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Introduction

Right prelie algebras, or shortly prelie algebras [4, 1], are vector spaces with a bilinear product
• satisfying the following axiom:

(x • y) • z − x • (y • z) = (x • z) • y − x • (z • y).

Consequently, the antisymmetrization of • is a Lie bracket. These objects are also called right-
symmetric algebras or Vinberg algebra [12, 17]. If A is a prelie algebra, the symmetric algebra
S(A) inherits a product ? making it a Hopf algebra, isomorphic to the enveloping algebra of the
Lie algebra A [13, 14]. Whenever it is possible, we can consider the dual Hopf algebra S(A)∗

and its group of characters G, which is the exponentiation, in some sense, of the Lie algebra A.

We here consider an inverse construction, departing from a group used in Control Theory,
namely the group of Fliess operators [3, 5, 6]; this group is used to study the feedback prod-
uct. We limit ourselves here to the one-dimensional case. This group is the set R〈〈x0, x1〉〉 of
noncommutative formal series in two indeterminates, with a certain product generalizing the
composition of formal series (de�nition 1). The Hopf algebra H of coordinates of this group
is described in [5], where it is also proved that it is graded by the length of words; note that
this gradation is not connected and not �nite-dimensional. We �rst give a way to describe the
composition in the group R〈〈x0, x1〉〉 and the coproduct of H by induction on the length of words
(lemma 2 and proposition 3). We prove that H admits a second gradation, which is connected;
the dimensions of this gradation are given by the Fibonacci sequence (proposition 8). As the
product of R〈〈x0, x1〉〉 is left-linear, H is a commutative, right-sided combinatorial Hopf algebra
[10], so, dually, R〈x0, x1〉 inherits a prelie product •, which is inductively de�ned in proposition
11. We prove that the words xn1 , n ≥ 0, form a minimal subset of generators of this prelie algebra
(theorem 12).

The prelie algebra R〈x0, x1〉 has also an associative, commutative product, namely the shu�e
product [15]. We prove that the following axiom is satis�ed (proposition 14):

(x y) • z = (x • z) y + x (y • z).

So R〈x0, x1〉 is a Com-Prelie algebra [11] (de�nition 15). We give a presentation of this Com-
Prelie algebra in theorem 27. We use for this a description of free Com-Prelie algebras in terms
of partitioned trees (de�nition 17), which generalizes the construction of prelie algebras in terms
of rooted trees of [1]. We deduce a presentation of R〈x0, x1〉 as a prelie algebra in theorem 30.
This presentation induces a new basis of R〈x0, x1〉 in terms of words with letters in N∗, see
corollary 31. The prelie product of two elements of this basis uses a dendriform structure [2, 9]
on the algebra of words with letters in N∗ (theorem 34). The study of this dendriform structure
is postponed to the appendix, as well as the enumeration of partitioned trees; we also prove that
free Com-Prelie algebras are free as prelie algebras, using Livernet's rigidity theorem [7].

Aknowledgment. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.

Notation. We denote by K a commutative �eld of characteristic zero. All the objects
(algebra, coalgebras, prelie algebras. . .) in this text will be taken over K.

1 Construction of the Hopf algebra

1.1 De�nition of the composition

Let us consider an alphabet of two letters x0 and x1. We denote by K〈〈x0, x1〉〉 the completion
of the free algebra generated by this alphabet, that is to say the set of noncommutative formal
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series in x0 and x1. Note that K〈〈x0, x1〉〉 is an algebra for the concatenation product and for
the shu�e product, which we denote by .

Examples. If a, b, c, d ∈ {x0, x1}:

abc d = abcd+ abdc+ adbc+ dabc,

ab cd = abcd+ acbd+ cabd+ acdb+ cadb+ cdab,

a bcd = abcd+ bacd+ bcad+ bcda.

The unit for both products is the empty word, which we denote by ∅. The algebra K〈〈x0, x1〉〉
is given its usual ultrametric topology.

De�nition 1 [5].

1. For any d ∈ K〈〈x0, x1〉〉, we de�ne a continuous algebra map ϕd from K〈〈x0, x1〉〉 to
End(K〈〈x0, x1〉〉) in the following way: for all X ∈ K〈〈x0, x1〉〉,

ϕd(x0)(X) = x0X, ϕd(x1)(X) = x1X + x0(d X).

2. We de�ne a composition ◦ on K〈〈x0, x1〉〉 in the following way: for all c, d ∈ K〈〈x0, x1〉〉,
c ◦ d = ϕd(c)(∅) + d.

It is proved in [5] that this composition is associative.

Notation. For all c, d ∈ K〈〈x0, x1〉〉, we put c◦̃d = c ◦ d− d = ϕd(c)(∅).

Remark. If c1, c2, d ∈ K〈〈x0, x1〉〉, λ ∈ K:

(c1 +λc2)◦̃d = ϕd(c1 +λc2)(∅) = (ϕd(c1)+λϕd(c2))(∅) = ϕd(c1)(∅)+λϕd(c2)(∅) = c1◦̃d+λc2◦̃d.

So the composition ◦̃ is linear on the left. As ϕd is continuous, the map c −→ c◦̃d is continuous
for any d ∈ K〈〈x0, x1〉〉. Hence, it is enough to know how to compute c◦̃d for any word c, which
is made possible by the next lemma, using an induction on the length:

Lemma 2 For any word c, for any d ∈ K〈〈x0, x1〉〉:

1. ∅◦̃d = ∅.

2. (x0c)◦̃d = x0(c◦̃d).

3. (x1c)◦̃d = x1(c◦̃d) + x0(d (c◦̃d)).

Proof. 1. ∅◦̃d = ϕd(∅)(∅) = Id(∅) = ∅.

2. (x0c)◦̃d = ϕd(x0c)(∅) = ϕd(x0) ◦ ϕd(c)(∅) = ϕd(x0)(c◦̃d) = x0(c◦̃d).

3. (x1c)◦̃d = ϕd(x1c)(∅) = ϕd(x1) ◦ ϕd(c)(∅) = ϕd(x1)(c◦̃d) = x1(c◦̃d) + x0(d (c◦̃d)). �

1.2 Dual Hopf algebra

We here give a recursive description of the Hopf algebra of the coordinates of the groupK〈〈x0, x1〉〉
of [5].

For any word c, let us consider the map Xc ∈ K〈〈x0, x1〉〉∗, such that for any d ∈ K〈〈x0, x1〉〉,
Xc(d) is the coe�cient of c in d. We denote by V the subspace of A∗ generated by these maps.
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Let H = S(V ), or equivalently the free associative, commutative algebra generated by the Xc's.
The elements of H are seen as polynomial functions on K〈〈x0, x1〉〉; the elements of H ⊗H are
seen as polynomial functions on K〈〈x0, x1〉〉 × K〈〈x0, x1〉〉. Then H is given a multiplicative
coproduct de�ned in the following way: for any word c, for any f, g ∈ K〈〈x0, x1〉〉,

∆(Xc)(f, g) = Xc(f ◦ g).

As ◦ is associative, ∆ is coassociative, so H is a bialgebra.

Notations.

1. The space of words is a commutative algebra for the shu�e product . Dually, the space
V inherits a coassociative, cocommutative coproduct, denoted by ∆ . For example, if
a, b, c ∈ {x0, x1}:

∆ (X∅) = X∅ ⊗X∅,
∆ (Xa) = Xa ⊗X∅ +X∅ ⊗Xa,

∆ (Xab) = Xab ⊗X∅ +Xa ⊗Xb +Xb ⊗Xa +X∅ ⊗Xab,

∆ (Xabc) = Xabc ⊗X∅ +Xa ⊗Xbc +Xb ⊗Xac +Xc ⊗Xab

+Xab ⊗Xc +Xac ⊗Xb +Xbc ⊗Xa +X∅ ⊗Xabc.

2. We de�ne two linear endomorphisms θ0, θ1 of V by θi(Xc) = Xxic for any word c.

The following proposition allows to compute ∆(Xc) for any word c by induction on the length.

Proposition 3 For all x ∈ V , we put ∆̃(x) = ∆(x)− 1⊗ x.
1. ∆̃(X∅) = X∅ ⊗ 1.

2. ∆̃ ◦ θ0 = (θ0 ⊗ Id) ◦ ∆̃ + (θ1 ⊗m) ◦ (∆̃⊗ Id) ◦∆ .

3. ∆̃ ◦ θ1 = (θ1 ⊗ Id) ◦ ∆̃.

Proof. For any word c, for any f, g ∈ K〈〈x0, x1〉〉:

∆̃(Xc)(f, g) = ∆(Xc)(f, g)− (1⊗Xc)(f, g) = Xc(f ◦ g)−Xc(g) = Xc(f ⊗ g − g) = Xc(f ◦̃g).

As ◦̃ is linear on the left, ∆̃(Xc) ∈ V ⊗H, so formulas in points 2 and 3 make sense.

Let f ∈ K〈〈x0, x1〉〉. It can be uniquely written as f = x0f0 + x1f1 + λ∅, with f0, f1 ∈
K〈〈x0, x1〉〉, λ ∈ K. For all g ∈ K〈〈x0, x1〉〉:

f ◦̃g = (x0f0)◦̃g + (x1f1)◦̃g + λ∅◦̃g = x0(f0◦̃g + g (f1◦̃g)) + x1(f1◦̃g) + λ∅.

1. We obtain:

∆̃(X∅)(f, g) = X∅(x0(f0◦̃g + g (f1◦̃g)) + x1(f1◦̃g) + λ∅) = 0 + 0 + λ = (X∅ ⊗ 1)(f, g),

so ∆(X∅) = X∅ ⊗ 1.

2. Let c be a word.

∆̃ ◦ θ0(Xc)(f, g) = ∆̃(Xx0c)(f, g)

= Xx0c(x0(f0◦̃g + g (f1◦̃g)) + x1(f1◦̃g) + λ∅)
= Xc(f0◦̃g + g (f1◦̃g)) + 0 + 0

= Xc(f0◦̃g + (f1◦̃g) g) + 0 + 0

= ∆̃(Xc)(f0, g) + (∆̃⊗ Id) ◦∆ (Xc)(f1, g, g)

= ∆̃(Xc)(f0, g) + (Id⊗m) ◦ (∆̃⊗ Id) ◦∆ (Xc)(f1, g)

= (θ0 ⊗ Id) ◦ ∆̃(Xc)(f, g) + (θ1 ⊗ Id) ◦ (Id⊗m) ◦ (∆̃⊗ Id) ◦∆ (Xc)(f, g),
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so ∆̃ ◦ θ0(Xc) = (θ0 ⊗ Id) ◦ ∆̃(Xc) + (θ1 ⊗ Id) ◦ (Id⊗m) ◦ (∆̃⊗ Id) ◦∆ (Xc).

3. Let c be a word.

∆̃ ◦ θ1(Xc)(f, g) = ∆̃(Xx0c)(f, g)

= Xx1c(x0(f0◦̃g + g (f1◦̃g)) + x1(f1◦̃g) + λ∅)
= 0 +Xc(f1◦̃g) + 0

= ∆̃(Xc)(f1, g)

= (θ1 ⊗ Id) ◦ ∆̃(Xc)(f, g),

so ∆̃ ◦ θ1(Xc) = (θ1 ⊗ Id) ◦ ∆̃(Xc). �

Examples.

∆(Xx0) = Xx0 ⊗ 1 + 1⊗Xx0 +Xx1 ⊗X∅,
∆(Xx20

) = Xx20
⊗ 1 + 1⊗Xx20

+Xx0x1 ⊗X∅ +Xx1x0 ⊗X∅ +Xx1x1 ⊗X2
∅ +Xx1 ⊗Xx0 ,

∆(Xx0x1) = Xx0x1 ⊗ 1 + 1⊗Xx0x1 +Xx1x1 ⊗X∅ +Xx1 ⊗Xx1 ,

∆(Xx1x0) = Xx1x0 ⊗ 1 + 1⊗Xx1x0 +Xx1x1 ⊗X∅.

Corollary 4 For all n ≥ 1, ∆̃(Xxn1
) = Xxn1

⊗ 1 and ∆(Xxn1
) = Xxn1

⊗ 1 + 1⊗Xxn1
.

Proof. It comes from an easy induction on n. �

1.3 gradation

It is proved in [5] that the Hopf algebra H is graded by the length of words, but this gradation
is not connected, that is to say that the homogeneous component of degree 0 is not (0), as it
contains X∅. Moreover, the homogeneous components of H are not �nite-dimensional, as for
example Xn

∅Xxk0
is homogeneous of degree k for all n ≥ 0. We now de�ne another gradation on

H, which is connected and �nite-dimensional.

De�nition 5 1. Let c = c1 . . . cn be a word. We put:

deg(c) = n+ 1 + ] {i ∈ {1, . . . , n} | ci = x0} .

2. For all k ≥ 1, we put:
Vk = V ect(Xc | deg(x) = k).

This de�ne a connected gradation of V , that is to say:

V =
⊕
k≥1

Vk.

3. This gradation induces a connected gradation of the algebra H:

H =
⊕
k≥0

Hk, and H0 = K.

Lemma 6 If c is a word of degree n, then:

∆̃(Xc) ∈
⊕
i+j=n

Vi ⊗Hj .

Proof. Let us start by the following observations:
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1. Let c be a word of degree k. Then x0c is a word of degree k+ 2. Hence, θ0 is homogeneous
of degree 2 on V .

2. Let c be a word of degree k. Then x1c is a word of degree k+ 1. Hence, θ1 is homogeneous
of degree 1 on V .

3. Let c and d be two words of respective degrees k and l. Then any word obtained by shu�ing
c and d is of degree k+ l−1: its length is the sum of the length of c and d, and the number
of x0 in it is the sum of the numbers of x0 in c and d. Hence, dually, the coproduct ∆ is
homogeneous of degree 1 from V to V ⊗ V .

Let us prove the result by induction on the length k of c. If k = 0, then c = ∅ so n = 1, and
∆̃(Xc) = Xc ⊗ 1 ∈ V1 ⊗H0. Let us assume the result for all words of length < k − 1. Two cases
can occur.

1. If c = x0d, then deg(d) = n − 2. we put ∆ (Xd) =
∑
x′i ⊗ x′′i . By the preceding third

observation, we can assume that for all i, x′i, x
′′
i are homogeneous elements of V , with

deg(x′i) + deg(x′i) = n− 2 + 1 = n− 1. Then:

∆̃(Xc) = (θ0 ⊗ Id) ◦ ∆̃(Xd) +
∑
i

(θ1 ⊗m) ◦ (∆̃(x′i)⊗ x′′i ).

By the induction hypothesis, ∆̃(Xd) ∈ (V ⊗H)n−1. By the second observation, (θ0⊗ Id) ◦
∆̃(Xd) ∈ (V ⊗H)n. By the induction hypothesis applied to x′i, for all i, (∆̃(x′i)⊗x′′i ) ∈ (V ⊗
H⊗V )n−1, so by the �rst observation, (θ1⊗m)◦(∆̃(x′i)⊗x′′i ) ∈ (V ⊗H)n−1+1 ⊆ (V ⊗H)n.
So ∆(Xc) ∈ (V ⊗H)n.

2. c = x1d, then deg(d) = n − 1. Moreover, ∆̃(Xc) = (θ1 ⊗ Id) ◦ ∆̃(Xd). By the induction
hypothesis, ∆̃(Xd) ∈ (V ⊗H)n−1. By the second observation, ∆̃(Xc) ∈ (V ⊗H)n.

So the result holds for any word c. �

Proposition 7 With this gradation, H is a graded, connected Hopf algebra.

Proof. We have to prove that for all n ≥ 0:

∆(Hn) ⊆
⊕
i+j=n

Hi ⊗Hj .

This comes from the multiplicativity of ∆. �

Let us now study the formal series of V and H.

Proposition 8 1. For all k, let us put pk = dim(Vk) and FV =
∞∑
k=1

pkX
k. Then:

FV =
X

1−X −X2
,

and for all k ≥ 1:

pk =
1√
5

(1 +
√

5

2

)k
−

(
1−
√

5

2

)k .

This is the Fibonacci sequence (A000045 in [16]).
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2. We put FH =

∞∑
k=0

dim(Hk)X
k. Then:

FH =

∞∏
k=1

1

(1−Xk)pk
.

Proof. Let us consider the formal series:

F (X0, X1) =
∑
i,j≥0

]{words in x0, x1 with i x0 and j x1}Xi
0X

j
0 .

Then F (X0, X1) =
1

1−X0 −X1
. Moreover, by de�nition of the degree of a word:

FV = XF (X2, X) =
X

1−X −X2
.

As H is the symmetric algebra generated by V , its formal series is given by the second point. �

Examples. We obtain:

k 0 1 2 3 4 5 6 7 8 9 10

dim(Vk) 0 1 1 2 3 5 8 13 21 34 55

dim(Hk) 1 1 2 4 8 15 30 56 108 203 384

The third row is sequence A166861 of [16].

Remark. Consequently, the space V inherits a bigradation:

Vk,n = V ect(Xc | deg(c) = k and lg(c) = n).

If c is a word of length n and of degree k, denoting by a the number of its letters equal to x0
and by b the number of its letters equal to x1, then:{

a+ b = n,

2a+ b+ 1 = k,

so a = k − n− 1. Hence:

dim(Vk,n) =

(
n

k − n− 1

)
,

and the formal series of this bigradation is:∑
k,n≥0

dim(Vk,n)XkY n =
X

1−XY −X2Y
.

2 Prelie structure on K〈x0, x1〉

2.1 Prelie coproduct on V

As the composition ◦ is linear on the left, the dual coproduct satis�es ∆̃(V ) ⊆ V ⊗H, so H is a
commutative right-sided Hopf algebra in the sense of [10], and V inherits a right prelie coproduct:
if π is the canonical projection from H = S(V ) onto V ,

δ = (π ⊗ π) ◦∆ = (Id⊗ π) ◦ ∆̃.

It satis�es the right prelie coalgebra axiom:

(23).((δ ⊗ Id) ◦ δ − (Id⊗ δ) ◦ δ) = 0.

The following proposition allows to compute δ(Xc) by induction on the length of c.
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Proposition 9 1. δ(X∅) = 0.

2. δ ◦ θ0 = (θ0 ⊗ Id) ◦ δ + (θ1 ⊗ Id) ◦∆ .

3. δ ◦ θ1 = (θ1 ⊗ Id) ◦ δ.

Proof. The �rst point comes from ∆(X∅) = X∅ ⊗ 1 + 1 ⊗ X∅. Let x ∈ V . We put
∆ (x) = x′ ⊗ x′′ ∈ V ⊗ V . For any y ∈ V , we put ∆̃(y)− y ⊗ 1 = y(1) ⊗ y(2) ∈ V ⊗H+. Then:

(θ1 ⊗m) ◦ (∆̃⊗ Id) ◦∆ (x) = (θ1 ⊗m)(x′ ⊗ 1⊗ x′′ + x′(1) ⊗ x′(2) ⊗ x′′)
= θ1(x

′)⊗ x′′︸︷︷︸
∈V

+x′(1) ⊗ x′(2)x′′︸ ︷︷ ︸
∈Ker(π)

.

Applying Id⊗ π, it remains:

(Id⊗ π) ◦ (θ1 ⊗m) ◦ (∆̃⊗ Id) ◦∆ (x) = (θ1 ⊗ Id) ◦∆ (x).

Let i = 0 or 1. Then:

(Id⊗ π) ◦ (θi ⊗ Id) ◦ ∆̃ = (θi ⊗ Id) ◦ (Id⊗ π) ◦ ∆̃ = (θi ⊗ Id) ◦ δ.

The result is induced by these remarks, combined with proposition 3. �

Examples.

δ(Xx0) = Xx1 ⊗X∅,
δ(Xx20

) = Xx0x1 ⊗X∅ +Xx1x0 ⊗X∅ +Xx1 ⊗Xx0 ,

δ(Xx0x1) = Xx1x1 ⊗X∅ +Xx1 ⊗Xx1 ,

δ(Xx1x0) = Xx1x1 ⊗X∅.

Proposition 10 Ker(δ) = V ect(Xxn1
, n ≥ 0).

Proof. The inclusion ⊇ is trivial by corollary 4. Let us prove the other inclusion.

First step. Let us prove the following property: if x ∈ Vk is such that

δ(x) = λ
∑

i+j=k−2

(k − 2)!

i!j!
Xxi1
⊗X

xj1
,

then there exists µ ∈ K such that x = µxk−11 . It is obvious if k = 1, as then x = µ∅. Let us
assume the result at all ranks < k. We put x = xα1 (x0f0+x1f1), where α ≥ 0, f0 is homogeneous
of degree k − 2− α and f1 is homogeneous of degree k − 1− α.

δ(x) = (θα1 ⊗ Id) ((θ0 ⊗ Id) ◦ δ(f0) + (θ1 ⊗ Id) ◦ δ(f1) + (θ1 ⊗ Id) ◦∆ (f0)) .

Let us consider the terms in this expression of the form X∅ ⊗Xc, with c a word. This gives:

λX∅ ⊗Xxk−2
1

= 0,

so λ = 0 and δ(x) = 0. Let us now consider the terms of the form Xxα1 x0c
⊗Xd, with c, d words.

We obtain:
(θα1 ◦ θ0 ⊗ Id) ◦ δ(f0) = 0.

As both θ0 and θ1 are injective, we obtain δ(f0) = 0. By the induction hypothesis, f0 = νX1x
l
1,

with l = k − 2− α < k. Hence:

∆ (f0) = ν
∑
i+j=l

l!

i!j!
Xxi1
⊗X

xj1
,
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and:

(θα+1
1 ⊗ Id)

δ(f1) + ν
∑
i+j=l

l!

i!j!
Xxi1
⊗X

xj1

 = 0.

As θ1 is injective, we obtain with the induction hypothesis that f1 = µXxk−2−α
1

, so:

x = µXxk−1
1

+ νXxα1 x0x
k−α−2
1

.

This gives:

δ(x) = ν(θα+1
1 ⊗ Id)

 ∑
i+j=k−α−2

(k − α− 2)!

i!j!
Xxi1
⊗X

xj1


= ν

∑
i+j=k−α−2

(k − α− 2)!

i!j!
Xxi+α1

⊗X
xj1

= 0,

so necessarily ν = 0 and x = µXxk−1
1

.

Second step. Let x ∈ Ker(δ). As δ is homogeneous of degree 0, the homogeneous components
of x are inKer(δ). By the �rst step, with λ = 0, these homogeneous components, hence x, belong
to V ect(Xxk1

, k ≥ 0). �

2.2 Dual prelie algebra

As V is a graded prelie coalgebra, its graded dual is a prelie algebra. We identify this graded dual
with K〈x0, x1〉 ⊆ K〈〈x0, x1〉〉; for any words c, d, Xc(d) = δc,d. The prelie product of K〈x0, x1〉
is denoted by •. Dualizing proposition 9, we obtain:

Proposition 11 1. For all word c, ∅ • c = 0.

2. For all words c, d, (x0c) • d = x0(c • d).

3. For all words c, d, (x1c) • d = x1(c • d) + x0(c d).

Proof. Let u, v, w be words. Then Xw(u • v) = δ(Xw)(u⊗ v). Hence, if d is a word:

X∅(u • v) = 0,

Xx0d(u • v) = (θ0 ⊗ Id) ◦ δ(Xd)(u⊗ v) + (θ1 ⊗ Id) ◦∆ (Xd)(u⊗ v)

= Xd(θ
∗
0(u) • v + θ∗1(u) v),

Xx1d(u • v) = (θ1 ⊗ Id)⊗ δ(Xd)(u⊗ v)

= Xd(θ
∗
1(u) • v).

Moreover, for all word c:

θ∗0(∅) = 0, θ∗0(x0c) = c, θ∗0(x1c) = 0,

θ∗1(∅) = 0, θ∗1(x0c) = 0, θ∗1(x1c) = c.

Hence, for any words c, d:

Xx0d(x0c • v) = Xd(c • v) Xx0d(x1c • v) = Xd(c v)

= Xx0d(x0(x • v)), = Xx0d(x1(c • v) + x0(c v)),

Xx1d(x0c • v) = 0 Xx1d(x1c • v) = Xd(c • v)

= Xx1d(x0(x • v)), = Xx1d(x1(c • v) + x0(c v)).

9



Hence, for any w, Xw(x0c • v) = Xw(x0(x • v)) and Xw(x1c • v) = Xw((x1(c • v) + x0(c v)). �

Examples.

x0 • x0 = 0 x0 • x0x0 = 0 x1 • x0x0 = x0x0x0

x0 • x1 = 0 x0 • x0x1 = 0 x1 • x0x1 = x0x0x1

x1 • x0 = x0x0 x0 • x1x0 = 0 x1 • x1x0 = x0x1x0

x1 • x1 = x0x1 x0 • x1x1 = 0 x1 • x1x1 = x0x1x1

x0x0 • x0 = 0 x0x0 • x1 = 0

x0x1 • x0 = x0x0x0 x0x1 • x1 = x0x0x1

x1x0 • x0 = 2x0x0x0 x1x0 • x1 = x0x0x1 + x0x1x0

x1x1 • x0 = x1x0x0 + x0x1x0 + x0x0x1 x1x1 • x1 = x1x0x1 + 2x0x1x1

Dualizing proposition 10:

Theorem 12 K〈x0, x1〉 = V ect(xn1 , n ≥ 0) ⊕ (K〈x0, x1〉 • K〈x0, x1〉). Hence, (xn1 )n≥0 is a
minimal system of generators of the prelie algebra K〈x0, x1〉.

Proof. As • = δ∗, Im(•) = Ker(δ)⊥ = V ect(Xxn1
, n ≥ 0)⊥. The �rst assertion is then im-

mediate. As K〈〈x0, x1〉〉 is a graded, connected prelie coalgebra, K〈x0, x1〉 is a graded, connected
prelie algebra. The result then comes from the next lemma. �

Lemma 13 Let A be a graded, connected prelie algebra, and V be a graded subspace of A.

1. V generates A if, and only if, A = V +A •A.

2. V is a minimal subspace of generators of A if, and only if, A = V ⊕A •A.

Proof. 1. =⇒. Let x ∈ A. Then it can be written as an element of the prelie subalgebra
generated by v, so as the sum of an element of V and of iterated prelie products of elements of
V . Hence, x ∈ V +A •A. Note that we did not use the gradation of A to prove this point.

1. ⇐=. Let B be the prelie subalgebra generated by V . Let x ∈ An, let us prove that x ∈ B
by induction on n. As A0 = (0), it is obvious if n = 0. Let us assume the result at all ranks < n.
We obtain, by the gradation:

An = Vn ⊕
n−1∑
i=1

Ai •An−i.

So we can write x = λxn−11 +
∑
xi • yi, where xi, yi are homogeneous of degree < n. By the

induction hypothesis, these elements belong to B, so x ∈ B.

2. =⇒. By 1. =⇒, A = V + A • A. If V ∩ A • A 6= (0), we can choose a graded subspace
W ( V , such that A = W ⊕A •A. By 1. ⇐=, W generates A, so V is not a minimal system of
generators of A: contradiction. So A = V ⊕A •A.

2. ⇐=. By 1. ⇐=, V is a space of generators of A. If W ( V , then W ⊕ A • A ( A. By 1.
=⇒, W does not generate V . So V is a minimal subspace of generators. �

Proposition 14 For all x, y, z ∈ K〈x0, x1〉, (x y) • z = (x • z) y + x (y • z).
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Proof. We prove it if x, y, z are words. If x = ∅, then:

(∅ y) • z = y • z = (∅ • z) y + ∅ (u • z).

If y = ∅, the result is also true, using the commutativity of . We can now consider that x, y
are nonempty words.

Let us proceed by induction on k = lg(x) + lg(y). If k = 0 or 1, there is nothing to prove.
Let us assume the result at all rank < k. Four cases can occur.

First case. x = x0a and y = x0b. Then:

(x y) • z = (x0(a x0b) • z + (x0(x0a b)) • z
= x0((a x0b) • z) + x0((x0a b) • z)
= x0((a • z) x0b) + x0(a ((x0b) • z)) + x0(((x0a) • z) b) + x0(x0a (b • z))
= x0((a • z) x0b) + x0(a (x0(b • z)) + x0((x0(a • z)) b) + x0(x0a (b • z))
= x0(a • z) x0b+ x0a x0(b • z)
= (x • z) y + x (y • z).

Second case. x = x1a and y = x0b. This gives:

(x y) • z = (x1(a x0b)) • z + (x0(x1a b)) • z
= x1((a • z) x0b) + x1(a x0(b • z))
+ x0(a x0b z) + x0(((x1a) • z) b) + x0(x1a (b • z))
= x1((a • z) x0b) + x1(a x0(b • z))
+ x0(a x0b z) + x0((x1(a • z)) b) + x0((x0(a z)) b) + x0(x1a (b • z)),

(x • z) y = (x1(a • z)) x0b+ (x0(a z)) (x0b)

= x1((a • z) (x0b)) + x0(x1(a • z) b)

+ x0(a z x0b) + x0((x0(a z)) b),

x (y • z) = x1a x0(b • z)
= x1(a x0(b • z)) + x0(x1a (b • z)).

These computations imply the required equality.

Third case. x = x0a and y = x1b. This is a consequence of the second case, using the
commutativity of .

Last case. x = x1a and y = x1b. Similar computations give:

(x y) • z = x1((a • z) x1b) + x1(a x1(b • w)) + x1(a x0(b z)) + x0(a x1b z)

+ x1(x1a (b • z)) + x1((x1(a • z)) b) + x1((x0(a z)) b) + x0(a x1b z),

(x • z) y = x1((a • z) x1b) + x1((x1(a • z)) b) + x0(a x1b z) + x1((x0(a z)) b),

x (y • z) = x1(a x1(b • w)) + x1(a x0(b z)) + x1(x1a (b • z)) + x0(a x1b z).

So the result holds in all cases. �
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3 Presentation of K〈x0, x1〉 as a Com-Prelie algebra

Proposition 14 motivates the following de�nition:

De�nition 15 [11] A Com-Prelie algebra is a triple (V, •, ), such that:

1. (V, •) is a prelie algebra.

2. (V, ) is a commutative, associative algebra (non necessarily unitary).

3. For all a, b, c ∈ V , (a b) • c = (a • c) b+ a (b • c).

For example, K〈x0, x1〉 is a Com-Prelie algebra. See [11] for an example of Com-Prelie algebra
based on rooted trees.

3.1 Free Com-Prelie algebras

De�nition 16 1. A partitioned forest is a pair (F, I) such that:

(a) F is a rooted forest (the edges of F being oriented from the leaves to the roots).

(b) I is a partition of the vertices of F with the following condition: if x, y are two vertices
of F which are in the same part of I, then either they are both roots, or they have the
same direct descendant.

2. We shall say that a partitioned forest is a partitioned tree if all the roots are in the same
part of the partition.

3. Let D be a set. A partitioned tree decorated by D is a pair (t, d), where t is a partitioned
tree and d is a map from the set of vertices of t into D. For any vertex x of t, d(x) is called
the decoration of x.

4. The set of isoclasses of partitioned trees will be denoted by PT . For any set D, the set of
isoclasses of partitioned trees decorated by D will be denoted by PT (D).

Examples. We represent partitioned trees by the Hasse graph of the underlying rooted
forest, the partition being represented by horizontal edges, of di�erent colors. Here are all the
partitioned trees with ≤ 4 vertices:

q ; qq , q q ; q qq∨ , q∨qq , qqq , qq q =
qqq , q q q ; q qq q∨ , q q∨q q = qq∨qq , q∨qq q , q qqq∨ = q qq q∨ , qq∨qq = q q∨qq , q qq q∨ , qq∨qq , qqqq ,qq∨ qq =

qq∨q q , qqq q =
qqq q , ∨q qqq = ∨qq qq

,
q qq q , qq q q =

qq q q =
qq q q , q q q q .

De�nition 17 Let t = (t, I) and t′ = (t′, J) ∈ PT .

1. Let s be a vertex of t′. The partitioned tree t •s t′ is de�ned as follows:

(a) As a rooted forest, t •s t′ is obtained by grafting all the roots of t′ on the vertex s of t.

(b) We put I = {I1, . . . , Ik} and J = {J1, . . . , Jl}. The partition of the vertices of this
rooted forest is I t J = {I1, . . . , Ik, J1, . . . , Jl}.

2. The partitioned tree t t′ is de�ned as follows:

(a) As a rooted forest, t t′ is tt′.

(b) We put I = {I1, . . . , Ik} and J = {J1, . . . , Jl} and we assume that the set of roots
of t is I1 and the set of roots of t′ is J1. The partition of the vertices of t t′ {I1 t
J1, I2, . . . , Ik, J2, . . . , Jl}.

12



Examples.

1. There are three possible graftings q∨qq •s q : q q∨q q , qq∨qq and q q∨qq .

2. There are two possible graftings qq •s q q : q q∨q q and qq∨qq .

These operations can also be de�ned for decorated partitioned trees.

Proposition 18 Let D be a set. We denote by gPT (D) the vector space generated by PT (D).
We extend by bilinearity on gPT (D) and we de�ne a second product • on gPT (D) in the following
way: if t, t′ ∈ PT (D),

t • t′ =
∑
s∈V (t)

t •s t′.

Then (gPT (D), •, ) is a Com-Prelie algebra.

Proof. Let t, t′, t′′ be three partitioned trees.
If s′, s′′ are two vertices of t, we de�ne by t •s,s′ (t′, t′′) the partitioned trees obtained by

grafting the roots of t′ on s′, the roots of t′′ on s′′, the partition of the vertices of the obtained
rootes forest being the union of the partitions of t, t′ and t′′. Then:

(t • t′) • t′′ =
∑

s′∈V (t)

(t •s′ t′) • t′′

=
∑

s′,s′′∈V (t)

(t •s′ t′) •s′′ t′′ +
∑

s′∈V (t),s′′∈V (t′)

(t •s′ t′) •s′′ t′′

=
∑

s′,s′′∈V (t)

t •s′s′′ (t′, t′′) +
∑

s′∈V (t),s′′∈V (t′)

t •s′ (t′ •s′′ t′′)

=
∑

s′,s′′∈V (t)

t •s′s′′ (t′, t′′) + t • (t′ • t′′).

So (t • t′) • t′′ − t • (t′ • t′′) is clearly symmetric in t and t′, and • is prelie.

Moreover, (t t′) t′′ = t (t′ t′′) is the rooted forest tt′t′′, the partition being {I1 t J1 t
K1, I2, . . . , Ik, J2, . . . , Jl,K2, . . . ,Km}, with immediate notations; t t′ = t′ t is the rooted
forest tt′, the partition being {I1tJ1, I2, . . . , Ik, J2, . . . , Jl}. So is an associative, commutative
product.

Finally:

(t t′) • t′′ =
∑
s∈V (t)

(t t′) •s t′′ +
∑

s′∈V (t′)

(t t′) •s′ t′′

=
∑
s∈V (t)

(t •s t′′) t′ +
∑

s′∈V (t′)

t (t′ •s′ t′′)

= (t • t′) t′′ + t (t′ • t′′).

So gPT (D) is Com-Prelie. �

In particular, gPT (D) is prelie. Let us use the extension of the prelie product • to S(gPT (D))
de�ned by Oudom and Guin [13, 14]:

1. If t1, . . . , tk ∈ gPT (D), t1 . . . tk • 1 = t1 . . . tk.

2. If t, t1, . . . , tk ∈ gPT (D), t • t1 . . . tk = (t • t1 . . . tk−1) • tk − t • (t1 . . . tk−1 • tk).
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3. If a, b, c ∈ S(gPT (D)), ab • c = (a • c(1))(b • c(2)), where ∆(c) = c(1) ⊗ c(2) is the usual
coproduct of S(gPT (D)). In particular, if t1, . . . , tk, t ∈ PT (D):

t1 . . . tk • t =

k∑
i=1

t1 . . . (ti • t) . . . tk.

Lemma 19 Let t = (t, I), t1 = (t1, I
(1)), . . . , tk = (tk, I

(k)) be partitioned trees (k ≥ 1). Let
s1, . . . , sk ∈ V (t). The partitioned tree t •s1,...,sk (t1, . . . , tk) is obtained by grafting the roots of ti
on si for all i, the partition being I t I(1) t . . . t I(k). Then:

t • t1 . . . tk =
∑

s1,...,sk∈V (t)

t •s1,...,sk (t1, . . . , tk).

Proof. By induction on k. This is obvious if k = 1. Let us assume the result at rank k.

t • t1 . . . tk+1 = (t • t1 . . . tk) • tk+1 −
k∑
i=1

t • (t1 . . . (ti • tk+1) . . . tk)

=
∑

s1,...,sk∈V (t)

(t •s1,...,sk (t1, . . . , tk)) • tk+1 −
k∑
i=1

∑
s∈V (ti)

t • (t1 . . . (ti •s tk+1) . . . ti)

=
∑

s1,...,sk+1∈V (t)

(t •s1,...,sk (t1, . . . , tk)) •sk+1
tk+1

+

k∑
i=1

∑
s∈V (ti)

(t •s1,...,sk (t1, . . . , tk)) •s tk+1

−
k∑
i=1

∑
s1,...,sk∈V (t)

∑
s∈V (ti)

t •s1,...,sk (t1, . . . , ti •s tk+1, . . . , ti)

=
∑

s1,...,sk+1∈V (t)

t •s1,...,sk+1
(t1, . . . , tk+1).

Hence, the result holds for all k. �

Theorem 20 Let D be a set, let A be a Com-Prelie algebra, and let ad ∈ A for all d ∈ D.
There exists a unique morphism of Com-Prelie algebra φ : gPT (D) −→ A, such that φ( qd) = ad
for all d ∈ D. In other words, gPT (D) is the free Com-Prelie algebra generated by D.

Proof. Unicity. Let t ∈ T d. We denote by r1, . . . , rn its roots. For all 1 ≤ i ≤ n, let
ti,1, . . . , ti,ki be the partitioned trees born from ri and let di be the decoration of ri. Then:

t = ( qd1• t1,1 . . . t1,k1) . . . ( qdn• tn,1 . . . tn,kn).

So φ is inductively de�ned by:

φ(t) = (ad1 • φ(t1,1) . . . φ(t1,k1)) . . . (adn • φ(tn,1) . . . φ(tn,kn)). (1)

Existence. As the product of A is commutative and associative, (1) de�nes inductively
a morphism φ from gPT (D) to A. By de�nition, it is compatible with the product . Let us
prove the compatibility with the product •. Let t, t′ be two partitioned trees, let us prove that
φ(t • t′) = φ(t) • φ(t′) by induction on the number N of vertices of t. If N = 1, then t = qd and:

φ(t • t′) = ad • φ(t′) = φ(t) • φ(t′),
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by de�nition of t′. If N > 1, two cases are possible.
First case. If t has only one root, then t = qd • t1 . . . tk, and:

t • t′ = qd • t1 . . . tkt′ + k∑
i=1

qd • t1 . . . ti ◦ t′ • tk.
Using the induction hypothesis on t1, . . . , tk:

φ(t • t′) = ad • φ(t1) . . . φ(tk)φ(t′) +
k∑
i=1

ad • φ(t1) . . . φ(t1 ◦ t′) . . . φ(tk)

= ad • φ(t1) . . . φ(tk)φ(t′) +

k∑
i=1

ad • (φ(t1) . . . φ(t1) ◦ φ(t′) . . . φ(tk))

= (ad • φ(t1) . . . φ(tk)) • φ(t′)

= φ(t) • φ(t′).

Second case. If t has k > 1 roots, we put t = t1 . . . tk. The induction hypothesis holds
for t1, . . . , tk, so:

φ(t • t′) =
k∑
i=1

φ(t1 ti • t′ . . . tk)

=

k∑
i=1

φ(t1) φ(ti • t′) . . . φ(tk)

=
k∑
i=1

φ(t1) φ(ti) • φ(t′) . . . φ(tk)

= (φ(t1) . . . φ(tk)) • φ(t′)

= φ(t) • φ(t′).

Hence, φ is a morphism of Com-Prelie algebras. �

3.2 Presentation of K〈x0, x1〉 as a Com-Prelie algebra

Proposition 21 As a Com-Prelie algebra, K〈x0, x1〉 is generated by ∅ and x1.

Proof. Let A be the Com-Prelie subalgebra of K〈x0, x1〉 generated by ∅ and x1. For all
n ≥ 1, it contains x n

1 = n!xn1 , so it contains x
n
1 for all n ≥ 0. As K〈x0, x1〉 is generated by these

elements as a prelie algebra, A = K〈x0, x1〉. �

We denote by φCPL : gPT ({1,2}) −→ K〈x0, x1〉 the unique morphism of Com-Prelie algebras
which sends q1 to ∅ and q2 to x1. By proposition 21, it is surjective.

Lemma 22 Let t1, . . . , tk ∈ PT ({1, 2}).

1. φCPL( q1 • t1 . . . tk) = 0 if k ≥ 1.

2. φCPL( q2 • t1 . . . tk) = 0 if k ≥ 2.

3. If t ∈ PT ({1, 2}), φCPL( q2 • t) = x0φCPL(t).

Proof. We prove 1.-3. by induction on k. If k = 1:

φCPL( q1 • t) = ∅ • φCPL(t) = 0, φCPL( q2 • t) = x1 • φCPL(t) = x0φCPL(t).

15



Let us assume the results at rank k − 1 ≥ 1. Then:

φCPL( q1 • t1 . . . tk) = ∅ • φCPL(t1) . . . φCPL(tk)

= (∅ • φCPL(t1) . . . φCPL(tk−1)) • φCPL(tk)

−
k∑
i=1

∅ • φCPL(t1) . . . φCPL(ti • tk) . . . φCPL(tk−1)

= 0,

φCPL( q2 • t1 . . . tk) = x1 • φCPL(t1) . . . φCPL(tk)

= (x1 • φCPL(t1) . . . φCPL(tk−1)) • φCPL(tk)

−
k∑
i=1

x1 • φCPL(t1) . . . φCPL(ti • tk) . . . φCPL(tk−1).

If k ≥ 3, the induction hypothesis immediately allows to conclude that φCPL( q2 • t1 . . . tk) =
0− 0 = 0. If k = 2, this gives:

φCPL( q2 • t1t2) = (x1 • φCPL(t1)) • φCPL(t2)− x1 • φCPL(t1 • t2)
= (x0φCPL(t1)) • φCPL(t2)− x0φCPL(t1 • t2)
= x0 (φCPL(t1) • φCPL(t2))φCPL(t1 • t2))
= 0.

Hence, the result holds for all k ≥ 1. �

Lemma 23 For all t ∈ PT ({1, 2}), φCPL(t) is a linear span of words of length the number
of vertices of t decorated by 2.

Proof. By induction on the number of vertices N of t. If N = 1, then t = q1 or q2 and the
result is obvious. Let us assume the result at all rank < N .

First case. If t has only one root, we put t = q i • t1 . . . tk. By the preceding lemma, we can
assume that i = 2 and k = 1. Then φCPL(t) = x0φCPL(t1) and the result is obvious.

Second case. If t has k > 1 roots, we put t = t1 . . . tk. Then φCPL(t1) is equal to
φCPL(t1) . . . φCPL(tk) and the result is immediate. �

Lemma 24 We de�ne inductively a family F of elements of PT ({1, 2}) by:

1. F (1) = { q1 , q2}.
2. F (n+ 1) = ( q2 • F (n)) ∪

n⋃
i=1

(F (i) F (n+ 1− i)).

3. F =
⋃
n≥1

F (n).

Let t ∈ PT ({1, 2}). Then φCPL(t) 6= 0 if, and only if, t ∈ F .

Proof. =⇒. We proceed by induction on the number N of vertices of t. This is obvious if
N = 1. Let us assume the result at all rank < N .

First case. If N has only one root, we put N = q i • t1 . . . tk. By lemma 22, i = 2 and k = 1.
Then φCPL(t) = x0φCPL(t1). By the induction hypothesis, t1 ∈ F , so t ∈ F .
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Second case. If N has k > N roots, we put t = t1 . . . tk. Then:

φCPL(t) = φCPL(t1) φCPL(t2 . . . tk) 6= 0,

so by the induction hypothesis, t1 and t2 . . . tk ∈ F , and t ∈ F .

⇐=. Let t ∈ T (n). We proceed by induction on n. It n = 1, this is obvious. If n > 1 then
t = q2 • t′, with t′ ∈ F (n − 1), or t = t′ t′′, with t′ ∈ F (i), t′′ ∈ F (n − i). In the �rst case,
by the induction hypothesis, φCPL(t′) 6= 0 and φCPL(t) = x0φCPL(t′) 6= 0. In the second case,
φCPL(t′), φCPL(t′′) 6= 0 by the induction hypothesis, so φCPL(t) = φCPL(t′) φCPL(t′′) 6= 0. �

Examples.

F (1) = { q1 , q2},
F (2) = { qq21 , qq22 , q q1 1, q q1 2, q q2 2},

F (3) =

{ qqq221 , qqq222 , q∨211 qq
, q∨221 qq

, q∨222 qq
,
q

12
1 q q , q

22
1 q q , q

12
2 q q , q

22
2 q q , 1

1
1 q q q , 2

1
1 q q q , 2

2
1 q q q , 2

2
2 q q q } .

We de�ne a second family of elements of PT ({1, 2}) in the following way:

1. F ′(1) = { q1 , q2}.
2. F ′(2) = { qq22 , qq21 , q q2 2}.

3. F ′(n+ 1) = ( q2 • F ′(n)) ∪
n−1⋃
i=2

(
F ′(i) F ′(n+ 1− i)

)
∪
( q2 F ′(n)

)
if n ≥ 2.

4. F ′ =
⋃
n≥1

F ′(n).

For example:

F ′(3) =

{ qqq221 , qqq222 , q∨222 qq
,
q

22
1 q q , q

22
2 q q , 2

2
2 q q q } ,

F ′(4) =

{ qqqq2221 , qqqq2222 , qq∨
2
2

22 qq
, q q∨222

1qq
, q q∨222

2qq
, q∨222
2 qq q

, ∨2 2
2 2qq qq

,
qq

2 2
2
1q q , qq

2 2
2
2q q , qq qq2

1
2
1 , qq qq2

1
2
2 , qq qq2

2
2
2 ,

q
2

2
2
1q q q , q

2
2

2
2q q q , 2 2 2

2q q q q} .
We de�ne a map π from F to PT ({1, 2}) in the following way:

1. π( q i ) = q i if i = 1, 2.

2. π( q1 . . . q1 ) = q1 .
3. If t = q1 . . . q1 t1 . . . tk, k ≥ 1, with t1, . . . , tk 6= q1 , then π(t) = π(t1) . . . π(tk).

4. If t = q2 • t1 . . . tk, then π(t) = q2 • π(t1) . . . π(tk).

Lemma 25 π is a projection on F ′ and φCPL ◦ π = φCPL|F .

Proof. Let t ∈ F . Let us prove by induction on the number N of vertices of t that:

1. π(t) ∈ F ′.

2. If t ∈ F ′, π(t) = t.

3. φCPL ◦ π(t) = φCPL(t).
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4. If π(t) = q1 , then t = q1 N .

All these points are immediate if N = 1. Let us assume the result at all ranks < N , N ≥ 2. We
put t = q1 . . . q1 t1 . . . tk, k ≥ 0, with t1, . . . , tk 6= q1 .

First case. If k ≥ 2, then π(t) = π(t1) . . . π(tk). Following the induction hypothesis,
π(t1), . . . , π(tk) ∈ F ′ and are not equal to q1 , so π(t) ∈ F ′: moreover, π(t1) 6= q1 , so π(t) 6= q1 .

φCPL(t) = φCPL( q1 ) . . . φCPL( q1 ) φCPL(t1) . . . φCPL(tk)

= ∅ . . . ∅ φCPL ◦ π(t1) . . . φCPL ◦ π(tk)

= φCPL(π(t1) . . . π(tk))

= φCPL ◦ π(t).

If t ∈ F ′, necessarily t = t1 . . . tk, and t1, . . . , tk ∈ F ′. By the induction hypothesis,
π(t1) = t1, . . . , π(tk) = tk, so π(t) = t.

Second case. If k = 1, as t1 ∈ F , we put t1 = q2 • s. Then π(t) = q2 • π(s). By the induction
hypothesis, π(s) ∈ F ′, so π(t) = F ′. Moreover:

φCPL(t) = φCPL( q1 ) . . . φCPL( q1 ) (φCPL( q2 ) • φCPL(s))

= ∅ . . . ∅ (φCPL( q2 ) • φCPL(s))

= φCPL ◦ π( q2 ) • φCPL ◦ π(s)

= φCPL ◦ π(t).

If t′ ∈ F ′, then s ∈ F ′, and t = q2 • s. Then π(t) = q2 • π(s) = q2 • s = t.

Last case. If k = 0, all the results are obvious. �

Lemma 26 Let t, t′ ∈ PT ({1, 2}). Then:

φCPL
(
( q2 • t) ( q2 • t′)) = φCPL

( q2 • (( q2 • t) t′ + t ( q2 • t′))) .
Proof. Indeed, putting w = φCPL(t) and w′ = φCPL(t′):

φCPL
(
( q2 • t) ( q2 • t′)) = x0w x0w

′

= x0(w x0w
′) + x0(x0w w′)

= φCPL
( q2 • (( q2 • t) t′ + t ( q2 • t′))) .

We used lemma 22 for the �rst and third equalities. �

Theorem 27 The kernel of φCPL is the Com-Prelie ideal generated by the elements:

1. q1 • t1 . . . tk, where k ≥ 1, t1, . . . , tk ∈ PT ({1, 2}).

2. q2 • t1 . . . tk, where k ≥ 2, t1, . . . , tk ∈ PT ({1, 2}).

3. q1 t− t, where t ∈ PT ({1, 2}).

4. ( q2 • t) ( q2 • t′)− q2 • (( q2 • t) t′ − t ( q2 • t′)), where t, t′ ∈ PT ({1, 2}).

Proof. Let I be the ideal generated by these elements. Lemmas 22 and 26 prove that the
elements 1, 2 and 4 belong to Ker(φCPL). Moreover, for all t ∈ PT ({1, 2}), π( q1 t) = π(t).
For all t ∈ PT ({1, 2}):

φCPL( q1 t) = ∅ φCPL(t) = φCPL(t),
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so elements 3. also belong to Ker(φCPL). Hence, I ⊆ Ker(φCPL).

Let h = gPT ({1,2})/I. As the elements 1 and 2 belong to I, h is linearly spanned by the

elements t, t ∈ F . As the elements 3 belong to I, for all t ∈ F , π(t) = t. As π is a projection on
F ′, h is linearly spanned by the elements t, t ∈ F ′.

We now de�ne inductively two families of partitionned trees in the following way:

1. T ′′(1) = { q2} and F ′′(1) = { q1 , q2}.
2. T ′′(n+ 1) = q2 • F ′′(n).

3. F ′′(n+ 1) =

n+1⋃
i=1

T ′′(i) q2 (n+1−i).

4. F ′′ =
⋃
n≥1

F ′′(n).

For example:

F ′′(3) =

{ qqq221 , qqq222 , q∨222 qq
,
q

22
1 q q , q

22
2 q q , 2

2
2 q q q } ,

F ′′(4) =

{ qqqq2221 , qqqq2222 , qq∨2
2

22 qq
, q q∨222

1qq
, q q∨222

2qq
, q∨222
2 qq q

, ∨2 2
2 2qq qq

,
qq

2 2
2
1q q , qq

2 2
2
2q q , q

2
2

2
1q q q , q

2
2

2
2q q q , 2 2 2

2q q q q} .
Let us prove that for all t ∈ F ′, there exists t′ ∈ V ect(F ′′) such that t = t′. We proceed by
induction on the number N of vertices of t. If N = 1, then t = q1 or q2 and we take t′ = t. Let
us assume the result at all rank < N . We put t = t1 . . . tk q2 . . . q2 , with ti = q2 • si,
si 6= 1, for all 1 ≤ i ≤ k. We proceed by induction on k. If k = 0, we take t′ = t = q2 . . . q2 .
If k = 1, then, by the induction hypothesis on N applied to s1:

t = ( q2 • s1) q2 . . . q2 = ( q2 • s′1) q2 . . . q2 = ( q2 • s′1) q2 . . . q2 .
We take t′ = ( q2 • s′1) q2 . . . q2 , which clearly belongs to V ect(F ′′), as s′1 ∈ V ect(F ′′). Let
us assume the result at all rank < k. Then, as the elements 4 belong to I:

t1 t2 = q2 • (t1 s2)︸ ︷︷ ︸
t′1

+ q2 • (s1 • t2)︸ ︷︷ ︸
t′′1

,

so:
t = t′1 t3 . . . tk q2 . . . q2 + t′′1 t3 . . . tk q2 . . . q2 .

By the induction hypothesis on k applied to these two partitionned trees, there exists x′1 and
x′′1 ∈ V ect(F ′′), such that t = x′1 + x′′1. We take t′ = x′1 + x′′1. Consequently, the elements t,
t ∈ F ′′, linearly span h.

Let t ∈ F ′′(n). Then it has n vertices, and at most one of them is decorated by 1. We
denote by F ′′1 (n) the set of elements of F ′′(n) with one vertex decorated by 1, and we put
F ′′2 (n) = F ′′(n) \F ′′1 (n). Let us prove that for all n ≥ 1, |F ′′1 (n+ 1)| ≤ 2n−1 and |F ′′2 (n)| ≤ 2n−1.
For n = 0, as FF ′1(2) = { qq21 } and F ′′2 (1) = { q2}, this is immediate. Let us assume the result at
all rank ≤ n. Then:

F ′′2 (n+ 1) =

n+1⋃
i=1

q2 (n+1−i) T ′′(i) ∩ F ′′2 (i) = { q2 (n+1)} ∪
n⋃
i=1

q2 (n+1−i) q2 • F ′′2 (i).
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Hence, |F ′′2 (n+ 1)| ≤ 1 + 1 + 2 + . . .+ 2n−1 = 2n.

F ′′1 (n+ 2) =
n+2⋃
i=1

q2 (n+2−i) T ′′(i) ∩ F ′′1 (i) =
n+2⋃
i=2

q2 (n+2−i) q2 • F ′′1 (i− 1).

Hence, |F ′′1 (n+ 2)| ≤ +1 + 1 + . . .+ 2n−1 = 2n.

Let φAPL be the linear map induced by φCPL on h. If t ∈ F ′′1 (n), by lemma 23, φAPL(t) is
a linear span of words of length n − 1. If t ∈ F ′′2 (n), by lemma 23, φAPL(t) is a linear span of
words of length n. Hence, for all n ≥ 0:

φAPL(V ect(F ′′2 (n)) + V ect(F ′′1 (n+ 1))) ⊆ V ect(words of length n).

As φCPL is surjective, we obtain:

φAPL(V ect(F ′′2 (n)) + V ect(F ′′1 (n+ 1))) = V ect(words of length n).

Moreover, as dim(V ect(words of length n)) = 2n and dim(V ect(F ′′2 (n)) + V ect(F ′′1 (n + 1))) ≤
|F ′′2 (n)|+ |F ′′1 (n)| ≤ 2n−1 +2n−1 = 2n, the restriction of φAPL to V ect(F ′′2 (n))+V ect(F ′′1 (n+1))
is injective. Finally, φAPL is injective, so Ker(φCPL) = I. �

4 Presentation of K〈x0, x1〉 as a prelie algebra

4.1 A surjective morphism

Let gT (N∗) be the free prelie algebra generated by N∗, as described in [1]. It can be seen as the
subspace of gPT (N∗) generated by rooted trees (which are seen as partitioned trees such that
any part of the partition is a singleton), with the restriction of the prelie product • de�ned by
graftings. For example, in gT (N∗), if a, b, c, d > 0:

qqab • qqcd = q qq q∨acb
d

+ qqqqabcd .
This prelie algebra is graded, the degree of a tree being the sum of its decorations.

By theorem 12, there exists a unique surjective map of prelie algebras ΦPL : gT (N∗) −→
K〈x0, x1〉, sending qn to xn−11 for all n ≥ 1. As xi−11 is homogeneous of degree i for all i, this
morphism is homogeneous of degree 0.

Notation. If t1 . . . tk ∈ T (N∗) and n ∈ N∗, we put:

Bn(t1 . . . tk) = qn • t1 . . . tk.
This is the tree obtained by grafting t1, . . . , tk on a common root decorated by n.

Proposition 28 Let t = Bn(t1 . . . tk) ∈ T (N∗). We put φPL(ti) = wi for all 1 ≤ i ≤ k.
Then:

φPL(t) =

{
x0w1 . . . x0wk xn−1−k1 if k < n,

0 otherwise.

Proof. As gPT ({1,2}) is prelie, there exists a unique morphism of prelie algebras:

ψ :


gT (N∗) −→ gPT ({1,2})

qn −→ 1

(n− 1)!
q2 (n−1).
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Then φCPL ◦ψ is a prelie algebra morphism sending qn to 1

(n− 1)!
x

(n−1)
1 = xn−11 for all n ≥ 1,

so φCPL ◦ ψ = φPL. We obtain, by lemma 19:

ψ( qn • t1 . . . tk) =
1

(n− 1)!
q2 (n−1) • (ψ(t1) . . . ψ(tk))

=
1

(n− 1)!

∑
I1t...tIn−1={1,...,k}

q2 •
∏
i∈I1

ti

 . . . q2 •
 ∏
i∈In−1

ti


Let us apply φCPL to this expression. If |Ij | ≥ 2, by lemma 22:

φCPL

 q2 •
∏
i∈Ij

ti

 = 0.

Consequently, if k ≥ n, at least one of the Ij contains two elements, so φCPL◦ψ(t) = φPL(t) = 0.
Let us assume that k < n. Hence, using the commutativity of :

φPL( qn • t1 . . . tk) =
1

(n− 1)!

∑
I1t...tIn−1={1,...,k}, |Ij |≤1

x1 •

∏
i∈I1

wi

 . . . x1 •

∏
i∈Ik

wi


=

1

(n− 1)!

∑
ι:{1,...,k}−→{1,...,n−1}, injective

x1 • w1 . . . x1 • wk x
(n−1−k)

1

=
1

(n− 1)!

∑
ι:{1,...,k}−→{1,...,n−1}, injective

x0w1 . . . x0wk x
(n−1−k)

1

=
(n− 1) . . . (n− k)

(n− 1)!
x0w1 . . . x0wk x

(n−1−k)
1

=
(n− 1) . . . (n− k)(n− 1− k)!

(n− 1)!
x0w1 . . . x0wk xn−1−k1

= x0w1 . . . x0wk xn−1−k1 ,

which is the announced result. �

Corollary 29 Let s1, . . . , sm, t1, . . . , tn ∈ T (N∗), m,n ≥ 0. For all i, j, k ≥ 1:

φPL (Bk+1((Bi(s1 . . . sm)Bj(t1 . . . tn)))

= φPL (Bk(Bi+1(s1 . . . smBj(t1 . . . tn))) + φPL (Bk(Bj+1(Bi(s1 . . . sm)t1 . . . tn)) .

Proof. We note:

T1 = Bk+1((Bi(s1 . . . sm)Bj(t1 . . . tn)) = qk + 1 • (( q i • s1 . . . sm)( q j • t1 . . . tn)),
T2 = Bk(Bi+1(s1 . . . smBj(t1 . . . tn))) = qk • ( q i + 1• (s1 . . . sm( q j • t1 . . . tn))),
T3 = Bk(Bj+1(Bi(s1 . . . sm)t1 . . . tn)) = qk • ( q j + 1• (( q i • s1 . . . sm)t1 . . . tn)).

If m ≥ i, or n ≥ j, or k = 1, all these elements are sent to zero by φPL by proposition 28. Let
us assume now that m < i, n < j, k > 1. We put vi = φPL(si) and wi = φPL(ti). Then:

φPL(T1) = x0(x0v1 . . . x0vm xi−1−m1 )︸ ︷︷ ︸
X

x0(x0w1 . . . x0wn xj−1−n1 )︸ ︷︷ ︸
Y

xk−21

= x0X x0Y xk−21 ,

φPL(T2) = x0(x0v1 . . . vm x0(x0w1 . . . x0wn xj−1−n1 ) xi−1−m1 ) xk−21

= x0(X x0Y ) xk−21 ,

φPL(T3) = x0(x0(x0v1 . . . x0vm xi−1−m1 ) x0w1 x0wn xj−1−n1 ) xk−21

= x0(x0X Y ) xk−21 .

As x0X x0Y = x0(X x0Y ) + x0(x0X Y ), we obtain the result. �
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Theorem 30 The kernel of φPL is the prelie ideal generated by:

1. B1(t1 . . . tk), where k ≥ 1, t1, . . . , tk ∈ T (N∗).

2. Bk+1(Bi(s1 . . . sm)Bj(t1 . . . tn))−Bk(Bi+1(s1 . . . smBj(t1 . . . tn))−Bj+1(Bi(s1 . . . sm)t1 . . . tn)),
where i, j, k ∈ N∗, m,n ≥ 0, s1, . . . , sm, t1, . . . , tn ∈ T (N∗).

Proof. Let I be the ideal generated by these elements. By proposition 28 and corollary 29,
I ⊆ Ker(φPL). We put h = gT (N∗)/I. Applying repeatedly the relation given by elements of
the second form, it is not di�cult to prove that for any t ∈ T (N∗), there exists a linear span
of ladders t′ such that t = t′ in h. Moreover, by the relation given by elements 1., if one of the
vertices of a ladder t which is not the leaf is decorated by 1, then t = 0. Let us denote by L(n)
the set of ladders decorated by N∗, of weight n, such that all the vertices which are not the leaf
are decorated by integers > 1. It turns out that h is generated by the elements t, t ∈ L =

⋃
L(n).

Let φPL be the morphism form h to K〈x0, x1〉 induced by φPL. By homogeneity, as φPL is
surjective, for all n ≥ 1:

φPL(V ect(L(n))) = V ect(words of degree n).

In order to prove that I = Ker(φPL), it is enough to prove that φPL is injective. By homogeneity,
it is enough to prove that φ|V ect(L(n)) is injective for all n ≥ 1. Hence, it is enough to prove that
for all n ≥ 1,

|L(n)| = dim(V ect(words of degree n)) = pn,

where the pn are the integers de�ned in proposition 8. Let ln = |L(n)| and qn be the number of
t ∈ L(n) with no vertex decorated by 1. Then for all n ≥ 2, ln = qn + qn−1, and l1 = 1. We put:

L =

∞∑
n=1

lnX
n, Q =

∞∑
n=1

qnX
n.

We obtain P = X +Q+XQ. Moreover:

Q =
1

1−
∑
i≥2

Xi
− 1 =

1

1− X2

1−X
− 1 =

X2

1−X −X2
,

Finally:

L =
X

1−X −X2
= F.

So, for all n ≥ 1, |L(n)| = pn. �

As an immediate corollary, a basis of h is given by the classes of the elements of L. Turning
to K〈x0, x1〉, we obtain:

Corollary 31 Let w = a1 . . . ak be a word with letters in N∗.

1. We put:
mw = xa1−11 • (xa1−11 • (. . . (x

ak−1−1
1 • xak1 ) . . .).

2. We shall say that w is admissible if a1, . . . , ak−1 > 1. The set of admissible words is
denoted by Adm.

Then (mw)w∈Adm is a basis of K〈x0, x1〉.

Remark. If w is not admissible, that is to say if there exists 1 ≤ i < k, such that ai = 1,
then mw = 0 by proposition 28.

We extend the map w −→ mw by linearity.
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4.2 Prelie product in the basis of admissible words

Notations.

1. For all k, l, we denote by Sh(k, l) the set of (k, l)- shu�es, that is to say permutations
ζ ∈ Sk+l such that ζ(1) < . . . < ζ(k), ζ(k + 1) < . . . < ζ(k + l).

2. For all k, l we denote by Sh≺(k, l) the set of (k, l)-shu�es ζ such that ζ−1(k + l) = k.

3. For all k, l we denote by Sh�(k, l) the set of (k, l)-shu�es ζ such that ζ−1(k + l) = k + l.

4. The symmetric group Sn acts on the set of words with letters in N∗ of length n by permu-
tation of the letters:

σ.(a1 . . . an) = aσ−1(1) . . . aσ−1(n).

Proposition 32 Let K〈N∗〉 be the space generated by words with letters in N∗. We de�ne a
dendriform structure on this space by:

(a1 . . . ak) ≺ (b1 . . . bl) =
∑

ζ∈Sh≺(k,l)

ζ.a1 . . . akb1 . . . bk−1(bk + 1)

(a1 . . . ak) � (b1 . . . bl) =
∑

ζ∈Sh�(k,l)

ζ.a1 . . . ak−1(ak + 1)b1 . . . bk.

The associative product ≺ + � is denoted by ?.

Proof. We denote by Sh(k, l,m) the set of k+l+m-permutations such that ζ(1) < . . . < ζ(k),
ζ(k + 1) < . . . < ζ(k + l), ζ(k + l + 1) < . . . ζ(k + l +m). Then:

(a1 . . . ak ≺ b1 . . . bl) ≺ c1 . . . cm = a1 . . . ak ≺ (b1 . . . bl ? c1 . . . cm)

=
∑

ζ∈Sh(k,l,m),ζ−1(k+l+m)=k

ζ.a1 . . . akb1 . . . (bl + 1)c1 . . . (cm + 1);

(a1 . . . ak � b1 . . . bl) ≺ c1 . . . cm = a1 . . . ak � (b1 . . . bl ≺ c1 . . . cm)

=
∑

ζ∈Sh(k,l,m),ζ−1(k+l+m)=k+l

ζ.a1 . . . (ak + 1)b1 . . . blc1 . . . (cm + 1);

(a1 . . . ak ? b1 . . . bl) � c1 . . . cm = a1 . . . ak � (b1 . . . bl � c1 . . . cm)

=
∑

ζ∈Sh(k,l,m),ζ−1(k+l+m)=k+l+m

ζ.a1 . . . (ak + 1)b1 . . . (bl + 1)c1 . . . cm.

So K〈〈N∗〉〉 is a dendriform algebra. �

We postpone the study of this dendriform algebra to section 5.2.

Notations. For all a1, . . . , ak ∈ N∗, we denote by l(a1 . . . ak) = Ba1 ◦ . . . ◦Bak(1) the ladder
decorated from the root to the leaf by a1, . . . , ak. Note that ma1...ak = φPL(l(a1 . . . ak)).

Lemma 33 Let k, l ≥ 1 and let a1, . . . , al, b1, . . . , bl ∈ N∗. Then:

φPL(Ba1+1(l(a2 . . . ak)l(b1 . . . bl)) +Bb1+1(l(a1 . . . ak)l(b2 . . . bl)) = ma1...ak?b1...bl .

Proof. By induction on k + l. If k = l = 1, then:

φPL( qqa1 + 1
b1 + qq b1 + 1

a1 ) = m(a1+1)b1+(b1+1)a1 = ma1?b1 .

23



Let us assume the result at all ranks < k + l. If k = 1, then:

φPL(Ba1+1(l(b2 . . . bl)) +Bb1+1(l(a1)l(b2 . . . bl))

= φPL( qa1 + 1• l(b2 . . . bl) + q b1 + 1 • (l(a1)l(b2 . . . bl)))

= φPL(l((a1 + 1)b2 . . . bl)) + φPL( q b1• (l((a1 + 1)b2 . . . bl) + q b2 + 1 • (l(a1)l(b3 . . . bl)))

= m(a1+1)b2...bl +mb1(a1?b2...bl)

= m(a1+1)b2...bl +
l−1∑
i=1

mb1...bi(a1+1)...bl +mb1...(bl+1)a1

= ma1?b1...bl .

If l = 1, a similar computation, permuting the ai's and the bj 's, proves the result. If k, l > 1,
then:

φPL(Ba1+1(l(a2 . . . ak)l(b1 . . . bl)) +Bb1+1(l(a1 . . . ak)l(b2 . . . bl))

= φPL( qa1• ( qa2 + 1• l(a3 . . . ak)l(b1 . . . bl)) + q b1 + 1 • l(a1 . . . ak)l(b2 . . . bl)))
+ φPL( q b1• ( qa1 + 1• l(a2 . . . ak)l(b2 . . . bl)) + q b2 + 1 • l(a1 . . . ak)l(b3 . . . bl)))
= ma1(a2...ak?b1...bl)+b1(a1...ak?b2...bl)

= ma1...ak?b1...bl .

Hence, the result holds for all k, l ≥ 1. �

Theorem 34 For all a1, . . . , ak, b1, . . . , bl ∈ N∗:

ma1...ak •mb1...bl =

k−1∑
i=1

ma1...ai−1(ai−1)(ai+1...ak?b1...bl) +ma1...akb1...bl .

Proof. By de�nition of ma1b1...bl , if k = 1, ma1 •mb1...bl = ma1b1...bl . So the result holds if
k = 1. Let us assume that k ≥ 2. In gT (N∗), we have:

l(a1 . . . ak) • l(b1 . . . bl) = qa1• (l(a2 . . . ak) • l(b1 . . . bl)) + qa1• l(a2 . . . ak)l(b1 . . . bl).
Applying φPL:

ma1...ak •mb1...bl = ma1(a2...ak)•(b1...bl)

+ φPL( qa1 − 1• ( qa2 + 1 l(a3 . . . ak)l(b1 . . . bl)) + q b1 + 1 • l(a1 . . . ak)l(b2 . . . bl)))
= ma1(a2...ak)•(b1...bl) +m(a1−1)(a2...ak?b1...bl),

by the preceding lemma. The result follows from an easy induction. �

Remark. In particular, m1 ◦mb1...bl = 0.

Corollary 35 Let a1 . . . ak, b1 . . . bl be two words with letters in N∗. Then ma1...ak •mb1...bl

is a span of mw, where w is a word with k + l letters and of weight a1 + . . .+ ak + b1 + . . .+ bl.

Hence, K〈x0, x1〉 is a bigraded prelie algebra, with:

K〈x0, x1〉n,k = V ect(ma1...ak | a1 + . . .+ ak = n).

We put:
G =

∑
k,n≥0

dim(K〈x0, x1〉n,k)XnY k.
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Proposition 36 G =
XY

1−X −X2Y
=

∞∑
k=1

∞∑
l=2k−1

(
l − k
k − 1

)
X lY k.

Proof. Note that dim(K〈x0, x1〉n,k) is the number of words a1 . . . ak of length k, such that
a1, . . . , ak−1 ≥ 2, and a1 + . . .+ ak = n. Hence:

G =

∞∑
k=1

(
X2Y

1−X

)k−1
XY

1−X
=

XY

1−X
1

1− X2Y
1−X

=
XY

1−X −X2Y
.

An easy developement in formal series gives the second formula. �

4.3 An associative product on gT (N∗)

We now de�ne an associative product on gT (N∗), in such a way that φPL becomes a morphism
of Com-Prelie algebras.

Proposition 37 We de�ne a product on gT (N∗) by:

Bp(s1 . . . sk) Bq(t1 . . . tl) =

(
p+ q − k − l − 2

p− k − 1

)
Bp+q−1(s1 . . . skt1 . . . tl).

Then gT (N∗) is a Com-Prelie algebra and φPL is a morphism of Com-Prelie algebras.

Proof. As
(
p+q−k−l−2
p−k−1

)
=
(
p+q−k−l−2
q−l−1

)
, is commutative. Let t = Bp(s1 . . . sk), t′ =

Bq(•t1 . . . tl) and t′′ = Br(u1 . . . um). Then:

t (t′ t′′) =

(
q + r − l −m− 2

q − l − 1

)(
p+ q + r − k − l −m− 3

q + r − l −m− 2

)
︸ ︷︷ ︸

A

Bp+q+r−2(s1 . . . skt1 . . . tlu1 . . . um),

(t t′) t′′ =

(
p+ q − k − l − 2

p− k − 1

)(
p+ q + r − k − l −m− 3

p+ q − k − l − 2

)
︸ ︷︷ ︸

B

Bp+q+r−2(s1 . . . skt1 . . . tlu1 . . . um).

If p ≤ k or q ≤ l or r ≤ m, then A = B = 0. If p > k and q > l and r > m, then:

A = B =
(p+ q + r − k − l −m− 3)!

(p− k − 1)!(q − l − 1)!(r −m− 1)!
.

So is associative.

Let t1 = Bp(s1 . . . sk), t2 = Bq(t1 . . . tl) and t ∈ T (N∗). Then:

(t1 t2) • T =

(
p+ q − k − l − 2

m− k − 1

)
Bp+q−1(s1 . . . skt1 . . . tlt)

+
k∑
i=1

(
p+ q − k − l − 2

p− k − 1

)
Bp+q−1(s1 . . . (si • t) . . . skt1 . . . tl)

+

l∑
j=1

(
p+ q − k − l − 2

p− k − 1

)
Bp+q−1(s1 . . . skt1 . . . (tj • t) . . . tl),
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(t1 • t) t2 =

(
k∑
i=1

Bp(s1 . . . (si • t) . . . sk) +Bp(s1 . . . skt)

)
t2

=
k∑
i=1

(
p+ q − k − l − 2

p− k − 1

)
Bp+q−1(s1 . . . (si • t) . . . skt1 . . . tl)

+

(
p+ q − k − l − 3

p− k − 2

)
Bp+q−1(s1 . . . skt1 . . . tlt),

t1 (t2 • t) = t1

 l∑
j=1

Bq(t1 . . . (tj • t) . . . tl) +Bq(t1 . . . tjt)


=

l∑
j=1

(
p+ q − k − l − 2

p− k − 1

)
Bp+q−1(s1 . . . skt1 . . . (tj • t) . . . tl)

+

(
p+ q − k − l − 3

p− k − 1

)
Bp+q−1(s1 . . . skt1 . . . tlt).

As

(
p+ q − k − l − 3

p− k − 2

)
+

(
p+ q − k − l − 3

p− k − 1

)
=

(
p+ q − k − l − 2

p− k − 1

)
, we obtain (t1 t2) • t =

(t1 • t) t2 + t1 (t2 • t). So gT (N∗) is Com-Prelie.

Let t1 = Bp(s1 . . . sk) and t2 = Bq(t1 . . . tl). If k ≥ p, then

(
p+ q − k − l − 2

p− k − 1

)
= 0, so

t1 t2 = 0. By proposition 28, φPL(t1) = 0, so φPL(t1 t2) = φPL(t1) φPL(t2) = 0. Similarly,
if l ≥ q, φPL(t1 t2) = φPL(t1) φPL(t2) = 0. If k < p and l < q, we put wi = φPL(si) and
w′j = φPL(tj). Then:

φPL(t1) φPL(t2) = x0w1 . . . x0wk xp−1−k1 x0w
′
1 . . . x0w

′
l xq−1−l1

=

(
p+ q − k − l − 2

p− k − 1

)
x0w1 . . . x0w

′
l xp+q−k−l−21

=

(
p+ q − k − l − 2

p− k − 1

)
φPL(Bp+q−1(s1 . . . skt1 . . . tl))

= φPL(t1 t2).

So φPL is a Com-Prelie algebra morphism. �

Remark. By the proof of proposition 28, we have a commutative diagram of prelie algebra
morphisms:

gPT ({1,2}
φCPL // K〈x0, x1〉

gT (N∗)

ψ

OO

φPL

88qqqqqqqqqqqq

Moreover, φCPL is a morphism of Com-Prelie algebra. With the commutative, associative prod-
uct previously de�ned on gT (N∗), φPL is now a morphism of Com-Prelie algebra. However, ψ is
not compatible with . Indeed, ψ( qq21 ) = ψ( q2 ) • ψ( q1 ) = qq21 , so:

ψ( qq21 ) ψ( qq21 ) = qq21 qq21 = qq qq2
1

2
1 .

Moreover, qq21 qq21 = q qq∨311 , so:

ψ( qq21 qq21 ) = ψ( q3 ) • ψ( q1 )ψ( q1 ) =
1

2
q q2 2 • q1 q1 = qq qq2

1
2
1 + q qq q∨21 1

2 .
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5 Appendix

5.1 Enumeration of partitioned trees

Let d ≥ 1. For all n ≥ 1, let fn be the number of partitioned trees decorated by {1, . . . , d} with
n vertices and let tn be the number of partitioned trees decorated by {1, . . . , d} with n vertices
and one root. By convention, f0 = 1. We put:

T =
∞∑
n=1

tnX
n, F =

∞∑
n=0

fnX
n.

Let VT be the vector space generated by the set of partitioned trees decorated by {1, , . . . , d} and
VF be the vector space generated by the set of partitioned trees decorated by {1, , . . . , d} with
only one root. There is a bijection:{

S(VT ) −→ VF

t1 . . . tk −→ t1 . . . tk.

Hence:

F =
∞∏
i=1

1

(1−Xk)tk
. (2)

There is a bijection:
d⊕
i=1

S(VF ) −→ VT

(F1,1 . . . , F1,k1 , . . . , Fd,1 . . . Fd,kd) −→
d∑
i=1

q i • (Fi,1 . . . Fi,ki).

This gives:

T = dX

∞∏
i=1

1

(1−Xk)fk−1
. (3)

Formulas (2) and (3) allow to compute inductively fk and tk for all k ≥ 1. This gives:

f1 = d

f2 =
d(3d+ 1)

2

f3 =
d(19d2 + 9d+ 2)

6

f4 =
d(63d2 + 34d2 + 13d+ 2)

8

f5 =
d(644d4 + 400d3 + 175d2 + 35d+ 6)

30

Here are examples of fn for d = 1 or 2:

n 1 2 3 4 5 6 7 8 9 10

d = 1 1 2 5 14 42 134 444 1518 5318 18989

d = 2 2 7 32 167 952 5759 36340 236498 1576156 10702333

The row d = 1 is sequence A035052 of [16].
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5.2 Study of the dendriform structure on admissible words

We here study the dendriform algebra K〈N∗〉 of proposition 32. It is clearly commutative, via the
bijection from Sh≺(k, l) to Sh�(l, k) given by the composition (on the left) by the permutation
(l + 1 . . . l + k 1 . . . l): in other terms, it is a Zinbiel algebra [8].

Let V be a vector space. The shu�e dendriform algebra Sh(V ) is T+(V ), with the products
given by:

(a1 . . . ak) ≺ (b1 . . . bl) =
∑

ζ∈Sh≺(k,l)

ζ.a1 . . . akb1 . . . bk−1bk

(a1 . . . ak) � (b1 . . . bl) =
∑

ζ∈Sh�(k,l)

ζ.a1 . . . ak−1akb1 . . . bk.

Moreover, this is the free commutative dendriform algebra generated by V , that is to say if A is
a commutative dendriform algebra and f : V −→ A is any linear map, there exists a morphism
of dendriform algebras φ : Sh(V ) −→ A such that φ|V = f . As a1 . . . ak � b = a1 . . . akb in
Sh(V ) for all a1, . . . , ak, b ∈ V , this morphism φ is de�ned by:

φ(a1 . . . ak) = (. . . (a1 � a2) � a3) . . .) � ak.

Proposition 38 1. Let V be the space generated by the words 1ki, k ∈ N, i ≥ 1. Then
K〈N∗〉 is isomorphic, as a dendriform algebra, to Sh(V ).

2. Let A be the subspace of K〈N∗〉 generated by admissible words. Then it is a dendriform
subalgebra of K〈N∗〉. Moreover, if W is the space generated by the letters i, i ≥ 1, then A
is isomorphic, as a dendriform algebra, to Sh(W ).

Proof. Let w = a1 . . . ak be a word with letters in N∗. We denote by o(w) the sequence
of indices j ∈ {1, . . . , k − 1} such that aj 6= 1. This sequences are totally ordered in this way:
(j1, . . . , jk) < (j′1, . . . , j

′
l) if there exists a p such that jk = j′l, jk−1 = j′l−1, . . ., jk−p+1 = j′l−p+1,

jk−p < j′l−p, with the convention j0 = j−1 = . . . = j′0 = j′−1 = . . . = 0.

Let φ : Sh(V ) −→ K〈N∗〉 be the unique morphism of dendriform algebras which extends the
identity of V . Then:

φ((1k1−1a1) . . . (1
kn−1an)) = 1k1−1(a1 + 1) . . . 1kn−1−1(an−1 + 1)1kn−1an

+ words w′ such that o(w′) > (k1, . . . , kn−1).

By triangularity, φ is an isomorphism. Moreover, for all a1, . . . , an ≥ 1:

φ(a1 . . . an) = (a1 + 1) . . . (an−1 + 1)an.

Consequently, φ(Sh(W )) = A, so A is a dendriform subalgebra of K〈N∗〉 and is isomorphic to
Sh(W ). �

5.3 Freeness of the pre-Lie algebra gPT (D)

Notations. Let k ≥ 1, d1, . . . , dk ∈ D and let F1, . . . , Fk be decorated partitioned forests. We
put:

Bd1,...,dk(F1, . . . , Fk) = ( qd1• F1) . . . ( qdk• Fk).
Note that any partitioned tree can be written under the form Bd1,...,dk(F1, . . . Fk). This writing
is unique up to a common permutation of the di's and the Fi's.
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Proposition 39 We de�ne a coproduct δ on gPT (D) in the following way: for any decorated
partitioned tree t = Bd1,...,dk(t1,1 . . . t1,n1 , . . . , tk,1 . . . tk,nk),

δ(t) =
1

k

k∑
i=1

ni∑
j=1

Bd1,...,dk(t1,1 . . . t1,n1 , . . . , ti,1 . . . ti,j−1ti,j+1 . . . ti,ni , . . . , tk,1 . . . tk,nk)⊗ ti,j .

1. For all x ∈ gPT (D), (δ ⊗ Id) ◦ δ(x) = (23)(δ ⊗ Id) ◦ δ(x).

2. For all x, y ∈ gPT (D), δ(x • y) = x⊗ y + δ(x) • y.

Proof. 1. Let t = Bd1,...,dk(t1,1 . . . t1,n1 , . . . , tk,1 . . . tk,nk). For all i, j, we put:

t/ti,j = Bd1,...,dk(t1,1 . . . t1,n1 , . . . , ti,1 . . . ti,j−1ti,j+1 . . . ti,ni , . . . , tk,1 . . . tk,nk).

Then:

δ(t) =
1

k

∑
i,j

t/ti,j ⊗ ti,j .

Hence:
(δ ⊗ Id) ◦ δ(t) =

∑
(i,j)6=(i′,j′)

(t/ti,j)/ti′,j′ ⊗ ti′,j′ ⊗ ti,j

As (t/ti,j)/ti′,j′ and (t/ti′,j′)/ti,j are both the partitioned tree obtained by cutting ti,j and ti′,j′
in t, they are equal, so (δ ⊗ Id) ◦ δ(t) is invariant under the action of (23).

2. Let t′ be a decorated partitioned tree.

δ(t • t′) =
k∑
i=1

δ(Bd1,...,dk(t1,1 . . . t1,n1 , . . . , ti,1 . . . ti,nit
′, . . . , tk,1 . . . tk,nk))

+
∑
i,j

δ(Bd1,...,dk(t1,1 . . . t1,n1 , . . . , ti,1 . . . ti,j • t′ . . . ti,ni , . . . , tk,1 . . . tk,nk))

=
1

k
kt⊗ t′ + 1

k

∑
i

∑
i′,j′

Bd1,...,dk(t1,1 . . . t1,n1 , . . . , ti,1 . . . ti,nit
′, . . . , tk,1 . . . tk,nk)/ti′,j′ ⊗ ti′,j′

+
1

k

∑
(i,j) 6=(i′,j′)

Bd1,...,dk(t1,1 . . . t1,n1 , . . . , ti,1 . . . ti,j • t′ . . . ti,ni , . . . , tk,1 . . . tk,nk)/ti′,j′ ⊗ ti′,j′

+
1

k

∑
i,j

t/ti,k ⊗ ti,j • t′

= t⊗ t′ +
∑

t(1) ⊗ t(2) • t′ +
∑

t(1) ⊗ t(2) • t′.

So δ(t • t′) = t⊗ t′ + δ(t) • t′. �

By Livernet's pre-Lie rigidity theorem [7]:

Corollary 40 The pre-Lie algebra gPT (D) is freely generated by Ker(δ).
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