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Kreimer Hopf algebra H; of rooted trees decorated by a set I. Let Hg) be the subalgebra of H;
generated by the homogeneous components of the unique solution of this system. If it is a Hopf
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1. g(s) is an associative algebra of paths associated to a certain oriented graph.
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We also describe the character groups of Hg).

Keywords. Systems of Dyson-Schwinger equations, Hopf algebras of decorated trees, pre-Lie
algebras.

Mathematics Subject Classification. Primary 16W30. Secondary 817115, 81T18.

Contents

1 Preliminaries 4
1.1 Hopf algebras of decorated rooted trees . . . . . . . ... .. ... 4
1.2 Pre-Lie structure on thedualof Hp . . . . . . . . ... ..o 5

2 Recalls on SDSE 5
2.1 Unique solution of an SDSE . . . . . . . . ... o )
2.2 Graph associated toan SDSE . . . . .. ... oo 6
2.3 Classification of SDSE . . . . . . . . .. 7

3 Structure coefficients of the pre-Lie agebra gg) 8
3.1 Definition of the structure coefficients . . . . . .. . .. ... ... ... ..... 8
3.2 Prelie structure on HE“S) ................................ 9

4 Lie algebra and group associated to Hg), associative case 11
4.1 Characterization of the agsociativecase. . . . . . . . . . . ... ... ... ... 11
4.2 An algebra associated to an oriented graph . . . . ... ..o oL 12
4.3 Group of characters . . . . . . . . .. 15

*e-mail: loic.foissy@univ-reims.fr; webpage: http://loic.foissy.free.fr/pageperso/accueil.html



5 Lie algebra and group associated to H gy, non-abelian case 16

5.1 Modules over the Faa di Bruno Lie algebra. . . . . . . .. ... ... .. .. ... 16

5.2 Description of the Lie algebra . . . . . . ... ... ..o o Lo 17

5.3 Associated group . . . ... 20
6 Lie algebra and group associated to Hg), abelian case 21

6.1 Modules over an abelian Lie algebra . . . . . .. .. ... o000 21

6.2 Description of the Lie algebra . . . . . . ... ... .. o o 22

6.3 Associated group . . . ... L e 23
Introduction

The Connes-Kreimer Hopf algebra of (decorated) rooted trees kP is introduced in [16] and studied
in [2, 3,5, 6, 7,8, 14, 21|. For any element d of the set of decorations D, we define an operator
B; of HP, sending a forest F' to the rooted tree obtained by grafting the trees of F' on a common
root decorated by d. This operator satisfies the following equation: for all z € Hp,

AoBf(z)=Bj(z)®1+ (Id® B}) o A(z).

As explained in [6], this means that B; is a 1-cocycle for a certain cohomology of coalgebras,
dual to the Hochschild cohomology.

We now take D = {1,..., N} as a set of decorations. A system of combinatorial Dyson-
Schwinger equations (briefly, an SDSE), is a system (S) of the form:

X, = Bf (Fi(Xy,...,XnN)),

XNy = BL(Fy(Xi,...,Xn)),

where Fy,...,Fy € K][[hi,...,hy]] are formal series in N indeterminates (see [1, 17, 18] for
applications to Quantum Fields Theory). Such a system possesses a unique solution, which is a
family of N formal series in rooted trees, or equivalently elements of a completion of Hp. The
homogeneous components of these elements generate a subalgebra Hg) of Hp. We determined
in [10] the SDSE such that Hg) is a Hopf subalgebra, generalizing the results of [9] for a single
combinatorial Dyson-Schwinger equations. For this, we first associate an oriented graph to any
SDSE, reflecting the dependence of the different X;’s; more precisely, the vertices of G(g) are
the elements of I, and there is an edge from ¢ to j if F; depends on h;. The SDSE is said to
be connected if its associated graph G (g) is connected. We then introduced several operations
on SDSE, especially change of variables (proposition 4 of the present paper) and two families of
SDSE, namely fundamental and multicyclic SDSE, here described in theorem 6. For example,
the following system is multicyclic:

X1 = Bi(1+Xy),

Xy = Bf(1+Xy),

X3 = Bi(l1+Xy),

X4 = Bf(1+X1)
The associated oriented graph is:



Let us take 1,02 € K — {—1} . For all § € K, f3 is the following formal series:

oty = 35 OB (L4 (= 03)
k=0

Here is an example of a fundamental SDSE:

Xi = B (fa(X0f gy (04 AIXD0 - X070 X))

X, = B} <fr31(Xl)fﬁz(X2)(1—Xa)_l(l—sz)_l)7

1+

Xs = Bf <f . <<1+ﬁ1>X1>fﬁ2<<1+52>X2><1—X4>—1),

1+81 1+89

X, = B} <f . ((1+51)X1)fﬁz((1+ﬂ2)X2)(1—X3)_1),

1+81 1+89

Xs = B <fﬁl<<1 L B)X0)f s (L4 B2)Xa)(1 = X)) (1 X4>—1> |

1+81 1+89

The associated oriented graph is:

) )
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The present paper is devoted to the description of the Hopf algebras H(gy. By the Cartier-
Quillen-Milnor-Moore theorem, they are dual of enveloping algebra U(g(s)), and it turns out
that g(gy is a pre-Lie algebra [4], that is to say it has a bilinear product x such that for all

fvg7h/€ g9(9):
(frg)xh—fr(gxh)=(g*f)xh—gx(fxh)

In our case, g(g) has a basis (f;(k))icr r>1 and by proposition 10 its pre-Lie product is given by:

F30) * filk) = O filk + 1),
where the coefficients )\,(;’J ) are described in proposition 8; the Lie bracket of g(g) is the antisym-
metrisation of x. The product x can be associative, for example in the multicyclic case. Then,
up to a change of variables, f;(I)x fi(k) = fi(k+1) if there is an oriented path of length % from i
to j in the oriented graph associated to (S), or 0 otherwise; see proposition 15. The associative
algebra g(g) can then be described using the graph Gg) associated to the studied SDSE.

The fundamental case is separated into two subcases. In the non-abelian case, the Lie algebra
g(s) is described as an iterated semi-direct product of the Faa di Bruno Lie algebra by infinite
dimensional modules; see theorems 20 and 21. Similarly, the character group of H(g) is an
iterated semi-direct product of the Faa di Bruno group of formal diffeomorphisms by modules of
formal series:

Ch(H(S)) = Gm X (Gm_l X ( . .G2 X (Gl X GO) .. .)7

where Gy is the Faa di Bruno group and G4, . .., Gj,—1 are isomorphic to direct sums of (¢K[[t]], +)
as groups; see theorem 23. The second subcase is similar, replacing the Faa di Bruno Lie algebra
by an abelian Lie algebra; see theorems 27 and 28 for the Lie algebra, and theorem 30 for the
group of characters.



This text is organised as follows: the first section gives some recalls on the structure of Hopf
algebra of Hp and on the pre-Lie product on g(g) = Prim (HZ‘S)). In the second section are

recalled the definitions and properties of SDSE. The following section introduces the coefficients

,(f 9) and their properties, especially their link with the pre-Lie product of g(5). The next three

sections deals with the description of the Lie algebra g(gy and the group Ch (H(S)) when g(g) is
associative, in the non-abelian, fundamental case and finally in the abelian, fundamental case.

Notations. We denote by K a commutative field of characteristic zero. All vector spaces,
algebras, coalgebras, Hopf algebras, etc. will be taken over K.
1 Preliminaries

1.1 Hopf algebras of decorated rooted trees

Let D be a non-empty set. We denote by Hp the polynomial algebra generated by the set 7p of
rooted trees decorated by elements of D. For example:

1. Rooted trees with 1, 2, 3,4 or 5 vertices:

vk b vl b by v vl

2. Rooted trees decorated by D with 1, 2, 3 or 4 vertices:

«a; a €D, 1 (a,b) € D% V=N }E, (a,b,c) € D3;

Qoo

c d b d b c c c ¢ d de o C
V= =N = = = bej :d\}ab, YZ = YZ , i , (a,b,c,d) € DL
Let t1,...,t, be elements of 7p and let d € D. We denote by Bj(tl ...ty) the rooted tree
obtained by grafting t1,...,t, on a common root decorated by d. This map B; is extended in

b
an operator from Hp to Hp. For example, BJ (15..) = K/dc )

In order to make Hp a bialgebra, we now introduce the notion of cut of a tree t € Tp. A
non-total cut ¢ of a tree t is a choice of edges of . Deleting the chosen edges, the cut makes t
into a forest denoted by W€(t). The cut c is admissible if any oriented path in the tree meets
at most one cut edge. For such a cut, the tree of W¢(¢) which contains the root of ¢ is denoted
by R(t) and the product of the other trees of W€(¢) is denoted by P¢(t). We also add the total
cut, which is by convention an admissible cut such that R¢(t) = 1 and P¢(t) = W¢(t) = t. The
set of admissible cuts of ¢ is denoted by Adm.(t). Note that the empty cut of ¢ is admissible; we
put Adm(t) = Adm.(t) — {empty cut, total cut}.

The coproduct of Hp is defined as the unique algebra morphism from Hp to Hp ® Hp such
that for all rooted tree t € Tp:

A)y= ) PHOR(M)=tel+lat+ »  P(t)R(L).
c€EAdm.(t) ce Adm(t)

Example.

al

A(bkfdc):”bj ®1+1®”K/f @I+ a®@VE e @1 180 @ edteane @ 15,



We grade Hp by declaring the forests with n vertices homogeneous of degree n. We denote
by Hp(n) the homogeneous component of Hp of degree n. Then Hp is a graded bialgebra. The
completion Hp of Hp is the vector space:

7/'[; = H Hp(n).

neN

The elements of ﬂ; will be denoted by > x,, where x,, € Hp(n) for all n € N.
Let f(h) = > pnh™ € K|[[h]] be any formal series, and let X = > x,, € Hp, such that zy = 0.

The series of Hp of terms p, X™ is Cauchy, so converges. Its limit will be denoted by f(X). In
other words, f(X) = >_ yn, with:

Yo = Do,
n

Yn = Z Z PkTa, " Tq,, if n > 1.

k=1ai1+--+ar=n

1.2 Pre-Lie structure on the dual of Hp

By the Cartier-Quillen-Milnor-Moore theorem [20], the graded dual H}, of Hp is an enveloping
algebra. Its Lie algebra Prim(H},) has a basis (f;)ie7, indexed by 7p:
Hp — K
Je: 0ifn #1,
ot = g i

Recall that a pre-Lie algebra (or equivalently a Vinberg algebra or a left-symmetric algebra)
is a couple (A, ), where % is a bilinear product on A such that for all z,y,z € A:
(xxy)kz—ax*(Yyxz)=(y*x)*z—y* (T *2).

Pre-Lie algebras are Lie algebras, with bracket given by [z,y] = xxy —y * .
The Lie bracket of Prim(Hj,) is induced by a pre-Lie product % given in the following way:
if f,g € Prim(H3,), f * g is the unique element of Prim(H},) such that for all ¢t € 7p,

(fxg)t) = (f@g)o(r@m)oAll),

where 7 is the projection on Vect(7TP) which vanishes on the forests which are not trees. In
other words, if ¢, € Tp:

fexfo =" n(t,tt") for,

t"eTp

where n(t,t';t') is the number of admissible cuts ¢ of ¢ such that P¢(¢") =t and R°(¢") = t'.
It is proved that (prim(H7,), ) is the free pre-Lie algebra generated by the .4’s, d € D: see 3, 4].

Note. The Hopf algebra H7, is isomorphic to the Grossman-Larson Hopf algebra of rooted
trees [11, 12, 13].

2 Recalls on SDSE

2.1 Unique solution of an SDSE

Definition 1 Let I be a finite, non-empty set, and let F; € K[[h;,j € I]] be a non-constant

formal series for all ¢ € I. The system of Dyson-Schwinger combinatorial equations (briefly, the
SDSE) associated to (F;)er is:

Viel, X; =B (fi(X;,j € 1)),

where X; € 7/'l\1 foralli e I.



In order to ease the notation, we shall often assume that I = {1,..., N} in the proofs, with-
out loss of generality.

Notations. We assume here that 7 = {1,...,N}.

1. Let (S) be an SDSE. We shall denote, for all ¢ € I, F; = Z at” Ryt - RN

(p1,+,PN)
P17 PN

2. Let 1 <14,57 < N. We denote by ag-i) the coefficient of h; in F;.

NI
Proposition 2 Let (S) be an SDSE. Then it admits a unique solution (X;)ier € (H[) . We

put X; = Z ast.

ter®
Definition 3 Let (S) be an SDSE and let X = (X;);cs be its unique solution. The subal-

gebra of H; generated by the homogeneous components X;(k)’s of the X;’s will be denoted by
Hs)- If H(g) is Hopf, the system (S) will be said to be Hopf.

We proved in [10] the following results:

Proposition 4 (change of variables) Let (S) be the SDSE associated to (Fj(hj,j € I))icr-
Let \; and p; be non-zero scalars for all i € I. The system (S) is Hopf if, and only if, the SDSE
system (S') associated to (i Fi(Njhj, j € J))ier is Hopf.

Moreover, a change of variables replace H gy by an isomorphic Hopf algebra.

2.2 Graph associated to an SDSE
We associate a oriented graph to each SDSE in the following way:
Definition 5 Let (S) be an SDSE.
1. We construct an oriented graph G g associated to (S) in the following way:
e The vertices of G(g) are the elements of I.

OF;
e There is an edge from ¢ to j if, and only if| 7 # 0.
J

OF;

2. If o
depenldent, there is a loop from ¢ to itself in G g).

# 0, the vertex ¢ will be said to be self-dependent. In other words, if 7 is self-

3. If G(g) is connected, we shall say that (S) is connected.

Let (S) be an SDSE and let G(g) be the associated graph. Let i and j be two vertices of
G(s). We shall say that j is a direct descendant of i (or 7 is a direct ascendant of j) if there is
an oriented edge from i to j; we shall say that j is a descendant of 7 (or 7 is an ascendant of j)
if there is an oriented path from ¢ to 5. We shall write "¢ — j" for "j is a direct descendant of 7".

Remark. An change of variables does not change the graph G(g).

6



2.3 Classification of SDSE

The following result is proved in [10]:

Theorem 6 Let (S) be a connected SDSE. It is Hopf if and only if, up to a change of
variables, one of the following assertion holds:

1. (Extended multicyclic SDSE). The set I admits a partition I = I3 U --- U I3 indexed by
the elements of Z/NZ, N > 2, with the following conditions:

e Forallie Ii:
Fi =1+ Z aéz)hj.

jEI—k_H

e Ifi and i’ have a common direct ascendant in G(s), then F; = Fy (so i and i' have
the same direct descendants).

2. (Extended fundamental SDSE). There exists a partition:

I=({JZs|u|l U |uKULULUD,
i€lp i€Jo

with the following conditions:

o Ky, Iy, J1, Is can be empty.
o The set of indices Iy U Jy is not empty.
e Foralli e IgU Jy, J; is not empty.

Up to a change of variables:

(a) For all x € Iy, there exists B, € K, such that for all i € J,:
Fi=fo. | D hi| T Fo {48 0| TTA DM
€T yelo—{z} % jE€Ty yeo jE€dy
(b) For all x € Jy, for alli € Jy:
Fi=11rfo [Q+8)> 0| II A DM
yelp jETy yeJo—{x} jETy
(¢) Forallie Ko:

E:Hf% I+8) D> h | [T A DM

y€ly Yy JEJy y€Jo JEJy

d) For all i € Iy, there exist v; € K and a family of scalars a'? , with
( Y j
jGIQUJQUKo

(vi # 1) or (35 € I, ag-i) # 14 3;) or (35 € Jo, ay) # 1) or (3j € Ky, ay) # 0).
Then, if v; # 0:

r :% 11 f% v S ny | T o vial) > hi | T] fo (Viag.i)hj>+1—yli.

v yely viay jedy yeJy Vi jedy jeKo

7



Zay m (1= | =S a@m 1= h |+ a1

yElp JEJy y€Jo JEJy jeKo

(e) For alli € Jy, there exists v; € K — {0} and a family of scalars ( ()> ,
JE€IYUJoUKoUI;
with the three following conditions:

o ) ={jeh/a #0} is not empiy.
o Forall j € I{i); vj =L

e Forall j,k € I{i), Fj = Fy.. In particular, we put bgi) = agj) for any j € Ifi), for
all t € InU Jy U K.

Then:
Bom pT1 s (0 -1-8) Xm | TLaa (8 -1) 2n
Cyely by -1-py jeJy yedo by - jedy
Hfo(bji ) Za h1+1—*
Jje€Ko ]EI(Z)

(f) Io ={z1,...,xm} and for all 1 < k < m, there exist a set:

I(“)Q UJZ U UJz UKQUIlUle{Sﬁl,...,l‘k_l}
1€l i€Jo

and a family of non-zero scalars (a?“) . such that for all i,j € 1Y F, = F.
JEI\"k
Then:

jEI(Ik>

The elements of I will be called extension vertices. If Iy = (), we shall say that (S)
is o fundamental system.

Definition 7 An extended fundamental Hopf SDSE (.S) will be said to be abelian if Jy = ()
and if for all z € Iy, B, = —1.

3 Structure coefficients of the pre-Lie agebra g g

3.1 Definition of the structure coefficients

We here recall several results of [10].

Proposition 8 Let (S) be a Hopf SDSE. For alli,j € I, for all n > 1, there exists a scalar
A such that Jor allt' € Ti(n):

Z n;(t,t)a; = AT gy

teT;(n+1)

where n;j(t,t') is the number of leaves | of t decorated by j such that the cut of I gives t'.

8



In the case of extended fundamental SDSE, the coefficients )\g’j) are given, for all 7,5 ¢ I,
by:
a® _
\Ga) — ) 9 ifn=1
" &) +bi(n—1)if n>2,

the coefficients being given in the following arrays:
().

[ ) ai
i\J €Jy,ye€ly €eJy,yc| €Ky |€lh e J
() | 8 —1-8,
€ Jp, x €l (1 + ﬁx) - 5m,y/8m 1+ ﬂr 1+ ﬁ:}c Ay IT
~ &)
eJy, xeJy 1 1—dzy 1 aé” szufl
Wi
, Q)
€ K, 0 0 0 |d? |
'].
el 0 0 0 0 a
e Ji 0 0 0 0 0
° ~Z(.j):
i\j €Jy,yely €eJy,yed| €eKog | €1 eJ;
€ Jy, x €l (1 + ﬁx) — 5x,yﬂa: 1+ 06, 1+ 5, V]ag(c]) bgc]) — 1— 08
€ Ju,x € Jo 1 1— 6, 1 |ya? | a9 -1
€ Ky 0 0 0 ,/jaz(y) bgg)
el 0 0 0 0 0
e Ji 0 0 0 0 0
[ ] bji

jle€dypyel|edy,yel|eKo|el|€N
b; 1+ B, 1 0 0 0

Ifi ¢ Iy and j € I, then /\("j) 0 forall n > 1. Moreover, if i € I, let i’ be a direct descendant
of i. Then for all j € I, for all n > 2, A{?) = A9,

n—

3.2 Prelie structure on HE‘S)

Let us consider a Hopf SDSE (S). Then HE‘S) is the enveloping algebra of the Lie algebra

9(s) = Prim <H>(ks)>‘ By [19], it inherits from Prim(H},) a pre-Lie product given in the following
way: for all f,g € G(g), for all x € Hg), f x g is the unique element of g(g) such that for all
x € vect(Xi(n) /i€ I,n>1),

(f *9)(x) = (f @ g)o (T @) o Ax).

Let (fi(p))icrp>1 be the basis of g(g), dual of the basis (X;(p))icrp>1. By homogeneity of A,
and as A(X;(n)) is a linear span of elements — ® X;(p), 0 < p < n, we obtain the existence of
coefficients agg 7 such that, for all ¢,j € I, k,1 > 1:

£ * fi(k) = ') filk +1).

By duality, alg ’l]) is the coefficient of X;(I) ® X;(k) in A(X;(k+1)), so is uniquely determined in
the following way: for all ¢’ € TD(j)(l), t" e ngi)(k),

Z n(t' t";t)a; = a,(;’l])at/atu.

ey (k+1)



Lemma 9 For allt' € TD(j)(l), t" e TD(i)(k), Z n(t',t";t)ay = )\,(:’j)at/atu.
e (k+1)

Proof. By induction on k. If k =1, then t” = ., so:

Z n(t,7 t”; t)at = aB.*'(t”) = ag.i)at/ = )\gi’j)at/atn,
teTH) (k+1)

as ar = 1. Let us assume the result at all rank < k — 1. We put ¢’ = B ( H s"). We put

s€Tp
pj = Z rs for all 7 € I. Then:
sE’Tlgj)
Z n(t', t"; t)a,
teTH) (k+1)

= n|t,¢. B |., H s agtsrs) T Z (rs, + )n(t', 525 81)a Bj(slnsm)
s€Tp $1,52€7Tp
7’52>1

(Z) T 2 : 1"52 asl
- (Tt/+1)—'a(p11"'1pj+17"'7pN)atl H a; + (Tsl + ]-)n](s]_, SQ)mat//
T+ 41 H Ts: : seTp =oc s o
s€Tp
(¥)
_ a(Plv"' WPj41 PN) as,
= (pj+1) 0) agragr + E nj(81,52)7s, P
(p1,+PN) 51,52€7p 52
(4:3) Z oD Z
- Ap1+ +py+1 p] + TL] 81,32 7"527 Qyr Qgr!
51,52€Tp
7'32>O
_ i.7) 0] (r(s2),
B >\p1+ “+pn+1 § :p] + E TSQ |2 Qg g,
SQGTD

using the mductlon hypothesis on sg, denoting by r(s2) the decoration of the root of s. As

ay # 0, a(p 7& 0, proposition 19-3 of [10] implies:

1,

(4.3) _ (@) (r(8).3) (r(s))
Al-l—z rels| T 1-‘1-2 rs + Z s ()\ aj )
(4.9)  _ (r(s),4) )
Avi| = )‘p1+ Ao+l T er 15| - _na
l
So the induction hypothesis is proved at rank n. O

Combining this lemma with the preceding observations:

Proposition 10 Let (S) be a Hopf SDSE. The pre-Lie algebra g5y = Prim (’H’{S)) has a
basis (fi(k))icrk>1, and the pre-Lie product of two elements of this basis is given by:

£ % fitk) = A ik +1).

10




Remark. Let us consider a fundamental SDSE (S), with Iy = J; = I = (). Combining
proposition 10 with the arrays following proposition 8, then for all ¢,j € I, for all k,[ > 1:

[fi(0), fi(k)] = bk fi(k +1) — bl f;(k +1).

We assume that I = {1,...,N}. Let W = Der(K[zi',...,2%"]) be the Lie algebra of deriva-
tions of a Laurent polynomial algebra; W is a Lie algebra of generalized-Witt type [15]. It is not
difficult to show that there is a Lie algebra morphism:

{ gy — W

This morphism is injective if, and only if, by,...,by # 0. If this holds, g(s) can be identified
with a Lie subalgebra of the positive part of W.
4 Lie algebra and group associated to Hg), associative case

Let us consider a connected Hopf SDSE (S). We now study the pre-Lie algebra g(g) of proposition
10. We separate this study into three cases:

o Associalive case: the pre-Lie algebra g(g) is associative. This holds in particular if (S) is
an extended multicyclic SDSE.

o Abelian case: (S) is an extended fundamental, abelian SDSE, see definition 7.
o Non-abelian case: (S) is an extended fundamental, non-abelian SDSE.

We first treat the associative case.

4.1 Characterization of the associative case
Proposition 11 Let (S) be a Hopf SDSE. Then the pre-Lie algebra g(sy is associative if,
and only if, for all i € I:
F=1+Y d’n

1—]

Proof. =—. Let us assume that % is associative. Let i 0. kel let us show that a% =0.If

ag-) =0or a,(c) =0, then a( ,)C = 0. Let us suppose that a 7é 0 and ak 7é 0. Then:

0 = (fe(@)* f(1) % fi(1) = fu(1) » (f5(1) % fi(1))
— (Agjyk))\g%]) _ /\( J)/\QL k)) fz( )

_ )\gl}j) ()\gj}k’) (1k ) £(3)
= ol (af =AY £i(3).

So )\g’k) = ag). Moreover, by proposition 8:

ik ) i
o) =X Mary = apr + (14600, = alla) + (14 5,000
So a% = 0. As a consequence, F; =1+ Z ag.i)h

11



<. Then X;(n) is a linear span of ladders of weight n for all n > 1, for all i € I. As a
consequence, if x € Vect(X;(n) /i € I,n > 1), for all f,g € g(g), denoting A(x) = 2’ ® 2" and
(A Id)oAlx)=2'@2" @ 2":

(fx9)(x) = (f@g)o(r@m)oAlx) = (f@g)oAlr) = fz)g(a").
So if f,g,h € G(g), for all ¥ € Vect(X;(n) /i € I,n > 1):

((f xg)xh)(z) = f(a)g(@")h(a") = (f x (g% h))(x)-
So (fxg)xh = fx(gxh): ge) is an associative algebra. O
Corollary 12 Let (S) be a connected Hopf SDSE. Then g(s) is associative if, and only if

one of the following assertions holds:

1. (S) is an extended multicyclic SDSE.
2. (S) is an estended fundamental SDSE, with:

o Foralli€ Iy, B; =—1.
o Jo, Ko, I and Jy are empty.

If the second assertion holds, then (S) is also an extended fundamental abelian SDSE, and
another interpretation of g(g) can be given; see theorem 28.

4.2 An algebra associated to an oriented graph

Notations. Let G an oriented graph, i,j € G, and n > 1. We shall denote i — j if there is an
oriented path from ¢ to j of length n in G.

Definition 13 Let G be an oriented graph, with set of vertices denoted by I. The associa-
tive, non-unitary algebra Aq is generated by P;(1), i € I, and the following relations:

e If j is not a direct descendant of ¢ in G, P;(1)P;(1) = 0.
o Ifi; »ig— -+ —iyand iy — iy — - — i, in G, then:

P, (1) Py (1) Py (1) = Py (1) -~ Py (1) Py, (1).

Let G be an oriented graph, and let ¢ € I and n > 1. For any oriented path ¢ — i3 — --- — i,
in G, we denote P;(n) = P; (1)--- P;,(1)P;(1). If there is no such an oriented path, we put
Pi(n) = 0. By definition of Ag (second family of relations), this does not depend of the choice of
the path. Graphically, P;(n) should be seen as representing any path from the vertex i of length

n.

Lemma 14 Let G be an oriented graph. Then the P;j(n)’s, i € I, n > 1, linearly generate

Ag. Moreover, if P;(m) and Pj(n) are non-zero, then:
Pi(m+n) if i = j
Pi(n)Py(m) ={ 1t )

5 Fi(m) { 0 if not.

Proof. By the first relation, Pj(n) = P, (1)--- P, (1)Pi(1) = 0 if (4,41,...,i,) is not an
oriented path in G. So the P;j(n)’s, i € I, n > 1, linearly generate Ag.

let us fix Pj(m) = P;,,(1)--- P, (1)P;(1) and Pj(n) = P;,(1)--- Pj,(1)P;(1) both non-zero. If
7 ﬂ>j we can choose 19, ...,4, such that ¢ — i3 — -+ — i, — 7. Then:

Pj(n)Pi(m) = P;, (1) - P, (1) Pj(1) By, (1) - - Py (1) Pi(1) = Pi(m + 7).

If this is not the case, then j is not a direct descendant of i,,, so P;(1)P;, (1) = 0 and
Pj(n)Pz(m) = 0. Od
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Proposition 15 Let G be an oriented graph.

1. The following conditions are equivalent:

(a) The family (P;(n))iern>1 s a basis of Ag.

(b) All the P;i(n) are non-zero.

(¢c) The graph G satisfies the following conditions:
o Any vertex of G has a direct descendant.

o If two vertices of G have a common direct ascendant, then they have the same
direct descendants.

(d) The SDSE associated to the following formal series is Hopf:
Viel, Fi=1+) h;.
2. If this holds, then Ag is generated by P;(1), i € I, and the following relations:

o If j is not a direct descendant of i in G, P;(1)P;(1) = 0.
o Ifi—jandi— kin G, then P;(1)P;i(1) = Py(1)Pi(1).

The product of Ag is given by:

() = { e

Moreover, if (S) is the system of condition (d), g(s) is associative and isomorphic to Ag.

Proof. 1. (a) = (b) is obvious.

(b) = (c¢). Let us assume (b). Then for all ¢ € I, P;(2) # 0, so there exists a j
such that ¢ — j in G: any vertex of G has a direct descendant. Let us assume ¢ — j and
i — j'in G. Let k be a direct descendant of j. Then P;(2) = P;(1)P;(i) = Pj(1)P;(1) and
Pi(3) = Pu(1)P(1)Pi(1) = Pu(1)P(2) £ 0, 50 Pu(1)P,(2) = Pu(1)Pyp(1)P(1) # 0. As a conse-
quence, Py(1)Pj (1) # 0 and k is a direct descendant of j'. By symmetry, the direct descendants
of j/ are also direct descendants of j: two direct descendants of a same vertex have the same

direct descendants.

(¢) = (d). Then for all i € I, for all n > 1, X;(n) = Zl(i,ig, -++ i), where the sum runs
on all oriented paths i — ig — -+ — i, in G(g). So:

A(Xi(n)) = ZZl(ikH,...,in) @ (i, i, -+ k).
k=0

Ifi— iy — iy — ipq1 and 4 — iy -+ — i — i), the second condition on G implies that i3
and i3 are direct descendants of ip and i,. .., ix11 and i}, are direct descendants of 4, and 4.
So:

k=0 1—--—1p,

AXm) =D D> UWikgtseorin) @1, i) = Y Xj(n— k) @ Xi(k).
k=0 'i»j

k.
1= +1,
g1 ln

So (S) is Hopf.
(d) = (a). Then, for all i € I, for all n > 1, X;(n) = Zl(i,ig,--- ,in), where the sum

runs on all oriented paths ¢ — ia — -+ — i, in G(g). By proposition 11, g(g) is associative.
Moreover, it is quite immediate to prove that in g(g):

13



e If j is not a direct descendant of i in G, f;(1)f;(1) = 0.

o Ifi; »ig— -+ —iyandig — iy — - — i, in G, then:
Jin(U) o fis () fir (1) = fir, (1) -+ fir, (1) fi, (1) = fiy (n).

So there is a morphism of algebras from Ag to g(g), sending P;(1) to fi(1). This morphism sends
Pi(n) to fi(n). As the f;(n)’s are linearly independent, so are the P;(n)’s.

2. Let Ay, be the associative, non-unitary algebra generated by the relations of proposition
15-2. As these relation are immediatly satisfied in Ag, there is a unique morphism of algebras:

A, — A
Q):{ Pi(lti — Pz‘cél)-

Let iy — 49 — -+ — iy and 43 — ¢ — -+ — 4, in G. Let us prove that P;, (1)--- P, (1)P;, (1) =
Py (1)--- Py (1)P;, (1) in A by induction on k. For k = 2, this is implied by the second family
of relations defining A7,. Let us assume the result at rank k. Then, both in Ag and Ay:

B WPy (1) - Py (1) Py (1) = Py (D) By (1) -+ Py (1) Py (1).
This is equal to Fi(k +1) in Ag, so is non-zero. As a consequence, F;, ,(1)Py (1) # 0 in Ag, so
i}, — k41 in G. By definition of Ag, Py, (1)Py (1) = Py (D)Py (1) in A, so:
Pik+1 (DPZ (1) T Piz(l)Pi (1> = Pi;€+1(1)Pi;€(1) T Pz’Q(l)Pz (1)
So the relations defining A are also satisfied in Ag,, so there is a morphism of algebras:
U { Ac — Ag
P(1) — P(1).

It is clear that ® and ¥ are inverse isomorphisms of algebras. O

Corollary 16 Let (S) a Hopf SDSE. If g(g) is associative, then the graph G(g) satisfies
condition (c) of proposition 15 and 9(s) s isomorphic to AG<S>.

Proof. First slep. Let i, j, k be vertices of G(g) and n > 1 such that ¢ = jand i = k.
Let us prove that F; = Fj, by induction on n. If n = 1, by proposition 18-3 of [10], F; = Fj. If
n > 2, then there exists vertices of G(g) such that:

1= J1 — oo = Jn-1 — 7, i —k—...—> kp_1— k.

The case n = 1 implies that Fj, = F},, so ji n-l j and j1 "Lk By the induction hypothesis,

F; = Fy. Tn other words, if i — j and i — &, then al?) = a{* for all € I.

Second step. Then, for all 4 € I, for all n > 1:

X;(n) = Zagi) . .az(:lfl)l(i’ i9, -+ in),
where the sum runs on all oriented paths ¢ — ia — -+ — iy in G(g). The first step implies

that a\? ... gl depends only of ¢ and n: we denote it by ag). Then:
i1 in
Xi(n) = Za@l(i,z@,-- yin),

(4)
an
A(X;(n)) = E E NGO (j)Xj(k:) ® X;(1).
hetl=n, 1 ap " ag

14



Dually, putting p;(n) = ag)fi(n) for all 1 <7 < N, n > 1, the pre-Lie product of g is given
by:
(i)+ -
fi(n)x fi(m) = a%)ag)fz(m-l-n) if i — 4,
0 otherwise;

{ pi(m +n) if i =% §,

p;(n) * pi(m) .
0 otherwise.

Last step. It is then clear that the associative algebra g(g) is generated by the p;(1), 7 € I, and
that these elements satisfy the relations defining AG( e So there is an epimorphism of algebras:

@ :{ AG(S) - g(S)

This morphism sends F;(n) to p;(n) for all n > 1. As the p;(n)’s are a basis of Ag g, the P;(n)’s
are linearly independent in Ag s)» so the graph G (g) satisfies condition (c) of proposition 15.
Moreover, © is an isomorphism. O

4.3 Group of characters

The non-unitary, associative algebra g(g) is graded, with pi(k) homogeneous of degree k for all
k > 1. Moreover, g(s)(0) = (0). The completion gg) is then an associative non-unitary algebra.
We add it a unit and obtain an associative unitary algebra K & g/(g) It is then not difficult to
show that the following set is a subgroup of the units of K & g/(s\):

G= 1+Z$k|v1€21, xkeg(s)(k)
E>1

Proposition 17 The group of characters Ch (H(S)) 15 isomorphic to G.

Proof. We put V = Vect(X;(k)|i € I,k > 1). Let g € V*. Then g can be uniquely extended
in a map g from Hg) to K by g((1) + Ker(¢)?) = (0), where ¢ is the counit of H(s). Moreover,
g € §(s)- This construction implies a bijection:

o OM0) —C
' fo— 1+ fiv.

Let f1,fo € Ch (H(S)). Forallz €e V, weput A(z) =2z®1+1®@x+ 2 ®2”. As x is a linear
span of ladders, 2’ @ 2’/ € V @ V. So:

(fi-f2)(x) = (f/1® f2)oAx)
= fi@) + fo(z) + fr(2") fr(2")
= fiy (@) + fo (@) + frjv () fopu (2")
= Fiw(@) + P (@) + Fiy (@) Fap (=)
(

= @) + F @) + (Fv = fa ) (@),

—

So (f1-f2)v = f/l\\v + ]72‘\‘/ + f/1|\v * ]72‘\‘/ This implies that € is a group isomorphism. O
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5 Lie algebra and group associated to Hg), non-abelian case

5.1 Modules over the Faa di Bruno Lie algebra

Let grgp be the Faa di Bruno Lie algebra. Recall that it has a basis (e(k))r>1, with bracket
given by:
le(k), e(D)] = (I = K)e(k +1).

The grgp-module Vj has a basis (f(k))g>1, and the action of grqp is given by:
e(k).f(l) =1f(k+1).

We can then construct a semi-direct product VOM d@r4p, described in the following proposi-
tion:

Proposition 18 Let M € N*. The Lie algebra VM < grqp has a basis:

(@)
(FO®) oy oy VR,
and its Lie bracket given by:

{ e(k),e()] = (I~ k)ek +1).
e(k), FO@] = 1fO(k+1),
FOH),FOW] = o,

9

=
|

We now take g = VE)@M <4 grgp- We define a family of g-modules. Let ¢ € K and v =
(v1,...,vpm) € KM, The module W, has a basis (g(k))r>1, and the action of g is given by:

{ e(k)g(l) = (+c)glk+D),
FOR).g(1) = viglk+ D).

The semi-direct product is given in the following proposition:

Proposition 19 Let g be the Lie algebra (W Lo © . @ WCN’U(N)> < (VOM ngdB). It has

(Q(j)(k)>

and its bracket is given by:

a basis:

(@)
1<j<N, k>1 Y (f (k))lgigM,k21 U (e(k))r>1,

e(k),e()] = (1—k)e(k+1),
[e(k), FOQ)] = 1fO(k+1),
[e(k), gD (D] = (1+c)gW(k+1),

FO®), DD = o0,
[FOR),gDW)] = o)k +1),
[9D(k),gD ()] = o.

Let us take g as in this proposition. We define three families of modules over g:

1. Let v = (v1,...,vy) € KM, The module W, o has a basis (h(k))x>1, and the action of g

is given by:
e(k).g(l) = (I=1Dh(k+1),
fOk).R(1) = wvh(k+1),
Ok).h(1) = 0ifl>2,
gD (k).n(l) = o.



2. Let v = (v1,...,vpy) € KM, The module W}, has a basis (h(k))x>1, and the action of g

is given by:

e(k).h(1) = h(k+1),

e(k).h() = (I —Dhk+1)ifl>2,
fOk).h1) = wh(k+1),
fOE).R1) = 0ifl>2,
g9 (k).n(1) = o0.

3. Let ce K, v=(v,...,vy) € KM, = (u1,...,pn) € K. The module W/, , has a
basis (h(k))r>1, and the action of g is given by:

e(k).h(l) = (I+c)h(k+1),
fOk).0(1) = vih(k+1),
g (k).h(1) = pih(k+1),
gD(k).h(l) = 0ifl>2.

5.2 Description of the Lie algebra

Theorem 20 Let us consider a fundamental non-abelian SDSE. Then g(s) has the following
form:

g5y = W< ((Wcl,uu) S... 0 WcN,U<N>) a (Vg < QFdB)) :

where W is a direct sum of W), 4, W/ | and W/

U °

Proof. First step. We first consider a fundamental Hopf SDSE (S) such that [} = J; = Iy =
(). The set J of the vertices of G gy admits a partition J = (Jz)zer, U (J2)zesy U (Jo)zek,. We
put:
A={jeJ/bj#0}, B={jeJ/bj=0}.

In other terms, i € A if, and only if, (i € J,, with « € Iy such that b, # —1) or (i € J,, with
x € Jy). As we are in the non-abelian case, A # (). Let us choose i, € J, for all x € I, and
iz, € A. In order to enlighten the notations, we put iy = i,,. We define, for all k¥ > 1:

0}

pilk) = s (filh) = Fi () i i € Jiy — i,

pi(K) = S fi(k) — s fio(R) i # m and @ € A,

pu(h) = LWt b,

pi(k) = b—(fl(k:) — fi,(k))ifi € Jy —{iz}, v # xo and z € A,
k) = k)~ fu (k) ifi € J— {ia}, € B.

Then direct computations show that the Lie bracket of g(g) is given in the following way: for all
k. l1>1,

o [piy(K),pio (D] = (I = k)piy (k +1).

. U4 dyy)pi(k +1) if ¢ € Jpy — {i0},
e Forallie I, [pi(k),pi(l)] = { l(p(k +0;§)ii‘i ¢ } o — {io}
) x0*

o Forall i € Jy, — {io}, for all 2 w0, [ps, (k), ps(1)] = { aﬁ?oxpég* Difz €4,

e Forall z, 2’ € I — {xo}, [piz(k),pim/(l)] =0.

17



p _ . Y ' oy J O0ifx £
o Forall z,2' € I — {xo}, i € Jp — {iw}, [pi,(k),pi(1)] = { dupilh+1) if 2 = 2.

e Forall 2,2’ € I —{x0}, i € Jo — {is}, j € Jur — {iw}, [pi(k).p; ()] = 0.

We used the following notations:

_/Bas .
faely, By #—1,
1+ﬂxlx€ 07/87é
dg:: 1if336[07ﬁw:_17
—1lifx € Jy,
0if x € Ky.

So the Lie algebra gg) is isomorphic to:

| Jag|—1 |1z]—1 [1]—1
Wdzo’(*dccoa"' 1 —dzg,0,++,0) @ @ Wo,(o,--- 0,dz,0,,0) | < Vo <49FdB ) -
xzel—{zo}

A basis adapted to this decomposition is:

(pi(k))ietpy —{io}k>1 U ( U (pi(k))iejm{ix},k>1) U ( U (piz(k))k:>1) U (pio (k) >1-

zel—{xzo} zel—{zo}

Second step. We now assume that I; # (). Then the descendants of j € I; form a system
of the first step, so g5y = Wi, 99(s,), where Wy, = Vect(f;(k) /j € L1,k > 1} and (Sp) is
a restriction of (S) as in the first step. Let us fix j € 1 and let us consider the g(g,)-module
W; = Vect(fj(k)/ k> 1). With the notations of the preceding step:

Ne
‘WM%MM—<F1+£>ﬁw+DM_L

4
a0 550 = (1= 15158 ) e+ i1 22

RO R

[pi, (K), f;(1)] = ( = — ,,(;) fik+1)ifl=1,z ¢ A

WD W

s (0 550) = 5 (52— 5

0
0o

)fj(k—i—l) ifl>2 rc A

pi, (k). f;(D] = al f;(k + 1) if L =1, z € B.

i, (k), £ (1)] = vjal fi(k +1) if 1 > 2, 2 € B.
o [pi(x), f;(1)] = 01if 7 is not a .

If v; # 0, we put p;(k) = fj(k) if £ > 2 and p;(1) = v; f;(1). Then, for all I:

)
® [pio(K),p;(D] = <l —1+ ujbfo) pj(k+1).

NORINE)

N

>pj(k+l) itz e A.

o [pi,(k),p;(D)] = Vjal(i)pj(k +1)if x € B.

e [pi(z),p;(1)] = 01if 7 is not a i,.

18



So Wj is a module W,,. If v; = 0 and ag) # 0, we put p;j(k) = f;(k) if £ > 2 and p;(1) =
bz—ofj(l). Then:

L)
0

o [piy(k),p;()] =pi(k+1)ifl=1.
 [pio(k),pi(D] = (I = V)p;(k +1) if | = 2.
o) o
o [pi. (), £;(1)] = < e _ b(;) Fk+0)ifl=1,2 € A
o [pi,(k), f;()] =0if 1 >2, 2 € Al
o i (k), ;] =al fj(k+ D) ifl =1,z € B.
o i, (k), f;()] = 0if 1 >2, 2 € B.
o [pi(z),p;(1)] = 0if i is not a 7.

So Wj is a module W, ;. If v; = 0 and a9 = 0, we put p;j(k) = f;(k) for all £ > 1. Then:

® [pio(k), (D] = (1 = V)pj(k +1).

ONEME) .
[pi, (k). £;(D)] = (b — b00> fik+D)ifl=1,z€A

[pi, (k), f;(D] =0if 1 > 2, z € A.
i, (k), f;(1)] = f;(k + 1) if I=1, z € B.

[pi, (k), fj()] =0if l > 2, = € B.

o [pi(x),p;(l)] = 0if 7 is not a .

So Wj is a module W) .

Last step. We now consider vertices in Ji. If j € Ji, then its descendants are vertices of
the first step and i elements of I; such that 1; = 1. As before, gg) = Wy, <g(g,), where
Wy, = Vect(fj(k)/j e Ji,k > 1} and (S1) is a restriction of (S) as in the second step. Let us
fix j € J1 and let us consider the g(g,)-module W; = Vect(f;(k) / k > 1). As v; # 0, putting
pi(k) = fi(k) if k> 2 and p;(1) = v; f;(1):

)
o 0] = (114055 ) 40

OO N

i, (k), p;(1)] = v; ( e — b(;) pi(k+1)if z € A.

e [pi,(k),p;i(l)] = Vjag)pj(k‘ +1)if z € B.

o [pi(k),p;(1)] = v;aPp;(k+1)ifl=1,i €I, with 1; = 1.

Lpl(k‘),p](l)] =0ifl>2,ie .
o [pi(x),pj(1)] =0if i ¢ I} and is not a 4.

So Wj is a module W/ O

c Y
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Theorem 21 Let (S) be a connected, extended, fundamental, non-abelian SDSE. Then the
Lie algebra g(g) is of the form:

m <9 (Gm-1<(---g2<(g19g0) "),

where go 18 the Lie algebra associated to the restriction of (S) to the vertices which are not
extension vertices (so go is described in theorem 20) and, for j > 1, g; is an abelian (gj—1 <
(---g2<(g1<g0) - - - )-module having a basis (RYU) (k))p>1.

Proof. The Lie algebra g; is the Lie algebra Vect(fs, (k) / k > 1), where Jo = {21, ..., Zm},
with the notations of theorem 6. O

5.3 Associated group

Let us now consider the character group Ch (H( S)) of H(s). In the preceding cases, g(g) contains
a sub-Lie algebra isomorphic to the Faa di Bruno Lie algebra, so Ch (’H( 5)) contains a subgroup
isomorphic to the Faa di Bruno subgroup:

Grap = {z + a12® 4+ asa® + --- | Vi, a; € K},
with the product defined by A(z).B(z) = B o A(z). Moreover, each modules earlier defined on
grap corresponds to a module over Grgp by exponentiation:

Definition 22

1. The module Vy is isomorphic to yK[[y]] as a vector space, and the action of Grgp is given
by:
A(z).P(y) = P o A(y).
2. Let G = <V89M> X Gpap. Let c € K, and v = (v1,--- ,up) € KM. Then W, is 2K][[2]]
as a vector space, and the action of G is given by:
A(z)

z

M c
(Puy)s++ Py, A@).Q(2) = eap (vaz))( ) @A),

3. Let us consider the semi-direct product G = (Wq,e(l) Q- D WCN’E(N)) < (VSBM < GFdB).

(a) Let v = (v, ,vpy) € KM, Then W1, is tK[[t]] as a vector space, and for all

X = (Q1(2)7"' 7QN(Z)7P1(y)7"' 7PM(y)vA($) € Gt

M
Xt = (1+Zu,-PZ-(t)> ¢,
i=1
X.R(t) = <Azt)>RoA(t),
for all R(t) € t2K][[t]].
(b) Let v = (v1,---,vn) € KM, Then Wi, is tK[[t]] as a vector space, and for all
X = (Ql(z)7 U 7QN(Z)7P1(y)7 e vPM(y)vA(x)) €G-

M
Xt = <1 + ;ViPi(t)> (t+tln <)>> ,
X.R(t) = (%) Ro A(t),

for all R(t) € t2K[[t]].
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(c) Let ce K, v= (v, - ,vm) € KM, = (p1,...,un) € K. Then W/, is tK[[t]]
as a vector space, and for all X = (Q1(2), -+ ,Qn(2), Pi(y), -, Pu(y), A(z)) € G:

c M M
Xt = <Ait)> exp (ZMR’(@) <1 +ZMiQi(t>> A(t),
i=1 i=1

N M
X.R(t) = <A(t)> exp (;mﬂ(ﬂ)ROA(t)a

for all R(t) € t?K[[t]].
Direct computations prove that they are indeed modules.

Theorem 23 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then
the group Ch (H(S)) 15 of the form:

Gm X (Gp—1 X (-+- Gy x (G1 x Gp) -+ +),
where G is a semi-direct product of the form:
Go = Wl X (W A (V A GFdB))v

where V is a direct sum of modules Vo, W a direct sum of modules We,,, and W' a direct sum
of modules W, o, W), | and Wy Moreover, for allm > 1, Gy, = (tK[[t]],+) as a group.

v,0s e

*

Proof. The group Ch (H(S)) is isomorphic to the group of characters of U(g)*, where g is
described in theorem 21. This implies that this group has a structure of semi-direct product as
described in theorem 23. Let us consider the Hopf algebra H of coordinates of Gp. It is a graded
Hopf algebra, and direct computations prove that its graded dual is the enveloping algebra of gg
of theorem 21. So H is isomorphic to Hg)- O

6 Lie algebra and group associated to Hg), abelian case

We now treat the abelian case. Recall that in this case, Jy = Ko = () and, for all 7 € Iy, 3; = —1.

6.1 Modules over an abelian Lie algebra

Let gq, be an abelian Lie algebra, with basis (e(i)(k))KKM p>1- We define a family of modules
over this Lie algebra: I

Definition 24 Let v = (v1,--- ,vp) € K™. Then V,, has a basis (f(k))x>1, and the action
of gup is given by: ‘
k). £(1) = vif (k +1).

We can then describe the semi-direct product:

N
Proposition 25 Let g be the Lie algebra (@ VU@) A @ab- It has a basis:
i=1

(€D (k) r<isap1 U (FO (k) i<isnps1,
and its Lie bracket is given by:

e k), D] = 0,
(O, FOD) = o fO(k +1),
FOk), O] = 0.
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We now define two families of modules over such a Lie algebra.

Definition 26 Let g be a Lie algebra of proposition 25.

1. Let v = (v1,...,vn) € KM. The module W, has a basis (g(k))r>1, and the action of g is
given by:
e (k).g(1) = wig(k+1),
eD(k).g(l) = 0if1>2,
fO(k).g(1) = o.

2. Let v = (vi,...,vay) € KM and p = (p1,...,un) € KV, such that for all 1 < i < M, for
all 1 <j <N, p; <Vi - UZ@> = 0. The module W, , has a basis (g(k))x>1, and the action
of g is given by:

e (k).g(l) = vig(k+1),
fO(k).g(1) = piglk+1),
fOk).g() = 0ifl>2.

Remark. The condition p; (I/Z' — vfj)) = 0 is necessary for Wl’,’# to be a g-module. Indeed:

D), fOW].9(1) = v gk +1+1),
k). (FO0-9(1)) = FOO. (€D k).9(1) = pmiglh +1+1).

6.2 Description of the Lie algebra
We here consider a connected Hopf SDSE (5) in the abelian case.

Theorem 27 Let us consider o Hopf SDSE of abelian fundamental type, with no extension
vertices. Then g(s) has the following form:

9(s) ~ W« ((Vy(l) b... V,U(N)> <Igab) ,
where W is a direct sum of W, and W, ,.

Proof. First step. We first consider an abelian Hopf SDSE such that Jy = Ko =1; = J; =
I, = 0. For all x € Iy, let us fix i, € J,. We put p;, (k) = fi, (k) and p;(k) = fi(k) — fi, (k) if
i € Jy — {iz}. Then direct computations show that:

* [pi,(k),pi, @] = 0.

i [plz (k)apj(l)] = 6x,x’pj(k + l) ifj € Ja:’ - {'Lx’}

e [pi(k),p;(1)] = 0if 4,5 are not i,’s.

Jz|—
So g(s) ~ @ ‘/(%‘97‘_._7371710 _____ 0) < @ab, Where ggp = VeCt(piz(k) /33 € lo, k> 1)
AT

Second step. We now assume that I; # (). Then the descendants of j € I; form a system as
in the first step, so g(s) = Wr, <9(s,), where Wy, = Vect(f;j(k) /j € I,k > 1} and (Sp) is the
restriction of (S) to the regular vertices. Let us fix j € I; and let us consider the g(g,)-module
W; = Vect(fj(k)/k > 1). With the notations of the preceding step:

o i (k), £; ()] = a? ik + 1) it 1 = 1.
o [pi,(k), f;(D)] = Vjag)fj(k‘—i- )ifl>2.
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o [pi(x), f;(1)] = 0if 7 is not a .

If v; # 0, we put pj(k) = f;(k) if £ > 2 and p;(1) = v;f;(1). Then, for all I:
o [pi (k). £ 0] = vyl £k +1).
e [pi(x), f;(1)] =01if i is not a i,.

So Wj is a module V,,. If v; = 0, we put p;(k) = fj(k) for all £ > 1. Then:
o [pi, (k). ;1)) = o fi(k+ 1) if 1 = 1.
o [pia(K), f5(0)] = 0 if 1> 2.
e [pi(z), f;(1)] = 0if 4 is not a .

So Wj is a module W,,.

Last step. We now consider vertices in Jy. If j € Ji, then its descendants are vertices
of the first step and vertices in [y such that v; = 1. As before, gg) = Wy, <g(g,), where
Wy, = Vect(fj(k)/j € Ji,k > 1} and (S1) is the restriction of (S) to the regular vertices and
the vertices of 1. Let us fix j € J1 and let us consider the g(g,)-module W; = Vect(f;(k)/k > 1).
As vj # 0, putting p;j(k) = f;(k) if £ > 2 and p;(1) =v; f;(1):

o [P (k). ps (D) = vjail'p; (k +1).
o pi(k),p;(D]=0ifi € J, — {iz}.
o [pi(k),p;(D)] = Vjagj)pj(k +0)ifl=1and i€ I.
o [pi(k),p;(1)] = 0if{ > 2 and i € I.
So Wj is a module W, . O

Theorem 28 Let (S) be a connected Hopf SDSE in the non-abelian, fundamental case. Then
the Lie algebra g(s) is of the form:

m <9 (Gm-1<(---g2<(g19g0) ),

where go is the Lie algebra associated to the restriction of (S) to the non-extension vertices (so
is described in theorem 27), and, for j > 1, g; is an abelian (gj—1 <(---g2<(g1 <go) - - - )-module
having a basis (h9)(k))p>1.-

Proof. Similar to the proof of theorem 20. O

6.3 Associated group

Let us now consider the character group Ch (H( S)) of H(g). In the preceding cases, g(s) contains
an abelian sub-Lie algebra gqp, so Ch (H( 5)) contains a subgroup isomorphic to the group:

G — {(aﬁi)ﬁag)x“"')1<i<M’ IV1<i<MVk>1,a EK},

with the product defined by (A®(z))icr.(B®(2))icr = (AD(2) + BO(z) + AD(2) B (x))se;.
Note that G is isomorphic to the following subgroup of the following group of the units of the

ring K [[z]]":

1tz fi(z)

@:{( ; )rﬁwxnjmmeKm@.
1+afu(z)
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The isomorphism is given by:

Gab — Gy
) ) 1+a(11)x+aél)mz+...
(agl):c—l—ag)xQ +--->1<. — :
sisM 1+a(M>a:+agM>x +...

Moreover, each modules earlier defined on g, corresponds to a module over G, by exponen-
tiation, as explained in the following definition:

Definition 29

1. Let v = (vi,...,vn) € KM. The module V, is isomorphic to yK[[y]] as a vector space,
and the action of Gy, is given by:

(AD(2))1<i<pr.P(y) = exp (Z’UZ > ().

N
2. Let us consider the semi-direct product G = (EB VU@)) 4 Gap.

(a) Let v = (v1,...,vn) € KM, The module W, is 2K |[2]] as a vector space, and the ac-
tion of G is given in the following way: for all X = (Pi(y),...,Pn(y), A1(z), ..., An(z)) €
G,

M
Xz = (1—1—21/1-142-(2)) z,
=1
X.22R(z) = 2%R(2),
for all R(z) € K|[[#]].
(b) Let v = (v1,...,vn) € KM and p = (p1,...,pun) € KV, such that for all 1 <
i < M, forall<j <N, puj (Vi—vgj)) = 0. The module W; , is zK][[2]] as

a vector space, and the action of G is given in the following way: for all X =

(Pr(y), .- Pn(y), A1(), ..., Am(2)) € G,
M N
X.z = exp (Z VZ'AZ'(Z)> (1 + Z,uﬂ%(z)) z,
X.22R(2) = exp ZWAZ'(Z) 2?R(2),

for all R(z) € K[[z]].

Direct computations prove that they are indeed modules. The condition p; <VZ' — Ul(j ) ) =0

is necessary for W’V ., to be a module. Indeed:

Ai(z).(Pi(y)-2) = (exp(viA ())+/~Lgem’p(%Az( )F;(2)) 2,

(Ai(@)Py()z = (eap(v? Ai(y))Py(y) Ai(@)) 2
- (1+exp ”A()) Py(2)) 2 + (exp(vii(2) ~ 1)z
= (capidi(2) + mep(v Ai(2))Py(2) ) 2.
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Theorem 30 Let (S) be a connected Hopf SDSE in the abelian case. Then the group
Ch (H(S)) is of the form:

GN X (GN—I X (GQ X (G1 X Go)),
where G is a semi-direct product of the form:
Go =W x (Vx Ga),

where V is a direct sum of modules V,,, and W a direct sum of modules W, and Wi«u' Moreover,
for allm > 1, G, = (tK]|[t]], +) as a group.

Proof. Similar to the proof of theorem 23. O

References

[1] Christoph Bergbauer and Dirk Kreimer, Hopf algebras in renormalization theory: locality
and Dyson-Schwinger equations from Hochschild cohomology, IRMA Lect. Math. Theor.
Phys., vol. 10, Eur. Math. Soc., Ziirich, 2006, arXiv:hep-th/0506190.

[2] D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the
combinatorial Hopf algebra of rooted trees, Comm. Math. Phys. 215 (2000), no. 1, 217-236,
arXiv:hep-th/0001202.

[3] Frédéric Chapoton, Algébres pré-lie et algébres de Hopf lides & la renormalisation, C. R.
Acad. Sci. Paris Sér. I Math. 332 (2001), no. 8, 681-684.

[4] Frédeéric Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad, Inter-
nat. Math. Res. Notices 8 (2001), 395-408, arXiv:math/0002069.

[5] C. Chryssomalakos, H. Quevedo, M. Rosenbaum, and J. D. Vergara, Normal coordinates
and primitive elements in the Hopf algebra of renormalization, Comm. Math. Phys. 255
(2002), no. 3, 465-485, arXiv:hep-th/0105259.

[6] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommulative ge-
ometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/9808042.

[7] Héctor Figueroa and José M. Gracia-Bondia, On the antipode of Kreimer’s Hopf algebra,
Modern Phys. Lett. A 16 (2001), no. 22, 1427-1434, arXiv:hep-th/9912170.

[8] Loic Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra
255 (2002), no. 1, 85-120, arXiv:math.QA /0105210.

[9] , Faa di Bruno subalgebras of the Hopf algebra of planar trees from combi-
natorial Dyson-Schwinger equations, Advances in Mathematics 218 (2008), 136-162,

ArXiv:0707.1204.

[10] , Classification of systems of combinatorial Dyson-Schwinger equations in the Hopf

algebras of decorated rooted trees, Advances in Mathematics 224 (2010), 2094-2150.

[11] Robert L. Grossman and Richard G. Larson, Hopf-algebraic structure of families of trees, J.
Algebra 126 (1989), no. 1, 184-210, arXiv:0711.3877.

[12] , Hopf-algebraic structure of combinatorial objects and differential operators, Israel

J. Math. 72 (1990), no. 1-2, 109-117.

[13] , Differential algebra structures on families of trees, Adv. in Appl. Math. 35 (2005),

no. 1, 97-119, arXiv:math/0409006.

25



[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

Michael E. Hoffman, Combinatorics of rooted trees and Hopf algebras, Trans. Amer. Math.
Soc. 355 (2003), no. 9, 3795-3811.

Naihong Hu and Xiuling Wang, Quantizations of generalized-Witt algebra and of
Jacobson-Witt algebra in the modular case, J. Algebra 312 (2007), no. 2, 902-929,
arXiv:math/0602281.

Dirk Kreimer, Combinatorics of (perturbative) Quantum Field Theory, Phys. Rep. 4—6
(2002), 387-424, arXiv:hep-th/0010059.

, Dyson-Schwinger equations: from Hopf algebras to number theory, Universality and
renormalization, Fields Inst. Commun., no. 50, Amer. Math. Soc., Providence, RI, 2007,
arXiv:hep-th/0609004.

Dirk Kreimer and Karen Yeats, An étude in non-linear Dyson-Schwinger equations, Nuclear
Phys. B Proc. Suppl. 160 (2006), 116121, arXiv:hep-th /0605096.

Jean-Louis Loday and Maria Ronco, Combinatorial Hopf algebras, arXiv:0810.0435, 2008.

John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2)
81 (1965), 211-264.

Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf algebras built on
rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211-219.

26



