Primitive elements of the Hopf algebra of free quasi-symmetric functions

L. Foissy

Laboratoire de Mathématiques - UMR6056, Université de Reims
Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France
e-mail: loic.foissy@univ-reims.fr

ABSTRACT: Using the dendriform and the bidendriform Cartier-Quillen-Milnor-Moore theorem, we construct a basis of the space of primitive elements of the Hopf algebra of free quasi-symmetric functions, indexed by a certain set of trees, and inductively computable.

Contents

1 Bidendriform bialgebras and FQSym 2
 1.1 Bidendriform bialgebras .. 2
 1.2 An example: the Hopf algebra FQSym 3

2 Recovering Prim_{coAss}(FQSym) from Prim_{coDend}(FQSym) 4
 2.1 Dendriform Milnor-Moore theorem and variations 4
 2.2 Free brace algebras ... 6

3 Recovering Prim_{coDend}(FQSym) from Prim_{coAss}(FQSym) 7

4 An inductive basis of Prim_{coAss}(FQSym) 8

Introduction

The Hopf algebra of free quasi-symmetric functions FQSym, also known as the Malvenuto-Reutenauer Hopf algebra, is introduced in [8]. It is a graded self-dual Hopf algebra, with basis the set of all permutations. Certain interesting properties are shown in [2]: in particular, it is shown that it is both free and cofree, and a basis of its space of primitive elements is given, using the self-duality and a monomial basis. Note that computing the primitive elements of degree \(n \) by this method implies to inverse a certain \(n! \times n! \) matrix.

The aim of this paper is to describe another basis of \(\text{Prim}_{\text{coAss}}(\text{FQSym}) \), which can be inductively computed. We use for this the dendriform structure of FQSym. Recall that a dendriform algebra is an associative algebra such that its product can be split into two nonassociative products \(\prec \) and \(\succ \), with good compatibilities ([6, 7, 9]). It is known that FQSym, or more precisely its augmentation ideal, is dendriform. More precisely, it is a dendriform Hopf algebra, in the sense of [9]. This implies, by the dendriform Milnor-Moore theorem, that \(\text{Prim}_{\text{coAss}}(\text{FQSym}) \) is a brace algebra.

We introduce in [3] the notion of bidendriform bialgebra and show that FQSym is bidendriform. The bidendriform Milnor-Moore theorem implies that FQSym is freely generated, as
a dendriform algebra, by the space \(\text{Prim}_{\text{coDend}}(\text{FQSym}) \) of primitive elements in the codendriform sense. Combining this result with the dendriform Milnor-Moore theorem, we show that \(\text{Prim}_{\text{coAss}}(\text{FQSym}) \) is, as a brace algebra, freely generated by \(\text{Prim}_{\text{coDend}}(\text{FQSym}) \). We recall in section 2 a description of free brace algebras. If \((v_i)_{i \in I} \) is a basis of the vector space \(V \), then the free brace algebra generated by \(V \) has a basis indexed by planar rooted trees decorated by \(I \), and the brace structure is described in this basis by the help of graftings. Hence, for any basis of \(\text{Prim}_{\text{coDend}}(\text{FQSym}) \), it is possible to recover a basis of \(\text{Prim}_{\text{coAss}}(\text{FQSym}) \), indexed by a certain set of planar decorated rooted trees.

Let, for all \(n \in \mathbb{N} \):

\[
\begin{align*}
p_n &= \dim(\text{Prim}_{\text{coAss}}(\text{FQSym})_n), \\
q_n &= \dim(\text{Prim}_{\text{coDend}}(\text{FQSym})_n).
\end{align*}
\]

We then prove in section 3 that for \(n \geq 2 \), \(q_n = (n - 2)p_{n-1} \). We then give \(n - 2 \) applications from \(\text{Prim}_{\text{coAss}}(\text{FQSym})_{n-1} \) to \(\text{Prim}_{\text{coDend}}(\text{FQSym})_n \), which give all elements of \(\text{Prim}_{\text{coDend}}(\text{FQSym})_n \). These applications are given by the insertion of \(n + 1 \) at a given place in elements of the symmetric group \(S_n \), seen as words in letters \(1, \ldots, n \).

Combining the results of sections 2 and 3, we define inductively in section 4 a new basis of \(\text{Prim}_{\text{coAss}}(\text{FQSym})_n \), indexed by certain planar decorated rooted trees. The trees which are only a root give a basis of \(\text{Prim}_{\text{coDend}}(\text{FQSym})_n \).

Notations.

1. \(K \) is a commutative field of any characteristic.
2. If \(V \) is a \(K \)-vector field which is \(\mathbb{N} \)-graded, we shall denote by \(V_k \) the space of homogeneous elements of \(V \) of degree \(k \).

1 Bidendriform bialgebras and FQSym

1.1 Bidendriform bialgebras

We introduced in [5] the following definition:

Definition 1 A bidendriform bialgebra is a family \((A, \prec, \succ, \Delta_\prec, \Delta_\succ) \) such that:

1. \(A \) is a \(K \)-vector space and:

\[
\begin{align*}
\prec &: \left\{ \begin{array}{ccc}
A \otimes A & \rightarrow & A \\
\otimes a b & \rightarrow & a \prec b,
\end{array} \right. \\
\Delta_\prec &: \left\{ \begin{array}{ccc}
A & \rightarrow & A \otimes A \\
a & \rightarrow & \Delta_\prec(a) = a'_\prec \otimes a''_\prec,
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\succ &: \left\{ \begin{array}{ccc}
A \otimes A & \rightarrow & A \\
\otimes a b & \rightarrow & a \succ b,
\end{array} \right. \\
\Delta_\succ &: \left\{ \begin{array}{ccc}
A & \rightarrow & A \otimes A \\
a & \rightarrow & \Delta_\succ(a) = a'_\succ \otimes a''_\succ.
\end{array} \right.
\end{align*}
\]

2. (Dendriform axioms). \((A, \prec, \succ) \) is a dendriform algebra: for all \(a, b, c \in A \),

\[
\begin{align*}
(a \prec b) \prec c &= a \prec (b \prec c + b \succ c) & (1) \\
(a \succ b) \prec c &= a \succ (b \prec c) & (2) \\
(a \prec b + a \succ b) \succ c &= a \succ (b \succ c) & (3)
\end{align*}
\]

3. (Codendriform axioms). \((A, \Delta_\prec, \Delta_\succ) \) is a codendriform coalgebra: for all \(a \in A \),

\[
\begin{align*}
(\Delta_\prec \otimes \text{Id}) \circ \Delta_\prec(a) &= (\text{Id} \otimes \Delta_\prec + \text{Id} \otimes \Delta_\succ) \circ \Delta_\prec(a) & (4) \\
(\Delta_\succ \otimes \text{Id}) \circ \Delta_\succ(a) &= (\text{Id} \otimes \Delta_\prec) \circ \Delta_\succ(a) & (5) \\
(\Delta_\prec \otimes \text{Id} + \Delta_\succ \otimes \text{Id}) \circ \Delta_\succ(a) &= (\text{Id} \otimes \Delta_\succ) \circ \Delta_\succ(a). & (6)
\end{align*}
\]
4. (Bidendriform axioms). For all \(a, b \in A\),

\[
\begin{align*}
\Delta_{>}(a \succ b) &= a'b_{>}' \otimes a'' > b''_{>}' + a' \otimes a'' > b + b_{>}' \otimes a > b''_{>} + ab_{>}' \otimes b''_{>} + a \otimes b, \\
\Delta_{>}(a < b) &= a'b_{>}' \otimes a'' < b''_{>}' + a' \otimes a'' < b + b_{>}' \otimes a < b''_{>}, \\
\Delta_{<}(a \succ b) &= a'b_{<}' \otimes a'' > b''_{<}' + ab_{<}' \otimes b''_{<} + a \otimes b_{<}' < a > b''_{<}, \\
\Delta_{<}(a < b) &= a'b_{<}' \otimes a'' < b''_{<}' + a \otimes b_{<}' < a > b''_{<} + b_{<}' \otimes a < b''_{<} + b \otimes a.
\end{align*}
\]

Remarks.

1. If \(A\) is a bidendriform bialgebra, then \(K \oplus A\) is naturally a Hopf algebra, by extending \(< + >\) and \(\Delta_{<} + \Delta_{>}\) on \(K \oplus A\).

2. If \(A\) is a bidendriform bialgebra, it is also a dendriform hopf algebra in the sense of \([9, 10]\), with coassociative coproduct given by \(\tilde{\Delta} = \Delta_{<} + \Delta_{>}\). The compatibilities of dendriform Hopf algebras are given by \((7) + (9)\) and \((8) + (10)\).

If \(A\) is a bidendriform algebra, we define:

\[
Prim_{codend}(A) = Ker(\Delta_{<}) \cap Ker(\Delta_{>}).
\]

The following result is proved in \([5]\) (theorem 35 and corollary 17):

Theorem 2 (Bidendriform Milnor-Moore theorem) Let \(A\) be a \(\mathbb{N}\)-graded bidendriform bialgebra, such that \(A_0 = (0)\). Then \(A\) is freely generated as a dendriform algebra by \(Prim_{coDend}(A)\). Moreover, consider the following formal series:

\[
\begin{align*}
R(X) &= \sum_{n=1}^{+\infty} \dim(A)X^n, \\
Q(X) &= \sum_{n=1}^{+\infty} \dim(Prim_{coDend}(A)_n)X^n.
\end{align*}
\]

Then:

\[
Q(X) = \frac{R(X)}{(R(X) + 1)^2}.
\]

1.2 An example: the Hopf algebra \(\text{FQSym}\)

(See \([1, 2, 8]\)). The algebra \(\text{FQSym}\) is the vector space generated by the elements \((\mathbf{F}_u)_{u \in S}\), where \(S\) is the disjoint union of the symmetric groups \(S_n\) \((n \in \mathbb{N})\). Its product and its coproduct are given in the following way: for all \(u \in S_n, v \in S_m\), by putting \(u = (u_1 \ldots u_n)\),

\[
\begin{align*}
\Delta(\mathbf{F}_u) &= \sum_{i=0}^{n} \mathbf{F}_{st(u_1 \ldots u_i)} \otimes \mathbf{F}_{st(u_{i+1} \ldots u_n)}, \\
\mathbf{F}_u \mathbf{F}_v &= \sum_{\zeta \in sh(n, m)} \mathbf{F}_{(u \times v), \zeta}^{-1},
\end{align*}
\]

where \(sh(n, m)\) is the set of \((n, m)\)-shuffles, and \(st\) is the standardisation. Its unit is \(1 = \mathbf{F}_\emptyset\), where \(\emptyset\) is the unique element of \(S_0\). Moreover, \(\text{FQSym}\) is a \(\mathbb{N}\)-graded Hopf algebra, by putting \(|\mathbf{F}_u| = n\) if \(u \in S_n\).

Examples.

\[
\begin{align*}
\mathbf{F}_{(12)} \mathbf{F}_{(123)} &= \mathbf{F}_{(12345)} + \mathbf{F}_{(13245)} + \mathbf{F}_{(13425)} + \mathbf{F}_{(13452)} + \mathbf{F}_{(31245)} + \mathbf{F}_{(31425)} + \mathbf{F}_{(31452)} + \mathbf{F}_{(34125)} + \mathbf{F}_{(34152)} + \mathbf{F}_{(34512)}, \\
\Delta(\mathbf{F}_{(12543)}) &= 1 \otimes \mathbf{F}_{(12543)} + \mathbf{F}_{(1)} \otimes \mathbf{F}_{(1432)} + \mathbf{F}_{(12)} \otimes \mathbf{F}_{(321)} + \mathbf{F}_{(123)} \otimes \mathbf{F}_{(21)} + \mathbf{F}_{(1243)} \otimes \mathbf{F}_{(1)} + \mathbf{F}_{(12543)} \otimes 1.
\end{align*}
\]

3
Let \((FQSym)_{+} = Vect(Fu / u \in S_n, n \geq 1)\) be the augmentation ideal of \(FQSym\). We define \(<, >, \Delta_<, \Delta_\succ\) on \((FQSym)_{+}\) in the following way: for all \(u \in S_n, v \in S_m\), by putting \(u = (u_1 \ldots u_n)\),

\[
F_u \prec F_v = \sum_{\zeta \in sh(n, m)} F_{(u \times v)} \zeta^{-1},
\]

\[
F_u \succ F_v = \sum_{\zeta \in sh(n, m)} F_{(u \times v)} \zeta^{-1},
\]

\[
\Delta_{<}(F_u) = \sum_{i=1}^{u-1(n)} F_{st(u_1 \ldots u_i)} \otimes F_{st(u_{i+1} \ldots u_n)},
\]

\[
\Delta_{\succ}(F_u) = \sum_{i=1}^{u-1(n)-1} F_{st(u_1 \ldots u_i)} \otimes F_{st(u_{i+1} \ldots u_n)}.
\]

Examples.

\[
F_{(1 2)} \prec F_{(1 2 3)} = F_{(1 3 4 5 2)} + F_{(3 1 4 5 2)} + F_{(3 4 1 5 2)} + F_{(3 4 5 1 2)},
\]

\[
F_{(1 2)} \succ F_{(1 2 3)} = F_{(1 2 4 3 2)} + F_{(1 3 2 4 5)} + F_{(1 3 4 2 5)} + F_{(3 1 2 4 5)} + F_{(3 1 4 2 5)} + F_{(3 4 1 2 5)}.
\]

\[
\Delta_{<}(F_{(1 2 5 4 3)}) = F_{(1 2 3)} \otimes F_{(2 1)} + F_{(1 2 4 3)} \otimes F_{(1)},
\]

\[
\Delta_{\succ}(F_{(1 2 5 4 3)}) = F_{(1)} \otimes F_{(1 4 3 2)} + F_{(1 2)} \otimes F_{(3 2 1)}.
\]

The following result is proved in [5] (theorem 38):

Theorem 3 \(((FQSym)_{+}, \prec, \succ, \Delta_{<}, \Delta_{\succ})\) is a connected bidendriform bialgebra.

Moreover, \((FQSym)_{+}\) is \(\mathbb{N}\)-graded, by putting the elements of \(S_n\) homogeneous of degree \(n\). By theorem 2, with \(q_n = dim(Prim_{coDend}(FQSym)_n)\), we obtain:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_n)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>39</td>
<td>284</td>
<td>2 305</td>
<td>20 682</td>
<td>203 651</td>
<td>2 186 744</td>
<td>25 463 925</td>
<td>319 989 030</td>
</tr>
</tbody>
</table>

2 Recovering \(Prim_{coAss}(FQSym)\) from \(Prim_{coDend}(FQSym)\)

2.1 Dendriform Milnor-Moore theorem and variations

Recall that a brace algebra is a \(K\)-vector space \(A\) together with an \(n\)-multilinear operation for all \(n \geq 2\):

\[
< \ldots >: \left\{ \begin{array}{c}
A^\otimes n \longrightarrow A \\
a_1 \otimes \ldots \otimes a_n \longrightarrow < a_1, \ldots, a_n >
\end{array} \right.,
\]

satisfying certain relations (see [9, 10] for more details). For example:

\[
< a_1, < a_2, a_3 >= < a_1, a_2, a_3 > + << a_1, a_2 >, a_3 > + < a_2, a_1, a_3 > .
\]

The following theorem is proved in [9, 10] (more precisely, the first point of this theorem is proposition 2-8 and theorem 3-4 of [9] and the second point is theorem 4-6 of [10]):

Theorem 4 (Dendriform Milnor-Moore) Let \(A\) be a dendriform Hopf algebra. We denote \(Prim_{coAss}(A) = Ker(\Delta)\),
1. Prim\textsubscript{coAss}(\mathcal{A}) is a brace algebra, with brackets given by:
\[
\langle p_1, \ldots, p_n \rangle = \sum_{i=0}^{n-1} (-1)^{n-1-i} (p_1 \prec (p_2 \prec (\ldots \prec p_i \ldots) \succ p_n \prec (\ldots (p_{i+1} \succ p_{i+2}) \succ \ldots) \succ p_{n-1}).
\]

2. If \(\mathcal{A} \) is freely generated as a dendriform algebra by a subvector space \(V \subseteq \text{Prim}_{\text{coAss}}(\mathcal{A}) \), then \(\text{Prim}_{\text{coAss}}(\mathcal{A}) \) is freely generated as a brace algebra by \(V \).

Let us precise the relation between \(\text{Prim}_{\text{coAss}}(\mathcal{A}) \) and \(\text{Prim}_{\text{coDend}}(\mathcal{A}) \) if \(\mathcal{A} \) is a bidendriform bialgebra. Combining the dendriform and the bidendriform Milnor-Moore theorems:

Theorem 5 Let \(\mathcal{A} \) be a \(\mathbb{N} \)-graded bidendriform bialgebra, with \(A_0 = (0) \). Then \(\text{Prim}_{\text{coAss}}(\mathcal{A}) \) is, as a brace algebra, freely generated by \(\text{Prim}_{\text{coDend}}(\mathcal{A}) \).

Proof. By the bidendriform Milnor-Moore theorem, \(\mathcal{A} \) is freely generated as a dendriform algebra by \(\text{Prim}_{\text{coDend}}(\mathcal{A}) \). By the dendriform Milnor-Moore theorem (second point), \(\text{Prim}_{\text{coAss}}(\mathcal{A}) \) is freely generated as a brace algebra by \(\text{Prim}_{\text{coDend}}(\mathcal{A}) \). \(\square \)

Proposition 6 If \(\mathcal{A} \) is \(\mathbb{N} \)-graded dendriform Hopf algebra, such that \(A_0 = (0) \), then \(\mathcal{A} \) is generated as a dendriform algebra by \(\text{Prim}_{\text{coAss}}(\mathcal{A}) \). Moreover, consider the following formal series:
\[
R(X) = \sum_{n=1}^{\infty} \dim(A_n) X^n, \quad P(X) = \sum_{n=1}^{+\infty} \dim(\text{Prim}_{\text{coDend}}((A)_n)) X^n.
\]

Then:
\[
P(X) = \frac{R(X)}{1 + R(X)}.
\]

Proof.

First step. Let \(p_1, \ldots, p_n \in \text{Prim}_{\text{coAss}}(\mathcal{A}) \). By induction on \(n \) we define:
\[
\omega(p_1, \ldots, p_n) = \left\{ \begin{array}{ll}
p_1 & \text{if } n = 1, \\
p_n \prec \omega(p_1, \ldots, p_{n-1}) & \text{if } n \geq 2.
\end{array} \right.
\]

An easy induction on \(n \) allows to show the following result, using (8)+(10):
\[
\check{\Delta}(\omega(p_1, \ldots, p_n)) = \sum_{i=1}^{n-1} \omega(p_1, \ldots, p_i) \otimes \omega(p_{i+1}, \ldots, p_n).
\]

We denote by \(\check{\Delta}^n : \mathcal{A} \rightarrow \mathcal{A}^{n+1} \) the iterated coproducts of \(\mathcal{A} \). It comes by induction:
\[
\check{\Delta}^n(\omega(p_1, \ldots, p_n)) = \left\{ \begin{array}{ll}
0 & \text{if } m \geq n,

p_1 \otimes \ldots \otimes p_n & \text{if } m = n - 1.
\end{array} \right.
\]

Second step. We consider the tensor (non counitary) coalgebra \(C = T(\text{Prim}_{\text{coAss}}(\mathcal{A})) \):
\[
C = \bigoplus_{n=1}^{\infty} \text{Prim}_{\text{coAss}}(\mathcal{A})^\otimes n.
\]

It is a coalgebra for the deconcatenation coproduct. As \(\text{Prim}_{\text{coAss}}(\mathcal{A}) \) is \(\mathbb{N} \)-graded, \(C \) is a graded coalgebra with formal series:
\[
S(X) = \frac{1}{1 - P(X)} - 1 = \frac{P(X)}{1 - P(X)}.
\]
By the first step, the following application is a morphism of graded coalgebras:

\[\Psi : \begin{cases} C & \longrightarrow A \\ p_1 \otimes \ldots \otimes p_n & \longrightarrow \omega(p_1, \ldots, p_n). \end{cases} \]

Third step. Suppose that \(\text{Ker}(\Psi) \) is non zero. As it is a coideal of \(C \), it contains primitive elements of \(C \), that is to say elements of \(\text{Prim}_{\text{coAss}}(A) \). As \(\Psi \) is obviously monic on \(\text{Prim}_{\text{coAss}}(A) \), this is not possible. So \(\text{Ker}(\Psi) = (0) \) and \(\Psi \) is monic.

Let \(a \in A \). As \(A_0 = (0) \), for a certain \(N(a) \in \mathbb{N}^* \), \(\bar{\Delta}^{N(a)}(a) = 0 \). We prove that \(a \in \text{Im}(\Psi) \) by induction on \(N(a) \). If \(N(a) = 1 \), then \(a \in \text{Prim}_{\text{coAss}}(A) \) and the result is obvious. Suppose that the result is true for all \(b \in A \) such that \(N(b) < N(a) \). As \(\bar{\Delta}^{N(a)}(a) = 0 \), necessarily \(\bar{\Delta}^{N(a)-1}(a) \in \text{Prim}_{\text{coAss}}(A)^{\otimes N(a)} \). We put:

\[\bar{\Delta}^{N(a)-1}(a) = a_1 \otimes \ldots \otimes a_n, \quad b = a - \omega(a_1, \ldots, a_n). \]

By the first step, \(\bar{\Delta}^{N(a)-1}(b) = 0 \), so \(N(b) < N(a) \). By induction hypothesis, \(b \in \text{Im}(\Psi) \). As \(\omega(a_1, \ldots, a_n) \in \text{Im}(\Psi) \), \(a \in \text{Im}(\Psi) \).

Last step. As \(\Psi \) in an isomorphism of graded coalgebras, \(S(X) = R(X) \). Hence:

\[
\begin{align*}
R(X) &= \frac{P(X)}{1 - P(X)}, \\
R(X) - R(X)P(X) &= P(X), \\
P(X) &= \frac{R(X)}{1 + R(X)}. \quad \square
\end{align*}
\]

2.2 Free brace algebras

Using a description of the free dendriform algebra generated by a set \(D \) with planar decorated forests, we gave a description of the free brace algebra \(\text{Brace}(D) \) in [4]. A basis of this brace algebra is given by the set \(T^D \) of planar rooted trees decorated by \(D \). For example:

\[
\begin{align*}
\text{Brace}(D)_1 &= \text{Vect}(\ast_a, a \in D), \\
\text{Brace}(D)_2 &= \text{Vect}(\ast_b^a, a, b \in D), \\
\text{Brace}(D)_3 &= \text{Vect}(\ast^a_b \ast_{c}^b, a, b, c \in D), \\
\text{Brace}(D)_4 &= \text{Vect}(\ast^a_b \ast^b_a, \ast^a_t, \ast^c_t, \ast^b_t, a, b, c, d \in D), \ldots
\end{align*}
\]

The brace bracket satisfies, for all \(t_1, \ldots, t_{n-1} \in T^D, \ d \in D \):

\[< t_1, \ldots, t_{n-1}, \ast_d > = B_d(t_{n-1} \ldots t_1), \]

where \(B_d(t_{n-1} \ldots t_1) \) is the tree obtained by grafting the trees \(t_{n-1}, \ldots, t_1 \) (in this order) on a common root decorated by \(d \). For example, if \(a, b, c, d \in D \),

\[< \ast_a, \ast_b^c, \ast_d > = \ast^a_c \ast^c_a \ast_d. \]

In consequence, if \(A \) is a connected bidendriform bialgebra and \((q_d)_{d \in D} \) a basis of \(\text{Prim}_{\text{coDend}}(A) \), a basis of \(\text{Prim}_{\text{coAss}}(A) \) is given by \((p_t)_{t \in T^D} \) defined inductively by:

\[
\begin{align*}
p \ast_d &= q_d, \\
p B_d^+(t_1 \ldots t_n) &= < p_{t_n}, \ldots, p_{t_1}, q_d >.
\end{align*}
\]
3 Recovering $\text{Prim}_{\text{coDend}}(\text{FQSym})$ from $\text{Prim}_{\text{coAss}}(\text{FQSym})$

For all $n \in \mathbb{N}^*$, we put:

$$\begin{align*}
\left\{ \begin{array}{l}
p_n = \dim(\text{Prim}_{\text{coAss}}(\text{FQSym})_n), \\
q_n = \dim(\text{Prim}_{\text{coDend}}(\text{FQSym})_n).
\end{array} \right.
\end{align*}$$

Proposition 7 For all $n \geq 2$, $q_n = (n - 2)p_{n-1}$.

Proof. We put:

$$R(X) = \sum_{n=1}^{\infty} n!X^n, \quad P(X) = \sum_{n=1}^{\infty} p_n X^n, \quad Q(X) = \sum_{n=1}^{\infty} q_n X^n.$$

By theorem 2 and proposition 6:

$$P(X) = \frac{R(X)}{1 + R(X)}, \quad Q(X) = \frac{R(X)}{(1 + R(X))^2}.$$

Hence:

$$P'(X) = \frac{R'(X)}{(1 + R(X))^2}.$$

Moreover:

$$R'(X) = \sum_{n=1}^{\infty} nn!X^{n-1} = \sum_{n=1}^{\infty} (n+1)!X^{n-1} - \sum_{n=1}^{\infty} n!X^{n-1} = \frac{R(X) - X}{X^2} - \frac{R(X)}{X} = \frac{R(X) - (R(X) + 1)}{X^2}.$$

We deduce:

$$X^2 P'(X) = \frac{R(X) - X(R(X) + 1)}{(1 + R(X))^2} = Q(X) - \frac{X}{1 + R(X)} = Q(X) - X + XP(X).$$

So:

$$X^2 P'(X) + XP(X) = \sum_{n=1}^{\infty} (n-1)p_n X^{n+1} = Q(X) - X = \sum_{n=2}^{\infty} q_n X^n.$$

In conclusion, for all $n \geq 2$, $q_n = (n - 2)p_{n-2}$. □

Definition 8 Let $i \in \mathbb{N}^*$. We define $\Phi_i : \text{FQSym} \rightarrow \text{FQSym}$ in the following way: for all $n \in \mathbb{N}$, for all $\sigma = (\sigma_1, \ldots, \sigma_n) \in S_n$,

$$\Phi_i(F_\sigma) = \begin{cases} 0 & \text{if } i \geq n \\ F_{(\sigma_1, \ldots, \sigma_i, n+1, \sigma_{i+1}, \ldots, \sigma_n)} & \text{if } i < n. \end{cases}$$
Theorem 9 Let \(n \geq 2 \). The following application is bijective:

\[
\Phi : \begin{cases}
(\text{Prim}_{\text{coAss}}(\text{FQSym})_{n-1})^{n-2} & \rightarrow \text{Prim}_{\text{coDend}}(\text{FQSym})_n \\
(p_1, \ldots, p_{n-2}) & \rightarrow \Phi_1(p_1) + \ldots + \Phi_{n-2}(p_{n-2})
\end{cases}
\]

Proof.

First step. \(\Phi \) takes its values in \(\text{Prim}_{\text{coDend}}(\text{FQSym}) \). Let \(p \in \text{Prim}_{\text{coAss}}(\text{FQSym}) \) and \(1 \leq i \leq n - 2 \). For all \(k \in \mathbb{N} \), let \(\pi_k \) be the projection on \(\text{FQSym}_k \). By definition of \(\Delta_\prec \) and \(\Delta_\succ \), we have immediately, for all \(\sigma \in S_{n-1} \):

\[
\Delta_\prec(\Phi_i(F_\sigma)) = \left(\sum_{j=i+1}^{n-2} \pi_j \otimes \pi_{n-1-j} \right) \circ \tilde{\Delta}(F_\sigma),
\]

\[
\Delta_\succ(\Phi_i(F_\sigma)) = \left(\sum_{j=1}^{i} \pi_j \otimes \pi_{n-1-j} \right) \circ \tilde{\Delta}(F_\sigma),
\]

By linearity, we obtain:

\[
\Delta_\prec(p) = \left(\sum_{j=i+1}^{n-2} \pi_j \otimes \pi_{n-1-j} \right) \circ \tilde{\Delta}(p) = 0,
\]

\[
\Delta_\succ(p) = \left(\sum_{j=1}^{i} \pi_j \otimes \pi_{n-1-j} \right) \circ \tilde{\Delta}(p) = 0.
\]

This proves the first step.

Second step. \(\Phi \) is monic. Let \((p_1, \ldots, p_{n-2}) \in \text{Ker}(\Phi) \). Let be \(1 \leq i \leq n - 2 \). We define:

\[
\varpi_i : \begin{cases}
\text{FQSym}_n & \rightarrow \text{FQSym}_n \\
F_\sigma & \rightarrow \begin{cases}
0 & \text{if } \sigma^{-1}(n) \neq i + 1, \\
F_\sigma & \text{if } \sigma^{-1}(n) = i + 1.
\end{cases}
\end{cases}
\]

Then, in an obvious way, \(\varpi_i(\Phi(p_1, \ldots, p_{n-2})) = \Phi_i(p_i) = 0 \). As \(\Phi_i \) is obviously monic on \(\text{FQSym}_{n-1} \) (because \(i \leq n - 2 \)), \(p_i = 0 \). So \(\Phi \) is monic.

Last step. As \(\text{dim} \left((\text{Prim}_{\text{coAss}}(\text{FQSym})_{n-1})^{n-2} \right) \neq \text{dim} \left(\text{Prim}_{\text{coDend}}(\text{FQSym})_n \right) \), by proposition 7, \(\Phi \) is bijective. \(\square \)

4 An inductive basis of \(\text{Prim}_{\text{coAss}}(\text{FQSym}) \)

We now combine results of section 2 and 3 to obtain an basis of \(\text{Prim}_{\text{coAss}}(\text{FQSym}) \). We first define inductively some set of partially planar decorated trees \(T(n) \) in the following way:

1. \(T(0) \) is the set of non decorated planar trees. The weight of an element of \(T(0) \) is the number of its vertices.

2. Suppose that \(T(n) \) is defined. Then \(T(n+1) \) is the set of planar trees defined by:

 (a) The elements of \(T(n+1) \) are partially decorated planar trees.

 (b) The vertices of the elements of \(T(n+1) \) can eventually be decorated by a pair \((t, k) \), with \(t \in T(n) \) and \(k \) an integer in {1, \ldots, \text{weight}(t) - 1}.

8
(c) The weight of an element of \(\mathcal{T}(n) \) is the sum of the number of its vertices and of the weights of the trees of \(\mathcal{T}(n) \) that appear in its decorations.

Inductively, for all \(n \in \mathbb{N} \), \(\mathcal{T}(n) \subseteq \mathcal{T}(n+1) \). We put:

\[
\mathcal{T} = \bigcup_{n \in \mathbb{N}} \mathcal{T}(n).
\]

Examples.

1. Elements of \(\mathcal{T} \) of weight 1: \(\ldots \)
2. Elements of \(\mathcal{T} \) of weight 2: \(1 \).
3. Elements of \(\mathcal{T} \) of weight 3: \(\vee, 1, \cdot, \tau \), with \(T = (1,1) \).
4. Elements of \(\mathcal{T} \) of weight 4:

 (a) \(\vee, \vee, \vee, \vee \),

 (b) \(\cdot, \tau \), with \(T = (\vee,1) \), or \(T = (\vee,2) \), or \(T = (\hat{1},1) \), or \(T = (\hat{1},2) \), or \(T = (\cdot,\tau;1) \) with \(T' = (1,1) \), or \(T = (\cdot,\tau;2) \) with \(T' = (1,1) \),

 (c) \(1^T \), with \(T = (1,1) \), \(1_T \), with \(T = (1,1) \).

We can then define a basis \((p_t)_{t \in \mathcal{T}} \) of \(\text{Prim}_{\text{coAss}}(\mathbf{FQSym}) \) inductively in the following way:

1. \(p_\tau = F_{(1)} \).
2. If \(t = \cdot, \tau \), with \(T = (t',i) \), then \(p_t = \Phi_i(p_{t'}) \).
3. If \(t \) is not a single root, let \(t_1, \ldots, t_{n-1} \) be the children of its roots, from left to right, and \(t_n \) its root. Then \(p_t = <p_{t_{n-1}}, \ldots, p_{t_1}, p_{t_n}> \).

By the preceding results:

Theorem 10 \((p_t)_{t \in \mathcal{T}} \) is a basis of \(\text{Prim}_{\text{coAss}}(\mathbf{FQSym}) \). A basis of \(\text{Prim}_{\text{coDend}}(\mathbf{FQSym}) \) is given by the \(p_t \)'s, where \(t \) is a single root.

Examples.

1. \(p_\tau = F_{(1)} \).
2. \(p_1 = -F_{(21)} + F_{(12)} \).
3. (a) \(p_\tau = -F_{(231)} + F_{(132)} \), with \(T = (1,1) \).

 (b) \(p_{\vee} = F_{(231)} - F_{(132)} - F_{(312)} + F_{(213)} \).

 (c) \(p_1 = F_{(321)} - F_{(231)} - F_{(213)} + F_{(123)} \).
4. (a) \(p_\tau = -F_{(2431)} + F_{(1432)} \), with \(T = (\cdot,\tau;1) \), where \(T' = (1,1) \).

 (b) \(p_\tau = -F_{(2341)} + F_{(1342)} \), with \(T = (\cdot,\tau;2) \), where \(T' = (1,1) \).

 (c) \(p_\tau = F_{(2431)} - F_{(1432)} - F_{(3412)} + F_{(2413)} \), with \(T = (\vee,1) \).

 (d) \(p_\tau = F_{(2341)} - F_{(1342)} - F_{(3142)} + F_{(2143)} \), with \(T = (\vee,2) \).

 (e) \(p_\tau = F_{(3421)} - F_{(2431)} - F_{(2413)} + F_{(1423)} \), with \(T = (1,1) \).

 (f) \(p_\tau = F_{(3241)} - F_{(2341)} - F_{(2143)} + F_{(1243)} \), with \(T = (1,2) \).
(g) \(p \gamma = -F_{(2341)} + F_{(1342)} + F_{(3142)} + F_{(3412)} - F_{(2413)} - F_{(2143)} + F_{(3214)}. \)

(h) \(p' \gamma = -F_{(2341)} - F_{(4231)} + F_{(2341)} + F_{(3241)} + F_{(4132)} + F_{(4312)} - F_{(1342)} - F_{(3142)} - F_{(3214)} + F_{(2314)}. \)

(i) \(p' \gamma = -F_{(2341)} + F_{(2431)} + F_{(2143)} + F_{(3241)} - F_{(1243)} - F_{(2314)} - F_{(3124)}. \)

(j) \(p \gamma = -F_{(3421)} + F_{(2431)} + F_{(4231)} - F_{(3241)} + F_{(3214)} - F_{(1324)} - F_{(3124)} + F_{(2134)}. \)

(k) \(\gamma \gamma = -F_{(3421)} - F_{(3214)} + F_{(3241)} - F_{(2314)} - F_{(2134)} + F_{(1234)}. \)

(l) \(p' \gamma = F_{(2341)} + F_{(2431)} + F_{(4231)} - 2F_{(1342)} - F_{(1432)} - F_{(4132)} - F_{(3412)} + F_{(1243)} + F_{(2143)} + F_{(2413)}, \text{ with } T = (1, 1). \)

(m) \(p' \gamma = F_{(3421)} - F_{(2131)} - F_{(2314)} + F_{(1324)}, \text{ with } T = (1, 1). \)

References

