1,··· ,pN

a
(i)
(p1,··· ,pN )h

p1
1 · · ·h

pN
N .

2. Let 1 ≤ i, j ≤ N . We denote by a
(i)
j the coe�cient of hj in Fi.

Proposition 2 Let (S) be an SDSE. Then it admits a unique solution (Xi)i∈I ∈
(
ĤI
)I
. We

put Xi =
∑
t∈T (i)

I

att.

De�nition 3 Let (S) be an SDSE and let X = (Xi)i∈I be its unique solution. The subal-
gebra of HI generated by the homogeneous components Xi(k)'s of the Xi's will be denoted by
H(S). If H(S) is Hopf, the system (S) will be said to be Hopf.

We proved in [10] the following results:

Proposition 4 (change of variables) Let (S) be the SDSE associated to (Fi(hj , j ∈ I))i∈I .
Let λi and µi be non-zero scalars for all i ∈ I. The system (S) is Hopf if, and only if, the SDSE

system (S′) associated to (µiFi(λjhj , j ∈ J))i∈I is Hopf.

Moreover, a change of variables replace H(S) by an isomorphic Hopf algebra.

2.2 Graph associated to an SDSE

We associate a oriented graph to each SDSE in the following way:

De�nition 5 Let (S) be an SDSE.

1. We construct an oriented graph G(S) associated to (S) in the following way:

• The vertices of G(S) are the elements of I.

• There is an edge from i to j if, and only if,
∂Fi
∂hj
6= 0.

2. If
∂Fi
∂hi

6= 0, the vertex i will be said to be self-dependent. In other words, if i is self-

dependent, there is a loop from i to itself in G(S).

3. If G(S) is connected, we shall say that (S) is connected.

Let (S) be an SDSE and let G(S) be the associated graph. Let i and j be two vertices of
G(S). We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is
an oriented edge from i to j; we shall say that j is a descendant of i (or i is an ascendant of j)
if there is an oriented path from i to j. We shall write "i −→ j" for "j is a direct descendant of i".

Remark. An change of variables does not change the graph G(S).
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2.3 Classi�cation of SDSE

The following result is proved in [10]:

Theorem 6 Let (S) be a connected SDSE. It is Hopf if and only if, up to a change of

variables, one of the following assertion holds:

1. (Extended multicyclic SDSE). The set I admits a partition I = I1 ∪ · · · ∪ IN indexed by

the elements of Z/NZ, N ≥ 2, with the following conditions:

• For all i ∈ Ik:
Fi = 1 +

∑
j∈Ik+1

a
(i)
j hj .

• If i and i′ have a common direct ascendant in G(S), then Fi = Fi′ (so i and i
′ have

the same direct descendants).

2. (Extended fundamental SDSE). There exists a partition:

I =

⋃
i∈I0

Ji

 ∪
⋃
i∈J0

Ji

 ∪K0 ∪ I1 ∪ J1 ∪ I2,

with the following conditions:

• K0, I1, J1, I2 can be empty.

• The set of indices I0 ∪ J0 is not empty.

• For all i ∈ I0 ∪ J0, Ji is not empty.

Up to a change of variables:

(a) For all x ∈ I0, there exists βx ∈ K, such that for all i ∈ Jx:

Fi = fβx

∑
j∈Jx

hj

 ∏
y∈I0−{x}

f βy
1+βy

(1 + βy)
∑
j∈Jy

hj

 ∏
y∈J0

f1

∑
j∈Jy

hj

 .

(b) For all x ∈ J0, for all i ∈ Jx:

Fi =
∏
y∈I0

f βy
1+βy

(1 + βy)
∑
j∈Jy

hj

 ∏
y∈J0−{x}

f1

∑
j∈Jy

hj

 .

(c) For all i ∈ K0:

Fi =
∏
y∈I0

f βy
1+βy

(1 + βy)
∑
j∈Jy

hj

 ∏
y∈J0

f1

∑
j∈Jy

hj

 .

(d) For all i ∈ I1, there exist νi ∈ K and a family of scalars
(
a

(i)
j

)
j∈I0∪J0∪K0

, with

(νi 6= 1) or (∃j ∈ I0, a(i)
j 6= 1 + βj) or (∃j ∈ J0, a

(i)
j 6= 1) or (∃j ∈ K0, a

(i)
j 6= 0).

Then, if νi 6= 0:

Fi =
1
νi

∏
y∈I0

f βy

νia
(i)
y

νia(i)
y

∑
j∈Jy

hj

 ∏
y∈J0

f 1

νia
(i)
y

νia(i)
y

∑
j∈Jy

hj

 ∏
j∈K0

f0

(
νia

(i)
j hj

)
+1− 1

νi
.
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If νi = 0:

Fi = −
∑
y∈I0

a
(i)
y

βy
ln

1−
∑
j∈Jy

hj

−∑
y∈J0

a(i)
y ln

1−
∑
j∈Jy

hj

+
∑
j∈K0

a
(i)
j hj + 1.

(e) For all i ∈ J1, there exists νi ∈ K − {0} and a family of scalars
(
a

(i)
j

)
j∈I0∪J0∪K0∪I1

,

with the three following conditions:

• I(i)
1 = {j ∈ I1 / a(i)

j 6= 0} is not empty.

• For all j ∈ I(i)
1 , νj = 1.

• For all j, k ∈ I(i)
1 , Fj = Fk. In particular, we put b

(i)
t = a

(j)
t for any j ∈ I(i)

1 , for

all t ∈ I0 ∪ J0 ∪K0.

Then:

Fi =
1
νi

∏
y∈I0

f βy

b
(i)
y −1−βy

(b(i)y − 1− βy
)∑
j∈Jy

hj

 ∏
y∈J0

f βy

b
(i)
y −1

(b(i)y − 1
)∑
j∈Jy

hj


∏
j∈K0

f0

(
b
(i)
j hj

)
+
∑
j∈I(i)1

a
(i)
j h1 + 1− 1

νi
.

(f) I2 = {x1, . . . , xm} and for all 1 ≤ k ≤ m, there exist a set:

I(xk) ⊆

⋃
i∈I0

Ji

 ∪
⋃
i∈J0

Ji

 ∪K0 ∪ I1 ∪ J1 ∪ {x1, . . . , xk−1}

and a family of non-zero scalars
(
a

(xk)
j

)
j∈I(xk)

such that for all i, j ∈ I(xk), Fi = Fj.

Then:

Fxk = 1 +
∑

j∈I(xk)

a
(xk)
j hj .

The elements of I2 will be called extension vertices. If I2 = ∅, we shall say that (S)
is a fundamental system.

De�nition 7 An extended fundamental Hopf SDSE (S) will be said to be abelian if J0 = ∅
and if for all x ∈ I0, βx = −1.

3 Structure coe�cients of the pre-Lie agebra g(S)

3.1 De�nition of the structure coe�cients

We here recall several results of [10].

Proposition 8 Let (S) be a Hopf SDSE. For all i, j ∈ I, for all n ≥ 1, there exists a scalar

λ
(i,j)
n such that for all t′ ∈ Ti(n): ∑

t∈Ti(n+1)

nj(t, t′)at = λ(i,j)
n at′ ,

where nj(t, t′) is the number of leaves l of t decorated by j such that the cut of l gives t′.

8



In the case of extended fundamental SDSE, the coe�cients λ
(i,j)
n are given, for all i, j /∈ I2,

by:

λ(i,j)
n =

{
a

(i)
j if n = 1,
ã

(i)
j + bj(n− 1) if n ≥ 2,

the coe�cients being given in the following arrays:

• a(j)
i :

i \ j ∈ Jy, y ∈ I0 ∈ Jy, y ∈ J0 ∈ K0 ∈ I1 ∈ J1

∈ Jx, x ∈ I0 (1 + βx)− δx,yβx 1 + βx 1 + βx a
(j)
x

b
(j)
x −1−βx

νj

∈ Jx, x ∈ J0 1 1− δx,y 1 a
(j)
x

b
(j)
x −1
νj

∈ K0 0 0 0 a
(j)
i

b
(j)
i
νj

∈ I1 0 0 0 0 a
(j)
i

∈ J1 0 0 0 0 0

• ã(j)
i :

i \ j ∈ Jy, y ∈ I0 ∈ Jy, y ∈ J0 ∈ K0 ∈ I1 ∈ J1

∈ Jx, x ∈ I0 (1 + βx)− δx,yβx 1 + βx 1 + βx νja
(j)
x b

(j)
x − 1− βx

∈ Jx, x ∈ J0 1 1− δx,y 1 νja
(j)
i b

(j)
i − 1

∈ K0 0 0 0 νja
(j)
i b

(j)
i

∈ I1 0 0 0 0 0
∈ J1 0 0 0 0 0

• bj :
j ∈ Jy, y ∈ I0 ∈ Jy, y ∈ J0 ∈ K0 ∈ I1 ∈ J1

bj 1 + βy 1 0 0 0

If i /∈ I2 and j ∈ I2, then λ(i,j)
n = 0 for all n ≥ 1. Moreover, if i ∈ I2, let i′ be a direct descendant

of i. Then for all j ∈ I, for all n ≥ 2, λ(i,j)
n = λ

(i′,j)
n−1 .

3.2 Prelie structure on H∗(S)

Let us consider a Hopf SDSE (S). Then H∗(S) is the enveloping algebra of the Lie algebra

g(S) = Prim
(
H∗(S)

)
. By [19], it inherits from Prim(H∗D) a pre-Lie product given in the following

way: for all f, g ∈ G(S), for all x ∈ H(S), f ? g is the unique element of g(S) such that for all
x ∈ vect(Xi(n) / i ∈ I, n ≥ 1),

(f ? g)(x) = (f ⊗ g) ◦ (π ⊗ π) ◦∆(x).

Let (fi(p))i∈I,p≥1 be the basis of g(S), dual of the basis (Xi(p))i∈I,p≥1. By homogeneity of ∆,
and as ∆(Xi(n)) is a linear span of elements − ⊗Xi(p), 0 ≤ p ≤ n, we obtain the existence of

coe�cients a
(i,j)
k,l such that, for all i, j ∈ I, k, l ≥ 1:

fj(l) ? fi(k) = a
(i,j)
k,l fi(k + l).

By duality, a
(i,j)
k,l is the coe�cient of Xj(l)⊗Xi(k) in ∆(Xi(k+ l)), so is uniquely determined in

the following way: for all t′ ∈ T (j)
D (l), t′′ ∈ T (i)

D (k),∑
t∈T (i)
D (k+l)

n(t′, t′′; t)at = a
(i,j)
k,l at′at′′ .

9



Lemma 9 For all t′ ∈ T (j)
D (l), t′′ ∈ T (i)

D (k),
∑

t∈T (i)
D (k+l)

n(t′, t′′; t)at = λ
(i,j)
k at′at′′ .

Proof. By induction on k. If k = 1, then t′′ = q i , so:∑
t∈T (i)
D (k+l)

n(t′, t′′; t)at = aB+
i (t′′) = a

(i)
j at′ = λ

(i,j)
1 at′at′′ ,

as at′′ = 1. Let us assume the result at all rank ≤ k − 1. We put t′′ = B+
i (
∏
s∈TD

srs). We put

pj =
∑
s∈T (j)
D

rs for all j ∈ I. Then:

∑
t∈T (i)
D (k+l)

n(t′, t′′; t)at

= n

t′, t′′, B+
i

 q j ∏
s∈TD

srs

 aB+
i (t′

∏
srs ) +

∑
s1,s2∈TD
rs2≥1

(rs1 + 1)n(t′, s2; s1)a
B+
i

(
s1
s2

∏
srs
)

= (rt′+1)

(pj + 1)
N∏
j=1

pj !

(rt′+1)
∏
s∈TD

rs!
a

(i)
(p1,··· ,pj+1,··· ,pN )at′

∏
s∈TD

arss +
∑

s1,s2∈TD

(rs1 + 1)nj(s1, s2)
rs2

rs1 + 1
at′′

as1
as2

= (pj + 1)
a

(i)
(p1,··· ,pj+1,··· ,pN )

a
(i)
(p1,··· ,pN )

at′at′′ +
∑

s1,s2∈TD

nj(s1, s2)rs2
as1
as2

at′′

=

λ(i,j)
p1+···+pN+1 −

N∑
l=1

pja
(l)
j +

∑
s1,s2∈TD
rs2>0

nj(s1, s2)rs2
as1
as2

 at′at′′

=

λ(i,j)
p1+···+pN+1 −

N∑
l=1

pja
(l)
j +

∑
s2∈TD

rs2λ
(r(s2),j)
|s2|

 at′at′′ ,

using the induction hypothesis on s2, denoting by r(s2) the decoration of the root of s2. As

at′ 6= 0, a(i)
(p1,··· ,pn) 6= 0, proposition 19-3 of [10] implies:

λ
(i,j)
1+
∑
rs|s| = λ

(i,j)
1+
∑
rs

+
∑
s

rs

(
λ

(r(s),j)
|s| − a(r(s))

j

)
λ

(i,j)
|t′′| = λ

(i,j)
p1+···+pN+1 +

∑
s

rsλ
(r(s),j)
|s| −

∑
l

pla
(l)
j .

So the induction hypothesis is proved at rank n. 2

Combining this lemma with the preceding observations:

Proposition 10 Let (S) be a Hopf SDSE. The pre-Lie algebra g(S) = Prim
(
H∗(S)

)
has a

basis (fi(k))i∈I,k≥1, and the pre-Lie product of two elements of this basis is given by:

fj(l) ? fi(k) = λ
(i,j)
k fi(k + l).

10



Remark. Let us consider a fundamental SDSE (S), with I1 = J1 = I2 = ∅. Combining
proposition 10 with the arrays following proposition 8, then for all i, j ∈ I, for all k, l ≥ 1:

[fj(l), fi(k)] = bjkfi(k + l)− bilfj(k + l).

We assume that I = {1, . . . , N}. Let W = Der(K[x±1
1 , . . . , x±1

N ]) be the Lie algebra of deriva-
tions of a Laurent polynomial algebra; W is a Lie algebra of generalized-Witt type [15]. It is not
di�cult to show that there is a Lie algebra morphism:{

g(S) −→ W
fi(k) −→ bi(x1 . . . xN )kxi ∂

∂xi
.

This morphism is injective if, and only if, b1, . . . , bN 6= 0. If this holds, g(S) can be identi�ed
with a Lie subalgebra of the positive part of W.

4 Lie algebra and group associated to H(S), associative case

Let us consider a connected Hopf SDSE (S). We now study the pre-Lie algebra g(S) of proposition
10. We separate this study into three cases:

• Associative case: the pre-Lie algebra g(S) is associative. This holds in particular if (S) is
an extended multicyclic SDSE.

• Abelian case: (S) is an extended fundamental, abelian SDSE, see de�nition 7.

• Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.

We �rst treat the associative case.

4.1 Characterization of the associative case

Proposition 11 Let (S) be a Hopf SDSE. Then the pre-Lie algebra g(S) is associative if,

and only if, for all i ∈ I:
Fi = 1 +

∑
i−→j

a
(i)
j hj .

Proof. =⇒. Let us assume that ? is associative. Let i, j, k ∈ I, let us show that a
(i)
j,k = 0. If

a
(i)
j = 0 or a

(i)
k = 0, then a(i)

j,k = 0. Let us suppose that a(i)
j 6= 0 and a

(i)
k 6= 0. Then:

0 = (fk(1) ? fj(1)) ? fi(1)− fk(1) ? (fj(1) ? fi(1))

=
(
λ

(j,k)
1 λ

(i,j)
1 − λ(i,j)

1 λ
(i,k)
2

)
fi(3)

= λ
(i,j)
1

(
λ

(j,k)
1 − λ(i,k)

2

)
fi(3)

= a
(i)
j

(
a

(j)
k − λ

(i,k)
2

)
fi(3).

So λ
(i,k)
2 = a

(j)
k . Moreover, by proposition 8:

a
(i)
j a

(j)
k = λ

(i,k)
2 a qq ij = a qqq ijk + (1 + δj,k)a q∨qq

i
kj = a

(i)
j a

(j)
k + (1 + δj,k)a

(i)
j,k.

So a
(i)
j,k = 0. As a consequence, Fi = 1 +

∑
i−→j

a
(i)
j hj .

11



⇐=. Then Xi(n) is a linear span of ladders of weight n for all n ≥ 1, for all i ∈ I. As a
consequence, if x ∈ V ect(Xi(n) / i ∈ I, n ≥ 1), for all f, g ∈ g(S), denoting ∆(x) = x′ ⊗ x′′ and
(∆⊗ Id) ◦∆(x) = x′ ⊗ x′′ ⊗ x′′′:

(f ? g)(x) = (f ⊗ g) ◦ (π ⊗ π) ◦∆(x) = (f ⊗ g) ◦∆(x) = f(x′)g(x′′).

So if f, g, h ∈ G(S), for all x ∈ V ect(Xi(n) / i ∈ I, n ≥ 1):

((f ? g) ? h)(x) = f(x′)g(x′′)h(x′′′) = (f ? (g ? h))(x).

So (f ? g) ? h = f ? (g ? h): g(S) is an associative algebra. 2

Corollary 12 Let (S) be a connected Hopf SDSE. Then g(S) is associative if, and only if

one of the following assertions holds:

1. (S) is an extended multicyclic SDSE.

2. (S) is an extended fundamental SDSE, with:

• For all i ∈ I0, βi = −1.
• J0, K0, I1 and J1 are empty.

If the second assertion holds, then (S) is also an extended fundamental abelian SDSE, and
another interpretation of g(S) can be given; see theorem 28.

4.2 An algebra associated to an oriented graph

Notations. Let G an oriented graph, i, j ∈ G, and n ≥ 1. We shall denote i
n−→ j if there is an

oriented path from i to j of length n in G.

De�nition 13 Let G be an oriented graph, with set of vertices denoted by I. The associa-
tive, non-unitary algebra AG is generated by Pi(1), i ∈ I, and the following relations:

• If j is not a direct descendant of i in G, Pj(1)Pi(1) = 0.

• If i1 → i2 → · · · → in and i1 → i′2 → · · · → i′n in G, then:

Pin(1) · · ·Pi2(1)Pi1(1) = Pi′n(1) · · ·Pi′2(1)Pi1(1).

Let G be an oriented graph, and let i ∈ I and n ≥ 1. For any oriented path i→ i2 → · · · → in
in G, we denote Pi(n) = Pin(1) · · ·Pi2(1)Pi(1). If there is no such an oriented path, we put
Pi(n) = 0. By de�nition of AG (second family of relations), this does not depend of the choice of
the path. Graphically, Pi(n) should be seen as representing any path from the vertex i of length
n.

Lemma 14 Let G be an oriented graph. Then the Pi(n)'s, i ∈ I, n ≥ 1, linearly generate

AG. Moreover, if Pi(m) and Pj(n) are non-zero, then:

Pj(n)Pi(m) =
{
Pi(m+ n) if i

m−→ j,
0 if not.

Proof. By the �rst relation, Pi(n) = Pin(1) · · ·Pi2(1)Pi(1) = 0 if (i, i1, . . . , in) is not an
oriented path in G. So the Pi(n)'s, i ∈ I, n ≥ 1, linearly generate AG.

let us �x Pi(m) = Pim(1) · · ·Pi2(1)Pi(1) and Pj(n) = Pjn(1) · · ·Pj2(1)Pj(1) both non-zero. If

i
m−→ j we can choose i2, . . . , im such that i→ i2 → · · · → im → j. Then:

Pj(n)Pi(m) = Pjn(1) · · ·Pj2(1)Pj(1)Pim(1) · · ·Pi2(1)Pi(1) = Pi(m+ n).

If this is not the case, then j is not a direct descendant of im, so Pj(1)Pim(1) = 0 and
Pj(n)Pi(m) = 0. 2

12



Proposition 15 Let G be an oriented graph.

1. The following conditions are equivalent:

(a) The family (Pi(n))i∈I,n≥1 is a basis of AG.

(b) All the Pi(n) are non-zero.

(c) The graph G satis�es the following conditions:

• Any vertex of G has a direct descendant.

• If two vertices of G have a common direct ascendant, then they have the same

direct descendants.

(d) The SDSE associated to the following formal series is Hopf:

∀i ∈ I, Fi = 1 +
∑
i→j

hj .

2. If this holds, then AG is generated by Pi(1), i ∈ I, and the following relations:

• If j is not a direct descendant of i in G, Pj(1)Pi(1) = 0.
• If i→ j and i→ k in G, then Pj(1)Pi(1) = Pk(1)Pi(1).

The product of AG is given by:

Pj(n)Pi(m) =
{
Pi(m+ n) if i

m−→ j,
0 if not.

Moreover, if (S) is the system of condition (d), g(S) is associative and isomorphic to AG.

Proof. 1. (a) =⇒ (b) is obvious.

(b) =⇒ (c). Let us assume (b). Then for all i ∈ I, Pi(2) 6= 0, so there exists a j
such that i → j in G: any vertex of G has a direct descendant. Let us assume i → j and
i → j′ in G. Let k be a direct descendant of j. Then Pi(2) = Pj(1)Pi(i) = Pj′(1)Pi(1) and
Pi(3) = Pk(1)Pj(1)Pi(1) = Pk(1)Pi(2) 6= 0, so Pk(1)Pi(2) = Pk(1)Pj′(1)Pi(1) 6= 0. As a conse-
quence, Pk(1)Pj′(1) 6= 0 and k is a direct descendant of j′. By symmetry, the direct descendants
of j′ are also direct descendants of j: two direct descendants of a same vertex have the same
direct descendants.

(c) =⇒ (d). Then for all i ∈ I, for all n ≥ 1, Xi(n) =
∑

l(i, i2, · · · , in), where the sum runs
on all oriented paths i→ i2 → · · · −→ in in G(S). So:

∆(Xi(n)) =
∑ n∑

k=0

l(ik+1, . . . , in)⊗ l(i, i2, · · · , ik).

If i→ i2 · · · → ik → ik+1 and i→ i′2 · · · → i′k → i′k+1, the second condition on G implies that i3
and i′3 are direct descendants of i2 and i′2,. . ., ik+1 and i′k+1 are direct descendants of ik and i

′
k.

So:

∆(Xi(n)) =
n∑
k=0

∑
i→···→ik,
i
k−→ik+1,

ik+1→···→in

l(ik+1, . . . , in)⊗ l(i, i2, · · · , ik) =
n∑
k=0

∑
i
k−→j

Xj(n− k)⊗Xi(k).

So (S) is Hopf.

(d) =⇒ (a). Then, for all i ∈ I, for all n ≥ 1, Xi(n) =
∑

l(i, i2, · · · , in), where the sum
runs on all oriented paths i → i2 → · · · −→ in in G(S). By proposition 11, g(S) is associative.
Moreover, it is quite immediate to prove that in g(S):

13



• If j is not a direct descendant of i in G, fj(1)fi(1) = 0.

• If i1 → i2 → · · · → in and i1 → i′2 → · · · → i′n in G, then:

fin(1) · · · fi2(1)fi1(1) = fi′n(1) · · · fi′2(1)fi1(1) = fi1(n).

So there is a morphism of algebras from AG to g(S), sending Pi(1) to fi(1). This morphism sends
Pi(n) to fi(n). As the fi(n)'s are linearly independent, so are the Pi(n)'s.

2. Let A′G be the associative, non-unitary algebra generated by the relations of proposition
15-2. As these relation are immediatly satis�ed in AG, there is a unique morphism of algebras:

Φ :
{

A′G −→ AG
Pi(1) −→ Pi(1).

Let i1 → i2 → · · · → in and i1 → i′2 → · · · → i′n in G. Let us prove that Pik(1) · · ·Pi2(1)Pi1(1) =
Pi′k(1) · · ·Pi′2(1)Pi1(1) in A′G by induction on k. For k = 2, this is implied by the second family
of relations de�ning A′G. Let us assume the result at rank k. Then, both in AG and A′G:

Pik+1
(1)Pik(1) · · ·Pi2(1)Pi1(1) = Pik+1

(1)Pi′k(1) · · ·Pi′2(1)Pi1(1).

This is equal to Pi(k+ 1) in AG, so is non-zero. As a consequence, Pik+1
(1)Pi′k(1) 6= 0 in AG, so

i′k → ik+1 in G. By de�nition of A′G, Pik+1
(1)Pi′k(1) = Pi′k+1

(1)Pi′k(1) in A′G, so:

Pik+1
(1)Pik(1) · · ·Pi2(1)Pi1(1) = Pi′k+1

(1)Pi′k(1) · · ·Pi′2(1)Pi1(1).

So the relations de�ning AG are also satis�ed in A′G, so there is a morphism of algebras:

Ψ :
{

AG −→ A′G
Pi(1) −→ Pi(1).

It is clear that Φ and Ψ are inverse isomorphisms of algebras. 2

Corollary 16 Let (S) a Hopf SDSE. If g(S) is associative, then the graph G(S) satis�es

condition (c) of proposition 15 and g(S) is isomorphic to AG(S)
.

Proof. First step. Let i, j, k be vertices of G(S) and n ≥ 1 such that i
n−→ j and i

n−→ k.
Let us prove that Fj = Fk by induction on n. If n = 1, by proposition 18-3 of [10], Fj = Fk. If
n ≥ 2, then there exists vertices of G(S) such that:

i→ j1 → . . .→ jn−1 → j, i→ k1 → . . .→ kn−1 → k.

The case n = 1 implies that Fj1 = Fk1 , so j1
n−1−→ j and j1

n−1−→ k. By the induction hypothesis,

Fj = Fk. In other words, if i
n−→ j and i

n−→ k, then a
(j)
l = a

(k)
l for all l ∈ I.

Second step. Then, for all i ∈ I, for all n ≥ 1:

Xi(n) =
∑

a
(i)
i1
· · · a(in−1)

in
l(i, i2, · · · , in),

where the sum runs on all oriented paths i → i2 → · · · −→ in in G(S). The �rst step implies

that a
(i)
i1
. . . a

(in−1)
in

depends only of i and n: we denote it by a
(i)
n . Then:

Xi(n) =
∑

a(i)
n l(i, i2, · · · , in),

∆(Xi(n)) =
∑
k+l=n

∑
i
l−→j

a
(i)
n

a
(i)
l a

(j)
k

Xj(k)⊗Xi(l).
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Dually, putting pi(n) = a
(i)
n fi(n) for all 1 ≤ i ≤ N , n ≥ 1, the pre-Lie product of g(S) is given

by:

fj(n) ? fi(m) =


a

(i)
m+n

a
(i)
m a

(j)
n

fi(m+ n) if i m−→ j,

0 otherwise;

pj(n) ? pi(m) =

{
pi(m+ n) if i m−→ j,

0 otherwise.

Last step. It is then clear that the associative algebra g(S) is generated by the pi(1), i ∈ I, and
that these elements satisfy the relations de�ning AG(S)

. So there is an epimorphism of algebras:

Θ :
{
AG(S)

−→ g(S)

Pi(1) −→ pi(1).

This morphism sends Pi(n) to pi(n) for all n ≥ 1. As the pi(n)'s are a basis of AG(S)
, the Pi(n)'s

are linearly independent in AG(S)
, so the graph G(S) satis�es condition (c) of proposition 15.

Moreover, Θ is an isomorphism. 2

4.3 Group of characters

The non-unitary, associative algebra g(S) is graded, with pi(k) homogeneous of degree k for all
k ≥ 1. Moreover, g(S)(0) = (0). The completion ĝ(S) is then an associative non-unitary algebra.
We add it a unit and obtain an associative unitary algebra K ⊕ ĝ(S). It is then not di�cult to
show that the following set is a subgroup of the units of K ⊕ ĝ(S):

G =

1 +
∑
k≥1

xk | ∀k ≥ 1, xk ∈ g(S)(k)

 .

Proposition 17 The group of characters Ch
(
H(S)

)
is isomorphic to G.

Proof. We put V = V ect(Xi(k)|i ∈ I, k ≥ 1). Let g ∈ V ∗. Then g can be uniquely extended
in a map ĝ from H(S) to K by g((1) +Ker(ε)2) = (0), where ε is the counit of H(S). Moreover,
ĝ ∈ ĝ(S). This construction implies a bijection:

Ω :
{
Ch
(
H(S)

)
−→ G

f −→ 1 + f̂|V .

Let f1, f2 ∈ Ch
(
H(S)

)
. For all x ∈ V , we put ∆(x) = x⊗ 1 + 1⊗ x+ x′ ⊗ x′′. As x is a linear

span of ladders, x′ ⊗ x′′ ∈ V ⊗ V . So:

(f1.f2)(x) = (f1 ⊗ f2) ◦∆(x)
= f1(x) + f2(x) + f1(x′)f1(x′′)
= f1|V (x) + f2|V (x) + f1|V (x′)f2|V (x′′)

= f̂1|V (x) + f̂2|V (x) + f̂1|V (x′)f̂2|V (x′′)

= f̂1|V (x) + f̂2|V (x) +
(
f̂1|V ? f̂2|V

)
(x).

So ̂(f1.f2)|V = f̂1|V + f̂2|V + f̂1|V ? f̂2|V . This implies that Ω is a group isomorphism. 2
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5 Lie algebra and group associated to H(S), non-abelian case

5.1 Modules over the Faà di Bruno Lie algebra

Let gFdB be the Faà di Bruno Lie algebra. Recall that it has a basis (e(k))k≥1, with bracket
given by:

[e(k), e(l)] = (l − k)e(k + l).

The gFdB-module V0 has a basis (f(k))k≥1, and the action of gFdB is given by:

e(k).f(l) = lf(k + l).

We can then construct a semi-direct product VM
0 / gFdB, described in the following proposi-

tion:

Proposition 18 Let M ∈ N∗. The Lie algebra VM
0 / gFdB has a basis:(

f (i)(k)
)

1≤i≤M, k≥1
∪ (e(k))k≥1,

and its Lie bracket given by:
[e(k), e(l)] = (l − k)e(k + l),

[e(k), f (i)(l)] = lf (i)(k + l),
[f (i)(k), f (j)(l)] = 0.

We now take g = V ⊕M0 / gFdB. We de�ne a family of g-modules. Let c ∈ K and υ =
(υ1, . . . , υM ) ∈ KM . The module Wc,υ has a basis (g(k))k≥1, and the action of g is given by:{

e(k).g(l) = (l + c)g(k + l),
f (i)(k).g(l) = υig(k + l).

The semi-direct product is given in the following proposition:

Proposition 19 Let g be the Lie algebra
(
Wc1,υ(1) ⊕ . . .⊕WcN ,υ(N)

)
/
(
VM

0 / gFdB
)
. It has

a basis: (
g(j)(k)

)
1≤j≤N, k≥1

∪
(
f (i)(k)

)
1≤i≤M, k≥1

∪ (e(k))k≥1,

and its bracket is given by:

[e(k), e(l)] = (l − k)e(k + l),
[e(k), f (i)(l)] = lf (i)(k + l),
[e(k), g(i)(l)] = (l + c′i)g

(i)(k + l),
[f (i)(k), f (j)(l)] = 0,
[f (i)(k), g(j)(l)] = υ

(j)
i g(j)(k + l),

[g(i)(k), g(j)(l)] = 0.

Let us take g as in this proposition. We de�ne three families of modules over g:

1. Let ν = (ν1, . . . , νM ) ∈ KM . The module W ′ν,0 has a basis (h(k))k≥1, and the action of g

is given by: 
e(k).g(l) = (l − 1)h(k + l),

f (i)(k).h(1) = νih(k + 1),
f (i)(k).h(l) = 0 if l ≥ 2,
g(i)(k).h(l) = 0.
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2. Let ν = (ν1, . . . , νM ) ∈ KM . The module W ′ν,1 has a basis (h(k))k≥1, and the action of g

is given by: 
e(k).h(1) = h(k + 1),
e(k).h(l) = (l − 1)h(k + l) if l ≥ 2,

f (i)(k).h(1) = νih(k + 1),
f (i)(k).h(l) = 0 if l ≥ 2,
g(i)(k).h(l) = 0.

3. Let c ∈ K, ν = (ν1, . . . , νM ) ∈ KM , µ = (µ1, . . . , µN ) ∈ KN . The module W ′′c,ν,µ has a
basis (h(k))k≥1, and the action of g is given by:

e(k).h(l) = (l + c)h(k + l),
f (i)(k).h(l) = νih(k + l),
g(i)(k).h(1) = µih(k + 1),
g(i)(k).h(l) = 0 if l ≥ 2.

5.2 Description of the Lie algebra

Theorem 20 Let us consider a fundamental non-abelian SDSE. Then g(S) has the following

form:

g(S) ≈W /
((
Wc1,υ(1) ⊕ . . .⊕WcN ,υ(N)

)
/
(
VM

0 / gFdB
))
,

where W is a direct sum of W ′ν,0, W
′
ν,1 and W ′′c,ν,µ.

Proof. First step. We �rst consider a fundamental Hopf SDSE (S) such that I1 = J1 = I2 =
∅. The set J of the vertices of G(S) admits a partition J = (Jx)x∈I0 ∪ (Jx)x∈J0 ∪ (Jx)x∈K0 . We
put:

A = {j ∈ J / bj 6= 0}, B = {j ∈ J / bj = 0}.

In other terms, i ∈ A if, and only if, (i ∈ Jx, with x ∈ I0 such that bx 6= −1) or (i ∈ Jx, with
x ∈ J0). As we are in the non-abelian case, A 6= ∅. Let us choose ix ∈ Jx for all x ∈ I, and
ix0 ∈ A. In order to enlighten the notations, we put i0 = ix0 . We de�ne, for all k ≥ 1:

pi0(k) =
1
bx0

fi0(k),

pi(k) =
1
bx0

(fi(k)− fi0(k)) if i ∈ Jx0 − {i0},

pix(k) =
1
bx
fi(k)− 1

bx0

fi0(k) if x 6= x0 and x ∈ A,

pix(k) = fi(k) if x ∈ B,
pi(k) =

1
bx

(fi(k)− fix(k)) if i ∈ Jx − {ix}, x 6= x0 and x ∈ A,
pi(k) = fi(k)− fix(k) if i ∈ Jx − {ix}, x ∈ B.

Then direct computations show that the Lie bracket of g(S) is given in the following way: for all
k, l ≥ 1,

• [pi0(k), pi0(l)] = (l − k)pi0(k + l).

• For all i ∈ I, [pi0(k), pi(l)] =
{

(l + dx0)pi(k + l) if i ∈ Jx0 − {i0},
lpi(k + l) if i /∈ Jx0 .

• For all i ∈ Jx0 − {i0}, for all x 6= x0, [pix(k), pi(l)] =
{
−dx0pi(k + l) if x ∈ A,
0 if x ∈ B.

• For all x, x′ ∈ I − {x0}, [pix(k), pix′ (l)] = 0.
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• For all x, x′ ∈ I − {x0}, i ∈ Jx′ − {ix′}, [pix(k), pi(l)] =
{

0 if x 6= x′,
dxpi(k + l) if x = x′.

• For all x, x′ ∈ I − {x0}, i ∈ Jx − {ix}, j ∈ Jx′ − {ix′}, [pi(k), pj(l)] = 0.

We used the following notations:

dx =


−βx

1 + βx
if x ∈ I0, βx 6= −1,

1 if x ∈ I0, βx = −1,
−1 if x ∈ J0,
0 if x ∈ K0.

So the Lie algebra g(S) is isomorphic to:W |Jx0 |−1

dx0 ,(−dx0 ,··· ,−dx0 ,0,··· ,0) ⊕
⊕

x∈I−{x0}

W
|Ix|−1
0,(0,··· ,0,dx,0,··· ,0)

 /
(
V
|I|−1
0 / gFdB

)
.

A basis adapted to this decomposition is:

(pi(k))i∈Jx0−{i0},k≥1 ∪

 ⋃
x∈I−{x0}

(pi(k))i∈Jx−{ix},k≥1

 ∪
 ⋃
x∈I−{x0}

(pix(k))k≥1

 ∪ (pi0(k))k≥1.

Second step. We now assume that I1 6= ∅. Then the descendants of j ∈ I1 form a system
of the �rst step, so g(S) = WI1 / g(S0), where WI1 = V ect(fj(k) / j ∈ I1, k ≥ 1} and (S0) is
a restriction of (S) as in the �rst step. Let us �x j ∈ I1 and let us consider the g(S0)-module
Wj = V ect(fj(k) / k ≥ 1). With the notations of the preceding step:

• [pi0(k), fj(l)] =
(
l − 1 +

a
(j)
i0
bx0

)
fj(k + l) if l = 1.

• [pi0(k), fj(l)] =
(
l − 1 + νj

a
(j)
i0
bx0

)
fj(k + l) if l ≥ 2.

• [pix(k), fj(l)] =
(
a
(j)
ix
bx
−

a
(j)
i0
bx0

)
fj(k + l) if l = 1, x ∈ A.

• [pix(k), fj(l)] = νj

(
a
(j)
ix
bx
−

a
(j)
i0
bx0

)
fj(k + l) if l ≥ 2, x ∈ A.

• [pix(k), fj(l)] = a
(j)
ix
fj(k + l) if l = 1, x ∈ B.

• [pix(k), fj(l)] = νja
(j)
ix
fj(k + l) if l ≥ 2, x ∈ B.

• [pi(x), fj(l)] = 0 if i is not a ix.

If νj 6= 0, we put pj(k) = fj(k) if k ≥ 2 and pj(1) = νjfj(1). Then, for all l:

• [pi0(k), pj(l)] =
(
l − 1 + νj

a
(j)
i0
bx0

)
pj(k + l).

• [pix(k), pj(l)] = νj

(
a
(j)
ix
bx
−

a
(j)
i0
bx0

)
pj(k + l) if x ∈ A.

• [pix(k), pj(l)] = νja
(j)
ix
pj(k + l) if x ∈ B.

• [pi(x), pj(l)] = 0 if i is not a ix.
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So Wj is a module Wc,υ. If νj = 0 and a
(j)
i0
6= 0, we put pj(k) = fj(k) if k ≥ 2 and pj(1) =

bx0

a
(j)
i0

fj(1). Then:

• [pi0(k), pj(l)] = pj(k + l) if l = 1.

• [pi0(k), pj(l)] = (l − 1)pj(k + l) if l ≥ 2.

• [pix(k), fj(l)] =
(
a
(j)
ix
bx
−

a
(j)
i0
bx0

)
fj(k + l) if l = 1, x ∈ A.

• [pix(k), fj(l)] = 0 if l ≥ 2, x ∈ A.

• [pix(k), fj(l)] = a
(j)
ix
fj(k + l) if l = 1, x ∈ B.

• [pix(k), fj(l)] = 0 if l ≥ 2, x ∈ B.

• [pi(x), pj(l)] = 0 if i is not a ix.

So Wj is a module W ′ν,1. If νj = 0 and a
(j)
i0

= 0, we put pj(k) = fj(k) for all k ≥ 1. Then:

• [pi0(k), pj(l)] = (l − 1)pj(k + l).

• [pix(k), fj(l)] =
(
a
(j)
ix
bx
−

a
(j)
i0
bx0

)
fj(k + l) if l = 1, x ∈ A.

• [pix(k), fj(l)] = 0 if l ≥ 2, x ∈ A.

• [pix(k), fj(l)] = a
(j)
ix
fj(k + l) if l = 1, x ∈ B.

• [pix(k), fj(l)] = 0 if l ≥ 2, x ∈ B.

• [pi(x), pj(l)] = 0 if i is not a ix.

So Wj is a module W ′ν,0.

Last step. We now consider vertices in J1. If j ∈ J1, then its descendants are vertices of
the �rst step and i elements of I1 such that νi = 1. As before, g(S) = WJ1 / g(S1), where
WJ1 = V ect(fj(k) / j ∈ J1, k ≥ 1} and (S1) is a restriction of (S) as in the second step. Let us
�x j ∈ J1 and let us consider the g(S1)-module Wj = V ect(fj(k) / k ≥ 1). As νj 6= 0, putting
pj(k) = fj(k) if k ≥ 2 and pj(1) = νjfj(1):

• [pi0(k), pj(l)] =
(
l − 1 + νj

a
(j)
i0
bx0

)
pj(k + l).

• [pix(k), pj(l)] = νj

(
a
(j)
ix
bx
−

a
(j)
i0
bx0

)
pj(k + l) if x ∈ A.

• [pix(k), pj(l)] = νja
(j)
ix
pj(k + l) if x ∈ B.

• [pi(k), pj(l)] = νja
(j)
i pj(k + l) if l = 1, i ∈ I1, with νi = 1.

• [pi(k), pj(l)] = 0 if l ≥ 2, i ∈ I1.

• [pi(x), pj(l)] = 0 if i /∈ I1 and is not a ix.

So Wj is a module W ′′c,ν,µ. 2

19



Theorem 21 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the

Lie algebra g(S) is of the form:

gm / (gm−1 / (· · · g2 / (g1 / g0) · · · ),

where g0 is the Lie algebra associated to the restriction of (S) to the vertices which are not

extension vertices (so g0 is described in theorem 20) and, for j ≥ 1, gj is an abelian (gj−1 /
(· · · g2 / (g1 / g0) · · · )-module having a basis (h(j)(k))k≥1.

Proof. The Lie algebra gj is the Lie algebra V ect(fxj (k) / k ≥ 1), where J2 = {x1, . . . , xm},
with the notations of theorem 6. 2

5.3 Associated group

Let us now consider the character group Ch
(
H(S)

)
of H(S). In the preceding cases, g(S) contains

a sub-Lie algebra isomorphic to the Faà di Bruno Lie algebra, so Ch
(
H(S)

)
contains a subgroup

isomorphic to the Faà di Bruno subgroup:

GFdB = {x+ a1x
2 + a2x

3 + · · · | ∀i, ai ∈ K},

with the product de�ned by A(x).B(x) = B ◦ A(x). Moreover, each modules earlier de�ned on
gFdB corresponds to a module over GFdB by exponentiation:

De�nition 22

1. The module V0 is isomorphic to yK[[y]] as a vector space, and the action of GFdB is given
by:

A(x).P (y) = P ◦A(y).

2. Let G =
(
V⊕M0

)
oGFdB. Let c ∈ K, and υ = (υ1, · · · , υM ) ∈ KM . Then Wc,υ is zK[[z]]

as a vector space, and the action of G is given by:

(P1(y), · · · , PM (y), A(x)).Q(z) = exp

(
M∑
i=1

υiPi(z)

)(
A(z)
z

)c
Q ◦A(z).

3. Let us consider the semi-direct product G =
(
Wc1,ε(1)

⊕ · · · ⊕WcN ,ε(N)

)
/
(
V⊕M0 / GFdB

)
.

(a) Let ν = (ν1, · · · , νM ) ∈ KM . Then W′ν,0 is tK[[t]] as a vector space, and for all
X = (Q1(z), · · · , QN (z), P1(y), · · · , PM (y), A(x)) ∈ G:

X.t =

(
1 +

M∑
i=1

νiPi(t)

)
t,

X.R(t) =
(

t

A(t)

)
R ◦A(t),

for all R(t) ∈ t2K[[t]].

(b) Let ν = (ν1, · · · , νM ) ∈ KM . Then W′ν,1 is tK[[t]] as a vector space, and for all
X = (Q1(z), · · · , QN (z), P1(y), · · · , PM (y), A(x)) ∈ G:

X.t =

(
1 +

M∑
i=1

νiPi(t)

)(
t+ t ln

(
A(t)
t

))
,

X.R(t) =
(

t

A(t)

)
R ◦A(t),

for all R(t) ∈ t2K[[t]].
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(c) Let c ∈ K, ν = (ν1, · · · , νM ) ∈ KM , µ = (µ1, . . . , µN ) ∈ KN . Then W′′c,ν,µ is tK[[t]]
as a vector space, and for all X = (Q1(z), · · · , QN (z), P1(y), · · · , PM (y), A(x)) ∈ G:

X.t =
(
A(t)
t

)c
exp

(
M∑
i=1

µiPi(t)

)(
1 +

M∑
i=1

µiQi(t)

)
A(t),

X.R(t) =
(

t

A(t)

)c
exp

(
M∑
i=1

µiPi(t)

)
R ◦A(t),

for all R(t) ∈ t2K[[t]].

Direct computations prove that they are indeed modules.

Theorem 23 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then

the group Ch
(
H(S)

)
is of the form:

Gm o (Gm−1 o (· · ·G2 o (G1 oG0) · · · ),

where G0 is a semi-direct product of the form:

G0 = W′ o (W o (V oGFdB)),

where V is a direct sum of modules V0, W a direct sum of modules Wc,υ, and W′ a direct sum

of modules W′ν,0, W′ν,1 and W′′c,ν,µ. Moreover, for all m ≥ 1, Gm = (tK[[t]],+) as a group.

Proof. The group Ch
(
H(S)

)
is isomorphic to the group of characters of U(g)∗, where g is

described in theorem 21. This implies that this group has a structure of semi-direct product as
described in theorem 23. Let us consider the Hopf algebra H of coordinates of G0. It is a graded
Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of g0

of theorem 21. So H is isomorphic to H(S0). 2

6 Lie algebra and group associated to H(S), abelian case

We now treat the abelian case. Recall that in this case, J0 = K0 = ∅ and, for all i ∈ I0, βi = −1.

6.1 Modules over an abelian Lie algebra

Let gab be an abelian Lie algebra, with basis
(
e(i)(k)

)
1≤i≤M,k≥1

. We de�ne a family of modules
over this Lie algebra:

De�nition 24 Let υ = (υ1, · · · , υM ) ∈ KM . Then Vυ has a basis (f(k))k≥1, and the action
of gab is given by:

e(i)(k).f(l) = υif(k + l).

We can then describe the semi-direct product:

Proposition 25 Let g be the Lie algebra

(
N⊕
i=1

Vυ(i)

)
/ gab. It has a basis:

(e(i)(k))1≤i≤M,k≥1 ∪ (f (i)(k))1≤i≤N,k≥1,

and its Lie bracket is given by:
[e(i)(k), e(j)(l)] = 0,
[e(i)(k), f (j)(l)] = υ

(j)
i f (j)(k + l),

[f (i)(k), f (j)(l)] = 0.

21



We now de�ne two families of modules over such a Lie algebra.

De�nition 26 Let g be a Lie algebra of proposition 25.

1. Let ν = (ν1, . . . , νM ) ∈ KM . The module Wν has a basis (g(k))k≥1, and the action of g is
given by: 

e(i)(k).g(1) = νig(k + 1),
e(i)(k).g(l) = 0 if l ≥ 2,
f (i)(k).g(l) = 0.

2. Let ν = (ν1, . . . , νM ) ∈ KM and µ = (µ1, . . . , µN ) ∈ KN , such that for all 1 ≤ i ≤ M , for

all 1 ≤ j ≤ N , µj

(
νi − υ(j)

i

)
= 0. The module W ′ν,µ has a basis (g(k))k≥1, and the action

of g is given by: 
e(i)(k).g(l) = νig(k + l),
f (j)(k).g(1) = µjg(k + 1),
f (j)(k).g(l) = 0 if l ≥ 2.

Remark. The condition µj

(
νi − υ(j)

i

)
= 0 is necessary for W ′ν,µ to be a g-module. Indeed:

[e(i)(k), f (j)(l)].g(1) = υ
(j)
i µjg(k + l + 1),

e(i)(k).
(
f (j)(l).g(1)

)
− f (j)(l).

(
e(i)(k).g(1)

)
= µjνig(k + l + 1).

6.2 Description of the Lie algebra

We here consider a connected Hopf SDSE (S) in the abelian case.

Theorem 27 Let us consider a Hopf SDSE of abelian fundamental type, with no extension

vertices. Then g(S) has the following form:

g(S) ≈W / ((Vυ(1) ⊕ . . .⊕ Vυ(N)) / gab) ,

where W is a direct sum of Wν and W ′ν,µ.

Proof. First step. We �rst consider an abelian Hopf SDSE such that J0 = K0 = I1 = J1 =
I2 = ∅. For all x ∈ I0, let us �x ix ∈ Jx. We put pix(k) = fix(k) and pi(k) = fi(k) − fix(k) if
i ∈ Jx − {ix}. Then direct computations show that:

• [pix(k), pix′ (l)] = 0.

• [pix(k), pj(l)] = δx,x′pj(k + l) if j ∈ Jx′ − {ix′}.

• [pi(k), pj(l)] = 0 if i, j are not ix's.

So g(S) ≈

⊕
x∈I0

V
⊕|Jx|−1
(0,...,0,1,0,...,0)

 / gab, where gab = V ect(pix(k) / x ∈ I0, k ≥ 1).

Second step. We now assume that I1 6= ∅. Then the descendants of j ∈ I1 form a system as
in the �rst step, so g(S) = WI1 / g(S0), where WI1 = V ect(fj(k) / j ∈ I1, k ≥ 1} and (S0) is the
restriction of (S) to the regular vertices. Let us �x j ∈ I1 and let us consider the g(S0)-module
Wj = V ect(fj(k) / k ≥ 1). With the notations of the preceding step:

• [pix(k), fj(l)] = a
(j)
ix
fj(k + l) if l = 1.

• [pix(k), fj(l)] = νja
(j)
ix
fj(k + l) if l ≥ 2.
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• [pi(x), fj(l)] = 0 if i is not a ix.

If νj 6= 0, we put pj(k) = fj(k) if k ≥ 2 and pj(1) = νjfj(1). Then, for all l:

• [pix(k), fj(l)] = νja
(j)
ix
fj(k + l).

• [pi(x), fj(l)] = 0 if i is not a ix.

So Wj is a module Vυ. If νj = 0, we put pj(k) = fj(k) for all k ≥ 1. Then:

• [pix(k), fj(l)] = a
(j)
ix
fj(k + l) if l = 1.

• [pix(k), fj(l)] = 0 if l ≥ 2.

• [pi(x), fj(l)] = 0 if i is not a ix.

So Wj is a module Wν .

Last step. We now consider vertices in J1. If j ∈ J1, then its descendants are vertices
of the �rst step and vertices in I1 such that νi = 1. As before, g(S) = WJ1 / g(S1), where
WJ1 = V ect(fj(k) / j ∈ J1, k ≥ 1} and (S1) is the restriction of (S) to the regular vertices and
the vertices of I1. Let us �x j ∈ J1 and let us consider the g(S1)-moduleWj = V ect(fj(k)/k ≥ 1).
As νj 6= 0, putting pj(k) = fj(k) if k ≥ 2 and pj(1) = νjfj(1):

• [pix(k), pj(l)] = νja
(j)
ix
pj(k + l).

• [pi(k), pj(l)] = 0 if i ∈ Jx − {ix}.

• [pi(k), pj(l)] = νja
(j)
i pj(k + l) if l = 1 and i ∈ I1.

• [pi(k), pj(l)] = 0 if l ≥ 2 and i ∈ I1.

So Wj is a module W ′ν,µ. 2

Theorem 28 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then

the Lie algebra g(S) is of the form:

gm / (gm−1 / (· · · g2 / (g1 / g0) · · · ),

where g0 is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so

is described in theorem 27), and, for j ≥ 1, gj is an abelian (gj−1 / (· · · g2 / (g1 / g0) · · · )-module

having a basis (h(j)(k))k≥1.

Proof. Similar to the proof of theorem 20. 2

6.3 Associated group

Let us now consider the character group Ch
(
H(S)

)
of H(S). In the preceding cases, g(S) contains

an abelian sub-Lie algebra gab, so Ch
(
H(S)

)
contains a subgroup isomorphic to the group:

Gab =
{(

a
(i)
1 x+ a

(i)
2 x2 + · · ·

)
1≤i≤M

, | ∀1 ≤ i ≤M, ∀k ≥ 1, a(i)
k ∈ K

}
,

with the product de�ned by (A(i)(x))i∈I .(B(i)(x))i∈I = (A(i)(x) + B(i)(x) + A(i)(x)B(i)(x))i∈I .
Note that Gab is isomorphic to the following subgroup of the following group of the units of the
ring K[[x]]M :

G1 =

{(
1+xf1(x)

...
1+xfM (x)

)
| f1(x), . . . , fM (x) ∈ K[[x]]

}
.
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The isomorphism is given by:
Gab −→ G1(

a
(i)
1 x+ a

(i)
2 x2 + · · ·

)
1≤i≤M

−→

 1+a
(1)
1 x+a

(1)
2 x2+...

...
1+a

(M)
1 x+a

(M)
2 x2+...

 .

Moreover, each modules earlier de�ned on gab corresponds to a module over Gab by exponen-
tiation, as explained in the following de�nition:

De�nition 29

1. Let υ = (υ1, . . . , υM ) ∈ KM . The module Vυ is isomorphic to yK[[y]] as a vector space,
and the action of Gab is given by:

(A(i)(x))1≤i≤M .P (y) = exp

(
M∑
i=1

υiA
(i)(y)

)
P (y).

2. Let us consider the semi-direct product G =

(
N⊕
i=1

Vυ(i)

)
/ Gab.

(a) Let ν = (ν1, . . . , νM ) ∈ KM . The module Wν is zK[[z]] as a vector space, and the ac-
tion ofG is given in the following way: for allX = (P1(y), . . . , PN (y), A1(x), . . . , Am(x)) ∈
G,  X.z =

(
1 +

M∑
i=1

νiAi(z)

)
z,

X.z2R(z) = z2R(z),

for all R(z) ∈ K[[z]].

(b) Let ν = (ν1, . . . , νM ) ∈ KM and µ = (µ1, . . . , µN ) ∈ KN , such that for all 1 ≤
i ≤ M , for all 1 ≤ j ≤ N , µj

(
νi − υ(j)

i

)
= 0. The module W′ν,µ is zK[[z]] as

a vector space, and the action of G is given in the following way: for all X =
(P1(y), . . . , PN (y), A1(x), . . . , Am(x)) ∈ G,

X.z = exp

(
M∑
i=1

νiAi(z)

)(
1 +

N∑
i=1

µiPi(z)

)
z,

X.z2R(z) = exp

(
M∑
i=1

νiAi(z)

)
z2R(z),

for all R(z) ∈ K[[z]].

Direct computations prove that they are indeed modules. The condition µj

(
νi − υ(j)

i

)
= 0

is necessary for W′ν,µ to be a module. Indeed:

Ai(x).(Pj(y).z) = (exp(νiAi(z)) + µjexp(νiAi(z))Pj(z)) z,

(Ai(x)Pj(y)).z =
(
exp(υ(j)

i Ai(y))Pj(y)Ai(x)
)
.z

=
(

1 + exp(υ(j)
i Ai(z))Pj(z)

)
z + (exp(νiAi(z))− 1)z

=
(
exp(νiAi(z)) + µjexp(υ

(j)
i Ai(z))Pj(z)

)
z.
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Theorem 30 Let (S) be a connected Hopf SDSE in the abelian case. Then the group

Ch
(
H(S)

)
is of the form:

GN o (GN−1 o (· · ·G2 o (G1 oG0) · · · ),

where G0 is a semi-direct product of the form:

G0 = W o (V oGab),

where V is a direct sum of modules Vυ, and W a direct sum of modules Wν and W′ν,µ. Moreover,

for all m ≥ 1, Gm = (tK[[t]],+) as a group.

Proof. Similar to the proof of theorem 23. 2
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