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ABSTRACT. These lecture notes contain a review of the results of [15, 16,
17, 19] about combinatorial Dyson-Schwinger equations and systems. Such an
equation or system generates a subalgebra of a Connes-Kreimer Hopf algebra of
decorated trees, and we shall say that the equation or the system is Hopf if the
associated subalgebra is Hopf. We first give a classication of the Hopf combinato-
rial Dyson-Schwinger equations. The proof of the existence of the Hopf subalgebra
uses pre-Lie structures and is different from the proof of [15, 17].

We consider afterwards systems of Dyson-Schwinger equations. We give a de-
scription of Hopf systems, with the help of two families of special systems (quasi-
cyclic and fundamental) and four operations on systems (change of variables, di-
latation, extension, concatenation). We also give a few result on the dual Lie
algebras. Again, the proof of the existence of these Hopf subalgebras uses pre-Lie
structures and is different from the proof of [16].
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Introduction

In Quantum Field Theory, the Green’s functions of a given theory are developed
as a series in the coupling constant, indexed by the set of Feynman graphs of the
theory. These series can be seen at the level of the algebra of Feynman graphs.
They satisfy then a certain system of combinatorial Dyson-Schwinger equations.
These equations use a combinatorial operator of insertion, and they allow to in-
ductively compute the homogeneous components of the Green’s functions lifted at
the level of Feynman graphs [2, 26, 28, 29, 30, 31, 32, 33, 40, 41, 42, 44]. As the
Feynman graphs are organised as a Hopf algebra, a natural question is to know
if the graded subalgebra generated by the Green’s functions is Hopf or not. This
problem, and related questions about the nature of the obtained Hopf subalgebras,

are the main object of study in [15, 16, 17, 19].



Here is an example coming from Quantum Electrodynamics [44], see the first
section of this text for more details. For any Feynman graph v, the operator B,
is combinatorially defined by the operation of insertion into . The system holds
on three series in Feynman graphs, denoted by , and . After a
truncation, it is given by the following equations:

= B ((1— <1+)2(1 = >>’

B, (M)’ _B%<(1_(1+)(1_)2 )),

with 1 = y Y2 = , and y3 = .

The insertion operators appearing in this system are 1-cocyles of a certain
subspace of a quotient of the Hopf algebra of Feynman graphs, that is to say for
all z in this subspace:

Ao By(z) = By(z) ® 14+ (Id ® B,) o A(z).

This allows to lift the problem to the level of rooted trees. Replacing insertion by
grafting of trees on a root, we obtain a system in the Hopf algebra of rooted trees
decorated by {1, 2, 3}:

71 =B <(1 —(;4)—(11:123:63)2)

where, for all trees ¢1,...,t,, Bi(t1 ...t,) is the tree obtained by grafting t1, ..., ¢,
on a common root decorated by i. The graph of dependence of this system is:

0. D
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©

This system has a unique solution X = (x1,x2,x3). Here are the components of
degree < 3 of X:

1 2 3 1 3 1
21 = o +310 412 4218 polr bt el polz 4olz i
2 3
poly pobs 13" 132 £ 6MV 2V 2PV 3V
1 2 3 1 2 3
Tz = . +215 +213 +6Ié +2fé +4fé +4f§ +2Iz +2I§
+V' 3V 4N 4
1 2 3 1 3 1
vy = .o 4213 412 418 wob wobn waby 4obz 4ol 4ol
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It can be proved that the subalgebra generated by the homogeneous components
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of 1, zo and x3 is a Hopf subalgebra. In fact, this system is an example of a
fundamental system (definition 51). The aim of this text is to present the classi-
fication of the systems of combinatorial Dyson-Schwinger equations which give a
Hopf subalgebra. We shall limit ourselves to systems with only one 1-cocycle per
equation. More general cases are studied in [18]; it turns out that if the corre-
sponding subalgebra is Hopf, then the truncation of the equations to 1-cocycle of
degree 1 allows to get back the whole system.

We begin with a single equation © = B(f(z)), where f is a formal series in one
indeterminate, with f(0) = 1. The question is answered in the third and fourth
sections. The subalgebra generated by the components of the solution is Hopf,
if, and only if, f is constant, or f = e®" for a certain a, or f = (1 — afBh)~/?
for a certain couple («, 8), with 8 # 0 (theorem 24). The direct sense is proved
using a "leaf-cutting" result (proposition 21), applied on two families of trees,

the ladders ., I, I , £ ... and the corollas ., 1, V', ¥ .... The other sense uses a
complementary structure on the dual of the Hopf algebra of trees Hox. By the
Cartier-Quillen-Milnor-Moore theorem, it is an enveloping algebra. The associated
Lie algebra is based on trees, and is in fact a free pre-Lie algebra (definition 6 and
theorem 8), that is to say it has a (non-associative) product o such that:

(roy)oz—zo(yoz)=(yox)oz—yo(xoz).

The Lie bracket is given by [z,y] = z oy — y o x. For example, the space of
Feynman graphs is a pre-Lie algebra, with a product defined by insertions. In
the case of trees, the pre-Lie product is defined by graftings. This pre-Lie alge-
bra is denoted by g7. Another especially interesting pre-Lie algebra is the Faa
di Bruno Lie algebra grqp, related to the group of formal diffeomorphisms of
the line. As g7 is a free pre-Lie algebra (theorem 8), this allows to define mor-
phisms ¢ from g7 to grap (proposition 14). This morphism is computed with
the help of an explicit construction of the enveloping algebra of a pre-Lie algebra
(theorem 9, applied in propositions 10 and 12). Dually, we obtain a Hopf alge-
bra morphism from the Fad di Bruno Hopf algebra Hrsp to the Connes-Kreimer
Hopf algebra, and the image of the generators of H r4p, which are linear spans of
trees, satisfy a Dyson-Schwinger equation (proposition 16); as a consequence, this
Dyson-Schwinger equation is Hopf. This result is proved in [15, 17] in a different
way, with the help of an identity on a family of symmetric polynomials which is
not used here.

The case of systems of Dyson-Schwinger equations (briefly, SDSE) is studied in
the last four sections. We first generalize the results on a single equation, especially
the "leaf-cutting" result and its consequences (proposition 29 and lemma 30). Four
operations are introduced on SDSE; change of variables, dilatation, extension and
concatenation. The latter leads to the notion of connected SDSE, that is to say
a SDSE which cannot be obtained by a concatenation of two smaller ones. The
main objects of study are now connected systems. Another tool is also introduced,
the graph of dependence. A graph-theoretical study proves that this graph always



contains an oriented cycle (proposition 41). A study of SDSE whose graph is an
oriented cycle allows to separate the SDSE into two classes, the quasi-cyclic and
the fundamental case. The quasi-cyclic case is entirely described in theorem 45.
The fundamental case is the object of the seventh section. We first introduce the
notion of the level of a vertex of the graph of dependence. This notion defines
a sort of gradation of the graph (proposition 48). A study of vertices, level by
level, finally allows to describe all fundamental SDSE. As a conclusion, any SDSE
which gives a Hopf subalgebra is obtained from the concatenation of quasi-cyclic
or fundamental systems, after the application of a dilatation, a change of variables,
and a finite number of extensions.

This text is organised as follows. The first section of the text deals with Feyn-
man graphs. The algebraic structures (product, coproduct, insertions) on Feyn-
man graphs of a given theory are introduced here, and this leads to the first
example of a system of Dyson-Schwinger equations, coming from Quantum Elec-
trodynamics. The second section gives the alternative Hopf algebras in quantum
field theory, namely the Connes-Kreimer Hopf algebras of decorated rooted trees.
Their universal property (theorem 5) allows to define Hopf algebra morphisms from
rooted trees to Feynman graphs. The role of the insertion operators on graphs are
played for trees by the grafting operators, and Dyson-Schwinger equations are
lifted to the level of trees.

The third section adopts the dual point of view. We give the pre-Lie products
on g7 and grgp, and construct the pre-Lie morphism ¢, from g7 to grgp with the
help of an explicit description of their enveloping algebra. Dually, the image under
@3 of the generators of the Faa di Bruno Hopf algebra satisfies a Dyson-Schwinger
equation (proposition 16).

Single Dyson-Schwinger equations are reviewed in the fourth section. Proposi-
tion 21 gives a combinatorial criterion of "leaf-cutting" to know if the solution of
the considered Dyson-Schwinger equation is Hopf. This criterion and proposition
16 for the other direction, imply the main theorem for Dyson-Schwinger equations
(theorem 24).

The study of systems of Dyson-Schwinger equations is achieved in the last sec-
tions. The fifth section introduces the tool of "leaf-cutting" for systems (lemma
30), and the four operations on Hopf SDSE. The oriented graph of dependence of
the equations of a Hopf SDSE is also studied here. The next section introduces
quasi-cyclic SDSE, and achieves their description. The second family of SDSE
(fundamental ones) is studied in the seventh section. In particular, the notion of
level is introduced, and the vertices are separated according to their level being 0,
1, or > 2. The last section gives a few more results and comments on fundamental
SDSE, especially on the dual pre-Lie algebras, as well as several examples found
in the literature.

Thanks. I would like to thank the organizers of the meeting DSFdB2011,
especially for the opportunity of giving a mini-course on the algebraic aspects of
Dyson-Schwinger equations. The lecture notes of this mini-course are the frame-
work of the present text. I would also like to thank both referees, for their useful



and relevant comments which help me to greatly improve the quality of this doc-
ument.

Notations.

(1) Let K be a commutative field of characteristic zero. All the vector spaces,
algebras, coalgebras, Lie algebras. . . of this text will be taken over K.

(2) We use the convention N = {0,1,2,3,...} and N* = {1,2,3,...}.

1 Feynman graphs

1.1 Definition

For more precise results and definitions, see [8, 44] and more generally the refer-
ences listed in the introduction. Let us consider a quantum field theory. In this
theory, a certain number of particles interact in different possible ways. The pos-
sible configurations of interactions are described by the Feynman graphs of the
theory. The graphs we shall consider here are described in the following way:

(1) There are several types of edges (one for each particle of the theory).

(2) The vertices can be external or internal.

(a) There are at least two internal vertices.

(b) If a vertex v is external, it is related to a single edge, which is said to
be external. The other edges are said to be internal.

(c) There are several types of internal vertices (one for each interaction of
the theory).
(3) The graph should be connected and 1-particle irreducible, that is to say that
it remains connected if one deletes any internal edge.

(4) The number of external vertices (or external edges) belongs to a certain set
of integers (condition of global divergence in Renormalization).

The number of loops of a Feynman graph + is:
1(v) = #{internal edges of v} — #{internal vertices of v} + 1.

The condition of 1-particle irreducibility implies that () > 1 for all Feynman
graphs 7.

Example. We take in this section the example of Quantum Electrodynamics
(QED). In this theory:

(1) There are two types of particles, electrons and photons. So there are two
types of edges: electron and photon

(2) There is one interaction: an electron can capture or eject a photon. So there
is one type of internal vertex



(3) The number of external edges is equal to 2 or 3.

Here are examples of Feynman graphs in QED:

) ) ) )

) ) ) ) ) )

Remark. Feynman graphs are often considered without external vertices. The
external edges are then considered as half-edges; The internal edges are the union
of two half-edges. A Feynman subgraph of v is then a set of half-edges of v which
forms a Feynman graph.

1.2 Insertion

Let us fix a QFT. For this theory, the external structures of the Feynman graphs
correspond to the different types of vertices and edges of the theory. For example,
in QED, there are three possible external structures:

(1) Two electron edges, corresponding to the edge
(2) Two photon edges, corresponding to the edge

(3) One photon and two electron edges, corresponding to the vertex

Let v and + be two Feynman graphs. Inserting v/ into v consists in replacing
in v an internal edge or vertex corresponding to the external structure of v/ by ~'.
For example, in QED:

(1) There is one possible insertion of in . The result is
(2) There are two possible insertions of in . Both of them give
(3) There are three possible insertions of in itself. The results are ,
and
More generally, one can insert a family 7;,...,7; of Feynman graphs into a
Feynman graph v: one inserts vi,...,7v, in v in such a way that the set of internal
edges and vertices of the copies of 71, ..., 7% are disjoint. It is not difficult to prove

that if T' is obtained by the insertion of ~1,..., 7, in ~, then:

UT) =1(y) +Uy) + oo+ 1vw)-

Let us describe the "dual" operation. For any Feynman graph T, let v =
41 ...k be a family of disjoint Feynman subgraphs of T'. The contraction of T by
Y1, ...,7k is the graph obtained from I by replacing any 7; be an edge or a vertex
corresponding to its external structure. It is denoted by I'/y. Moreover:

WT) = 1)+ -+ 1) +UT/y) = Uy) + 1T /7).



1.3 Algebraic structures on Feynman graphs

See [11, 31, 35, 36, 44]. Let us consider the free commutative algebra generated
by the set of Feynman graphs of a given theory. We denote it by Hrq, without
precising the considered QFT. A basis of this algebra is given by monomials in
Feynman graphs, that is to say disjoint unions of Feynman graphs, or equivalently
graphs such that every connected component is a Feynman graph. The unit is the
empty graph 1. This algebra is given a coassociative coproduct. For any Feynman
graph I':

AM)=T®1+10T+) 7@T/y,
ol

where the sum is over all the family of disjoint Feynman subgraphs of I', not empty
nor equal to I'. With this coproduct, Hr¢ is a Hopf algebra, graded by the num-
ber of loops.

For example, in QED:

A( ) = ®1+1® - ® ;
A( ) = ®@1+1© +2 ®

Remark. For any Feynman graph I, the right factors in the tensor products
appearing in A(T") are 1 or Feynman graphs, wherear the left factors can be prod-
ucts of several Feynman graphs. This is an example of left combinatorial Hopf
algebra [34]. As a consequence, the space of primitive elements of the dual of
‘H ¢ inherits a left pre-Lie product (see definition 6 below); a basis of this pre-Lie
algebra is given by the set of Feynman graphs and the pre-Lie product is given by
insertion, see [29, 31].

For this coproduct, any Feynman graph with no proper Feynman subgraph is
primitive. For example, the following Feynman graphs are primitive in QED:

) ) )

Let us take a primitive Feynman graph . The insertion operator B, sends a
monomial 77 ...~ to the sum of all possible insertions of v1, ...,y into v, up to
symmetries coefficients we won’t detail here (see [44]). In particular, B, (1) = 7.
Moreover, B, is homogeneous for the number of loops, of degree (7).

1.4 Dyson-Schwinger equations

See [2, 30, 33, 44]. The Green’s functions of the QFT are developped as a series
in the coupling constant = (we assume here it is equal to 1), indexed by the set of
Feynman graphs of the theory. To any Feynman graph is attached a scalar, by the
Feynman rules and the procedure of renormalisation, [8, 10, 11, 12]. At the level
of the Hopf algebra of Feynman graphs, we have then to consider the infinite sum
of all Feynman graphs, with a fixed external structure, up to certain symmetry



coefficients. Is there an easy way to describe these series?

Let us consider the example of QED. There are three possible external struc-

tures, so we have to consider three series, denoted here by , , and

. Let us consider a Feynman graph I' appearing in . It can be ob-
tained by the insertions of certain 7, ..., 7y, into a primitive Feynman graph with
an external structure of type . So can be written as:

:ZB’Y(f’Y( ’ ’ ))7

where the sum runs over all the primitive Feynman graphs with a external
structure, and f, is a formal series in three indeterminates. Let us now determine
f~. For example, let us take v =

(1) This graph has three vertices , and we can insert 1 + at any of
these vertices.

(2) It has two internal edges , and we can insert 1+ + 2y
at any of these edges.

(3) It has one internal edge , and we can insert 1 + + 24
at this edge.

fV( ) ) ) = (1+ )3 (Z k) <Z k)
k=0
1+ )’

(1- )2 (1 - )

Treating any primitive Feynman graph in this way, one obtains:

(1+ )1+21(7)
- ; B ((1 - 2 (1 — )l(»y)) ' (1.1)

So:

Let us then consider a graph appearing in . It can be obtained by an
insertion in . As this graph has two vertices and two internal edges
, this gives:
i+ )
=B — . 1.2
(T 42

Similarly, we obtain for the last series:

=7 (5 —) o

The three equations (1.1), (1.2) and (1.3) are the Dyson-Schwinger equations of
the QFT. They allow to inductively compute the irreducible components (for the
number of loops) of , and . For a more "physical" description,
see [44] (we did not pay here attention to signs and we took the coupling constant
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z equal to 1).

The question we shall answer here is if the Hopf algebra generated by these
homogeneous components is Hopf or not. We restrict ourselves to the case where
a single insertion operator, homogeneous of degree 1, appears in any of these
equations (this the case for (1.2) and (1.3) only; we should have to truncate (1.1)
to apply the obtained result; see [18] for more details). For this, we shall use trees
instead of Feynman graphs. The key point is the following:

Proposition 1. [2, 29] In a suitable subspace of a quotient of Hrq, we can
assume that the operators appearing in the Dyson-Schwinger equations satisfy the
following assertion: for any z,

A(L(x)) = L(z) ® 1 + (Id ® L) o A(z).

2 Rooted trees

We shall replace Feynman graphs by rooted trees and insertion operators by graft-
ing operators, with the help of the universal property of the Hopf algebra of rooted
trees (theorem 5).

2.1 The Connes-Kreimer Hopf algebra

Let T be the set of rooted trees:

T-{.,I, viv v ¥l }

Note that rooted trees are considered unordered; for example, k/ = \} .
The Connes-Kreimer Hopf algebra [10, 13] is the free commutative algebra

generated by 7. As a consequence, a basis of Hox is given by the set of rooted
forests F:

F={, 1,V t..., Vv, K/ YE RRVARE SRS OE SO
The product of two forests is their disjoint union. The unit is the empty forest 1.

We give Hog a coproduct, with the help of admissible cuts:

Definition 2. Lett € T. An admissible cut of t is a non-empty cut such that

every downward path in the tree meets at most one cut edge. The set of admissible
cuts of t is denoted by Adm(t). If ¢ is an admissible cut of t, one of the trees
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obtained after the application of c¢ contains the root of t: we shall denote it by
Re(t). The product of the other trees will be denoted by P€(t).

The coproduct is given for any ¢ € T by:

Ay=te@l+1et+ Y P(t)®R(1).
ce Adm(t)

The counit € sends any non-empty forest to 0 and the empty forest 1 to 1.

Examples.

AV) = Veil+leo V+3.0 V3.0l +...0.,

b
<
Il

{/®1+1®K/+I.®.+I®I+.®I+..®I+.® vV,

4
—
I

Y®1+1® Y+ Vo.te.ol +2.01

A(f) = 1 ®1+1®1 +le.+101+.0l

Moreover, this Hopf algebra is graded by the number of vertices of the forests.
For any F' € F, we shall denote by |F| its degree, that is to say the number of
vertices of F'.

The following operator will replace the insertion operators:

Definition 3. The operator B : Hox — Hoxk is the linear map which sends
any rooted forest F = t1...t, to the rooted tree obtained by grafting the trees
t1,...,t, on a common root.

For example, B(1.) = K/ . Clearly, B induces a bijection of degree 1 from F
to T.

Notations. We shall need two families of special rooted trees: for all n > 1,

(1) 1, = B"(1) is the ladder of degree n: I = «,ly = 1,15 = I,u:i
(2) ¢, = B(."71) is the corolla of degree n: ¢c1 = +,co = 1 ,c3 = V="V ...

2.2 Decorated rooted trees

In order to treat Dyson-Schwinger systems, we will use decorated rooted trees.
We fix a (nonempty) set of decorations I. A decorated rooted tree is a pair (¢, d),
where t is a rooted tree and d is a map from the set of vertices of ¢t to I. The set
of rooted trees decorated by I is denoted by 7. For example, here are the rooted
trees decorated by D with n < 4 vertices:

c

ciacl, 12 (a,b) € I% e =V b (b ) e I
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c d c c c c d d, c g
e e oo ol Y LY B g e
The construction of Hex is generalized to decorated rooted trees, and we

obtain in this way a Hopf algebra HL . A basis of H. is given by the set of
decorated forests, denoted by F’. Here is an example of the coproduct:

a

A(bkfdc): *’k/j ®1+1®1’K/d° 115 40 @V el 415 @uatae @15

For any i € I, we define the operator B; : Hox — Hcok, sending a decorated
rooted forest F' to the decorated tree obtained by grafting the trees of F' on a

d
c

common root decorated by i. For example, B, (., 1) = b\}a .

Proposition 4. For alli € I, for all v € HE -
Ao Bi(x) = Bi(z) ® 1+ (Id® B;) o A(z).

Proof. If x is a forest, by a study of the admissible cuts of the trees of = and the
admissible cuts of B;(z). O

Remark. In other words, B; is a 1-cocycle for a certain cohomology of coalge-
bras [10], called the Cartier-Quillen cohomology, dual to the Hochschild homology
for algebras.

Theorem 5 (Universal property). Let A be a commutative Hopf algebra and let
L; be a 1-cocycle of A for all i € 1. There exists a unique Hopf algebra morphism
(b:HICK — A such that o B; = L; 0 ¢ for alli € I.

Proof. We define ¢(F') for any decorated forest F' inductively on the degree of F
in the following way:

(1) ¢(1) =1.

(2) If F is not a tree, let us denote F' = ¢1 ...tg, with k > 2 for trees t1,...,t.
We put ¢(F) = ¢(t1) ... o(tk)-

(3) If F is a tree, there exists a unique ¢ € I and a unique forest G such that
F = B;(G). We put ¢(F) = L; o ¢(G).

This is well-defined, as A is commutative: in the second point, ¢(F) does not
depend on the way to write F' as a product of trees (that is to say up to the
order of the appearing trees). From the first and second point, it is an algebra
morphism. From the third point, ¢ o B; = L; o ¢ for all ¢ € I. Let us now prove
that it is a coalgebra morphism. We put:

A={z e Hig | (0®0) 0 A(z) = Ao g(x)}.
As ¢ and A are algebra morphisms, A is a subalgebra of H. . Let us take z € A.
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For alli € I:

(p®¢) o A(Bi(z)) = (¢®¢)(Bi(z)®1+ (Id® B;)o Ax))
= ¢oBi(x)®1+ (¢ ®¢o B;)oAx)
= Liod(x)®1+ (Id® L;)o (¢ ® ¢) o Alx)
= Li(¢(2) @ 1 + (Id® L;) o A(p(x))
= A(Li(2)).

So L;(z) € A, and A is stable under B; for all 4. It is not difficult to show then
that A contains any decorated forests, so is equal to HL ;. Hence, ¢ is a Hopf
algebra morphism. It is not difficult to prove that e o ¢ = € 4. O

Remarks.

(1) The first part of this proof means that (Hcox,B) is an initial object in a
certain category, see [37, 43] for applications.

(2) If B, is an insertion operator of H rg, homogeneous of degree 1, from theorem
5 there exists a Hopf algebra morphism ¢, : Hcx — Hrg, such that
¢y 0o B = B, o¢,. It is not difficult to prove that ¢, is homogeneous of
degree 1.

(3) If we consider a Dyson-Schwinger equation (E) : X = By (f(X)) in Hre,
it can be lifted to a Dyson-Schwinger equation (E') : X = B(f(X)) in
Hcor. Moreover, if X is the solution of (E'), then the solution of (E) is
¢(X). As a consequence, if the homogeneous components of X generate a
Hopf subalgebra of Hcgx, the homogeneous components of the solution of
(E) generate a Hopf subalgebra of Hpg. This result is easily extended to
Dyson-Schwinger systems.

(4) The construction of the morphism ¢, can easily be extended when we con-
sider several insertion operators, replacing trees by decorated trees, see [27]
for a construction of this kind.

2.3 Completion of a graded Hopf algebra

In order to treat Dyson-Schwinger equations, we shall consider series in trees,
instead of polynomials in trees, which are elements of Hox. Let us give a general
frame to this purpose. Let H be a graded Hopf algebra. We define a  wvaluation
on H by:

val(a) =max(n €N | ae@Ak
k>n

In particular, val(0) = 4o00. We define a distance on H by d(a,b) = g—val(a—b)
This metric space is not complete. Its completion is denoted by H. It is equal, as
o0

a vector space, to H H,.
n=0
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The product of H, being homogeneous, is continuous, so can be extended as a
product from H ® H to H. The coproduct can also be extended from H to H @ H.
Note that H is not in general a Hopf algebra, as H ® H C H ® H (except if H is
finite-dimensional).

For example, the elements of Hcx can be uniquely written as Z arF', where

FeF
the coefficients ar are scalars.

3 Pre-Lie algebras

We already mentioned that the space of Feynman graphs is given a pre-Lie algebra
structure by insertion. A similar result is here described for rooted trees, and we
apply a freeness result (theorem 8) to the Faa di Bruno pre-Lie algebra in order to
obtain solutions of Dyson-Schwinger equations. As a consequence, the subalgebras
associated to the Dyson-Schwinger equations of proposition 16 are Hopf. This was
proved in a different way in [15, 17].

3.1 Definition and examples

Definition 6. A (left) pre-Lie algebra (or left-symmetric algebra, or Vinberg
algebra) is a pair (g,0), where g is a K-vector space and o : g @ g — g, with the
following axiom: for all x,y,z € g,

(zoy)oz—zo(yoz)=(yor)oz—yo(zoz).
Remark. A right pre-Lie algebra satisfies:
(zoy)oz—zo(yoz)=(roz)oy—zo(z0y).

If (g,0) is right pre-Lie, then (g, —o°P) is left pre-Lie. In the sequel all the pre-Lie
algebras will be left, and we shall write everywhere "pre-Lie algebra" instead of
"left pre-Lie algebra".

Proposition 7. Let (g,0) be a pre-Lie algebra. Then [x,y] = zoy—yox
defines a Lie bracket on g.

Proof. This bracket is obviously skew-symmetric. The Jacobi identity is proved

by a direct computation. [l
Remarks.
(1) The pre-Lie axiom can be reformulated as [z,y] oz =z o (yoz) —yo (zoz).
In other words, (g, o) is a left-module over (g,[—, —]).

(2) There exists other types of products which induce a Lie bracket by skew-
symmetrization: see [21] for other examples.
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Examples.

(1) Associative algebras are obviously pre-Lie.

(2) Let grap = Vect(e; | i > 1) and let A € K. One defines a product on grqp
by e;0e; = (j + Aesrj. Forall 4,4,k > 1:

(e;oej)oe, —e;o0(ejoey)

G+ NE+Neirjre — (B + NG +E+ Neirjvr

= —k(k+ Neivjrk.

This expression is symmetric in i, j, so grgp is pre-Lie. The associated Lie
bracket is given by [e;, e;] = (j — ¢)es+j, so does not depend of A. This Lie
algebra is the Fad di Bruno Lie algebra. The graded dual of the enveloping
algebra of grpgp is known as the Faa di Bruno Hopf algebra or Hopf algebra
of formal diffeomorphisms, see [9, 10] for the link with the Hopf algebra of
trees.

(3) Let g be the vector space generated by the set T of rooted trees. We define
a product on g7 by:

tot = Z grafting of ¢ over 5.

s’ vertex of t/

For example, ! o V = I\V + L/ + \J = LV +2 L/ This product is called

natural growth |3, 13]. It is indeed a pre-Lie product: if ¢,t',¢" are three
rooted trees,

to(t'ot"y—(tot')ot" = Z grafting of ¢’ over s”, t over s’
s'et!”, s'et’ Ut

- E grafting of ¢’ over s, ¢ over s
s et s'et!

Z grafting of ¢ over s, t’ over s”.

s! s et

This is symmetric in ¢,t’, so o is pre-Lie. This construction is easily gener-
alized to rooted trees decorated by a set I. The obtained pre-Lie algebra is
denoted by g7:. For example, if a,b,c,d € I:

'aocvbd :a\ifbd +Zk/bd +C\}b3-

Theorem 8. [7] g7 is, as a pre-Lie algebra, freely generated by ., that is to
say: if g is a pre-Lie algebra and if x € g, there exists a unique pre-Lie algebra
morphism from g7 to g sending . to x. More generally, for any set I, the pre-Lie
algebra g1 of rooted trees decorated by I is freely generated by the elements .,
1€l
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Other examples of pre-Lie algebras are known, see [38] for a list of examples,
including vector fields on an affine variety. Generalization of the Fad di Bruno
pre-Lie algebras are described in [1].

3.2 Enveloping algebra of a pre-Lie algebra

Let V be a vector space and let S(V) be the symmetric algebra generated by V. It
is a cocommutative Hopf algebra, with the coproduct defined by A(v) = v®@1+1®w
forallv e V. So, if v1,...,v, € V:

A(’Ul Ce ’Un) = Z v ® V{1,....n}—1>
IC{1,...,n}

where for all 7 C {1,...,n}, vy is the product of the v;’s, i € I. The underlying
coalgebra is denoted by coS(V).

The Poincaré-Birkhoff-Witt theorem implies that the coalgebras U(g) and coS(g)
are isomorphic: choosing a basis (v;)ics of g indexed by a totally ordered set I, we
obtain a coalgebra isomorphism sending the element of the Poincaré-Birkhoff-Witt
vil vt € U(g), with iy < ... <, in 1, to vl .. vf" € S(g). Except if g is
abelian, it is not an algebra morphism; moreover, this construction depends of the
choice of the basis of g, especially of the total order on the set of indices I.

When g is pre-Lie, one can describe a "canonical" coalgebra isomorphism from
U(g) to coS(g). For this, we can give coS(g) a new product denoted by %, defined
by induction on g with the help of the pre-Lie product g. This makes coS(g) a
Hopf algebra, and it is now isomorphic to U(g). Here are the formulas defining *:

Theorem 9. [20, 58] Let (g,0) a pre-Lie algebra. Let Sy (g) the augmentation
ideal of S(g). One can extend the product o to S(g) in the following way: if
a,b,c € S+(g)7 reg,

aol = c(a),
lob = b,
(xa)ob xo(aob)—(xoa)ob,

ao(be) = >(a'ob)(a"oc).

One then defines a product on Sy(g) by axb = > a'(a’ ob), with the Sweedler
notation A(a) = > a’ ® a”. This product is extended to S(g), making 1 the unit
of x. With its usual coproduct, S(g) is a Hopf algebra, isomorphic to U(g) via the

isomorphism:
o .4 U@ — (509).%)
£l veg — w

The proof in [38] is inductive. In particular, the fact that o is well-defined (in
the second point, the choice of the first letter x in the commutative word xa is ar-
bitrary) uses the pre-Lie axiom. The computations are direct but rather complex.
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Examples. If z,y,2,t € g:

zo(yz) = (zvoy)z+y(woz)

(y)oz = zo(yoz)—(zoy)ox

xo(yzt) = (zoy)zt+ylxoz)t+yz(xot)

(@y)o(2t) = (zo(yoz))t+(yoz)(wot)+ (zoz)(yot)
+z(zo(yot)) —((xoy)oz)t —2z((zoy)ot)

(wyz)ot = wo(yo(zot))—zo((yoz)ot)—yo((xoz)otl)
+(yo(zoz))ot—zo((woy)ot)+ (z0(xoy))ot.

Remarks.

(1) An easy induction proves that for all n > 0, go .S, (g) C Sn(g). So (Sn(g),0)
is a g-module for all n > 0. Moreover, (S,(g), o) is isomorphic to Sy (g, o) as
a g-module (4th point).

(2) (S+(g),0) is not pre-Lie. For example, in g7
ee0e=.0(s0.)—(s0.)o. =20l —lo.= vV —|—I—I: V,
so:

weo0(s0.) = .0l

co(bol)—=(s0.)0!
= .o(v—i—I)—IoI

- \V+2K/+K/+Y+I —k/—l
= \V+2R/+Y,

(boo)o. = Vo.

_ Y

c0(ee0s) = oV

= \V+2I\/,
(¢oe)oe = ((t0d)e+.(s0.))o0n
= 2l.o0.

e
SO..o(.o.)—(..o.)o.—.o(..o.)—l—(.o..)o.ZZK/ # 0.

Remark. It turns out that S>,(g) is a left ideal for x. In particular, S>2(g)
is a left ideal such that S;(g) = g ® S>2(g). One deduces that U(g) contains a
left ideal I such that U (g) = g @ I. Dually, we recover the notion of left-sided
combinatorial Hopf algebra [34].
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3.3 Examples

Let us start by g7. A basis of S(g7) is given by the set of rooted forests F.

Proposition 10. Let F =ty...t,,G € F. Then:

FoG= E grafting of t1 over si,..., t, over sy.
815,80 €G

Proof. Inductively on n. Let us start with n = 1. We put G = s1...s,, and we
proceed inductively on m. If m = 1, it is the definition of o on g7. Let us assume
the result at rank m — 1. We put G’ = s1...5,,_1. Then:

t10G = t10(G'sm)
= (t10G")sm + G'(t1 0 8m)
= Z (grafting of t1 over s)s,, + Z G'(grafting of ¢; over s)

seG’ SESm

= Z grafting of ¢; over s.
seG

So the result is true at rank 1. Let us assume it at rank n—1. We put F’ = t5...t,.
Then:

FoG = t10(FoG)—(tioF')o@G

= E E grafting of ¢ over ss,..., t, over s,, t; over s
524.ues sn€G se F'UG

— E E grafting of ¢t over ss,.. ., t, over s,, t; over s
82,...,8n,EG SEF’

= Z Z grafting of t5 over so,..., t, over s,, t; over s

= g grafting of ¢, over s1,..., t,, over s,.
81,.-,8n €G

So the result is true for all n. O

Corollary 11. If F =ty ...t,n,,G € F, then:

FxG = i Z Z (grafting of t1 over si, ..., ty over sg) H t;.

k=01<i1<...<ipx<m S1,..., sLEG TFU ik
The Hopf algebra S(gr) is known as the Grossman-Larson Hopf algebra [22,
23, 24]. The first known proof of its existence is direct and does not use the pre-Lie

structure.

Let us consider now the Fad di Bruno pre-Lie algebra.
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Proposition 12. In S(gr4p):
(€iy ---€i)0e; =G+ NG —A) ... (G — (M —=2)N)ei,+. +ip+s-

Proof. We put P, (j) = (G+A)j(G—N)...(J —(m—2))\). We proceed inductively
on m. If m =1, it is the definition of the pre-Lie product of gr4p. Let us assume
the result at rank m — 1. Then:

(eil e eiwn) o ej

= ey o((€iy---e,)0e;) = (e 0(eiy...€,))0€;
m

= mel(j)eil o ei2+...+im+j — Z(Zk + )\)(ei2 e Chy g e eim) o} ej
k=2

= Pna()la+ ... +im+J+Nei o tip+j — Z Pr—1() (i + Neiy+ . +ip+i

k=2
= mel(])(ZQ + ...+ Zm +j + A— i2 — ... Zm - (m - 1))\)6i1+m+1‘m+j
= Pu(j)ei+. +im+i-
So the result is true for all m. O

Notation. If A\ # —1, weput a =14+ X and 8 = ;L—AA Then, for all i1,...,9m:

(€iy - -eip)oe; =a™(G+B(I=1)G+B)) - (G+BG+m—=2))ei . 4in+i- (3.1)

This formula is still true if A = —1 and j = 1, with a = 0, for any value of 5.
Indeed, if A = —1 (so @« =0) and j =1, then (e;, ...€;,, ) oe; =0.

3.4 From rooted trees to Faia di Bruno

From theorem 8, there exists a unique morphism of pre-Lie algebras ¢y : g7 —
grap, sending . to e;.

Definition 13. Let f € K.
(1) For anyn > 1, we put [nlg =1+ (n—1)p.
(2) For any n >0, we put [n|g! = [1]g...[n]g, with the convention [0]g! = 1.

(3) Let t € T and let x be a vertex of t. The fertility of x is the number of
children of x.

(4) Lett € T. We put [t]g! = H [fertility of s]g!.

s vertex of t

Remarks.
(1) If 8 =1, then [n]g =n for all n > 1.
(2) With these notations, (3.1) becomes, for j = 1:

(€, ---€i,) o €1 = a™[mlgles 4. 4i,+1-
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Proposition 14. For all t € T, ¢x(t) = a‘”*l[t]g!em. Moreover, ¢y is sur-
jective if, and only if, X # —1.

Proof. We extend ¢, as a Hopf algebra morphism from (S(gr),*) to (S(gran),*)-
Then ¢ (aob) = ¢x(a)opx(b) for all a,b € S(g7). We prove the result by induction
on the degree of t. It is obvious if |[¢| = 1, as then ¢ = . and ¢x(.) = e;. Let us
assume the result for all trees of degrees strictly smaller than ¢. Let t1,...,t,, be
the trees obtained by deleting the root of ¢. Then, from proposition 10 and (3.1):

¢>\(t) = ¢>\((t1 .. .tm) o .)

(Da(t1) - Pa(tm)) o en

alttl et ltml=mig 01 [t (€gty) - - - €pe)) © €1

= a‘tl‘+"'+|tm‘_mam[m]lg![fl]ﬁ! . [tm]ﬂ!e\tlH---Htm\Jrl

= a‘tl_l[t]g!em.

So the result is true for all trees.

If A= —1, then Im(¢y) = Kej as a = 0. If X # —1, then ¢5(I,,) = " le,, so
¢, is surjective. [l

3.5 Duality

The aim of this section is to describe a family of injections of the dual of the Faa
di Bruno Hopf algebra in the Hopf algebra of rooted trees, with the help of the
pre-Lie structures. Noncommutative versions are given in [4, 5, 14]; the case of
free Faa di Bruno Hopf algebras is studied in [15].

g7 and grqp are graded pre-Lie algebras, so S(g7) and S(grap) are graded
Hopf algebras (for the product x). As (g7)o = (gras)o = (0), the homogeneous
components of S(g7) and S(grqp) are finite-dimensional, so the graded dual of
S(g7) and S(grap) are also Hopf algebras. The graded dual of S(grqp) is denoted
by Hrap-

Let us give a more precise description of S(g7)*. A basis of S(g7) is given by
rooted forests. We identify S(g7) and S(g7)* as vector spaces with the help of
the pairing defined in the following way:

(F,G) = spdp,qa,

where sp is the number of automorphisms of the rooted forest F', that is to say
the number of automorphisms of the graph F' which map all roots to roots.

Let F,G,H be three forests. We put F = t{'...t0, G = tfl ... t8" and
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H =t]"...t), where ti,...,t, are different rooted trees. Then:

(A(H), F®G)

= ¥ (71> . (7") (#5000 ey i P g
. . 11 in
L15ee0sln

1

= Z <FY > . (f}/n) stGdl-l,al SN 51'"10‘"571,1'11#31 AN .5,),”,1'”)5".

i i 11 in

So this is zero if there exists ¢ such that v; # a; + 8;. If 73 = «; + 5; for all ¢, then:

—_ 71 v
sgo= mbooomlsi o8
Y1 Tn o o B1 Bn
= arl.oaplsyt s Bl Bl syt
aq (679

= N SFSG-
(&3] (7%

(AH),F®G) = (71) . (7")51?5@ = sg.

aq n

So:

In both cases, (A(H), F®G) = (H, FG). So the product of S(g7)* is the "usual"
product of forests (disjoint union).

Let us now consider the coproduct of S(g7)*. From the preceding point, S(gr)*
is generated by the set of rooted trees. It is then enough to compute A(¢) for any
rooted tree t. Moreover, by construction of *, for all n > 1:

S(ar) * Sn(ar) € €D Splo7)-

So, if F, G are two forests such that G has at least two trees, then F' x G is a sum
of forests with at least two trees. Hence, if t is a rooted tree, (F ® G, A(t)) =
(FxG,ty=0. If t’ is a tree, from corollary 11:
(Fot ,At)) = (F %t t) = s;t{graftings of F over ¢’ that yield ¢}.

This is equal to spsy#{admissible cuts ¢ of ¢ such that P¢(t) = F and R°(t) = t'},
see [25]. So:

Fot AB)= S (Fet,P()e R().

ce Adm(t)

As a conclusion, we obtain the following formula: for any rooted tree t € S(g7)*,

Ay=1@t+t@l+ Y P(t)®R(1).

ce Adm(t)

In other words, S(gr)* is the Connes-Kreimer Hopf algebra Hox [6, 25, 39]. This
result is proved similarly for decorated rooted trees.
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We now give a description of Hpap. Let (z,)n>1 be the dual basis of (e,)n>1.
Then a basis of Hpgp is given by the monomials in the x;’s and the duality is
given by:

<$111 .. .xﬁ{‘,e{l e eﬁl"> =1!.. -inléil,jl .. '6in7jn'
Dualising proposition 12 we obtain, for all n > 1:
n n—j

A(In)zxn®1+zz Z (j+/\)”'(j_(m_2)/\)33i1---33i ® z;.

m! "
j=1 m=0i1+...+im+j=n

Let us reformulate this formula. We put X =Yz, € Hpap. If A #0:

X®1+ZZ Z UAN.. (= (m _2))\)xi1...xim®xj

m!
J=1m=011,...,im
G+A) -G —(m=2)A) .,
X®1+Z<Z:O o X @

= X®1+Z(1+AX)1+% ® ;. (3.2)

Jj=1

A(X)

If A =0, we obtain:
AX)=Xa1+» X
j=1

Remark. Let us consider more precisely the case A = 1. As Hpyp is com-
mutative, we can consider it as the Hopf algebra of coordinates on its group of
characters Grgp. As Hpgp is the free commutative algebra generated by the z;’s,
any element ¢ € Gpgp is entirely determined by its values on the z;’s. In other
words, there exists a bijection:

Grap — h+ h2K[[h]]

¢ — F¢_h+z¢ )R

So, taking Y = 1 + > x,,h™, this morphism can be summarized as F, = h¢(Y).
Moreover, the formula on X implies that:

AY)=Y @1+ Y @hia; =Y Wyt gy,
j=1 j=0

with the convention xg = 1. Then, if ¢,v € Gpyp:
Fyp = h(¢p@9) o A(Y Zhﬂ+1¢ Yt (x;) = Fy o Fy.

So, up to an isomorphism, Grgqp is the (opposite of the) group of formal diffeo-
morphisms tangent to the identity at 0, with the usual composition of formal series.



23

Let us now dualise the pre-Lie algebra morphism ¢,. The Hopf algebra Hrgqp
is generated by the elements x;, i« > 1, dual to the elements e; € grpgp. It is
enough to describe the image of the z;’s. By homogeneity, ¢} (x;) is a linear span
of rooted trees of degree i. Let t € T, of degree i. Then:

(t, o3 (@) = (oa(t), zi) = o'~ [t]gles, zi) = o'~ [t].
As a consequence:

Sia) =ait Y —[fslt.

. St
teT, |t|=i

If A # —1, ¢, is surjective, so ¢} is injective. We proved:
Proposition 15. For all n > 1, we put:

z(n) =a" ! —[t]p't.

St
teT, |t|=n

The subalgebra of Hox generated by these elements is Hopf. If A # —1 (or equiv-
alently if o # 0), it is isomorphic to Hpap.

Examples.
z(1) = .,
z(2) = al,
x(3) = az((l‘gﬂ) V+1>,

z(4) = o <WW+(1+@K/+(1;@ Y+{ )

. 2 !
U302 A4AL» | (+28)(145) - (1+6) \(/Jr(Hﬂ)L/

NHETHES QUSSR cogal. |

3.6 From the Faa di Bruno Lie algebra to Dyson-Schwinger
equations

Let us use the operator B to inductively describe the z(n)’s. We denote by a; the
coefficient of ¢ in z(|t|). Let F be the unique forest such that t = B(F). We put
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F =17 ...t.", where the t;’s are different rooted trees. Then:

4 = a|t\71[t]5!
St
tl]gl...[tk]gk[al—l—...—l—ak]ﬁ!
splspFonll L ag!
o 01+ ag]p! (o) an
o aft .. alt.
(a1 + ...+ ap)! ar!. . ag! B k

— aal|t1\+~~+ak|tk\

We put X = > x(i). This is a priori not an element of Hcx (it is an infinite
sum), but it lives in the completion Heox of Hok. The preceding computations
imply that X satisfies the following equation:

X=B <§%a"%X"> .

This equation is a combinatorial Dyson-Schwinger equation. Let us consider the

formal series f = > a"&f!h". Denoting its coefficients by a,,, there is the obvious

n
inductive relation:

(n+ 1Dapt1 = a(l +npb)ay.
Summing these relations after multiplication by h™, we obtain:
f'=af +aphf’

An easy induction proves that for all n > 0:

n!

_lnls! { () (—aB) it 870,
Hence, f(h) = e®" if B =0 (that is to say if A = 0) or (1 — aﬁh)fé if 5#0.

Proposition 16. The element X € Hox defined using the pre-Lie morphism
o from g1 to grap satisfies the combinatorial Dyson-Schwinger equation:

X = B(f(X)),
where f =1if \=—1, f=el if \=0, f = (1+Ah)" % ifA#0,—1.

1+ A)D) 1= A)... (1= Ak —2))

k
o h".

Remark. In all cases, f = Z (
k=0
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4 Combinatorial Dyson-Schwinger equations

4.1 Definition

Definition 17. Let f € K|[h]]. The combinatorial Dyson-Schwinger equation
associated to f is:

X = B(f(X)),

where X € Hok.

Proposition 18. The Dyson-Schwinger equation associated to the formal se-
ries f =Y a,h™ admits a unique solution X = x(n), inductively defined by:

z(0) = 0,
z(1) = agp.,

n

zn+1) = Z Z apB(x (i) - - - x(ix)).

k=1i14+ir=n

Proof. 1t is enough to identify the coefficients of each ¢ € 7 in the two sides of the
combinatorial Dyson-Schwinger equation associated to f. O

Remark. We can put X = Z ast. The coefficients a; are inductively com-
teT
puted by the following formula: if t = B(t¥" ... t5») where t,,...,t, are distinct
trees, then:

k14 ...+ ky)!
at = Ay +...+k, %aﬁl e afj]. (41)

The induction is initiated by a, = ao.

Definition 19. The subalgebra of Hor generated by the homogeneous compo-
nents x(n) of the unique solution X of the Dyson-Schwinger equation associated
to f will be denoted by Hy.

We would like to give a necessary and sufficient condition on f for Hs to be a
Hopf subalgebra of Ho g . If this is the case, we shall say that the Dyson-Schwinger
equation associated to f is Hopf.

Remarks.

(1) If f(0) = 0, the unique solution of the combinatorial Dyson-Schwinger equa-
tion associated to f is 0. As a consequence, H; = K is a Hopf subalgebra.

(2) For all p € K, if X = > x(n) is the solution of the Dyson-Schwinger equa-
tion associated to f, the unique solution of the Dyson-Schwinger equation
associated to pf is Y p"x(n). As a consequence, if p # 0, Hy = H,r. We
shall then suppose in the sequel that ag = 1. In this case, z(1) = ..
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(3) Let u € K —{0}. the unique solution of the combinatorial Dyson-Schwinger
equation associated to % fuh) is %X . Combining with the preceding re-
mark, the equation associated to f(uh) is Hopf if, and only if, the equation
associated to f is Hopf (this is the operation of change of variables, given
for systems in definition 33).

4.2 Pre-Lie structure associated to a Hopf Dyson-Schwinger
equation

Lemma 20. Let V be a subspace of Vect(T) and let us consider the subalgebra
A of Hox generated by V. We consider the following map:

f' HCK — K
"\ FeF — op..

If A is a Hopf subalgebra, then (f, @ Id) o A(V)CV @ K.

Proof. If A is Hopf, then A(V) C A® A. As V C Vect(T), A(V) C Hex ®
(Vect(T) @ K). So:

A(V)C(A® A) N (Hek ® (Ve (T) @ K)) = Ao (V@ K).

This implies the assertion. O

Remarks.
(1) In the duality between Hex and S(gr), f. = (+,—).

(2) This result is easily generalized to decorated rooted trees, replacing . by the
«i’s, 1 €1,

4.3 Definition of the structure coefficients

Proposition 21. Let (E) be a combinatorial Dyson-Schwinger equation. If it
is Hopf, then for all n > 1, there exists a scalar )\, such that for all t' € T, of
degree n:

Z n(t,t/)at = )\nat/,

teT

where n(t,t') is the number of leaves | of t such that the cut of | gives t'.

Proof. Let us assume that (E) is Hopf. Then H; is a Hoptf subalgebra of Hox.
Let us use lemma 20, with V' = Vect(z(n),n > 1). So (f. ® Id) o A(z(n + 1))
belongs to Hy, and is a linear span of trees of degree n, so is a multiple of z(n).
We then denote:

(f. @ Id) o A(xz(n + 1)) = A\pz(n) = Z Anapt’.

t'eT
[t'|=n
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By definition of the coproduct A:

(f. @Id)o Alzx(n+1)) = > n(t,t)ast’.
e

The result is proved by identifying the coefficients in the basis 7 of these two
expressions of (f, ® Id) o A(z(n + 1)). O

If f is Hopf and if all the xz(n)’s are non zero, let us consider the dual basis
(en)n>1 of the z(n)’s. It is a basis of gy = Prim(H}). As Hy is generated by a
subspace of Vect(T), gy is naturally a pre-Lie algebra. Let us describe this pre-Lie
product.

Proposition 22. For all k,1 > 1, ejoex = A\pepy-

Proof. Let us first prove the following result: for all ¢',t" € T,

Z n(t' t";t)a; = Al |G Qe
teT

where n(t’,t”;t) is the number of admissible cuts ¢ of ¢ such that P¢(¢) = t' and
Re(t) = t” (that is to say the coefficient of ¢’ ®t” in A(t)). We proceed by induction
on |t]. If [t"| = 1, then ¢ = . and:

Z’I’L(tl, t”;t)a/t = aB(t/) = aj1a¢y = Alat/atu,
teT

as A1 = a1 and a, = 1. Let us assume the result at all rank < k£ and let us assume
that [t”| = k. We put t"” = B(F), with F' = H s p= Zps.
seT seT
First step. By definition of A\, using (4.1):

Meapr = (p. +Dap.r+ Y (ps+1)n(878')a3(i,F)

s,8'€T ,pyr>1

+1 a roa
= )G ST (g + (s, ) By,
p. +1 ap 5,8’ €T ,pgr>1 ps +1ay
a
— (p+ 1) p+1 agr + Z pSIA‘S/‘at//,
ap s'eT

We obtain ((p+ 1)@ + Z ps’)‘s’> Qg = )\katu.
ap
s'eT



28

Second step. Let us now fix ¢’ € 7. Then:

Yo t"star = (v +Daper + Y s+ (s 8)ap( s p
teT s,8'€T ,pyr>1 °
@+1
= 41 Tapt 10y abs
(e )(pt/ TO]] p+10¢ H
ps’ s
+ Y s+ (s s) ——aw
ss’€sz>1 ps+1 s’
= ( + 1) a/t/a/t// =+ Z pS’)“s"at’at”

s'e€T ,pyr>1
= )\ka/t”a/t'-

We used the induction hypothesis on s’ and then the first step.

As a consequence, for all n > 1:
) = Z Apz(n — k) ® x(k) + terms with forests which are not trees.

Dually, we deduce that e,,—; o ex = A\ge,, forall 1 <k < n. O

4.4 Main theorem for single equations

Assume that the Dyson-Schwinger equation associated to the formal series f =

1+ Z a,h™ is Hopf. If a1 # 0, the coefficients \,, are entirely determined by a;
n>1

and a9, and this also determines all the a,’s, as it is explained in the following

result:

Lemma 23. (1) A\; =a;.

(2) For alln > 2, \,a? ™t = a? ?(a} + 2as(n — 1)).

Ap — -1
(3) Foralln>2, a, = wan_l.
n

Proof. Recall that the ladders [,, and the corollas ¢, are defined in section 2.1.
Using proposition 21with t' = ., \ja, = ay = a; and t' = [,, gives:

/\naln = /\nﬂl? 1
n—2
= Ay, t+ 2aB"71(~ .) + Z aBi(. Br—i(1))
i=1

= al + 2a2a’f_2 + Z 2a7f_2
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So /\na?_1 =af —|—2a2a’f_2(n— 1). We now use proposition 21 with ¢/ = ¢,, n > 2:
Anacn = Nac,, + aB(I =2y
SO Apap—1 = na, + (n — Dajan—1. O
Theorem 24. Let f = 1+ a1h+ ... € K[[h]]. The following assertions are
equivalent:

(1) The combinatorial Dyson-Schwinger equation associated to f is Hopf.

(2) There ezists (a,8) € K2, such that f = 1 if a =0, f = e if 3 =0,
f=(1-aph) 5 ifap #0.

Proof. 1 = 2. If a; =0, by lemma 23-3, a,, =0 for all n > 1, so f = 1. We now
assume that a; # 0. From lemma 23-2, for alln > 1, \,, = a1 + 2Z—f(n —1) and,

for all n > 2:
aq 2(12
n=—1_1 — —1 -1 n—1-
=5t (e (G ) o)
We put @ = a; and 8 = 2(% — 1. An easy induction proves that for all n,
1

an = a”[n]g!/n!. The result is then proved in section 3.6.

2 — 1. From proposition 16, the result is true if f = 1, f = e or f =
(1+ )\h)¥, A # 0,—1. From a preceding remark, as we can replace h by ph for
any non-zero u, the result is already proved for all («, 3) such that § # —1. If
B = —1, we can assume that « = 1. Then f = 14 h, so X satisfies X = B(1+ X).
Hence, for all n > 1, X,, =[,, and then:

A(ln) = ilz ® ln—ia
i=0

with the convention Iy = 1. So X = B(1 + X) is Hopf. O

Remarks.
(1) If a1 # 0, the pre-Lie structure constants Ay are given by:
Ae=a(l+(1+p8)(k—-1) =a(-F+k(1+5)).
(2) The coproduct of the z(n)’s is given by formula (3.2).
(3) Apart from #H; = K, for Hopf equations we find that #y is isomorphic to

Hrqap whenever § # —1, and otherwise the cocommutative ladders Hopf
algebra.
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5 Systems of Dyson-Schwinger equations

5.1 Definition

Definition 25. Let I be a finite, non-empty set, and let f; € K|[[h;,j € I]] be
a non-constant formal series for all © € I. The system of combinatorial Dyson-
Schwinger equations (briefly, the SDSE) associated to (f;)icr is:

Vi e I, T; = Bl(fl(,fj,j S I)),

where x; € HICK forallieI.

In order to ease the notation, we shall often assume that I = {1,..., N}, espe-
cially in the proofs, without loss of generality.

Notations.

(1) Let (S) be an SDSE. We shall denote, for all i € I:

L () L P
fi= ) g R

P1, PN

(2) Let 1 <j < N. Wepute; =(0,---,0,1,0,---,0) where the 1 is in position
j. We shall denote, for all ¢ € I, ag-z) = ag); for all j,k € I, ag.f,)c = ag)JrEk,
and so on.

Proposition 26. Let (S) be an SDSE. Then it admits a unique solution
T
(zi)ier € (HICK> .

Proof. If (x1,- -+ ,xy) is a solution of S, then z; is a linear (infinite) span of rooted
trees with a root decorated by i. We denote:

€T; = Z ast,

where the sum is over all trees which root is decorated by ¢. These coefficients are
uniquely determined by the following formulas: if t € 7!, we put t = B;(F) and
F =" ... 1", where the ¢;’s are different trees. Let r; be the number of roots of
F decorated by j for all j € I. Then:

T1! . .TN!a(i) p1 P
il opp! (LT

So (S) has a unique solution. O

ay =

Definition 27. Let (S) be an SDSE and let X = (x;);e1 be its unique solution.
The subalgebra of ’HéK generated by the homogeneous components x;(k)’s of the
x;’s will be denoted by H(sy. If H(s) is Hopf, we shall say that the system (S) is
Hopf.

Remarks.
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(1) This definition makes sense for systems of equations with a single coupling
constant only. If one allows for different coupling constants, the perturbation
series are in more than one variable. Algebraically, this corresponds to a
refined grading of H(g), given by counting not just the total number of
vertices, but the number of vertices of each decoration type i € I separately.
Taking the homogeneous components then produces larger subalgebras which
might be Hopf in more general cases.

(2) We assume that there is no constant f;. Indeed, if f; € K, then z; is a
multiple of ., . We shall always avoid this case in all this text. All the same,
let us give examples of systems with constant formal series:

Proposition 28. Let us consider the following system:

1 = Bi(1),
(S) o _ BQ(MGI]f),
kz:(:) "

with a1 = 1. It is Hopf, if and only if, the following assertion is satisfied: for all
n>1,

(an, =0) = (an+1 = 0).
Moreover, the Hopf algebra H gy depends only on N = min{n | a, = 0} €

N* U {00}, and in particular does not depend of the values of the non-zero ay’s.

Proof. For all n > 1, we put d,, = Ba(+,"1):
1
dl:.27d2:I%7d3:1 217d4:1\V21

Then z1(1) = .., x1(n) = 0if n > 2, and 22(n) = ap_1d, for all n > 1. So H(g)
is the subalgebra generated by ., and the d,’s such that a,,_1 # 0.
Moreover, for all n > 1:

n—1
n—1
A n) = Un 1 -lk n—Fk-
(dy) = dp @ +k§0< k) & dn_

=—. Let us assume that an,y1 # 0. Then dnyo € H(g), 50 A(dny2) €
His)y @ Hs). Taking the terms of A(dni2) in Hs)(1) ® H(gy(n + 1), we ob-
tain that ., ® dn41 € H(s) ® H(s), 50 dny1 € H(s). As a consequence, a, # 0.

<=. Let us put N = min{n | a, =0} € N*U{oc}. Then Hg) is generated
by .. and the dy’s such that n —1 < N. Clearly, H(s) is a Hopf subalgebra of
HCK- O

5.2 General results

We here generalize the results dealing with single Dyson-Schwinger equations,
without detailed proofs.
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Proposition 29. Let (S) be an SDSE. If it is Hopf, then, for all i,j € I, for
all n > 1, there exists a scalar )\S’]) such that for allt’ € T, which root is decorated

by : N

Z nj(t,t)a; = )\‘(Z,’lj)at,,

teT
where n;(t,t') is the number of leaves | of t decorated by j such that the cut of I
gives t'.

Remark. Let (S) be a Hopf SDSE. We assume that f;(0) = a,, = 0. For any
forest F, let 6p : HE — K, defined by 6p(G) = dp for any forest G. Then,
putting t = B;(F):

ate; = (0F @ Id) o A(z;([t])) € Hs)-

As .. ¢ H(s), az = 0. Hence, z; = 0, so we do not change H gy by dropping the
index ¢ from I alltogether. From now on, we will assume that f;(0) # 0 for all
i € I. Applying a change of variables, without loss of generality we restrict to
fi(0)=1forall i e I.

We generalize lemma 23:

Lemma 30. Let us assume that (S) is Hopf. Let us fixi € I.

(1) For all sequences i = 1i1,...,i, of elements of I such that agii)l % 0 for all
1<p<n-1:
(i) n—1 a(_i;_?)
i,5) _  (in Jsip+1
D = ) S0, S
p=1 aip+1
In particular, )\gi’j) = agi).

(2) For all py,--- ,pn € N:

(i) _ 1 (i.5) ORWNO!
a,(plﬁ... 1Pj+1>“',;DN) — - + 1 >\pl+...+pN+1 - Zpla'j a’(plw" 1pN)'
Pj lel

Proof. The first point is proved using the definition of the coefficients )\gf 7 ), with
-
t' =12 . The second point uses t’ = Bj(.1P1 - PN). O
Remarks.
(1) From the second point of lemma 30, if a(ml) = 0 for a particular m € N’, then
for any n € N/, a(mz)jLﬂ =0.
(2) It ag-i) =0, then f; does not depend on h;.
(3) We assume that there are no constant f;, so for all ¢ € I there exists j € I,

such that a'” # 0. As a consequence, the sequences of elements considered
in the first point of lemma 30 exist for any ¢ € I and any n > 1.
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(4) By lemma 30-1, the coefficients A9 are determined by the coefficients of
degree 1 and 2 of the f;’s. Moreover, they completely determined the f;’s,
according to lemma 30-2.

Lemma 31. Let (S) be a Hopf SDSE and let i,i' € I such that a ) £ 0. For
all j € 1, for all n > 2:

a®
A = (14 81,0 J(g + D,

Proof. Tt is enough to apply proposition 30-1 with i5 = 7'. O

Proposition 32. Let (S) be a Hopf SDSE. Let i € I such that:

fi=1+ Zay)h]

jel
Then tf a, /) # 0, for all j, for all n > 1, )\ijl = A;’J)- As a consequence, if
CL, ,ar// #0 f’L' _f’L”

Proof. By hypothesis on f;, aﬁ, = 0 for all j,7’. The result comes then immedi-
ately from lemma 31. So, if ¢’ and " are two direct descendants of 4, for all k € I,

for all n > 1, AU ™ = A% So, fi = fin. O

5.3 Operations on Hopf SDSE

Proposition 33 (change of variables). Let (S) be the SDSE associated to
(fithj, 5 € I))icr. Let N; and p; be non-zero scalars for all i € I. The system (S)
is Hopf if, and only if, the SDSE system (S’) associated to (p; fi(Ajhj, j € J))ier
is Hopf.

Proof. We assume that I = {1,..., N}. We consider the following morphism:

4 H — H!
FeF — (mA)™5 - (unAy)"v I F,

where n;(F) is the number of vertices of F' decorated by i. Then ¢ is a Hopf
algebra automorphism and for all i, ¢ o B; = u;\;B; o ¢. Moreover, if we put
Y; = £ é(;) for all i:

Yi = %¢°Bi(fi($1,“',$zv))
= %ui&B?(fi(cﬁ(wl), L p(an))

= wBI(fi(hYa, -+, ANYN)).
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So (Y1,---,Yn) is the solution of the system (S’). Moreover, ¢ sends H(g) onto
H(sy- As ¢ is a Hopf algebra automorphism, Hg) is a Hopf subalgebra of HT if,
and only if, H g/ is. O

Proposition 34 (restriction). Let (S) be the SDSE associated to the family
(fithj, j € I))ier and let I' C I, non-empty. Let (S") be the SDSE associated to
the family (fi(h;,j € D), =0, ngl/)iell. If (S) is Hopf, then (S’) also is.

Proof. Let ¢ : H! — H!' be the unique Hopf algebra morphism such that:

[ Biogifielr,
¢’°Bi_{ 0ifi¢ I,

For any forest F, ¢(F) = 0 if at least one vertex of F' is decorated by an element
which is not in I’, and F otherwise. Then ¢ sends H(gy to Hs). As ¢ is a
morphism of Hopf algebras, if H g is a Hopf subalgebra of HI, H sy is a Hopf
subalgebra of H!". O

Proposition 35 (dilatation). Let (S) be the system associated to (f;)icr and
(S") be a system associated to a family (g;)jcs, such that there exists a partition

J = U Ji, with the following property: for all i € I, for all p € J;,
iel

gp=fi| D he i€l

q€J;

Then (S) is Hopf, if, and only if, (S’) is Hopf. We shall say that (S’) is a dilatation
of (5).

Proof. <=. Let us assume that (5) is Hopf. For all ¢ € I, we can then write:

A(Il) = ZP7(11)($17 7‘TN) ®‘T1(n)v

n>0
where the P{" are elements of Hsy = K[[z1,...,zN]], with the convention x;(0) =
1. Let ¢ : H — H” be the Hopf algebra morphism such that, for all 1 <i < N:
¢poBi=>» Bjo¢.

JjeJi
Then, immediately, for all 1 <37 < N:
o(x;) = Z .
JjEJi

As a consequence:

Do AE) =3 > B (Z Tt D ) ® 25(n)-

JjeJ; j€J; n>0 keJy keJn
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Conserving the terms of the form F' ® ¢, where ¢ is a tree with root decorated by
j, for all j € J;:

Axf) = ZPS) <Z Thyooo Z x%) ® x(n).
n>0 keJy keJn
So (S7) is Hopft.

=—. Let us assume that (S’) is Hopf. We choose one representative ¢; in each
J;. Taking the restriction of (S”) to these elements, we obtain that (S) is Hopf. O

Example. Let f,g € K[[h1, h2]]. Let us consider the following SDSE:

. r1 = Bi(f(z1,22)),
() { — Balylar.a),

The following SDSE is a dilatation of (.5):

X = Bl (f(Il —|— i) —|— T3,T4 —|— I5)),
ry = Bo(f(w1+ 22 + 23,24 + 25)),
() : zs = Bs(f(x1+x2+ 23,24 + 25)),
vy = Ba(g(wy 4+ x2 + 23,14 + 25)),
x5 = Bs(g(x1 + 22+ 3,24 + T5)).

Remark. If 4,7 are in the same Jj, then, by lemma 31, since g; = g,/, for all

n>1,foral j € J, )\S‘j) = )\,(f/’j). Conversely, if there exists a partition of the
set of indices J such that this condition holds, lemma 30 (2) suffices to prove that
(S) is a dilatation of another SDSE.

Proposition 36 (extension). Let (S) be the SDSE associated to (f;)icr. Let
0 ¢ I and let (S") be associated to (f;);crufoy, with:

iel
We assume that for all i,7 € 1) = {j € I/ag-o) # O}, fi = f;. If (S) is Hopf,
then (S’) also is. We shall say that (S’) is an extension of (.5).

Proof. As (S) is Hopf, we can put for all 1 <i < N:

—+oo
Alz) =201+ Y PP @ai(k),
k=1

(@)

where Pki is an element of the completion of H gy. By the second hypothesis, if

i,j € IO f = fi, so P,gi) = P,gj). We then denote by Py the common value of
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P for all i € 1), So:
N
Alwg) = w0®1+1@.0+ Y a Ao Bo(x;)

i=1

N N oo

i=1 1=1 k=1

N N
= 2®1+ <1+Za§0)xi> ® 0+ Y Pj@ag(k+1).
i=1 k=1

This belongs to the completion of H sy ® H sy, so (S”) is Hopf. O

Remark. From proposition 32, the condition of equalities of the f;’s for i € I(0)
is necessary.

Example. This construction can be iterated. For example, we consider the
following system:

f om Bi(f(21,22)),
s { 7 2 )

Here is an iterated extension of (.5):

r1 = Bi(f(z1,22)),
3y = Ba(g(w1,22)),
n . I3 = Bg(l —|— Il),
(S) ’ T4 = B4(1—|—I1),
I5 = B5(1 — IQ),
Teg = Bﬁ(l + 2$3 — 4$4)

Proposition 37 (concatenation). Let (S) be the SDSE associated to (f:)ier
and let (S') be the SDSE associated to (g;)jes, where I and J are two disjoint
sets. Then the system (S”) associated to (f;)icr U (9;)jes is Hopf if, and only if,
(S) and (S') are Hopf. We shall say that (S") is the concatenation of (S) and
(5.

PT‘OOf. In this case, H(S”) = 7‘[(5) ® H(S/) - HéK ® HéK - Hlu‘]. So if H(S)
and H sy are Hopf subalgebras, H s also is. By restriction, the converse is also
true. O

Example. Let us consider the two following systems:

S o o= Blfm), g |7 D Dol
<S>-{xz oS R I gigiﬁxijxijxiﬂﬁf
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The concatenation of (S) and (S') is:

r1 = Bi(fi(z1,72)),

ro = DBa(fo(x1,72)),
(8"):q x3 = Bs(gi(3,x4,25)),

ry = Ba(ga(ws,xg,25)),

5 = DBs(g3(z3,24,75))

5.4 The graph associated to a Dyson-Schwinger system

Definition 38. Let (S) be an SDSE.
1) We construct an oriented graph G gy associated to (S) in the following way:
(8)

The vertices of G(s) are the elements of I.

There is an edge from i to j if, and only if, ay) £0.

(2) If al@ # 0, the vertex i will be said to be self-dependent. In other words, if
i 1s self-dependent, there is a loop from i to itself in Gg).

3) If G(s) is connected, we shall say that (S) is connected.
(€))

Remarks.

(1) As constant f; are excluded, each vertex of G (g) hase at least one outgoing

edge.

(2) Let us consider the action of the different operations defined earlier on the
associated graphs.

If (S”) is obtained from (S) by a change of variables, then G(g/y = Gg).

If (S') is obtained from (S) by a dilatation, the set of vertices J of
the graph G5y admits a partition indexed by the vertices of G(g), and
there is an edge from x € J; to y € J; in G (g if, and only if, there is
an edge from i to j in G(g).

If (8') is obtained from (S) by an extension, then G (g is obtained
from G(s) by adding a new vertex with no ancestor. The added vertex
is called an extension vertex.

If (S”) is the concatenation of (S) and (S’), then G (g~ is the disjoint
union of G(gy and G g).

Conversely, if G(g) is the disjoint union of two subgraphs G’ and G”,
then (S) is the concatenation of the two subsystems (S’) and (S”),
formed by the equations indexed by the elements of G’ and G respec-
tively. As a consequence, taking the connected components of G gy, (S)
is the concatenation of a finite number of connected Hopf SDSE.

Notations. Let 7,5 € I.
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(1) We shall write i — j if there is an edge from 7 to j in G (g), that is to say

if ag-i) # 0. In this case, we shall say that i is an direct ancestor of j or that
7 is a direct descendant of 1.

(2) If there is an oriented path from 7 to j in G(g), we shall say that i is an
ancestor of j or that j is a descendant of i.

5.5 Structure of the graph of a Hopf SDSE

Let us first give two lemmas on the graph of a Hopf SDSE:

Lemma 39. Let (S) be a Hopf SDSE and let i € I. Let j, k and I € I such
that ay) #0, a,(f) #0 and al(l) #0. Then a,(;) #0 or a,(cl) # 0.

Proof. Let us assume that a,(c) =0. As a 7& 0,j #k. As ak =0,a, = agl,)c =
0. Then/\lk) = AMat; =apr +a, —a(z)a,(j)+0 hence, /\lk) al?,
Moreover, As al ;é 0,1 # k. Then a()/\lk) A(Zk all = a{f +@lvk =
(Z) (l) +0, so )\(Z k) (l) Hence, a,(c) = (J) £ 0. l l g
Remarks.

(1) In other words, if (S) is Hopf, then, in G g)

T —] - T — or T —17 .
l k | ——k l k
(2) A first special case is given by i = k:
| <~—>] = | <~—>] .

i )
l l
(3) A second special case is given by ¢ = [, that is to say when i is self-dependent:

| N\

k k

Hence, any descendant of of a self-dependent vertex is a direct descendant.

Lemma 40. Let (S) be a Hopf SDSE and let i be a vertex of G(s)y. We suppose
that there exists a vertex j, such that:
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e j is a descendant of i.

o All oriented path from i to j are of length > 3.
Then f; =1+ Z ali)hl.

i—l

Proof. Let L be the minimal length of the oriented paths from ¢ to j. By hypoth-
esis, L > 3. Then the homogeneous component of degree L + 1 of x; contains trees
with a leaf decorated by j, and all these trees are decorated ladders. By definition
of the coefficients A ), if ¢’ is a tree with L vertices and its root decorated by i:

)\(Li’j)at/ = Z nj(t,t’)at.

teT!
For a good-chosen ladder t, the right-hand side is non-zero, so /\(Li’j ) is non-zero.
If ¢ is not a ladder, the right-hand side is 0, so a = 0. As a conclusion, z;(L) is
a linear span of ladders. Considering its coproduct, for all p < L, z;(p) is a linear

span of ladders. In particular, 2;(3) is a linear span of ladders. But:

@ = X a0 3,
L,m <m
(2)

so a, ;. = 0 for all [, m. Hence, f; contains only terms of degree < 1. O

Remark. This lemma can be applied with ¢ = j, if ¢ is not a self-dependent
vertex.

Let us now study the structure of the graph of a SDSE:

Proposition 41. Let G be a finite oriented graph, such that any vertex of G
has at least one direct descendant. The set of vertices of G is denoted by I. There
exists a sequence Go C G1 C ... C G, = I of subgraphs of G such that:

(1) For any element i € Gy, the descendants of i are all in Gy.
(2) For any element i € Gy, i has an ancestor in Gy.

(3) For all 1 <k <n, Gy is obtained from Gi_1 by adding an element iy, with
no ancestor in Gp_1 and with all its descendants in Gj_1.

Moreover, Gg contains an oriented cycle. More precisely, any vertex i € Gq is the
descendant of a vertex included in an oriented cycle.

Proof. Let us prove the existence of Gy, ...,G,, by induction on the number N of
elements of I. If N =1, we take Gy = I. If N > 1, and if I has no vertex with no
ancestor, we take Go = I. If I has a vertex ¢ with no ancestor, let us consider the
restriction of (S) to I — {i}. This gives a sequence Go C ... C G,, = I — {i}. We
complete it by putting G,,+1 = I.

Let ¢ € Gp. As any vertex has a direct ancestor, it is possible to define induc-
tively a sequence (z;);>0 of vertices of G, such that zo = i and x;41 is a direct
ancestor of z; for all . As G is finite, there exists 0 < < m, such that x; = z,,.
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Then z; < 241 < -+ < Ty—1 < Ty = 27 1S a closed path of G, included in Gy.
If we take such a path of minimal length, it is necessarily an oriented cycle. O

Remark. Although the sequence (G;)o<i<n is not unique, it is possible to
prove that Gq is unique; this fact will not be used in the sequel.

We shall classify the Hopf SDSE according to the minimal length L of an
oriented cycle included in Gy. If L = 1, then the considered SDSE has a self-
dependent vertex. We begin with the cases where L > 2.

6 Quasi-cyclic SDSE

6.1 Structure of the cycles

Proposition 42. Let (S) be a Hopf SDSE such that G gy is an oriented cycle

of length N > 2, that is:
>~

Gg=1—=...—=N.

Two cases are possible.
(1) Up to a change of variables, for alli € I, f; =1+ Z hj.
i—J
-1
(2) N =2 and up to a change of variables, for all i€ I, fi = |1— Zhj
1—]

In this case, AP = — i for alli,j € {1,2}.

Proof. Up to a change of variables, we can assume that al(-i)l =lforalll <i<

N —1and agN) = 1. If N > 3, we can apply lemma 40 and we immediately obtain
the first case. Let us study the case N = 2. In other words, G(5) = 1 «— 2. We
put:

fl(h2)zzaih§a f2(h1)=zbih§,
=0 i=0

with a; = b = 1. Then Agl’l) _ )\gl,l)aI

1
2
1

= 2a1Y21 = 2by. On the other hand,
1

)\gl’l)% , =a . =2a2,s0 2a3bs = 2as: az =0or by = 1. Similarly, b = 0 or
vl 2%2

as =1. Soas = bgl = 0or 1. In the first case, f1(ha) =14 ho and fa(h1) = 14 hq.

In the second case, let us apply lemma 30-1 with (i1, ,4,) = (1,2,1,2,---). If

n = 2k is even, we obtain \o'? =2+ 20k —1) =2k =n. Ifn=2k+1is

odd, \"? =1+ 2k =n. So A!"? = n for all n > 1. By lemma 30-2, for all

n>1, api1 = a,. Sofor all n >0, a, = 1 and f1(hy) = (1 — h2)~!. Similarly,

fg(hl):(l—hl)_l. O
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The second case is a special case of a fundamental system; we postpone its
study to section 7. We now concentrate on the first case.

Definition 43. Let I = Z/NZ, N > 2. We consider the SDSE associated to
the following formal series:
Ji=1+h; g, forallicl.
These SDSE and the ones obtained from them by a dilatation and a change of

variables are called N-quasi-cyclic systems.

Example. Here is an example of quasi-cyclic SDSE:

x1 = Bi(1+4 22+ z3),
x2 = DBa(1+za),
r3 = Bg(l + I4)7
vy = By(l+zs5),
x5 = Bs(1+aq).

Remark. If (S) is a N-quasi-cyclic SDSE without dilatation, then z; is the sum
of all the ladders cyclically decorated, with root decorated by i. The subalgebra

generated by these ladders is clearly Hopf. It is not difficult to prove that )\g 9 =

5i+n73'

6.2 Connected Hopf SDSE with a quasi-cycle

Notations.

(1) Let (S) and (S”) be two Hopf SDSE. We shall say that (S) contains (S’) if
(S7) is a restriction of (S) to a subset of its vertices.

(2) Let G and H be two oriented graphs. We shall say that G contains H if the
vertices of H are vertices of G, and the edges of H are precisely the edges of
G between the vertices of H.

Remark. If (S) contains (S’), then G(gy contains G (g).

Lemma 44. (1) Let (S) be a Hopf SDSE containing a quasi-cyclic SDSE
with set of vertices Iy U --- U Iy;. Then any vertex of Gs) has direct de-
scendants in at most one Iz. Moreover, if a vertex has at least one direct
descendant in a Iz, it is non self-dependent.

(2) Let (S) be a Hopf SDSE such that I admits a partition I = Iz U --- U I3;
indexed by Z/MZ, with the following conditions:

o For all 1 < p < M, the direct descendants of any i € Iy are precisely
the elements of Iy

o Forallicl, fi=1+Y a\h;.

i—J
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Then (S) is quasi-cyclic.

Proof. 1. Let us assume that the vertex 0 of G(g) has direct descendants x € I,

and y € I; with k # 1. Then lemma 39 implies that any direct descendant of  is a
direct descendant of 0, so 0 has also a direct descendant in Iz75. Similarly, 0 has
a direct descendant in I;7. Iterating this process, 0 has direct descendants in all
the I5’s; it even holds that all the elements of all the I;’s are direct descendants of

0. Up to a restriction, the situation is the following:

with, for all 1 <i < M, fi(hit1) =1+ h;y1, with the convention hps41 = hy.

We first assume M > 3. In order to ease the notation, we do not write the
index () in the sequel of the proof. By lemma 30-1, with (i1,i2) = (0,1) and
(0,2):

/\§072) 1y 42 %22
aq a9

By lemma 30-1, with (41,142,43) = (0,2,3) and (0, 1,2):

0,2 ai,2 az 2
AL = 212 9

aq aq
Finally, Y2 _ 1+ %, which is absurd. So M = 2. By lemma 30-1 with
al al
(i1,42) = (0,1) and (0, 2):
2
)\50,1) _ % 1= a1,1'
ag al

By lemma 30-1 with (i1, 42,43) = (0,1,2) and (0,2,1):

0,1 2a1,1 a2
APD Z 20y 12
al al
We obtain:
2a11 ai 2 ai,2
o= ] = 2t ],
ay a1 a1

This is a contradiction.

Finally, if the vertex 0 has a direct descendant in Iz, it comes that the elements
of I77 are descendants of 0 which are not direct. If 0 is self-dependent, this con-
tradicts lemma 39 with ¢ = = 0. So 0 is not self-dependent.



43

2. Let us choose an element 75 in each 5. Up to a change of variables, we can
assume that for all 1 <p < M:

fp=1+ Y hy

i€l
Let us choose j € Iy and k € L; with (i1,...,im+41) = (4, G551, - - -+ ipgar), We ob-
tain )\E\J,f)l = (“’) = 1. By lemma 30-1 with (41, ...,4p41) = (j,im,...,im,j),

we obtain )\g\J,H = a,(~C ). s0 a,(j) = 1. Hence:

fi=1+4> h
j—k
So (S) is the dilatation of the system associated to the formal series 1 + hs, for
j € Z/MZ. So it is quasi-cyclic. O

Let us state more precisely the structure of connected Hopf SDSE containing
a quasi-cycle.

Theorem 45. Let (S) be a connected Hopf SDSE containing a N -quasi-cyclic
SDSE. Then I admits a partition I = Iy U --- U I5;, with the following conditions:

(1) If i € Iy, its direct descendants are all in I77.

(2) If i and j have a common direct ancestor, then they have the same direct
descendants.
(3) Foralliel, fi=1+ Y a\h,
i—]
(4) Ifi and j have a common direct ancestor, then f; = f;.
Such an SDSE will be called an extended quasi-cyclic SDSE.

Proof. Let Sy a maximal quasi-cyclic subsystem of SDSE. We denote by I(®) the
set of its vertices. By definition 43, it admits a partition I(®) = IT(O) NP )
and for all 7 € Iz

(fi)|hj:0 if jgro = L+ Z a(‘Z)hJ

)
Ik+1

e o 1(0) ()
Moreover, if ¢ € I and j € Ik+1, 7& 0.

0)

Let j be a direct descendant of an element 7 € I ), Let us assume that j ¢ I

Up to a reindexation, we can suppose that i € I . Applying lemma 39, for all
ke I§(0)7 k is a direct descendant of j. By lemma 44-1, the direct descendants of
j which are in I(® are the elements of Ig(o)

for all k € Ilﬁo), j is a direct descendant of k.

, and 7 is not self-dependent. Similarly,

Let us choose a vertex iz € Iéo) for all k. We restrict ourselves to the oriented

cycle formed by i1, j, 43, ... ,i5. If N > 3, by proposition 42, ag) =0= (1 _) 0.
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If N =2, we obtain:

SO A3 (i) _ Restricting to i and j, this implies that case (2) of proposition 42

cannot hold, so a') o\ — 0.

T @,

Hence, we have in both cases a,(jzc =0forallk € I( ) and a ] =0foralli e I( )
Let us now take two elements &, k' of I?EO) Then )\(7 k)aIk = aI k +2akv . = 0-+0,
SO )\(7 =0, Asa consequence, 0 = )\(7 k)aIk' = aIk' +a, Vk, =0+ a;(c ;c/ Hence:

(fJ)\hk 0if kgrougy = Lt Z ak .

(0)
kel

Similarly, for all ¢ € I3 (0,

(fi)\hk:O if kgrougy = LT ag‘Z)hJ’ + Z a,(;)hk
kerl”

By lemma 44-2, (9 U {4} forms a quasi-cyclic SDSE: this contradicts the maxi-
mality of (9. So all the descendants of () are in 1.

As a consequence, we shall take Gy = I®) in proposition 41. We proceed by
induction on n. If n = 0, (S) is quasi-cyclic and the result is immediate. Let us
assume the result at rank n — 1 and let (S’) be the restriction of (S) to all the
vertices except the last one, denoted by . By the induction hypothesis, the set of
its vertices admits a partition I = I7U--- U I, with the required conditions. Let
us first prove that all the direct descendants of ¢ are in the same Iz’j Let 5 € I’
and k € I' be two direct descendants of 7, with p # q. Let j' € I’ r be a dlrect

descendant of j and k' € I(’Z? be a direct descendant of k. Lemma 39 implies

that 4 is a direct ancestor of j' and k', as j can’t be a direct ancestor of k¥’ and k
can’t be a direct ancestor of j' because p # q. So we can replace j by j' and k by
k'. Tterating the process, we can assume that 4 and j are in the quasi-cycle: this
contradicts lemma 44. So the direct descendants of ¢ are all in I for a good m.
We then take I; = I7 ifl#m—1and .. = = I'_ U {i} and this proves the first
assertion on G (g

We now prove the assertion on f;. We separate the proof into two subcases.
Let us first assume N > 3. There is an oriented path i — im — -+ — im,
with 4; € I' for all i. Moreover, there is no shorter oriented path from 010 Gt
As N > 3, “from lemma 40:

fi=1+ > alh

1—]

Let us secondly assume that N = 2. Let 1,...,p be the direct descendants of i
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and let 0 be a direct descendant of 1. Then as 1,...,p are in the same part of
the partition of I’, they are not direct descendants of 1. Let us first restrict to

{i,1,0}. So )\gf’o)aig =0 as a((f% = 0 by the induction hypothesis, )\gi,O) = 0.

Moreover, 0 = )\gf’o)a =a S0 agfl = 0. Similarly, aéf)z == az(f; =0.

1 1 ?
vt

Let us now take 1 < j < k < p. Then )\g’j)azg‘ = 2a =0, so )\gi’j) =0 and

VL

0= )\gi’j)azf =0, S0 aﬁ = 0. As a conclusion, f; is of the required form.
Proposition 32—31implies that f; = fi if ¢ and ¢’ have a common ancestor, and

this implies the second assertion on G/g). [l

Remark. In particular, the vertex added to G; in order to obtain G;4; in
proposition 41 is an extension vertex. So (S) is obtained from a quasi-cyclic SDSE
by a change of variables, a dilatation, and a finite number of extensions. Hence,
it is Hopf.

Example. Here is an example of a quasi-cyclic SDSE:

X1 = Bi(1+X2+X3)
X = By(1+Xy)

X; = B3(1+Xy)

X4 = B4(1—|—CLX1)

X5 = B5(1+CLX1)

X6 = BG(1+X4+X5)

where @ is a nonzero scalar. In this case, N =2, It = {1,6} and Iz = {2, 3,4,5}.

7 Fundamental systems

We now study the case of connected Hopf SDSE containing a self-dependent vertex.
We shall use the notion of level of a vertex.

7.1 Level of a vertex

Proposition 46. Let (S) be a Hopf SDSE. Let i be a self-dependent vertex of
G(s). Then for all j € I, for all n > 1:
0
1.J .
o0

a

A9 =l 4 (14 8;5)(n — 1)

Proof. Apply lemma 30, first point, with iy = ... =14, =1, as al? #0. O

3
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So for a self-dependent vertex i, the sequences ()\gf J )) are polynomial of
n>1

degree < 1. We formalize this in the following definition:

Definition 47. Let (S) be a Hopf SDSE, and let i be a vertex of G(gy. It will
() ()

be said to be of level < M if for all vertices j, there ewist scalar b;”, a;”, such

that for all n > M : _ _
AP =0 (0 — 1) +a.

The vertex i will be said to be of level M if it is of level < M and not of level
<M -1.

Remarks.

(1) A" =al”. Soif i is of level 0, &\ = a!.

J

; ; ; al
2) Self-dependent vertices are of level 0, with at" = a' and b = (146, ;)%
J J J J

G
a;

Y.

1.

(3) In a quasi-cyclic SDSE, )\g@ = 0755, 5, for all i,7 € I, as it was observed in

section 6.1. So in this case the vertices are not of finite level.

Proposition 48. Let (S) be a Hopf SDSE, i a vertex of G(s) and i’ a direct
descendant of G (g).

(1) % has level 0 or 1 if, and only if, i’ has level 0.
(2) Let M > 2. Then i has level M if, and only if, i’ has level M — 1.

Moreover, if this holds, then for all k € I, b;ﬂi) = b;ﬂi/).

Proof. Lemma 31 immediately implies that for all M > 1, ¢ is of level < M if|
and only if, i’ is of level < M — 1. Moreover, if this holds, then b,(;) = b,(;,) for all
k. The first point is a reformulation of this result for M = 1. Let us assume that
M > 2. If i is of level M, then 7' is of level < M — 1. If ¢/ is of level < M — 2,
then ¢ is of level < M — 1: contradiction. So 4’ is of level M — 1. The converse is
proved in the same way. O

Corollary 49. Let (S) be a connected Hopf SDSE. Then if one of the vertices

of G(s) is of finite level, then all vertices of G (g) are of finite level. Moreover, the
coefficients b;i) depend only on j. They will now be denoted by b;.

Lemma 50. Let (S) be a connected Hopf SDSE such that any vertex is of finite
level. Let j be a vertex of Gs) such that there exists a vertex i which is not an
ancestor of j. Then b; = 0.

Proof. We apply lemma 30-1. We obtain:

n—1 (ip)
,7) __ (in) o ajﬂ: +1
AP =™ > (14 654,,,) a(i’;) .

p=1 ipt1
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Moreover, i1, ..., i, are descendants of 4, so j is not a descendant of i1, ..., i, and
a§1n) a;Z )+1 =0 for all p. So )\S’J) = 0 for all n. As i is of finite level, we deduce
that a\” = 0 and b; = 0. O

7.2 Definition of fundamental SDSE

Notations. For any S € K, we put:

| _ 1.
Fo(h) = S Mt o :{ (L if%hl TS0

For all g # —1:

F%“”W:Z(”ﬂ)'“(””ﬂ)hn,

n!
k=0
so we shall put F%((l +B)h) =1if B =—1.

Definition 51. Let I be a set with a partition I = Iy U JyUKoU Lo, such that:
o Iy, Jo, Ko, Lo can be empty.
e Iy U Jy is not empty.
o If Iy =0, then Jy is not reduced to a single element.
We define a SDSE in the following way:
(1) For alli € Iy, there exists B; € K, such that:
=Fs(hi) [[ Foo (A+8)n) [ Fa(hy

55
j€lo—{i} I Jj€Jo

(2) For alli€ Jy:

HF;;J‘ (1+B)h H Fi(h

j€lo j€Jo—{i}

(3) For allie Ky:

Jj€Jo

(4) For all i € Ly, there exists a family of scalars (a@ , such that

. J )JGI()U]()UKO
3j € I, ag” £ 1+ 8)) or (35 € Jo, o) £ 1) or (3j € Ko, ol #0).

L () T ) F i)

j€lo aj j€Jo j j€Ko

These SDSE and the ones obtained from them by a dilatation and a change of
variables are called fundamental SDSE.
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Remarks.
(1) It is not difficult to prove that in such a SDSE, all the vertices are of level
0. Moreover, the coefficients b; are given by:
j| I |Jo| Ko Lo
bi|1+8; [ 1] 00
()

@,

The following array gives the coefficients a;” = a;":
J\i Iy Jo Ko | Lo
Lo [1+0-6:08 | 1+8 [1+8 | d)
Jo 1 1-6,;| 1 [aV
Ko 0 0 0 [aV?
Ly 0 0 0 0

(2) The condition in (4) on L is equivalent to the property that for each i € Ly,
there is some j € I with ag-z) #b;.

(3) The elements of I are precisely the self-dependent vertices of a fundamental
system.

7.3 Fundamental systems are Hopf

We now give a new proof that fundamental SDSE are Hopf. We shall use for this
a pre-Lie algebra attached to the coefficients )\gf 2

Let us consider a fundamental SDSE (5), without dilatation. We keep the

notations of section 7.2 for coefficients a(-l) and b;. The coeflicients )\S’j) have the

J
form: N ‘
AG) — ag-l) +bi(n—1).

Proposition 52. Let g be a vector space with basis (€!)icr n>1. We define a
product on g by: . ‘ o
e, oel = A§3ﬂ>efn+n.

Then g is a pre-Lie algebra. It is graded, ¢! being homogeneous of degree n for all
n > 1.

Proof. Let e . el and e’; be three elements of the basis of g. Then:

i j k i j k
em 0 (€5, 0e,) — (e, 0¢€l) o€,
i) ¢y (Ryi i)Y L
)\;(Dk7j)()\§l+p) - A ))egn+n+p

= (@ +b;(p— 1)@ — 0 +bi(n+p—1) = bi(n — 1)edy iy
= (@ +bp — )@ +bip—aP)el s,

Three cases are possible.
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(1) If i = j, this is trivially symmetric in e/, and €.

(2) If i and j are two different elements of Iy U Jy U K, then az(-j) = b; and this
expression becomes symmetric in e?,, and eJ,.

(3) If i € Lo, then ™ = ql = b; = 0, so this expression is 0. Similarly, if

7 € L, then a'®) =

K3
i b; = 0, so this expression is 0.

In any case, we obtain the pre-Lie relation for these three elements. So g is pre-
Lie. O

Theorem 8 implies that there exists a unique pre-Lie algebra morphism:

¢, grr — g
e, iel — €.

Let us study this morphism. We shall use the following notation:

Notation. Let F € FI. For all i € I, let d;(F) be the number of roots of F
decorated by i. We put d(F) = (dy(F),...,dn(F)).

Proposition 53. For allt € T, there exists a coefficient a; € K such that:
d)(t) = a’;e,ft\a

where i is the decoration of the root of t. Moreover, these coefficients can be
inductively computed by:

a, = 1,
Uy = Dt )yt t)lal), . dl,

Proof. Let t1,...,ty € T! and i € I. The definition of the pre-Lie product of g,
in terms of grafting easily gives:

k
Bi(tl .. .tk) = tl o Bi(tg .. .tk) - ZBi(t2 ce (fl o fj) . ..fk). (71)

j=2

First step. The morphism ¢ is clearly homogeneous. Moreover, for all i € I,
g; = Vect(el | n > 1) is a right pre-Lie ideal of g; it is not difficult to prove
that the right pre-Lie ideal of g7 generated by ., is the subspace generated by
rooted trees whose root is decorated by ¢. Hence, if ¢ is a rooted tree whose root
is decorated by 7, then ¢(¢) is an element of g;, homogeneous of degree |¢|, so is
collinear to e‘itl. This proves the existence of the coefficients a;.
(@)

Second step. Let us first prove that there exists a family of coefficients b(p1 .

such that for all forest F =t ...t € F!, foralli e I:

A, () = DYyl -,
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We proceed by induction on k. If kK = 0, then B;(F) = ., and a; = 1: we take

b(z)

(0,...0) = 1. If k =1, we denote by j the decoration of the root of ¢;:

6(Bi(t)) = ¢ltro+.) = (1) o€} = aj el ol =ap \el | = af,alelp )

We then take bgé)m 0,1,0,...,0) = a§ ), when the 1 is in position j. Let us assume the
result at rank £ — 1. The decoration of the root of ¢; is denoted by d;. For all
k > 2,t; ot; is a linear span of rooted trees whose root is decorated by d;, so the

induction hypothesis on k gives that:

7 (dj,d
¢(B»L(t2 e tl ] t] . )) = b&()t2 tk)agl . / A‘t]‘ l)e‘BZ(t1 tk)l

By (7.1):
&(Bi(ty ... ty)) = b(z()t2 tk)ail .. .agke"itlll o e‘iBi(t2mtk)‘
(dj,da) i
- Z% atk d t2 tk)>\|t]| ' IB (t1..t1)]|
NG, (i,d1) (d;,d1) i
= byits.. 1) \Bl(ltg )] Z)‘\t | v ap, - .- agkelBi(tlmtk)l'
B
Moreover:
dy) dj,d - (d;
I(ZB ltz )] Z)\ftj’ K = (l) + bd1(|t2| +. |tk| Z ) + b |t | - 1)
j=2
= ay) — by, (k—1)+ > al.
j=2
Hence, B depends only on the decoration of the roots of ¢1,...,t; and on 7; note

that as the morphism ¢ is well-defined, it does not depend on the choice of t;. We

then put B = b&i()tl...tk)'

Last step. Let us fix (p1,...,pn) € NV and 1 < j < N. We apply the second
step to t = B;(«1P* ... .1 PV). It immediately gives:

1 p(d)
4y = b(m,...,pzv)'
Moreover, by (7.1):
Bi(olpl...o]‘pj+1....NpN) = . OBi(.1p1...01pN)

N
_ZpkB’L(I?C .lpl . .kpkfl . .N;DN)'
k=1
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Applying ¢:

N

(%) _ (1,5) (k) | 1,(9)

b(m »»»»» pi+1,...pN) (Ap1+...+m+1_2%‘ )b(m ----- pN)”
k=1

(@ _

e ()
Lemma 30-2 easily implies that b(m _____ o) = p!...pNla . O

As in section 3.5, let us use the duality between S(grr) and HL j defined by:
<F, G> = SF(SFﬁg.

Let us dualize the pre-Lie algebra morphism ¢. It becomes a Hopf algebra mor-
phism ¢* : S(g)* = S(g*) — HL . We denote by (z%)icr,n>1 the dual basis of
the basis (€!);crn>1 of g. Proposition 53 implies that:

d(ay) = > ai',
teT!|t|=n
the root of ¢ is decorated by 1
where the coefficients a satisfies the following property: if ¢ € 77, we put t =
B;(F) and F =t}"* ... t}*, where the t;’s are different trees. Let r; be the number
of roots of F' decorated by j for all j € I. Then:

"o T1! .. .’I“N! (4) "p "p
ay = | |a(7‘1>~~~77‘N) i i
P1:...-Pk-

By proposition 26, these coefficients are the coefficients a;’s. Hence, the image of
¢* is the subalgebra of HL , generated by the homogeneous components of the

solution of (S). As ¢* is a Hopf algebra morphism, it is a Hopf subalgebra. Finally:
Proposition 54. Let (S) be a Hopf fundamental SDSE. Then it is Hopf.

Remark. We also proved that the Hopf algebra H s is dual to the enveloping

algebra of the Lie algebra g, defined by the help of the structure constants )\S =2

7.4 Self-dependent vertices

Theorem 55. Let (S) be a Hopf SDSE, and let i be a self-dependent vertex
of (S). The subsystem formed by i and all its descendants is fundamental, with
Ko = Lo = 0. Moreover, if k is a direct descendant of i and j is not a direct
descendant of i, then agk) =0.

Proof. From lemma 39 with ¢ = [, we deduce that any descendant of ¢ is a direct
descendant of 7. Up to a restriction, we now assume that any vertex of (S) is a
direct descendant of i. We won’t write the indices (¥ in the proof. Up to a change
of variables, we assume that a; = 1 for all j. As ¢ has level 0, the coefficients of
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f = fi satisfy an induction of the form (lemma 30-2):

a0 = 1

1
a(:Dlv"ijJrlv“'vZDN) = +1 (1 + ZMJ pl) a(m ©,PN)?

=1

with ug-l) =(140d;)ai;— ag-l) for all j,l € I.
Let us fix j # kin I. For (p1,--- ,pn) = (0,---,0), as a(o,... o) = 1:

i = . (7.2)

For (p1,--- ,pn) = &1, we obtain:

(1+u§k)+u§l)) (1+u()) (1+u()+u()) (1+u§))

So:

!
H; ) () _ #(J)MS) (7.3)

Let j,k € I. We shall say that j R k if j =k or if u ;é 0. Let us show that
R is an equivalence. By (7.2), it is clearly symmetric. Let us assume that j R k

and le Ifj=kork=1lorj=1I,then jRI. If j, k,[ are distinct, then u(k) #0

and uk # 0. By (7.3), ;l) = kl) # 0, so j RI1. We denote by Iy,---, Iy the
equivalence classes of R .
Let us assume that j R k, j # k. Then u ;é 0, so for all I, u() = ,ugl). In

particular, u,(c) = N; D = ugk) = u,(c . So, finally, there exists a family of scalars

(Bn)1<n<m, such that:

o If j.k € I,, then ug-k) = Bn.

e If j and k are not in the same I,,, then uék) = Mg) =0.

The coefficients — ( )4 (14 0;5) azé are given for all j, k by the array:

5]

J\k| L | I |-+ | Im
L (Al o]0
Iy | 0| B2 :
: S R I
T 1010 | Bu

An easy induction proves:

M
Q(py,-,pn) = H 1+Bn (1+Bn (sz - 1)) .

lel,
So:

H Fp, Z hy

lel,
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We assume that ¢ € I, without loss of generality. From the expression of
f = fi, we deduce that b; = (1+8;;)al) = 1+ 1if j€ I;, 1if j € LU~ Uy

(k)

(see section 7.2). So a; is given for all j, k by the array:

J\k| L I I3 Iy
I 1 (61+1 B1+1
L | i |1=5 1 1
Iy | : 1 1— 05 :
: : : - ) 1
I | 1 1 1 [1-5Bu

As a consequence, if j € I, then for all 1 < k < N, a,(cj) = ai and A§H = \(R)

for all n > 1. Note that if j,j’ are in the same I,, then /\n7’k) = /\53 ) for all
n > 1, for all £ € I. So, the Hopf SDSE formed by ¢ and its descendants is the

dilatation of a system with the following coefficients ,\53' "k):
i\ k 1 2 3 || M
1 [(Br+D)(n—-1)+1 n n
2 (B1+1)n n— Bo n n
3 n n— B3
: : : . . n
M (b1 +1)n n n | n—PBum
M
with i =1, and f; = HF[;J ). It j #£1, for all (ky,---,kn):
Jj=1
M M agi) o)
EQH oy = <(31 +D)Y kB +1— (B> k- k1> THM
=1 =2
(J') )
= 1 k 7]”
(B1+ 1+ Bik1) I

a9
(j) _ k1, k)
(kh ki1 k) T (Zkl+1_63 Zkl—"ﬁ] ) k 1
(/2 ear)
= 1-— I’%M'
(1= B+ Biks) ki 41

Ifl#1and ! # j:
e o9

M
(4) _ (k,-k) Aoy, k)
p=1
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So, if j # 1:
fi=F 5 (1+B)h)F 2 (1= B)hy) TT Fou(ha)-
! J k#1,j

Let us put I = {j > 2/6; # 1} and Jy = {j > 2/ B; = 1}. Then, after the
change of variables h; — %ﬁ-h’j for all j € I{:

= m T (s )nﬂ
Jjel] jeJ§
fi = Fa (L+B)m)F 5 ) I Fo(—=n) [] () if 5 € I,
=z a- ﬁl
7 lerj—{j} leJj
1 e /
fi = Flfll (1 + B1)h) H F, (1_—&hz> H | Fi(l) if j € Jg.
le1} leJy—{s}
Putting v; = 175 for all j € I, as fj = 7%~ and 1 — fj = -
fi = Fg(h) HFJQJ (L+v)hy) [ Frh
JEI] jeJ}
fi = Flﬁ—}al((l +/Bl)h1)F’Yj(h’j) H Fll{” (14 7;)h H Fi(hy)itje IOv
jelg—{j} J€Jg
fi = Flf_}%l((l-i-ﬁl hl HF'YJI 1+’7j)hj). H F1 1fj€J0
JeI; jeJo—{s}

So this a fundamental system, with In = {1} U I}, Jo = J}, and Ko = Lo =0. O

7.5 Hopf SDSE containing a 2-cycle

We first introduce a family of Hopf SDSE with no self-dependent vertices. More
precisely, we are looking for the Hopf SDSE (S) such that G(g) is complete M-
partite, that is to say there exists a partition I3 LI ... U Ips of the set of vertices
of G into nonempty parts, such that if z,y are two vertices of GG, there is an edge
from x to y if, and only if, x and y are in different I;’s.

Proposition 56. Let (S) be a Hopf SDSE such that G(g) is a complete M-
partite graph. Let I = 11 U ... U Iy be the partition of the set of vertices. Then
one, and only one, of the following results holds:

(1) Up to a change of variables, for all 1 < n < M, for all i € I,, f; =

Iir=>n

m#n J€Im

(2) (S) is 2-quasi-cyclic.

Proof. First, let us choose two vertices i — j in G(g). Then j — i in G(g). Then
ag-j) =0, so a( ) = 0; by lemma 30-1 with (i1,12) = (J,9), ag-i) = )\gj’j), S0 a(z)
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depends only on j. So, up to a change of variables, we can suppose that all the
(@)

a;’s are equal to 0 or 1. We first study two preliminary cases.

First preliminary case. Let us suppose that G(g) is the following graph (which

is complete 3-partite):
l=——=2
3

So, a;i) = 1if ¢ # j. Moreover, if {i,j,k} = {1,2,3}, by lemma 30-1 with
(il,iQ) = (’L,k) o .
/\éw) = agfgg + 1.

Consequently, )\éi’j) = )\g’k). So, applying proposition 42 to the restriction to
{4,j} implies that two cases are possible:

(1) For all i # j, for all n > 1, AU = n.

(2) Foralli#j,foralln>1, A = 1if n is odd and 0 if n is even.
In the second case, we deduce that if {3, j,k} = {1,2,3}, agf) = —1. By lemma
30-1 with (il, iQ, Zg) = (1, 3, 2)

1=2"" =af) = 1.

This is a contradiction. So the first case holds. It is then not difficult to prove
that if {ivja k} = {15 273}7 fi(hja hk) = (1 - hj)il(l - hk)il'

Second preliminary case. We now consider the graph with three vertices
14— 2<+—3.

It is complete 2-partite, with Iy = {1,3} and I = {2}. By lemma 30-1 with
(i1,12) = (2,3) and (2,1):
2,1 2 2,3
=l =9,
Applying proposition 42 to the restriction to {1,2} and {2, 3} shows that two cases
are possible:

(1) Forall n > 1, A("? = A@D = A9 = \@ = .
(2) Forallm > 1, A% = AZY = AP = A3 = 0if n is even and 1 if n is
odd.

In the first case, proposition 42 implies that f; = f3 = (1 — ha)~!. Lemma 30-2
implies that for all m,n > 0:

(2) _m+n+1 ) _m+n+1
a(m-l—l,n) T m +1 A(m,n)> a(m7n+1) - n+1 A(m,n)-
Consequently, for all m,n > 0, agiz’n) = (’:;73)!, 0 fo = (1—hy—h3)~!. In the sec-

ond case, proposition 42 implies that f1 = f3 = 1+ha. Moreover, fa(hy,0) = 1+h4
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and fo(0,hs) = 1+ hs, 50 ai?] = a{} = 0. As APV =a} =0, fo =1+ hy + ha.

We separate the proof of the general case into two subcases.

General case, first subcase. We assume that M = 2. We put Iy = {iy, - ,i,}
and Iy = {j1, -+ ,Js}. For i, € I, we put:

R— ('L ) q1 . p9s
Jin = Z a(qp1,~~~,qs)hj1 hjs'
(g1, ,4s)
Restricting to the vertices i, and j,, by proposition 42, two cases are possible.
(1) agif’;—q = 0. Then, by the second preliminary case, restricting to i,, j, and
: : (ip)  _ _(p) _ _
Jg, for all jo, ai'”) = ajzp 0. So fi, =1+ Zh_jq-
q

Jardg =

(2) A9 = for all m > 1. We obtain:

(ip) @t gs 6y
(g1, @m+1,0,qs) gm + 1 (a1,+,¢s)"
An easy induction proves that a(ip)m = M, SO:
(g1, +45) qilqs!
-1
fi, = (1 - Zhjq> :
q

A similar result holds for the j,’s. So, we prove that for any vertex i of G(g):
-1
(a):fizl—l—ZthI“(b)Zfi: 1—Zhj
] i—>]

Moreover, by the second preliminary case, if ¢ and j are related, they satisfy both
(a) or both (b). As the graph is connected, every vertex satisfies (a) or every
vertex satisfies (b).

General case, second subcase. We now assume that M > 3. Let us fix i € G
and let j a direct descendant of i. Let us choose a common direct descendant k
of i and j: as M > 3, this exists. By the first preliminary case, after restriction
to 7, j, k we obtain that )\S’J) = n for all n > 1. We obtain, similarly to the case

-1
M=2ifiel, fi=][{1->_hi| . O

q#p J€ly
Remark. The system of case (1) is fundamental, with T = Jp.
Theorem 57. Let (S) be a Hopf SDSE, containing a 2-cycle. Then the subsys-

tem formed by the vertices of this 2-cycle and all their descendants is fundamental
or is quasi-cyclic.
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Proof. We assume, up to a restriction, that any vertex of (S) is a descendant of
a vertex of the 2-cycle. Let k,l € G(g), such that [ is a direct descendant of k.
There exists i, j, i2, . ..,4, such that in Gg):

Jj&—i—ig—r ... — i — k— L

Applying repeatedly lemma 39 (case i = k), we obtain that there is an edge from
iz to i, from i3 to iz, ..., from [ to k. So if there is an edge from k to [ in G(g),
there is also an edge from [ to k. We shall say that G(g) is symmetric.

Let us now prove that G gy is a complete M-partite graph, for a certain M > 2.
Let us consider a maximal complete partite subgraph G’ of Ggy. This exists, as
G(s) contains at least a 2-cycle. Let us assume that G’ # G(5). As G(g) is
connected, there exists a vertex i € G(g), related to a vertex of G’. Let us put
I'=1I{ U---UI), be the partition of the set of vertices of G'.

First, if 7 is related to a vertex j of I]’D, it is related to any vertex of I]’D. Indeed,
let j’ be another vertex of I, and let k € I}, ¢ # p. By lemma 39, j' is related to
i. As G(g) is symmetric, 4 is related to j’.

Let us assume that 4 is not related to at least two I,’s. Let us take k, [ in G',
in two different I)’s, not related to i. By the first step, j, k and [ are in different
I]’D’s, so are related. By lemma 39, k or [ is related to i. As G(g) is symmetric,
then i is related to k or [: contradiction. So ¢ is not related to at most one Il’j.

As a conclusion:

(1) Ifiis related to every I,’s, by the first step i is related to every vertex of G’, so

G'U{i} is an complete M + 1-partite graph, with partition I{U---UI},U{z}.

(2) If i is related to every I]’D’s but one, we can suppose up to a reindexation that

1 is not related to Ips. Then, by the first step, ¢ is related to every vertex of

HU---UlIj; 4. So G'"U{z} is an complete M-partite graph, with partition
LuU---u(IyuU{z}).

Both cases contradict the maximality of G', so G(gy = G’ is a complete M-partite

graph. From proposition 56, (S) is 2-quasi-cyclic or fundamental, with I = Jp. O

7.6 Systems with only vertices of level 0

Theorem 58. Let (S) be a connected Hopf SDSE with only vertices of degree
0. Then it is fundamental.

Proof. We use notations of proposition 41. We prove inductively that G; is a fun-
damental system for all ¢ > 0. Let us first consider the case ¢ = 0. From theorem
55 and 57, for any vertex i € Iy, i and all its descendants are part of a fundamental
system with Ko = Ly = (. A simple study of the possible graphs shows that (Sp)
(corresponding to Gp) is a concatenation of fundamental systems. If (Sp) is not
connected, let us take ¢ and j in two different connected components of Gg. Then
i cannot be a descendant of j and j cannot be a descendant of :. By lemma 50,
bi = b; = 0. So the fundamental system corresponding to any connected compo-
nent of (Sy) satisfies Jo = Ko = Lo = 0 and 8; = —1 for all ¢ € Ij. It is then clear
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that (Sp) is a fundamental system, with I = Iy and 3; = —1 for all ¢ € Ij.

Let us assume that the system associated to Gx—1 is fundamental. The vertex
added to Gx—1 in order to obtain Gy is denoted by 0. For all ¢ € I, )\%O’l) =
bi(n — 1) + al(-o). Let us take 4,5 € Iy_1, with ¢ # j. Using lemma 30-1 in two
different ways:

az(g) _ (bj 4 a;o) _ ag@)) az(-o) _ (bi i CLZ(-O) _ al(j)) a;o)_

So, for all 4,5 € I;_1:

(bj - ag“) a® = (bi - agﬂ) al?. (7.4)
If the fundamental system formed by Gr_; has a dilatation, as b; —agi) = bi—az(-j ) #+

@ — 4 and
i J

0 if ¢ and j are in the same part of the dilatation, we deduce that a
for alln > 1, )\510,1') = )\,(zo’j). Hence, up to a restriction, we can assume that there
is no dilatation.

Let ¢ € Lg. Let us choose 7 € Iy U Jy U Ky, such that ay) # bj. Then
by = al(.j) = 0, so (7.4) gives (bj —ag-i)) aEO) = 0. So aEO) = 0 for all ¢ € Lo.
So the direct descendants of 0 are all in Iy U Jy U Ky. Using lemma 30-2 with
1€ IgUJogU Ko:

aEg)l,---,piJrl,---,pN)
_ o©
= G’EO) + bi(pl R +pN) _ Z bipj _ az('l)pi (P1,++ PN
jeloUJoUKo—{i} pitl
(0)

_ (0) ( o <i>) ) %py, pN)
= R bZ \ i | —— .
(al o) pi) =

So:

fo =1;[ Py (a,) gF o () TT B ().

(
@i i€ Ko

So the system of equations associated to Gy, is fundamental, with 0 € KqU L. O

7.7 Vertices of level 1

As a consequence, if (9) is a connected Hopf SDSE, two disjoint cases are possible:

(1) (S) contains a quasi-cyclic subsystem, so is described by theorem 45.

(2) Any vertex of (S) is of finite level, and the subsystem (S(®) formed by the
vertices of level 0 is fundamental.

In order to conclude the description of all connected Hopf SDSE, let us study now
vertices of level > 1.
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Theorem 59. Let (S) be a connected Hopf SDSE such that any vertez is of
finite level. Let (Sp) be the subsytem formed by the vertices of level 0. The set of

vertices of level 1 which are not extension vertices can be decomposed into Iy U Jq,
such that:

(1) Foralli € I, there exists v; € K, a family of scalars (a(-i) such

J
that v; ;é 1 and, if v; #0:
i 1
HF o (1/1 Ony) TLF+, (uz n) I1 Fo (vians)+1-=.
) V;
j€lo ““J j€Jo ¢ JjE€Ko

)jelouJouKo’

(@

fiz—zaﬂ In(1 Za In(1-~h Za hj + 1.

jel, Y j€Jo jeKo

(2) For alli € Jy, there exists v; € K — {0}, a family of scalars (a(»i)) N with
JE€Lo

j
the following conditions:

o L) = {j € Lo/ a}” # 0} is not empty.

e For all 5,k € L , i = fx. In particular, we put cg) = atJ) for any
j ELO , forallt € In U Jy U K.

Then:
1 (i) (i)
o= 1~ s ((cJ 1 —ﬁj) hj) P ((cj _ 1) hj)
clp c¢; —1-8; j€Jo J
I %o (7h) + > alPhy+1-—
JjE€EKo JeLf,“ ?

Proof. First case. Let us assume that 0 is of level 1. Then all the direct descen-
danfcs of 0 are of leyel 0, so are in Iy U Jy U Ky U Lg. Moreover, for all i € I,
ALY = 6@ and AP = bi(n— 1)+ if n > 2.

First step. Let us first assume that all the direct descendants of 0 are in L.
Up to a change of variables, we can assume that for all direct descendants ¢ of 0,

az(-o) = 1.Let i be a direct descendant of 0 and let 0, j,i3,...,%, be a sequence of
elements of I as in lemma 30-2. Then j € Lg, i3,...,i, € o U Jg U Lg, so 7 is not
a direct descendant of j,is,...,4,. Hence:

APD = (14 6;5)all).
Moreover:

AOD = AO9) = (146, ;)a”.



60

So there exists a scalar ~, such that )\%O’i) =~ for all n > 2, for all direct descen-
dants i of 0. An easy induction using lemma 30-2 proves that for all n > 1:

Let 7 be a direct descendant of 0 and let k be a direct descendant of i. Then k
is not a direct descendant of 0, and lemma 30-1 implies that for all n > 2:

AOTE = AR = by 40l (n - 2).

n n—1 =
For t = By(.: "), we obtain:
n—1

n—1
0,k i Qi
>\§l+1)at:(bk+a'§€)(n_1)) ] :aBO(If.in—l):naé) oy .

If v # 0, we obtain that by = a,(f) for all direct descendants k of 4, which contra-
dicts the fact that ¢ € Ly. So v = 0. This implies that for all direct descendants
i,7 of O, ag?j) =0,s0 fo=1+ Z aEO)hi and 0 is an extension vertex. We shall

1—>1
assume in the sequel that at least one of the direct descendant of 0 is not in L.

Second step. Let us take i,j € I, with ¢ # j. Using lemma 30-1 in two different

ways:
o) = (b o)l = (b4 o) ol (7

1,7
Let us take ¢,5 € Lo. Then ag-i) = al(-j) =b; =b; =0, so (7.5) gives:

)

(0),0) (

5 — (0
a;’a; =a; 'a

So (dgo)) and (a§0)> are collinear. We deduce that there exists a scalar
i€Lo i€Lo

v € K, such that for all i € Ly, dl(-o) = ual(-o). Let us now take i, j € Iy U Jy U Ky,
i)

with ¢ # j. Then b; = al(-j) and b; = ag-z , so (7.5) gives:

00 = 500,

So (dgo)) and (a§0)> are collinear. We deduce that there
1€lgUJoUK( 1€lpUJoUKy

exists a scalar v/ € K, such that for all : € Iy U Jy U Ky, dl(-o) = V’ago). Let
us now take i € Io U Jy U K¢y and j € Lo. Then b; = ag-z) = 0, so Va;o)al(_o) =
(bi + u’al(-o) - al(-j)) a;o)_ In other words:

Vi€ Iy U Jo UKy, Vj € Lo, (v —')al”al” = (b; — a{)al. (7.6)

Third step. Let us assume that there is a dilatation on (Sp). If this dilatation
holds only on vertices of Ky or Lo, this system can all the same be considered
as a fundamental system with no dilatation. Similarly, if the dilatation holds on
a vertex of ¢ of Iy such that 5; = 0, then as Fy(hy + he) = Fy(h1)Fo(he) (as
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Fy = exp), this dilated system can be seen as a fundamental system with no
dilatation. It remains to consider the case of dilatations holding on a vertex of I
with 8; # 0 or on a vertex of Jy. Let us take i, j in the same part of the dilatation.
(7.5) becomes:

(bj + I//a;o) - agi)) 1(0 (b +v a(o) agj)) a'?.

J

As 4, j are in the same part of the dilatation, necessarily b; = b; and a(i) a(j) It
remains that (b; — a§“)(a§0> a(o)) = 0. By hypothesis on the dilatation, b; # a
S0 aEO) = a;o)' Consequently, Z(-O) = I/a(o) = 5»0) = Ng»o). As the level of 0 is

1, we deduce that )\510,1') = )\,(zo’j) for all n > 1. Hence, the vertex 0 respects the
dilatation; up to a restriction, we can assume there is no dilatation in (Sp).

Fourth step. Let us assume that Ly () — . Then all the direct descendants of
0 are in Iy U Jy U Ky. Moreover, 1fz€IOUJ0UK0 and p1 +...+py >0:

(0)
(0) _ 1 (0) Y Yeren)
Ypr pitli o) T (”“i +(b1_“i )pl) i+l

It is then not difficult to show that 0 is in I;. Note that this case holds if v = /.
Indeed, if v = 1/ let j € Lo. For a good choice of i, b; — a 7& 0 in (7.6), s

ago) = 0: then L = (), and the result is proved in the third step.

Fifth step. Let us assume that L(0 = (). By the preceding step, v # V Let
us take j € L\”. By (7.6), for all i € Iy U Jo U Ko, a = b; — (v — 1/)a” does

not depend on j. As a consequence, f; = fi for all j, k € Léo). Let us use lemma
30-2. For all ¢ € Iy U Jy U Ko, if (p1,--- ,pn) # (0,---,0):

(0)

(0) _ r(0) @) V) 0) %1, pn)
Upr,pitlpn) = | V% + (bz 4 )pZ +( Z Pj pi+1
JEL((JO)

For all i € L((JO), it (p1,---,pn) # (0,---,0):

(0) 0) EO) )
0 0 PN
Cpr,pitlpn) — P pi+1
Let us fix i € Ip U Jo U Ky and j € L. Then:
1 i
agg) _ 5( 0 4 b, — <>> o,
o _ 1 w0 ©/(, © o)
a i, = §ua- a; ( +b; — ) ,
al(?j) = Va(o)a(o)
© _ 1 w0 o/ © (i) ", (0)
Gij = V4 4 (V a;’ +b—a;’ +wv—-1)a ) )
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Identifying the two expressions of ' as v # v and a;o) % 0, we obtain

iyisg?
©)? : ) )
v (ai ) = 0. Let us choose i € Iy U Jy U Ky such that a; * # b;. Then a;’ # 0
by (7.6) and thus v = 0, v/ # 0. We then easily obtain that 0 € J;. O
Remarks.

(1) For all i € I; U Jy, b; = 0 by lemma 50 and by proposition 48, i cannot be
() (%)

the descendant of a vertex of level 0. The coeflicients a; and a;” are given
by the following arrays:
‘ Iy &_gz) (C§z) — 1- ﬂj)/Vi . Iy yz-a;l.) C;l) — 1-— ﬁj
agl) . Jo ag-z.) (ng) - 1)/v; &5‘1) T Viay) cy) 1
Ko a;l) Cgl) / Vi Ky | v ag»i) cg»i)
Lo | 0 al) Lo | © 0

(2) It is possible to prove that the SDSE of theorem 59 are Hopf, as this was
done for fundamental SDSE in section 7.3.

7.8 Vertices of level > 2

Proposition 60. Let (S) be a Hopf SDSE and let i be a vertez of (S) of level
> 2. Then i is an extension vertex.

Proof. We denote by M the level of ¢. Then all the descendants of ¢ are of level
< M —1, so i is not a descendant of itself.

Let M be the level of ¢ and let us assume that M > 3. Let j be a direct
descendant of i, k be a direct descendant of j, [ be a direct descendant of k. Then
7 has level M — 1, k has level M — 2, [ has level M — 3. Hence, all the paths from
i to [ have a length > 3. The result is then deduced from lemma 40.

Let us now assume that i is of level 2. The direct descendants of ¢ are of level
1, and the direct descendants of the direct descendants of i are of level 0. Hence, if
i —Jj — kin G(g), i, j and k are distinct. Up to a change of variables, we assume
that if i — j — k in G(g), then a!” = o) = 1.

First step. Let us assume that there exists a direct descendant j of ¢, such that

agl; # 0. Let us fix a direct descendant k of j. Then k has level 0, so & is not an
ancestor of j; by lemma 50, b; = 0. As the level of 7 is 2, there exists a scalar b
such that if n > 3, )\S’]) = b. The level of j is 1, so there exists scalars ¢, d such
that:

)\(j,k) . lifn= 1,
m ol en—1)+difn>2.
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(i

Considering the levels, k is not a direct descendant of ¢, so a; ) = 0. By lemma

31, for all n. > 2, A% = AU%  Moreover:
o By lemma 30-1 with (i, i2,i3) = (i, 4, k), b= A5 =24\ So b # 0.
e By lemma 30-2, a\) . = %a(-i) as a( =0. So a\”) # 0.

535 o G542
i s i,k i
e (c+ d)aj,j = Agj ajvj = /\é )ajvj = a \}k = 2“;,3" M # 0,
c+d=2. '
i k) ik) i
o (2c+ d)ag-,;,j = )\gj )a].\?[j = )\i )a].\?[j =a \ﬁj: 3a§;J. J“ # 0,
2c+d=3. '
As a conclusion, ¢ = d = 1. Hence, for any direct descendant of 7, /\( IR = 5 for
all n > 1. Lemma 30-2 implies that f;(0,...,0,h,0,...,0) = (1 — hg)~?, so for

alln >0, ap,(, »n-1)=1
Let now [ € I which is not a direct descendant of j and let k& be a direct
descendant of j. For all n > 1:
4 4 &
)‘51]7” = )‘gljJ)aBj(ok"*l) = 0B (e 21 T (n— Da, ; )'
We proved that for any vertex [ of Gg), for all n > 1:

\GD — { n if [ is a direct descendant of j,

al(k) (n —1) if [ is not a direct descendant of j,

where k is any direct descendant of j. This proves that j has level 0, so ¢ has level
1: contradiction. So for all direct descendants j of 7, agl; =0.

Second step. Let j and j' be two different direct descendants of . Let us use
lemma 30-1 with (i1,42) = (4,) and (4, "). This gives:
(7)) _ o (1) _ (1) _
A" =2a;% =a; ;5 =0.
So all the terms of f; of degree 2 are equal to 0. Finally:

i—J

SO ¢ is an extension vertex. O

8 Comments and examples of fundamental systems

8.1 Graph of a fundamental system

Figure 8.1 illustrates the structure of the graph of a fundamental system (with
no dilatation). An arrow between two boxes means that there is an arrow from
any vertex of the incoming box to any vertex of the outgoing box. A dotted edge
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Figure 1. Structure of the graph of a fundamental SDSE.
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between two boxes means that there may be an edge from a vertex of the incoming
edge to a vertex of the outgoing box. The black vertices are extension vertices.

The subgraph of the vertices of I is separated into two parts. One (the vertices
with 8; # —1) is a complete graph with self-dependent vertices; the second one (the
vertices with 3; = —1) is made of isolated self-dependent vertices. The subgraph
of the vertices of Jy is a complete graph with only non self-dependent vertices; the
other boxes are made of isolated non self-dependent vertices.

8.2 Examples of fundamental systems

Here are examples of Dyson-Schwinger equations or systems found in the literature:
(1) The following equation is found in [26, 28, 33, 40]:

(L)
1—2

where B is a 1-cocyle of a certain graded Hopf algebra. This generates Hopf
subalgebra, by theorem 24.

(2) The following equation is found in [2, 29, 40]:
= Z B, ((1+2)"),

n>1

where for all n > 1, B,, is a 1-cocyle of certain graded Hopf algebra, homo-
geneous of degree n. If we truncate all the B,, with n # ng, we obtain the
equation:

= By, (1 + )",

which gives a Hopf subalgebra. It is possible to prove, working in the Hopf
algebra of rooted trees decorated by N*, that the initial equation gives a
Hopf subalgebra [18].

(3) The following system is the truncation of a system appearing in [29, 32]:
N >2 andforalll <n <N,

This is obtained from a fundamental system, with Iy = {1,2}, Lo = {3,..., N},
B1=1,0s=-1/2, a§"> =nand aé") =n/2ifn > 3, by a change of variables
hl — —hl and hQ — 2h2

(4) The following system appears in [44] and in the first section of this text:

= B ((1 —(iz—i)_(fljsiﬂs)Q) ,
)2
2 = B (%) ,
71)?
r3 = DBjs (%) .
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This is obtained from a fundamental system,with Iy, = {1,3}, Jo = {2},
B1 = —1/3, B3 =1, by a change of variables hy — 3h;.

8.3 Dual pre-Lie algebras

Let us give a few results on the dual pre-Lie algebras. Let (S) be an extended
fundamental SDSE. The pre-Lie algebra of primitive elements of the dual ’H?S)

has a basis (e},)icr,n>1. As observed in 7.3, the pre-Lie product is given by:

eh,oed =\iel
As a consequence, g; = Vect(el, k > 1) is a pre-Lie subalgebra. Three cases are
possible:
(1) i € Io, with 8; = —1. Then e} oej = e}, g; is an associative, commutative
algebra, isomorphic to the augmentation ideal of K[X].
(2) i € Ko ULoU I UJ; or is an extension vertex. Then e} oe} = 0: g; is a
trivial pre-Lie algebra.
(3) i € Ip with 5; # —1, 0ri € Jy. Then b; # 0, and g; is a Faa di Bruno pre-Lie
algebra with parameter given by:

(#) —Bi i
/\i:ai 1= 75, ifi € o,
b; —1if i € Jy.

Note that in both cases (1) and (2), the Lie algebra g; is abelian.

Let us describe the Lie algebra g(g) in two simple cases; see [19] for more general
results.

Proposition 61. Let (S) be a fundamental SDSE with no dilatation, such that
Lo =0. Two cases are possible:

0
(1) If Jo =0 and for all i € Iy, B; = —1, then the Lie algebra g(s) is abelian.
(2)

2) If Jo # 0 or if there exists i € Iy, such that 8; # —1, then the Lie algebra
g(s) can be decomposed in a semi-direct product:

gs) = (M1 © ... & My) x go,
where:

® go is a Lie subalgebra of g(s), isomorphic to the Faa di Bruno Lie
algebra, with basis (f°)n,>1 such that for all m,n > 1:

s fu] = (0= m)
e For all 1 < i <k, M; is an abelian Lie subalgebra of g(s), with basis

(fviz)nZI .

o Forall1 <i<k, M; is a left go-module in the following way:

0 . .
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Proof. We use here the notations of section 7.2.
1. In this case, for all ¢ € I, b; = 0, so the pre-Lie product is given by:
¢y och =afeh,.,.
(@)

Moreover, the following array gives the coefficients a;

J\i| Iy | Ko
Iy 5i,j 0
Ky 0 0

Hence, the pre-Lie product is commutative. Consequently, the associated Lie
bracket is abelian.

2. In this case, there exists 0 € I, such that bg # 0. Then, for all 4,5 € I,

ay) =b; +; jc;. For all n > 1, we put:
1

0_ 10

fn - boenv

, Cp

fi=el — L0 ifi£0.
bo

The family (f!)iern>1 is a basis of g(s)- For all i € I, we put:

—ﬁi ifi e I,
C; = -1 ifiEJo,
0ifi € K.

Direct computations show that if 4, j # 0:

0 0 €o 0
fmofn = (TL+ %) m4+n»

0 ? 0
f:n © fn = _%cofm-‘rn?
0 ¢j 3 bj 0
fmofn = nfm+n_ b_OCOfm-i-nu
, , , bibjco o
ffln © fsz = 5i7j$i62n+n - bg em+n'

So Vect(f° | n > 1) is a Faa di Bruno pre-Lie algebra, with parameter:

2_2: 1;?;0 if 0 € I,
—11if 0 € Jp.
Moreover, we obtain, if 4, j # I:
o £l = (0= m) fins Ui A = fins [ £ =0,
which is precisely the announced result. O

Proposition 62. Let (S) be a quasi-cyclic SDSE. The pre-Lie g(s) admits a
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basis (€%,)icr.n>1 such that:

o ol — eZan if there exists a path from j to i in G(gy of length n,
mon 0 if not.

This pre-Lie product is associative.

Proof. Up to a change of variables, for all © € I, we have:

i—J
Hence, for all ¢ € I, for all n > 1:

in
tin—1

zin) =y e

=i ... iy

So:

in 1ik
tin—1 *lk—1 n

Aim)= Y Yt ote =3 u (n—k) o),

=i —>...—1, k=0 k=0 i

where the last sum is over all ix such that there exists a path of length k from 3
to iy in G(g). Let (€!)ier,n>1 be the dual basis of the basis (z°(n))icrn>1; this is
a basis of g(s) and the formula for the coproduct of z;(n) implies the formula for
the pre-Lie product of two elements of this basis. Moreover, for all i, 5,k € I, for
all m,n,p > 1:

o (e, 0el)oer =ekF ., . if there exists a path from k to j of length p and a

path from j to i of length n, and 0 otherwise.

o ci,o(eloek)=el ., if there exists a path from k to j of length p and a

path from k to ¢ of length n + p, and 0 otherwise.

As (9) is quasi-cyclic, there exists a partition / = Iy U ... U I such that there is
an edge from i to j in G(g if, and only if, there exists @ € Z/NZ such that i € I
and j € I;77. Let @, b, ¢ € Z/NZ such that i € Iz, j € I; and k € Iz. Then:

k:
p

k
P

o (el,oe))oer=ek . . ifctp=>bandb+n=a,and 0 otherwise.

i

o cio(eloek)y=ek . ifctp=>band c+n+p=a,and 0 otherwise.

; ¥ k _ ; ¥ k . . .
Consequently, (e;, oe),) oey = e;, o (e], oey) and the product o is associative. [
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