Primitive elements of the Hopf algebra of free quasi-symmetric functions

L. Foissy

Laboratoire de Mathématiques - FRE3111, Université de Reims Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France e-mail : loic.foissy@univ-reims.fr

ABSTRACT: Using the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore theorem, we construct a basis of the space of primitive elements of the Hopf algebra of free quasi-symmetric functions, indexed by a certain set of trees, and inductively computable.

Contents

1	Bidendriform bialgebras and FQSym							
	1.1 Bidendriform bialgebras	2						
	1.2 An example: the Hopf algebra FQSym	3						
2	Recovering $Prim_{coAss}(\mathbf{FQSym})$ from $Prim_{coDend}(\mathbf{FQSym})$	4						
	2.1 Dendriform Cartier-Quillen-Milnor-Moore theorem and variations	4						
	2.2 Free brace algebras	6						
3	Recovering $Prim_{coDend}(\mathbf{FQSym})$ from $Prim_{coAss}(\mathbf{FQSym})$	7						
4	An inductive basis of $Prim_{coAss}(\mathbf{FQSym})$	8						

Introduction

The Hopf algebra of free quasi-symmetric functions **FQSym**, also known as the Malvenuto-Reutenauer Hopf algebra, is introduced in [7]. It is a graded self-dual Hopf algebra, with the set of all permutations as a basis. Certain interesting properties are shown in [2]: in particular, it is shown that it is both free and cofree, and a basis of the space of its primitive elements is given, using the self-duality and a monomial basis. Note that computing the primitive elements of degree n by this method implies to inverse a certain $n! \times n!$ matrix.

The aim of this paper is to describe another basis of $Prim_{coAss}(\mathbf{FQSym})$, which can be inductively computed. We use for this the dendriform structure of \mathbf{FQSym} . Recall that a dendriform algebra is an associative algebra such that its product can be split into two non-associative products \prec and \succ , with good compatibilities [5, 6, 8]. It is known that \mathbf{FQSym} , or more precisely its augmentation ideal, is dendriform. More precisely, it is a dendriform Hopf algebra, in the sense of [8]. This implies, by the dendriform Cartier-Quillen-Milnor-Moore theorem, that $Prim_{coAss}(\mathbf{FQSym})$ is a brace algebra.

We introduced in [4] the notion of bidendriform bialgebra and showed that **FQSym** is bidendriform. The bidendriform Cartier-Quillen-Milnor-Moore theorem implies that **FQSym** is freely generated, as a dendriform algebra, by the space $Prim_{coDend}(\mathbf{FQSym})$ of primitive elements

in the codendriform sense. Combining this result with the dendriform Cartier-Quillen-Milnor-Moore theorem, we show that $Prim_{coAss}(\mathbf{FQSym})$ is, as a brace algebra, freely generated by $Prim_{coDend}(\mathbf{FQSym})$. We recall in section 2 a description of free brace algebras. If $(v_i)_{i \in I}$ is a basis of the vector space V, then the free brace algebra generated by V has a basis indexed by planar rooted trees decorated by I, and the brace structure is described in this basis by the help of graftings. Hence, for any basis of $Prim_{coDend}(\mathbf{FQSym})$, it is possible to recover a basis of $Prim_{coAss}(\mathbf{FQSym})$, indexed by a certain set of planar rooted trees.

Let, for all $n \in \mathbb{N}$:

$$\begin{cases} p_n = dim(Prim_{coAss}(\mathbf{FQSym})_n), \\ q_n = dim(Prim_{coDend}(\mathbf{FQSym})_n). \end{cases}$$

We then prove in section 3 that for $n \geq 2$, $q_n = (n-2)p_{n-1}$. We then give n-2 applications from $Prim_{coAss}(\mathbf{FQSym})_{n-1}$ to $Prim_{coDend}(\mathbf{FQSym})_n$, which give all elements of $Prim_{coDend}(\mathbf{FQSym})_n$. These applications are given by the insertion of n+1 at a given place in elements of the symmetric group S_n , seen as words in letters $1, \ldots, n$.

Combining the results of the second and third sections, we define inductively in the fourth section a new basis of $Prim_{coAss}(\mathbf{FQSym})_n$, indexed by certain planar decorated rooted trees. The trees which are only a root give a basis of $Prim_{coDend}(\mathbf{FQSym})_n$.

Notations.

- 1. K is a commutative field of any characteristic.
- 2. If V is a K-vector field which is N-graded, we shall denote by V_k the space of homogeneous elements of V of degree k.

1 Bidendriform bialgebras and FQSym

1.1 Bidendriform bialgebras

We introduced in [4] the following definition:

Definition 1 A bidendriform bialgebra is a family $(A, \prec, \succ, \Delta_{\prec}, \Delta_{\succ})$ such that:

1. A is a K-vector space and:

2. (Dendriform axioms). (A, \prec, \succ) is a dendriform algebra: for all $a, b, c \in A$,

$$(a \prec b) \prec c = a \prec (b \prec c + b \succ c), \tag{1}$$

$$(a \succ b) \prec c = a \succ (b \prec c), \tag{2}$$

$$5a \prec b + a \succ b) \succ c = a \succ (b \succ c). \tag{3}$$

3. (Codendriform axioms). $(A, \Delta_{\prec}, \Delta_{\succ})$ is a codendriform coalgebra: for all $a \in A$,

$$(\Delta_{\prec} \otimes Id) \circ \Delta_{\prec}(a) = (Id \otimes \Delta_{\prec} + Id \otimes \Delta_{\succ}) \circ \Delta_{\prec}(a), \tag{4}$$

$$(\Delta_{\succ} \otimes Id) \circ \Delta_{\prec}(a) = (Id \otimes \Delta_{\prec}) \circ \Delta_{\succ}(a), \tag{5}$$

$$(\Delta_{\prec} \otimes Id + \Delta_{\succ} \otimes Id) \circ \Delta_{\succ}(a) = (Id \otimes \Delta_{\succ}) \circ \Delta_{\succ}(a). \tag{6}$$

4. (Bidendriform axioms). For all $a, b \in A$,

$$\Delta_{\succ}(a \succ b) = a'b'_{\succ} \otimes a'' \succ b''_{\succ} + a' \otimes a'' \succ b + b'_{\succ} \otimes a \succ b''_{\succ} + ab'_{\succ} \otimes b''_{\succ} + a \otimes b, \quad (7)$$

$$\Delta_{\succ}(a \prec b) = a'b'_{\succ} \otimes a'' \prec b''_{\succ} + a' \otimes a'' \prec b + b'_{\succ} \otimes a \prec b''_{\succ}, \tag{8}$$

$$\Delta_{\prec}(a \succ b) = a'b'_{\prec} \otimes a'' \succ b''_{\prec} + ab'_{\prec} \otimes b''_{\prec} + b'_{\prec} \otimes a \succ b''_{\prec}, \tag{9}$$

$$\Delta_{\prec}(a \prec b) = a'b'_{\prec} \otimes a'' \prec b''_{\prec} + a'b \otimes a'' + b'_{\prec} \otimes a \prec b''_{\prec} + b \otimes a. \tag{10}$$

Remarks.

- 1. If A is a bidendriform bialgebra, then $K \oplus A$ is naturally a Hopf algebra, extending $\prec + \succ$ and $\Delta_{\prec} + \Delta_{\succ}$ on $K \oplus A$.
- 2. If A is a bidendriform bialgebra, it is also a dendriform hopf algebra in the sense of [8, 9], with coassociative coproduct given by $\tilde{\Delta} = \Delta_{\prec} + \Delta_{\succ}$. The compatibilities of dendriform Hopf algebras are given by (7) + (9) and (8) + (10).

If A is a bidendriform algebra, we define:

$$Prim_{codend}(A) = Ker(\Delta_{\prec}) \cap Ker(\Delta_{\succ}).$$

The following result is proved in [4] (theorem 35 and corollary 17):

Theorem 2 (Bidendriform Cartier-Quillen-Milnor-Moore theorem) Let A be a \mathbb{N} -graded bidendriform bialgebra, such that $A_0 = (0)$. Then A is freely generated as a dendriform algebra by $Prim_{coDend}(A)$. Moreover, consider the following formal series:

$$R(X) = \sum_{n=1}^{+\infty} dim(A),$$
 $Q(X) = \sum_{n=1}^{+\infty} dim\left(Prim_{coDend}(A_n)\right) X^n.$

Then
$$Q(X) = \frac{R(X)}{(R(X) + 1)^2}$$
.

1.2 An example: the Hopf algebra FQSym

See [1, 2, 7]. The algebra **FQSym** is the vector space generated by the elements $(\mathbf{F}_u)_{u \in \mathbb{S}}$, where \mathbb{S} is the disjoint union of the symmetric groups S_n $(n \in \mathbb{N})$. Its product and its coproduct are given in the following way: for all $u \in S_n$, $v \in S_m$, putting $u = (u_1 \dots u_n)$,

$$\Delta(\mathbf{F}_u) = \sum_{i=0}^n \mathbf{F}_{st(u_1...u_i)} \otimes \mathbf{F}_{st(u_{i+1}...u_n)},$$

$$\mathbf{F}_u.\mathbf{F}_v = \sum_{\zeta \in sh(n,m)} \mathbf{F}_{(u \times v).\zeta^{-1}},$$

where sh(n, m) is the set of (n, m)-shuffles, and st is the standardisation. Its unit is $1 = \mathbf{F}_{\emptyset}$, where \emptyset is the unique element of S_0 . Moreover, \mathbf{FQSym} is a \mathbb{N} -graded Hopf algebra, by putting $|\mathbf{F}_u| = n$ if $u \in S_n$.

Examples.

$$\mathbf{F}_{(1\,2)}\mathbf{F}_{(1\,2\,3)} = \mathbf{F}_{(1\,2\,3\,4\,5)} + \mathbf{F}_{(1\,3\,2\,4\,5)} + \mathbf{F}_{(1\,3\,4\,2\,5)} + \mathbf{F}_{(1\,3\,4\,5\,2)} + \mathbf{F}_{(3\,1\,4\,5\,2)} + \mathbf{F}_{(3\,4\,1\,5\,2)} +$$

$$\begin{array}{lcl} \Delta \left(\mathbf{F}_{(1\,2\,5\,4\,3)} \right) & = & 1 \otimes \mathbf{F}_{(1\,2\,5\,4\,3)} + \mathbf{F}_{(1)} \otimes \mathbf{F}_{(1\,4\,3\,2)} + \mathbf{F}_{(1\,2)} \otimes \mathbf{F}_{(3\,2\,1)} \\ & & + \mathbf{F}_{(1\,2\,3)} \otimes \mathbf{F}_{(2\,1)} + \mathbf{F}_{(1\,2\,4\,3)} \otimes \mathbf{F}_{(1)} + \mathbf{F}_{(1\,2\,5\,4\,3)} \otimes 1. \end{array}$$

Let $(\mathbf{FQSym})_+ = Vect(\mathbf{F}_u \mid u \in S_n, n \geq 1)$ be the augmentation ideal of \mathbf{FQSym} . We define $\prec, \succ, \Delta_{\prec}$ and Δ_{\succ} on $(\mathbf{FQSym})_+$ in the following way: for all $u \in S_n, v \in S_m$, by putting $u = (u_1 \dots u_n)$,

$$\mathbf{F}_{u} \prec \mathbf{F}_{v} = \sum_{\substack{\zeta \in sh(n,m) \\ \zeta^{-1}(n+m)=n}} \mathbf{F}_{(u \times v).\zeta^{-1}},$$

$$\mathbf{F}_{u} \succ \mathbf{F}_{v} = \sum_{\substack{\zeta \in sh(n,m) \\ \zeta^{-1}(n+m)=n+m}} \mathbf{F}_{(u \times v).\zeta^{-1}},$$

$$\Delta_{\prec}(\mathbf{F}_{u}) = \sum_{i=u^{-1}(n)}^{n-1} \mathbf{F}_{st(u_{1}...u_{i})} \otimes \mathbf{F}_{st(u_{i+1}...u_{n})},$$

$$\Delta_{\succ}(\mathbf{F}_{u}) = \sum_{i=1}^{u^{-1}(n)-1} \mathbf{F}_{st(u_{1}...u_{i})} \otimes \mathbf{F}_{st(u_{i+1}...u_{n})}.$$

Examples.

$$\begin{array}{lcl} \mathbf{F}_{(1\,2)} \prec \mathbf{F}_{(1\,2\,3)} & = & \mathbf{F}_{(1\,3\,4\,5\,2)} + \mathbf{F}_{(3\,1\,4\,5\,2)} + \mathbf{F}_{(3\,4\,1\,5\,2)} + \mathbf{F}_{(3\,4\,5\,1\,2)}, \\ \mathbf{F}_{(1\,2)} \succ \mathbf{F}_{(1\,2\,3)} & = & \mathbf{F}_{(1\,2\,3\,4\,5)} + \mathbf{F}_{(1\,3\,2\,4\,5)} + \mathbf{F}_{(1\,3\,4\,2\,5)} + \mathbf{F}_{(3\,1\,2\,4\,5)} + \mathbf{F}_{(3\,1\,4\,2\,5)} + \mathbf{F}_{(3\,1\,4\,2\,5)} + \mathbf{F}_{(3\,4\,1\,2\,5)}, \\ \Delta_{\prec} \left(\mathbf{F}_{(1\,2\,5\,4\,3)} \right) & = & \mathbf{F}_{(1\,2\,3)} \otimes \mathbf{F}_{(2\,1)} + \mathbf{F}_{(1\,2\,4\,3)} \otimes \mathbf{F}_{(1)}, \\ \Delta_{\succ} \left(\mathbf{F}_{(1\,2\,5\,4\,3)} \right) & = & \mathbf{F}_{(1)} \otimes \mathbf{F}_{(1\,4\,3\,2)} + \mathbf{F}_{(1\,2)} \otimes \mathbf{F}_{(3\,2\,1)}. \end{array}$$

The following result is proved in [4], theorem 38:

Theorem 3 $((\mathbf{FQSym})_+, \prec, \succ, \Delta_{\prec}, \Delta_{\succ})$ is a connected bidendriform bialgebra.

Moreover, $(\mathbf{FQSym})_+$ is N-graded, by putting the elements of S_n homogeneous of degree n. By theorem 2, with $q_n = dim(Prim_{coDend}(\mathbf{FQSym})_n)$, we obtain:

\overline{n}	1	2	3	4	5	6	7	8	9	10	11	12
q_n	1	0	1	6	39	284	2305	20 682	203651	2186744	25463925	319 989 030

2 Recovering $Prim_{coAss}(FQSym)$ from $Prim_{coDend}(FQSym)$

2.1 Dendriform Cartier-Quillen-Milnor-Moore theorem and variations

Recall that a brace algebra is a K-vector space A together with a n-multilinear operation for all $n \geq 2$:

$$\langle \ldots \rangle : \left\{ \begin{array}{ccc} A^{\otimes n} & \longrightarrow & A \\ a_1 \otimes \ldots \otimes a_n & \longrightarrow & \langle a_1, \ldots, a_n \rangle, \end{array} \right.$$

satisfying certain relations; see [8, 9] for more details. For example:

$$\langle a_1, \langle a_2, a_3 \rangle \rangle = \langle a_1, a_2, a_3 \rangle + \langle \langle a_1, a_2 \rangle, a_3 \rangle + \langle a_2, a_1, a_3 \rangle.$$

The following theorem is proved in [8, 9]; more precisely, the first point of this theorem is proposition 2-8 and theorem 3-4 of [8] and the second point is theorem 4-6 of [9]:

Theorem 4 (Dendriform Cartier-Quillen-Milnor-Moore theorem) Let A be a dendriform Hopf algebra. We denote $Prim_{coAss}(A) = Ker(\tilde{\Delta})$.

1. $Prim_{coAss}(A)$ is a brace algebra, with brackets given by:

$$\langle p_1,\ldots,p_n\rangle$$

$$= \sum_{i=0}^{n-1} (-1)^{n-1-i} (p_1 \prec (p_2 \prec (\ldots \prec p_i) \ldots) \succ p_n \prec (\ldots (p_{i+1} \succ p_{i+2}) \succ \ldots) \succ p_{n-1}).$$

2. If A is freely generated as a dendriform algebra by a subvector space $V \subseteq Prim_{coAss}(A)$, then $Prim_{coAss}(A)$ is freely generated as a brace algebra by V.

Let us precise the relation between $Prim_{coAss}(A)$ and $Prim_{coDend}(A)$ if A is a bidendriform bialgebra. Combining the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore theorems:

Theorem 5 Let A be a \mathbb{N} -graded bidendriform bialgebra, with $A_0 = (0)$. Then $Prim_{coAss}(A)$ is, as a brace algebra, freely generated by $Prim_{coDend}(A)$.

Proof. By the bidendriform Cartier-Quillen-Milnor-Moore theorem, A is freely generated as a dendriform algebra by $Prim_{coDend}(A)$. By the second point of the dendriform Cartier-Quillen-Milnor-Moore theorem, $Prim_{coAss}(A)$ is freely generated as a brace algebra by the space $Prim_{coDend}(A)$.

Proposition 6 If A is \mathbb{N} -graded dendriform Hopf algebra, such that $A_0 = (0)$, then A is generated as a dendriform algebra by $Prim_{coAss}(A)$. Moreover, consider the following formal series:

$$R(X) = \sum_{n=1}^{\infty} dim(A_n)X^n, \qquad P(X) = \sum_{n=1}^{+\infty} dim(Prim_{coDend}((A)_n)X^n.$$

Then
$$P(X) = \frac{R(X)}{1 + R(X)}$$
.

Proof. First step. Let $p_1, \ldots, p_n \in Prim_{coAss}(A)$. We define by induction on n:

$$\omega(p_1,\ldots,p_n) = \begin{cases} p_1 & \text{if } n=1, \\ p_n \prec \omega(p_1,\ldots,p_{n-1}) & \text{if } n \geq 2. \end{cases}$$

An easy induction on n allows to show the following result, using (8)+(10):

$$\tilde{\Delta}(\omega(p_1,\ldots,p_n)) = \sum_{i=1}^{n-1} \omega(p_1,\ldots,p_i) \otimes \omega(p_{i+1},\ldots,p_n).$$

We denote by $\tilde{\Delta}^n: A \longrightarrow A^{n+1}$ the iterated coproducts of A. It comes by induction:

$$\tilde{\Delta}^m(\omega(p_1,\ldots,p_n)) = \begin{cases} 0 & \text{if } m \ge n, \\ p_1 \otimes \ldots \otimes p_n & \text{if } m = n-1. \end{cases}$$

Second step. We consider the tensor (non counitary) coalgebra $C = T(Prim_{coAss}(A))$:

$$C = \bigoplus_{n=1}^{\infty} Prim_{coAss}(A)^{\otimes n}.$$

It is a coalgebra for the deconcatenation coproduct. As $Prim_{coAss}(A)$ is N-graded, C is a graded coalgebra with formal series:

$$S(X) = \frac{1}{1 - P(X)} - 1 = \frac{P(X)}{1 - P(X)}.$$

By the first step, the following application is a morphism of graded coalgebras:

$$\Psi: \left\{ \begin{array}{ccc} C & \longrightarrow & A \\ p_1 \otimes \ldots \otimes p_n & \longrightarrow & \omega(p_1, \ldots, p_n). \end{array} \right.$$

Third step. Suppose that $Ker(\Psi)$ is non zero. As it is a coideal of C, it contains primitive elements of C, that is to say elements of $Prim_{coAss}(A)$. As Ψ is obviously monic on $Prim_{coAss}(A)$, this is impossible. So $Ker(\Psi) = (0)$ and Ψ is monic.

Let $a \in A$. As $A_0 = (0)$, for a certain $N(a) \in \mathbb{N}^*$, $\tilde{\Delta}^{N(a)}(a) = 0$. We prove that $a \in Im(\Psi)$ by induction on N(a). If N(a) = 1, then $a \in Prim_{coAss}(A)$ and the result is obvious. Suppose that the result is true for all $b \in A$ such that N(b) < N(a). As $\tilde{\Delta}^{N(a)}(a) = 0$, necessarily $\tilde{\Delta}^{N(a)-1}(a) \in Prim_{coAss}(A)^{\otimes N(a)}$. We put:

$$\tilde{\Delta}^{N(a)-1}(a) = a_1 \otimes \ldots \otimes a_n, \qquad b = a - \omega(a_1, \ldots, a_n).$$

By the first step, $\tilde{\Delta}^{N(a)-1}(b) = 0$, so N(b) < N(a). By the induction hypothesis, $b \in Im(\Psi)$. As $\omega(a_1, \ldots, a_n) \in Im(\Psi)$, $a \in Im(\Psi)$.

Last step. As Ψ in an isomorphism of graded coalgebras, S(X) = R(X). Hence:

$$R(X) = \frac{P(X)}{1 - P(X)},$$

so
$$R(X) - R(X)P(X) = P(X)$$
 and $P(X) = \frac{R(X)}{1 + R(X)}$.

2.2 Free brace algebras

Using a description of the free dendriform algebra generated by a set \mathcal{D} with planar decorated forests, we gave a description of the free brace algebra $Brace(\mathcal{D})$ in [3]. A basis of this brace algebra is given by the set $T^{\mathcal{D}}$ of planar rooted trees decorated by \mathcal{D} . For example:

$$\begin{aligned} &\mathit{Brace}(\mathcal{D})_1 &= \mathit{Vect}(\boldsymbol{\cdot}_a, \ a \in \mathcal{D}), \\ &\mathit{Brace}(\mathcal{D})_2 &= \mathit{Vect}(\boldsymbol{\mathbf{1}}_a^b, \ a, b \in \mathcal{D}), \\ &\mathit{Brace}(\mathcal{D})_3 &= \mathit{Vect}({}^c\mathbf{V}_a^b, \ \boldsymbol{\mathbf{1}}_a^c, \ a, b, c \in \mathcal{D}), \\ &\mathit{Brace}(\mathcal{D})_4 &= \mathit{Vect}({}^d\mathbf{V}_a^b, \ {}^d\mathbf{V}_a^b, \ {}^d\mathbf{V}_a^b, \ {}^d\mathbf{V}_a^c, \ \boldsymbol{\mathbf{1}}_a^c, \ a, b, c, d \in \mathcal{D}), \dots \end{aligned}$$

The brace bracket satisfies, for all $t_1, \ldots, t_{n-1} \in T^{\mathcal{D}}, d \in \mathcal{D}$:

$$\langle t_1, \ldots, t_{n-1}, \bullet_d \rangle = B_d(t_{n-1} \ldots t_1),$$

where $B_d(t_{n-1}...t_1)$ is the tree obtained by grafting the trees $t_{n-1},...,t_1$ (in this order) on a common root decorated by d. For example, if $a,b,c,d \in \mathcal{D}$,

$$\langle \mathbf{.}_a, \mathbf{1}_b^c, \mathbf{.}_d \rangle = {}^c \mathbf{V}_d^a.$$

As a consequence, if A is a connected bidendriform bialgebra and if $(q_d)_{d \in \mathcal{D}}$ is a basis of $Prim_{coDend}(A)$, then a basis of $Prim_{coAss}(A)$ is given by $(p_t)_{t \in T^{\mathcal{D}}}$ defined inductively by:

$$\begin{cases} p_{\bullet d} = q_d, \\ p_{B_d^+(t_1...t_n)} = \langle p_{t_n}, \dots, p_{t_1}, q_d \rangle. \end{cases}$$

3 Recovering $Prim_{coDend}(\mathbf{FQSym})$ from $Prim_{coAss}(\mathbf{FQSym})$

For all $n \in \mathbb{N}^*$, we put:

$$\begin{cases} p_n = dim(Prim_{coAss}(\mathbf{FQSym})_n), \\ q_n = dim(Prim_{coDend}(\mathbf{FQSym})_n). \end{cases}$$

Proposition 7 For all $n \geq 2$, $q_n = (n-2)p_{n-1}$.

Proof. We put:

$$R(X) = \sum_{n=1}^{\infty} n! X^n, \qquad P(X) = \sum_{n=1}^{\infty} p_n X^n, \qquad Q(X) = \sum_{n=1}^{\infty} q_n X^n.$$

By theorem 2 and proposition 6:

$$P(X) = \frac{R(X)}{1 + R(X)},$$
 $Q(X) = \frac{R(X)}{(1 + R(X))^2}.$

Hence:

$$P'(X) = \frac{R'(X)}{(1 + R(X))^2}.$$

Moreover:

$$R'(X) = \sum_{n=1}^{\infty} nn! X^{n-1}$$

$$= \sum_{n=1}^{\infty} (n+1)! X^{n-1} - \sum_{n=1}^{\infty} n! X^{n-1}$$

$$= \frac{R(X) - X}{X^2} - \frac{R(X)}{X}$$

$$= \frac{R(X) - X(1 + R(X))}{X^2}.$$

We deduce:

$$X^{2}P'(X) = \frac{R(X) - X(1 + R(X))}{(1 + R(X))^{2}} = Q(X) - \frac{X}{1 + R(X)} = Q(X) - X + XP(X).$$

So:

$$X^{2}P'(X) + XP(X) = \sum_{n=1}^{\infty} (n-1)p_{n}X^{n+1} = Q(X) - X = \sum_{n=2}^{\infty} q_{n}X^{n}.$$

As a conclusion, for all $n \ge 2$, $q_n = (n-2)p_{n-2}$.

Definition 8 Let $i \in \mathbb{N}^*$. We define $\Phi_i : \mathbf{FQSym} \longrightarrow \mathbf{FQSym}$ in the following way: for all $n \in \mathbb{N}$, for all $\sigma = (\sigma_1, \dots, \sigma_n) \in S_n$,

$$\Phi_i(\mathbf{F}_{\sigma}) = \left\{ \begin{array}{l} 0 \text{ if } i \geq n, \\ \mathbf{F}_{(\sigma_1, \dots, \sigma_i, n+1, \sigma_{i+1}, \dots, \sigma_n)} \text{ if } i < n. \end{array} \right.$$

Theorem 9 Let $n \geq 2$. The following application is bijective:

$$\Phi: \left\{ \begin{array}{ccc} (Prim_{coAss}(\mathbf{FQSym})_{n-1})^{n-2} & \longrightarrow & Prim_{coDend}(\mathbf{FQSym})_n \\ (p_1, \dots, p_{n-2}) & \longrightarrow & \Phi_1(p_1) + \dots + \Phi_{n-2}(p_{n-2}). \end{array} \right.$$

Proof. First step. Let us first prove that Φ takes its values in $Prim_{coDend}(\mathbf{FQSym})$. Let $p \in Prim_{coAss}(\mathbf{FQSym})$ and $1 \le i \le n-2$. For all $k \in \mathbb{N}$, let π_k be the projection on \mathbf{FQSym}_k . By definition of Δ_{\prec} and Δ_{\succ} , for all $\sigma \in S_{n-1}$:

$$\Delta_{\prec}(\Phi_{i}(\mathbf{F}_{\sigma})) = \left(\sum_{j=i+1}^{n-2} \pi_{j} \otimes \pi_{n-1-j}\right) \circ \tilde{\Delta}(\mathbf{F}_{\sigma}),$$

$$\Delta_{\succ}(\Phi_{i}(\mathbf{F}_{\sigma})) = \left(\sum_{j=1}^{i} \pi_{j} \otimes \pi_{n-1-j}\right) \circ \tilde{\Delta}(\mathbf{F}_{\sigma}).$$

By linearity, we obtain:

$$\Delta_{\prec}(p) = \left(\sum_{j=i+1}^{n-2} \pi_j \otimes \pi_{n-1-j}\right) \circ \tilde{\Delta}(p) = 0,$$

$$\Delta_{\succ}(p) = \left(\sum_{j=1}^{i} \pi_j \otimes \pi_{n-1-j}\right) \circ \tilde{\Delta}(p) = 0.$$

This proves the first step.

Second step. We now prove that Φ is monic. Let $(p_1, \ldots, p_{n-2}) \in Ker(\Phi)$. Let be $1 \leq i \leq n-2$. We define:

$$\varpi_i : \left\{ \begin{array}{ccc} \mathbf{FQSym}_n & \longrightarrow & \mathbf{FQSym}_n \\ \mathbf{F}_{\sigma} & \longrightarrow & \left\{ \begin{array}{ccc} 0 & \text{if} & \sigma^{-1}(n) \neq i+1, \\ \mathbf{F}_{\sigma} & \text{if} & \sigma^{-1}(n) = i+1. \end{array} \right. \right.$$

Then, in an obvious way, $\varpi_i(\Phi(p_1,\ldots,p_{n-2})) = \Phi_i(p_i) = 0$. As Φ_i is obviously monic on \mathbf{FQSym}_{n-1} (because $i \leq n-2$), $p_i = 0$. So Φ is monic.

Last step. As $dim\left(\left(Prim_{coAss}(\mathbf{FQSym})_{n-1}\right)^{n-2}\right) = dim\left(Prim_{coDend}(\mathbf{FQSym})_n\right)$, from proposition 7, Φ is bijective.

4 An inductive basis of $Prim_{coAss}(FQSym)$

We now combine results of the second and third sections to obtain an basis of the space $Prim_{coAss}(\mathbf{FQSym})$. We first define inductively some set of partially planar decorated trees $\mathbb{T}(n)$ in the following way:

- 1. $\mathbb{T}(0)$ is the set of non decorated planar trees. The weight of an element of $\mathbb{T}(0)$ is the number of its vertices.
- 2. Suppose that $\mathbb{T}(n)$ is defined. Then $\mathbb{T}(n+1)$ is the set of planar trees defined by :
 - (a) The elements of $\mathbb{T}(n+1)$ are partially decorated planar trees.
 - (b) The vertices of the elements of $\mathbb{T}(n+1)$ can eventually be decorated by a pair (t,k), with $t \in \mathbb{T}(n)$ and k an integer in $\{1,\ldots,weight(t)-1\}$.
 - (c) The weight of an element of $\mathbb{T}(n)$ is the sum of the number of its vertices and of the weights of the trees of $\mathbb{T}(n)$ that appear in its decorations.

Inductively, for all $n \in \mathbb{N}$, $\mathbb{T}(n) \subseteq \mathbb{T}(n+1)$. We put $\mathbb{T} = \bigcup_{n \in \mathbb{N}} \mathbb{T}(n)$.

Examples.

- 1. Elements of \mathbb{T} of weight 1: •.
- 2. Elements of \mathbb{T} of weight 2: $\mathbf{1}$.
- 3. Elements of \mathbb{T} of weight 3: \mathbb{V} , $\frac{1}{2}$, $\bullet_{(\frac{1}{2},1)}$.
- 4. Elements of \mathbb{T} of weight 4:

(a)
$$\Psi$$
, $\stackrel{1}{V}$, $\stackrel{1}{V}$, $\stackrel{1}{V}$, $\stackrel{1}{V}$,

$$\text{(b)} \; \boldsymbol{\cdot} (\; \vee_{\;,1}), \; \boldsymbol{\cdot} (\; \vee_{\;,2}), \; \boldsymbol{\cdot} \left(\boldsymbol{\dot{\dagger}}_{,1}\right), \; \boldsymbol{\cdot} \left(\boldsymbol{\dot{\dagger}}_{,2}\right), \; \boldsymbol{\cdot} \left(\boldsymbol{\cdot}_{(\boldsymbol{\dot{\dagger}}_{\;,1})}, \boldsymbol{\dot{1}}\right), \; \boldsymbol{\cdot} \left(\boldsymbol{\cdot}_{(\boldsymbol{\dot{\dagger}}_{\;,1})}, \boldsymbol{\dot{2}}\right).$$

(c)
$$!^{(1,1)}, !_{(1,1)}$$
.

We can then define a basis $(p_t)_{i\in\mathbb{T}}$ of $Prim_{coAss}(\mathbf{FQSym})$ inductively in the following way:

- 1. $p_{\bullet} = \mathbf{F}_{(1)}$.
- 2. If $t = {\bf \cdot}_{(t',i)}$, then $p_t = \Phi_i(p_{t'})$.
- 3. If t is not a single root, let t_1, \ldots, t_{n-1} be the children of its roots, from left to right, and t_n its root. Then $p_t = \langle p_{t_{n-1}}, \ldots, p_{t_1}, p_{t_n} \rangle$.

By the preceding results:

Theorem 10 $(p_t)_{t \in \mathbb{T}}$ is a basis of $Prim_{coAss}(\mathbf{FQSym})$. A basis of $Prim_{coDend}(\mathbf{FQSym})$ is given by the p_t 's, where t is a single root.

Examples.

1.
$$p_{\bullet} = \mathbf{F}_{(1)}$$
.

2.
$$p_{\downarrow} = -\mathbf{F}_{(21)} + \mathbf{F}_{(12)}$$
.

3. (a)
$$p_{\bullet(1,1)} = -\mathbf{F}_{(231)} + \mathbf{F}_{(132)}$$
.

(b)
$$p \mathbf{V} = \mathbf{F}_{(231)} - \mathbf{F}_{(132)} - \mathbf{F}_{(312)} + \mathbf{F}_{(213)}$$
.

(c)
$$p_{\frac{1}{2}} = \mathbf{F}_{(321)} - \mathbf{F}_{(231)} - \mathbf{F}_{(213)} + \mathbf{F}_{(123)}$$

4. (a)
$$p_{\bullet}(\mathbf{1}_{(1,1)},\mathbf{1}) = -\mathbf{F}_{(2431)} + \mathbf{F}_{(1432)}$$
.

(b)
$$p_{\bullet}({}_{(1,1)},{}^{2}) = -\mathbf{F}_{(2341)} + \mathbf{F}_{(1342)}.$$

(c)
$$p_{(Y,1)} = \mathbf{F}_{(2431)} - \mathbf{F}_{(1432)} - \mathbf{F}_{(3412)} + \mathbf{F}_{(2413)}$$
.

(d)
$$p_{\cdot}(V_{,2}) = \mathbf{F}_{(2341)} - \mathbf{F}_{(1342)} - \mathbf{F}_{(3142)} + \mathbf{F}_{(2143)}$$
.

(e)
$$p_{\bullet}(\mathbf{f}_{,1}) = \mathbf{F}_{(3421)} - \mathbf{F}_{(2431)} - \mathbf{F}_{(2413)} + \mathbf{F}_{(1423)}.$$

(f)
$$p_{\bullet}(\mathbf{f}_{,2}) = \mathbf{F}_{(3241)} - \mathbf{F}_{(2341)} - \mathbf{F}_{(2143)} + \mathbf{F}_{(1243)}.$$

$$(g) \ p_{\ \ \psi} \ = -\mathbf{F}_{(2341)} + \mathbf{F}_{(1342)} + \mathbf{F}_{(3142)} + \mathbf{F}_{(3412)} - \mathbf{F}_{(2143)} - \mathbf{F}_{(2413)} - \mathbf{F}_{(4213)} + \mathbf{F}_{(3214)}.$$

(h)
$$p \cdot V = -\mathbf{F}_{(2431)} - \mathbf{F}_{(4231)} + \mathbf{F}_{(2341)} + \mathbf{F}_{(3241)} + \mathbf{F}_{(1432)} + \mathbf{F}_{(4132)} + \mathbf{F}_{(4312)} - \mathbf{F}_{(1342)} - \mathbf{F}_{(3142)} - \mathbf{F}_{(3412)} - \mathbf{F}_{(3214)} + \mathbf{F}_{(2314)}.$$

- (i) $p = -\mathbf{F}_{(3241)} + \mathbf{F}_{(2341)} + \mathbf{F}_{(2143)} + \mathbf{F}_{(2413)} + \mathbf{F}_{(4213)} \mathbf{F}_{(1243)} \mathbf{F}_{(1423)} \mathbf{F}_{(4123)} \mathbf{F}_{(2314)} \mathbf{F}_{(3214)} + \mathbf{F}_{(3124)} + \mathbf{F}_{(3124)}.$
- $(j) \ p \ \gamma \ = \mathbf{F}_{(3421)} + \mathbf{F}_{(2431)} + \mathbf{F}_{(4231)} \mathbf{F}_{(3241)} + \mathbf{F}_{(2314)} \mathbf{F}_{(1324)} \mathbf{F}_{(3124)} + \mathbf{F}_{(2134)}.$
- $(k) \ \ p_{\begin{subarray}{c} \begin{subarray}{c} \begin{subar$
- (l) $p_{\uparrow}_{(1,1)} = \mathbf{F}_{(2341)} + \mathbf{F}_{(2431)} + \mathbf{F}_{(4231)} 2\mathbf{F}_{(1342)} \mathbf{F}_{(1432)} \mathbf{F}_{(4132)} \mathbf{F}_{(3142)} \mathbf{F}_{(3412)} + \mathbf{F}_{(1243)} + \mathbf{F}_{(2143)} + \mathbf{F}_{(2413)}.$
- (m) $p_{\uparrow(1,1)} = \mathbf{F}_{(3421)} \mathbf{F}_{(2431)} \mathbf{F}_{(2314)} + \mathbf{F}_{(1324)}$.

References

- [1] Marcelo Aguiar and Frank Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math. 191 (2005), no. 2, 225–275, math.CO/0203282.
- [2] Gérard Duchamp, Florent Hivert, and Jean-Yves Thibon, Some generalizations of quasi-symmetric functions and noncommutative symmetric functions, Springer, Berlin, 2000, math.CO/0105065.
- [3] Loïc Foissy, Les algèbres de Hopf des arbres enracinés, II, Bull. Sci. Math. 126 (2002), 249–288.
- [4] _____, Bidendriform bialgebras, trees, and quasi-symmetric functions, J. Pure Appl. Algebra **209** (2007), 429–459.
- [5] Jean-Louis Loday, *Dialgebras*, Lecture Notes in Math., no. 1763, Springer, Berlin, 2001, math.QA/0102053.
- [6] Jean-Louis Loday and Maria O. Ronco, *Hopf algebra of the planar binary trees*, Adv. Math. **139** (1998), no. 2, 293–309.
- [7] Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967–982.
- [8] Maria O. Ronco, *Primitive elements of a free dendriform algebra*, Contemp. Math. **267** (2000), 245–263.
- [9] _____, Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras, J. Algebra **254** (2002), no. 1, 152–172.