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ABSTRACT. We describe and study a four parameters deformation of the two products and
the coproduct of the Hopf algebra of plane posets. We obtain a family of braided Hopf algebras,
which are generically self-dual. We also prove that in a particular case (when the second param-
eter goes to zero and the first and third parameters are equal), this deformation is isomorphic,
as a self-dual braided Hopf algebra, to a deformation of the Hopf algebra of free quasi-symmetric
functions FQSym.
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Introduction

A double poset is a finite set with two partial orders. As explained in [12], the space generated by
the double posets inherits two products and one coproduct, here denoted by ~», 4 and A, making
it both a Hopf and an infinitesimal Hopf algebra [10]. Moreover, this Hopf algebra is self dual.
When the second order is total, we obtain the notion of special posets, also called labelled posets
[13] or shapes [1]. A double poset is plane if its two partial orders satisfy a (in)compatibility
condition, see Definition 1. The subspace Hpp generated by plane posets is stable under the two
products and the coproduct, and is self-dual as a Hopf algebra |3, 4]: in particular, two Hopf
pairings are defined on it, using the notion of picture [6, 8, 9, 14]. Moreover, as proved in [4],
it is isomorphic to the Hopf algebra of free quasi-symmetric functions FQSym, also known as
the Malvenuto-Reutenauer Hopf algebra of permutations. An explicit isomorphism © is given
by the linear extensions of plane posets, see Definition 11.

We define in this text a four parameters deformation of the products and the coproduct
of Hpp, together with a deformation of the two pairings and of the morphism from Hpp to
FQSym. If ¢ = (q1, 92, g3, q4) € K*, the product m,(P ® Q) of two plane posets P and Q is a
linear span of plane posets R such that R = P U Q as a set, P and @ being plane subposets of
R. The coefficients are defined with the help of the two partial orders of R, see Theorem 14, and
are polynomials in ¢. In particular:

m1,000) = &5
mo,1,00 = %,
mM,0,1,00 — ™
mo,00,1) = ~7.

We also obtain the product dual to the coproduct A (considering the basis of double posets
as orthonormal) as m(; o 1,1), and its opposite given by m g1 1,1). Dually, we define a family of
coassociative coproducts A,. For any plane poset P, A(P) is a linear span of terms (P \ 1) ® I,
running over the plane subposets I of P, the coefficients being polynomials in ¢. In the particular
cases where at least one of the components of ¢ is zero, only h-ideals, r-ideals or biideals can
appear in this sum (Definition 7 and Proposition 22). We study the compatibility of A, with
both products ~» and 4 on Hpp (Proposition 23). In particular, (Hpp,~>,A,) satisfies the

axiom .
@) =23 a M @l ) @ (- o).

If g3 = 1, it is a braided Hopf algebra, with the braiding given by ¢,(P ® Q) = qLPHQ‘Q ® P;if

g3 = 1 and g4 = 1, this is a Hopf algebra, and if g3 = 1 and g4 = 0 this is an infinitesimal Hopf

algebra. If g4 = 1, this is the coopposite (or the opposite) of a braided Hopf algebra. Similar

results hold if we consider the second product 4, permuting the roles of (g3, q4) and (g1, q2)-
We define a symmetric pairing (—, —)4 such that:

(x @y, Ay(2))qg = (x ~ vy, 2)q for all z,y,z € Hpp.

If ¢ = (1,0,1,1), we recover the first "classical" pairing of Hpp. We prove that in the case
g2 = 0, this pairing is nondegenerate if, and only if, g1 # 0 (Corollary 36). Consequently, this
pairing is generically nondegenerate.

The coproduct of FQSym is finally deformed, in such a way that the algebra morphism ©
from Hpp to FQSym becomes compatible with Ay, if ¢ has the form ¢ = (¢1,0,¢1,¢4). De-
forming the second pairing (—, —)" of Hpp and the usual Hopf pairing of FQSym, the map ©
becomes also an isometry (Theorem 40). Consequently, the deformation (—, —); is nondegener-
ate if, and only if, g1q4 # 0.



This text is organized as follows. The first section contains reminders on the Hopf algebra
of plane posets Hpp, its two products, its coproducts and its two Hopf pairings, and on the
isomorphism © from Hpp to FQSym. The deformation of the products is defined in section
2, and we also consider the compatibility of these products with several bijections on PP and
the stability of certain families of plane posets under these products. We proceed to the dual
construction in the next section, where we also study the compatibility with the two (undeformed)
products. The deformation of the first pairing is described in section 4. The compatibilities with
the bijections on PP or with the second product 4 are also given, and the nondegeneracy is
proved for ¢ = (q1,0,q3,q4) if ¢1 # 0. The last section is devoted to the deformation of the
second pairing and of the morphism to FQSym.

1 Backgrounds and notations

1.1 Double and plane posets

Definition 1 1. [12/ A double poset is a triple (P, <1,<s), where P is a finite set and
<4, <9 are two partial orders on P.

2. A plane poset is a double poset (P, <y, <,) such that for all x,y € P, such that x # y, x
and y are comparable for <j if, and only if, x and y are not comparable for <,. The set
of (isoclasses of ) plane posets will be denoted by PP. For all n € N, the set of (isoclasses
of ) plane posets of cardinality n will be denoted by PP(n).

Examples. Here are the plane posets of cardinal < 4. They are given by the Hasse graph
of <j; if x and y are two vertices of this graph which are not comparable for <j, then z <, y if
y is more on the right than z.

PP(0) = {1},
PP1) = {.}
PP(2) {.., 1},
PPB) = {o.,.1,1., V1 AL,
UTTUTE JUE DU SUNIIL VAU VNS 3 SUURY U SR 8
PP(4)

vy VoY oA M A v §

The following proposition is proved in [3] (proposition 11):
Proposition 2 Let P € PP. We define a relation < on P by:
(z<y)if (x <pyorz<,y).
Then < is a total order on P.

As a consequence, substituing < to <,, plane posets are also special posets [12], that is to
say double posets such that the second order is total. For any plane poset P € PP(n), we shall
assume that P = {1,...,n} as a totally ordered set.

The following theorem is proved in [4]:

Theorem 3 Let o be a permutation in the nth symmetric group &,,. We define a plane poset
P, in the following way:

o P, ={1,...,n} as a set.



o Ifi,jEP,,i<pjifi<jando(i)<o(j).
o Ifi,jE Py, i<,jifi<jando(i)>o(j).

Note that the total order on {1,...,n} induced by this plane poset structure is the usual one.
Then for all n > 0, the following map is a bijection:

v, { S, — PP(n)

c — P

Examples. We here represent the permutation o € &, by the word (o(1)...0(n)). In
particular, the identity element of &,, is represented by the word (1...n).

Up((12) = 1, Wu((21) = ... W3(123) = 1, Uy((132) = V,
U3(213)) = A, U3((231)) = 1., W3(312) = .1, W3((321)) = ....

We define several bijections on PP:

Definition 4 Let P = (P, <;,<,) € PP. We put:

L(P) = (P7 <r Sh)a
a(P) = (P,Zh,ér)y
pP) = (P.<n =),
7<P) = (P7 Zhs >7’)

Remarks.

1. Graphically:

e A Hasse graph of a(P) is obtained from a Hasse graph of P by a horizontal symmetry.
e A Hasse graph of 3(P) is obtained from a Hasse graph of P by a vertical symmetry.
e A Hasse graph of «(P) is obtained from a Hasse graph of P by a rotation of angle .

2. These bijections generate a group of permutations of PP of cardinality 8. It is described
by the following array:

0% ‘ L ‘LOOJ‘LOﬁ‘LO’y
Id % B |tofB|toy . |to«

a |toa| tovy |topf
Ié) @ Id |toy|tof|tLtoa
L toa|tof oy | Id o 8
Lo Lt |toy|ltofB| B y I1d
tofB|toy] ¢ |toa| « 1d ~y
toy |ftofB Lo | ¢ ~y I} Q@

NISEIEIG

This is a dihedral group Dy.

1.2 Algebraic structures on plane posets

Two products are defined on PP. The first is called composition in [12] and denoted by ~~ in
3]
Definition 5 Let P,Q € PP.

1. The double poset P ~~ @ is defined as follows:



e P~ Q=PUQ as a set, and P,Q are plane subposets of P ~» Q.
o ifre Pandy € Q, thenx <,y in P~ Q.

2. The double poset P4 Q) is defined as follows:

e PsQ=PUQ as a set, and P,Q are plane subposets of P§Q).
e ifrePandycQ, thenx <pyin PjiQ.

Examples.

1. The Hasse graph of P ~~ (@ is the concatenation of the Hasse graphs of P and Q.

2. Here are examples for 4: .41 zf, 1s. zi, o=V, 8. = A

The vector space generated by PP is denoted by Hpp. These two products are linearly
extended to Hpp; then (Hpp,~+) and (Hpp, §) are two associative, unitary algebras, sharing the
same unit 1, which is the empty plane poset. Moreover, they are both graded by the cardinality
of plane posets. They are free algebras, as implied that the following theorem, proved in [3]:

Theorem 6 1. (a) Let P be a nonempty plane poset. We shall say that P is h-irreducible
if for all Q,€ PP, P =@ ~ R implies that @ =1 or R=1.

(b) Any plane poset P can be uniquely written as P = Pj ~ ... ~> Py, where Py, ..., Py
are h-irreducible. We shall say that Py, ..., Py are the h-irreducible components of P.

2. (a) Let P be a nonempty plane poset. We shall say that P is r-irreducible if for all
Q,e PP, P=Q4R implies that Q =1 or R=1.

(b) Any plane poset P can be uniquely written as P = P14 ... 4 Py, where P,..., Py are
r-irreducible. We shall say that Py, ..., P, are the r-irreducible components of P.

Remark. The Hasse graphs of the h-irreducible components of H are the connected compo-

nents of the Hasse graph of (P, <j), whereas the Hasse graphs of the r-irreducible components
of H are the connected components of the Hasse graph of (P, <,.).

Definition 7 Let P = (P, <p,<,) be a plane poset, and let I C P.

1. We shall say that I is a h-ideal of P, if, for all z,y € P:
(xel,z<py) = (yel).

2. We shall say that I is a r-ideal of P, if, for all x,y € P:
(zel,z<,y)= (yel).

3. We shall say that I is a biideal of P if it both an h-ideal and a r-ideal. Equivalently, I is
a biideal of P if, for all x,y € P:

(xel, z<y)= (yel).

The following proposition is proved in [3| (proposition 29):



Proposition 8 Hpp is given a coassociative, counitary coproduct in the following way: for
any plane poset P,

AP)= > (P\D®I

I h-ideal of P

Moreover, (Hpp,~,A) is a Hopf algebra, and (Hpp, §,A) is an infinitesimal Hopf algebra [10],
both graded by the cardinality of the plane posets. In other words, using Sweedler’s notations
Alz) =S 2W @ 2@, for all z,y € Hpp:

Aa~y) = Y 2l yW oz vy,
Alzsy) = Z:L‘éyl)®y(2)+2$(1)®x(2)éy—x®y.

Remarks. The following compatibilities are satisfied:

1. For all P,Q € PP:

P~ Q) = «P)suQ), UP1Q) = u«(P)~ (Q),
a(P~Q) = aP)~»a@Q), oPiQ) = a@)ialP),
BP~Q) = B(Q)~B(P), BPIQ) = B(P)BQ),
VP~ Q) = Q) ~~(P), (PIQ) = +Q)iv(P).

2. Moreover, Aoca=(a®@a)oA? Aof=(f®F)oA, and Aoy =(y®~) o A%.

1.3 Pairings
We also defined two pairings on Hpp, using the notion of pictures [6, 8, 9, 14]:
Definition 9 Let P,Q be two elements of PP.

1. We denote by S(P, Q) the set of bijections o : P — @ such that, for alli,j € P:
o (i<pjinP)= (0(i) <, o(j) in Q).
o (0(i)<po(j) inQ)= (i<, jinP).

2. We denote by S'(P,Q) the set of bijections o : P — Q such that, for all i,j € P:

o (i<pjinP)= (o(i) <a(j) in Q).
o (0(i) <ho(j) in@) = (i< jinP).

The following theorem is proved in [3, 4, 12]:

Theorem 10 We define two pairings:

(- o) {Hp’p@)HPP — K
, : PRQ — <P,Q>:CCLTd(S(P7Q))7

(- =) Hpp @ Hpp — K
’ ' PeQ — (P,Q) =Card(S'(P,Q)).

They are both homogeneous, symmetric, nondegenerate Hopf pairings on the Hopf algebra Hpp =
(Hpp,~,A).



1.4 Morphism to free quasi-symmetric functions

We here briefly recall the construction of the Hopf algebra FQSym of free quasi-symmetric
functions, also called the Malvenuto-Reutenauer Hopf algebra [2, 11]. As a vector space, a
basis of FQSym is given by the disjoint union of the symmetric groups &,, for all n > 0. By
convention, the unique element of & is denoted by 1.

The product of FQSym is given, for o € &, 7 € &, by:

oT = Z (c®T)ok,

e€Sh(k,l)

where Sh(k, 1) is the set of (k,[)-shuffles, that is to say permutations € € & ; such that e (1) <
o< e Mk)and e 1(k+1) < ... < e} (k+1). In other words, the product of o and 7 is given by
shifting the letters of the word representing 7 by k, and then summing all the possible shufflings
of this word and of the word representing o. For example:

(123)(21) = (12354) + (12534) + (15234) + (51234) + (12543)
+(15243) + (51243) + (15423) + (51423) + (54123).
Let 0 € 3,. For all 0 < k < n, there exists a unique triple (Uik),aék),ck) € 6, X G,k X
Sh(k,n — k) such that o = Ck_l o (ng) ® aék)). The coproduct of FQSym is then defined by:

Ao) = Z U%k) ® Uék).
k=0

For example:
A((43125)) = 1® (43125)+ (1) ® (3124) + (21) ® (123)
+(321) ® (12) + (4312) @ (1) + (43125) ® 1.
Note that a%k) and aék) are obtained by cutting the word representing ¢ between the k-th and
the (k + 1)-th letter, and then standardizing the two obtained words, that is to say applying to
their letters the unique increasing bijection to {1,...,k} or {1,...,n — k}. Moreover, FQSym

has a nondegenerate, homogeneous, Hopf pairing defined by (o, 7) = d, -1 for all permutations
o and T.

Definition 11 [5, 12/

1. Let P = (P,<p,<,) a plane poset. Let x1 < ... < xz, be the elements of P, which is totally
ordered. A linear extension of P is a permutation o € S, such that, for alli,j € {1,...,n}:

(i <h 2;) = (07 ()) < o7 (5).
The set of linear extensions of P will be denoted by Sp.
2. The following map is an isomorphism of Hopf algebras:

Hpp — FQSym
©:4 PePP — ZU.

o€Sp

moreover, for all x,y € Hpp, (O(x),0(y)) = (z,y).



2 Deformation of the products
2.1 Construction
Definition 12 Let P € PP and X, Y C P. We put:
1. Y =#{(z,y) € X xY Jz <) y in P}.
2. r¥ =t#{(z,y) e X xY Jx <,y in P}.
Lemma 13 Let X and Y be disjoint parts of a plane poset P. Then:
hx +hy +rX% +r3 = | X||Y].
Proof. Indeed, hY, + A +r¥ + 7 =#{(z,y) e X xY |z <yorz >y} =|X xY]|. O
Remark. If it more generally possible to prove that for any parts X and Y of a plane poset:
R +hy +r% +ry =3[ X NY ]2+ | X||Y].
Theorem 14 Let q = (q1,q2,q3,q1) € K*. We consider the following map:

Hpp @ Hpp — Hpp \
R\IT

hfz\z h?\l ’"{2\1 Ty
myg : PRQ — Z 91 92" 43 4y R,

(R,I)ePP?
ICR, R\I=P, I=Q

where P,QQ € PP. Then (Hpp,my) is an associative algebra, and its unit is the empty plane
poset 1.

Proof. Let P,Q, R € PP. We put:

{Pl = (mg®Id)omy(P®Q & R),
P, = (Id@mq)omq(P@)Q@R),

Then:
I Iy Ri\I Ro\Iy Iy Iy Ri\I{ , Ro\I
P = th\Il Jthz\lz hfll 1+h122 : TRI\L +TR2\1’2 Tfll 1+T1’22 2R
1 = E qq ds q3 4y 25
(R1,11,R2,12)€E,
Iy Iy R\ Ro\Ip Iy Iy Ry\I{ = Ro\I
P, = hR1\I1+th\I2 hfll 1+h122 : TR1\11+TR2\12 TI11 1+T122 2R
2 = E qq ds q3 ay 25
(R1,I1,R2,I2)€E
With:

By = {(R1,[1,Ry, ) e PP* /L C R, 1 =Q, R\I1 =P, [, C Ry, I, = R, Ry \ [ = Ry},
By = {(Ri,I1,Ry, ) e PP* /1 C R, [1 =R, Ri{\I1 =Q, Iy C Ry, Iy = Ry, Ry \ Iy = P}.

We shall also consider:
E={(R,Jy,Jo,J3) € PP*/R=JiUJoUlJs, Jy =P, J, =Q, J3 = R}.
First step. Let us consider the following maps:

. (R17II7R27~[2) — (R27R1\Il711712)7

& EFE — E;
' (R, J1,J2,J3) — (J1UJ2,Jo, R, J3).



By definition of £ and E7, these maps are well-defined, and an easy computation shows that
¢po¢ = Idg and ¢' o ¢ = Idg,, so ¢ is a bijection. Let (Ry, I, Ra,I5) € Ei. We put
#(Ry, I1, Ra, ) = (R, J1, J2, J3). Then:

I J: Js J: J: Js
hig, W = B+ B, = B+ B+ R

Similar computations finally give:

J. J. J. J J Jy J J. J3
P = hﬁ +hJ§+th hJ; +hJ§+hJ§ TJ? +TJ§+TJ2 TJ2 JrTJ?,
1 q1 4> qs3 q4

+TJ3 R.
(R,J1,J2,J3)EE

Second step. Let us consider the following maps:

b { EFr, — F
' (R1,11,Re,I5) — (R2,Ri\ Ri,R1\ I1, I1),

¢/' EFE — E2
’ (R, J1,J2,J3) — (JaUJs3,J3, R, JaUJ3).

By definition of F and FEs, these maps are well-defined, and a simple computation shows that
Yoty = Idg and ¢’ ot = Idg,, so ¢ is a bijection. Let (Ry,I1,R2,I2) € Eo. We put
¢(R1,II,R2712) = (R Jl, JQ, Jg) Then:

h%ﬂh + th\IQ = th + hJ2uJ3 = hJ2 + h + h

Similar computations finally give:

pe S R sl ek
(R,J1,J2,J3)€E
So my is associative.
Last step. Let P € PP. Then:
hi hR\I rl R\I L P 1 P
P1l= Z qu’q ! qu\IqZI R:qlpqzlquqzlP:P.
(R,1)EPP?
ICR, R\I=P, I=1
Similarly, for all Q@ € PP, 1.QQ = Q. O
Examples.
me(- @.) = @3qa.+ +q1gal,
m(- ®1) = Gl +al. +als+ta)V +als+a) b+ @ +ae+d)l,
me(- ©..) = @V +a@ M+ (@ +e@)at+ (@ + a2t + (63 + g3aqs + 6i)-
mg(1®@.) = G l+gGl.+al@a+a)V +el@ata)h+@+ae +q2)17
mg(e ®.) = GV +ai M+ (@ + @)t + (@ +a)ast. + (65 + a3q4 + 6)-

Proposition 15 Let (q1,q2,q3,q1) € K*. Then:

(()517q2,q3,q4) = M(g2,q1,q4,93)°
M (q1,q2,93,q4) © (t®e) = 1o M (g3,q4,91,q2)
M (q1,92,q3,q4) © (a®@a) = ao M (q2,q1,q3,94)
M(q1,q42,93,q4) © (B@p) = Bo M(q1,92,94,q3)°
L (q1,92,95,94) © (7 ® ’Y) = Y ° M (g2,q1,94,q3)"
Proof. Immediate. ]



2.2 Particular cases
Lemma 16 Let P € PP and X C P.
1. X is a h-ideal of P if, and only if, hi\X =0.
2. X s a r-ideal of P if, and only if, ri\X =0.

3. The h-irreducible components of P are the h-irreducible components of X and P\ X if,
. X P\X
and only if, hP\X hx

4. The r-irreducible components of P are the r-irreducible components of X and P\ X if, and

only if, r}).f\X = r)lz\X = 0.
5. P =X~ (P\X) if, and only if, b, y = by =r¥  =0.
6. P=X4(P\ X) if, and only if, rP\X = ri\X = hfg\X =0.

Proof. We give the proofs of points 1, 3 and 5. The others are similar.

1. <. Let x € X, y € P, such that = <p y. Ashi\X:O,ygéP\X,soyeX: X isa
h-ideal.
=. Then, for all x € X, y € P\ X, z <}, y is not possible. So hi\X:O.

3. =. Let us put P = P;... P, where P,..., P, are the h-irreducible components of P.
By hypothesis, X is the disjoint union of certain P;’s; and P\ X is the disjoint union of the other
Ps. So h = hi™ =

<=. Let I bea h—1rreducible component of P. If INX and IN(P\X), then for any z € INX
and any y € I'N (P \ X), x and y are not comparable for <;: contradiction. So [ is included in

I orin P\ X, sois a h-irreducible component of X or P\ X.

5, =. Ifze X andy e P\ X, thenx<ry,sohP\X hi\X:rfg\X:O.

<. Ifz € X and y € P\ X, by hypothesis we do not have x <, y, x >p, y nor x >, ¥y, so
x <ry. Hence, P =X ~ (P\ X). O

Proposition 17 1. Let us assume that q3 = q4 = 0. Let P = Py4...4P, and P’ =
Pyy14 ... 5 Peyg be two plane posets, decomposed into their r-connected components. Then:

myPoP)= > [ Q@5 Pa. s P,

o€Sh(k,l) 1<i<k<j<k+l

where Q; j(0) = q1 if o7 (i) < o71(j) and g2 if o7 (i) > o71(4).

2. Let us assume that g1 = g3 = 0. Let P =P; ~> ...~ Py and P = P11 ~> ...~ Priy be
two plane posets, decomposed into their r-connected components. Then:

oeSh(k,l) 1<i<k<j<k+l
where Q; ;(0) = g3 if o7 1(i) < o)) and qq if o71(i) > o7 1(j).

Proof. Let us prove the first point; the proof of the second point is similar. Let us consider
a plane poset R such that the coefficient of R in my(P ® P’) is not zero. So there exists I C R
such that R\ I = P and I = P’. Moreover, as g3 = q4 = 0, T]I%\I = T?\I = 0. By Lemma

16-4, the r-connected components of R are the r-components of R\ I and I. As a consequence,

10



there exists a (k,[)-shuffle o, such that R = P,(1y4 ... 4 Py(y41)- Then hf%\[ is the sum of | P;|| P,
where 1 < i < k < j < k+1, such that o71(i) < o7 1(j); h?\l is the sum of |P;||P;|, where
1<i<k<j<k+I such that 071(i) > 071(j). This immediately implies the announced
result. O

Remarks.

1. The first point implies that:

® M(q,000) (P ®P) = ‘PHP,lPé P'. In particular, m 00) = 4.

® 10,4500 (P ® P = ‘PHP,IP% P. In particular, m 10,0y = 4.

® M (0,0,45,0) (P ®P') = ‘PHP,l ~» PP'. In particular, m ¢9,0) =~
® M(0,0,0,40) (P ®P) = ‘PHP,I ~ P'P. In particular, m g9, =~>.

2. It is possible to define m, on the space of double posets. The same arguments prove that it
is still associative. However, m ;o 0,0) is not equal to § on Hpp and m 1,0y is not equal
to ~; for example, if we denote by g2 the double poset with two elements z,y, = and y
being not comparable for <j and <,.:

M (1,000 (s ®+) =1+ 209, M(0,0,1,0)(+ ®+) = oo + 200
2.3 Subalgebras and quotients
These two particular families of plane posets are used in [3, 4]:

Definition 18 Let P € PP.

1. We shall say that P is a plane forest if it does not contain N as a plane subposet. The
set of plane forests is denoted by PF.

2. We shall say that P is WN ("without N") if it does not contain VI nor N. The set of
WN posets is denoted by WNP.

Examples. A plane poset is a plane forest if, and only if, its Hasse graph is a rooted forest.

PF(O) = {1},

PFQ1) = {.},

PFE) = {.., 1},

PFBE) = {ow.,.1,1., V1)

WNPO) = {1},
WNP(1) = {.},
WNP(2) = {..,1},
WNP3) = { ,:,z.,v,},/\},

...... e VL VLB DAL AL
WAN'P(4)

\VK/\?Y%AFQ}KMQ

Definition 19 We denote by:
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Hywnp the subspace of Hpp generated by WN plane posets.

Hpr the subspace of Hpp generated by plane forests.

Iwarp the subspace of Hpp generated by plane posets which are not WN.

Ipr the subspace of Hpp generated by plane posets which are not plane forests.
Note that Hyyxp and Hpz are naturally identified with Hpp/Iyynp and Hpp/Ipr.

Proposition 20 Let ¢ = (q1,92,q3,q1) € K*.
1. Hynp is a subalgebra of (Hpp,mq) if and only if, g1 = g2 =0 or g3 = g4 = 0.
2. Hpr is a subalgebra of (Hpp, mq) if and only if, g1 = g2 = 0.

3. Iyynp and Ipy are ideals of (Hpp, mg).

Proof. 1. <. We use the notations of Proposition 17-1. If g3 = g4 = 0, let us consider two
WN posets P and P’. then the P;’s are also WN, so for any o € Sy, P, l)é bt Py—1(140)
is WN. As a conclusion, mq(P ® P’') € Hwap. The proof is similar if ¢; = g2 = O using
Proposition 17-2.

1. = . Let us consider the coefficients of [/l and N in certain products. We obtain:

W11 N

me( A @) | add | a1g?
mg(« @ N) | qa? | 243

If Hyynrp is a subalgebra of (Hpp,my), then these four coeflicients are zero, so, from the first
row, g1 = 0 or g3 = q4 = 0 and from the second row, g2 = 0 or g3 = g4 = 0. As a conclusion,
q1=¢q =0o0rg3=q4=0.

2. <. We use the notations of Proposition 17-2. If ¢; = g2 = 0, let us consider two plane
forests P and P’. Then the P;’s are plane trees, so for any o € Gy, Pyt - d P (g
a plane forest. As a conclusion, my(P ® P') € Hpr.

2. =. Let us consider the coefficients of A in certain products. We obtain:

A
my(e ®..) | ¢
mg(.. ®.) | .

If Hpr is a subalgebra of (Hpp,mqy), then ¢ = g2 = 0.

3. Let P and P’ be two plane posets such that P or P’ is not WN. Let us consider a plane
poset R such that the coefficient of R in mg(P ® P’) is not zero. There exists I C R, such that

R\I=PandI=P. As Por P isnot WN, I or R\ I contains /1 or N, so R contains !
or N: R is not WN. So mg(P ® P’) C Iyynp. The proof is similar for Ipr, using A instead
of W and N. O

12



3 Dual coproducts

3.1 Constructions
Dually, we give Hpp a family of coproducts A, for ¢ € K*, defined for all P € PP by:
hL. . P\ ol P\I
= Z q1P\1q21 Q3P\IQZI (P\D) &I
ICP

These coproducts are coassociative; their common counit is given by:

. Hpp — K
PePP — 6ip.

Examples. We put, for all P € PP, nonempty, Aq(P) =A(P)-P®1-1®P.

Aq(I) = (@ +q) ®
A( D) = (Btrae

A = @raet+ad) ot + (@ taetd)le.,
AV) = @p@a+a) @ +al@a+a)!l @ +d. @ +d..®.,
ACN) = qlz+q) @1+ +q)! @463 @ e + 1. @,
At) = @G- @1+ ®.+ (@1 +@)as @« + (@1 + @2)aae @ -,
All) = @G. @1 +@1 @+ (@1 + @) @ + (1 + )Gz @+,
Aler) = (@B+Bat+d) @+ (@ +aau+da). ..

Dualizing Proposition 15:

Proposition 21 Let (q1,q2,q3,q1) € K*. Then:

( AP = A

(Q17Q27Q37Q4) 92,41,44,43)
(t®1)o (117‘127(137(14) = A(!13#14,(11,612) °t,
(a®@a)o q17Q27QS,Q4) = A(q2,q1,Q37Q4) ca,
(B®pB)o q17¢I27Q37Q4) = A(Q1,QQ,Q4,Q3) o,
(y®7)e q1 92,93,94) A(112,111#]4,(]3) 7.

3.2 Particular cases

Proposition 22 Let P € PP. Then:

1. A(q,q,qﬂ)(P) = Z q|P\IHI|(P \I)®I

ICP
hP\I TI\ P\I
AowmaaP) = 3, @™ I®(P\D),
2 I h-ideal of P
’ P\I
A(Q1,07Q37Q4)(P) = Z a4y P\IQZI P\I (P\I)®
I h-ideal of P
hP\I hi 1
Algrgo0.00)(P) = Z @' "M, NMIT® (P\I),
I r-ideal of P
s hf\l h{D\I Té\[
A(Qlﬂh#}s,o)(P) = Z &' g gy (PN ®I
I r-ideal of P

13



hI ’I"I
NogoayP) = > o"Ma M@ P\,
4 I biideal of P

A(Q1,07QS70) (P) = Z

I biideal of P

hfv\f 7"{3\1
Vg (PN ®I.

5. If P= Py --- Py, where the P;’s are h-connected,

ap(l) « 1,..,k}\I
Noogga)P) =D gy P g D pp g P i1

with, for all J = {j1,---, 0}, 1 < jh < - <j <k, Py =P P, and ap(J) =

Y. IBlIB

i€, j2 Ji<j

6. If P= P14 --- 4Py, where the P;’s are r-connected,

I 1,0 KNI
A(Q17Q27010) (P) = Z qlﬁp( )qu({ }\ )Pj—é ® P{élf"vk}\l’
[g{17...7k}

thh; fO?" allJ:{jla"'7jl}7 1 S]l < - <jl Sk7 PJé :Phéépjl; andﬁp(‘]> =

> |RIIP.

1€J,j¢Ji<j

A(Q,O,O,O) (P) = Z q|P1||P2‘P1 ® ‘P27
P14 Py=P

A(07q70’0) (P) = Z q|P1||P2‘P2 ® Pla

7‘ P14 P,=P

Noogo(P) = Y "”Pep,
P Po=P

ANooogP) = Y d"PpePp.
P P,=P

8. D00 (P)=P®1+1@P if P#1.

Proof. We only prove points 1, 2, 5, 7 and 8; the others are proved in the same way.

1. Immediate, as h{;\] + hf\l + 7“713\[ + rf\[ = |I||P \ I| by Lemma 13.
2. By Lemma 16:
hfv\l rIID\I T‘f\l hfv\l Té\] Tf\I
Ag1,0,3,01) (P) = Z @ gy el (R\I)®I= Z @ Vg ta (P\I)®IL
ICP P\ I h-ideal of P
hp\ ;=0

As A(0,gaq3.01) = A?ngws), we obtain also the first assertion.

5. By Lemma 16-3:

A P) = v R\ e T = e T pep

(0,07q37q4)( ) = Z g g (R\I)®Il= Z s 4y T {1, kNI
IQI;\I IC{1, k}
hpy =hy \'=0

and it is immediate that T?\PI = ap(I) and r;\PI =ap({l,...,k} —1I).
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7. By Lemma 16:

P
A0,0,40/(P) = Z qré\I(P\I) ®I= Z ¢PP@P= Z ¢ p @ Py
Icp Py Po=P P, P,=P
Wy = =PV PV g
8. Let I C P, such that AL, ; = hy "' =L, =r/" = 0. Then:
P\I

HIP\T = by + by 4 by 07 =0,

sol=1or1=P. O

Remark. In particular, the coproduct defined in section 1 is A 11). The coproduct of
deconcatenation, dual of m, is A1,y and the coproduct of deconcatenation, dual of 4, is

A1,0,0,0)-

3.3 Compatibilities with the products
Proposition 23 Let x,y € Hpp. We put Ay(x) = > x, @ xy and Ag(y) = D2 Yy @ Yy, with

the xy’s, Ty ’s, Yo s, Yy 's homogeneous. Then:

1. Ay(z ~y) ZZ \wq\lyl Ifr qul( ;wyg)@)(m;’wyg’).

Proof. We only prove the first point; the proof of the second point is similar. For the sake
of simplicity, we simply denote in this proof the composition of two plane posets P et Q by PQ,
as in [12]. Let P,Q € PP. Then:

h( QN\UIT) pIJ (PQ\(1J)
APQ) = > g <PQ>\<”>q g3 "N gy (PQ)\ (1)) ® (1J)
ICP,JCQ
hiJ PQ\IJ

PQ\I) Py reous i
= Z q 92 a3 4 (PAND(QN\J)) @ (IJ).
ICP, JCQ

Moreover, for all I C P, J C Q:

e Forallz € P\I,y € J, <,y in PQ, so h;{.,\l = 0. Similarly, hé\J = 0. Hence:

hponrs = W + iy + By + iy = by + B, -
e In the same way, h " = I\ 4 pN 4 pV 4 p@N = RV 4 QN
e Forallz e P\I,ye J, z <, yin PQ, so r}i\l = |P\I||J|]. Forallz e Q\ J, y € I,
T > Y, SO ré\J = 0. Hence:

rEo\s = TP T T Tgu = By R+ P\

e In the same way, rfJQ\U P\I + T?\J + 7“5\1 + TIQ\J P\I =+ T?\J + [I]|Q\ JI.
So: FACAREAeA
Q) =YD gy (PR ® (B/Q),
which is the announced formula. O
Examples.
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1. If g3 = 1, then (Hpp,~,A,) is a braided Hopf algebra. The braiding is given, for all

P,Q € PP, by:
cP®Q) =49 P,

In particular, if g4 = 1, it is a Hopf algebra; if g4 = 0, it is an infinitesimal Hopf algebra.

2. If g4 = 0, the compatibility becomes the following:

@y =3 a5 @y oy + Y a1 y) i Vr oy,
In particular, if g3 = 1, then it is an infinitesimal Hopf algebra.
3. If go = q4 = 0, then for all z,y € Hpp:

Agz~~y) = (2~>y)@1+1@ @~y +e(@)(Ag(y) —y@1-13®Y)
+e(y)(Qg(z) —r @1 - 1@ ) +e(r)e(y)l @ 1.

In other terms, for all z,y € Hpp, such that e(x) = e(y) = 0, x ~~ y is primitive.

4 Self-duality results

4.1 A first pairing on H,
Notations. If P,Q € PP, we denote by Bij(P,Q) the set of bijections from P to Q.

Definition 24 Let P,Q be two double posets and let o € Bij(P,Q). We put:

((p1(0) = #{(x,y) € P? |2 <py and o(z) < o(y)}
+{(x,y) € P2 |2 <py and o(z) >,
+#{(z,y) € P? |2 <j y and o(x

+#{(z,y) € P? |z <, y and o(x

+#{(z,y) € P? |z <j y and o
+#{(z,y) € P? |z <j y and J((m

) <
) <

¢2(0) = t{(z,y) € P? |z <py and o(x ))<h (y)}
) >

+#{(z,y) € P? |z <, y and o(x)

X

(
o
>p 0(y)}s
#3(0) = #{(z,y) € P? |z <,y and o(z) <, o(y)
¢a(0) = #{(z,y) € P? |z <, y and o(x) )}

Lemma 25 Let P,Q be two double posets and let o € Bij(
¢i(0™") = ¢i(0).

Proof. Indeed, as ¢ is a bijection:

)

¢1(07") = Hzy e |z <pyando ' (z) <po '(y)}
+#{(z,y) € P* |z < y and o }(z) >, o L (y)}
+i{(x,y) € P* |z <pyand o7 (x) <, 07 (y)}
+4{(z,y) € P? |z <, y and 67 (z) <, 01 (y)}
= #H{(z,9) € P* |z <py and o(2) <p o(y)}
+4{(x,y) € P? | >, y and o(x) < o(y)}
+#{(z,y) € P? |z <, y and o(x) <p, o(3)}
+#{(z,y) € P* |z <y and o(z) <, o(y)}

= qbl(O').

The other equalities are proved similarly.
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Lemma 26 Let Pi, P>, Q) be double posets. There is a bijection:

Bij(Py~ Py,Q) — | Bij(P1,R\T) x R(Py,I)

Let o € B’L](Pl ~ Py,

Proof. We put P =

¢3(0)

1€Q
o — (oyp,0|p,), with I = o(Ps).

Q) and let (o1,09) be its image by this bijection. Then:
¢1(0) = o1(01) + d1(02) + hiy .
$2(0) = d2(01) + a(on) + AV,
¢3(0) = ¢3(o1) + ¢3(o2) + T@\p
da(o) = ¢a(o1) + Pa(o2 )+r?\l.
P~ Py if € P, and y € P, then = <, y, so:
H{(z,y) € P{ |z <, y and o(x) <, o(y)}
+4{(z,y) € P} | z <, y and o(x) <, o(y)}
+i{(x,y) € P x Py | x <, y and o(z) <, o(y)}
+i{(z,y) € Po x P1 |z <, y and o(x) <, o(y)}

¢3(0) + ¢3(o2) + #H{(z,y) € P X Py | o(z) <, o(y)} +0
d3(0) + ¢3(02) + #{(z,y) € (Q\I) x I |z <, y}
¢3(01) + ¢3(02) + 16\ -

The other equalities are proved similarly.

Theorem 27 Let q

= (q1,q2,93,q1) € K*. We define a pairing on Hpp by:

(P,Q)q = Z q<li>1(U)qg2(0)q§>3(0)q§4(g).
o€Bij(P,Q)

This pairing is symmetric and for all x,y,z € Hpp, (x ~ y,2)q = (T @y, Ag(2))q-

Proof. Let P,Q be two double posets. Then, by Lemma 25:

(P,

So this pairing is symmetric.

<P1 WPZaQ>q

Q) = Z qfl(U)qg2(U)qg3(U)qg4(0)
0€BIj(PQ)
o1 o1 o1 o1

_ Z q<1b1( )q<2i>2( )q§53( )qg)zl( )
c€Bij(Q,P)

_ Z qfl( )q;'¢2( )q§53( o) ¢a(o)
c€Bij(Q,P)

= <QaP>q

Let Py, P5, @ be three double posets. By Lemma 26:

Z q<11>1 (o) q<21>2(0) qg)3(0) qém(a)
0€Bij(P1~P2,Q)

Z Z Z qf1(01)+¢1(02)+h

ICQ 01€Bij(P1,Q\I) 02€Bij(Pa,I)

I
Q\I

Xq<21>2(01)+¢2(02) +hPM q¢3<01>+¢3<02>+T@\1q¢4<m)+¢4(oz> r2M
. R\I h R\I 7"? P P
—21 a" (P, R\ I)g(P2, 1)y

ICQ
<P1 ® P27 Aq(Q))q-
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So (—, —)q is a Hopf pairing. O

Remark. More generally, adapting this proof, it is possible to show that for all x, vy, z € Hpp:

(Mm(0,0,4.0) (T @Y), A2)) (g1,02.95.00) = (T D Y5 D(gqr,qa2.993,904) (2)) (a1.92,35,04)
Examples. (.,.), = 1. The pairing of plane posets of degree 2 is given by the following

array:
!

U] 2192 |1+ @2
Q1 +q2|q3+qs

Proposition 28 For all double posets P,(Q):

¢
(P, Q>(Q1707QS:Q4 = Z ql1 1@ )‘
ceS(P,Q)
Consequently, (—, —)(1,0,1,1) i the pairing (—,—) described in section 1.

Proof. Let o € Bij(P,Q), such that the contribution of ¢ in the sum defining (P, Q) (4,,0,45,4)
is non zero. As g2 = 0, necessarily ¢2(0) = 0. Hence, if x <p y in P, then o(z) <, o(y) in Q; if
o(x) <po(y)in @, then z <, y in P. So 0 € S(P,Q). O

4.2 Properties of the pairing
Lemma 29 Let Pi, P>, Q be double posets. There is a bijection:

Bij(Pi4 P2, Q) — | Bij(P,Q\ 1) x Bij(Py, 1)
ICQ
o — (op,01p,), with I =o(P).

Let 0 € Bij(P1 P, Q) and let (o1,02) be its image by this bijection. Then:

61(0) = di(on) +dr(oa) +hly +hiN +7h,
$2(0) = 6a(01) + da(02) + hlyy p + WP +rPY,
Pa(o) = a(o1) +1ba(o2) + Q\[+hQ\I
¢3(0) = ¢3(01) + ¢3(02),

¢4(0) = ¢a(o1) + Pa(02).

(

Proof. We put P = P14 Ps. Let z,y € P. If ¢ <3 y, then x,y € Py, or x,y € P, or
r € PL,y€e P. If x <y, then z,y € Py, or x,y € P». Moreover, if x € P, and © € P», then
T <py. So:

p1(0) = ¢1(01) + ¢1(02)

+i{(z,y) € i x P2 | (z <p y) and o(z) <p o(y))}
+i{(z,y) € PLx P2 | (z <py) and o(z) >p 0(y))}
+H{(z,y) € P x P2 | (z <p y) and o(x) <; 0(y))}

= ¢1(01) + ¢1(02)
+H{(z,y) € A X P | o(z) <po(y))}
+i{(z,y) € Pr x P2 | o(x) >1, o(y))}
+i{(z,y) € Pr x P2 | o(x) <, o(y))}

= 1(01) + d1(0) + hy , + hQ\I

The other equalities are proved similarly. O

I
+TQ\I'
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Proposition 30 For all z,y,z € Hpp, (14Y,2)q = (T @ Y A(q1g9.q102,q1,90) (2)) -

Proof. Let P;, P»,@Q be three double posets. By Lemma 29:

(PLiP2,Q)q = ST g g
o€Bij(P14 P,Q)

= Z Z Z q¢ (Ul)+¢1(g2)+hQ\I+hQ\ +’"Q\I
= 1

1CQ o1€Bij(P1,Q\I) o2€Bij(Pe,I)

d2(01)+62(02)+hly FhT VPN G (1) 1ha(02) a(or)+a(on)
qs q3 4
R I 7‘

hl A
= D (ne) R\I(qwz)h’ 0" gy (Pl,Q\ 1) g(Po, I)q
IcQ

= (P @D, A(Q1Q2,q1q2,q1,q2)(Q)>q’

which is the announced formula. O

Remarks.

1. In particular, if ¢ = (1,0, 1, 1), for all P, P»,Q € PP:

(PriP, Q) = (P1® Py Ao,,1,0)(Q)) = Z (P ® P2, Q1 ®Q2).
Q=Q1Q2

This formula was already proved in [3].

2. More generally, it is possible to show that for all x,y, z € Hpp:

(m(3,0,0,0)(® @ Y); A2)) (1,02,33.01) = (T O Y, Dgg10,90102,001,002) (%)) (41,42,95.01)-

Proposition 31 For all x,y € HPP:

(z, ﬁ(y)>(Q17Q27Q3,q4) (z, y>(<117QQ7Q47Q3)7 (z, V(y)>(<11,q2,%,q4) = (z, y>(Q2,Q17Q47q3)’
(@), W)z = & Wi@aaa) (@) B0 @) = (V) (01,0.0.0)
<Oé(.’17), fy(y)>(‘hyq27437q4) = <$, y>(Q27Q17q4,q3)7 <ﬂ(x)7 B(y»(ql,lp,%,%) = 1Y) (g2,q1.43,q4)°
V(@)Y W) (@1.42.05.0) = T Y)(1,02,3,04)-

Proof. Let P,Q be two double posets. We put P/ = a(P) and Q" = «(Q). Note that
Bij(P,Q) = Bij(P',Q"). Let 0 € Bij(P,Q). We denote it by ¢’ is we consider it as an element
of Bij(P',Q’). By definition of P’ and @', it is clear that ¢1(0’) = ¢2(0), ¢a(c’) = ¢2(0),
¢3(c’) = ¢3(0), and ¢4(0’) = ¢4(c). Hence:

(P, Qa1 q203.00) = S @ g g
o’€Bij(P',Q’)

_ Z qibz( )q<21>1( )qgs( )qu;( o)

UGBij(P,Q)
= <P’ Q>(q27q1,II3,lI4)'

The other assertions are proved in the same way. ([l

Remark. In general, the pairing defined by 2 ® y — (2, (¥))(41,42,43,q2) 15 DOt a pairing
(=, —)q- However, when q; = gg, it is possible to prove that for all 7,y € Hpp, (x, a(y))(

(T, Y) (q1,01,08,00)- Similarly, (B(2), (¥)) (1,01,05.90) = (> Y (01,01,00.05)-

41,91,43,94) —
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4.3 Comparison of pairings with colinear parameters

Proposition 32 Let g € K. We define the following map:
v - Hpp — Hpp
T\ PePP — PP
where h(P) = #{(z,y) € P |  <p, y}. Then vy is an algebra and coalgebra morphism from
(Hpp,~, A(qqhqqz,qsm)) to (Hpp,~, A(ql,qz,qs,q4))' Moreover, for all x,y € Hpp:
(0g(), Vg (V) (q1,42.05.00) = T2 Y) (qa1,002.05,02)

Proof. Let P, P, € PP. Then h(P; ~» Py) = h(P1) + h(P), so vg(P1 ~ Py) = vy(Py) ~
ve(P,), and v, is an algebra morphism. Let P € PP. For any I C P, as P> = [ (P \ I)*U
(I x (P\NI)U((P\T) xT):

hW(P) = h(I) + h(P\ I) + h  + hy .
Consequently:
Py — hhy RN e Y RPAD (P Ty g B D ]
1,92,43,94) ° ve(P) = Z(q(h) (992) a3 4y 9q (P\I)®q
ICP
= (v ®vg) © A(gqy,q02,a3,0) (P)-
So v, is a coalgebra morphism. Let P,Q € PP and let o € Bij(P,Q). We define:

A

ar = t{(x,y) € P? |z <py,o(x) <po(y)}
az = t{(a,y) € P? |2 <py,0(x) >p0(y)}
as = t{(w,y) € P* |z <ppy,0(z) <, o(y)}
ar = t{(z,y) € P* |z <py,0(x) >y a(y)}
as = t{(z,y) € P* |z <, y,0(z) <p o(y)}
ag = t{(z,y) € P* |z <, y,0(z) >p o(y)}
ar = t{(z,y) € P o <, y,0(2) < o(y)}
as = t{(z,y) € P* o < y,0(x) > o(y)}-
In order to sum up the notations, we give a following array:

Hx,y) e P2 |...le<py,...|lz>hy,... |lz<cy,...|2>9,...
o(z) <no(y)} ay ag as ag
o(x) >no(y)} as ay ag as
o(z) <r o(y)} as a4 ar as
o(x) >, o(y)} aq as as az

So ¢1(0) = a1 + ag + ag + as, ¢2(0) = a1 + ag + a4 + ag, ¢3(0) = a7 and ¢4(0) = ag; h(P) =
aj; + az + as + a4 and h(Q) = a1 + as + as + ag. Then:

ar ag

= (P (09 (10)" (022)" (40)" (002) 7
= (qc‘h)d)l((j)(qQQ)¢2(U)Q§3(U)qZS4(U)_

qh(P)q(h(Q)qfl(U)q;MU) qgs(a) an(a)

Finally:

(Vg(P),v(Q)) (q1,02108.01) = Z qh(P)q(h(Q)q(fl(a)qg2(a)q§3(a)qf4(a)
o€Bij(P,Q)

= 3 (@) (ga2) g5 g
c€EBIij(P,Q)

= (P, Q>(qq17qq27q3,q4)'
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So v4 is an isometry. O
Remark. It is easy to prove that for P,Q € PP, v4(P4Q) = vg(P)4ve(Q).

Similarly, one can prove:

Proposition 33 Let g € K. We define the following map:

o - Hpp — Hpp
@\ PePP — ¢PPp

x <, y}. Then v{] is an algebra and coalgebra morphism from

where r(P) = #{(z,y) € P |
t (pr, 4, A(qhq%q&%)). Moreover, for all x,y € Hpp:

(HPP’ 7 A(m,qz,qq&q%)) 0

<v;(x), U;(y)>(‘I17¢I27Q37q4) = {2, Y) (q1,42,443,94)-

4.4 Non-degeneracy of the pairing
Lemma 34 For all P € PP(n), S(P,(P)) is reduced to a single element and:

n(n—1)

<P7 L(P)>(q1,0,tI3,fI4) =0 ’

Proof. Clearly, Idp : P — P belongs to S(P,t(P)). Let 0 : P — P be a bijection. Then
o € S(P,.(P)) if, and only if, for all 7,5 € P:

o (i<pjin P) = (0(i) < 0(j) in P).
e (0(i) <, 0(j)in P= (i <, j in P).

It is clear S(P, ¢(P)) is a submonoid of Sp. As the group Gp is finite, S(P, ¢(P)) is a subgroup
of &p. So if o € S(P,1(P)), then o=t € S(P,1(P)). Hence, if o € S(P,1(P)):

e (i<pjin P) < (0(i) <p o(j) in P).
e (i<, jin P) <= (0(i) <, o(j) in P).
So o is the unique increasing bijection from P to P, that is to say Idp. Moreover:

o1(Idp) = #{(z,y) € P> |z <pyand z <, y} +#{(z,y) € P* |z <, y and = >, y}
+{(z,y) € P* |2 <py and z <p, y} +#{(z,y) € P* | 2 <, y and = <, y}
= 0+0+#{(z.y) € P |2 <ny} +t{(z,9) € P’ |2 < y}
= Hxy) e PP la<y)

o)
¢3(Idp) = ﬁ{(;y) € P? | (¢ <, y) and (z <p y)}
¢a(ldp) z ;)%(fc,y) € P?| (z > y) and (z > y)}
= 0.
S0 (P, t(P))(q1,0,42,03) = qlanil). O

For all n € N, we totally order G,, lexicographically. For example, in G3:

(123) < (132) < (213) < (231) < (312) < (321).
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We then define a total order < on PP (n) by P < @ if, and only if, ¥,,(P) < ¥, (Q) in &,,. For
example, if n = 3:

f« Ve A<l < 1 <.,
For all P € PP(n), we put:

m(P) =min{Q € PP(n) / S(P,Q) # 0}.
Lemma 35 For all P € PP, m(P) = «(P).

Proof. By Lemma 34, m(P) < «(P). Let Q € PP, such that S(P,Q) # (). Let us prove
that «(P) < Q. We denote 0 = ¥,,(P) and 7 = ¥,,(Q); we can suppose that P = ®, (o) and
Q = ®,(7). Moreover, it is not difficult to prove that ¥,,(¢«(P)) = (n---1) oo.

First step. Let us prove that 7(1) > n—o(1)+ 1. In P = ¥,(0), 1 <, j if, and only if,
o(1) < o(j). So there are exactly n — o(1) + 1 elements of P which satisfy 1 <;, j in P. Let
a € S(P,Q) (which is non-empty by hypothesis). Then if 1 <j j, a(1) <, a(j): there are at least
n—o(1)+1 elements of Q which satisfy (1) <, j. Let us put @ 1(1) =4. Then a(i) = 1 < a(1)
in @, that istosay 1 <p (1) or 1 <, (1) in Q. If 1 = (i) <p, (1) in @, then i <, 1 in P,
so ¢ = 1: in both cases, 1 <, (1) in P. So there are at least n — o(1) + 1 elements of  which
satisfy 1 <, j. In @, 1 <, j if, and only if, 7(j) < 7(1), so there are exactly 7(1) such elements.
As a consequence, 7(1) > n — (1) + 1. Moreover, if there is equality, necessarily 1 = a(1) for
all o € S(P, Q).

Second step. We consider the assertion H;: if 7(1) = n—o(1)+1, -+, 7(i—1) = n—o(i—1)+1,
then 7(i) > n—o(i) + 1 and, if there is equality, then a(1) =1, ---, a(i) = i for all « € S(P, Q).
We proved Hj in the first step. Let us prove H; by induction on i. Let us assume H; 1,1 <1 < n,
and let us prove H;. Let v € S(P,Q) (non empty by hypothesis). By H;_1, as the equality is
satisfied, (1) =1, -+, a(i — 1) =i — 1.

In P, the number N; of elements j such that i <j, j is the cardinality of o= ({c (i), -+ ,n})N
{i,--,n},so Ny =n—0()+1—|{k <i/o(k) > o(i)}|. Using a, there exists at least IV;
elements j of @ such that a(i) <, j in Q.

Let us put a'(i) =j. Asa(l)=1,---,a(i—1)=i—1,j >diand i < a(i). If i <}, a(i) in
Q, then j <, i in P, so j = i: we always have i <, a(i) in @, and at least N; elements k of Q
satisfy ¢ <, j in . Hence:

{1 (@) N - nd

(@) =k <i/7(k) <7(i)}

7)) —{k<i/n—0ok)+1<n—o(i)+ 1}
(i) = {k < i/ a(k) > o(i)}],

%

n—o(i)+1-{k<i/o(k)>o(i)}

VAN VAN VAR VAN

so 7(i) > n — o(i) + 1. If there is equality, then necessarily ¢ = «(i) for all a € S(P, Q).

Conclusion. The hypothesis H; is true for all 0 < ¢ < mn. So7 > (n---1) oo in &,, so
1(P) < @ in PP(n). As a conclusion, ¢(P) < m(P). O

Corollary 36 Let us assume that go = 0. Then the pairing (—, —)4 is non-degenerate if, and
only if, q1 # 0.

Proof. Let us fix an integer n € N. We consider the basis PP(n) of H(n), totally ordered by
<. In this basis, the matrix of (—, —), restricted to H(n) has the following form, coming from
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Lemmas 34 and 35:

n(n—1)
0 0 q °
n(n—1)
q ° *
n(.nfl)
0 q
n(n—1)
ql 2 * e ... *
nin(n—1)
so its determinant is +¢; * . Hence, (—, —), is non-degenerate if, and only if, ¢; # 0. ]

Remark. With the help of the isometry a (Proposition 31), it is possible to prove that if
@1 =0, (—, —)4 is non-degenerate if, and only if, g2 # 0.

Corollary 37 If q1,q2,q3,qa are algebraically independent over Z, then the pairing (—, —)q
18 non-degenerate.

Proof. For all n, let us consider the matrix of the pairing restricted to Hpp(n) in the basis
formed by the plane posets of degree n. Its determinant D,, is clearly an element of Z[q1, g2, g3, q4]-
Moreover, Dy(1,0, g3, q4) # 0 by Corollary 36, so D,, is a non-zero polynomial. As a consequence,
if q1, g2, g3, q4 are algebraically independent over Z, D, (q1, q2,q3,q4) # 0. U

5 Morphism to free quasi-symmetric functions

5.1 A second Hopf pairing on H g, 0,4.,,q)
We here assume that g = 0 and q; = ¢g3. For all double poset P,
\1

haa e r
A(q1,07ql7q4)(P) = Z 0 q (P\I)®lI
I h-ideal of P

For any h-ideal I of P, hf\l =0, so:

h%\f_‘_r{%\[ = ﬁ{($,y)E(P\I)XI|$<y},
PP

= H{(z,y) e (P\I) xI|z >y}
Hence:

Z q%{(m,y)e(P\I)><I|ac<y}q§{(ﬂc,y)6(P\])X]\$<y} (P \ I) ® 1.

I h-ideal of P

A(Q1,07Q17Q4)(P) =

Notations. Let P,Q € P(n) and let 0 € Bij(P,Q). As totally ordered sets, P = @ =
{1,...,n}, so o can be seen as an element of the symmetric group &,,. Its length ¢(o) is then
its length in the Coxeter group &, [7].

Theorem 38 We define a pairing (—, —>; Hy ®@Hy — K by:

n(n—1) T o
<Pa QXJ = Z q1 2 ( )Qﬁ( )7
oeS'(P,Q)

for all P,Q € PP, with n = deg(P). Then (—,—); is an homogeneous symmetric Hopf pairing
on the braided Hopf algebra Hy = (H,~, Ag).
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Proof. This pairing is clearly homogeneous. For any double posets P and ), the map from
S'(P,Q) to S'(Q, P) sending o to its inverse is a bijection and conserves the length: this implies
that the (P, Q); = (Q, P)g

Let P,Q, R be three double posets. There is a bijection:

Bij(P~ Q,R) — | Bij(P,R\I) x Bij(Q,I)
O: ICR
o — (9P 0)Q);

with I = 0(Q). Let us first prove that o € S’'(P ~ @, R) if, and only if, I is a h-ideal of R and
(01,02) S S/(P,R\I) X S/(Q,I).

—. Let 2’ € I and let ¢ € R such that 2/ <, 3. We put 2’ = o(x) and ¢y = o(y).
As o € S'(PQ,R), x <y. Asz € Q,y € Q,s0y € I: Iis a h-ideal of R. By restriction,
op €S (P,R\ 1) and o € 5'(Q, ).

<=. Let us assume that z <j y in P ~» Q. Then z,y € Por 2,y € Q. As op € S'(P,R\I)
and 0)g € §(Q, 1), o(x) < o(Q) in R. Let us assume that o(z) <p o(y) in R. As [ is a h-ideal,

there are two possibilities:

e o(z),0(y) € R\ I or o(z),0(y) € I. Hence, x,y € Por 2,y € Q. As op € S"(P,R\I)
and o1g € §'(Q, 1), * <y in ~ PQ.

o(x) € R\ I and o(y) € I. Hence, zr € Pand y € Q, so x <y in P ~ Q.

Finally, we obtain a bijection:

S(P~QR — ) SPEPR\D)xIQI)
O I h-ideal of R
o — (op,0q),

Let 0 € S'(P ~ @, R) and we put ©(c) = (01,092). Let R\ I = {i1,...,ix} and I = {j1,..., 5}
Let ¢ € &y defined by (~H(1) =i1...,¢ k) = ip, CHE+1) = j1,...,( Yk +1) = j;. Then
Cis a (k,I)-shuffle and 0 = (! o (07 ® 02), s0 £(c) = £(¢) + £(o1) + £(02). Moreover:

0¢) = t{(p.a) | dg < ipy =80, 5) € (R\ND) x I | j < i} =i 4 nfN =V

as I is a h-ideal of R. Finally, {(0) = £(01) + £(02) + Tf\l. Moreover, if |R| = n and |I| = k, by
Lemma 13:

R\I R\I
h%\l—l-?“{.%\]—i-?“]\ hR\I+TR\I+h \ I\ k(n—k),
SO:

k(k—1) (n—k)(n—k—1)

hé\]“v‘ré\[‘i‘ 9 + 9
1 —k)n—k—1
= k(n—k)+ k<k2 ) + (n k)(T; E—1) —r?\l
n(n —1) R\I
= =5 —7‘[\.
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Finally:

2= _po) oo
<PWQ,R>; _ Z q 2 ()q4()
UES/(P“"’Q7R)
2D g(o1)—tloa) N t(on) +e(o2) 4N
- > > "

I h-ideal of R oy€S'(P,R\I),02€S"(Q,I)

k(k—1) | (n—k)(n—k—1)
7 T 2 I

_ hip it (o1)+0(o2)+rF
= D . a s
I h-ideal of R o1€8'(P,R\I).02€S"(Q,1)

> a

52\1"'7{2\1 ry / /
0O a' (P,R\1)e(Q, 1),
I h-ideal of R

= (P®Q,A¢(R))y

So this pairing is a Hopf pairing on H,. O
Remark. In particular, (—, —>’(170’171) is the pairing (—, —) of the section 1.
Examples. Here are the matrices of the pairing (—, —); restricted to Hy(n), for n = 1,2,3.
! ..
4‘? L la Q1
e |1 | 1T
I v A . .1
Pld| g i i i i
Vg (g +aq) i (g1 + qa) i @+ qa)
Alap g @ (g + qa) g @ (a1 + ) @+ qa)
rAr{CEN @ @ (g1 + qu) a1(q? + q}) 01(q} + s + q43)
g @ @ (g1 + ) G ) @ (g1 + qa) @ (g + qqa +q3)
G| ada+a)|da+aw | al@d@+aa+da) | ald+au+a)| (a+a)(ed+au+a)

Proposition 39 For all z,y,z € Hy, {24y, 2); = (T @ Y, A(g1,0,41,0) (%))

Proof. Let P,Q, R € PP. We consider the following map:

Bij(P4Q,R) — | J Bij(P,R\ 1) x Bij(Q, )
ICR
g — (0-|P7O-\Q)7

with I = o(Q). Let us first prove that o € S'(PQ, R) if, and only if, I is a biideal of R and
(01,09) € S"(P,R\ I) x S'(Q,I).

=—. Obviously, (01,02) € S'(P,R\ I) x §'(Q,I). Let 2’ € I, y' € R, such that 2’ <1y'. We
put 2’ =o(x) and ¢y = o(y). fy ¢ Q, theny € Pand x € Q,s0y <p x. Aso € S'(P1Q, R),
y' < 2’ contradiction. Soy € Q and 3y’ € I.

<. Let z,y € P4(@Q), such that z <; y. Two cases are possible.
e Ifz,ye Porx,yeQ,as (01,00) € S'(P,R\I) xS(Q,I), o(x) <o(y) in R.

e IfxrePandyeQ, as I =0(Q)is a biideal, it is not possible to have y < x, so = < y.
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Let z,y € P4@Q, such that o(x) <j o(y) in R. As I = o(Q) is a biideal, two cases are
possible.

e lfx,yec Porx,yeQ,as (01,02) € S'(P,R\I) x S'(Q,I), x <yin P;Q.

e Ifre Pandy € Q, then x <y in P4Q.

Moreover, if I = o(Q) is a biideal of R, then I = {k+1,...,k+1} C R, where k = |P| and
[ =|Q|. Then o = 01 ® 09, s0 £(c) = l(01) + {(02). So, with n = |R|:

M,@ o1)—l(o o -
<PéQ,R>; = Z Z q > (o1)—¢( Z)qi( 1)+£(o2)

I biideal of R oy €5'(P,R\I),02€5"(Q,])
n(n—=1) k(k—=1) (n—k)(n—k—1)

— g ? 2 2 (P2 Q,(R\I)®1I),

I biideal of R

= > d"Mree.r\neI),
I biideal of R

= Y ¢"VHreg r\DeI),
I biideal of R

h{%\IJrT{%\I /
= > & (PoQ,(R\I)2 1),
I biideal of R
= <P 0y Q7 A(ql,O,ql,O) (R)>:]7

with the observation that, as I is a biideal, h?\l = Tf\l =0,s0 R\ I|.|I| = hg\] + 7“][%\[. O
Remark. In particular, if ¢ = (1,0, 1, 1), for all P,Q, R € PP:

(P4Q,R) = (PRQ,Aqoi0(R) = D  (PRQ,(R\)I).

I biideal of R

This formula was already proved in [4].

5.2 Quantization of the Hopf algebra of free quasi-symmetric functions

Theorem 40 1. We define a coproduct on FQSym in the following way: for all o € G,

T ORI O ¢D NN N ) N VR O c N )
Ag(o) = Zqilc( k)—t(o)+t(o) ") +E(oy, )qi( )=o) —L(oy, )Ul(cl) ®a,(€2).
k=0

For all ¢ € K, FQSym, = (FQSym, m, ;) is a graded braided Hopf algebra.

n(n—1)
2. We define a Hopf pairing on FQSym,, by (o,7) = q; * Z(U)qﬁ(a)émfl.

3. The following map is an isomorphism of braided Hopf algebras:

Hy — FQSym,
©:9 PePP — > o

oeSp

Moreover, for all x,y € Hy, (O(x),0(y)) = (T,Y)q-

Remarks.
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1. Let 0 € 6,. If 0 < k <n, weput c({1,...,k}) = {i1,...,ixt and c({k + 1,...,n}) =
{j1,..-,71}. Let ¢ be the (k,1)-shuffle defined by ¢~1(1) =iy ...,( 1 (k) = ix, ¢ (k+ 1) =
Jroe (U E D) = i Then o = (1o (0 @ 0), and L) = €(Q) + Uoy) + 0y,
Moreover, 0 < 4(¢) < k(n — k), so:

0< (o) — (o) = t(0?) < k(n—k).
As a consequence, the coproduct on FQSym,, is well-defined, even if g1 = 0 or g4 = 0.

2. It is clear that the pairing (—, —); defined on FQSym,, is non degenerate if, and only if,
q1 # 0 and g2 # 0.

Proof. From [12], we already know that © is an algebra isomorphism. Moreover, it is also
proved there (Lemma 3.1) that S'(P, Q) = S(P) N S(Q)~! for any P,Q € PP, so:

(0(P),0(Q)); = Y. (o

ceS(P),TeS(Q)

n(n—1) —0(6) o
= Z qy 2 ( )Q4( )50',7'—1
c€eS(P),TeS(Q)

n(n 1) —0(o) ¢
_ Z a ( )q4( o)
ceS(P)NS(Q)~1

n(n—1) o o

— Z q 2 ( )qi( )
ceS'(P,Q)
= (P.Q)q

So O is an isometry.

Consequently, for all z € Hy, y,2 € FQSym,:

(AoB(2),y®2), = (O(x),y2)
= (2,07 (y2));
= (2,07 ()07 (2))q
= (Ay(2),07 () @ 07 ()
= ((O®0)oA(2),y ® 2)q.

Let us now assume that ¢i,q4 # 0. Then the pairing (—, —>f] on FQSym, is non-degenerate,
so Ao©O = (0 ®0)oA. Hence, © is an isometric isomorphism of braided Hopf algebras. This
proves the three points immediately.

Up to an extension, we can assume that K is infinite. It is not difficult to show that the set A
of elements (g1, q4) € K? such that the three points are satisfied is given by polynomial equations
with coefficients in Z, As it contains (K — {0})? from the preceding observations, which is dense

in K2, it is is equal to K2, so the result also holds for any (q1,q4). O
Corollary 41 The pairing (—, —)fl is non-degenerate if, and only if, g1 # 0 and q4 # 0.

Proof. This result is implied via the isomorphism O from the fact that the pairing (—, —)’
on FQSym, is non-degenerate if, and only if, g1 # 0 and g4 # 0.

O
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