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LOÏC FOISSY, JEAN-CHRISTOPHE NOVELLI AND JEAN-YVES THIBON

Abstract. We construct explicit polynomial realizations of some combinato-
rial Hopf algebras based on various kind of trees or forests, and some more
general classes of graphs, ranging from the Connes-Kreimer algebra to an al-
gebra of labelled forests isomorphic to the Hopf algebra of parking functions,
and to a new noncommutative algebra based on endofunctions admitting many
interesting subalgebras and quotients.
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1. Introduction

One knows many examples of Hopf algebras based on various kinds of trees or
forests [3, 6, 7, 20, 17, 18, 24]. Such algebras are increasingly popular, mainly
because of their application to renormalization problems in quantum field the-
ory [19, 3], but some of them occured earlier in combinatorics [12, 13] or in
numerical analysis [14].

The simplest one, generally known as the Connes-Kreimer algebra [3], is a
commutative algebra freely generated by rooted trees, endowed with a coproduct
defined in terms of admissible cuts.

This is a basic example of a combinatorial Hopf algebra, a heuristic notion
encompassing a large class of graded connected Hopf algebras based on combi-
natorial objects, endowed with some extra structure such as distinguished bases,
scalar products or degree-preserving products (called internal products). A dis-
tinctive feature of combinatorial Hopf algebras is that products and coproducts
in distinguished bases are given by combinatorial algorithms. However, in many
cases, the basis elements can be realized as polynomials (commutative or not)
in some auxiliary set of variables, in such a way that the product of the algebra
becomes the usual product of polynomials, and the coproduct a simple trick of
“doubling the variables” (see, e.g., [4, 25, 24] for detailed examples).

Such a construction was not known for the Connes-Kreimer algebra, despite
the fact that it is one of the simplest examples. The present paper provides such
a construction, which in turn will be obtained by specialization of a new real-
ization of a Hopf algebra of labelled forests [10], itself isomorphic to the (dual)
Hopf algebra of parking functions [25]. This provides as well realizations of the
noncommutative Connes-Kreimer algebra (isomorphic to the Loday-Ronco alge-
bra of planar binary trees) [6, 7, 20], and new morphisms between these algebras
and other combinatorial Hopf algebras.

Previously known realizations were defined in terms of an auxiliary alphabet A,
endowed with some ordering. A given combinatorial Hopf algebra is then realized
by interpreting the elements of some basis as the sum of all words over A sharing
some specific property (e.g., descent set, standardization, packing, parkization),
the product is then the ordinary product of polynomials, and the coproduct is
the ordinal sum A + B of two isomorphic copies of the ordered set A.

As we shall see, it is possible to extend this approach to the algebras of the
Connes-Kreimer family, provided that one replaces the order on A by another
kind of binary relation, for which an analog of the ordinal sum can be defined.
This construction works for a slightly more general class of graphs, and we can
obtain for example a new Hopf algebra based on endofunctions, regarded as a
generalization of labelled forests where the roots can be replaced by cycles.

Acknowledgements. Partially supported by a PEPS project of the CNRS.

2. Rooted trees and rooted forests

In all the paper, K will denote a field of characteristic zero.
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2.1. Reminders on rooted trees and forests. A rooted tree is a finite tree
with a distinguished vertex called the root. A rooted forest is a finite graph F
such that any connected component of F is a rooted tree. The set of vertices of
the rooted forest F is denoted by V (F).

Let F be a rooted forest. The edges of F are oriented downwards (from the
leaves to the roots). If v, w ∈ V (F), with v 6= w, we shall write v → w if there is
an edge in F from v to w, and v � w if there is an oriented path from v to w in
F .

Let v be a subset of V (F). We shall say that v is an admissible cut of F ,
and we shall write v |= V (F), if v is totally disconnected, that is to say that
there is no path from v to w in F for any pair (v, w) of distinct elements of v. If
v |= V (F), we denote by LeavF the rooted subforest of F obtained by keeping
only the vertices above v, that is to say {w ∈ V (F), ∃v ∈ v, w � v} ∪ v. We
denote by RoovF the rooted subforest obtained by keeping the other vertices.

2.2. The Connes-Kreimer Hopf algebras. Connes and Kreimer proved in [3]
that the vector space H spanned by rooted forests can be turned into a Hopf
algebra. Its product is given by the disjoint union of rooted forests, and the
coproduct is defined for any rooted forest F by

(1) ∆(F) =
∑

v|=V (F)

RoovF ⊗ LeavF .

For example,

(2) ∆

( q∨qqq )
= q∨qqq ⊗ 1 + 1⊗ q∨qqq

+ q∨qq ⊗ q + qq ⊗ qq + qqq ⊗ q + qq ⊗ q q + q ⊗ qq q .
This Hopf algebra is commutative and noncocommutative. Its dual is the uni-
versal enveloping algebra of the free pre-Lie algebra on one generator [2].

A similar construction can be done on plane forests. The resulting noncom-
mutative, noncocommutative Hopf algebra HNCK is called the noncommutative
Connes-Kreimer Hopf algebra [6, 7]. It is isomorphic to the Hopf algebra of planar
binary trees [20].

3. Ordered rooted trees and permutations

We recall here a generalization of the construction of product and the coproduct
of H to the space spanned by ordered rooted forests introduced in [10].

3.1. Hopf algebra of ordered trees. An ordered (rooted) forest is a rooted
forest with a total order on the set of its vertices. The set of ordered forests will
be denoted by Fo; for all n ≥ 0, the set of ordered forests with n vertices will be
denoted by Fo(n). An ordered (rooted) tree is a connected ordered forest. The
set of ordered trees will be denoted by To; for all n ≥ 1, the set of ordered trees
with n vertices will be denoted by To(n). The K-vector space generated by Fo

is denoted by Ho. It is a graded space, the homogeneous component of degree n
being V ect(Fo(n)) for all n ∈ N.
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For example,

To(1) = { q1},
To(2) = { qq12 , qq21 },
To(3) =

{ q∨qq
1
23
, q∨qq

2
13
, q∨qq

3
12
, qqq123 , qqq132 , qqq213 , qqq231 , qqq312 , qqq321 } ;

(3)

Fo(0) = {1},
Fo(1) = { q1},
Fo(2) = { q1 q2 , qq12 , qq21 },
Fo(3) =

{ q1 q2 q3 , q1 qq23 , q1 qq32 , q2 qq13 , q2 qq31 , q3 qq12 , q3 qq21 ,

q∨qq
1
32
, q∨qq

2
31
, q∨qq

3
21
, qqq123 , qqq132 , qqq213 , qqq231 , qqq312 , qqq321

}
.

(4)

If F and G are two ordered forests, then the rooted forest FG is seen as the
ordered forest such that, for all v ∈ V (F), w ∈ V (G), v < w. This defines
a noncommutative product on the the set of ordered forests. For example, the
product of q1 and qq12 gives q1 qq23 , whereas the product of qq12 and q1 gives qq12 q3 =q3 qq12 . This product is linearly extended to Ho, which in this way becomes a
graded algebra.

The number of ordered forests with n vertices is (n + 1)n−1, which is also the
number of parking functions of length n. By definition, Ho is free over irreducible
ordered forests (that is to say ordered forests which cannot be written as the
product of two nonempty ordered forests), which are in bijection with connected
parking functions. For example, here are the connected ordered forests with k ≤ 3
vertices: q1 , qq12 , qq21 , q2 qq13 , q2 qq31 , q∨qq

1
32 , q∨qq

2
31 , q∨qq

3
21 , qqq123 , qqq132 , qqq213 , qqq231 , qqq312 , qqq321 .

Hence, as an associative algebra Ho is isomorphic to the Hopf algebra of parking
functions PQSym introduced in [25].

If F is an ordered forest, then any subforest of F is also ordered. In [10], a
coproduct ∆ : Ho 7−→ Ho ⊗Ho on Ho has been defined in the following way: for
all F ∈ Fo,

(5) ∆(F) =
∑

v|=V (F)

RoovF ⊗ LeavF .

As for the Connes-Kreimer Hopf algebra of rooted trees [3], one can prove that
this coproduct is coassociative, so Ho is a graded Hopf algebra. For example,

(6) ∆

( q∨qqq
2
34

1
)

= q∨qqq
2
34

1

⊗1+1⊗ q∨qqq
2
34

1

+ q∨qq
1
32 ⊗ q1 + qq12 ⊗ qq21 + qqq231 ⊗ q1 + qq12 ⊗ q1 q2 + q1⊗ qq31 q2 .

Theorem 3.1. As a Hopf algebra, Ho is isomorphic to the graded dual PQSym∗

of PQSym.

Note. Actually, PQSym is self-dual, but as we shall see, Ho admits WQSym
as a natural quotient rather than as a natural subalgebra, which is also the case
of PQSym∗.
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Proof – We shall only give here the main ideas of the proof, see [8] for more
details. Another product, denoted by ↖, is defined on the augmentation ideal of
Ho: if F and G are two ordered forests, F ↖ G is the ordered forest obtained
by grafting G shifted by the number of vertices of F on the greatest vertex of F .
For example,

(7) qq12 ↖ q1 q2 = q∨qq q1243

and qq21 ↖ q1 q2 = q∨qq q
2
4

3
1

.

This product is associative, and satisfies a certain compatibility with the product
of Ho. The coproduct of Ho also splits into two parts, separating the admissible
cuts, according to whether the greatest vertex of F is in RoovF or LeavF . These
coproducts make the augmentation ideal of Ho a dendriform coalgebra, and there
is a certain compatibility (called duplicial) between each product and each co-
product of Ho, making Ho what is called in [8] a Dup-Dend bialgebra. Moreover,
the Hopf algebra PQSym∗ is a Dup-Dend bialgebra. A rigidity theorem, sim-
ilar with the rigidity theorem for bidendriform bialgebra of [9], tells then that
a graded, connected Dup-Dend bialgebra is free. As a consequence, as Ho and
PQSym have the same Poincaré-Hilbert series, they are isomorphic as graded
Dup-Dend bialgebras, so as graded Hopf algebras.

3.2. A realization of Ho. The Hopf algebra of ordered rooted forests can be
realized by explicit polynomials in an auxiliary alphabet of bi-indexed variables

(8) A = {aij, 1 ≤ i ≤ j}.

On such an alphabet, we consider the relation ≺ defined by:

(9) aij ≺ ajk for i ≤ j and j < k .

In particular, for all i ≤ j, aij ≺ aij if, and only if, i = j. We call the pair (A,≺)
a ≺-alphabet. This is an analog of the notion of ordered alphabet used for most
other combinatorial Hopf algebras. If (B,≺) is another ≺-alphabet, their ≺-sum
A ⊕ B is defined as their disjoint union endowed with the ≺-relation restricting
to the original ones of A and B, and such that :

aij ≺ bkk for all i ≤ j and k.

Let F be an ordered forest with n vertices. We attach to the root of each tree
of F a loop, that is to say an edge from the root to itself. For example, we shall

consider q∨qqq
1
42

3

as �
q∨qqq
1
42

3

. There is then a natural bijection from the set of edges of
F (including the edges of the loops ) and the vertices of F , associating with an
edge of F its initial vertex. As the set of vertices of F is totally ordered, the set
of edges of F is then totally ordered. We shall denote by e1 < . . . < en the set of
edges of F .

Let w = w1 . . . wn be a word of length n over A. We say that w is F -compatible
if, for k, l ∈ {1, . . . , n} such that the initial vertex of ek is the terminal vertex of
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el, or equivalently if l → k in F , then wk ≺ wl. We then write w ` F . Now
define the polynomials

(10) SF(A) =
∑
w`F

w .

For example, let

(11) F = qq32 q∨qq q
4
61
5

=�
qq32 �

q∨qq q
4
65
1

Then,

SF =
∑

w3≺w2,w3
w4≺w1,w4,w6

w6≺w5

w1w2w3w4w5w6

=
∑
i3<i2

i4<i1,i6
i6<i5

ai4i1ai3i2ai3i3ai4i4ai6i5ai4i6 .
(12)

Theorem 3.2. The polynomials SF(A) provide a faithful realization of Ho. That
is,

(13) SFSG = SFG

and if we allow A and B to commute and identify P (A)Q(B) with P ⊗Q,

(14) SF(A⊕B) =
∑

v|=V (F)

SRoovF(A)SLeavF(B) = S∆(F) .

Proof – Let us first prove that the multiplicativity. Let F be an ordered forest
with k vertices and G be an ordered forest with l vertices. In the ordered forest
FG, the vertices of F are the k first vertices and the vertices of G are the l last
ones, and there are no edges between the vertices of F and the vertices of G.
Consequently, a word w1 . . . wk+l is FG-compatible if, and only if, w1 . . . wk is
F -compatible and wk+1 . . . wk+l is G-compatible. Hence:

SFG =
∑

w′|=F ,w′′|=G

w′w′′ = SFSG.

Let us prove that the realization is faithful. Let w = ai1,j1 . . . ain,jn be a word
on the alphabet A. Let J(w) = {j1, . . . , jn} and j(w) = card(J(w)). Then j(w)
defines a degree on K〈〈A〉〉. If P =

∑
xww is an element of K〈〈A〉〉, we denote by

P̃ the component of P of maximal J(w), if it exists. In particular, if the degree
of the words appearing in P is bounded, then P̃ exists.

Let F be an ordered forest. The degree of the words w appearing in SF(A) is
the number n of vertices of F , so S̃F(A) exists. As there are F -compatible words
w such that j(w) = n, j(SF(A)) = n. Hence, if w = ai1,j1 . . . ain,jn appears in

S̃F , then necessarily j1, . . . , jn are all distinct, so we can reconstruct F from w:
the vertex k is a root if, and only if, ik = jk and there is an edge from the vertex
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k to the vertex l in F if, and only if, ik = jl. As a consequence, the S̃F(A) are
linearly independent. And so are the SF(A).

Consider now a word w = ci1j1 . . . cinjn in SF(A⊕B). If cikjk
belongs to B, and

if l → k in F , then cikjk
≺ ciljl

, so ciljl
also belongs to B. As a consequence, there

exists a unique admissible cut v such that the vertices of F labelled by those
subscripts k such that cikjk

belongs to B is LeavF and the vertices of F indexed
by those subscripts k such that cikjk

belongs to A is RoovF . Moreover, w is a
word appearing in SRoovF(A) ⊗ SLeavF(B). Conversely, any word appearing in
SRoovF(A)⊗ SLeavF(B) appears in SF(A⊕B). So

(15) SF(A⊕B) =
∑
v|=F

SRoovF(A)⊗ SLeavF(B) = S∆(F).

Example. Let F = q∨qq q
1
32
4

. Then

(16) SF =
∑

w1≺w1,w2,w3,
w3≺w4

w1w2w3w4,

so that

(17) SF(A) =
∑

ai1i1ai1i2ai1i3ai3i4 ,

and

SF(A⊕B) =
∑

ai1i1ai1i2ai1i3ai3i4 +
∑

ai1i1bj2j2ai1i3ai3i4 +
∑

ai1i1ai1i2ai1i3bj4j4

+
∑

ai1i1bj2j2ai1i3bj4j4 +
∑

ai1i1ai1i2bj3j3bj3j4

+
∑

ai1i1bj2j2bj3j3bj3j4 +
∑

bj1j1bj1j2bj1j3bj3j4

=SF(A) + S qqq123 (A)S q1 (B) + S q∨qq
1
32

(A)S q1 (B)

+ S qq12 (A)S q1 q2 (B) + S qq12 (A)S qq12 (B) + S q1 (A)S q1 qq23 (B) + SF(B).

(18)

We shall give a second realization of Ho in Section 5.2.

3.3. Epimorphism to WQSym. Let us recall the definition of WQSym, the
Hopf algebra of Word Quasi-Symmetric functions (cf. [15, 24]). This algebra
has many interpretations, e.g., as the Solomon-Tits descent algebra [28, 24], as
a centralizer algebra for a kind of Schur-Weyl duality [23], and as an algebra of
nonlinear difference operators [22].

The packed word u = pack(w) associated with a word w ∈ A∗ (over an ordered
alphabet A) is obtained by the following process. If b1 < b2 < . . . < br are the
letters occuring in w, u is the image of w by the homomorphism bi 7→ ai. A word
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u is said to be packed if pack(u) = u. The natural basis of WQSym, which lifts
the quasi monomial basis of QSym, is labelled by packed words. It is defined by

(19) Mu =
∑

pack(w)=u

w .

In this basis, the product is given by

(20) MuMv =
∑

w=u′v′
pack(u′)=u, pack(v′)=v

Mv .

Let π be the algebra morphism aij 7→ aj from the free associative algebra on
the aij to the free associative algebra over single-indexed letters ai.

Proposition 3.3. WQSym is a quotient Hopf algebra of Ho:

(21) π(Ho) = WQSym.

Proof – Let F be an ordered forest with n vertices. A packed word m = a1 . . . an

will be said to be F -admissible if i → j in F implies that aj < ai. Then

(22) π(F) =
∑

m F-admissible

 ∑
pack(w)=m

w

 =
∑

m F-admissible

Mm.

So π(F) ∈ WQSym.
Let us prove the surjectivity of π. We totally order packed words by the

lexicographic order. For any packed word w = a1 . . . an, let us construct an
ordered forest Fw of degree n such that the smallest packed word appearing in
π(Fw) is w. We proceed by induction on n. If n = 1, then w = (1) and we take
F(1) = q1 . Let us assume the result for any packed word with n − 1 letters. We
separate the construction of Fw into three cases.

(1) 1 = a1 = a2 ≤ a3 . . . ≤ an. We then take Fw = q1Fa2...an .
(2) 1 = a1 < a2 ≤ a3 ≤ . . . ≤ an. Then a2 = 2. Let a′2 . . . a′n = pack(a2 . . . an),

that is to say a′i = ai − 1 for all i. We then take Fw = B+(Fa′2...a′n), that
is to say the ordered tree obtained by adding a root to Fa′2...a′n , this root
being the smallest element.

(3) The letters a1, . . . , an are not in order. There exists σ ∈ Sn, such that
aσ−1(1) . . . aσ−1(n) is ordered. We then take Fw = σ · Faσ−1(1)...aσ−1(n)

, where

σ acts by changing the order of the vertices of Faσ−1(1)...aσ−1(n)
.

It is not difficult to show that these Fw give the result. So π is surjective.
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For example,

π( q1 ) = M(1)

π( q1 q2 ) = M(11) + M(12) + M(21)

π( qq12 ) = M(12)

π( qq21 ) = M(21)

π( q∨qq
1
32 ) = M(123) + M(132) + M(122)

π( q∨qq
3
21 ) = M(231) + M(321) + M(221).

(23)

3.4. Embedding of the noncommutative Connes-Kreimer algebra. Let
F be a plane forest. It can be seen as an ordered forest, by totally ordering the
vertices of F ”up-left”, that is, by performing a left depth-first traversal of the
forest and numbering each vertex on the first encounter. For example,

(24) q∨qq q q∨qqq 7→ q∨qq q
1
32
4 q∨qqq

5
86

7

Proposition 3.4. The map F 7→ SF is a Hopf embedding of the noncommutative
Connes-Kreimer algebra HNCK into Ho.

Proof – This is clearly compatible with the product, since shifted concatenation
preserves the planar structure, and with the coproduct which is given on both
sides by admissible cuts, the labeling having been chosen such that in Ho, the
coproduct of the image of a plane forest contains only terms corresponding to
plane forests.

Thus, we have also a polynomial realization of HNCK . For example:

(25) qq q∨qq q
7→ S qq12 q∨qq q

3
54
6

=
∑
i1<i2
i3<i4

i3<i5<i6

ai1i1ai1i2ai3i3ai3i4ai3i5ai5i6 .

3.5. Embedding of HNCK into WQSym.

Theorem 3.5. Let π : Ho → WQSym be the projection induced by aij 7→ aj in
the second realization. Then the restriction of π to HNCK is injective.

Proof – Let B+ denote as usual the operation consisting of connecting the trees
of a (plane) forest to a common root, and define an endomorphism b of WQSym
by

(26) b(Mu) = M1·u[1]

where · is the concatenation and u[1] means shifting by 1 the letters of u, e.g.,
b(M2131) = M13242.

We then have

(27) π ◦B+ = b ◦ π .
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An ordered forest F can be regarded as a poset PF (the roots being mini-
mal elements). Identifying a map f from PF to some [m] with the word wf =
f(1)f(2) · · · f(n), we have

(28) π(SF) =
∑

f∈S(PF )

Mwf
.

where S(PF) is the set of increasing surjections from PF to some [m].
Now, if we restrict to those F which are the canonical labeling of plane forests,

the lexicographically minimal increasing surjection words wf are all distinct and
allow to reconstruct F . It appears then clearly that the images of the plane
forests are linearly independent.

3.6. The noncommutative Faà di Bruno algebra. Recall that the Faà di
Bruno algebra is the Hopf algebra of polynomial functions on the group of formal
diffeomorphisms of the real line tangent to the identity [5]. It can be identified
with the algebra Sym of symmetric functions, endowed with the coproduct acting
on the complete homeogenous functions hn by

(29) ∆1hn =
n∑

k=0

hk(X)hn−k((k + 1)Y )

or equivalently,

(30) ∆σ1 =
∑
n≥0

hn ⊗ σn+1
1 ,

where

(31) σ1 :=
∑

n

hn(X) =
∏
i≥1

(1−xi)
−1, and σ1(αX) =

∑
n

hn(αX) = σ1(X)α.

The noncommutative version [7, 1] can be identified with the algebra Sym of
noncommutative symmetric functions [11, 26], endowed with the coproduct

(32) ∆1Sn =
n∑

k=0

Sk(A)Sn−k((k + 1)B)

or, again

(33) ∆σ1 =
∑
n≥0

Sn ⊗ σn+1
1 ,

where

(34) σ1(A) =
∑

n

Sn(A) =
→∏
i≥1

(1− ai)
−1, and σ1(αA) = σ(A)α.
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The Faà di Bruno algebra is known to be a Hopf subalgebra of the Connes-
Kreimer algebra, and in the same way, the noncommutative version can be em-
bedded in HNCK [7]. Let

(35) U =
∑

F

F =
1

1− V
, V =

∑
T

T = B+(U)

be the sum of all plane forests and the sum of all plane trees in HNCK . It is
shown in [7] that the square Z = U2 of U has the same coproduct as σ1:

(36) ∆NCKZ =
∑
n≥0

Zn ⊗ Zn+1 .

Thus, composing the map Sn 7→ Zn with the embedding of HNCK into WQSym,
we obtain an embedding of the noncommutative Faà di Bruno algebra.

3.7. Epimorphism to the original Connes-Kreimer algebra. If, in the
above realization of HNCK , we map aij 7→ xij where the xij are commuting
indeterminates, we obtain a commutative Hopf algebra which turns out to be the
original Connes-Kreimer algebra. We can even do this at the level of Ho. With
both realizations, SF and SG have the same image iff the underlying unordered
forests are the same. Thus the image of Ho is also the Connes-Kreimer algebra.

Proposition 3.6. The map aij 7→ xij provides a polynomial realization of the
Connes-Kreimer algebra.

Proof – The fact that SF(X) depends only on the underlying forests is clear from
the definition. Compatibility with the product and coproduct is also immediate.
The only point which has to be checked is that the map is surjective. This follows
from the same argument as in the proof of Theorem 3.2.

The commutative images of the polynomials SF are special cases of polynomials
known in numerical analysis, as well as their coproduct formula (see, e.g., [14]).
More precisely, the specialization of these polynomials SF to the coefficicients
of a finite matrix gives the polynomials associated with each tree by a Runge-
Kutta method (here, with a triangular matrix). The direct construction of the
coproduct in terms of the ≺-alphabets presented here is new.

3.8. Analog of the Schur basis. The basis SF is multiplicative, in the sense
that the product of two basis elements is again a basis element. In general, com-
binatorial Hopf algebras admit several interesting bases, and such multiplicative
bases are generally obtained by summing some other combinatorial basis along
intervals on some order. This is the case here.

There is a natural order on ordered forests with a given number n of vertices,
whose cover relation is F < F ′ iff F ′ is obtained from F by deleting exactly
one edge. In other words, considering the egdes of F and F ′ as elements of
{1, . . . , n}2, F ≤ F ′ if, and only if, the set of edges of F ′ is included in the set of
edges of F .
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Let us set

(37) RF =
∑
G≤F

(−1)|E(F)|−|E(G)|SG.

For example:

(38) R qq12 q3 = S qq12 q3 − S q∨qq
1
32

− S qqq123 − S qqq312 .

Let F be a forest with k vertices and let I ⊆ {1, . . . , k}. The restriction F|I is
the subforest of F obtained by taking all the vertices of F which are in I and all
the edges between these vertices. As I is totally ordered (as a part of {1, . . . , k}),
F|I is an ordered forest. Hence

Theorem 3.7. Let F ′ and F ′′ be two ordered forests, with respectively k′ and k′′

vertices. Then

(39) RF ′RF ′′ =
∑

RF ,

where the sum is over all ordered forests F with k′ + k′′ vertices, such that
F|{1,...,k′} = F ′ and F|{k′+1,...,k′+k′′} = F ′′.

Proof – Let us define another product ? on Ho, given by the formula we want to
prove. Let us then compute SF ′

? SF ′′
for any ordered forests F ′ and F ′′. By a

Möbius inversion, for any ordered forest G,

(40) SG =
∑
G′≤G

RG′ ,

so that

(41) SF ′
? SF ′′

=
∑

G′≤F ′,G′′≤F ′′

RG′ ? RG′′ =
∑

RG,

where the sum is over all ordered forests G with k′ + k′′ vertices, such that
G|{1,...,k′} ≤ F ′ and G|{k′+1,...,k′+k′′} ≤ F ′′. Such an ordered forest G is obtained,
first by adding edges between vertices of F ′ and F ′′, then edges between vertices
of the two obtained ordered forests. Equivalently, it can be obtained by adding
edges between vertices of F ′F ′′, so that

(42) SF ′
? SF ′′

=
∑

G≤F ′F ′′

RG = SF ′F ′′
= SF ′

SF ′′
.

So ? is the product of Ho.

For example,

R q1 q2 R q1 = R q1 q2 q3 + R qq12 q3 + R q1 qq23 + R q2 qq13 + R q1 qq32 + R q∨qq
3
21 + R qqq132 + R qqq231 .

R q1 R q1 q2 = R q1 q2 q3 + R q2 qq31 + R qq21 q3 + R qq12 q3 + R qq13 q2 + R q∨qq
1
32 + R qqq213 + R qqq312 .

(43)

Let F and F ′ be two ordered forests, equal as rooted forests. There exists a
permutation σ, such that the ordered forest Fσ obtained from F by permuting
the indices by σ is equal to F ′. Then, for any ordered forest G ≤ F , as G is
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obtained from F by adding some edges, Gσ ≤ F ′. As a consequence, the commu-
tative image of RF and RF ′

are equal. For any rooted forest F , we then denote
by RF the image of RF in the Connes-Kreimer algebra, where F is any ordered
forest with underlying rooted forest F ; this does not depend on the choice of F .
These elements form a new basis of the Connes-Kreimer Hopf algebra.

Examples. In the Connes-Kreimer Hopf algebra:

R q = q ,
R qq = qq ,
R q q = q q − 2 qq ,
R qqq = qqq ,

R q∨qq
= q∨qq

,

R q qq = q qq − q∨qq − 2 qqq ,
R q q q = q q q − 6 q qq + 3 q∨qq

+ 6 qqq ,
R qqqq = qqqq ,

R
q∨qq q = q∨qq q ,

R q∨qqq
= q∨qqq

,

R q∨qq q
= q∨qq q

,

R qq qq = qq qq − 2 q∨qqq − 2 qqqq ,

R qqq q = qqq q − q∨qqq − q∨qq q − 2 qqqq ,

R q∨qq q = q∨qq q − q∨qq q − 2 q∨qqq − q∨qq q ,

R qq q q = qq q q − 2 q∨qq q − 4 qqq q − 2 qq qq + q∨qq q
+ 6 q∨qqq

+ 3 q∨qq q + 6 qqqq ,

R q q q q = q q q q − 12 qq q q + 12 q∨qq q + 24 qqq q + 12 qq qq − 4 q∨qq q − 24 q∨qqq − 12 q∨qq q − 24 qqqq .

4. The cocommutative Hopf algebra on permutations

Besides the self dual Hopf algebra structure (known as FQSym or as the
Malvenuto-Reutenauer algebra [21]) on the linear span of all permutations, there
is another one which is cocommutative and noncommutative. It was first de-
scribed by Grossman and Larson [13] in terms of heap ordered trees. Several
other (non-obviously equivalent) constructions can be found in [16].
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The starting point of [16] is a commutative algebra, denoted by SQSym,
spanned by the polynomials

(44) Mσ =
∑

i1<...<in

xi1iσ(1)
· · ·xiniσ(n)

in commuting indeterminates xij satisfying xijxik = xikxjk = 0. The dual Hopf
algebra SSym is free over the set of connected permutations, and the dual basis
Sσ of Mσ satisfies

(45) SσSτ = Sσ•τ ,

where • denotes shifted concatenation [16], defined by (a1, . . . , am)•(b1, . . . , bn) =
(a1, . . . , am, b1 + m, . . . , bn + m).

Theorem 4.1. Let A = {aij|i, j ≥ 1} endowed with the relation aij ≺ akl iff
j = k. Then, the polynomials

(46) Sσ(A) :=
∑

i1,...,in≥1

aiσ(1)i1 · · · aiσ(n)in

satisfy (45). Moreover, if (B,≺) is another alphabet, their sum A⊕B is defined
as their disjoint union endowed with the ≺-relation restricting to the original ones
of A and B, and such that :

aij ≺ bkl for all i, j, k, l.

Then these polynomials span a Hopf algebra isomorphic to SSym for the coprod-
uct ∆F (A) = F (A⊕B).

Proof – The independence of the Sσ is proved in the same way as for Theorem 3.2:
indeed, in any Sσ(A) appears a word such that all subscripts ik are different and
such a word allows one to rebuild σ. Moreover, the Sσ defined by (46) satisfy
(45). For the coproduct, observe that Sσ(A) can alternatively be characterized
as the sum of all σ-compatible words, defined by the condition:

w = ak1l1 · · · aknln is σ-compatible iff

(47) i = σ(j) ⇒ akili ≺ akj lj .

Hence, Sσ(A ⊕ B) is well-defined, and obtained from Sσ(A) by splitting the set
of cycles of σ into two parts in all possible ways, and replacing a’s by b’s into one
of the parts. This is exactly the coproduct of the basis Sσ of SSym as described
in [16].

Example. Let us consider σ = 24513. Then

(48) Sσ(A) =
∑

ai2i1ai4i2ai5i3ai1i4ai3i5 ,

so that

(49) Sσ =
∑

w1≺w4≺w2≺w1
w3≺w5≺w3

w1w2w3w4w5.
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Hence,

Sσ(A⊕B) =
∑

ai2i1ai4i2ai5i3ai1i4ai3i5 +
∑

ai2i1ai4i2bi5i3ai1i4bi3i5

+
∑

bi2i1bi4i2ai5i3bi1i4ai3i5 +
∑

bi2i1bi4i2bi5i3bi1i4bi3i5

= Sσ(A) + S(231)(A)S(12)(B) + S(12)(A)S(231)(B) + Sσ(B).

(50)

5. A Hopf algebra of endofunctions

5.1. Construction. The commutative Hopf algebra of permutations of [16] is
actually a subalgebra and a quotient of a commutative algebra based on endo-
functions. There is a similar construction here.

Let A = {aij|i 6= j, i, j ≥ 1}, endowed with the relation aij ≺ akl iff j = k. For
a function f : [n] → [n], let us say that a word w = w1 · · ·wn is f -compatible iff
i 6= j and i = f(j) ⇒ wi ≺ wj. Define

(51) Sf (A) :=
∑

w f -compatible

w .

For example, representing a function as the list of its image, if f = (24352), one
has

Sf =
∑

w2≺w1,
w2≺w5≺w4≺w2

w1w2w3w4w5

=
∑

i6=k,j,n,k 6=n,l 6=m

aijakialmankain.
(52)

Note that, as before, these elements are linearly independent: any monomial
in Sf with as many different subscripts as possible allows one to reconstruct the
relations wi < wj, and hence the images of f (fixed points being the missing
ones).

Theorem 5.1. The Sf span a subalgebra of K〈A〉, with

(53) SfSg = Sf•g,

where, again, • denotes the shifted concatenation. Moreover, if (B,≺) is another
alphabet, their sum A ⊕ B is defined as their disjoint union endowed with the
≺-relation restricting to the original ones of A and B, and such that :

aij ≺ bkl for all i 6= j, k 6= l.

Then these polynomials span a (non-cocommutative) Hopf algebra for the coprod-
uct ∆Sf = Sf (A⊕B).

Proof – Similar to the proof of Theorem 4.1.

Let us give a description of the coproduct. Let f : [n] → [n] and let I ⊆ [n].
Let f I : I → I be the map satisfying f I(x) = f(x) if f(x) ∈ I and f I(x) = x
otherwise. If I has cardinality k, there exists a unique increasing bijection τI :
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I → [k]; Then std(f I) := τI ◦ f I ◦ τ−1
I . We shall say that I is an ideal of f and

write I |= f if f−1(I) ⊆ I.
One then sees that

(54) ∆(Sf ) =
∑
I|=f

Sstd(f [n]\I) ⊗ Sstd(fI).

Example. Let us consider f = (23234). Then

(55) Sf =
∑

w2≺w1,w3
w3≺w2,w4

w4≺w5

w1w2w3w4w5,

so that

(56) Sf (A) =
∑
j 6=i,k
l 6=k,m

ajiakjajkaklalm

and

Sf (A⊕B) =
∑

ajiakjajkaklalm +
∑

bqpakjajkaklalm +
∑

ajiakjajkaklbqp

+
∑

bqpakjajkaklbrs +
∑

ajiakjajkbpqbqr

+
∑

bqpakjajkbrsbst +
∑

bqpbrqbqrbrsbst

=Sf (A) + S(2123)(A)S(1)(B) + S(2323)(A)S(1)(B) + S(212)(A)S(12)(B)

+ S(232)(A)S(11)(B) + S(21)(A)S(122)(B) + S(f)(B).

(57)

Hence

∆(Sf ) =Sf ⊗ 1 + S(2123) ⊗ S(1) + S(2323) ⊗ S(1) + S(212) ⊗ S(12)

+ S(232) ⊗ S(11) + S(21) ⊗ S(122) + 1⊗ S(f).
(58)

Note that the ideals of f are ∅, {1}, {5}, {1, 5}, {4, 5}, {1, 4, 5}, and {1, 2, 3, 4, 5}.

We shall give a graphical representation of endofunctions. If f : [n] → [n], the
vertices of the graph associated with f are the elements of [n], and there is an
edge from i to j iff f(i) = j for all i 6= j. For example, the graph associated with
(23234) is

(59) GFED@ABC5 //GFED@ABC4

��

GFED@ABC1

��GFED@ABC3 99
GFED@ABC2

yy

The ideals of f are then given by admissible cuts of the graph (note that the
edges in the cycles cannot be cut).

We shall denote this Hopf algebra of endofunctions by EFSym.
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5.2. Hopf subalgebras and quotients.

5.2.1. Permutations. The Sσ, where σ runs over permutations, span a Hopf sub-
algebra of EFSym isomorphic to SSym Indeed, if f and g are permutations,
then f • g is also a permutation; if f is a permutation, then its ideals are the
disjoint unions of cycles of f , so one recovers the Hopf algebra structure of SSym
described in [16]. Note that the two realizations are different: in the realization of

section 4, S(1) =
∑
i≥1

aii and S(12) =
∑
i,j≥1

aijaij; in the realization as endofunctions,

S(1) =
∑
i,j≥1

aij and S(12) =
∑

i,j≥1,i6=j

aijaji.

5.2.2. Ordered forests. The Sφ, where φ runs over acyclic functions, span a Hopf
subalgebra of EFSym isomorphic to our first algebra of labelled forests, hence
to PQSym∗. Indeed, if F is a labelled forest, we can define an acyclic function
fF in the following way: if there is an edge from i to j in F , then f(j) = i. If i
is a root of F , then fF(i) = i. For example,

f q1 = (1)

f q1 q2 = (12)

f qq12 = (11)

f qq21 = (22)

(60)

In other words, fF is the endofunction whose graph is F , the orientation being
implicitly from top to bottom. Now, fFG = fF • fG. Moreover, the ideals of fF
are the set of the indices I such that the vertices of F indexed by I are a LeavF ,
where v runs over the set of admissible cuts of F . So

(61)
Ho → EFSym
SF 7→ SfF

is an injective map of graded Hopf algebras. This gives a second realization of
ho. These two realizations don’t coincide; for example, if F = qq21 , then SF =∑
i≥j≥1

ajiajj and SfFF =
∑
j 6=i,k

ajiakj.

5.2.3. Plane forests. We have seen that the noncommutative Connes-Kreimer al-
gebra is a Hopf subalgebra of Ho. Moreover, for any ordered forest F , the acyclic
function fF is a nondecreasing parking function if, and only if, F is a plane for-
est. So the restriction of the embedding SF 7→ SfF is an isomorphism from the
noncommutative Connes-Kreimer Hopf algebra to the subspace spanned by the
Sπ, where π runs over nondecreasing parking functions, which is then a Hopf
subalgebra of EFSym. So this gives another realization of the noncommutative



18 L. FOISSY, J.-C. NOVELLI, AND J.-Y. THIBON

Connes-Kreimer algebra. These realizations are indeed different: for the realiza-

tion of section 3.2, S qq12 =
∑

1≤i≤j

aiiaij, whereas for the realization as endofuctions,

S qq12 =
∑

1≤i,j,k

aijajk.

Let Io be the subspace generated by the Sf , where f runs over the set of
endofunctions which are not acyclic. It is clear that Io is an ideal of the Hopf
algebra of endofunctions. Moreover, if f is not acyclic, then it contains a cycle
C = i1 7→ i2 7→ . . . 7→ ik 7→ i1 of length ≥ 2. Let I be an ideal of f . If C ∩ I 6= ∅,
then by definition of the ideals, C ⊆ I, so std(f I) or std(f [n]−I) is not acyclic:
this implies that Io is a Hopf ideal of the Hopf algebra of endofunctions. So the
quotient Ho/Io is isomorphic to the Hopf subalgebra of acyclic endofunctions, so
to Ho and PQSym∗.

5.2.4. Nondecreasing sets. The restriction to nondecreasing functions also gives
rise to a Hopf algebra: if f and g are nondecreasing functions, then f • g is
also nondecreasing, and for any ideal I of f , std(f I) and std(f [n]−I) are also
nondecreasing.

5.2.5. Burnside classes. The restriction to idempotent functions, or more gen-
erally to Burnside classes (fp = f q) gives, as in the commutative case, Hopf
subalgebras: if fp = f q and gp = gq, then (f • g)p = (f • g)q and for any part I of
the domain of f , std(f I)p = std(f I)q. Graphically, this corresponds to endofunc-
tions f such that the graph of f contains only cycles of length dividing |p−q| and
trees of height smaller than |p − q|. In particular, for the idempotent functions,
this gives endofunctions whose graph is a corolla, that is to say a tree of height
smaller than 1.

5.2.6. Connes-Kreimer. The commutative images of the Sφ (aij 7→ xij) span a
commutative Hopf algebra containing the algebra Sym of ordinary symmetric
functions (as the image of the subalgebra isomorphic to SSym) and the Connes-
Kreimer Hopf algebra of trees (as the image of the subalgebra isomorphic to
Ho).

5.3. Analog of the Schur basis. We define a partial order on the set of end-
ofuctions of [n] for a fixed n, whose cover relation is f < g if there exists an
element j of [n] with f(j) 6= j, such that g(k) = f(k) if k 6= j and g(j) = j. For
example, for n = 2, the Hasse graph of this partial order is:

(62) (12)

(11)

<<zzzzzzzz
(22)

bbDDDDDDDD

(21)

<<zzzzzzzz

bbDDDDDDDD
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Note. Let F and G be two ordered forests. It is not difficult to show that
fF ≤ fG if, and only if, F ≤ G.

For any endofunction f , let us set

(63) Rf =
∑
g≤f

(−1)Fix(f)−Fix(g)Sg,

where Fix(f) denotes the number of fixed points of f . By a Möbius inversion,
for any endofunction f ,

(64) Sf =
∑
g≤f

Rg.

By analogy with Theorem 3.7, one can show

Theorem 5.2. Let f ′ and f ′′ be two endofunctions of respectively [n′] and [n′′].
Then

(65) Rf ′Rf ′′ =
∑

Rf ,

where the sum is over all endofunctions f of [n′ + n′′], such that std(f [n′]) = f ′

and std(f [n′+n′′]\[n′]) = f ′′.

For example,

R(12)R(1) =R(121) + R(122) + R(123) + R(131) + R(132) + R(133)

+ R(321) + R(322) + R(323) + R(331) + R(332) + R(333)
(66)

R(1)R(12) =R(111) + R(113) + R(121) + R(123) + R(211) + R(213)

+ R(221) + R(223) + R(311) + R(313) + R(321) + R(323)
(67)

Indeed, for R(12)R(1), one gets all functions such that f(1) is either 1 or 3, and
f(2) is either 2 or 3, the value f(3) having no constraint at all.

Let us consider the subspace I ′o generated by the Rf , where f runs over the
set of endofunctions f which are not acyclic. If f ′ or f ′′ is not acyclic and if Rf

appears in Rf ′Rf ′′ , then f is not acyclic. So I ′0 is an ideal. Let us denote by Rf

the class of Rf modulo I ′0. Note that Rf is nonzero if, and only if, f is acyclic,
that is to say there exists an ordered forest F such that f = fF . Moreover, if
F is an ordered forest with n vertices and I ⊆ [n], then F|I = G if, and only if,

std(f I
F) = fG. So the map RF 7→ RfF is an algebra isomorphism from the algebra

Ho to the algebra of endofunctions quotiented by I ′o.

Remark. The ideals Io and I ′o are different: in degree 2, Io is spanned by S21,
whereas I ′0 is generated by R21 = S(21) − S(11) − S(22) + S(12).
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Alphabet Relation ≺ Sum of alphabets words
HO aij, 1 ≤ i ≤ j aij ≺ ajk aij ≺ bkk l → k

non commutative ⇒ wk ≺ wk

HCK xij, 1 ≤ i ≤ j xij ≺ xjk xij ≺ xkk l → k
commutative ⇒ wk ≺ wk

SSym aij, 1 ≤ i, j, i 6= j aij ≺ ajk aij ≺ bkl l → k
non commutative ⇒ wk ≺ wk

EFSym aij, 1 ≤ i, j, i 6= j aij ≺ ajk aij ≺ bkl l → k
non commutative ⇒ wk ≺ wk

References

[1] C. Brouder, A. Frabetti and C. Krattenthaler, Non-commutative Hopf algebra of
formal diffeomorphisms, Adv. Math. 200 (2006), no. 2, 479524.

[2] F. Chapoton and M. Livernet, Pre-Lie algebra and the Rooted Trees Operad, Int. Math.
Res. Not. IMRN 2001, no. 8, 395–408.

[3] A. Connes and D. Kreimer, Hopf algebras, Renormalization and Noncommutative ge-
ometry, Comm. Math. Phys. 199 (1998), no. 1, 203–242, arXiv:hep-th/9808042.

[4] G. Duchamp, F. Hivert, and J.-Y. Thibon, Noncommutative symmetric functions VI:
free quasi-symmetric functions and related algebras, Internat. J. Alg. Comput. 12 (2002),
671–717.

[5] H. Figueroa and J.M. Gracia-Bondia, Combinatorial Hopf algebras in quantum field
theory I, Rev. Math. Phys. 17 (2005), 881–976.
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