Lie algebras associated to systems of Dyson-Schwinger equations

Loïc Foissy*
Laboratoire de Mathématiques, Université de Reims Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France

Abstract

We consider systems of combinatorial Dyson-Schwinger equations in the ConnesKreimer Hopf algebra \mathcal{H}_{I} of rooted trees decorated by a set I. Let $\mathcal{H}_{(S)}$ be the subalgebra of \mathcal{H}_{I} generated by the homogeneous components of the unique solution of this system. If it is a Hopf subalgebra, we describe it as the dual of the enveloping algebra of a Lie algebra $\mathfrak{g}_{(S)}$ of one of the following types:

1. $\mathfrak{g}_{(S)}$ is an associative algebra of paths associated to a certain oriented graph.
2. Or $\mathfrak{g}_{(S)}$ is an iterated extension of the Faà di Bruno Lie algebra.
3. Or $\mathfrak{g}_{(S)}$ is an iterated extension of an infinite-dimensional abelian Lie algebra.

We also describe the character groups of $\mathcal{H}_{(S)}$.
Keywords. Systems of Dyson-Schwinger equations, Hopf algebras of decorated trees, pre-Lie algebras.

Mathematics Subject Classification. Primary 16W30. Secondary 81T15, 81T18.

Contents

1 Preliminaries 4
1.1 Hopf algebras of decorated rooted trees 4
1.2 Pre-Lie structure on the dual of \mathcal{H}_{D} 5
2 Recalls on SDSE 5
2.1 Unique solution of an SDSE 5
2.2 Graph associated to an SDSE 6
2.3 Classification of SDSE 7
3 Structure coefficients of the pre-Lie agebra $\mathfrak{g}_{(S)}$ 8
3.1 Definition of the structure coefficients 8
3.2 Prelie structure on $\mathcal{H}_{(S)}^{*}$ 9
4 Lie algebra and group associated to $\mathcal{H}_{(S)}$, associative case 11
4.1 Characterization of the associative case 11
4.2 An algebra associated to an oriented graph 12
4.3 Group of characters 15

[^0]5 Lie algebra and group associated to $\mathcal{H}_{(S)}$, non-abelian case 16
5.1 Modules over the Faà di Bruno Lie algebra 16
5.2 Description of the Lie algebra 17
5.3 Associated group 20
6 Lie algebra and group associated to $\mathcal{H}_{(S)}$, abelian case 21
6.1 Modules over an abelian Lie algebra 21
6.2 Description of the Lie algebra 22
6.3 Associated group 23

Introduction

The Connes-Kreimer Hopf algebra of (decorated) rooted trees $h^{\mathcal{D}}$ is introduced in [16] and studied in $[2,3,5,6,7,8,14,21]$. For any element d of the set of decorations D, we define an operator B_{d}^{+}of $\mathcal{H}^{\mathcal{D}}$, sending a forest F to the rooted tree obtained by grafting the trees of F on a common root decorated by d. This operator satisfies the following equation: for all $x \in \mathcal{H}_{\mathcal{D}}$,

$$
\Delta \circ B_{d}^{+}(x)=B_{d}^{+}(x) \otimes 1+\left(I d \otimes B_{d}^{+}\right) \circ \Delta(x)
$$

As explained in [6], this means that B_{d}^{+}is a 1-cocycle for a certain cohomology of coalgebras, dual to the Hochschild cohomology.

We now take $D=\{1, \ldots, N\}$ as a set of decorations. A system of combinatorial DysonSchwinger equations (briefly, an SDSE), is a system (S) of the form:

$$
\left\{\begin{aligned}
X_{1} & =B_{1}^{+}\left(F_{1}\left(X_{1}, \ldots, X_{N}\right)\right) \\
& \vdots \\
X_{N} & =B_{N}^{+}\left(F_{N}\left(X_{1}, \ldots, X_{N}\right)\right)
\end{aligned}\right.
$$

where $F_{1}, \ldots, F_{N} \in K\left[\left[h_{1}, \ldots, h_{N}\right]\right]$ are formal series in N indeterminates (see [1, 17, 18] for applications to Quantum Fields Theory). Such a system possesses a unique solution, which is a family of N formal series in rooted trees, or equivalently elements of a completion of $\mathcal{H}_{\mathcal{D}}$. The homogeneous components of these elements generate a subalgebra $\mathcal{H}_{(S)}$ of $\mathcal{H}_{\mathcal{D}}$. We determined in [10] the SDSE such that $\mathcal{H}_{(S)}$ is a Hopf subalgebra, generalizing the results of [9] for a single combinatorial Dyson-Schwinger equations. For this, we first associate an oriented graph to any SDSE, reflecting the dependence of the different X_{i} 's; more precisely, the vertices of $G_{(S)}$ are the elements of I, and there is an edge from i to j if F_{i} depends on h_{j}. The SDSE is said to be connected if its associated graph $G_{(S)}$ is connected. We then introduced several operations on SDSE, especially change of variables (proposition 4 of the present paper) and two families of SDSE, namely fundamental and multicyclic SDSE, here described in theorem 6. For example, the following system is multicyclic:

$$
\left\{\begin{array}{l}
X_{1}=B_{1}^{+}\left(1+X_{2}\right), \\
X_{2}=B_{2}^{+}\left(1+X_{3}\right), \\
X_{3}=B_{3}^{+}\left(1+X_{4}\right), \\
X_{4}=B_{4}^{+}\left(1+X_{1}\right) .
\end{array}\right.
$$

The associated oriented graph is:

Let us take $\beta_{1}, \beta_{2} \in K-\{-1\}$. For all $\beta \in K, f_{\beta}$ is the following formal series:

$$
f_{\beta}(h)=\sum_{k=0}^{\infty} \frac{(1+\beta) \cdots(1+(k-1) \beta)}{k!} h^{k}
$$

Here is an example of a fundamental SDSE:

$$
\left\{\begin{array}{l}
X_{1}=B_{1}^{+}\left(f_{\beta_{1}}\left(X_{1}\right) f_{\frac{\beta_{2}}{1+\beta_{2}}}\left(\left(1+\beta_{2}\right) X_{2}\right)\left(1-X_{3}\right)^{-1}\left(1-X_{4}\right)^{-1}\right) \\
X_{2}=B_{2}^{+}\left(f_{\frac{\beta_{1}}{1+\beta_{1}}}\left(X_{1}\right) f_{\beta_{2}}\left(X_{2}\right)\left(1-X_{3}\right)^{-1}\left(1-X_{4}\right)^{-1}\right) \\
X_{3}=B_{3}^{+}\left(f_{\frac{\beta_{1}}{1+\beta_{1}}}\left(\left(1+\beta_{1}\right) X_{1}\right) f_{\frac{\beta_{2}}{1+\beta_{2}}}\left(\left(1+\beta_{2}\right) X_{2}\right)\left(1-X_{4}\right)^{-1}\right) \\
X_{4}=B_{4}^{+}\left(f_{\frac{\beta_{1}}{1+\beta_{1}}}\left(\left(1+\beta_{1}\right) X_{1}\right) f_{\frac{\beta_{2}}{1+\beta_{2}}}\left(\left(1+\beta_{2}\right) X_{2}\right)\left(1-X_{3}\right)^{-1}\right) \\
\left.\left.X_{5}=B_{5}^{+}\left(f_{\frac{\beta_{1}}{1+\beta_{1}}}\left(1+\beta_{1}\right) X_{1}\right) f_{\frac{\beta_{2}}{1+\beta_{2}}}\left(1+\beta_{2}\right) X_{2}\right)\left(1-X_{3}\right)^{-1}\left(1-X_{4}\right)^{-1}\right)
\end{array}\right.
$$

The associated oriented graph is:

The present paper is devoted to the description of the Hopf algebras $\mathcal{H}_{(S)}$. By the Cartier-Quillen-Milnor-Moore theorem, they are dual of enveloping algebra $\mathcal{U}\left(\mathfrak{g}_{(S)}\right)$, and it turns out that $\mathfrak{g}_{(S)}$ is a pre-Lie algebra [4], that is to say it has a bilinear product \star such that for all $f, g, h \in \mathfrak{g}_{(S)}$:

$$
(f \star g) \star h-f \star(g \star h)=(g \star f) \star h-g \star(f \star h) .
$$

In our case, $\mathfrak{g}_{(S)}$ has a basis $\left(f_{i}(k)\right)_{i \in I, k \geq 1}$ and by proposition 10 its pre-Lie product is given by:

$$
f_{j}(l) \star f_{i}(k)=\lambda_{k}^{(i, j)} f_{i}(k+l)
$$

where the coefficients $\lambda_{k}^{(i, j)}$ are described in proposition 8 ; the Lie bracket of $\mathfrak{g}_{(S)}$ is the antisymmetrisation of \star. The product \star can be associative, for example in the multicyclic case. Then, up to a change of variables, $f_{j}(l) \star f_{i}(k)=f_{i}(k+l)$ if there is an oriented path of length k from i to j in the oriented graph associated to (S), or 0 otherwise; see proposition 15 . The associative algebra $\mathfrak{g}_{(S)}$ can then be described using the graph $G_{(S)}$ associated to the studied SDSE.

The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra $\mathfrak{g}_{(S)}$ is described as an iterated semi-direct product of the Faà di Bruno Lie algebra by infinite dimensional modules; see theorems 20 and 21. Similarly, the character group of $\mathcal{H}_{(S)}$ is an iterated semi-direct product of the Faà di Bruno group of formal diffeomorphisms by modules of formal series:

$$
C h\left(\mathcal{H}_{(S)}\right)=G_{m} \rtimes\left(G_{m-1} \rtimes\left(\cdots G_{2} \rtimes\left(G_{1} \rtimes G_{0}\right) \cdots\right)\right.
$$

where G_{0} is the Faà di Bruno group and G_{1}, \ldots, G_{m-1} are isomorphic to direct sums of $(t K[[t]],+)$ as groups; see theorem 23. The second subcase is similar, replacing the Faà di Bruno Lie algebra by an abelian Lie algebra; see theorems 27 and 28 for the Lie algebra, and theorem 30 for the group of characters.

This text is organised as follows: the first section gives some recalls on the structure of Hopf algebra of $\mathcal{H}_{\mathcal{D}}$ and on the pre-Lie product on $\mathfrak{g}_{(S)}=\operatorname{Prim}\left(\mathcal{H}_{(S)}^{*}\right)$. In the second section are recalled the definitions and properties of SDSE. The following section introduces the coefficients $\lambda_{n}^{(i, j)}$ and their properties, especially their link with the pre-Lie product of $\mathfrak{g}_{(S)}$. The next three sections deals with the description of the Lie algebra $\mathfrak{g}_{(S)}$ and the group $C h\left(\mathcal{H}_{(S)}\right)$ when $\mathfrak{g}_{(S)}$ is associative, in the non-abelian, fundamental case and finally in the abelian, fundamental case.

Notations. We denote by K a commutative field of characteristic zero. All vector spaces, algebras, coalgebras, Hopf algebras, etc. will be taken over K.

1 Preliminaries

1.1 Hopf algebras of decorated rooted trees

Let \mathcal{D} be a non-empty set. We denote by $\mathcal{H}_{\mathcal{D}}$ the polynomial algebra generated by the set $\mathcal{T}_{\mathcal{D}}$ of rooted trees decorated by elements of \mathcal{D}. For example:

1. Rooted trees with $1,2,3,4$ or 5 vertices:
2. Rooted trees decorated by \mathcal{D} with $1,2,3$ or 4 vertices:

$$
\begin{aligned}
& { }_{\cdot} ; a \in \mathcal{D}, \quad:_{a}^{b}(a, b) \in \mathcal{D}^{2} ; \quad{ }^{b} \bigvee_{a}{ }^{c}={ }^{c} \bigvee_{a}{ }^{b}, \mathfrak{l}_{a}^{c},(a, b, c) \in \mathcal{D}^{3} ;
\end{aligned}
$$

Let t_{1}, \ldots, t_{n} be elements of $\mathcal{T}_{\mathcal{D}}$ and let $d \in \mathcal{D}$. We denote by $B_{d}^{+}\left(t_{1} \ldots t_{n}\right)$ the rooted tree obtained by grafting t_{1}, \ldots, t_{n} on a common root decorated by d. This map B_{d}^{+}is extended in an operator from $\mathcal{H}_{\mathcal{D}}$ to $\mathcal{H}_{\mathcal{D}}$. For example, $B_{d}^{+}\left(\mathfrak{l}_{a}^{b} \cdot{ }_{c}\right)={ }^{b}{ }^{b} \boldsymbol{V}_{d}{ }^{c}$.

In order to make $\mathcal{H}_{\mathcal{D}}$ a bialgebra, we now introduce the notion of cut of a tree $t \in \mathcal{T}_{\mathcal{D}}$. A non-total cut c of a tree t is a choice of edges of t. Deleting the chosen edges, the cut makes t into a forest denoted by $W^{c}(t)$. The cut c is admissible if any oriented path in the tree meets at most one cut edge. For such a cut, the tree of $W^{c}(t)$ which contains the root of t is denoted by $R^{c}(t)$ and the product of the other trees of $W^{c}(t)$ is denoted by $P^{c}(t)$. We also add the total cut, which is by convention an admissible cut such that $R^{c}(t)=1$ and $P^{c}(t)=W^{c}(t)=t$. The set of admissible cuts of t is denoted by $A d m_{*}(t)$. Note that the empty cut of t is admissible; we put $A d m(t)=A d m_{*}(t)-\{$ empty cut, total cut $\}$.

The coproduct of $\mathcal{H}_{\mathcal{D}}$ is defined as the unique algebra morphism from $\mathcal{H}_{\mathcal{D}}$ to $\mathcal{H}_{\mathcal{D}} \otimes \mathcal{H}_{\mathcal{D}}$ such that for all rooted tree $t \in \mathcal{T}_{\mathcal{D}}$:

$$
\Delta(t)=\sum_{c \in A d m_{*}(t)} P^{c}(t) \otimes R^{c}(t)=t \otimes 1+1 \otimes t+\sum_{c \in \operatorname{Adm}(t)} P^{c}(t) \otimes R^{c}(t)
$$

Example.

We grade $\mathcal{H}_{\mathcal{D}}$ by declaring the forests with n vertices homogeneous of degree n. We denote by $\mathcal{H}_{\mathcal{D}}(n)$ the homogeneous component of $\mathcal{H}_{\mathcal{D}}$ of degree n. Then $\mathcal{H}_{\mathcal{D}}$ is a graded bialgebra. The completion $\widehat{\mathcal{H}_{\mathcal{D}}}$ of $\mathcal{H}_{\mathcal{D}}$ is the vector space:

$$
\widehat{\mathcal{H}_{\mathcal{D}}}=\prod_{n \in \mathbb{N}} \mathcal{H}_{\mathcal{D}}(n) .
$$

The elements of $\widehat{\mathcal{H}_{\mathcal{D}}}$ will be denoted by $\sum x_{n}$, where $x_{n} \in \mathcal{H}_{\mathcal{D}}(n)$ for all $n \in \mathbb{N}$.
Let $f(h)=\sum p_{n} h^{n} \in K[[h]]$ be any formal series, and let $X=\sum x_{n} \in \widehat{\mathcal{H}_{\mathcal{D}}}$, such that $x_{0}=0$. The series of $\widehat{\mathcal{H}_{\mathcal{D}}}$ of terms $p_{n} X^{n}$ is Cauchy, so converges. Its limit will be denoted by $f(X)$. In other words, $f(X)=\sum y_{n}$, with:

$$
\left\{\begin{array}{l}
y_{0}=p_{0}, \\
y_{n}=\sum_{k=1}^{n} \sum_{a_{1}+\cdots+a_{k}=n} p_{k} x_{a_{1}} \cdots x_{a_{k}} \text { if } n \geq 1 .
\end{array}\right.
$$

1.2 Pre-Lie structure on the dual of $\mathcal{H}_{\mathcal{D}}$

By the Cartier-Quillen-Milnor-Moore theorem [20], the graded dual $\mathcal{H}_{\mathcal{D}}^{*}$ of $\mathcal{H}_{\mathcal{D}}$ is an enveloping algebra. Its Lie algebra $\operatorname{Prim}\left(\mathcal{H}_{\mathcal{D}}^{*}\right)$ has a basis $\left(f_{t}\right)_{t \in \mathcal{I}_{\mathcal{D}}}$ indexed by \mathcal{T}_{D} :

$$
f_{t}:\left\{\begin{array}{rll}
\mathcal{H}_{\mathcal{D}} & \longrightarrow & K \\
t_{1} \ldots t_{n} & \longrightarrow & \left\{\begin{array}{l}
0 \text { if } n \neq 1, \\
\delta_{t, t_{1}} \text { if } n=1 .
\end{array}\right.
\end{array}\right.
$$

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra) is a couple (A, \star), where \star is a bilinear product on A such that for all $x, y, z \in A$:

$$
(x \star y) \star z-x \star(y \star z)=(y \star x) \star z-y \star(x \star z) .
$$

Pre-Lie algebras are Lie algebras, with bracket given by $[x, y]=x \star y-y \star x$.
The Lie bracket of $\operatorname{Prim}\left(\mathcal{H}_{\mathcal{D}}^{*}\right)$ is induced by a pre-Lie product \star given in the following way: if $f, g \in \operatorname{Prim}\left(\mathcal{H}_{\mathcal{D}}^{*}\right), f \star g$ is the unique element of $\operatorname{Prim}\left(\mathcal{H}_{\mathcal{D}}^{*}\right)$ such that for all $t \in \mathcal{T}_{\mathcal{D}}$,

$$
(f \star g)(t)=(f \otimes g) \circ(\pi \otimes \pi) \circ \Delta(t),
$$

where π is the projection on $\operatorname{Vect}\left(\mathcal{T}^{\mathcal{D}}\right)$ which vanishes on the forests which are not trees. In other words, if $t, t^{\prime} \in \mathcal{T}_{\mathcal{D}}$:

$$
f_{t} \star f_{t^{\prime}}=\sum_{t^{\prime \prime} \in \mathcal{T}_{\mathcal{D}}} n\left(t, t^{\prime} ; t^{\prime \prime}\right) f_{t^{\prime \prime}},
$$

where $n\left(t, t^{\prime} ; t^{\prime}\right)$ is the number of admissible cuts c of $t^{\prime \prime}$ such that $P^{c}\left(t^{\prime \prime}\right)=t$ and $R^{c}\left(t^{\prime \prime}\right)=t^{\prime}$. It is proved that $\left(\operatorname{prim}\left(\mathcal{H}_{\mathcal{D}}^{*}\right), \star\right)$ is the free pre-Lie algebra generated by the $\cdot{ }_{d}$'s,$d \in \mathcal{D}$: see $[3,4]$.

Note. The Hopf algebra $\mathcal{H}_{\mathcal{D}}^{*}$ is isomorphic to the Grossman-Larson Hopf algebra of rooted trees [11, 12, 13].

2 Recalls on SDSE

2.1 Unique solution of an SDSE

Definition 1 Let I be a finite, non-empty set, and let $F_{i} \in K\left[\left[h_{j}, j \in I\right]\right]$ be a non-constant formal series for all $i \in I$. The system of Dyson-Schwinger combinatorial equations (briefly, the SDSE) associated to $\left(F_{i}\right)_{i \in I}$ is:

$$
\forall i \in I, X_{i}=B_{i}^{+}\left(f_{i}\left(X_{j}, j \in I\right)\right),
$$

where $X_{i} \in \widehat{\mathcal{H}_{I}}$ for all $i \in I$.

In order to ease the notation, we shall often assume that $I=\{1, \ldots, N\}$ in the proofs, without loss of generality.

Notations. We assume here that $I=\{1, \ldots, N\}$.

1. Let (S) be an SDSE. We shall denote, for all $i \in I, F_{i}=\sum_{p_{1}, \cdots, p_{N}} a_{\left(p_{1}, \cdots, p_{N}\right)}^{(i)} h_{1}^{p_{1}} \cdots h_{N}^{p_{N}}$.
2. Let $1 \leq i, j \leq N$. We denote by $a_{j}^{(i)}$ the coefficient of h_{j} in F_{i}.

Proposition 2 Let (S) be an SDSE. Then it admits a unique solution $\left(X_{i}\right)_{i \in I} \in\left(\widehat{\mathcal{H}_{I}}\right)^{I}$. We put $X_{i}=\sum_{t \in \mathcal{T}_{I}^{(i)}} a_{t} t$.

Definition 3 Let (S) be an SDSE and let $X=\left(X_{i}\right)_{i \in I}$ be its unique solution. The subalgebra of \mathcal{H}_{I} generated by the homogeneous components $X_{i}(k)$'s of the X_{i} 's will be denoted by $\mathcal{H}_{(S)}$. If $\mathcal{H}_{(S)}$ is Hopf, the system (S) will be said to be Hopf.

We proved in [10] the following results:

Proposition 4 (change of variables) Let (S) be the $S D S E$ associated to $\left(F_{i}\left(h_{j}, j \in I\right)\right)_{i \in I}$. Let λ_{i} and μ_{i} be non-zero scalars for all $i \in I$. The system (S) is Hopf if, and only if, the SDSE system $\left(S^{\prime}\right)$ associated to $\left(\mu_{i} F_{i}\left(\lambda_{j} h_{j}, j \in J\right)\right)_{i \in I}$ is Hopf.

Moreover, a change of variables replace $\mathcal{H}_{(S)}$ by an isomorphic Hopf algebra.

2.2 Graph associated to an SDSE

We associate a oriented graph to each SDSE in the following way:

Definition 5 Let (S) be an SDSE.

1. We construct an oriented graph $G_{(S)}$ associated to (S) in the following way:

- The vertices of $G_{(S)}$ are the elements of I.
- There is an edge from i to j if, and only if, $\frac{\partial F_{i}}{\partial h_{j}} \neq 0$.

2. If $\frac{\partial F_{i}}{\partial h_{i}} \neq 0$, the vertex i will be said to be self-dependent. In other words, if i is selfdependent, there is a loop from i to itself in $G_{(S)}$.
3. If $G_{(S)}$ is connected, we shall say that (S) is connected.

Let (S) be an SDSE and let $G_{(S)}$ be the associated graph. Let i and j be two vertices of $G_{(S)}$. We shall say that j is a direct descendant of i (or i is a direct ascendant of j) if there is an oriented edge from i to j; we shall say that j is a descendant of i (or i is an ascendant of j) if there is an oriented path from i to j. We shall write " $i \longrightarrow j$ " for " j is a direct descendant of i ".

Remark. An change of variables does not change the graph $G_{(S)}$.

2.3 Classification of SDSE

The following result is proved in [10]:
Theorem 6 Let (S) be a connected SDSE. It is Hopf if and only if, up to a change of variables, one of the following assertion holds:

1. (Extended multicyclic SDSE). The set I admits a partition $I=I_{\overline{1}} \cup \cdots \cup I_{\bar{N}}$ indexed by the elements of $\mathbb{Z} / N \mathbb{Z}, N \geq 2$, with the following conditions:

- For all $i \in I_{\bar{k}}$:

$$
F_{i}=1+\sum_{j \in I_{k+1}} a_{j}^{(i)} h_{j} .
$$

- If i and i^{\prime} have a common direct ascendant in $G_{(S)}$, then $F_{i}=F_{i^{\prime}}$ (so i and i^{\prime} have the same direct descendants).

2. (Extended fundamental SDSE). There exists a partition:

$$
I=\left(\bigcup_{i \in I_{0}} J_{i}\right) \cup\left(\bigcup_{i \in J_{0}} J_{i}\right) \cup K_{0} \cup I_{1} \cup J_{1} \cup I_{2},
$$

with the following conditions:

- $K_{0}, I_{1}, J_{1}, I_{2}$ can be empty.
- The set of indices $I_{0} \cup J_{0}$ is not empty.
- For all $i \in I_{0} \cup J_{0}, J_{i}$ is not empty.

Up to a change of variables:
(a) For all $x \in I_{0}$, there exists $\beta_{x} \in K$, such that for all $i \in J_{x}$:

$$
F_{i}=f_{\beta_{x}}\left(\sum_{j \in J_{x}} h_{j}\right) \prod_{y \in I_{0}-\{x\}} f_{\frac{\beta_{y}}{1+\beta_{y}}}\left(\left(1+\beta_{y}\right) \sum_{j \in J_{y}} h_{j}\right) \prod_{y \in J_{0}} f_{1}\left(\sum_{j \in J_{y}} h_{j}\right) .
$$

(b) For all $x \in J_{0}$, for all $i \in J_{x}$:

$$
F_{i}=\prod_{y \in I_{0}} f_{\frac{\beta_{y}}{1+\beta_{y}}}\left(\left(1+\beta_{y}\right) \sum_{j \in J_{y}} h_{j}\right) \prod_{y \in J_{0}-\{x\}} f_{1}\left(\sum_{j \in J_{y}} h_{j}\right) .
$$

(c) For all $i \in K_{0}$:

$$
F_{i}=\prod_{y \in I_{0}} f_{\frac{\beta_{y}}{1+\beta_{y}}}\left(\left(1+\beta_{y}\right) \sum_{j \in J_{y}} h_{j}\right) \prod_{y \in J_{0}} f_{1}\left(\sum_{j \in J_{y}} h_{j}\right) .
$$

(d) For all $i \in I_{1}$, there exist $\nu_{i} \in K$ and a family of scalars $\left(a_{j}^{(i)}\right)_{j \in I_{0} \cup J_{0} \cup K_{0}}$, with $\left(\nu_{i} \neq 1\right)$ or $\left(\exists j \in I_{0}, a_{j}^{(i)} \neq 1+\beta_{j}\right)$ or $\left(\exists j \in J_{0}, a_{j}^{(i)} \neq 1\right)$ or $\left(\exists j \in K_{0}, a_{j}^{(i)} \neq 0\right)$. Then, if $\nu_{i} \neq 0$:

$$
F_{i}=\frac{1}{\nu_{i}} \prod_{y \in I_{0}} f_{\frac{\beta_{y}}{\nu_{i} a_{y}^{(i)}}}\left(\nu_{i} a_{y}^{(i)} \sum_{j \in J_{y}} h_{j}\right) \prod_{y \in J_{0}} f_{\frac{1}{\nu_{i} a_{y}^{(i)}}}\left(\nu_{i} a_{y}^{(i)} \sum_{j \in J_{y}} h_{j}\right) \prod_{j \in K_{0}} f_{0}\left(\nu_{i} a_{j}^{(i)} h_{j}\right)+1-\frac{1}{\nu_{i}} .
$$

If $\nu_{i}=0$:

$$
F_{i}=-\sum_{y \in I_{0}} \frac{a_{y}^{(i)}}{\beta_{y}} \ln \left(1-\sum_{j \in J_{y}} h_{j}\right)-\sum_{y \in J_{0}} a_{y}^{(i)} \ln \left(1-\sum_{j \in J_{y}} h_{j}\right)+\sum_{j \in K_{0}} a_{j}^{(i)} h_{j}+1 .
$$

(e) For all $i \in J_{1}$, there exists $\nu_{i} \in K-\{0\}$ and a family of scalars $\left(a_{j}^{(i)}\right)_{j \in I_{0} \cup J_{0} \cup K_{0} \cup I_{1}}$, with the three following conditions:

- $I_{1}^{(i)}=\left\{j \in I_{1} / a_{j}^{(i)} \neq 0\right\}$ is not empty.
- For all $j \in I_{1}^{(i)}, \nu_{j}=1$.
- For all $j, k \in I_{1}^{(i)}, F_{j}=F_{k}$. In particular, we put $b_{t}^{(i)}=a_{t}^{(j)}$ for any $j \in I_{1}^{(i)}$, for all $t \in I_{0} \cup J_{0} \cup K_{0}$.

Then:

$$
\begin{aligned}
F_{i}= & \frac{1}{\nu_{i}} \prod_{y \in I_{0}} f_{\frac{\beta_{y}}{b_{y}^{(i)}-1-\beta_{y}}}\left(\left(b_{y}^{(i)}-1-\beta_{y}\right) \sum_{j \in J_{y}} h_{j}\right) \prod_{y \in J_{0}} f_{\frac{\beta_{y}}{b_{y}^{(i)}-1}}\left(\left(b_{y}^{(i)}-1\right) \sum_{j \in J_{y}} h_{j}\right) \\
& \prod_{j \in K_{0}} f_{0}\left(b_{j}^{(i)} h_{j}\right)+\sum_{j \in I_{1}^{(i)}} a_{j}^{(i)} h_{1}+1-\frac{1}{\nu_{i}} .
\end{aligned}
$$

(f) $I_{2}=\left\{x_{1}, \ldots, x_{m}\right\}$ and for all $1 \leq k \leq m$, there exist a set:

$$
I^{\left(x_{k}\right)} \subseteq\left(\bigcup_{i \in I_{0}} J_{i}\right) \cup\left(\bigcup_{i \in J_{0}} J_{i}\right) \cup K_{0} \cup I_{1} \cup J_{1} \cup\left\{x_{1}, \ldots, x_{k-1}\right\}
$$

and a family of non-zero scalars $\left(a_{j}^{\left(x_{k}\right)}\right)_{j \in I^{\left(x_{k}\right)}}$ such that for all $i, j \in I^{\left(x_{k}\right)}, F_{i}=F_{j}$. Then:

$$
F_{x_{k}}=1+\sum_{j \in I^{\left(x_{k}\right)}} a_{j}^{\left(x_{k}\right)} h_{j} .
$$

The elements of I_{2} will be called extension vertices. If $I_{2}=\emptyset$, we shall say that (S) is a fundamental system.

Definition 7 An extended fundamental $\operatorname{Hopf} \operatorname{SDSE}(S)$ will be said to be abelian if $J_{0}=\emptyset$ and if for all $x \in I_{0}, \beta_{x}=-1$.

3 Structure coefficients of the pre-Lie agebra $\mathfrak{g}_{(S)}$

3.1 Definition of the structure coefficients

We here recall several results of [10].
Proposition 8 Let (S) be a Hopf SDSE. For all $i, j \in I$, for all $n \geq 1$, there exists a scalar $\lambda_{n}^{(i, j)}$ such that for all $t^{\prime} \in \mathcal{T}_{i}(n)$:

$$
\sum_{t \in \mathcal{\mathcal { T } _ { i } (n + 1)}} n_{j}\left(t, t^{\prime}\right) a_{t}=\lambda_{n}^{(i, j)} a_{t^{\prime}},
$$

where $n_{j}\left(t, t^{\prime}\right)$ is the number of leaves l of t decorated by j such that the cut of l gives t^{\prime}.

In the case of extended fundamental SDSE, the coefficients $\lambda_{n}^{(i, j)}$ are given, for all $i, j \notin I_{2}$, by:

$$
\lambda_{n}^{(i, j)}=\left\{\begin{array}{l}
a_{j}^{(i)} \text { if } n=1, \\
\tilde{a}_{j}^{(i)}+b_{j}(n-1) \text { if } n \geq 2,
\end{array}\right.
$$

the coefficients being given in the following arrays:

- $a_{i}^{(j)}$:

$i \backslash j$	$\in J_{y}, y \in I_{0}$	$\in J_{y}, y \in J_{0}$	$\in K_{0}$	$\in I_{1}$	$\in J_{1}$
$\in J_{x}, x \in I_{0}$	$\left(1+\beta_{x}\right)-\delta_{x, y} \beta_{x}$	$1+\beta_{x}$	$1+\beta_{x}$	$a_{x}^{(j)}$	$\frac{b_{x}^{(j)}-1-\beta_{x}}{\nu_{j}}$
$\in J_{x}, x \in J_{0}$	1	$1-\delta_{x, y}$	1	$a_{x}^{(j)}$	$\frac{b_{x}^{(j)}-1}{\nu_{j}}$
$\in K_{0}$	0	0	0	$a_{i}^{(j)}$	$\frac{b_{i}^{(j)}}{\nu_{j}}$
$\in I_{1}$	0	0	0	0	$a_{i}^{(j)}$
$\in J_{1}$	0	0	0	0	0

- $\tilde{a}_{i}^{(j)}$:

$i \backslash j$	$\in J_{y}, y \in I_{0}$	$\in J_{y}, y \in J_{0}$	$\in K_{0}$	$\in I_{1}$	$\in J_{1}$
$\in J_{x}, x \in I_{0}$	$\left(1+\beta_{x}\right)-\delta_{x, y} \beta_{x}$	$1+\beta_{x}$	$1+\beta_{x}$	$\nu_{j} a_{x}^{(j)}$	$b_{x}^{(j)}-1-\beta_{x}$
$\in J_{x}, x \in J_{0}$	1	$1-\delta_{x, y}$	1	$\nu_{j} a_{i}^{(j)}$	$b_{i}^{(j)}-1$
$\in K_{0}$	0	0	0	$\nu_{j} a_{i}^{(j)}$	$b_{i}^{(j)}$
$\in I_{1}$	0	0	0	0	0
$\in J_{1}$	0	0	0	0	0

- b_{j} :

j	$\in J_{y}, y \in I_{0}$	$\in J_{y}, y \in J_{0}$	$\in K_{0}$	$\in I_{1}$	$\in J_{1}$
b_{j}	$1+\beta_{y}$	1	0	0	0

If $i \notin I_{2}$ and $j \in I_{2}$, then $\lambda_{n}^{(i, j)}=0$ for all $n \geq 1$. Moreover, if $i \in I_{2}$, let i^{\prime} be a direct descendant of i. Then for all $j \in I$, for all $n \geq 2, \lambda_{n}^{(i, j)}=\lambda_{n-1}^{\left(i^{\prime}, j\right)}$.

3.2 Prelie structure on $\mathcal{H}_{(S)}^{*}$

Let us consider a Hopf $\operatorname{SDSE}(S)$. Then $\mathcal{H}_{(S)}^{*}$ is the enveloping algebra of the Lie algebra $\mathfrak{g}_{(S)}=\operatorname{Prim}\left(\mathcal{H}_{(S)}^{*}\right)$. By [19], it inherits from $\operatorname{Prim}\left(\mathcal{H}_{\mathcal{D}}^{*}\right)$ a pre-Lie product given in the following way: for all $f, g \in G_{(S)}$, for all $x \in \mathcal{H}_{(S)}, f \star g$ is the unique element of $\mathfrak{g}_{(S)}$ such that for all $x \in \operatorname{vect}\left(X_{i}(n) / i \in I, n \geq 1\right)$,

$$
(f \star g)(x)=(f \otimes g) \circ(\pi \otimes \pi) \circ \Delta(x) .
$$

Let $\left(f_{i}(p)\right)_{i \in I, p \geq 1}$ be the basis of $\mathfrak{g}_{(S)}$, dual of the basis $\left(X_{i}(p)\right)_{i \in I, p \geq 1}$. By homogeneity of Δ, and as $\Delta\left(X_{i}(n)\right)$ is a linear span of elements $-\otimes X_{i}(p), 0 \leq p \leq n$, we obtain the existence of coefficients $a_{k, l}^{(i, j)}$ such that, for all $i, j \in I, k, l \geq 1$:

$$
f_{j}(l) \star f_{i}(k)=a_{k, l}^{(i, j)} f_{i}(k+l) .
$$

By duality, $a_{k, l}^{(i, j)}$ is the coefficient of $X_{j}(l) \otimes X_{i}(k)$ in $\Delta\left(X_{i}(k+l)\right)$, so is uniquely determined in the following way: for all $t^{\prime} \in \mathcal{T}_{\mathcal{D}}^{(j)}(l), t^{\prime \prime} \in \mathcal{T}_{\mathcal{D}}^{(i)}(k)$,

$$
\sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n\left(t^{\prime}, t^{\prime \prime} ; t\right) a_{t}=a_{k, l}^{(i, j)} a_{t^{\prime}} a_{t^{\prime \prime}}
$$

Lemma 9 For all $t^{\prime} \in \mathcal{T}_{\mathcal{D}}^{(j)}(l), t^{\prime \prime} \in \mathcal{T}_{\mathcal{D}}^{(i)}(k), \sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n\left(t^{\prime}, t^{\prime \prime} ; t\right) a_{t}=\lambda_{k}^{(i, j)} a_{t^{\prime}} a_{t^{\prime \prime}}$.
Proof. By induction on k. If $k=1$, then $t^{\prime \prime}={ }_{\cdot}$, so:

$$
\sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n\left(t^{\prime}, t^{\prime \prime} ; t\right) a_{t}=a_{B_{i}^{+}\left(t^{\prime \prime}\right)}=a_{j}^{(i)} a_{t^{\prime}}=\lambda_{1}^{(i, j)} a_{t^{\prime}} a_{t^{\prime \prime}}
$$

as $a_{t^{\prime \prime}}=1$. Let us assume the result at all rank $\leq k-1$. We put $t^{\prime \prime}=B_{i}^{+}\left(\prod_{s \in \mathcal{T}_{\mathcal{D}}} s^{r_{s}}\right)$. We put $p_{j}=\sum_{s \in \mathcal{T}_{\mathcal{D}}^{(j)}} r_{s}$ for all $j \in I$. Then:

$$
\begin{aligned}
& \sum_{t \in \mathcal{T}_{\mathcal{D}}^{(i)}(k+l)} n\left(t^{\prime}, t^{\prime \prime} ; t\right) a_{t} \\
= & n\left(t^{\prime}, t^{\prime \prime}, B_{i}^{+}\left({ }^{j} \prod_{s \in \mathcal{T}_{\mathcal{D}}} s^{r_{s}}\right)\right) a_{B_{i}^{+}\left(t^{\prime} \Pi s^{r_{s}}\right)}+\sum_{\substack{s_{1}, s_{2} \in \mathcal{T}_{\mathcal{D}} \\
r_{s_{2}} \geq 1}}\left(r_{s_{1}}+1\right) n\left(t^{\prime}, s_{2} ; s_{1}\right) a_{B_{i}^{+}\left(\frac{s_{1}}{s_{2}} \Pi s^{s_{s}}\right)} \\
= & \left(r_{t^{\prime}+1}\right) \frac{\left(p_{j}+1\right) \prod_{j=1}^{N} p_{j}!}{\left(r_{t^{\prime}+1}\right) \prod_{s \in \mathcal{T}_{\mathcal{D}}} r_{s}!} a_{\left(p_{1}, \cdots, p_{j+1}, \cdots, p_{N}\right)}^{(i)} a_{t^{\prime}} \prod_{s \in \mathcal{T}_{\mathcal{D}}} a_{s}^{r_{s}}+\sum_{s_{1}, s_{2} \in \mathcal{T}_{\mathcal{D}}}\left(r_{s_{1}}+1\right) n_{j}\left(s_{1}, s_{2}\right) \frac{r_{s_{2}}}{r_{s_{1}}+1} a_{t^{\prime \prime}} \frac{a_{s_{1}}}{a_{s_{2}}}
\end{aligned}
$$

$$
=\left(p_{j}+1\right) \frac{a_{\left(p_{1}, \cdots, p_{j+1}, \cdots, p_{N}\right)}^{(i)}}{a_{\left(p_{1}, \cdots, p_{N}\right)}^{(i)}} a_{t^{\prime}} a_{t^{\prime \prime}}+\sum_{s_{1}, s_{2} \in \mathcal{T}_{\mathcal{D}}} n_{j}\left(s_{1}, s_{2}\right) r_{s_{2}} \frac{a_{s_{1}}}{a_{s_{2}}} a_{t^{\prime \prime}}
$$

$$
=\left(\lambda_{p_{1}+\cdots+p_{N}+1}^{(i, j)}-\sum_{l=1}^{N} p_{j} a_{j}^{(l)}+\sum_{\substack{s_{1}, s_{2} \in \mathcal{T}_{\mathcal{D}} \\ r_{s_{2}}>0}} n_{j}\left(s_{1}, s_{2}\right) r_{s_{2}} \frac{a_{s_{1}}}{a_{s_{2}}}\right) a_{t^{\prime}} a_{t^{\prime \prime}}
$$

$$
=\left(\lambda_{p_{1}+\cdots+p_{N}+1}^{(i, j)}-\sum_{l=1}^{N} p_{j} a_{j}^{(l)}+\sum_{s_{2} \in T_{\mathcal{D}}} r_{s_{2}} \lambda_{\left|s_{2}\right|}^{\left(r\left(s_{2}\right), j\right)}\right) a_{t^{\prime}} a_{t^{\prime \prime}}
$$

using the induction hypothesis on s_{2}, denoting by $r\left(s_{2}\right)$ the decoration of the root of s_{2}. As $a_{t^{\prime}} \neq 0, a_{\left(p_{1}, \cdots, p_{n}\right)}^{(i)} \neq 0$, proposition 19-3 of [10] implies:

$$
\begin{aligned}
\lambda_{1+\sum r_{s}|s|}^{(i, j)} & =\lambda_{1+\sum r_{s}}^{(i, j)}+\sum_{s} r_{s}\left(\lambda_{|s|}^{(r(s), j)}-a_{j}^{(r(s))}\right) \\
\lambda_{\left|t^{\prime \prime}\right|}^{(i, j)} & =\lambda_{p_{1}+\cdots+p_{N}+1}^{(i, j)}+\sum_{s} r_{s} \lambda_{|s|}^{(r(s), j)}-\sum_{l} p_{l} a_{j}^{(l)}
\end{aligned}
$$

So the induction hypothesis is proved at rank n.
Combining this lemma with the preceding observations:
Proposition 10 Let (S) be a Hopf SDSE. The pre-Lie algebra $\mathfrak{g}_{(S)}=\operatorname{Prim}\left(\mathcal{H}_{(S)}^{*}\right)$ has a basis $\left(f_{i}(k)\right)_{i \in I, k \geq 1}$, and the pre-Lie product of two elements of this basis is given by:

$$
f_{j}(l) \star f_{i}(k)=\lambda_{k}^{(i, j)} f_{i}(k+l)
$$

Remark. Let us consider a fundamental $\operatorname{SDSE}(S)$, with $I_{1}=J_{1}=I_{2}=\emptyset$. Combining proposition 10 with the arrays following proposition 8 , then for all $i, j \in I$, for all $k, l \geq 1$:

$$
\left[f_{j}(l), f_{i}(k)\right]=b_{j} k f_{i}(k+l)-b_{i} l f_{j}(k+l)
$$

We assume that $I=\{1, \ldots, N\}$. Let $\mathbf{W}=\operatorname{Der}\left(K\left[x_{1}^{ \pm 1}, \ldots, x_{N}^{ \pm 1}\right]\right)$ be the Lie algebra of derivations of a Laurent polynomial algebra; \mathbf{W} is a Lie algebra of generalized-Witt type [15]. It is not difficult to show that there is a Lie algebra morphism:

$$
\left\{\begin{array}{rll}
\mathfrak{g}_{(S)} & \longrightarrow & \mathbf{W} \\
f_{i}(k) & \longrightarrow & b_{i}\left(x_{1} \ldots x_{N}\right)^{k} x_{i} \frac{\partial}{\partial x_{i}}
\end{array}\right.
$$

This morphism is injective if, and only if, $b_{1}, \ldots, b_{N} \neq 0$. If this holds, $\mathfrak{g}_{(S)}$ can be identified with a Lie subalgebra of the positive part of \mathbf{W}.

4 Lie algebra and group associated to $\mathcal{H}_{(S)}$, associative case

Let us consider a connected Hopf SDSE (S). We now study the pre-Lie algebra $\mathfrak{g}_{(S)}$ of proposition
10. We separate this study into three cases:

- Associative case: the pre-Lie algebra $\mathfrak{g}_{(S)}$ is associative. This holds in particular if (S) is an extended multicyclic SDSE.
- Abelian case: (S) is an extended fundamental, abelian SDSE, see definition 7 .
- Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.

We first treat the associative case.

4.1 Characterization of the associative case

Proposition 11 Let (S) be a Hopf SDSE. Then the pre-Lie algebra $\mathfrak{g}_{(S)}$ is associative if, and only if, for all $i \in I$:

$$
F_{i}=1+\sum_{i \longrightarrow j} a_{j}^{(i)} h_{j}
$$

Proof. \Longrightarrow. Let us assume that \star is associative. Let $i, j, k \in I$, let us show that $a_{j, k}^{(i)}=0$. If $a_{j}^{(i)}=0$ or $a_{k}^{(i)}=0$, then $a_{j, k}^{(i)}=0$. Let us suppose that $a_{j}^{(i)} \neq 0$ and $a_{k}^{(i)} \neq 0$. Then:

$$
\begin{aligned}
0 & =\left(f_{k}(1) \star f_{j}(1)\right) \star f_{i}(1)-f_{k}(1) \star\left(f_{j}(1) \star f_{i}(1)\right) \\
& =\left(\lambda_{1}^{(j, k)} \lambda_{1}^{(i, j)}-\lambda_{1}^{(i, j)} \lambda_{2}^{(i, k)}\right) f_{i}(3) \\
& =\lambda_{1}^{(i, j)}\left(\lambda_{1}^{(j, k)}-\lambda_{2}^{(i, k)}\right) f_{i}(3) \\
& =a_{j}^{(i)}\left(a_{k}^{(j)}-\lambda_{2}^{(i, k)}\right) f_{i}(3) .
\end{aligned}
$$

So $\lambda_{2}^{(i, k)}=a_{k}^{(j)}$. Moreover, by proposition 8 :

$$
a_{j}^{(i)} a_{k}^{(j)}=\lambda_{2}^{(i, k)} a:_{i}^{j}=a_{{\underset{\sim}{j}}_{i}^{k}}+\left(1+\delta_{j, k}\right) a_{j \bigvee_{i}}^{k}=a_{j}^{(i)} a_{k}^{(j)}+\left(1+\delta_{j, k}\right) a_{j, k}^{(i)}
$$

So $a_{j, k}^{(i)}=0$. As a consequence, $F_{i}=1+\sum_{i \longrightarrow j} a_{j}^{(i)} h_{j}$.
\Longleftarrow. Then $X_{i}(n)$ is a linear span of ladders of weight n for all $n \geq 1$, for all $i \in I$. As a consequence, if $x \in \operatorname{Vect}\left(X_{i}(n) / i \in I, n \geq 1\right)$, for all $f, g \in \mathfrak{g}_{(S)}$, denoting $\Delta(x)=x^{\prime} \otimes x^{\prime \prime}$ and $(\Delta \otimes I d) \circ \Delta(x)=x^{\prime} \otimes x^{\prime \prime} \otimes x^{\prime \prime \prime}:$

$$
(f \star g)(x)=(f \otimes g) \circ(\pi \otimes \pi) \circ \Delta(x)=(f \otimes g) \circ \Delta(x)=f\left(x^{\prime}\right) g\left(x^{\prime \prime}\right)
$$

So if $f, g, h \in G_{(S)}$, for all $x \in \operatorname{Vect}\left(X_{i}(n) / i \in I, n \geq 1\right)$:

$$
((f \star g) \star h)(x)=f\left(x^{\prime}\right) g\left(x^{\prime \prime}\right) h\left(x^{\prime \prime \prime}\right)=(f \star(g \star h))(x)
$$

So $(f \star g) \star h=f \star(g \star h): \mathfrak{g}_{(S)}$ is an associative algebra.
Corollary 12 Let (S) be a connected Hopf SDSE. Then $\mathfrak{g}_{(S)}$ is associative if, and only if one of the following assertions holds:

1. (S) is an extended multicyclic SDSE.
2. (S) is an extended fundamental SDSE, with:

- For all $i \in I_{0}, \beta_{i}=-1$.
- J_{0}, K_{0}, I_{1} and J_{1} are empty.

If the second assertion holds, then (S) is also an extended fundamental abelian SDSE, and another interpretation of $\mathfrak{g}_{(S)}$ can be given; see theorem 28 .

4.2 An algebra associated to an oriented graph

Notations. Let G an oriented graph, $i, j \in G$, and $n \geq 1$. We shall denote $i \xrightarrow{n} j$ if there is an oriented path from i to j of length n in G.

Definition 13 Let G be an oriented graph, with set of vertices denoted by I. The associative, non-unitary algebra A_{G} is generated by $P_{i}(1), i \in I$, and the following relations:

- If j is not a direct descendant of i in $G, P_{j}(1) P_{i}(1)=0$.
- If $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{n}$ and $i_{1} \rightarrow i_{2}^{\prime} \rightarrow \cdots \rightarrow i_{n}^{\prime}$ in G, then:

$$
P_{i_{n}}(1) \cdots P_{i_{2}}(1) P_{i_{1}}(1)=P_{i_{n}^{\prime}}(1) \cdots P_{i_{2}^{\prime}}(1) P_{i_{1}}(1)
$$

Let G be an oriented graph, and let $i \in I$ and $n \geq 1$. For any oriented path $i \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{n}$ in G, we denote $P_{i}(n)=P_{i_{n}}(1) \cdots P_{i_{2}}(1) P_{i}(1)$. If there is no such an oriented path, we put $P_{i}(n)=0$. By definition of A_{G} (second family of relations), this does not depend of the choice of the path. Graphically, $P_{i}(n)$ should be seen as representing any path from the vertex i of length n.

Lemma 14 Let G be an oriented graph. Then the $P_{i}(n)$'s, $i \in I, n \geq 1$, linearly generate A_{G}. Moreover, if $P_{i}(m)$ and $P_{j}(n)$ are non-zero, then:

$$
P_{j}(n) P_{i}(m)=\left\{\begin{array}{l}
P_{i}(m+n) \text { if } i \stackrel{m}{\longrightarrow} j \\
0 \text { if not. }
\end{array}\right.
$$

Proof. By the first relation, $P_{i}(n)=P_{i_{n}}(1) \cdots P_{i_{2}}(1) P_{i}(1)=0$ if $\left(i, i_{1}, \ldots, i_{n}\right)$ is not an oriented path in G. So the $P_{i}(n)$'s, $i \in I, n \geq 1$, linearly generate A_{G}.
let us fix $P_{i}(m)=P_{i_{m}}(1) \cdots P_{i_{2}}(1) P_{i}(1)$ and $P_{j}(n)=P_{j_{n}}(1) \cdots P_{j_{2}}(1) P_{j}(1)$ both non-zero. If $i \xrightarrow{m} j$ we can choose i_{2}, \ldots, i_{m} such that $i \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{m} \rightarrow j$. Then:

$$
P_{j}(n) P_{i}(m)=P_{j_{n}}(1) \cdots P_{j_{2}}(1) P_{j}(1) P_{i_{m}}(1) \cdots P_{i_{2}}(1) P_{i}(1)=P_{i}(m+n)
$$

If this is not the case, then j is not a direct descendant of i_{m}, so $P_{j}(1) P_{i_{m}}(1)=0$ and $P_{j}(n) P_{i}(m)=0$.

Proposition 15 Let G be an oriented graph.

1. The following conditions are equivalent:
(a) The family $\left(P_{i}(n)\right)_{i \in I, n \geq 1}$ is a basis of A_{G}.
(b) All the $P_{i}(n)$ are non-zero.
(c) The graph G satisfies the following conditions:

- Any vertex of G has a direct descendant.
- If two vertices of G have a common direct ascendant, then they have the same direct descendants.
(d) The SDSE associated to the following formal series is Hopf:

$$
\forall i \in I, F_{i}=1+\sum_{i \rightarrow j} h_{j}
$$

2. If this holds, then A_{G} is generated by $P_{i}(1), i \in I$, and the following relations:

- If j is not a direct descendant of i in $G, P_{j}(1) P_{i}(1)=0$.
- If $i \rightarrow j$ and $i \rightarrow k$ in G, then $P_{j}(1) P_{i}(1)=P_{k}(1) P_{i}(1)$.

The product of A_{G} is given by:

$$
P_{j}(n) P_{i}(m)=\left\{\begin{array}{l}
P_{i}(m+n) \text { if } i \stackrel{m}{\longrightarrow} j \\
0 \text { if not. }
\end{array}\right.
$$

Moreover, if (S) is the system of condition $(d), \mathfrak{g}_{(S)}$ is associative and isomorphic to A_{G}.
Proof. 1. $(a) \Longrightarrow(b)$ is obvious.
$(b) \Longrightarrow(c)$. Let us assume (b). Then for all $i \in I, P_{i}(2) \neq 0$, so there exists a j such that $i \rightarrow j$ in G : any vertex of G has a direct descendant. Let us assume $i \rightarrow j$ and $i \rightarrow j^{\prime}$ in G. Let k be a direct descendant of j. Then $P_{i}(2)=P_{j}(1) P_{i}(i)=P_{j^{\prime}}(1) P_{i}(1)$ and $P_{i}(3)=P_{k}(1) P_{j}(1) P_{i}(1)=P_{k}(1) P_{i}(2) \neq 0$, so $P_{k}(1) P_{i}(2)=P_{k}(1) P_{j^{\prime}}(1) P_{i}(1) \neq 0$. As a consequence, $P_{k}(1) P_{j^{\prime}}(1) \neq 0$ and k is a direct descendant of j^{\prime}. By symmetry, the direct descendants of j^{\prime} are also direct descendants of j : two direct descendants of a same vertex have the same direct descendants.
$(c) \Longrightarrow(d)$. Then for all $i \in I$, for all $n \geq 1, X_{i}(n)=\sum l\left(i, i_{2}, \cdots, i_{n}\right)$, where the sum runs on all oriented paths $i \rightarrow i_{2} \rightarrow \cdots \longrightarrow i_{n}$ in $G_{(S)}$. So:

$$
\Delta\left(X_{i}(n)\right)=\sum \sum_{k=0}^{n} l\left(i_{k+1}, \ldots, i_{n}\right) \otimes l\left(i, i_{2}, \cdots, i_{k}\right)
$$

If $i \rightarrow i_{2} \cdots \rightarrow i_{k} \rightarrow i_{k+1}$ and $i \rightarrow i_{2}^{\prime} \cdots \rightarrow i_{k}^{\prime} \rightarrow i_{k+1}^{\prime}$, the second condition on G implies that i_{3} and i_{3}^{\prime} are direct descendants of i_{2} and $i_{2}^{\prime}, \ldots, i_{k+1}$ and i_{k+1}^{\prime} are direct descendants of i_{k} and i_{k}^{\prime}. So:

$$
\Delta\left(X_{i}(n)\right)=\sum_{k=0}^{n} \sum_{\substack{i \rightarrow \cdots \rightarrow i_{k}, i \xrightarrow{k} i_{k+1}, i_{k+1} \rightarrow \cdots \rightarrow i_{n}}} l\left(i_{k+1}, \ldots, i_{n}\right) \otimes l\left(i, i_{2}, \cdots, i_{k}\right)=\sum_{k=0}^{n} \sum_{i \xrightarrow{k} j} X_{j}(n-k) \otimes X_{i}(k)
$$

So (S) is Hopf.
$(d) \Longrightarrow(a)$. Then, for all $i \in I$, for all $n \geq 1, X_{i}(n)=\sum l\left(i, i_{2}, \cdots, i_{n}\right)$, where the sum runs on all oriented paths $i \rightarrow i_{2} \rightarrow \cdots \longrightarrow i_{n}$ in $G_{(S)}$. By proposition 11, $\mathfrak{g}_{(S)}$ is associative. Moreover, it is quite immediate to prove that in $\mathfrak{g}_{(S)}$:

- If j is not a direct descendant of i in $G, f_{j}(1) f_{i}(1)=0$.
- If $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{n}$ and $i_{1} \rightarrow i_{2}^{\prime} \rightarrow \cdots \rightarrow i_{n}^{\prime}$ in G, then:

$$
f_{i_{n}}(1) \cdots f_{i_{2}}(1) f_{i_{1}}(1)=f_{i_{n}^{\prime}}(1) \cdots f_{i_{2}^{\prime}}(1) f_{i_{1}}(1)=f_{i_{1}}(n)
$$

So there is a morphism of algebras from A_{G} to $\mathfrak{g}_{(S)}$, sending $P_{i}(1)$ to $f_{i}(1)$. This morphism sends $P_{i}(n)$ to $f_{i}(n)$. As the $f_{i}(n)$'s are linearly independent, so are the $P_{i}(n)$'s.
2. Let A_{G}^{\prime} be the associative, non-unitary algebra generated by the relations of proposition $15-2$. As these relation are immediatly satisfied in A_{G}, there is a unique morphism of algebras:

$$
\Phi:\left\{\begin{array}{rll}
A_{G}^{\prime} & \longrightarrow & A_{G} \\
P_{i}(1) & \longrightarrow & P_{i}(1)
\end{array}\right.
$$

Let $i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{n}$ and $i_{1} \rightarrow i_{2}^{\prime} \rightarrow \cdots \rightarrow i_{n}^{\prime}$ in G. Let us prove that $P_{i_{k}}(1) \cdots P_{i_{2}}(1) P_{i_{1}}(1)=$ $P_{i_{k}^{\prime}}^{\prime}(1) \cdots P_{i_{2}^{\prime}}(1) P_{i_{1}}(1)$ in A_{G}^{\prime} by induction on k. For $k=2$, this is implied by the second family of relations defining A_{G}^{\prime}. Let us assume the result at rank k. Then, both in A_{G} and A_{G}^{\prime} :

$$
P_{i_{k+1}}(1) P_{i_{k}}(1) \cdots P_{i_{2}}(1) P_{i_{1}}(1)=P_{i_{k+1}}(1) P_{i_{k}^{\prime}}(1) \cdots P_{i_{2}^{\prime}}(1) P_{i_{1}}(1)
$$

This is equal to $P_{i}(k+1)$ in A_{G}, so is non-zero. As a consequence, $P_{i_{k+1}}(1) P_{i_{k}^{\prime}}(1) \neq 0$ in A_{G}, so $i_{k}^{\prime} \rightarrow i_{k+1}$ in G. By definition of $A_{G}^{\prime}, P_{i_{k+1}}(1) P_{i_{k}^{\prime}}(1)=P_{i_{k+1}^{\prime}}(1) P_{i_{k}^{\prime}}(1)$ in A_{G}^{\prime}, so:

$$
P_{i_{k+1}}(1) P_{i_{k}}(1) \cdots P_{i_{2}}(1) P_{i_{1}}(1)=P_{i_{k+1}^{\prime}}(1) P_{i_{k}^{\prime}}(1) \cdots P_{i_{2}^{\prime}}(1) P_{i_{1}}(1)
$$

So the relations defining A_{G} are also satisfied in A_{G}^{\prime}, so there is a morphism of algebras:

$$
\Psi:\left\{\begin{array}{rll}
A_{G} & \longrightarrow & A_{G}^{\prime} \\
P_{i}(1) & \longrightarrow & P_{i}(1)
\end{array}\right.
$$

It is clear that Φ and Ψ are inverse isomorphisms of algebras.
Corollary 16 Let (S) a Hopf $S D S E$. If $\mathfrak{g}_{(S)}$ is associative, then the graph $G_{(S)}$ satisfies condition (c) of proposition 15 and $\mathfrak{g}_{(S)}$ is isomorphic to $A_{G_{(S)}}$.

Proof. First step. Let i, j, k be vertices of $G_{(S)}$ and $n \geq 1$ such that $i \xrightarrow{n} j$ and $i \xrightarrow{n} k$. Let us prove that $F_{j}=F_{k}$ by induction on n. If $n=1$, by proposition 18-3 of [10], $F_{j}=F_{k}$. If $n \geq 2$, then there exists vertices of $G_{(S)}$ such that:

$$
i \rightarrow j_{1} \rightarrow \ldots \rightarrow j_{n-1} \rightarrow j, \quad i \rightarrow k_{1} \rightarrow \ldots \rightarrow k_{n-1} \rightarrow k
$$

The case $n=1$ implies that $F_{j_{1}}=F_{k_{1}}$, so $j_{1} \xrightarrow{n-1} j$ and $j_{1} \xrightarrow{n-1} k$. By the induction hypothesis, $F_{j}=F_{k}$. In other words, if $i \xrightarrow{n} j$ and $i \xrightarrow{n} k$, then $a_{l}^{(j)}=a_{l}^{(k)}$ for all $l \in I$.

Second step. Then, for all $i \in I$, for all $n \geq 1$:

$$
X_{i}(n)=\sum a_{i_{1}}^{(i)} \cdots a_{i_{n}}^{\left(i_{n-1}\right)} l\left(i, i_{2}, \cdots, i_{n}\right)
$$

where the sum runs on all oriented paths $i \rightarrow i_{2} \rightarrow \cdots \longrightarrow i_{n}$ in $G_{(S)}$. The first step implies that $a_{i_{1}}^{(i)} \ldots a_{i_{n}}^{\left(i_{n-1}\right)}$ depends only of i and n : we denote it by $a_{n}^{(i)}$. Then:

$$
\begin{aligned}
X_{i}(n) & =\sum a_{n}^{(i)} l\left(i, i_{2}, \cdots, i_{n}\right), \\
\Delta\left(X_{i}(n)\right) & =\sum_{k+l=n} \sum_{i \longrightarrow j} \frac{a_{n}^{(i)}}{a_{l}^{(i)} a_{k}^{(j)}} X_{j}(k) \otimes X_{i}(l) .
\end{aligned}
$$

Dually, putting $p_{i}(n)=a_{n}^{(i)} f_{i}(n)$ for all $1 \leq i \leq N, n \geq 1$, the pre-Lie product of $\mathfrak{g}_{(S)}$ is given by:

$$
\begin{aligned}
& f_{j}(n) \star f_{i}(m)=\left\{\begin{array}{l}
\frac{a_{m+n}^{(i)}}{a_{m}^{(i)} a_{n}^{(j)}} f_{i}(m+n) \text { if } i \stackrel{m}{\longrightarrow} j \\
0 \text { otherwise } ;
\end{array}\right. \\
& p_{j}(n) \star p_{i}(m)=\left\{\begin{array}{l}
p_{i}(m+n) \text { if } i \xrightarrow{m} j \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Last step. It is then clear that the associative algebra $\mathfrak{g}_{(S)}$ is generated by the $p_{i}(1), i \in I$, and that these elements satisfy the relations defining $A_{G_{(S)}}$. So there is an epimorphism of algebras:

$$
\Theta:\left\{\begin{array}{rll}
A_{G_{(S)}} & \longrightarrow & \mathfrak{g}_{(S)} \\
P_{i}(1) & \longrightarrow & p_{i}(1)
\end{array}\right.
$$

This morphism sends $P_{i}(n)$ to $p_{i}(n)$ for all $n \geq 1$. As the $p_{i}(n)$'s are a basis of $A_{G_{(S)}}$, the $P_{i}(n)$'s are linearly independent in $A_{G_{(S)}}$, so the graph $G_{(S)}$ satisfies condition (c) of proposition 15 . Moreover, Θ is an isomorphism.

4.3 Group of characters

The non-unitary, associative algebra $\mathfrak{g}_{(S)}$ is graded, with $p_{i}(k)$ homogeneous of degree k for all $k \geq 1$. Moreover, $\mathfrak{g}_{(S)}(0)=(0)$. The completion $\widehat{\mathfrak{g}_{(S)}}$ is then an associative non-unitary algebra. We add it a unit and obtain an associative unitary algebra $K \oplus \widehat{\mathfrak{g}_{(S)}}$. It is then not difficult to show that the following set is a subgroup of the units of $K \oplus \widehat{\mathfrak{g}_{(S)}}$:

$$
G=\left\{1+\sum_{k \geq 1} x_{k} \mid \forall k \geq 1, x_{k} \in \mathfrak{g}_{(S)}(k)\right\}
$$

Proposition 17 The group of characters $C h\left(\mathcal{H}_{(S)}\right)$ is isomorphic to G.

Proof. We put $V=V e c t\left(X_{i}(k) \mid i \in I, k \geq 1\right)$. Let $g \in V^{*}$. Then g can be uniquely extended in a map \widehat{g} from $\mathcal{H}_{(S)}$ to K by $g\left((1)+\operatorname{Ker}(\varepsilon)^{2}\right)=(0)$, where ε is the counit of $\mathcal{H}_{(S)}$. Moreover, $\widehat{g} \in \widehat{\mathfrak{g}_{(S)}}$. This construction implies a bijection:

$$
\Omega:\left\{\begin{array}{rll}
C h\left(\mathcal{H}_{(S)}\right) & \longrightarrow & G \\
f & \longrightarrow & 1+\widehat{f_{\mid V}}
\end{array}\right.
$$

Let $f_{1}, f_{2} \in C h\left(\mathcal{H}_{(S)}\right)$. For all $x \in V$, we put $\Delta(x)=x \otimes 1+1 \otimes x+x^{\prime} \otimes x^{\prime \prime}$. As x is a linear span of ladders, $x^{\prime} \otimes x^{\prime \prime} \in V \otimes V$. So:

$$
\begin{aligned}
\left(f_{1} \cdot f_{2}\right)(x) & =\left(f_{1} \otimes f_{2}\right) \circ \Delta(x) \\
& =f_{1}(x)+f_{2}(x)+f_{1}\left(x^{\prime}\right) f_{1}\left(x^{\prime \prime}\right) \\
& =f_{1 \mid V}(x)+f_{2 \mid V}(x)+f_{1 \mid V}\left(x^{\prime}\right) f_{2 \mid V}\left(x^{\prime \prime}\right) \\
& =\widehat{f_{1 \mid V}}(x)+\widehat{f_{2 \mid V}}(x)+\widehat{f_{1 \mid V}}\left(x^{\prime}\right) \widehat{f_{2 \mid V}}\left(x^{\prime \prime}\right) \\
& =\widehat{f_{1 \mid V}}(x)+\widehat{f_{2 \mid V}}(x)+\left(\widehat{f_{1 \mid V}} \star \widehat{f_{2 \mid V}}\right)(x) .
\end{aligned}
$$

So $\left(\widehat{\left.f_{1} \cdot f_{2}\right)_{\mid V}}=\widehat{f_{1 \mid V}}+\widehat{f_{2 \mid V}}+\widehat{f_{1 \mid V}} \star \widehat{f_{2 \mid V}}\right.$. This implies that Ω is a group isomorphism.

5 Lie algebra and group associated to $\mathcal{H}_{(S)}$, non-abelian case

5.1 Modules over the Faà di Bruno Lie algebra

Let $\mathfrak{g}_{F d B}$ be the Faà di Bruno Lie algebra. Recall that it has a basis $(e(k))_{k \geq 1}$, with bracket given by:

$$
[e(k), e(l)]=(l-k) e(k+l)
$$

The $\mathfrak{g}_{F d B}$-module V_{0} has a basis $(f(k))_{k \geq 1}$, and the action of $\mathfrak{g}_{F d B}$ is given by:

$$
e(k) \cdot f(l)=l f(k+l)
$$

We can then construct a semi-direct product $V_{0}^{M} \triangleleft \mathfrak{g}_{F d B}$, described in the following proposition:

Proposition 18 Let $M \in \mathbb{N}^{*}$. The Lie algebra $V_{0}^{M} \triangleleft \mathfrak{g}_{F d B}$ has a basis:

$$
\left(f^{(i)}(k)\right)_{1 \leq i \leq M, k \geq 1} \cup(e(k))_{k \geq 1}
$$

and its Lie bracket given by:

$$
\left\{\begin{aligned}
{[e(k), e(l)] } & =(l-k) e(k+l) \\
{\left[e(k), f^{(i)}(l)\right] } & =l f^{(i)}(k+l) \\
{\left[f^{(i)}(k), f^{(j)}(l)\right] } & =0
\end{aligned}\right.
$$

We now take $\mathfrak{g}=V_{0}^{\oplus M} \triangleleft \mathfrak{g}_{F d B}$. We define a family of \mathfrak{g}-modules. Let $c \in K$ and $v=$ $\left(v_{1}, \ldots, v_{M}\right) \in K^{M}$. The module $W_{c, v}$ has a basis $(g(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$
\left\{\begin{aligned}
e(k) \cdot g(l) & =(l+c) g(k+l) \\
f^{(i)}(k) \cdot g(l) & =v_{i} g(k+l)
\end{aligned}\right.
$$

The semi-direct product is given in the following proposition:
Proposition 19 Let \mathfrak{g} be the Lie algebra $\left(W_{c_{1}, v^{(1)}} \oplus \ldots \oplus W_{c_{N}, v^{(N)}}\right) \triangleleft\left(V_{0}^{M} \triangleleft \mathfrak{g}_{F d B}\right)$. It has a basis:

$$
\left(g^{(j)}(k)\right)_{1 \leq j \leq N, k \geq 1} \cup\left(f^{(i)}(k)\right)_{1 \leq i \leq M, k \geq 1} \cup(e(k))_{k \geq 1}
$$

and its bracket is given by:

$$
\left\{\begin{aligned}
{[e(k), e(l)] } & =(l-k) e(k+l), \\
{\left[e(k), f^{(i)}(l)\right] } & =l f^{(i)}(k+l), \\
{\left[e(k), g^{(i)}(l)\right] } & =\left(l+c_{i}^{\prime}\right) g^{(i)}(k+l), \\
{\left[f^{(i)}(k), f^{(j)}(l)\right] } & =0, \\
{\left[f^{(i)}(k), g^{(j)}(l)\right] } & =v_{i}^{(j)} g^{(j)}(k+l), \\
{\left[g^{(i)}(k), g^{(j)}(l)\right] } & =0
\end{aligned}\right.
$$

Let us take \mathfrak{g} as in this proposition. We define three families of modules over \mathfrak{g} :

1. Let $\nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}$. The module $W_{\nu, 0}^{\prime}$ has a basis $(h(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$
\left\{\begin{aligned}
e(k) \cdot g(l) & =(l-1) h(k+l) \\
f^{(i)}(k) \cdot h(1) & =\nu_{i} h(k+1) \\
f^{(i)}(k) \cdot h(l) & =0 \text { if } l \geq 2 \\
g^{(i)}(k) \cdot h(l) & =0
\end{aligned}\right.
$$

2. Let $\nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}$. The module $W_{\nu, 1}^{\prime}$ has a basis $(h(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$
\left\{\begin{aligned}
e(k) \cdot h(1) & =h(k+1), \\
e(k) \cdot h(l) & =(l-1) h(k+l) \text { if } l \geq 2, \\
f^{(i)}(k) \cdot h(1) & =\nu_{i} h(k+1), \\
f^{(i)}(k) \cdot h(l) & =0 \text { if } l \geq 2, \\
g^{(i)}(k) \cdot h(l) & =0 .
\end{aligned}\right.
$$

3. Let $c \in K, \nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}, \mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in K^{N}$. The module $W_{c, \nu, \mu}^{\prime \prime}$ has a basis $(h(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$
\left\{\begin{aligned}
e(k) \cdot h(l) & =(l+c) h(k+l), \\
f^{(i)}(k) \cdot h(l) & =\nu_{i} h(k+l), \\
g^{(i)}(k) \cdot h(1) & =\mu_{i} h(k+1), \\
g^{(i)}(k) \cdot h(l) & =0 \text { if } l \geq 2
\end{aligned}\right.
$$

5.2 Description of the Lie algebra

Theorem 20 Let us consider a fundamental non-abelian SDSE. Then $\mathfrak{g}_{(S)}$ has the following form:

$$
\mathfrak{g}_{(S)} \approx W \triangleleft\left(\left(W_{c_{1}, v^{(1)}} \oplus \ldots \oplus W_{c_{N}, v^{(N)}}\right) \triangleleft\left(V_{0}^{M} \triangleleft \mathfrak{g}_{F d B}\right)\right),
$$

where W is a direct sum of $W_{\nu, 0}^{\prime}, W_{\nu, 1}^{\prime}$ and $W_{c, \nu, \mu}^{\prime \prime}$.
Proof. First step. We first consider a fundamental Hopf SDSE (S) such that $I_{1}=J_{1}=I_{2}=$ \emptyset. The set J of the vertices of $G_{(S)}$ admits a partition $J=\left(J_{x}\right)_{x \in I_{0}} \cup\left(J_{x}\right)_{x \in J_{0}} \cup\left(J_{x}\right)_{x \in K_{0}}$. We put:

$$
A=\left\{j \in J / b_{j} \neq 0\right\}, B=\left\{j \in J / b_{j}=0\right\} .
$$

In other terms, $i \in A$ if, and only if, $\left(i \in J_{x}\right.$, with $x \in I_{0}$ such that $\left.b_{x} \neq-1\right)$ or ($i \in J_{x}$, with $\left.x \in J_{0}\right)$. As we are in the non-abelian case, $A \neq \emptyset$. Let us choose $i_{x} \in J_{x}$ for all $x \in I$, and $i_{x_{0}} \in A$. In order to enlighten the notations, we put $i_{0}=i_{x_{0}}$. We define, for all $k \geq 1$:

$$
\left\{\begin{aligned}
p_{i_{0}}(k) & =\frac{1}{b_{x_{0}}} f_{i_{0}}(k), \\
p_{i}(k) & =\frac{1}{b_{x_{0}}}\left(f_{i}(k)-f_{i_{0}}(k)\right) \text { if } i \in J_{x_{0}}-\left\{i_{0}\right\}, \\
p_{i_{x}}(k) & =\frac{1}{b_{x}} f_{i}(k)-\frac{1}{b_{x_{0}}} f_{i_{0}}(k) \text { if } x \neq x_{0} \text { and } x \in A, \\
p_{i_{x}}(k) & =f_{i}(k) \text { if } x \in B, \\
p_{i}(k) & =\frac{1}{b_{x}}\left(f_{i}(k)-f_{i_{x}}(k)\right) \text { if } i \in J_{x}-\left\{i_{x}\right\}, x \neq x_{0} \text { and } x \in A, \\
p_{i}(k) & =f_{i}(k)-f_{i_{x}}(k) \text { if } i \in J_{x}-\left\{i_{x}\right\}, x \in B .
\end{aligned}\right.
$$

Then direct computations show that the Lie bracket of $\mathfrak{g}_{(S)}$ is given in the following way: for all $k, l \geq 1$,

- $\left[p_{i_{0}}(k), p_{i_{0}}(l)\right]=(l-k) p_{i_{0}}(k+l)$.
- For all $i \in I,\left[p_{i_{0}}(k), p_{i}(l)\right]=\left\{\begin{array}{l}\left(l+d_{x_{0}}\right) p_{i}(k+l) \text { if } i \in J_{x_{0}}-\left\{i_{0}\right\}, \\ l p_{i}(k+l) \text { if } i \notin J_{x_{0}} .\end{array}\right.$
- For all $i \in J_{x_{0}}-\left\{i_{0}\right\}$, for all $x \neq x_{0},\left[p_{i_{x}}(k), p_{i}(l)\right]=\left\{\begin{array}{l}-d_{x_{0}} p_{i}(k+l) \text { if } x \in A, \\ 0 \text { if } x \in B .\end{array}\right.$
- For all $x, x^{\prime} \in I-\left\{x_{0}\right\},\left[p_{i_{x}}(k), p_{i_{x^{\prime}}}(l)\right]=0$.
- For all $x, x^{\prime} \in I-\left\{x_{0}\right\}, i \in J_{x^{\prime}}-\left\{i_{x^{\prime}}\right\},\left[p_{i_{x}}(k), p_{i}(l)\right]=\left\{\begin{array}{l}0 \text { if } x \neq x^{\prime}, \\ d_{x} p_{i}(k+l) \text { if } x=x^{\prime} .\end{array}\right.$
- For all $x, x^{\prime} \in I-\left\{x_{0}\right\}, i \in J_{x}-\left\{i_{x}\right\}, j \in J_{x^{\prime}}-\left\{i_{x^{\prime}}\right\},\left[p_{i}(k), p_{j}(l)\right]=0$.

We used the following notations:

$$
d_{x}=\left\{\begin{array}{l}
\frac{-\beta_{x}}{1+\beta_{x}} \text { if } x \in I_{0}, \beta_{x} \neq-1 \\
1 \text { if } x \in I_{0}, \beta_{x}=-1 \\
-1 \text { if } x \in J_{0} \\
0 \text { if } x \in K_{0} .
\end{array}\right.
$$

So the Lie algebra $\mathfrak{g}_{(S)}$ is isomorphic to:

$$
\left(W_{d_{x_{0}},\left(-d_{x_{0}}, \cdots,-d_{x_{0}}, 0, \cdots, 0\right)}^{\left|J_{x_{0}}\right|-1} \oplus \bigoplus_{x \in I-\left\{x_{0}\right\}} W_{0,\left(0, \cdots, 0, d_{x}, 0, \cdots, 0\right)}^{\left|I_{x}\right|-1}\right) \triangleleft\left(V_{0}^{|I|-1} \triangleleft \mathfrak{g}_{F d B}\right) .
$$

A basis adapted to this decomposition is:

$$
\left(p_{i}(k)\right)_{i \in J_{x_{0}}-\left\{i_{0}\right\}, k \geq 1} \cup\left(\bigcup_{x \in I-\left\{x_{0}\right\}}\left(p_{i}(k)\right)_{i \in J_{x}-\left\{i_{x}\right\}, k \geq 1}\right) \cup\left(\bigcup_{x \in I-\left\{x_{0}\right\}}\left(p_{i_{x}}(k)\right)_{k \geq 1}\right) \cup\left(p_{i_{0}}(k)\right)_{k \geq 1} .
$$

Second step. We now assume that $I_{1} \neq \emptyset$. Then the descendants of $j \in I_{1}$ form a system of the first step, so $\mathfrak{g}_{(S)}=W_{I_{1}} \triangleleft \mathfrak{g}_{\left(S_{0}\right)}$, where $W_{I_{1}}=\operatorname{Vect}\left(f_{j}(k) / j \in I_{1}, k \geq 1\right\}$ and (S_{0}) is a restriction of (S) as in the first step. Let us fix $j \in I_{1}$ and let us consider the $\mathfrak{g}_{\left(S_{0}\right)}$-module $W_{j}=\operatorname{Vect}\left(f_{j}(k) / k \geq 1\right)$. With the notations of the preceding step:

- $\left[p_{i_{0}}(k), f_{j}(l)\right]=\left(l-1+\frac{a_{0}^{(j)}}{b_{x_{0}}}\right) f_{j}(k+l)$ if $l=1$.
- $\left[p_{i_{0}}(k), f_{j}(l)\right]=\left(l-1+\nu_{j} \frac{a_{i 0}^{(j)}}{b_{x_{0}}}\right) f_{j}(k+l)$ if $l \geq 2$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\left(\frac{a_{i x}^{(j)}}{b_{x}}-\frac{a_{i_{0}}^{(j)}}{b_{x_{0}}}\right) f_{j}(k+l)$ if $l=1, x \in A$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\nu_{j}\left(\frac{a_{a_{x}}^{(j)}}{b_{x}}-\frac{a_{i_{0}}^{(j)}}{b_{x_{0}}}\right) f_{j}(k+l)$ if $l \geq 2, x \in A$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l=1, x \in B$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\nu_{j} a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l \geq 2, x \in B$.
- $\left[p_{i}(x), f_{j}(l)\right]=0$ if i is not a i_{x}.

If $\nu_{j} \neq 0$, we put $p_{j}(k)=f_{j}(k)$ if $k \geq 2$ and $p_{j}(1)=\nu_{j} f_{j}(1)$. Then, for all l :

- $\left[p_{i_{0}}(k), p_{j}(l)\right]=\left(l-1+\nu_{j} \frac{a_{0}^{(j)}}{b_{x_{0}}}\right) p_{j}(k+l)$.
- $\left[p_{i_{x}}(k), p_{j}(l)\right]=\nu_{j}\left(\frac{a_{i x}^{(j)}}{b_{x}}-\frac{a_{0}^{(j)}}{b_{x_{0}}}\right) p_{j}(k+l)$ if $x \in A$.
- $\left[p_{i_{x}}(k), p_{j}(l)\right]=\nu_{j} a_{i_{x}}^{(j)} p_{j}(k+l)$ if $x \in B$.
- $\left[p_{i}(x), p_{j}(l)\right]=0$ if i is not a i_{x}.

So W_{j} is a module $W_{c, v}$. If $\nu_{j}=0$ and $a_{i_{0}}^{(j)} \neq 0$, we put $p_{j}(k)=f_{j}(k)$ if $k \geq 2$ and $p_{j}(1)=$ $\frac{b_{x_{0}}}{a_{i_{0}}^{(j)}} f_{j}(1)$. Then:

- $\left[p_{i_{0}}(k), p_{j}(l)\right]=p_{j}(k+l)$ if $l=1$.
- $\left[p_{i_{0}}(k), p_{j}(l)\right]=(l-1) p_{j}(k+l)$ if $l \geq 2$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\left(\frac{a_{i_{x}}^{(j)}}{b_{x}}-\frac{a_{i_{0}}^{(j)}}{b_{x_{0}}}\right) f_{j}(k+l)$ if $l=1, x \in A$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=0$ if $l \geq 2, x \in A$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l=1, x \in B$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=0$ if $l \geq 2, x \in B$.
- $\left[p_{i}(x), p_{j}(l)\right]=0$ if i is not a i_{x}.

So W_{j} is a module $W_{\nu, 1}^{\prime}$. If $\nu_{j}=0$ and $a_{i_{0}}^{(j)}=0$, we put $p_{j}(k)=f_{j}(k)$ for all $k \geq 1$. Then:

- $\left[p_{i_{0}}(k), p_{j}(l)\right]=(l-1) p_{j}(k+l)$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\left(\frac{a_{i_{x}}^{(j)}}{b_{x}}-\frac{a_{i_{0}}^{(j)}}{b_{x_{0}}}\right) f_{j}(k+l)$ if $l=1, x \in A$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=0$ if $l \geq 2, x \in A$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l=1, x \in B$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=0$ if $l \geq 2, x \in B$.
- $\left[p_{i}(x), p_{j}(l)\right]=0$ if i is not a i_{x}.

So W_{j} is a module $W_{\nu, 0}^{\prime}$.
Last step. We now consider vertices in J_{1}. If $j \in J_{1}$, then its descendants are vertices of the first step and i elements of I_{1} such that $\nu_{i}=1$. As before, $\mathfrak{g}_{(S)}=W_{J_{1}} \triangleleft \mathfrak{g}_{\left(S_{1}\right)}$, where $W_{J_{1}}=\operatorname{Vect}\left(f_{j}(k) / j \in J_{1}, k \geq 1\right\}$ and $\left(S_{1}\right)$ is a restriction of (S) as in the second step. Let us fix $j \in J_{1}$ and let us consider the $\mathfrak{g}_{\left(S_{1}\right)}$-module $W_{j}=V \operatorname{ect}\left(f_{j}(k) / k \geq 1\right)$. As $\nu_{j} \neq 0$, putting $p_{j}(k)=f_{j}(k)$ if $k \geq 2$ and $p_{j}(1)=\nu_{j} f_{j}(1):$

- $\left[p_{i_{0}}(k), p_{j}(l)\right]=\left(l-1+\nu_{j} \frac{a_{i_{0}}^{(j)}}{b_{x_{0}}}\right) p_{j}(k+l)$.
- $\left[p_{i_{x}}(k), p_{j}(l)\right]=\nu_{j}\left(\frac{a_{i_{x}}^{(j)}}{b_{x}}-\frac{a_{i_{0}}^{(j)}}{b_{x_{0}}}\right) p_{j}(k+l)$ if $x \in A$.
- $\left[p_{i_{x}}(k), p_{j}(l)\right]=\nu_{j} a_{i_{x}}^{(j)} p_{j}(k+l)$ if $x \in B$.
- $\left[p_{i}(k), p_{j}(l)\right]=\nu_{j} a_{i}^{(j)} p_{j}(k+l)$ if $l=1, i \in I_{1}$, with $\nu_{i}=1$.
- $\left[p_{i}(k), p_{j}(l)\right]=0$ if $l \geq 2, i \in I_{1}$.
- $\left[p_{i}(x), p_{j}(l)\right]=0$ if $i \notin I_{1}$ and is not a i_{x}.

So W_{j} is a module $W_{c, \nu, \mu}^{\prime \prime}$.

Theorem 21 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the Lie algebra $\mathfrak{g}_{(S)}$ is of the form:

$$
\mathfrak{g}_{m} \triangleleft\left(\mathfrak{g}_{m-1} \triangleleft\left(\cdots \mathfrak{g}_{2} \triangleleft\left(\mathfrak{g}_{1} \triangleleft \mathfrak{g}_{0}\right) \cdots\right)\right.
$$

where \mathfrak{g}_{0} is the Lie algebra associated to the restriction of (S) to the vertices which are not extension vertices (so \mathfrak{g}_{0} is described in theorem 20) and, for $j \geq 1$, \mathfrak{g}_{j} is an abelian $\left(\mathfrak{g}_{j-1} \triangleleft\right.$ $\left(\cdots \mathfrak{g}_{2} \triangleleft\left(\mathfrak{g}_{1} \triangleleft \mathfrak{g}_{0}\right) \cdots\right)$-module having a basis $\left(h^{(j)}(k)\right)_{k \geq 1}$.

Proof. The Lie algebra \mathfrak{g}_{j} is the Lie algebra $\operatorname{Vect}\left(f_{x_{j}}(k) / k \geq 1\right)$, where $J_{2}=\left\{x_{1}, \ldots, x_{m}\right\}$, with the notations of theorem 6 .

5.3 Associated group

Let us now consider the character group $C h\left(\mathcal{H}_{(S)}\right)$ of $\mathcal{H}_{(S)}$. In the preceding cases, $\mathfrak{g}_{(S)}$ contains a sub-Lie algebra isomorphic to the Faà di Bruno Lie algebra, so $C h\left(\mathcal{H}_{(S)}\right)$ contains a subgroup isomorphic to the Faà di Bruno subgroup:

$$
G_{F d B}=\left\{x+a_{1} x^{2}+a_{2} x^{3}+\cdots \mid \forall i, a_{i} \in K\right\}
$$

with the product defined by $A(x) \cdot B(x)=B \circ A(x)$. Moreover, each modules earlier defined on $\mathfrak{g}_{F d B}$ corresponds to a module over $G_{F d B}$ by exponentiation:

Definition 22

1. The module \mathbb{V}_{0} is isomorphic to $y K[[y]]$ as a vector space, and the action of $G_{F d B}$ is given by:

$$
A(x) \cdot P(y)=P \circ A(y)
$$

2. Let $G=\left(\mathbb{V}_{0}^{\oplus M}\right) \rtimes G_{F d B}$. Let $c \in K$, and $v=\left(v_{1}, \cdots, v_{M}\right) \in K^{M}$. Then $\mathbb{W}_{c, v}$ is $z K[[z]]$ as a vector space, and the action of G is given by:

$$
\left(P_{1}(y), \cdots, P_{M}(y), A(x)\right) \cdot Q(z)=\exp \left(\sum_{i=1}^{M} v_{i} P_{i}(z)\right)\left(\frac{A(z)}{z}\right)^{c} Q \circ A(z)
$$

3. Let us consider the semi-direct product $G=\left(\mathbb{W}_{c_{1}, \varepsilon^{(1)}} \oplus \cdots \oplus \mathbb{W}_{c_{N}, \varepsilon^{(N)}}\right) \triangleleft\left(\mathbb{V}_{0}^{\oplus M} \triangleleft G_{F d B}\right)$.
(a) Let $\nu=\left(\nu_{1}, \cdots, \nu_{M}\right) \in K^{M}$. Then $\mathbb{W}_{\nu, 0}^{\prime}$ is $t K[[t]]$ as a vector space, and for all $X=\left(Q_{1}(z), \cdots, Q_{N}(z), P_{1}(y), \cdots, P_{M}(y), A(x)\right) \in G:$

$$
\begin{aligned}
X . t & =\left(1+\sum_{i=1}^{M} \nu_{i} P_{i}(t)\right) t \\
X . R(t) & =\left(\frac{t}{A(t)}\right) R \circ A(t)
\end{aligned}
$$

for all $R(t) \in t^{2} K[[t]]$.
(b) Let $\nu=\left(\nu_{1}, \cdots, \nu_{M}\right) \in K^{M}$. Then $\mathbb{W}_{\nu, 1}^{\prime}$ is $t K[[t]]$ as a vector space, and for all $X=\left(Q_{1}(z), \cdots, Q_{N}(z), P_{1}(y), \cdots, P_{M}(y), A(x)\right) \in G:$

$$
\begin{aligned}
X . t & =\left(1+\sum_{i=1}^{M} \nu_{i} P_{i}(t)\right)\left(t+t \ln \left(\frac{A(t)}{t}\right)\right) \\
X . R(t) & =\left(\frac{t}{A(t)}\right) R \circ A(t),
\end{aligned}
$$

for all $R(t) \in t^{2} K[[t]]$.
(c) Let $c \in K, \nu=\left(\nu_{1}, \cdots, \nu_{M}\right) \in K^{M}, \mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in K^{N}$. Then $\mathbb{W}_{c, \nu, \mu}^{\prime \prime}$ is $t K[[t]]$ as a vector space, and for all $X=\left(Q_{1}(z), \cdots, Q_{N}(z), P_{1}(y), \cdots, P_{M}(y), A(x)\right) \in G$:

$$
\begin{aligned}
X . t & =\left(\frac{A(t)}{t}\right)^{c} \exp \left(\sum_{i=1}^{M} \mu_{i} P_{i}(t)\right)\left(1+\sum_{i=1}^{M} \mu_{i} Q_{i}(t)\right) A(t), \\
X . R(t) & =\left(\frac{t}{A(t)}\right)^{c} \exp \left(\sum_{i=1}^{M} \mu_{i} P_{i}(t)\right) R \circ A(t),
\end{aligned}
$$

for all $R(t) \in t^{2} K[[t]]$.
Direct computations prove that they are indeed modules.
Theorem 23 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the group $\operatorname{Ch}\left(\mathcal{H}_{(S)}\right)$ is of the form:

$$
G_{m} \rtimes\left(G_{m-1} \rtimes\left(\cdots G_{2} \rtimes\left(G_{1} \rtimes G_{0}\right) \cdots\right),\right.
$$

where G_{0} is a semi-direct product of the form:

$$
G_{0}=\mathbb{W}^{\prime} \rtimes\left(\mathbb{W} \rtimes\left(\mathbb{V} \rtimes G_{F d B}\right)\right),
$$

where \mathbb{V} is a direct sum of modules \mathbb{V}_{0}, \mathbb{W} a direct sum of modules $\mathbb{W}_{c, v}$, and \mathbb{W}^{\prime} a direct sum of modules $\mathbb{W}_{\nu, 0}^{\prime}, \mathbb{W}_{\nu, 1}^{\prime}$ and $\mathbb{W}_{c, \nu, \mu}^{\prime \prime}$. Moreover, for all $m \geq 1, G_{m}=(t K[[t]],+)$ as a group.

Proof. The group $\operatorname{Ch}\left(\mathcal{H}_{(S)}\right)$ is isomorphic to the group of characters of $\mathcal{U}(\mathfrak{g})^{*}$, where \mathfrak{g} is described in theorem 21. This implies that this group has a structure of semi-direct product as described in theorem 23. Let us consider the Hopf algebra \mathcal{H} of coordinates of G_{0}. It is a graded Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of \mathfrak{g}_{0} of theorem 21. So \mathcal{H} is isomorphic to $\mathcal{H}_{\left(S_{0}\right)}$.

6 Lie algebra and group associated to $\mathcal{H}_{(S)}$, abelian case

We now treat the abelian case. Recall that in this case, $J_{0}=K_{0}=\emptyset$ and, for all $i \in I_{0}, \beta_{i}=-1$.

6.1 Modules over an abelian Lie algebra

Let $\mathfrak{g}_{a b}$ be an abelian Lie algebra, with basis $\left(e^{(i)}(k)\right)_{1 \leq i \leq M, k \geq 1}$. We define a family of modules over this Lie algebra:

Definition 24 Let $v=\left(v_{1}, \cdots, v_{M}\right) \in K^{M}$. Then V_{v} has a basis $(f(k))_{k \geq 1}$, and the action of $\mathfrak{g}_{a b}$ is given by:

$$
e^{(i)}(k) \cdot f(l)=v_{i} f(k+l) .
$$

We can then describe the semi-direct product:
Proposition 25 Let \mathfrak{g} be the Lie algebra $\left(\bigoplus_{i=1}^{N} V_{v^{(i)}}\right) \triangleleft \mathfrak{g}_{\text {ab }}$. It has a basis:

$$
\left(e^{(i)}(k)\right)_{1 \leq i \leq M, k \geq 1} \cup\left(f^{(i)}(k)\right)_{1 \leq i \leq N, k \geq 1},
$$

and its Lie bracket is given by:

$$
\left\{\begin{aligned}
{\left[e^{(i)}(k), e^{(j)}(l)\right] } & =0 \\
{\left[e^{(i)}(k), f^{(j)}(l)\right] } & =v_{i}^{(j)} f^{(j)}(k+l) \\
{\left[f^{(i)}(k), f^{(j)}(l)\right] } & =0
\end{aligned}\right.
$$

We now define two families of modules over such a Lie algebra.
Definition 26 Let \mathfrak{g} be a Lie algebra of proposition 25 .

1. Let $\nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}$. The module W_{ν} has a basis $(g(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$
\left\{\begin{array}{l}
e^{(i)}(k) \cdot g(1)=\nu_{i} g(k+1), \\
e^{(i)}(k) \cdot g(l)=0 \text { if } l \geq 2, \\
f^{(i)}(k) \cdot g(l)=0 .
\end{array}\right.
$$

2. Let $\nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}$ and $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in K^{N}$, such that for all $1 \leq i \leq M$, for all $1 \leq j \leq N, \mu_{j}\left(\nu_{i}-v_{i}^{(j)}\right)=0$. The module $W_{\nu, \mu}^{\prime}$ has a basis $(g(k))_{k \geq 1}$, and the action of \mathfrak{g} is given by:

$$
\left\{\begin{aligned}
e^{(i)}(k) \cdot g(l) & =\nu_{i} g(k+l), \\
f^{(j)}(k) \cdot g(1) & =\mu_{j} g(k+1) \\
f^{(j)}(k) \cdot g(l) & =0 \text { if } l \geq 2
\end{aligned}\right.
$$

Remark. The condition $\mu_{j}\left(\nu_{i}-v_{i}^{(j)}\right)=0$ is necessary for $W_{\nu, \mu}^{\prime}$ to be a \mathfrak{g}-module. Indeed:

$$
\begin{aligned}
{\left[e^{(i)}(k), f^{(j)}(l)\right] \cdot g(1) } & =v_{i}^{(j)} \mu_{j} g(k+l+1), \\
e^{(i)}(k) \cdot\left(f^{(j)}(l) \cdot g(1)\right)-f^{(j)}(l) \cdot\left(e^{(i)}(k) \cdot g(1)\right) & =\mu_{j} \nu_{i} g(k+l+1) .
\end{aligned}
$$

6.2 Description of the Lie algebra

We here consider a connected Hopf SDSE (S) in the abelian case.
Theorem 27 Let us consider a Hopf SDSE of abelian fundamental type, with no extension vertices. Then $\mathfrak{g}_{(S)}$ has the following form:

$$
\mathfrak{g}_{(S)} \approx W \triangleleft\left(\left(V_{v^{(1)}} \oplus \ldots \oplus V_{v^{(N)}}\right) \triangleleft \mathfrak{g}_{a b}\right),
$$

where W is a direct sum of W_{ν} and $W_{\nu, \mu}^{\prime}$.
Proof. First step. We first consider an abelian Hopf SDSE such that $J_{0}=K_{0}=I_{1}=J_{1}=$ $I_{2}=\emptyset$. For all $x \in I_{0}$, let us fix $i_{x} \in J_{x}$. We put $p_{i_{x}}(k)=f_{i_{x}}(k)$ and $p_{i}(k)=f_{i}(k)-f_{i_{x}}(k)$ if $i \in J_{x}-\left\{i_{x}\right\}$. Then direct computations show that:

- $\left[p_{i_{x}}(k), p_{i_{x^{\prime}}(l)}\right]=0$.
- $\left[p_{i_{x}}(k), p_{j}(l)\right]=\delta_{x, x^{\prime}} p_{j}(k+l)$ if $j \in J_{x^{\prime}}-\left\{i_{x^{\prime}}\right\}$.
- $\left[p_{i}(k), p_{j}(l)\right]=0$ if i, j are not i_{x} 's.

So $\mathfrak{g}_{(S)} \approx\left(\bigoplus_{x \in I_{0}} V_{(0, \ldots, 0,1,0, \ldots, 0)}^{\oplus\left|J_{x}\right|-1}\right) \triangleleft \mathfrak{g}_{a b}$, where $\mathfrak{g}_{a b}=\operatorname{Vect}\left(p_{i_{x}}(k) / x \in I_{0}, k \geq 1\right)$.
Second step. We now assume that $I_{1} \neq \emptyset$. Then the descendants of $j \in I_{1}$ form a system as in the first step, so $\mathfrak{g}_{(S)}=W_{I_{1}} \triangleleft \mathfrak{g}_{\left(S_{0}\right)}$, where $W_{I_{1}}=\operatorname{Vect}\left(f_{j}(k) / j \in I_{1}, k \geq 1\right\}$ and $\left(S_{0}\right)$ is the restriction of (S) to the regular vertices. Let us fix $j \in I_{1}$ and let us consider the $\mathfrak{g}_{\left(S_{0}\right)}$-module $W_{j}=\operatorname{Vect}\left(f_{j}(k) / k \geq 1\right)$. With the notations of the preceding step:

- $\left[p_{i_{x}}(k), f_{j}(l)\right]=a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l=1$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\nu_{j} a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l \geq 2$.
- $\left[p_{i}(x), f_{j}(l)\right]=0$ if i is not a i_{x}.

If $\nu_{j} \neq 0$, we put $p_{j}(k)=f_{j}(k)$ if $k \geq 2$ and $p_{j}(1)=\nu_{j} f_{j}(1)$. Then, for all l :

- $\left[p_{i_{x}}(k), f_{j}(l)\right]=\nu_{j} a_{i_{x}}^{(j)} f_{j}(k+l)$.
- $\left[p_{i}(x), f_{j}(l)\right]=0$ if i is not a i_{x}.

So W_{j} is a module V_{v}. If $\nu_{j}=0$, we put $p_{j}(k)=f_{j}(k)$ for all $k \geq 1$. Then:

- $\left[p_{i_{x}}(k), f_{j}(l)\right]=a_{i_{x}}^{(j)} f_{j}(k+l)$ if $l=1$.
- $\left[p_{i_{x}}(k), f_{j}(l)\right]=0$ if $l \geq 2$.
- $\left[p_{i}(x), f_{j}(l)\right]=0$ if i is not a i_{x}.

So W_{j} is a module W_{ν}.
Last step. We now consider vertices in J_{1}. If $j \in J_{1}$, then its descendants are vertices of the first step and vertices in I_{1} such that $\nu_{i}=1$. As before, $\mathfrak{g}_{(S)}=W_{J_{1}} \triangleleft \mathfrak{g}_{\left(S_{1}\right)}$, where $W_{J_{1}}=\operatorname{Vect}\left(f_{j}(k) / j \in J_{1}, k \geq 1\right\}$ and $\left(S_{1}\right)$ is the restriction of (S) to the regular vertices and the vertices of I_{1}. Let us fix $j \in J_{1}$ and let us consider the $\mathfrak{g}_{\left(S_{1}\right)}$-module $W_{j}=\operatorname{Vect}\left(f_{j}(k) / k \geq 1\right)$. As $\nu_{j} \neq 0$, putting $p_{j}(k)=f_{j}(k)$ if $k \geq 2$ and $p_{j}(1)=\nu_{j} f_{j}(1)$:

- $\left[p_{i_{x}}(k), p_{j}(l)\right]=\nu_{j} a_{i_{x}}^{(j)} p_{j}(k+l)$.
- $\left[p_{i}(k), p_{j}(l)\right]=0$ if $i \in J_{x}-\left\{i_{x}\right\}$.
- $\left[p_{i}(k), p_{j}(l)\right]=\nu_{j} a_{i}^{(j)} p_{j}(k+l)$ if $l=1$ and $i \in I_{1}$.
- $\left[p_{i}(k), p_{j}(l)\right]=0$ if $l \geq 2$ and $i \in I_{1}$.

So W_{j} is a module $W_{\nu, \mu}^{\prime}$.
Theorem 28 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then the Lie algebra $\mathfrak{g}_{(S)}$ is of the form:

$$
\mathfrak{g}_{m} \triangleleft\left(\mathfrak{g}_{m-1} \triangleleft\left(\cdots \mathfrak{g}_{2} \triangleleft\left(\mathfrak{g}_{1} \triangleleft \mathfrak{g}_{0}\right) \cdots\right),\right.
$$

where \mathfrak{g}_{0} is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so is described in theorem 27), and, for $j \geq 1, \mathfrak{g}_{j}$ is an abelian $\left(\mathfrak{g}_{j-1} \triangleleft\left(\cdots \mathfrak{g}_{2} \triangleleft\left(\mathfrak{g}_{1} \triangleleft \mathfrak{g}_{0}\right) \cdots\right)\right.$-module having a basis $\left(h^{(j)}(k)\right)_{k \geq 1}$.

Proof. Similar to the proof of theorem 20.

6.3 Associated group

Let us now consider the character group $C h\left(\mathcal{H}_{(S)}\right)$ of $\mathcal{H}_{(S)}$. In the preceding cases, $\mathfrak{g}_{(S)}$ contains an abelian sub-Lie algebra $\mathfrak{g}_{a b}$, so $C h\left(\mathcal{H}_{(S)}\right)$ contains a subgroup isomorphic to the group:

$$
G_{a b}=\left\{\left(a_{1}^{(i)} x+a_{2}^{(i)} x^{2}+\cdots\right)_{1 \leq i \leq M}, \mid \forall 1 \leq i \leq M, \forall k \geq 1, a_{k}^{(i)} \in K\right\}
$$

with the product defined by $\left(A^{(i)}(x)\right)_{i \in I} \cdot\left(B^{(i)}(x)\right)_{i \in I}=\left(A^{(i)}(x)+B^{(i)}(x)+A^{(i)}(x) B^{(i)}(x)\right)_{i \in I}$. Note that $G_{a b}$ is isomorphic to the following subgroup of the following group of the units of the ring $K[[x]]^{M}$:

$$
G_{1}=\left\{\left.\left(\begin{array}{c}
1+x f_{1}(x) \\
\vdots \\
1+x f_{M}(x)
\end{array}\right) \right\rvert\, f_{1}(x), \ldots, f_{M}(x) \in K[[x]]\right\} .
$$

The isomorphism is given by:

$$
\left\{\begin{array}{rl}
G_{a b} & \longrightarrow G_{1} \\
\left(a_{1}^{(i)} x+a_{2}^{(i)} x^{2}+\cdots\right)_{1 \leq i \leq M} & \longrightarrow
\end{array}\left(\begin{array}{c}
1+a_{1}^{(1)} x+a_{2}^{(1)} x^{2}+\ldots \\
\vdots \\
1+a_{1}^{(M)} x+a_{2}^{(M)} x^{2}+\ldots
\end{array}\right) .\right.
$$

Moreover, each modules earlier defined on $\mathfrak{g}_{a b}$ corresponds to a module over $G_{a b}$ by exponentiation, as explained in the following definition:

Definition 29

1. Let $v=\left(v_{1}, \ldots, v_{M}\right) \in K^{M}$. The module \mathbb{V}_{v} is isomorphic to $y K[[y]]$ as a vector space, and the action of $G_{a b}$ is given by:

$$
\left(A^{(i)}(x)\right)_{1 \leq i \leq M} \cdot P(y)=\exp \left(\sum_{i=1}^{M} v_{i} A^{(i)}(y)\right) P(y) .
$$

2. Let us consider the semi-direct product $G=\left(\bigoplus_{i=1}^{N} \mathbb{V}_{v^{(i)}}\right) \triangleleft G_{a b}$.
(a) Let $\nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}$. The module \mathbb{W}_{ν} is $z K[[z]]$ as a vector space, and the action of G is given in the following way: for all $X=\left(P_{1}(y), \ldots, P_{N}(y), A_{1}(x), \ldots, A_{m}(x)\right) \in$ G,

$$
\left\{\begin{aligned}
X . z & =\left(1+\sum_{i=1}^{M} \nu_{i} A_{i}(z)\right) z \\
X \cdot z^{2} R(z) & =z^{2} R(z)
\end{aligned}\right.
$$

for all $R(z) \in K[[z]]$.
(b) Let $\nu=\left(\nu_{1}, \ldots, \nu_{M}\right) \in K^{M}$ and $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in K^{N}$, such that for all $1 \leq$ $i \leq M$, for all $1 \leq j \leq N, \mu_{j}\left(\nu_{i}-v_{i}^{(j)}\right)=0$. The module $\mathbb{W}_{\nu, \mu}^{\prime}$ is $z K[[z]]$ as a vector space, and the action of G is given in the following way: for all $X=$ $\left(P_{1}(y), \ldots, P_{N}(y), A_{1}(x), \ldots, A_{m}(x)\right) \in G$,

$$
\left\{\begin{aligned}
X \cdot z & =\exp \left(\sum_{i=1}^{M} \nu_{i} A_{i}(z)\right)\left(1+\sum_{i=1}^{N} \mu_{i} P_{i}(z)\right) z, \\
X \cdot z^{2} R(z) & =\exp \left(\sum_{i=1}^{M} \nu_{i} A_{i}(z)\right) z^{2} R(z),
\end{aligned}\right.
$$

for all $R(z) \in K[[z]]$.
Direct computations prove that they are indeed modules. The condition $\mu_{j}\left(\nu_{i}-v_{i}^{(j)}\right)=0$ is necessary for $\mathbb{W}_{\nu, \mu}^{\prime}$ to be a module. Indeed:

$$
\begin{aligned}
A_{i}(x) \cdot\left(P_{j}(y) \cdot z\right) & =\left(\exp \left(\nu_{i} A_{i}(z)\right)+\mu_{j} \exp \left(\nu_{i} A_{i}(z)\right) P_{j}(z)\right) z \\
\left(A_{i}(x) P_{j}(y)\right) \cdot z & =\left(\exp \left(v_{i}^{(j)} A_{i}(y)\right) P_{j}(y) A_{i}(x)\right) \cdot z \\
& =\left(1+\exp \left(v_{i}^{(j)} A_{i}(z)\right) P_{j}(z)\right) z+\left(\exp \left(\nu_{i} A_{i}(z)\right)-1\right) z \\
& =\left(\exp \left(\nu_{i} A_{i}(z)\right)+\mu_{j} \exp \left(v_{i}^{(j)} A_{i}(z)\right) P_{j}(z)\right) z
\end{aligned}
$$

Theorem 30 Let (S) be a connected Hopf SDSE in the abelian case. Then the group $C h\left(\mathcal{H}_{(S)}\right)$ is of the form:

$$
G_{N} \rtimes\left(G_{N-1} \rtimes\left(\cdots G_{2} \rtimes\left(G_{1} \rtimes G_{0}\right) \cdots\right),\right.
$$

where G_{0} is a semi-direct product of the form:

$$
G_{0}=\mathbb{W} \rtimes\left(\mathbb{V} \rtimes G_{a b}\right)
$$

where \mathbb{V} is a direct sum of modules \mathbb{V}_{v}, and \mathbb{W} a direct sum of modules \mathbb{W}_{ν} and $\mathbb{W}_{\nu, \mu}^{\prime}$. Moreover, for all $m \geq 1, G_{m}=(t K[[t]],+)$ as a group.

Proof. Similar to the proof of theorem 23.

References

[1] Christoph Bergbauer and Dirk Kreimer, Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor. Phys., vol. 10, Eur. Math. Soc., Zürich, 2006, arXiv:hep-th/0506190.
[2] D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees, Comm. Math. Phys. 215 (2000), no. 1, 217-236, arXiv:hep-th/0001202.
[3] Frédéric Chapoton, Algèbres pré-lie et algèbres de Hopf liées à la renormalisation, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 8, 681-684.
[4] Frédéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Internat. Math. Res. Notices 8 (2001), 395-408, arXiv:math/0002069.
[5] C. Chryssomalakos, H. Quevedo, M. Rosenbaum, and J. D. Vergara, Normal coordinates and primitive elements in the Hopf algebra of renormalization, Comm. Math. Phys. 255 (2002), no. 3, 465-485, arXiv:hep-th/0105259.
[6] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/9808042.
[7] Héctor Figueroa and José M. Gracia-Bondia, On the antipode of Kreimer's Hopf algebra, Modern Phys. Lett. A 16 (2001), no. 22, 1427-1434, arXiv:hep-th/9912170.
[8] Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), no. 1, 85-120, arXiv:math.QA/0105210.
[9] \qquad , Fà̀ di Bruno subalgebras of the Hopf algebra of planar trees from combinatorial Dyson-Schwinger equations, Advances in Mathematics 218 (2008), 136-162, ArXiv:0707.1204.
[10] \qquad , Classification of systems of combinatorial Dyson-Schwinger equations in the Hopf algebras of decorated rooted trees, Advances in Mathematics 224 (2010), 2094-2150.
[11] Robert L. Grossman and Richard G. Larson, Hopf-algebraic structure of families of trees, J. Algebra 126 (1989), no. 1, 184-210, arXiv:0711.3877.
[12] _, Hopf-algebraic structure of combinatorial objects and differential operators, Israel J. Math. 72 (1990), no. 1-2, 109-117.
[13] _ Differential algebra structures on families of trees, Adv. in Appl. Math. 35 (2005), no. 1, 97-119, arXiv:math/0409006.
[14] Michael E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3795-3811.
[15] Naihong Hu and Xiuling Wang, Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case, J. Algebra 312 (2007), no. 2, 902-929, arXiv:math/0602281.
[16] Dirk Kreimer, Combinatorics of (perturbative) Quantum Field Theory, Phys. Rep. 4-6 (2002), 387-424, arXiv:hep-th/0010059.
[17] \qquad , Dyson-Schwinger equations: from Hopf algebras to number theory, Universality and renormalization, Fields Inst. Commun., no. 50, Amer. Math. Soc., Providence, RI, 2007, arXiv:hep-th/0609004.
[18] Dirk Kreimer and Karen Yeats, An étude in non-linear Dyson-Schwinger equations, Nuclear Phys. B Proc. Suppl. 160 (2006), 116-121, arXiv:hep-th/0605096.
[19] Jean-Louis Loday and Maria Ronco, Combinatorial Hopf algebras, arXiv:0810.0435, 2008.
[20] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264.
[21] Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211-219.

[^0]: *e-mail: loic.foissy@univ-reims.fr; webpage: http://loic.foissy.free.fr/pageperso/accueil.html

