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ABSTRACT. These leture notes ontain a review of the results of [15, 16,

17, 19℄ about ombinatorial Dyson-Shwinger equations and systems. Suh an

equation or system generates a subalgebra of a Connes-Kreimer Hopf algebra of

deorated trees, and we shall say that the equation or the system is Hopf if the

assoiated subalgebra is Hopf. We �rst give a lassiation of the Hopf ombinato-

rial Dyson-Shwinger equations. The proof of the existene of the Hopf subalgebra

uses pre-Lie strutures and is di�erent from the proof of [15, 17℄.

We onsider afterwards systems of Dyson-Shwinger equations. We give a de-

sription of Hopf systems, with the help of two families of speial systems (quasi-

yli and fundamental) and four operations on systems (hange of variables, di-

latation, extension, onatenation). We also give a few result on the dual Lie

algebras. Again, the proof of the existene of these Hopf subalgebras uses pre-Lie

strutures and is di�erent from the proof of [16℄.
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Introdution

In Quantum Field Theory, the Green's funtions of a given theory are developed

as a series in the oupling onstant, indexed by the set of Feynman graphs of the

theory. These series an be seen at the level of the algebra of Feynman graphs.

They satisfy then a ertain system of ombinatorial Dyson-Shwinger equations.

These equations use a ombinatorial operator of insertion, and they allow to in-

dutively ompute the homogeneous omponents of the Green's funtions lifted at

the level of Feynman graphs [2, 26, 28, 29, 30, 31, 32, 33, 40, 41, 42, 44℄. As the

Feynman graphs are organised as a Hopf algebra, a natural question is to know

if the graded subalgebra generated by the Green's funtions is Hopf or not. This

problem, and related questions about the nature of the obtained Hopf subalgebras,

are the main objet of study in [15, 16, 17, 19℄.
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Here is an example oming from Quantum Eletrodynamis [44℄, see the �rst

setion of this text for more details. For any Feynman graph γ, the operator Bγ
is ombinatorially de�ned by the operation of insertion into γ. The system holds

on three series in Feynman graphs, denoted by , and . After a

trunation, it is given by the following equations:

= Bγ1

(
(1 + )3

(1− )2(1 − )

)

,

= Bγ2

(
(1 + )2

(1− )2

)

, = Bγ3

(
(1 + )2

(1 − )(1 − )

)

,

with γ1 = , γ2 = , and γ3 = .

The insertion operators appearing in this system are 1-oyles of a ertain

subspae of a quotient of the Hopf algebra of Feynman graphs, that is to say for

all x in this subspae:

∆ ◦Bγ(x) = Bγ(x)⊗ 1 + (Id⊗Bγ) ◦∆(x).

This allows to lift the problem to the level of rooted trees. Replaing insertion by

grafting of trees on a root, we obtain a system in the Hopf algebra of rooted trees

deorated by {1, 2, 3}:

x1 = B1

(
(1 + x1)

3

(1− x2)(1− x3)2

)

,

x2 = B2

(
(1 + x1)

2

(1 − x3)2

)

, x3 = B3

(
(1 + x1)

2

(1 − x2)(1 − x3)

)

,

where, for all trees t1, . . . , tn, Bi(t1 . . . tn) is the tree obtained by grafting t1, . . . , tn
on a ommon root deorated by i. The graph of dependene of this system is:
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This system has a unique solution X = (x1, x2, x3). Here are the omponents of

degree ≤ 3 of X :
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It an be proved that the subalgebra generated by the homogeneous omponents
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of x1, x2 and x3 is a Hopf subalgebra. In fat, this system is an example of a

fundamental system (de�nition 51). The aim of this text is to present the lassi-

�ation of the systems of ombinatorial Dyson-Shwinger equations whih give a

Hopf subalgebra. We shall limit ourselves to systems with only one 1-oyle per
equation. More general ases are studied in [18℄; it turns out that if the orre-

sponding subalgebra is Hopf, then the trunation of the equations to 1-oyle of
degree 1 allows to get bak the whole system.

We begin with a single equation x = B(f(x)), where f is a formal series in one

indeterminate, with f(0) = 1. The question is answered in the third and fourth

setions. The subalgebra generated by the omponents of the solution is Hopf,

if, and only if, f is onstant, or f = eαh for a ertain α, or f = (1 − αβh)−1/β

for a ertain ouple (α, β), with β 6= 0 (theorem 24). The diret sense is proved

using a "leaf-utting" result (proposition 21), applied on two families of trees,

the ladders

q , q
q

, q
q

q

, q
q

q

q

. . . and the orollas

q , q
q

, q∨
qq

, q∨
qq q

. . .. The other sense uses a
omplementary struture on the dual of the Hopf algebra of trees HCK . By the

Cartier-Quillen-Milnor-Moore theorem, it is an enveloping algebra. The assoiated

Lie algebra is based on trees, and is in fat a free pre-Lie algebra (de�nition 6 and

theorem 8), that is to say it has a (non-assoiative) produt ◦ suh that:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

The Lie braket is given by [x, y] = x ◦ y − y ◦ x. For example, the spae of

Feynman graphs is a pre-Lie algebra, with a produt de�ned by insertions. In

the ase of trees, the pre-Lie produt is de�ned by graftings. This pre-Lie alge-

bra is denoted by gT . Another espeially interesting pre-Lie algebra is the Faà

di Bruno Lie algebra gFdB, related to the group of formal di�eomorphisms of

the line. As gT is a free pre-Lie algebra (theorem 8), this allows to de�ne mor-

phisms φλ from gT to gFdB (proposition 14). This morphism is omputed with

the help of an expliit onstrution of the enveloping algebra of a pre-Lie algebra

(theorem 9, applied in propositions 10 and 12). Dually, we obtain a Hopf alge-

bra morphism from the Faà di Bruno Hopf algebra HFdB to the Connes-Kreimer

Hopf algebra, and the image of the generators of HFdB, whih are linear spans of

trees, satisfy a Dyson-Shwinger equation (proposition 16); as a onsequene, this

Dyson-Shwinger equation is Hopf. This result is proved in [15, 17℄ in a di�erent

way, with the help of an identity on a family of symmetri polynomials whih is

not used here.

The ase of systems of Dyson-Shwinger equations (brie�y, SDSE) is studied in

the last four setions. We �rst generalize the results on a single equation, espeially

the "leaf-utting" result and its onsequenes (proposition 29 and lemma 30). Four

operations are introdued on SDSE, hange of variables, dilatation, extension and

onatenation. The latter leads to the notion of onneted SDSE, that is to say

a SDSE whih annot be obtained by a onatenation of two smaller ones. The

main objets of study are now onneted systems. Another tool is also introdued,

the graph of dependene. A graph-theoretial study proves that this graph always
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ontains an oriented yle (proposition 41). A study of SDSE whose graph is an

oriented yle allows to separate the SDSE into two lasses, the quasi-yli and

the fundamental ase. The quasi-yli ase is entirely desribed in theorem 45.

The fundamental ase is the objet of the seventh setion. We �rst introdue the

notion of the level of a vertex of the graph of dependene. This notion de�nes

a sort of gradation of the graph (proposition 48). A study of verties, level by

level, �nally allows to desribe all fundamental SDSE. As a onlusion, any SDSE

whih gives a Hopf subalgebra is obtained from the onatenation of quasi-yli

or fundamental systems, after the appliation of a dilatation, a hange of variables,

and a �nite number of extensions.

This text is organised as follows. The �rst setion of the text deals with Feyn-

man graphs. The algebrai strutures (produt, oprodut, insertions) on Feyn-

man graphs of a given theory are introdued here, and this leads to the �rst

example of a system of Dyson-Shwinger equations, oming from Quantum Ele-

trodynamis. The seond setion gives the alternative Hopf algebras in quantum

�eld theory, namely the Connes-Kreimer Hopf algebras of deorated rooted trees.

Their universal property (theorem 5) allows to de�ne Hopf algebra morphisms from

rooted trees to Feynman graphs. The role of the insertion operators on graphs are

played for trees by the grafting operators, and Dyson-Shwinger equations are

lifted to the level of trees.

The third setion adopts the dual point of view. We give the pre-Lie produts

on gT and gFdB, and onstrut the pre-Lie morphism φλ from gT to gFdB with the

help of an expliit desription of their enveloping algebra. Dually, the image under

φ∗λ of the generators of the Faà di Bruno Hopf algebra satis�es a Dyson-Shwinger

equation (proposition 16).

Single Dyson-Shwinger equations are reviewed in the fourth setion. Proposi-

tion 21 gives a ombinatorial riterion of "leaf-utting" to know if the solution of

the onsidered Dyson-Shwinger equation is Hopf. This riterion and proposition

16 for the other diretion, imply the main theorem for Dyson-Shwinger equations

(theorem 24).

The study of systems of Dyson-Shwinger equations is ahieved in the last se-

tions. The �fth setion introdues the tool of "leaf-utting" for systems (lemma

30), and the four operations on Hopf SDSE. The oriented graph of dependene of

the equations of a Hopf SDSE is also studied here. The next setion introdues

quasi-yli SDSE, and ahieves their desription. The seond family of SDSE

(fundamental ones) is studied in the seventh setion. In partiular, the notion of

level is introdued, and the verties are separated aording to their level being 0,
1, or ≥ 2. The last setion gives a few more results and omments on fundamental

SDSE, espeially on the dual pre-Lie algebras, as well as several examples found

in the literature.

Thanks. I would like to thank the organizers of the meeting DSFdB2011,

espeially for the opportunity of giving a mini-ourse on the algebrai aspets of

Dyson-Shwinger equations. The leture notes of this mini-ourse are the frame-

work of the present text. I would also like to thank both referees, for their useful
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and relevant omments whih help me to greatly improve the quality of this do-

ument.

Notations.

(1) Let K be a ommutative �eld of harateristi zero. All the vetor spaes,

algebras, oalgebras, Lie algebras. . . of this text will be taken over K.

(2) We use the onvention N = {0, 1, 2, 3, . . .} and N∗ = {1, 2, 3, . . .}.

1 Feynman graphs

1.1 De�nition

For more preise results and de�nitions, see [8, 44℄ and more generally the refer-

enes listed in the introdution. Let us onsider a quantum �eld theory. In this

theory, a ertain number of partiles interat in di�erent possible ways. The pos-

sible on�gurations of interations are desribed by the Feynman graphs of the

theory. The graphs we shall onsider here are desribed in the following way:

(1) There are several types of edges (one for eah partile of the theory).

(2) The verties an be external or internal.

(a) There are at least two internal verties.

(b) If a vertex v is external, it is related to a single edge, whih is said to

be external. The other edges are said to be internal.

() There are several types of internal verties (one for eah interation of

the theory).

(3) The graph should be onneted and 1-partile irreduible, that is to say that

it remains onneted if one deletes any internal edge.

(4) The number of external verties (or external edges) belongs to a ertain set

of integers (ondition of global divergene in Renormalization).

The number of loops of a Feynman graph γ is:

l(γ) = ♯{internal edges of γ} − ♯{internal verties of γ}+ 1.

The ondition of 1-partile irreduibility implies that l(γ) ≥ 1 for all Feynman

graphs γ.

Example. We take in this setion the example of Quantum Eletrodynamis

(QED). In this theory:

(1) There are two types of partiles, eletrons and photons. So there are two

types of edges: eletron and photon .

(2) There is one interation: an eletron an apture or ejet a photon. So there

is one type of internal vertex .
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(3) The number of external edges is equal to 2 or 3.

Here are examples of Feynman graphs in QED:

, , , ,

, , , , , , . . .

Remark. Feynman graphs are often onsidered without external verties. The

external edges are then onsidered as half-edges ; The internal edges are the union

of two half-edges. A Feynman subgraph of γ is then a set of half-edges of γ whih

forms a Feynman graph.

1.2 Insertion

Let us �x a QFT. For this theory, the external strutures of the Feynman graphs

orrespond to the di�erent types of verties and edges of the theory. For example,

in QED, there are three possible external strutures:

(1) Two eletron edges, orresponding to the edge .

(2) Two photon edges, orresponding to the edge .

(3) One photon and two eletron edges, orresponding to the vertex .

Let γ and γ′ be two Feynman graphs. Inserting γ′ into γ onsists in replaing

in γ an internal edge or vertex orresponding to the external struture of γ′ by γ′.
For example, in QED:

(1) There is one possible insertion of in . The result is .

(2) There are two possible insertions of in . Both of them give

.

(3) There are three possible insertions of in itself. The results are ,

and .

More generally, one an insert a family γ1, . . . , γk of Feynman graphs into a

Feynman graph γ: one inserts γ1, . . . , γn in γ in suh a way that the set of internal

edges and verties of the opies of γ1, . . . , γk are disjoint. It is not di�ult to prove

that if Γ is obtained by the insertion of γ1, . . . , γn in γ, then:

l(Γ) = l(γ) + l(γ1) + . . .+ l(γk).

Let us desribe the "dual" operation. For any Feynman graph Γ, let γ =
γ1 . . . γk be a family of disjoint Feynman subgraphs of Γ. The ontration of Γ by

γ1, . . . , γk is the graph obtained from Γ by replaing any γi be an edge or a vertex

orresponding to its external struture. It is denoted by Γ/γ. Moreover:

l(Γ) = l(γ1) + . . .+ l(γk) + l(Γ/γ) = l(γ) + l(Γ/γ).
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1.3 Algebrai strutures on Feynman graphs

See [11, 31, 35, 36, 44℄. Let us onsider the free ommutative algebra generated

by the set of Feynman graphs of a given theory. We denote it by HFG, without
preising the onsidered QFT. A basis of this algebra is given by monomials in

Feynman graphs, that is to say disjoint unions of Feynman graphs, or equivalently

graphs suh that every onneted omponent is a Feynman graph. The unit is the

empty graph 1. This algebra is given a oassoiative oprodut. For any Feynman

graph Γ:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ

γ ⊗ Γ/γ,

where the sum is over all the family of disjoint Feynman subgraphs of Γ, not empty

nor equal to Γ. With this oprodut, HFG is a Hopf algebra, graded by the num-

ber of loops.

For example, in QED:

∆( ) = ⊗ 1 + 1⊗ + ⊗ ,

∆( ) = ⊗ 1 + 1⊗ + 2 ⊗ .

Remark. For any Feynman graph Γ, the right fators in the tensor produts

appearing in ∆(Γ) are 1 or Feynman graphs, wherear the left fators an be prod-

uts of several Feynman graphs. This is an example of left ombinatorial Hopf

algebra [34℄. As a onsequene, the spae of primitive elements of the dual of

HFG inherits a left pre-Lie produt (see de�nition 6 below); a basis of this pre-Lie

algebra is given by the set of Feynman graphs and the pre-Lie produt is given by

insertion, see [29, 31℄.

For this oprodut, any Feynman graph with no proper Feynman subgraph is

primitive. For example, the following Feynman graphs are primitive in QED:

, , ,

Let us take a primitive Feynman graph γ. The insertion operator Bγ sends a

monomial γ1 . . . γk to the sum of all possible insertions of γ1, . . . , γk into γ, up to

symmetries oe�ients we won't detail here (see [44℄). In partiular, Bγ(1) = γ.
Moreover, Bγ is homogeneous for the number of loops, of degree l(γ).

1.4 Dyson-Shwinger equations

See [2, 30, 33, 44℄. The Green's funtions of the QFT are developped as a series

in the oupling onstant x (we assume here it is equal to 1), indexed by the set of

Feynman graphs of the theory. To any Feynman graph is attahed a salar, by the

Feynman rules and the proedure of renormalisation, [8, 10, 11, 12℄. At the level

of the Hopf algebra of Feynman graphs, we have then to onsider the in�nite sum

of all Feynman graphs, with a �xed external struture, up to ertain symmetry



9

oe�ients. Is there an easy way to desribe these series?

Let us onsider the example of QED. There are three possible external stru-

tures, so we have to onsider three series, denoted here by , , and

. Let us onsider a Feynman graph Γ appearing in . It an be ob-

tained by the insertions of ertain γ1, . . . , γk into a primitive Feynman graph with

an external struture of type . So an be written as:

=
∑

γ

Bγ (fγ ( , , )) ,

where the sum runs over all the primitive Feynman graphs with a external

struture, and fγ is a formal series in three indeterminates. Let us now determine

fγ . For example, let us take γ = .

(1) This graph has three verties , and we an insert 1 + at any of

these verties.

(2) It has two internal edges , and we an insert 1 + + 2 + . . .
at any of these edges.

(3) It has one internal edge , and we an insert 1 + + 2 + . . .
at this edge.

So:

fγ( , , ) = (1 + )3

(
∞∑

k=0

k

)2( ∞∑

k=0

k

)

=
(1 + )3

(1− )2(1− )
.

Treating any primitive Feynman graph in this way, one obtains:

=
∑

γ

Bγ

(
(1 + )1+2l(γ)

(1− )2l(γ)(1− )l(γ)

)

. (1.1)

Let us then onsider a graph appearing in . It an be obtained by an

insertion in . As this graph has two verties and two internal edges

, this gives:

= B

(
(1 + )2

(1 − )2

)

. (1.2)

Similarly, we obtain for the last series:

= B

(
(1 + )2

(1− )(1− )

)

. (1.3)

The three equations (1.1), (1.2) and (1.3) are the Dyson-Shwinger equations of

the QFT. They allow to indutively ompute the irreduible omponents (for the

number of loops) of , and . For a more "physial" desription,

see [44℄ (we did not pay here attention to signs and we took the oupling onstant
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x equal to 1).

The question we shall answer here is if the Hopf algebra generated by these

homogeneous omponents is Hopf or not. We restrit ourselves to the ase where

a single insertion operator, homogeneous of degree 1, appears in any of these

equations (this the ase for (1.2) and (1.3) only; we should have to trunate (1.1)

to apply the obtained result; see [18℄ for more details). For this, we shall use trees

instead of Feynman graphs. The key point is the following:

Proposition 1. [2, 29℄ In a suitable subspae of a quotient of HFG, we an

assume that the operators appearing in the Dyson-Shwinger equations satisfy the

following assertion: for any x,

∆(L(x)) = L(x)⊗ 1 + (Id⊗ L) ◦∆(x).

2 Rooted trees

We shall replae Feynman graphs by rooted trees and insertion operators by graft-

ing operators, with the help of the universal property of the Hopf algebra of rooted

trees (theorem 5).

2.1 The Connes-Kreimer Hopf algebra

Let T be the set of rooted trees :

T =

{

q , q
q

, q∨
qq

, q
q

q

, q∨
qq q

, q∨
qq

q

,
q∨
qq

q , q
q

q

q

. . .

}

Note that rooted trees are onsidered unordered; for example,

q∨
qq

q

= q∨
qq

q

.

The Connes-Kreimer Hopf algebra [10, 13℄ is the free ommutative algebra

generated by T . As a onsequene, a basis of HCK is given by the set of rooted

forests F :

F = {1, q , q
q

, q q , q∨
qq

, q
q

q

, q
q

q , q q q , q∨
qq q

, q∨
qq

q

,
q∨
qq

q , q
q

q

q

, q∨
qq

q , q
q

q

q , q
q

q

q

, q
q

q q , q q q q , . . .}.

The produt of two forests is their disjoint union. The unit is the empty forest 1.

We give HCK a oprodut, with the help of admissible uts :

De�nition 2. Let t ∈ T . An admissible ut of t is a non-empty ut suh that

every downward path in the tree meets at most one ut edge. The set of admissible

uts of t is denoted by Adm(t). If c is an admissible ut of t, one of the trees



11

obtained after the appliation of c ontains the root of t: we shall denote it by

Rc(t). The produt of the other trees will be denoted by P c(t).

The oprodut is given for any t ∈ T by:

∆(t) = t⊗ 1 + 1⊗ t+
∑

c∈Adm(t)

P c(t)⊗Rc(t).

The ounit ε sends any non-empty forest to 0 and the empty forest 1 to 1.

Examples.

∆( q∨
qq q

) = q∨
qq q

⊗ 1 + 1⊗ q∨
qq q

+ 3 q ⊗ q∨
qq

+ 3 q q ⊗ q

q

+ q q q ⊗ q ,

∆( q∨
qq

q

) = q∨
qq

q

⊗ 1 + 1⊗ q∨
qq

q

+ q

q

q ⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

+ q q ⊗ q

q

+ q ⊗ q∨
qq

,

∆(
q∨
qq

q ) =
q∨
qq

q ⊗ 1 + 1⊗
q∨
qq

q + q∨
qq

⊗ q + q q ⊗ q

q

+ 2 q ⊗ q

q

q

,

∆( q
q

q

q

) = q

q

q

q

⊗ 1 + 1⊗ q

q

q

q

+ q

q

q

⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

.

Moreover, this Hopf algebra is graded by the number of verties of the forests.

For any F ∈ F , we shall denote by |F | its degree, that is to say the number of

verties of F .

The following operator will replae the insertion operators:

De�nition 3. The operator B : HCK −→ HCK is the linear map whih sends

any rooted forest F = t1 . . . tn to the rooted tree obtained by grafting the trees

t1, . . . , tn on a ommon root.

For example, B( q
q

q) = q∨
qq

q

. Clearly, B indues a bijetion of degree 1 from F
to T .

Notations. We shall need two families of speial rooted trees: for all n ≥ 1,

(1) ln = Bn(1) is the ladder of degree n: l1 = q , l2 = q

q

, l3 = q

q

q

, l4 = q

q

q

q

. . .

(2) cn = B( qn−1) is the orolla of degree n: c1 = q , c2 = q

q

, c3 = q∨
qq

, c4 = q∨
qq q

. . .

2.2 Deorated rooted trees

In order to treat Dyson-Shwinger systems, we will use deorated rooted trees.

We �x a (nonempty) set of deorations I. A deorated rooted tree is a pair (t, d),
where t is a rooted tree and d is a map from the set of verties of t to I. The set
of rooted trees deorated by I is denoted by T I . For example, here are the rooted

trees deorated by D with n ≤ 4 verties:

qa ; a ∈ I, q

q

a
b (a, b) ∈ I2; q∨

qq

a

cb

= q∨
qq

a

bc

, q

q

q

a
b

c

, (a, b, c) ∈ I3;
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q∨
qq q

a

d
c

b

= q∨
qq q

a

c
d

b

= . . . = q∨
qq q

a

b
c

d

, q∨
qq

q

a

db

c

= q∨
qq

q

a

bd

c

,
q∨
qq

q

a

b

dc

=
q∨
qq

q

a

b

cd

, q

q

q

q

a
b

c
d

, (a, b, c, d) ∈ I4.

The onstrution of HCK is generalized to deorated rooted trees, and we

obtain in this way a Hopf algebra HICK . A basis of HICK is given by the set of

deorated forests, denoted by FI . Here is an example of the oprodut:

∆( q∨
qq

q

d

cb

a

) = q∨
qq

q

d

cb

a

⊗1+1⊗ q∨
qq

q

d

cb

a

+ q

q

b
a ⊗ q

q

d
c + qa⊗ q∨

qq

d

cb

+ q c⊗ q

q

q

d
b

a

+ q

q

b
a
q c⊗ qd+ qa q c⊗ q

q

d
b .

For any i ∈ I, we de�ne the operator Bi : HCK −→ HCK , sending a deorated

rooted forest F to the deorated tree obtained by grafting the trees of F on a

ommon root deorated by i. For example, Ba( q b q

q

c
d ) = q∨

qq

q

a

cb

d

.

Proposition 4. For all i ∈ I, for all x ∈ HICK :

∆ ◦Bi(x) = Bi(x) ⊗ 1 + (Id⊗Bi) ◦∆(x).

Proof. If x is a forest, by a study of the admissible uts of the trees of x and the

admissible uts of Bi(x).

Remark. In other words, Bi is a 1-oyle for a ertain ohomology of oalge-

bras [10℄, alled the Cartier-Quillen ohomology, dual to the Hohshild homology

for algebras.

Theorem 5 (Universal property). Let A be a ommutative Hopf algebra and let

Li be a 1-oyle of A for all i ∈ I. There exists a unique Hopf algebra morphism

φ : HICK −→ A suh that φ ◦Bi = Li ◦ φ for all i ∈ I.

Proof. We de�ne φ(F ) for any deorated forest F indutively on the degree of F
in the following way:

(1) φ(1) = 1.

(2) If F is not a tree, let us denote F = t1 . . . tk, with k ≥ 2 for trees t1, . . . , tk.
We put φ(F ) = φ(t1) . . . φ(tk).

(3) If F is a tree, there exists a unique i ∈ I and a unique forest G suh that

F = Bi(G). We put φ(F ) = Li ◦ φ(G).

This is well-de�ned, as A is ommutative: in the seond point, φ(F ) does not

depend on the way to write F as a produt of trees (that is to say up to the

order of the appearing trees). From the �rst and seond point, it is an algebra

morphism. From the third point, φ ◦ Bi = Li ◦ φ for all i ∈ I. Let us now prove

that it is a oalgebra morphism. We put:

A = {x ∈ HICK | (φ⊗ φ) ◦∆(x) = ∆ ◦ φ(x)}.

As φ and ∆ are algebra morphisms, A is a subalgebra of HICK . Let us take x ∈ A.
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For all i ∈ I:

(φ⊗ φ) ◦∆(Bi(x)) = (φ⊗ φ)(Bi(x)⊗ 1 + (Id⊗Bi) ◦∆(x))

= φ ◦Bi(x) ⊗ 1 + (φ⊗ φ ◦Bi) ◦∆(x)

= Li ◦ φ(x) ⊗ 1 + (Id⊗ Li) ◦ (φ⊗ φ) ◦∆(x)

= Li(φ(x)) ⊗ 1 + (Id⊗ Li) ◦∆(φ(x))

= ∆(Li(x)).

So Li(x) ∈ A, and A is stable under Bi for all i. It is not di�ult to show then

that A ontains any deorated forests, so is equal to HICK . Hene, φ is a Hopf

algebra morphism. It is not di�ult to prove that ε ◦ φ = εA.

Remarks.

(1) The �rst part of this proof means that (HCK , B) is an initial objet in a

ertain ategory, see [37, 43℄ for appliations.

(2) If Bγ is an insertion operator ofHFG, homogeneous of degree 1, from theorem

5 there exists a Hopf algebra morphism φγ : HCK −→ HFG, suh that

φγ ◦ B = Bγ ◦ φγ . It is not di�ult to prove that φγ is homogeneous of

degree 1.

(3) If we onsider a Dyson-Shwinger equation (E) : X = Bγ(f(X)) in HFG,
it an be lifted to a Dyson-Shwinger equation (E′) : X = B(f(X)) in

HCK . Moreover, if X is the solution of (E′), then the solution of (E) is

φγ(X). As a onsequene, if the homogeneous omponents of X generate a

Hopf subalgebra of HCK , the homogeneous omponents of the solution of

(E) generate a Hopf subalgebra of HFG. This result is easily extended to

Dyson-Shwinger systems.

(4) The onstrution of the morphism φγ an easily be extended when we on-

sider several insertion operators, replaing trees by deorated trees, see [27℄

for a onstrution of this kind.

2.3 Completion of a graded Hopf algebra

In order to treat Dyson-Shwinger equations, we shall onsider series in trees,

instead of polynomials in trees, whih are elements of HCK . Let us give a general

frame to this purpose. Let H be a graded Hopf algebra. We de�ne a valuation

on H by:

val(a) = max






n ∈ N | a ∈

⊕

k≥n

Ak






.

In partiular, val(0) = +∞. We de�ne a distane on H by d(a, b) = 2−val(a−b).
This metri spae is not omplete. Its ompletion is denoted by H . It is equal, as

a vetor spae, to

∞∏

n=0

Hn.
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The produt of H , being homogeneous, is ontinuous, so an be extended as a

produt from H⊗H to H . The oprodut an also be extended from H to H ⊗H .

Note that H is not in general a Hopf algebra, as H ⊗H ( H ⊗H (exept if H is

�nite-dimensional).

For example, the elements of HCK an be uniquely written as

∑

F∈F

aFF , where

the oe�ients aF are salars.

3 Pre-Lie algebras

We already mentioned that the spae of Feynman graphs is given a pre-Lie algebra

struture by insertion. A similar result is here desribed for rooted trees, and we

apply a freeness result (theorem 8) to the Faà di Bruno pre-Lie algebra in order to

obtain solutions of Dyson-Shwinger equations. As a onsequene, the subalgebras

assoiated to the Dyson-Shwinger equations of proposition 16 are Hopf. This was

proved in a di�erent way in [15, 17℄.

3.1 De�nition and examples

De�nition 6. A (left) pre-Lie algebra (or left-symmetri algebra, or Vinberg

algebra) is a pair (g, ◦), where g is a K-vetor spae and ◦ : g⊗ g −→ g, with the

following axiom: for all x, y, z ∈ g,

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

Remark. A right pre-Lie algebra satis�es:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (x ◦ z) ◦ y − x ◦ (z ◦ y).

If (g, ◦) is right pre-Lie, then (g,−◦op) is left pre-Lie. In the sequel all the pre-Lie

algebras will be left, and we shall write everywhere "pre-Lie algebra" instead of

"left pre-Lie algebra".

Proposition 7. Let (g, ◦) be a pre-Lie algebra. Then [x, y] = x ◦ y − y ◦ x
de�nes a Lie braket on g.

Proof. This braket is obviously skew-symmetri. The Jaobi identity is proved

by a diret omputation.

Remarks.

(1) The pre-Lie axiom an be reformulated as [x, y] ◦ z = x ◦ (y ◦ z)− y ◦ (x ◦ z).
In other words, (g, ◦) is a left-module over (g, [−,−]).

(2) There exists other types of produts whih indue a Lie braket by skew-

symmetrization: see [21℄ for other examples.
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Examples.

(1) Assoiative algebras are obviously pre-Lie.

(2) Let gFdB = V ect(ei | i ≥ 1) and let λ ∈ K. One de�nes a produt on gFdB

by ei ◦ ej = (j + λ)ei+j . For all i, j, k ≥ 1:

(ei ◦ ej) ◦ ek − ei ◦ (ej ◦ ek)

= (j + λ)(k + λ)ei+j+k − (k + λ)(j + k + λ)ei+j+k

= −k(k + λ)ei+j+k.

This expression is symmetri in i, j, so gFdB is pre-Lie. The assoiated Lie

braket is given by [ei, ej ] = (j − i)ei+j , so does not depend of λ. This Lie
algebra is the Faà di Bruno Lie algebra. The graded dual of the enveloping

algebra of gFdB is known as the Faà di Bruno Hopf algebra or Hopf algebra

of formal di�eomorphisms, see [9, 10℄ for the link with the Hopf algebra of

trees.

(3) Let gT be the vetor spae generated by the set T of rooted trees. We de�ne

a produt on gT by:

t ◦ t′ =
∑

s′ vertex of t′

grafting of t over s′.

For example,

q

q

◦ q∨
qq

= q∨
qq q

q

+ q∨
qq

q

q

+ q∨
qq

q

q

= q∨
qq q

q

+2 q∨
qq

q

q

. This produt is alled

natural growth [3, 13℄. It is indeed a pre-Lie produt: if t, t′, t′′ are three

rooted trees,

t ◦ (t′ ◦ t′′)− (t ◦ t′) ◦ t′′ =
∑

s′′∈t′′, s′∈t′∪t′′

grafting of t′ over s′′, t over s′

−
∑

s′′∈t′′, s′∈t′

grafting of t′ over s′′, t over s′

=
∑

s′,s′′∈t′′

grafting of t over s′, t′ over s′′.

This is symmetri in t, t′, so ◦ is pre-Lie. This onstrution is easily gener-

alized to rooted trees deorated by a set I. The obtained pre-Lie algebra is

denoted by gT I . For example, if a, b, c, d ∈ I:

qa ◦ q∨
qq

b

dc

= q∨
qq q

b

d
c

a

+ q∨
qq

q

b

dc

a

+ q∨
qq

q

b

dc

a

.

Theorem 8. [7℄ gT is, as a pre-Lie algebra, freely generated by

q
, that is to

say: if g is a pre-Lie algebra and if x ∈ g, there exists a unique pre-Lie algebra

morphism from gT to g sending

q
to x. More generally, for any set I, the pre-Lie

algebra gT I of rooted trees deorated by I is freely generated by the elements

q i ,

i ∈ I.
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Other examples of pre-Lie algebras are known, see [38℄ for a list of examples,

inluding vetor �elds on an a�ne variety. Generalization of the Faà di Bruno

pre-Lie algebras are desribed in [1℄.

3.2 Enveloping algebra of a pre-Lie algebra

Let V be a vetor spae and let S(V ) be the symmetri algebra generated by V . It
is a oommutative Hopf algebra, with the oprodut de�ned by∆(v) = v⊗1+1⊗v
for all v ∈ V . So, if v1, . . . , vn ∈ V :

∆(v1 . . . vn) =
∑

I⊆{1,...,n}

vI ⊗ v{1,...,n}−I ,

where for all I ⊆ {1, . . . , n}, vI is the produt of the vi's, i ∈ I. The underlying

oalgebra is denoted by coS(V ).

The Poinaré-Birkho�-Witt theorem implies that the oalgebrasU(g) and coS(g)
are isomorphi: hoosing a basis (vi)i∈I of g indexed by a totally ordered set I, we
obtain a oalgebra isomorphism sending the element of the Poinaré-Birkho�-Witt

va1i1 . . . v
an
in
∈ U(g), with i1 < . . . < in in I, to va1i1 . . . v

an
in
∈ S(g). Exept if g is

abelian, it is not an algebra morphism; moreover, this onstrution depends of the

hoie of the basis of g, espeially of the total order on the set of indies I.

When g is pre-Lie, one an desribe a "anonial" oalgebra isomorphism from

U(g) to coS(g). For this, we an give coS(g) a new produt denoted by ⋆, de�ned
by indution on g with the help of the pre-Lie produt g. This makes coS(g) a
Hopf algebra, and it is now isomorphi to U(g). Here are the formulas de�ning ⋆:

Theorem 9. [20, 38℄ Let (g, ◦) a pre-Lie algebra. Let S+(g) the augmentation

ideal of S(g). One an extend the produt ◦ to S(g) in the following way: if

a, b, c ∈ S+(g), x ∈ g,







a ◦ 1 = ε(a),
1 ◦ b = b,

(xa) ◦ b = x ◦ (a ◦ b)− (x ◦ a) ◦ b,
a ◦ (bc) =

∑
(a′ ◦ b)(a′′ ◦ c).

One then de�nes a produt on S+(g) by a ⋆ b =
∑
a′(a′′ ◦ b), with the Sweedler

notation ∆(a) =
∑
a′ ⊗ a′′. This produt is extended to S(g), making 1 the unit

of ⋆. With its usual oprodut, S(g) is a Hopf algebra, isomorphi to U(g) via the

isomorphism:

Φg :

{
U(g) −→ (S(g), ⋆)
v ∈ g −→ v.

The proof in [38℄ is indutive. In partiular, the fat that ◦ is well-de�ned (in

the seond point, the hoie of the �rst letter x in the ommutative word xa is ar-

bitrary) uses the pre-Lie axiom. The omputations are diret but rather omplex.
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Examples. If x, y, z, t ∈ g :

x ◦ (yz) = (x ◦ y)z + y(x ◦ z)

(xy) ◦ z = x ◦ (y ◦ z)− (x ◦ y) ◦ z

x ◦ (yzt) = (x ◦ y)zt+ y(x ◦ z)t+ yz(x ◦ t)

(xy) ◦ (zt) = (x ◦ (y ◦ z))t+ (y ◦ z)(x ◦ t) + (x ◦ z)(y ◦ t)

+z(x ◦ (y ◦ t))− ((x ◦ y) ◦ z)t− z((x ◦ y) ◦ t)

(xyz) ◦ t = x ◦ (y ◦ (z ◦ t))− x ◦ ((y ◦ z) ◦ t)− y ◦ ((x ◦ z) ◦ t)

+(y ◦ (x ◦ z)) ◦ t− z ◦ ((x ◦ y) ◦ t) + (z ◦ (x ◦ y)) ◦ t.

Remarks.

(1) An easy indution proves that for all n ≥ 0, g ◦Sn(g) ⊆ Sn(g). So (Sn(g), ◦)
is a g-module for all n ≥ 0. Moreover, (Sn(g), ◦) is isomorphi to Sn(g, ◦) as
a g-module (4th point).

(2) (S+(g), ◦) is not pre-Lie. For example, in gT :

q q ◦ q = q ◦ ( q ◦ q)− ( q ◦ q) ◦ q = q ◦ q

q

− q

q

◦ q = q∨
qq

+ q

q

q

− q

q

q

= q∨
qq

,

so:

q q ◦ ( q ◦ q) = q q ◦ q

q

= q ◦ ( q ◦ q

q

)− ( q ◦ q) ◦ q

q

= q ◦ ( q∨
qq

+ q

q

q

)− q

q

◦ q

q

= q∨
qq q

+ 2 q∨
qq

q

+ q∨
qq

q

+
q∨
qq

q + q

q

q

q

− q∨
qq

q

− q

q

q

q

= q∨
qq q

+ 2 q∨
qq

q

+
q∨
qq

q ,

( q q ◦ q) ◦ q = q∨
qq

◦ q

=
q∨
qq

q ,

q ◦ ( q q ◦ q) = q ◦ q∨
qq

= q∨
qq q

+ 2 q∨
qq

q

,

( q ◦ q q) ◦ q = (( q ◦ q) q + q( q ◦ q)) ◦ q

= 2 q

q

q ◦ q

= 2 q∨
qq

q

.

So

q q ◦ ( q ◦ q)− ( q q ◦ q) ◦ q − q ◦ ( q q ◦ q) + ( q ◦ q q) ◦ q = 2 q∨
qq

q

6= 0.

Remark. It turns out that S≥n(g) is a left ideal for ⋆. In partiular, S≥2(g)
is a left ideal suh that S+(g) = g ⊕ S≥2(g). One dedues that U(g) ontains a
left ideal I suh that U+(g) = g ⊕ I. Dually, we reover the notion of left-sided

ombinatorial Hopf algebra [34℄.
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3.3 Examples

Let us start by gT . A basis of S(gT ) is given by the set of rooted forests F .

Proposition 10. Let F = t1 . . . tn, G ∈ F . Then:

F ◦G =
∑

s1,...,sn∈G

grafting of t1 over s1,. . ., tn over sn.

Proof. Indutively on n. Let us start with n = 1. We put G = s1 . . . sm and we

proeed indutively on m. If m = 1, it is the de�nition of ◦ on gT . Let us assume

the result at rank m− 1. We put G′ = s1 . . . sm−1. Then:

t1 ◦G = t1 ◦ (G
′sm)

= (t1 ◦G
′)sm +G′(t1 ◦ sm)

=
∑

s∈G′

(grafting of t1 over s)sm +
∑

s∈sm

G′(grafting of t1 over s)

=
∑

s∈G

grafting of t1 over s.

So the result is true at rank 1. Let us assume it at rank n−1. We put F ′ = t2 . . . tn.
Then:

F ◦G = t1 ◦ (F
′ ◦G)− (t1 ◦ F

′) ◦G

=
∑

s2,...,sn∈G

∑

s∈F ′∪G

grafting of t2 over s2,. . ., tn over sn, t1 over s

−
∑

s2,...,sn∈G

∑

s∈F ′

grafting of t2 over s2,. . ., tn over sn, t1 over s

=
∑

s2,...,sn∈G

∑

s∈G

grafting of t2 over s2,. . ., tn over sn, t1 over s

=
∑

s1,...,sn∈G

grafting of t1 over s1,. . ., tn over sn.

So the result is true for all n.

Corollary 11. If F = t1 . . . tm, G ∈ F , then:

F⋆G =

m∑

k=0

∑

1≤i1<...<ik≤m

∑

s1,...,sk∈G

(grafting of t1 over s1, . . ., tk over sk)
∏

i6=i1,...,ik

ti.

The Hopf algebra S(gT ) is known as the Grossman-Larson Hopf algebra [22,

23, 24℄. The �rst known proof of its existene is diret and does not use the pre-Lie

struture.

Let us onsider now the Faà di Bruno pre-Lie algebra.
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Proposition 12. In S(gFdB):

(ei1 . . . eim) ◦ ej = (j + λ)j(j − λ) . . . (j − (m− 2)λ)ei1+...+im+j .

Proof. We put Pm(j) = (j+λ)j(j −λ) . . . (j− (m− 2)λ). We proeed indutively

on m. If m = 1, it is the de�nition of the pre-Lie produt of gFdB. Let us assume

the result at rank m− 1. Then:

(ei1 . . . eim) ◦ ej

= ei1 ◦ ((ei2 . . . eim) ◦ ej)− (ei1 ◦ (ei2 . . . eim)) ◦ ej

= Pm−1(j)ei1 ◦ ei2+...+im+j −
m∑

k=2

(ik + λ)(ei2 . . . ei1+ik . . . eim) ◦ ej

= Pm−1(j)(i2 + . . .+ im + j + λ)ei1+...+im+j −
m∑

k=2

Pm−1(j)(ik + λ)ei1+...+im+j

= Pm−1(j)(i2 + . . .+ im + j + λ− i2 − . . .− im − (m− 1)λ)ei1+...+im+j

= Pm(j)ei1+...+im+j .

So the result is true for all m.

Notation. If λ 6= −1, we put α = 1+λ and β = −λ
1+λ . Then, for all i1, . . . , im:

(ei1 . . . eim)◦ej = αm(j+β(j−1))(j+β(j)) . . . (j+β(j+m−2))ei1+...+im+j . (3.1)

This formula is still true if λ = −1 and j = 1, with α = 0, for any value of β.
Indeed, if λ = −1 (so α = 0) and j = 1, then (ei1 . . . eim) ◦ e1 = 0.

3.4 From rooted trees to Faà di Bruno

From theorem 8, there exists a unique morphism of pre-Lie algebras φλ : gT −→
gFdB, sending q

to e1.

De�nition 13. Let β ∈ K.

(1) For any n ≥ 1, we put [n]β = 1 + (n− 1)β.

(2) For any n ≥ 0, we put [n]β ! = [1]β . . . [n]β, with the onvention [0]β ! = 1.

(3) Let t ∈ T and let x be a vertex of t. The fertility of x is the number of

hildren of x.

(4) Let t ∈ T . We put [t]β ! =
∏

s vertex of t

[fertility of s]β !.

Remarks.

(1) If β = 1, then [n]β = n for all n ≥ 1.

(2) With these notations, (3.1) beomes, for j = 1:

(ei1 . . . eim) ◦ e1 = αm[m]β !ei1+...+im+1.
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Proposition 14. For all t ∈ T , φλ(t) = α|t|−1[t]β !e|t|. Moreover, φλ is sur-

jetive if, and only if, λ 6= −1.

Proof. We extend φλ as a Hopf algebra morphism from (S(gT ), ⋆) to (S(gFdB), ⋆).
Then φλ(a◦b) = φλ(a)◦φλ(b) for all a, b ∈ S(gT ). We prove the result by indution

on the degree of t. It is obvious if |t| = 1, as then t = q
and φλ( q) = e1. Let us

assume the result for all trees of degrees stritly smaller than t. Let t1, . . . , tm be

the trees obtained by deleting the root of t. Then, from proposition 10 and (3.1):

φλ(t) = φλ((t1 . . . tm) ◦ q)

= (φλ(t1) . . . φλ(tm)) ◦ e1

= α|t1|+...+|tm|−m[t1]β ! . . . [tm]β !(e|t1| . . . e|tm|) ◦ e1

= α|t1|+...+|tm|−mαm[m]β![t1]β ! . . . [tm]β !e|t1|+...+|tm|+1

= α|t|−1[t]β !e|t|.

So the result is true for all trees.

If λ = −1, then Im(φλ) = Ke1 as α = 0. If λ 6= −1, then φλ(ln) = αn−1en, so
φλ is surjetive.

3.5 Duality

The aim of this setion is to desribe a family of injetions of the dual of the Faà

di Bruno Hopf algebra in the Hopf algebra of rooted trees, with the help of the

pre-Lie strutures. Nonommutative versions are given in [4, 5, 14℄; the ase of

free Faà di Bruno Hopf algebras is studied in [15℄.

gT and gFdB are graded pre-Lie algebras, so S(gT ) and S(gFdB) are graded

Hopf algebras (for the produt ⋆). As (gT )0 = (gFdB)0 = (0), the homogeneous

omponents of S(gT ) and S(gFdB) are �nite-dimensional, so the graded dual of

S(gT ) and S(gFdB) are also Hopf algebras. The graded dual of S(gFdB) is denoted
by HFdB.

Let us give a more preise desription of S(gT )
∗
. A basis of S(gT ) is given by

rooted forests. We identify S(gT ) and S(gT )
∗
as vetor spaes with the help of

the pairing de�ned in the following way:

〈F,G〉 = sF δF,G,

where sF is the number of automorphisms of the rooted forest F , that is to say

the number of automorphisms of the graph F whih map all roots to roots.

Let F,G,H be three forests. We put F = tα1
1 . . . tαn

n , G = tβ1

1 . . . tβn
n and
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H = tγ11 . . . tγnn , where t1, . . . , tn are di�erent rooted trees. Then:

〈∆(H), F ⊗G〉

=
∑

i1,...,in

(
γ1
i1

)

. . .

(
γn
in

)

〈ti11 . . . t
in
n , t

α1
1 . . . tαn

n 〉〈t
γ1−i1
1 . . . tγn−inn , tβ1

1 . . . tβn
n 〉

=
∑

i1,...,in

(
γ1
i1

)

. . .

(
γn
in

)

sF sGδi1,α1 . . . δin,αn
δγ1−i1,β1 . . . δγn−in,βn

.

So this is zero if there exists i suh that γi 6= αi+βi. If γi = αi+βi for all i, then:

sH = γ1! . . . γn!s
γ1
t1 . . . s

γn
tn

=

(
γ1
α1

)

. . .

(
γn
αn

)

α1! . . . αn!s
α1
t1 . . . s

αn

tn β1! . . . βn!s
β1

t1 . . . s
βn

tn

=

(
γ1
α1

)

. . .

(
γn
αn

)

sF sG.

So:

〈∆(H), F ⊗G〉 =

(
γ1
α1

)

. . .

(
γn
αn

)

sF sG = sH .

In both ases, 〈∆(H), F ⊗G〉 = 〈H,FG〉. So the produt of S(gT )∗ is the "usual"
produt of forests (disjoint union).

Let us now onsider the oprodut of S(gT )
∗
. From the preeding point, S(gT )

∗

is generated by the set of rooted trees. It is then enough to ompute ∆(t) for any
rooted tree t. Moreover, by onstrution of ⋆, for all n ≥ 1:

S(gT ) ⋆ Sn(gT ) ⊆
⊕

p≥n

Sp(gT ).

So, if F,G are two forests suh that G has at least two trees, then F ⋆ G is a sum

of forests with at least two trees. Hene, if t is a rooted tree, 〈F ⊗ G,∆(t)〉 =
〈F ⋆ G, t〉 = 0. If t′ is a tree, from orollary 11:

〈F ⊗ t′,∆(t)〉 = 〈F ⋆ t′, t〉 = st♯{graftings of F over t′ that yield t}.

This is equal to sF st′♯{admissible uts c of t suh that P c(t) = F and Rc(t) = t′},
see [25℄. So:

〈F ⊗ t′,∆(t)〉 =
∑

c∈Adm(t)

〈F ⊗ t′, P c(t)⊗Rc(t)〉.

As a onlusion, we obtain the following formula: for any rooted tree t ∈ S(gT )∗,

∆(t) = 1⊗ t+ t⊗ 1 +
∑

c∈Adm(t)

P c(t)⊗Rc(t).

In other words, S(gT )
∗
is the Connes-Kreimer Hopf algebra HCK [6, 25, 39℄. This

result is proved similarly for deorated rooted trees.
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We now give a desription of HFdB. Let (xn)n≥1 be the dual basis of (en)n≥1.

Then a basis of HFdB is given by the monomials in the xi's and the duality is

given by:

〈xi11 . . . xinn , e
j1
1 . . . ejnn 〉 = i1! . . . in!δi1,j1 . . . δin,jn .

Dualising proposition 12 we obtain, for all n ≥ 1:

∆(xn) = xn ⊗ 1 +

n∑

j=1

n−j
∑

m=0

∑

i1+...+im+j=n

(j + λ) . . . (j − (m− 2)λ)

m!
xi1 . . . xim ⊗ xj .

Let us reformulate this formula. We put X =
∑
xn ∈ HFdB. If λ 6= 0:

∆(X) = X ⊗ 1 +

∞∑

j=1

∞∑

m=0

∑

i1,...,im

(j + λ) . . . (j − (m− 2)λ)

m!
xi1 . . . xim ⊗ xj

= X ⊗ 1 +

∞∑

j=1

(
∞∑

m=0

(j + λ) . . . (j − (m− 2)λ)

m!
Xm

)

⊗ xj

= X ⊗ 1 +

∞∑

j=1

(1 + λX)1+
j
λ ⊗ xj . (3.2)

If λ = 0, we obtain:

∆(X) = X ⊗ 1 +

∞∑

j=1

ejX ⊗ xj .

Remark. Let us onsider more preisely the ase λ = 1. As HFdB is om-

mutative, we an onsider it as the Hopf algebra of oordinates on its group of

haraters GFdB. As HFdB is the free ommutative algebra generated by the xi's,
any element φ ∈ GFdB is entirely determined by its values on the xi's. In other

words, there exists a bijetion:







GFdB −→ h+ h2K[[h]]

φ −→ Fφ = h+

∞∑

n=1

φ(xn)h
n+1.

So, taking Y = 1 +
∑
xnh

n
, this morphism an be summarized as Fφ = hφ(Y ).

Moreover, the formula on X implies that:

∆(Y ) = Y ⊗ 1 +

∞∑

j=1

Y j+1 ⊗ hjxj =
∞∑

j=0

hjY j+1 ⊗ xj ,

with the onvention x0 = 1. Then, if φ, ψ ∈ GFdB:

Fφψ = h(φ⊗ ψ) ◦∆(Y ) =

∞∑

j=0

hj+1φ(Y )j+1ψ(xj) = Fψ ◦ Fφ.

So, up to an isomorphism, GFdB is the (opposite of the) group of formal di�eo-

morphisms tangent to the identity at 0, with the usual omposition of formal series.
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Let us now dualise the pre-Lie algebra morphism φλ. The Hopf algebra HFdB
is generated by the elements xi, i ≥ 1, dual to the elements ei ∈ gFdB. It is

enough to desribe the image of the xi's. By homogeneity, φ∗λ(xi) is a linear span

of rooted trees of degree i. Let t ∈ T , of degree i. Then:

〈t, φ∗λ(xi)〉 = 〈φλ(t), xi〉 = αi−1[t]β〈ei, xi〉 = αi−1[t]β .

As a onsequene:

φ∗λ(xi) = αi−1
∑

t∈T , |t|=i

1

st
[t]β !t.

If λ 6= −1, φλ is surjetive, so φ∗λ is injetive. We proved:

Proposition 15. For all n ≥ 1, we put:

x(n) = αn−1
∑

t∈T , |t|=n

1

st
[t]β !t.

The subalgebra of HCK generated by these elements is Hopf. If λ 6= −1 (or equiv-

alently if α 6= 0), it is isomorphi to HFdB.

Examples.

x(1) = q ,

x(2) = α q

q

,

x(3) = α2

(
(1 + β)

2
q∨
qq

+ q

q

q

)

,

x(4) = α3

(

(1 + 2β)(1 + β)

6
q∨
qq q

+ (1 + β) q∨
qq

q

+
(1 + β)

2

q∨
qq

q + q

q

q

q
)

,

x(5) = α4











(1+3β)(1+2β)(1+β)
24

q∨
qq

✟❍
q q

+ (1+2β)(1+β)
2

q∨
qq q

q

+ (1+β)2

2
q∨
qq∨
qq

+ (1 + β) q∨
qq

q

q

+ (1+2β)(1+β)
6

q∨
qq

q

q

+ (1+β)
2

q∨
qq

qq

+ (1 + β)
q∨
qq

q

q

+ (1+β)
2

q

q

q∨
q q

+ q

q

q

q

q











.

3.6 From the Faà di Bruno Lie algebra to Dyson-Shwinger

equations

Let us use the operator B to indutively desribe the x(n)'s. We denote by at the
oe�ient of t in x(|t|). Let F be the unique forest suh that t = B(F ). We put
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F = tα1
1 . . . tαk

k , where the ti's are di�erent rooted trees. Then:

at = α|t|−1 [t]β !

st

= αα1|t1|+...+αk|tk|
[t1]

α1

β . . . [tk]
αk

β [α1 + . . .+ αk]β !

sα1
t1 . . . s

αk

tk α1! . . . αk!

= αα1+...+αk
[α1 + . . .+ αk]β !

(α1 + . . .+ αk)!

(α1 + . . .+ αk)!

α1! . . . αk!
aα1
t1 . . . a

αk

tk
.

We put X =
∑
x(i). This is a priori not an element of HCK (it is an in�nite

sum), but it lives in the ompletion HCK of HCK . The preeding omputations

imply that X satis�es the following equation:

X = B

(
∞∑

n=0

αn
[n]β !

n!
Xn

)

.

This equation is a ombinatorial Dyson-Shwinger equation. Let us onsider the

formal series f =
∑
αn

[n]β!
n! h

n
. Denoting its oe�ients by an, there is the obvious

indutive relation:

(n+ 1)an+1 = α(1 + nβ)an.

Summing these relations after multipliation by hn, we obtain:

f ′ = αf + αβhf ′.

An easy indution proves that for all n ≥ 0:

an =
[n]β!

n!
αn =

{
(
− 1

β
n

)
(−αβ)n if β 6= 0,

αn

n! if β = 0.

Hene, f(h) = eαh if β = 0 (that is to say if λ = 0) or (1− αβh)−
1
β
if β 6= 0.

Proposition 16. The element X ∈ HCK de�ned using the pre-Lie morphism

φλ from gT to gFdB satis�es the ombinatorial Dyson-Shwinger equation:

X = B(f(X)),

where f = 1 if λ = −1, f = eh if λ = 0, f = (1 + λh)
1+λ
λ

if λ 6= 0,−1.

Remark. In all ases, f =
∞∑

k=0

(1 + λ)(1)(1 − λ) . . . (1 − λ(k − 2))

k!
hk.
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4 Combinatorial Dyson-Shwinger equations

4.1 De�nition

De�nition 17. Let f ∈ K[[h]]. The ombinatorial Dyson-Shwinger equation

assoiated to f is:

X = B(f(X)),

where X ∈ HCK .

Proposition 18. The Dyson-Shwinger equation assoiated to the formal se-

ries f =
∑
anh

n
admits a unique solution X =

∑
x(n), indutively de�ned by:







x(0) = 0,
x(1) = a0 q ,

x(n+ 1) =

n∑

k=1

∑

i1+···+ik=n

akB(x(i1) · · ·x(ik)).

Proof. It is enough to identify the oe�ients of eah t ∈ T in the two sides of the

ombinatorial Dyson-Shwinger equation assoiated to f .

Remark. We an put X =
∑

t∈T

att. The oe�ients at are indutively om-

puted by the following formula: if t = B(tk11 . . . tknn ), where t1, . . . , tn are distint

trees, then:

at = ak1+...+kn
(k1 + . . .+ kn)!

k1! . . . kn!
ak1t1 . . . a

kn
tn . (4.1)

The indution is initiated by a q = a0.

De�nition 19. The subalgebra of HCK generated by the homogeneous ompo-

nents x(n) of the unique solution X of the Dyson-Shwinger equation assoiated

to f will be denoted by Hf .

We would like to give a neessary and su�ient ondition on f for Hf to be a

Hopf subalgebra ofHCK . If this is the ase, we shall say that the Dyson-Shwinger
equation assoiated to f is Hopf.

Remarks.

(1) If f(0) = 0, the unique solution of the ombinatorial Dyson-Shwinger equa-

tion assoiated to f is 0. As a onsequene, Hf = K is a Hopf subalgebra.

(2) For all µ ∈ K, if X =
∑
x(n) is the solution of the Dyson-Shwinger equa-

tion assoiated to f , the unique solution of the Dyson-Shwinger equation

assoiated to µf is

∑
µnx(n). As a onsequene, if µ 6= 0, Hf = Hµf . We

shall then suppose in the sequel that a0 = 1. In this ase, x(1) = q
.



26

(3) Let µ ∈ K −{0}. the unique solution of the ombinatorial Dyson-Shwinger

equation assoiated to

1
µf(µh) is

1
µX . Combining with the preeding re-

mark, the equation assoiated to f(µh) is Hopf if, and only if, the equation

assoiated to f is Hopf (this is the operation of hange of variables, given

for systems in de�nition 33).

4.2 Pre-Lie struture assoiated to a Hopf Dyson-Shwinger

equation

Lemma 20. Let V be a subspae of V ect(T ) and let us onsider the subalgebra

A of HCK generated by V . We onsider the following map:

f q :

{
HCK −→ K
F ∈ F −→ δF, q .

If A is a Hopf subalgebra, then (f q ⊗ Id) ◦∆(V ) ⊆ V ⊕K.

Proof. If A is Hopf, then ∆(V ) ⊆ A ⊗ A. As V ⊆ V ect(T ), ∆(V ) ⊆ HCK ⊗
(V ect(T )⊕K). So:

∆(V ) ⊆ (A⊗A) ∩ (HCK ⊗ (V ect(T )⊕K)) = A⊗ (V ⊕K).

This implies the assertion.

Remarks.

(1) In the duality between HCK and S(gT ), f q = 〈 q ,−〉.

(2) This result is easily generalized to deorated rooted trees, replaing

q
by the

q i 's, i ∈ I.

4.3 De�nition of the struture oe�ients

Proposition 21. Let (E) be a ombinatorial Dyson-Shwinger equation. If it

is Hopf, then for all n ≥ 1, there exists a salar λn suh that for all t′ ∈ T , of
degree n:

∑

t∈T

n(t, t′)at = λnat′ ,

where n(t, t′) is the number of leaves l of t suh that the ut of l gives t′.

Proof. Let us assume that (E) is Hopf. Then Hf is a Hopf subalgebra of HCK .
Let us use lemma 20, with V = V ect(x(n), n ≥ 1). So (f q ⊗ Id) ◦ ∆(x(n + 1))
belongs to Hf , and is a linear span of trees of degree n, so is a multiple of x(n).
We then denote:

(f q ⊗ Id) ◦∆(x(n+ 1)) = λnx(n) =
∑

t′∈T
|t′|=n

λnat′t
′.
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By de�nition of the oprodut ∆:

(f q ⊗ Id) ◦∆(x(n + 1)) =
∑

t,t′∈T
|t′|=n

n(t, t′)att
′.

The result is proved by identifying the oe�ients in the basis T of these two

expressions of (f q ⊗ Id) ◦∆(x(n + 1)).

If f is Hopf and if all the x(n)'s are non zero, let us onsider the dual basis

(en)n≥1 of the x(n)'s. It is a basis of gf = Prim(H∗
f ). As Hf is generated by a

subspae of V ect(T ), gf is naturally a pre-Lie algebra. Let us desribe this pre-Lie
produt.

Proposition 22. For all k, l ≥ 1, el ◦ ek = λkek+l.

Proof. Let us �rst prove the following result: for all t′, t′′ ∈ T ,

∑

t∈T

n(t′, t′′; t)at = λ|t′′|at′at′′ ,

where n(t′, t′′; t) is the number of admissible uts c of t suh that P c(t) = t′ and
Rc(t) = t′′ (that is to say the oe�ient of t′⊗t′′ in∆(t)). We proeed by indution

on |t′′|. If |t′′| = 1, then t′′ = q
and:

∑

t∈T

n(t′, t′′; t)at = aB(t′) = a1at′ = λ1at′at′′ ,

as λ1 = a1 and a q = 1. Let us assume the result at all rank < k and let us assume

that |t′′| = k. We put t′′ = B(F ), with F =
∏

s∈T

sps , p =
∑

s∈T

ps.

First step. By de�nition of λk, using (4.1):

λkat′′ = (p q + 1)aB( qF ) +
∑

s,s′∈T ,ps′≥1

(ps + 1)n(s, s′)aB( s

s′
F)

= (p q + 1)
p+ 1

p q + 1

ap+1

ap
at′′ +

∑

s,s′∈T ,ps′≥1

(ps + 1)n(s, s′)
ps′

ps + 1

as
as′

at′′

= (p+ 1)
ap+1

ap
at′′ +

∑

s′∈T

ps′λ|s′|at′′ .

We obtain

(

(p+ 1)
ap+1

ap
+
∑

s′∈T

ps′λ|s′|

)

at′′ = λkat′′ .
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Seond step. Let us now �x t′ ∈ T . Then:
∑

t∈T

n(t′, t′′; t)at = (pt′ + 1)aB(t′F ) +
∑

s,s′∈T ,ps′≥1

(ps + 1)n(t′, s′; s)aB( s

s′
F)

= (pt′ + 1)
(p+ 1)!

(pt′ + 1)
∏
ps!

ap+1at′
∏

s

apss

+
∑

s,s′∈T ,ps′≥1

(ps + 1)n(t′, s′; s)
ps′

ps + 1
at′′

as
as′

= (p+ 1)
ap+1

ap
at′at′′ +

∑

s′∈T ,ps′≥1

ps′λ|s′|at′at′′

= λkat′′at′ .

We used the indution hypothesis on s′ and then the �rst step.

As a onsequene, for all n ≥ 1:

∆(x(n)) =

n−1∑

k=1

λkx(n− k)⊗ x(k) + terms with forests whih are not trees.

Dually, we dedue that en−k ◦ ek = λken for all 1 ≤ k ≤ n.

4.4 Main theorem for single equations

Assume that the Dyson-Shwinger equation assoiated to the formal series f =

1 +
∑

n≥1

anh
n
is Hopf. If a1 6= 0, the oe�ients λn are entirely determined by a1

and a2, and this also determines all the an's, as it is explained in the following

result:

Lemma 23. (1) λ1 = a1.

(2) For all n ≥ 2, λna
n−1
1 = an−2

1 (a21 + 2a2(n− 1)).

(3) For all n ≥ 2, an =
λn − a1(n− 1)

n
an−1.

Proof. Reall that the ladders ln and the orollas cn are de�ned in setion 2.1.

Using proposition 21with t′ = q
, λ1a q = a

q

q = a1 and t′ = ln gives:

λnaln = λna
n−1
1

= aln+1 + 2aBn−1( q q ) +
n−2∑

i=1

aBi( qBn−i(1))

= an1 + 2a2a
n−2
1 +

n−2∑

i=1

2an−2
1 a2.
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So λna
n−1
1 = an1 +2a2a

n−2
1 (n−1). We now use proposition 21 with t′ = cn, n ≥ 2:

λnacn = nacn+1 + aB( q
q

qn−2),

so λnan−1 = nan + (n− 1)a1an−1.

Theorem 24. Let f = 1 + a1h + . . . ∈ K[[h]]. The following assertions are

equivalent:

(1) The ombinatorial Dyson-Shwinger equation assoiated to f is Hopf.

(2) There exists (α, β) ∈ K2
, suh that f = 1 if α = 0, f = eαh if β = 0,

f = (1− αβh)−
1
β
if αβ 6= 0.

Proof. 1 =⇒ 2. If a1 = 0, by lemma 23-3, an = 0 for all n ≥ 1, so f = 1. We now

assume that a1 6= 0. From lemma 23-2, for all n ≥ 1, λn = a1 + 2a2a1 (n − 1) and,
for all n ≥ 2:

an =
a1
n

(

1 +

(
2a2
a21
− 1

)

(n− 1)

)

an−1.

We put α = a1 and β = 2a2
a21
− 1. An easy indution proves that for all n,

an = αn[n]β !/n!. The result is then proved in setion 3.6.

2 =⇒ 1. From proposition 16, the result is true if f = 1, f = eh or f =

(1 + λh)
1+λ
λ
, λ 6= 0,−1. From a preeding remark, as we an replae h by µh for

any non-zero µ, the result is already proved for all (α, β) suh that β 6= −1. If

β = −1, we an assume that α = 1. Then f = 1+h, so X satis�es X = B(1+X).
Hene, for all n ≥ 1, Xn = ln and then:

∆(ln) =
n∑

i=0

li ⊗ ln−i,

with the onvention l0 = 1. So X = B(1 +X) is Hopf.

Remarks.

(1) If a1 6= 0, the pre-Lie struture onstants λk are given by:

λk = α(1 + (1 + β)(k − 1)) = α(−β + k(1 + β)).

(2) The oprodut of the x(n)'s is given by formula (3.2).

(3) Apart from H1 = K, for Hopf equations we �nd that Hf is isomorphi to

HFdB whenever β 6= −1, and otherwise the oommutative ladders Hopf

algebra.
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5 Systems of Dyson-Shwinger equations

5.1 De�nition

De�nition 25. Let I be a �nite, non-empty set, and let fi ∈ K[[hj , j ∈ I]] be
a non-onstant formal series for all i ∈ I. The system of ombinatorial Dyson-

Shwinger equations (brie�y, the SDSE) assoiated to (fi)i∈I is:

∀i ∈ I, xi = Bi(fi(xj , j ∈ I)),

where xi ∈ HICK for all i ∈ I.

In order to ease the notation, we shall often assume that I = {1, . . . , N}, espe-
ially in the proofs, without loss of generality.

Notations.

(1) Let (S) be an SDSE. We shall denote, for all i ∈ I:

fi =
∑

p1,··· ,pN

a
(i)
(p1,··· ,pN )h

p1
1 · · ·h

pN
N .

(2) Let 1 ≤ j ≤ N . We put εj = (0, · · · , 0, 1, 0, · · · , 0) where the 1 is in position

j. We shall denote, for all i ∈ I, a
(i)
j = a

(i)
εj ; for all j, k ∈ I, a

(i)
j,k = a

(i)
εj+εk ,

and so on.

Proposition 26. Let (S) be an SDSE. Then it admits a unique solution

(xi)i∈I ∈
(

HICK

)I

.

Proof. If (x1, · · · , xN ) is a solution of S, then xi is a linear (in�nite) span of rooted
trees with a root deorated by i. We denote:

xi =
∑

att,

where the sum is over all trees whih root is deorated by i. These oe�ients are

uniquely determined by the following formulas: if t ∈ T I , we put t = Bi(F ) and
F = tp11 . . . tpkk , where the tj 's are di�erent trees. Let rj be the number of roots of
F deorated by j for all j ∈ I. Then:

at =
r1! . . . rN !

p1! . . . pk!
a
(i)
(r1,...,rN )a

p1
t1 . . . a

pk
tk
.

So (S) has a unique solution.

De�nition 27. Let (S) be an SDSE and let X = (xi)i∈I be its unique solution.
The subalgebra of HICK generated by the homogeneous omponents xi(k)'s of the

xi's will be denoted by H(S). If H(S) is Hopf, we shall say that the system (S) is
Hopf.

Remarks.
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(1) This de�nition makes sense for systems of equations with a single oupling

onstant only. If one allows for di�erent oupling onstants, the perturbation

series are in more than one variable. Algebraially, this orresponds to a

re�ned grading of H(S), given by ounting not just the total number of

verties, but the number of verties of eah deoration type i ∈ I separately.
Taking the homogeneous omponents then produes larger subalgebras whih

might be Hopf in more general ases.

(2) We assume that there is no onstant fi. Indeed, if fi ∈ K, then xi is a

multiple of

q i . We shall always avoid this ase in all this text. All the same,

let us give examples of systems with onstant formal series:

Proposition 28. Let us onsider the following system:

(S) :







x1 = B1(1),

x2 = B2

(
∞∑

k=0

akx
k
1

)

,

with a1 = 1. It is Hopf, if and only if, the following assertion is satis�ed: for all

n ≥ 1,
(an = 0) =⇒ (an+1 = 0).

Moreover, the Hopf algebra H(S) depends only on N = min{n | an = 0} ∈
N∗ ∪ {∞}, and in partiular does not depend of the values of the non-zero an's.

Proof. For all n ≥ 1, we put dn = B2( q1
n−1):

d1 = q2 , d2 = q

q

2
1 , d3 = q∨

qq

2

11
, d4 = q∨

qq q

2

1
1

1
. . .

Then x1(1) = q1 , x1(n) = 0 if n ≥ 2, and x2(n) = an−1dn for all n ≥ 1. So H(S)

is the subalgebra generated by

q1 and the dn's suh that an−1 6= 0.
Moreover, for all n ≥ 1:

∆(dn) = dn ⊗ 1 +

n−1∑

k=0

(
n− 1

k

)

q1
k ⊗ dn−k.

=⇒. Let us assume that an+1 6= 0. Then dn+2 ∈ H(S), so ∆(dn+2) ∈
H(S) ⊗ H(S). Taking the terms of ∆(dn+2) in H(S)(1) ⊗ H(S)(n + 1), we ob-

tain that

q1 ⊗ dn+1 ∈ H(S) ⊗H(S), so dn+1 ∈ H(S). As a onsequene, an 6= 0.

⇐=. Let us put N = min{n | an = 0} ∈ N∗ ∪ {∞}. Then H(S) is generated

by

q1 and the dn's suh that n − 1 < N . Clearly, H(S) is a Hopf subalgebra of

HCK .

5.2 General results

We here generalize the results dealing with single Dyson-Shwinger equations,

without detailed proofs.
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Proposition 29. Let (S) be an SDSE. If it is Hopf, then, for all i, j ∈ I, for

all n ≥ 1, there exists a salar λ
(i,j)
n suh that for all t′ ∈ T , whih root is deorated

by i:
∑

t∈T

nj(t, t
′)at = λ

(i,j)
|t′| at′ ,

where nj(t, t
′) is the number of leaves l of t deorated by j suh that the ut of l

gives t′.

Remark. Let (S) be a Hopf SDSE. We assume that fi(0) = a q i = 0. For any
forest F , let δF : HICK −→ K, de�ned by δF (G) = δF,G for any forest G. Then,

putting t = Bi(F ):

at q i = (δF ⊗ Id) ◦∆(xi(|t|)) ∈ H(S).

As

q i /∈ H(S), at = 0. Hene, xi = 0, so we do not hange H(S) by dropping the

index i from I alltogether. From now on, we will assume that fi(0) 6= 0 for all

i ∈ I. Applying a hange of variables, without loss of generality we restrit to

fi(0) = 1 for all i ∈ I.

We generalize lemma 23:

Lemma 30. Let us assume that (S) is Hopf. Let us �x i ∈ I.

(1) For all sequenes i = i1, . . . , in of elements of I suh that a
(ip)
ip+1
6= 0 for all

1 ≤ p ≤ n− 1:

λ(i,j)n = a
(in)
j +

n−1∑

p=1

(1 + δj,ip+1)
a
(ip)
j,ip+1

a
(ip)
ip+1

.

In partiular, λ
(i,j)
1 = a

(i)
j .

(2) For all p1, · · · , pN ∈ N:

a
(i)
(p1,··· ,pj+1,··· ,pN ) =

1

pj + 1

(

λ
(i,j)
p1+···+pN+1 −

∑

l∈I

pla
(l)
j

)

a
(i)
(p1,··· ,pN ).

Proof. The �rst point is proved using the de�nition of the oe�ients λ
(i,j)
n , with

t′ = q

q
.

.

.

q

q

i1

i2

in−1

in

. The seond point uses t′ = Bi( q1
p1 · · · qNpN ).

Remarks.

(1) From the seond point of lemma 30, if a
(i)
m = 0 for a partiular m ∈ NI , then

for any n ∈ NI , a
(i)
m+n = 0.

(2) If a
(i)
j = 0, then fi does not depend on hj .

(3) We assume that there are no onstant fi, so for all i ∈ I there exists j ∈ I,

suh that a
(i)
j 6= 0. As a onsequene, the sequenes of elements onsidered

in the �rst point of lemma 30 exist for any i ∈ I and any n ≥ 1.
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(4) By lemma 30-1, the oe�ients λ
(i,j)
n are determined by the oe�ients of

degree 1 and 2 of the fi's. Moreover, they ompletely determined the fi's,
aording to lemma 30-2.

Lemma 31. Let (S) be a Hopf SDSE and let i, i′ ∈ I suh that a
(i)
i′ 6= 0. For

all j ∈ I, for all n ≥ 2:

λ(i,j)n = (1 + δj,i′)
a
(i)
j,i′

a
(i)
i′

+ λ
(i′,j)
n−1 .

Proof. It is enough to apply proposition 30-1 with i2 = i′.

Proposition 32. Let (S) be a Hopf SDSE. Let i ∈ I suh that:

fi = 1 +
∑

j∈I

a
(i)
j hj .

Then if a
(i)
i′ 6= 0, for all j, for all n ≥ 1, λ

(i,j)
n+1 = λ

(i′,j)
n . As a onsequene, if

a
(i)
i′ , a

(i)
i′′ 6= 0, fi′ = fi′′ .

Proof. By hypothesis on fi, a
(i)
j,i′ = 0 for all j, i′. The result omes then immedi-

ately from lemma 31. So, if i′ and i′′ are two diret desendants of i, for all k ∈ I,

for all n ≥ 1, λ
(i′,k)
n = λ

(i′′,k)
n . So, fi′ = fi′′ .

5.3 Operations on Hopf SDSE

Proposition 33 (hange of variables). Let (S) be the SDSE assoiated to

(fi(hj , j ∈ I))i∈I . Let λi and µi be non-zero salars for all i ∈ I. The system (S)
is Hopf if, and only if, the SDSE system (S′) assoiated to (µifi(λjhj, j ∈ J))i∈I
is Hopf.

Proof. We assume that I = {1, . . . , N}. We onsider the following morphism:

φ :

{
HI −→ HI

F ∈ F −→ (µ1λ1)
n1(F ) · · · (µNλN )nN (F )F,

where ni(F ) is the number of verties of F deorated by i. Then φ is a Hopf

algebra automorphism and for all i, φ ◦ Bi = µiλiBi ◦ φ. Moreover, if we put

Yi =
1
λi
φ(xi) for all i:

Yi =
1

λi
φ ◦Bi(fi(x1, · · · , xN ))

=
1

λi
µiλiB

+
i (fi(φ(x1), · · · , φ(xN )))

= µiB
+
i (fi(λ1Y1, · · · , λNYN )).
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So (Y1, · · · , YN ) is the solution of the system (S′). Moreover, φ sends H(S) onto

H(S′). As φ is a Hopf algebra automorphism, H(S) is a Hopf subalgebra of HI if,
and only if, H(S′) is.

Proposition 34 (restrition). Let (S) be the SDSE assoiated to the family

(fi(hj , j ∈ I))i∈I and let I ′ ⊆ I, non-empty. Let (S′) be the SDSE assoiated to

the family

(
fi(hj , j ∈ I)|hj=0, ∀j /∈I′

)

i∈I′
. If (S) is Hopf, then (S′) also is.

Proof. Let φ : HI −→ HI
′

be the unique Hopf algebra morphism suh that:

φ ◦Bi =

{
Bi ◦ φ if i ∈ I ′,
0 if i /∈ I ′.

For any forest F , φ(F ) = 0 if at least one vertex of F is deorated by an element

whih is not in I ′, and F otherwise. Then φ sends H(S) to H(S′). As φ is a

morphism of Hopf algebras, if H(S) is a Hopf subalgebra of HI , H(S′) is a Hopf

subalgebra of HI
′

.

Proposition 35 (dilatation). Let (S) be the system assoiated to (fi)i∈I and

(S′) be a system assoiated to a family (gj)j∈J , suh that there exists a partition

J =
⋃

i∈I

Ji, with the following property: for all i ∈ I, for all p ∈ Ji,

gp = fi




∑

q∈Jj

hq, j ∈ I



 .

Then (S) is Hopf, if, and only if, (S′) is Hopf. We shall say that (S′) is a dilatation

of (S).

Proof. ⇐=. Let us assume that (S) is Hopf. For all i ∈ I, we an then write:

∆(xi) =
∑

n≥0

P (i)
n (x1, · · · , xN )⊗ xi(n),

where the P
(i)
n are elements ofH(S) = K[[x1, . . . , xN ]], with the onvention xi(0) =

1. Let φ : HI −→ HJ be the Hopf algebra morphism suh that, for all 1 ≤ i ≤ N :

φ ◦Bi =
∑

j∈Ji

Bj ◦ φ.

Then, immediately, for all 1 ≤ i ≤ N :

φ(xi) =
∑

j∈Ji

x′j .

As a onsequene:

∑

j∈Ji

∆(x′j) =
∑

j∈Ji

∑

n≥0

P (i)
n

(
∑

k∈J1

x′k, · · · ,
∑

k∈JN

x′k

)

⊗ x′j(n).
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Conserving the terms of the form F ⊗ t, where t is a tree with root deorated by

j, for all j ∈ Ji:

∆(x′j) =
∑

n≥0

P (i)
n

(
∑

k∈J1

x′k, · · · ,
∑

k∈JN

x′k

)

⊗ x′j(n).

So (S′) is Hopf.

=⇒. Let us assume that (S′) is Hopf. We hoose one representative qi in eah

Ji. Taking the restrition of (S
′) to these elements, we obtain that (S) is Hopf.

Example. Let f, g ∈ K[[h1, h2]]. Let us onsider the following SDSE:

(S) :

{
x1 = B1(f(x1, x2)),
x2 = B2(g(x1, x2)),

The following SDSE is a dilatation of (S):

(S′) :







x1 = B1(f(x1 + x2 + x3, x4 + x5)),
x2 = B2(f(x1 + x2 + x3, x4 + x5)),
x3 = B3(f(x1 + x2 + x3, x4 + x5)),
x4 = B4(g(x1 + x2 + x3, x4 + x5)),
x5 = B5(g(x1 + x2 + x3, x4 + x5)).

Remark. If i, i′ are in the same Jq, then, by lemma 31, sine gi = gi′ , for all

n ≥ 1, for all j ∈ J , λ
(i,j)
n = λ

(i′,j)
n . Conversely, if there exists a partition of the

set of indies J suh that this ondition holds, lemma 30 (2) su�es to prove that

(S) is a dilatation of another SDSE.

Proposition 36 (extension). Let (S) be the SDSE assoiated to (fi)i∈I . Let

0 /∈ I and let (S′) be assoiated to (fi)i∈I∪{0}, with:

f0 = 1+
∑

i∈I

a
(0)
i hi.

We assume that for all i, j ∈ I(0) =
{

j ∈ I / a
(0)
j 6= 0

}

, fi = fj. If (S) is Hopf,

then (S′) also is. We shall say that (S′) is an extension of (S).

Proof. As (S) is Hopf, we an put for all 1 ≤ i ≤ N :

∆(xi) = xi ⊗ 1 +

+∞∑

k=1

P
(i)
k ⊗ xi(k),

where P
(i)
k is an element of the ompletion of H(S). By the seond hypothesis, if

i, j ∈ I(0), fi = fj , so P
(i)
k = P

(j)
k . We then denote by Pk the ommon value of
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P
(i)
k for all i ∈ I(0). So:

∆(x0) = q0 ⊗ 1 + 1⊗ q0 +

N∑

i=1

a
(0)
i ∆ ◦B0(xi)

= x0 ⊗ 1 +

(

1 +

N∑

i=1

a
(0)
i xi

)

⊗ q0 +

N∑

i=1

∞∑

k=1

a
(0)
i P

(i)
k ⊗B0(xi(k))

= x0 ⊗ 1 +

(

1 +

N∑

i=1

a
(0)
i xi

)

⊗ q0 +

N∑

k=1

Pj ⊗ x0(k + 1).

This belongs to the ompletion of H(S′) ⊗H(S′), so (S′) is Hopf.

Remark. From proposition 32, the ondition of equalities of the fi's for i ∈ I(0)

is neessary.

Example. This onstrution an be iterated. For example, we onsider the

following system:

(S) :

{
x1 = B1(f(x1, x2)),
x2 = B2(g(x1, x2)).

Here is an iterated extension of (S):

(S′) :







x1 = B1(f(x1, x2)),
x2 = B2(g(x1, x2)),
x3 = B3(1 + x1),
x4 = B4(1 + x1),
x5 = B5(1− x2),
x6 = B6(1 + 2x3 − 4x4).

Proposition 37 (onatenation). Let (S) be the SDSE assoiated to (fi)i∈I
and let (S′) be the SDSE assoiated to (gj)j∈J , where I and J are two disjoint

sets. Then the system (S′′) assoiated to (fi)i∈I ∪ (gj)j∈J is Hopf if, and only if,

(S) and (S′) are Hopf. We shall say that (S′′) is the onatenation of (S) and

(S′).

Proof. In this ase, H(S′′) = H(S) ⊗ H(S′) ⊆ H
I
CK ⊗ H

J
CK ⊆ H

I⊔J
. So if H(S)

and H(S′) are Hopf subalgebras, H(S′′) also is. By restrition, the onverse is also

true.

Example. Let us onsider the two following systems:

(S) :

{
x1 = B1(f1(x1, x2)),
x2 = B2(f2(x1, x2));

(S′) :







x1 = B1(g1(x1, x2, x3)),
x2 = B2(g2(x1, x2, x3)),
x3 = B3(g3(x1, x2, x3)).
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The onatenation of (S) and (S′) is:

(S′′) :







x1 = B1(f1(x1, x2)),
x2 = B2(f2(x1, x2)),
x3 = B3(g1(x3, x4, x5)),
x4 = B4(g2(x3, x4, x5)),
x5 = B5(g3(x3, x4, x5)).

5.4 The graph assoiated to a Dyson-Shwinger system

De�nition 38. Let (S) be an SDSE.

(1) We onstrut an oriented graph G(S) assoiated to (S) in the following way:

• The verties of G(S) are the elements of I.

• There is an edge from i to j if, and only if, a
(i)
j 6= 0.

(2) If a
(i)
i 6= 0, the vertex i will be said to be self-dependent. In other words, if

i is self-dependent, there is a loop from i to itself in G(S).

(3) If G(S) is onneted, we shall say that (S) is onneted.

Remarks.

(1) As onstant fi are exluded, eah vertex of G(S) hase at least one outgoing

edge.

(2) Let us onsider the ation of the di�erent operations de�ned earlier on the

assoiated graphs.

• If (S′) is obtained from (S) by a hange of variables, then G(S′) = G(S).

• If (S′) is obtained from (S) by a dilatation, the set of verties J of

the graph G(S′) admits a partition indexed by the verties of G(S), and

there is an edge from x ∈ Ji to y ∈ Jj in G(S′) if, and only if, there is

an edge from i to j in G(S).

• If (S′) is obtained from (S) by an extension, then G(S′) is obtained

from G(S) by adding a new vertex with no anestor. The added vertex

is alled an extension vertex.

• If (S′′) is the onatenation of (S) and (S′), then G(S′′) is the disjoint

union of G(S) and G(S′).

• Conversely, if G(S) is the disjoint union of two subgraphs G′
and G′′

,

then (S) is the onatenation of the two subsystems (S′) and (S′′),
formed by the equations indexed by the elements of G′

and G′′
respe-

tively. As a onsequene, taking the onneted omponents of G(S), (S)
is the onatenation of a �nite number of onneted Hopf SDSE.

Notations. Let i, j ∈ I.
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(1) We shall write i −→ j if there is an edge from i to j in G(S), that is to say

if a
(i)
j 6= 0. In this ase, we shall say that i is an diret anestor of j or that

j is a diret desendant of i.

(2) If there is an oriented path from i to j in G(S), we shall say that i is an

anestor of j or that j is a desendant of i.

5.5 Struture of the graph of a Hopf SDSE

Let us �rst give two lemmas on the graph of a Hopf SDSE:

Lemma 39. Let (S) be a Hopf SDSE and let i ∈ I. Let j, k and l ∈ I suh

that a
(i)
j 6= 0, a

(j)
k 6= 0 and a

(i)
l 6= 0. Then a

(i)
k 6= 0 or a

(l)
k 6= 0.

Proof. Let us assume that a
(i)
k = 0. As a

(i)
j 6= 0, j 6= k. As a

(i)
k = 0, a

q∨
qq

i

kj
= a

(i)
j,k =

0. Then λ
(i,k)
2 a

(i)
j = λ

(i,k)
2 a q

q

i
j = a

q

q

q

i
j

k + a
q∨
qq

i

kj
= a

(i)
j a

(j)
k + 0; hene, λ

(i,k)
2 = a

(j)
k .

Moreover, As a
(i)
l 6= 0, l 6= k. Then a

(i)
l λ

(i,k)
2 = λ

(i,k)
2 a q

q

i
l = a

q

q

q

i
l

k + a
q∨
qq

i

kl
=

a
(i)
l a

(l)
k + 0, so λ

(i,k)
2 = a

(l)
k . Hene, a

(l)
k = a

(j)
k 6= 0.

Remarks.

(1) In other words, if (S) is Hopf, then, in G(S):

i //

��

j

��
l k

=⇒ i //

��

j

��
l // k

or i //

�� ��❁
❁❁

❁❁
❁❁

❁ j

��
l k

.

(2) A �rst speial ase is given by i = k:

i oo //

��

j

l

=⇒ i oo //
OO

��

j

l

.

(3) A seond speial ase is given by i = l, that is to say when i is self-dependent:

i //;; j

��
k

=⇒ i //;;

��❁
❁❁

❁❁
❁❁

❁ j

��
k

.

Hene, any desendant of of a self-dependent vertex is a diret desendant.

Lemma 40. Let (S) be a Hopf SDSE and let i be a vertex of G(S). We suppose

that there exists a vertex j, suh that:
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• j is a desendant of i.

• All oriented path from i to j are of length ≥ 3.

Then fi = 1 +
∑

i−→l

a
(i)
l hl.

Proof. Let L be the minimal length of the oriented paths from i to j. By hypoth-

esis, L ≥ 3. Then the homogeneous omponent of degree L+1 of xi ontains trees
with a leaf deorated by j, and all these trees are deorated ladders. By de�nition

of the oe�ients λ
(i,j)
n , if t′ is a tree with L verties and its root deorated by i:

λ
(i,j)
L at′ =

∑

t∈T I

nj(t, t
′)at.

For a good-hosen ladder t′, the right-hand side is non-zero, so λ
(i,j)
L is non-zero.

If t′ is not a ladder, the right-hand side is 0, so at′ = 0. As a onlusion, xi(L) is
a linear span of ladders. Considering its oprodut, for all p ≤ L, xi(p) is a linear

span of ladders. In partiular, xi(3) is a linear span of ladders. But:

xi(3) =
∑

l,m

a
(i)
l a(l)m q

q

q

i
l

m

+
∑

l≤m

a
(i)
l,m

q∨
qq

i

ml

,

so a
(i)
l,m = 0 for all l,m. Hene, fi ontains only terms of degree ≤ 1.

Remark. This lemma an be applied with i = j, if i is not a self-dependent

vertex.

Let us now study the struture of the graph of a SDSE:

Proposition 41. Let G be a �nite oriented graph, suh that any vertex of G
has at least one diret desendant. The set of verties of G is denoted by I. There
exists a sequene G0 ⊆ G1 ⊆ . . . ⊆ Gn = I of subgraphs of G suh that:

(1) For any element i ∈ G0, the desendants of i are all in G0.

(2) For any element i ∈ G0, i has an anestor in G0.

(3) For all 1 ≤ k ≤ n, Gk is obtained from Gk−1 by adding an element ik, with
no anestor in Gk−1 and with all its desendants in Gk−1.

Moreover, G0 ontains an oriented yle. More preisely, any vertex i ∈ G0 is the

desendant of a vertex inluded in an oriented yle.

Proof. Let us prove the existene of G0, . . . , Gn by indution on the number N of

elements of I. If N = 1, we take G0 = I. If N > 1, and if I has no vertex with no

anestor, we take G0 = I. If I has a vertex i with no anestor, let us onsider the

restrition of (S) to I − {i}. This gives a sequene G0 ⊆ . . . ⊆ Gn = I − {i}. We

omplete it by putting Gn+1 = I.
Let i ∈ G0. As any vertex has a diret anestor, it is possible to de�ne indu-

tively a sequene (xl)l≥0 of verties of G, suh that x0 = i and xl+1 is a diret

anestor of xl for all l. As G is �nite, there exists 0 ≤ l < m, suh that xl = xm.
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Then xl ← xl+1 ← · · · ← xm−1 ← xm = xl is a losed path of G, inluded in G0.

If we take suh a path of minimal length, it is neessarily an oriented yle.

Remark. Although the sequene (Gi)0≤i≤n is not unique, it is possible to

prove that G0 is unique; this fat will not be used in the sequel.

We shall lassify the Hopf SDSE aording to the minimal length L of an

oriented yle inluded in G0. If L = 1, then the onsidered SDSE has a self-

dependent vertex. We begin with the ases where L ≥ 2.

6 Quasi-yli SDSE

6.1 Struture of the yles

Proposition 42. Let (S) be a Hopf SDSE suh that G(S) is an oriented yle

of length N ≥ 2, that is:

G(S) = 1 // . . . // N
ww

.

Two ases are possible.

(1) Up to a hange of variables, for all i ∈ I, fi = 1 +
∑

i→j

hj.

(2) N = 2 and up to a hange of variables, for all i ∈ I, fi =



1−
∑

i→j

hj





−1

.

In this ase, λ
(i,j)
n = n− δi,j for all i, j ∈ {1, 2}.

Proof. Up to a hange of variables, we an assume that a
(i)
i+1 = 1 for all 1 ≤ i ≤

N − 1 and a
(N)
1 = 1. If N ≥ 3, we an apply lemma 40 and we immediately obtain

the �rst ase. Let us study the ase N = 2. In other words, G(S) = 1←→ 2. We

put:

f1(h2) =

∞∑

i=0

aih
i
2, f2(h1) =

∞∑

i=0

bih
i
1,

with a1 = b1 = 1. Then λ
(1,1)
3 = λ

(1,1)
3 a

q

q

q

1
2
1 = 2a

q∨
qq

q

1

2

11 = 2b2. On the other hand,

λ
(1,1)
3 a

q∨
qq

1

22
= a

q∨
qq

q

1

22

1
= 2a2, so 2a2b2 = 2a2: a2 = 0 or b2 = 1. Similarly, b2 = 0 or

a2 = 1. So a2 = b2 = 0 or 1. In the �rst ase, f1(h2) = 1+h2 and f2(h1) = 1+h1.
In the seond ase, let us apply lemma 30-1 with (i1, · · · , in) = (1, 2, 1, 2, · · · ). If

n = 2k is even, we obtain λ
(1,2)
n = 2 + 2(k − 1) = 2k = n. If n = 2k + 1 is

odd, λ
(1,2)
n = 1 + 2k = n. So λ

(1,2)
n = n for all n ≥ 1. By lemma 30-2, for all

n ≥ 1, an+1 = an. So for all n ≥ 0, an = 1 and f1(h2) = (1 − h2)−1
. Similarly,

f2(h1) = (1− h1)−1
.
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The seond ase is a speial ase of a fundamental system; we postpone its

study to setion 7. We now onentrate on the �rst ase.

De�nition 43. Let I = Z/NZ, N ≥ 2. We onsider the SDSE assoiated to

the following formal series:

fi = 1 + hi+1, for all i ∈ I.

These SDSE and the ones obtained from them by a dilatation and a hange of

variables are alled N -quasi-yli systems.

Example. Here is an example of quasi-yli SDSE:







x1 = B1(1 + x2 + x3),
x2 = B2(1 + x4),
x3 = B3(1 + x4),
x4 = B4(1 + x5),
x5 = B5(1 + x1).

Remark. If (S) is aN -quasi-yli SDSE without dilatation, then xi is the sum
of all the ladders ylially deorated, with root deorated by i. The subalgebra

generated by these ladders is learly Hopf. It is not di�ult to prove that λ
(i,j)
n =

δi+n,j .

6.2 Conneted Hopf SDSE with a quasi-yle

Notations.

(1) Let (S) and (S′) be two Hopf SDSE. We shall say that (S) ontains (S′) if
(S′) is a restrition of (S) to a subset of its verties.

(2) Let G and H be two oriented graphs. We shall say that G ontains H if the

verties of H are verties of G, and the edges of H are preisely the edges of

G between the verties of H .

Remark. If (S) ontains (S′), then G(S) ontains G(S′).

Lemma 44. (1) Let (S) be a Hopf SDSE ontaining a quasi-yli SDSE

with set of verties I1 ⊔ · · · ⊔ IM . Then any vertex of G(S) has diret de-

sendants in at most one Ik. Moreover, if a vertex has at least one diret

desendant in a Ik, it is non self-dependent.

(2) Let (S) be a Hopf SDSE suh that I admits a partition I = I1 ⊔ · · · ⊔ IM
indexed by Z/MZ, with the following onditions:

• For all 1 ≤ p ≤ M , the diret desendants of any i ∈ Ip are preisely

the elements of Ip+1.

• For all i ∈ I, fi = 1 +
∑

i→j

a
(i)
j hj .
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Then (S) is quasi-yli.

Proof. 1. Let us assume that the vertex 0 of G(S) has diret desendants x ∈ Ik
and y ∈ Il with k 6= l. Then lemma 39 implies that any diret desendant of x is a

diret desendant of 0, so 0 has also a diret desendant in Ik+1. Similarly, 0 has

a diret desendant in Il+1. Iterating this proess, 0 has diret desendants in all

the Ii's; it even holds that all the elements of all the Ii's are diret desendants of
0. Up to a restrition, the situation is the following:

0

�� ��❃
❃❃

❃❃
❃❃

❃

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲

1 // 2 // 3 // · · · // Mee

with, for all 1 ≤ i ≤M , fi(hi+1) = 1 + hi+1, with the onvention hM+1 = h1.

We �rst assume M ≥ 3. In order to ease the notation, we do not write the

index

(0)
in the sequel of the proof. By lemma 30-1, with (i1, i2) = (0, 1) and

(0, 2):

λ
(0,2)
2 = 1 +

a1,2
a1

= 2
a2,2
a2

.

By lemma 30-1, with (i1, i2, i3) = (0, 2, 3) and (0, 1, 2):

λ
(0,2)
3 =

a1,2
a1

= 2
a2,2
a1

.

Finally,

a1,2
a1

= 1 +
a1,2
a1

, whih is absurd. So M = 2. By lemma 30-1 with

(i1, i2) = (0, 1) and (0, 2):

λ
(0,1)
2 =

a1,2
a2

+ 1 =
2a1,1
a1

.

By lemma 30-1 with (i1, i2, i3) = (0, 1, 2) and (0, 2, 1):

λ
(0,1)
3 =

2a1,1
a1

+ 1 =
a1,2
a1

.

We obtain:

2a1,1
a1

=
a1,2
a1

+ 1 =
a1,2
a1
− 1.

This is a ontradition.

Finally, if the vertex 0 has a diret desendant in Ik, it omes that the elements

of Ik+1 are desendants of 0 whih are not diret. If 0 is self-dependent, this on-

tradits lemma 39 with i = l = 0. So 0 is not self-dependent.
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2. Let us hoose an element ip in eah Ip. Up to a hange of variables, we an

assume that for all 1 ≤ p ≤M :

fip = 1 +
∑

j∈Ip+1

hj .

Let us hoose j ∈ Ip and k ∈ Ip+1; with (i1, . . . , iM+1) = (j, ip+1, . . . , ip+M ), we ob-

tain λ
(j,k)
N+1 = a

(ip)
k = 1. By lemma 30-1 with (i1, . . . , iM+1) = (j, ip+1, . . . , ip+M−1, j),

we obtain λ
(j,k)
N+1 = a

(j)
k , so a

(j)
k = 1. Hene:

fj = 1 +
∑

j→k

hk.

So (S) is the dilatation of the system assoiated to the formal series 1 + hj , for

j ∈ Z/MZ. So it is quasi-yli.

Let us state more preisely the struture of onneted Hopf SDSE ontaining

a quasi-yle.

Theorem 45. Let (S) be a onneted Hopf SDSE ontaining a N -quasi-yli

SDSE. Then I admits a partition I = I1 ⊔ · · · ⊔ IN , with the following onditions:

(1) If i ∈ Ip, its diret desendants are all in Ip+1.

(2) If i and j have a ommon diret anestor, then they have the same diret

desendants.

(3) For all i ∈ I, fi = 1 +
∑

i−→j

a
(i)
j hj .

(4) If i and j have a ommon diret anestor, then fi = fj.

Suh an SDSE will be alled an extended quasi-yli SDSE.

Proof. Let S0 a maximal quasi-yli subsystem of SDSE. We denote by I(0) the

set of its verties. By de�nition 43, it admits a partition I(0) = I
(0)

1
⊔ . . . ⊔ I

(0)

N
,

and for all i ∈ Ik:

(fi)|hj=0 if j /∈I(0) = 1 +
∑

j∈I
(0)

k+1

a
(i)
j hj.

Moreover, if i ∈ I
(0)

k
and j ∈ I

(0)

k+1
, a

(i)
j 6= 0.

Let j be a diret desendant of an element i ∈ I(0). Let us assume that j /∈ I(0).

Up to a reindexation, we an suppose that i ∈ I
(0)

1
. Applying lemma 39, for all

k ∈ I
(0)

3
, k is a diret desendant of j. By lemma 44-1, the diret desendants of

j whih are in I(0) are the elements of I
(0)

3
, and j is not self-dependent. Similarly,

for all k ∈ I
(0)

1
, j is a diret desendant of k.

Let us hoose a vertex ik ∈ I
(0)

k
for all k. We restrit ourselves to the oriented

yle formed by i1, j, i3, . . . , iN . If N ≥ 3, by proposition 42, a
(j)
i3,i3

= 0 = a
(i1)
j,j = 0.
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If N = 2, we obtain:

λ
(i1,i1)
3 a

q

q

q

i
1

i
2

i
1 = a

q∨
qq

q

i
1

i
2

i
1

i
1

+ a
q∨
qq

q

i
1

i
2

i
1

i
1 + a

q

q

q

q

i
1

i
2

i
1

i
1
= 0,

so λ
(i1,i1)
3 = 0. Restriting to i1 and j, this implies that ase (2) of proposition 42

annot hold, so a
(j)
i1,i1

= a
(i1)
j,j = 0.

Hene, we have in both ases a
(j)
k,k = 0 for all k ∈ I

(0)
3 and a

(i)
j,j = 0 for all i ∈ I

(0)
1 .

Let us now take two elements k, k′ of I
(0)

3
. Then λ

(j,k)
2 a q

q

j
k = a

q

q

q

j
k

k +2a
q∨
qq

j

kk
= 0+0,

so λ
(j,k)
2 = 0. As a onsequene, 0 = λ

(j,k)
2 a q

q

j
k′ = a

q

q

q

j
k

k′ + a
q∨
qq

j

k′k
= 0+ a

(j)
k,k′ . Hene:

(fj)|hk=0 if k/∈I(0)∪{j} = 1 +
∑

k∈I
(0)

3

a
(j)
k hk.

Similarly, for all i ∈ I
(0)

1
:

(fi)|hk=0 if k/∈I(0)∪{j} = 1 + a
(i)
j hj +

∑

k∈I
(0)

2

a
(i)
k hk.

By lemma 44-2, I(0) ∪ {j} forms a quasi-yli SDSE: this ontradits the maxi-

mality of I(0). So all the desendants of I(0) are in I(0).

As a onsequene, we shall take G0 = I(0) in proposition 41. We proeed by

indution on n. If n = 0, (S) is quasi-yli and the result is immediate. Let us

assume the result at rank n − 1 and let (S′) be the restrition of (S) to all the

verties exept the last one, denoted by i. By the indution hypothesis, the set of

its verties admits a partition I ′ = I ′
1
∪ · · · ∪ I ′

N
, with the required onditions. Let

us �rst prove that all the diret desendants of i are in the same I ′p. Let j ∈ I ′p
and k ∈ I ′q be two diret desendants of i, with p 6= q. Let j′ ∈ I ′

p+1
be a diret

desendant of j and k′ ∈ I ′
q+1

be a diret desendant of k. Lemma 39 implies

that i is a diret anestor of j′ and k′, as j an't be a diret anestor of k′ and k
an't be a diret anestor of j′ beause p 6= q. So we an replae j by j′ and k by

k′. Iterating the proess, we an assume that i and j are in the quasi-yle: this

ontradits lemma 44. So the diret desendants of i are all in Im for a good m.

We then take Il = I ′
l
if l 6= m− 1 and Im−1 = I ′

m−1
∪ {i} and this proves the �rst

assertion on G(S).

We now prove the assertion on fi. We separate the proof into two subases.

Let us �rst assume N ≥ 3. There is an oriented path i → im → · · · → im+M−1,

with ii ∈ I
′
i
for all i. Moreover, there is no shorter oriented path from i to im+M−1.

As N ≥ 3, from lemma 40:

fi = 1 +
∑

i−→j

a
(i)
j hj.

Let us seondly assume that N = 2. Let 1, . . . , p be the diret desendants of i
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and let 0 be a diret desendant of 1. Then as 1, . . . , p are in the same part of

the partition of I ′, they are not diret desendants of 1. Let us �rst restrit to

{i, 1, 0}. So λ
(i,0)
3 a

q

q

q

i
1
0 = 0 as a

(1)
0,0 = 0 by the indution hypothesis, λ

(i,0)
3 = 0.

Moreover, 0 = λ
(i,0)
3 a

q∨
qq

i

11
= a

q∨
qq

q

i

11

0
, so a

(i)
1,1 = 0. Similarly, a

(i)
2,2 = · · · = a

(i)
p,p = 0.

Let us now take 1 ≤ j < k ≤ p. Then λ
(i,j)
2 a q

q

i
j = 2a

q∨
qq

i

jj
= 0, so λ

(i,j)
2 = 0 and

0 = λ
(i,j)
2 a q

q

i
k = a

q∨
qq

i

kj
, so a

(i)
j,k = 0. As a onlusion, fi is of the required form.

Proposition 32-3 implies that fi = fi′ if i and i
′
have a ommon anestor, and

this implies the seond assertion on G(S).

Remark. In partiular, the vertex added to Gi in order to obtain Gi+1 in

proposition 41 is an extension vertex. So (S) is obtained from a quasi-yli SDSE

by a hange of variables, a dilatation, and a �nite number of extensions. Hene,

it is Hopf.

Example. Here is an example of a quasi-yli SDSE:







X1 = B1(1 +X2 +X3)
X2 = B2(1 +X1)
X3 = B3(1 +X1)
X4 = B4(1 + aX1)
X5 = B5(1 + aX1)
X6 = B6(1 +X4 +X5).

where a is a nonzero salar. In this ase, N = 2, I1 = {1, 6} and I2 = {2, 3, 4, 5}.

7 Fundamental systems

We now study the ase of onneted Hopf SDSE ontaining a self-dependent vertex.

We shall use the notion of level of a vertex.

7.1 Level of a vertex

Proposition 46. Let (S) be a Hopf SDSE. Let i be a self-dependent vertex of

G(S). Then for all j ∈ I, for all n ≥ 1:

λ(i,j)n = a
(i)
j + (1 + δi,j)(n− 1)

a
(i)
i,j

a
(i)
i

.

Proof. Apply lemma 30, �rst point, with i1 = . . . = in = i, as a
(i)
i 6= 0.
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So for a self-dependent vertex i, the sequenes

(

λ
(i,j)
n

)

n≥1
are polynomial of

degree ≤ 1. We formalize this in the following de�nition:

De�nition 47. Let (S) be a Hopf SDSE, and let i be a vertex of G(S). It will

be said to be of level ≤ M if for all verties j, there exist salar b
(i)
j , ã

(i)
j , suh

that for all n > M :

λ(i,j)n = b
(i)
j (n− 1) + ã

(i)
j .

The vertex i will be said to be of level M if it is of level ≤ M and not of level

≤M − 1.

Remarks.

(1) λ
(i,j)
1 = a

(i)
j . So if i is of level 0, ã

(i)
j = a

(i)
j .

(2) Self-dependent verties are of level 0, with ã
(i)
j = a

(i)
j and b

(i)
j = (1+δi,j)

a
(i)
i,j

a
(i)
i

.

(3) In a quasi-yli SDSE, λ
(i,j)
n = δi+n,j , for all i, j ∈ I, as it was observed in

setion 6.1. So in this ase the verties are not of �nite level.

Proposition 48. Let (S) be a Hopf SDSE, i a vertex of G(S) and i
′
a diret

desendant of G(S).

(1) i has level 0 or 1 if, and only if, i′ has level 0.

(2) Let M ≥ 2. Then i has level M if, and only if, i′ has level M − 1.

Moreover, if this holds, then for all k ∈ I, b
(i)
k = b

(i′)
k .

Proof. Lemma 31 immediately implies that for all M ≥ 1, i is of level ≤ M if,

and only if, i′ is of level ≤ M − 1. Moreover, if this holds, then b
(i)
k = b

(i′)
k for all

k. The �rst point is a reformulation of this result for M = 1. Let us assume that

M ≥ 2. If i is of level M , then i′ is of level ≤ M − 1. If i′ is of level ≤ M − 2,
then i is of level ≤M − 1: ontradition. So i′ is of level M − 1. The onverse is
proved in the same way.

Corollary 49. Let (S) be a onneted Hopf SDSE. Then if one of the verties

of G(S) is of �nite level, then all verties of G(S) are of �nite level. Moreover, the

oe�ients b
(i)
j depend only on j. They will now be denoted by bj.

Lemma 50. Let (S) be a onneted Hopf SDSE suh that any vertex is of �nite

level. Let j be a vertex of G(S) suh that there exists a vertex i whih is not an

anestor of j. Then bj = 0.

Proof. We apply lemma 30-1. We obtain:

λ(i,j)n = a
(in)
j +

n−1∑

p=1

(1 + δj,ip+1)
a
(ip)
j,ip+1

a
(ip)
ip+1

.
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Moreover, i1, . . . , in are desendants of i, so j is not a desendant of i1, . . . , in and

a
(in)
j = a

(ip)
j,ip+1

= 0 for all p. So λ
(i,j)
n = 0 for all n. As i is of �nite level, we dedue

that ã
(i)
j = 0 and bj = 0.

7.2 De�nition of fundamental SDSE

Notations. For any β ∈ K, we put:

Fβ(h) =

∞∑

k=1

[n]β !

n!
xk =

{

(1− βh)−
1
β
if β 6= 0,

eh if β = 0.

For all β 6= −1:

F β
1+β

((1 + β)h) =

∞∑

k=0

(1 + β) . . . (1 + nβ)

n!
hn,

so we shall put F β
1+β

((1 + β)h) = 1 if β = −1.

De�nition 51. Let I be a set with a partition I = I0∪J0∪K0∪L0, suh that:

• I0, J0, K0, L0 an be empty.

• I0 ∪ J0 is not empty.

• If I0 = ∅, then J0 is not redued to a single element.

We de�ne a SDSE in the following way:

(1) For all i ∈ I0, there exists βi ∈ K, suh that:

fi = Fβi
(hi)

∏

j∈I0−{i}

F βj

1+βj

((1 + βj)hj)
∏

j∈J0

F1(hj).

(2) For all i ∈ J0:

fi =
∏

j∈I0

F βj

1+βj

((1 + βj)hj)
∏

j∈J0−{i}

F1(hj).

(3) For all i ∈ K0:

fi =
∏

j∈I0

F βj

1+βj

((1 + βj)hj)
∏

j∈J0

F1(hj).

(4) For all i ∈ L0, there exists a family of salars

(

a
(i)
j

)

j∈I0∪J0∪K0

, suh that

(∃j ∈ I0, a
(i)
j 6= 1 + βj) or (∃j ∈ J0, a

(i)
j 6= 1) or (∃j ∈ K0, a

(i)
j 6= 0).

fi =
∏

j∈I0

F βj

a
(i)
j

(

a
(i)
j hj

) ∏

j∈J0

F 1

a
(i)
j

(

a
(i)
j hj

) ∏

j∈K0

F0

(

a
(i)
j hj

)

.

These SDSE and the ones obtained from them by a dilatation and a hange of

variables are alled fundamental SDSE.
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Remarks.

(1) It is not di�ult to prove that in suh a SDSE, all the verties are of level

0. Moreover, the oe�ients bj are given by:

j I0 J0 K0 L0

bj 1 + βj 1 0 0

The following array gives the oe�ients a
(i)
j = ã

(i)
j :

j \ i I0 J0 K0 L0

I0 1 + (1− δi,j)βj 1 + βj 1 + βj a
(i)
j

J0 1 1− δi,j 1 a
(i)
j

K0 0 0 0 a
(i)
j

L0 0 0 0 0

(2) The ondition in (4) on L0 is equivalent to the property that for eah i ∈ L0,

there is some j ∈ I with a
(i)
j 6= bj.

(3) The elements of I0 are preisely the self-dependent verties of a fundamental

system.

7.3 Fundamental systems are Hopf

We now give a new proof that fundamental SDSE are Hopf. We shall use for this

a pre-Lie algebra attahed to the oe�ients λ
(i,j)
n .

Let us onsider a fundamental SDSE (S), without dilatation. We keep the

notations of setion 7.2 for oe�ients a
(i)
j and bj. The oe�ients λ

(i,j)
n have the

form:

λ(i,j)n = a
(i)
j + bj(n− 1).

Proposition 52. Let g be a vetor spae with basis (ein)i∈I,n≥1. We de�ne a

produt on g by:

eim ◦ e
j
n = λ(j,i)n ejm+n.

Then g is a pre-Lie algebra. It is graded, ein being homogeneous of degree n for all

n ≥ 1.

Proof. Let eim, e
j
n and ekp be three elements of the basis of g. Then:

eim ◦ (e
j
n ◦ e

k
p)− (eim ◦ e

j
n) ◦ e

k
p

= λ(k,j)p (λ
(k,i)
n+p − λ

(j,i)
n )ejm+n+p

= (a
(k)
j + bj(p− 1))(a

(k)
i − a

(j)
i + bi(n+ p− 1)− bi(n− 1))ejm+n+p

= (a
(k)
j + bjp− bj)(a

(k)
i + bip− a

(j)
i )ejm+n+p.

Three ases are possible.
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(1) If i = j, this is trivially symmetri in eim and ejn.

(2) If i and j are two di�erent elements of I0 ∪ J0 ∪K0, then a
(j)
i = bi and this

expression beomes symmetri in eim and ejn.

(3) If i ∈ L0, then a
(k)
i = a

(j)
i = bi = 0, so this expression is 0. Similarly, if

j ∈ L0, then a
(k)
j = bj = 0, so this expression is 0.

In any ase, we obtain the pre-Lie relation for these three elements. So g is pre-

Lie.

Theorem 8 implies that there exists a unique pre-Lie algebra morphism:

φ :

{
gT I −→ g

q i , i ∈ I −→ ei1.

Let us study this morphism. We shall use the following notation:

Notation. Let F ∈ FI . For all i ∈ I, let di(F ) be the number of roots of F
deorated by i. We put d(F ) = (d1(F ), . . . , dN (F )).

Proposition 53. For all t ∈ T I , there exists a oe�ient at ∈ K suh that:

φ(t) = a′te
i
|t|,

where i is the deoration of the root of t. Moreover, these oe�ients an be

indutively omputed by:

{

a′
q i

= 1,

a′Bi(t1...tk)
= d1(t1 . . . tk)! . . . dN (t1 . . . tk)!a

(i)
d(t1...tk)

a′t1 . . . a
′
tk
.

Proof. Let t1, . . . , tk ∈ T I and i ∈ I. The de�nition of the pre-Lie produt of gT I

in terms of grafting easily gives:

Bi(t1 . . . tk) = t1 ◦Bi(t2 . . . tk)−
k∑

j=2

Bi(t2 . . . (t1 ◦ tj) . . . tk). (7.1)

First step. The morphism φ is learly homogeneous. Moreover, for all i ∈ I,
gi = V ect(ein | n ≥ 1) is a right pre-Lie ideal of g; it is not di�ult to prove

that the right pre-Lie ideal of gT I
generated by

q i is the subspae generated by

rooted trees whose root is deorated by i. Hene, if t is a rooted tree whose root

is deorated by i, then φ(t) is an element of gi, homogeneous of degree |t|, so is

ollinear to ei|t|. This proves the existene of the oe�ients at.

Seond step. Let us �rst prove that there exists a family of oe�ients b
(i)
(p1,...,pN )

suh that for all forest F = t1 . . . tk ∈ FI , for all i ∈ I:

a′Bi(F ) = b
(i)
d(F )a

′
t1 . . . a

′
tk .
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We proeed by indution on k. If k = 0, then Bi(F ) = q i and a′t = 1: we take

b
(i)
(0,...,0) = 1. If k = 1, we denote by j the deoration of the root of t1:

φ(Bi(t1)) = φ(t1 ◦ q i ) = φ(t1)◦e
i
1 = a′t1e

j
|t1|
◦ei1 = a′t1λ

(i,j)
1 ei1+|t1|

= a′t1a
(i)
j ei|Bi(t1)|

.

We then take b
(i)
(0,...,0,1,0,...,0) = a

(i)
j , when the 1 is in position j. Let us assume the

result at rank k − 1. The deoration of the root of tj is denoted by dj . For all

k ≥ 2, t1 ◦ tj is a linear span of rooted trees whose root is deorated by dj , so the

indution hypothesis on k gives that:

φ(Bi(t2 . . . t1 ◦ tj . . . tk)) = b
(i)
d(t2...tk)

a′t1 . . . a
′
tk
λ
(dj ,d1)

|tj |
ei|Bi(t1...tk)|

.

By (7.1):

φ(Bi(t1 . . . tk)) = b
(i)
d(t2...tk)

a′t1 . . . a
′
tke

d1
|t1|
◦ ei|Bi(t2...tk)|

−
k∑

j=2

a′t1 . . . a
′
tk
b
(i)
d(t2...tk)

λ
(dj ,d1)

|tj |
ei|Bi(t1...tk)|

= b
(i)
d(t2...tk)



λ
(i,d1)
|Bi(t2...tk)|

−
k∑

j=2

λ
(dj ,d1)

|tj |





︸ ︷︷ ︸

B

a′t1 . . . a
′
tk
ei|Bi(t1...tk)|

.

Moreover:

λ
(i,d1)
|Bi(t2...tk)|

−
k∑

j=2

λ
(dj ,d1)

|tj |
= a

(i)
d1

+ bd1(|t2|+ . . .+ |tk|)−
k∑

j=2

(a
(dj)
d1

+ bj(|tj | − 1)

= a
(i)
d1
− bd1(k − 1) +

k∑

j=2

a
(dj)
d1

.

Hene, B depends only on the deoration of the roots of t1, . . . , tk and on i; note
that as the morphism φ is well-de�ned, it does not depend on the hoie of t1. We

then put B = b
(i)
d(t1...tk)

.

Last step. Let us �x (p1, . . . , pN ) ∈ NN and 1 ≤ j ≤ N . We apply the seond

step to t = Bi( q1
p1 . . . q1 pN ). It immediately gives:

a′t = b
(i)
(p1,...,pN ).

Moreover, by (7.1):

Bi( q1
p1 . . . q j

pj+1 . . . qN
pN ) = q j ◦Bi( q1

p1 . . . q1
pN )

−
N∑

k=1

pkBi( q
q

k
j
q1
p1 . . . qk

pk−1 . . . qN
pN ).
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Applying φ:

b
(i)
(p1,...,pj+1,...,pN ) =

(

λ
(i,j)
p1+...+pN+1 −

N∑

k=1

a
(k)
j

)

b
(i)
(p1,...,pN ).

Lemma 30-2 easily implies that b
(i)
(p1,...,pN ) = p1! . . . pN !a

(i)
(p1,...,pN ).

As in setion 3.5, let us use the duality between S(gT I ) and HICK de�ned by:

〈F,G〉 = sF δF,G.

Let us dualize the pre-Lie algebra morphism φ. It beomes a Hopf algebra mor-

phism φ∗ : S(g)∗ = S(g∗) −→ HICK . We denote by (xin)i∈I,n≥1 the dual basis of

the basis (ein)i∈I,n≥1 of g. Proposition 53 implies that:

φ(xin) =
∑

t∈T I ,|t|=n
the root of t is deorated by i

a′′t t,

where the oe�ients a′′t satis�es the following property: if t ∈ T I , we put t =
Bi(F ) and F = tp11 . . . tpkk , where the tj 's are di�erent trees. Let rj be the number
of roots of F deorated by j for all j ∈ I. Then:

a′′t =
r1! . . . rN !

p1! . . . pk!
a
(i)
(r1,...,rN )a

′′p1
t1 . . . a′′pktk .

By proposition 26, these oe�ients are the oe�ients at's. Hene, the image of

φ∗ is the subalgebra of HICK generated by the homogeneous omponents of the

solution of (S). As φ∗ is a Hopf algebra morphism, it is a Hopf subalgebra. Finally:

Proposition 54. Let (S) be a Hopf fundamental SDSE. Then it is Hopf.

Remark. We also proved that the Hopf algebra H(S) is dual to the enveloping

algebra of the Lie algebra g, de�ned by the help of the struture onstants λ
(i,j)
n .

7.4 Self-dependent verties

Theorem 55. Let (S) be a Hopf SDSE, and let i be a self-dependent vertex

of (S). The subsystem formed by i and all its desendants is fundamental, with

K0 = L0 = ∅. Moreover, if k is a diret desendant of i and j is not a diret

desendant of i, then a
(k)
j = 0.

Proof. From lemma 39 with i = l, we dedue that any desendant of i is a diret

desendant of i. Up to a restrition, we now assume that any vertex of (S) is a
diret desendant of i. We won't write the indies

(i)
in the proof. Up to a hange

of variables, we assume that aj = 1 for all j. As i has level 0, the oe�ients of
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f = fi satisfy an indution of the form (lemma 30-2):







a(0,··· ,0) = 1,

a(p1,··· ,pj+1,··· ,pN ) =
1

pj + 1

(

1 +

N∑

l=1

µ
(l)
j pl

)

a(p1,··· ,pN ),

with µ
(l)
j = (1 + δi,j) ai,j − a

(l)
j for all j, l ∈ I.

Let us �x j 6= k in I. For (p1, · · · , pN) = (0, · · · , 0), as a(0,··· ,0) = 1:

µ
(k)
j = µ

(j)
k . (7.2)

For (p1, · · · , pN) = εl, we obtain:
(

1 + µ
(k)
j + µ

(l)
j

)(

1 + µ
(l)
k

)

=
(

1 + µ
(j)
k + µ

(l)
k

)(

1 + µ
(l)
j

)

.

So:

µ
(k)
j µ

(l)
k = µ

(j)
k µ

(l)
j . (7.3)

Let j, k ∈ I. We shall say that j R k if j = k or if µ
(k)
j 6= 0. Let us show that

R is an equivalene. By (7.2), it is learly symmetri. Let us assume that j R k

and kR l. If j = k or k = l or j = l, then jR l. If j, k, l are distint, then µ
(k)
j 6= 0

and µ
(l)
k 6= 0. By (7.3), µ

(l)
j = µ

(l)
k 6= 0, so j R l. We denote by I1, · · · , IM the

equivalene lasses of R .

Let us assume that j R k, j 6= k. Then µ
(k)
j 6= 0, so for all l, µ

(l)
k = µ

(l)
j . In

partiular, µ
(j)
k = µ

(j)
j = µ

(k)
j = µ

(k)
k . So, �nally, there exists a family of salars

(βn)1≤n≤M , suh that:

• If j, k ∈ In, then µ
(k)
j = βn.

• If j and k are not in the same In, then µ
(k)
j = µ

(j)
k = 0.

The oe�ients −a
(k)
j + (1 + δi,j) a

(i)
i,j are given for all j, k by the array:

j \ k I1 I2 · · · IM
I1 β1 0 · · · 0

I2 0 β2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
IM 0 · · · 0 βM

An easy indution proves:

a(p1,··· ,pN ) =
1

p1! · · · pN !

M∏

n=1

(1 + βn) · · ·

(

1 + βn

(
∑

l∈In

pl − 1

))

.

So:

fi =

M∏

p=1

Fβp




∑

l∈Ip

hl



 .
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We assume that i ∈ I1, without loss of generality. From the expression of

f = fi, we dedue that bj = (1 + δi,j)a
(i)
i,j = β1 + 1 if j ∈ I1, 1 if j ∈ I2 ∪ · · · ∪ IM

(see setion 7.2). So a
(k)
j is given for all j, k by the array:

j \ k I1 I2 I3 · · · IM
I1 1 β1 + 1 · · · · · · β1 + 1

I2
.

.

. 1− β2 1 · · · 1

I3
.

.

. 1 1− β3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1
IM 1 1 · · · 1 1− βM

As a onsequene, if j ∈ I1, then for all 1 ≤ k ≤ N , a
(j)
k = a

(i)
k and λ

(j,k)
n = λ

(i,k)
n

for all n ≥ 1. Note that if j, j′ are in the same Ip, then λ
(j,k)
n = λ

(j′,k)
n for all

n ≥ 1, for all k ∈ I. So, the Hopf SDSE formed by i and its desendants is the

dilatation of a system with the following oe�ients λ
(j,k)
n :

j \ k 1 2 3 · · · M
1 (β1 + 1)(n− 1) + 1 n · · · · · · n
2 (β1 + 1)n n− β2 n · · · n

3
.

.

. n n− β3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. n
M (β1 + 1)n n · · · n n− βM

with i = 1, and f1 =

M∏

j=1

Fβj
(hj). If j 6= 1, for all (k1, · · · , kM ):

a
(j)
(k1+1,··· ,kM ) =

(

(β1 + 1)
M∑

l=1

kl + β1 + 1− (β1 + 1)
M∑

l=2

kl − k1

)
a
(j)
(k1,··· ,kM )

k1 + 1

= (β1 + 1 + β1k1)
a
(j)
(k1,··· ,kM )

k1 + 1
,

a
(j)
(k1,··· ,kj+1,··· ,kM ) =

(
M∑

l=1

kl + 1− βj −
M∑

l=1

kl + βjkj

)
a
(j)
(k1,··· ,kM )

kj + 1

= (1− βj + βjkj)
a
(j)
(k1,··· ,kM )

kj + 1
.

If l 6= 1 and l 6= j:

a
(j)
(k1,··· ,kl+1,··· ,kM ) =

(
M∑

p=1

kp −
M∑

p=1

kp + βlkl

)
a
(j)
(k1,··· ,kM )

kl + 1
= (1 + βlkl)

a
(j)
(k1,··· ,kM )

kl + 1
.
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So, if j 6= 1:

fj = F β1
1+β1

((1 + β1)h1)F βj
1−βj

((1 − βj)hj)
∏

k 6=1,j

Fβk
(hk).

Let us put I ′0 = {j ≥ 2 / βj 6= 1} and J ′
0 = {j ≥ 2 / βj = 1}. Then, after the

hange of variables hj −→
1

1−βj
hj for all j ∈ I ′0:







f1 = Fβ1(h1)
∏

j∈I′0

Fβj

(
1

1− βj
hj

)
∏

j∈J′

0

F1(hj),

fj = F β1
1+β1

((1 + β1)h1)F βj

1−βj

(hj)
∏

l∈I′0−{j}

Fβl

(
1

1− βl
hl

)
∏

l∈J′

0

F1(hl) if j ∈ I
′
0,

fj = F β1
1+β1

((1 + β1)h1)
∏

l∈I′0

Fβl

(
1

1− βl
hl

)
∏

l∈J′

0−{j}

F1(hl) if j ∈ J
′
0.

Putting γj =
βj

1−βj
for all j ∈ I0, as βj =

γj
1+γj

and 1− βj =
1

1+γj
:







f1 = Fβ1(h1)
∏

j∈I′0

F γj

1+γj

((1 + γj)hj)
∏

j∈J′

0

F1(hj),

fj = F β1
1+β1

((1 + β1)h1)Fγj (hj)
∏

j∈I′0−{j}

F γj

1+γj

((1 + γj)hj)
∏

j∈J′

0

F1(hj) if j ∈ I
′
0,

fj = F β1
1+β1

((1 + β1)h1)
∏

j∈I′0

F γj
1+γj

((1 + γj)hj)
∏

j∈J′

0−{j}

F1(hj) if j ∈ J
′
0.

So this a fundamental system, with I0 = {1} ∪ I ′0, J0 = J ′
0, and K0 = L0 = ∅.

7.5 Hopf SDSE ontaining a 2-yle

We �rst introdue a family of Hopf SDSE with no self-dependent verties. More

preisely, we are looking for the Hopf SDSE (S) suh that G(S) is omplete M -

partite, that is to say there exists a partition I1 ⊔ . . . ⊔ IM of the set of verties

of G into nonempty parts, suh that if x, y are two verties of G, there is an edge

from x to y if, and only if, x and y are in di�erent Ij 's.

Proposition 56. Let (S) be a Hopf SDSE suh that G(S) is a omplete M -

partite graph. Let I = I1 ⊔ . . . ⊔ IM be the partition of the set of verties. Then

one, and only one, of the following results holds:

(1) Up to a hange of variables, for all 1 ≤ n ≤ M , for all i ∈ In, fi =

∏

m 6=n



1−
∑

j∈Im

hj





−1

.

(2) (S) is 2-quasi-yli.

Proof. First, let us hoose two verties i→ j in G(S). Then j → i in G(S). Then

a
(j)
j = 0, so a

(j)
i,j = 0; by lemma 30-1 with (i1, i2) = (j, i), a

(i)
j = λ

(j,j)
2 , so a

(i)
j
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depends only on j. So, up to a hange of variables, we an suppose that all the

a
(i)
j 's are equal to 0 or 1. We �rst study two preliminary ases.

First preliminary ase. Let us suppose that G(S) is the following graph (whih

is omplete 3-partite):
1 oo //
^^

��❃
❃❃

❃❃
❃❃

❃ 2@@

����
��
��
��

3

So, a
(i)
j = 1 if i 6= j. Moreover, if {i, j, k} = {1, 2, 3}, by lemma 30-1 with

(i1, i2) = (i, k):

λ
(i,j)
2 = a

(i)
j,k + 1.

Consequently, λ
(i,j)
2 = λ

(i,k)
2 . So, applying proposition 42 to the restrition to

{i, j} implies that two ases are possible:

(1) For all i 6= j, for all n ≥ 1, λ
(i,j)
n = n.

(2) For all i 6= j, for all n ≥ 1, λ
(i,j)
n = 1 if n is odd and 0 if n is even.

In the seond ase, we dedue that if {i, j, k} = {1, 2, 3}, a
(i)
j,k = −1. By lemma

30-1 with (i1, i2, i3) = (1, 3, 2):

1 = λ
(1,2)
3 = a

(1)
2,3 = −1.

This is a ontradition. So the �rst ase holds. It is then not di�ult to prove

that if {i, j, k} = {1, 2, 3}, fi(hj , hk) = (1− hj)−1(1− hk)−1
.

Seond preliminary ase. We now onsider the graph with three verties

1←→ 2←→ 3.

It is omplete 2-partite, with I1 = {1, 3} and I2 = {2}. By lemma 30-1 with

(i1, i2) = (2, 3) and (2, 1):

λ
(2,1)
2 = a

(2)
1,3 = λ

(2,3)
2 .

Applying proposition 42 to the restrition to {1, 2} and {2, 3} shows that two ases
are possible:

(1) For all n ≥ 1, λ
(1,2)
n = λ

(2,1)
n = λ

(2,3)
n = λ

(3,2)
n = n.

(2) For all n ≥ 1, λ
(1,2)
n = λ

(2,1)
n = λ

(2,3)
n = λ

(3,2)
n = 0 if n is even and 1 if n is

odd.

In the �rst ase, proposition 42 implies that f1 = f3 = (1 − h2)−1
. Lemma 30-2

implies that for all m,n ≥ 0:

a
(2)
(m+1,n) =

m+ n+ 1

m+ 1
a(m,n), a

(2)
(m,n+1) =

m+ n+ 1

n+ 1
a(m,n).

Consequently, for allm,n ≥ 0, a
(2)
(m,n) =

(m+n)!
m!n! , so f2 = (1−h1−h3)−1

. In the se-

ond ase, proposition 42 implies that f1 = f3 = 1+h2. Moreover, f2(h1, 0) = 1+h1
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and f2(0, h3) = 1 + h3, so a
(2)
1,1 = a

(2)
3,3 = 0. As λ

(2,1)
2 = a

(2)
1,3 = 0, f2 = 1 + h1 + h3.

We separate the proof of the general ase into two subases.

General ase, �rst subase. We assume that M = 2. We put I1 = {i1, · · · , ir}
and I2 = {j1, · · · , js}. For ip ∈ I1, we put:

fip =
∑

(q1,··· ,qs)

a
(ip)

(q1,··· ,qs)
hq1j1 · · ·h

qs
js
.

Restriting to the verties ip and jq, by proposition 42, two ases are possible.

(1) a
(ip)
jq,jq

= 0. Then, by the seond preliminary ase, restriting to ip, jq and

jq′ , for all jq′ , a
(ip)
jq,jq′

= a
(ip)
j′q,j

′

q
= 0. So fip = 1 +

∑

q

hjq .

(2) λ
(ip,jq)
n = n for all n ≥ 1. We obtain:

a
(ip)

(q1,··· ,qm+1,··· ,qs)
=

1 + q1 + · · ·+ qs
qm + 1

a
(ip)

(q1,··· ,qs)
.

An easy indution proves that a
(ip)

(q1,··· ,qs)
= (q1+···+qs)!

q1!···qs!
, so:

fip =

(

1−
∑

q

hjq

)−1

.

A similar result holds for the jq's. So, we prove that for any vertex i of G(S):

(a) : fi = 1 +
∑

i−→j

hj or (b) : fi =



1−
∑

i−→j

hj





−1

.

Moreover, by the seond preliminary ase, if i and j are related, they satisfy both

(a) or both (b). As the graph is onneted, every vertex satis�es (a) or every

vertex satis�es (b).

General ase, seond subase. We now assume that M ≥ 3. Let us �x i ∈ G
and let j a diret desendant of i. Let us hoose a ommon diret desendant k
of i and j: as M ≥ 3, this exists. By the �rst preliminary ase, after restrition

to i, j, k we obtain that λ
(i,j)
n = n for all n ≥ 1. We obtain, similarly to the ase

M = 2, if i ∈ Ip, fi =
∏

q 6=p



1−
∑

j∈Iq

hj





−1

.

Remark. The system of ase (1) is fundamental, with I = J0.

Theorem 57. Let (S) be a Hopf SDSE, ontaining a 2-yle. Then the subsys-

tem formed by the verties of this 2-yle and all their desendants is fundamental

or is quasi-yli.
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Proof. We assume, up to a restrition, that any vertex of (S) is a desendant of

a vertex of the 2-yle. Let k, l ∈ G(S), suh that l is a diret desendant of k.
There exists i, j, i2, . . . , ip suh that in G(S):

j ←→ i −→ i2 −→ . . . −→ ip −→ k −→ l.

Applying repeatedly lemma 39 (ase i = k), we obtain that there is an edge from

i2 to i, from i3 to i2, . . ., from l to k. So if there is an edge from k to l in G(S),

there is also an edge from l to k. We shall say that G(S) is symmetri.

Let us now prove that G(S) is a ompleteM -partite graph, for a ertainM ≥ 2.
Let us onsider a maximal omplete partite subgraph G′

of G(S). This exists, as

G(S) ontains at least a 2-yle. Let us assume that G′ 6= G(S). As G(S) is

onneted, there exists a vertex i ∈ G(S), related to a vertex of G′
. Let us put

I ′ = I ′1 ∪ · · · ∪ I
′
M be the partition of the set of verties of G′

.

First, if i is related to a vertex j of I ′p, it is related to any vertex of I ′p. Indeed,
let j′ be another vertex of I ′p and let k ∈ I ′q, q 6= p. By lemma 39, j′ is related to

i. As G(S) is symmetri, i is related to j′.
Let us assume that i is not related to at least two I ′p's. Let us take k, l in G

′
,

in two di�erent I ′p's, not related to i. By the �rst step, j, k and l are in di�erent

I ′p's, so are related. By lemma 39, k or l is related to i. As G(S) is symmetri,

then i is related to k or l: ontradition. So i is not related to at most one I ′p.
As a onlusion:

(1) If i is related to every I ′p's, by the �rst step i is related to every vertex ofG
′
, so

G′∪{i} is an ompleteM+1-partite graph, with partition I ′1∪· · ·∪I
′
M ∪{x}.

(2) If i is related to every I ′p's but one, we an suppose up to a reindexation that

i is not related to IM . Then, by the �rst step, i is related to every vertex of

I ′1 ∪ · · · ∪ I
′
M−1. So G

′ ∪ {x} is an omplete M -partite graph, with partition

I ′1 ∪ · · · ∪ (′IM ∪ {x}).

Both ases ontradit the maximality of G′
, so G(S) = G′

is a omplete M -partite

graph. From proposition 56, (S) is 2-quasi-yli or fundamental, with I = J0.

7.6 Systems with only verties of level 0

Theorem 58. Let (S) be a onneted Hopf SDSE with only verties of degree

0. Then it is fundamental.

Proof. We use notations of proposition 41. We prove indutively that Gi is a fun-

damental system for all i ≥ 0. Let us �rst onsider the ase i = 0. From theorem

55 and 57, for any vertex i ∈ I0, i and all its desendants are part of a fundamental

system with K0 = L0 = ∅. A simple study of the possible graphs shows that (S0)
(orresponding to G0) is a onatenation of fundamental systems. If (S0) is not
onneted, let us take i and j in two di�erent onneted omponents of G0. Then

i annot be a desendant of j and j annot be a desendant of i. By lemma 50,

bi = bj = 0. So the fundamental system orresponding to any onneted ompo-

nent of (S0) satis�es J0 = K0 = L0 = ∅ and βi = −1 for all i ∈ I0. It is then lear



58

that (S0) is a fundamental system, with I = I0 and βi = −1 for all i ∈ I0.

Let us assume that the system assoiated to Gk−1 is fundamental. The vertex

added to Gk−1 in order to obtain Gk is denoted by 0. For all i ∈ Ik−1, λ
(0,i)
n =

bi(n − 1) + a
(0)
i . Let us take i, j ∈ Ik−1, with i 6= j. Using lemma 30-1 in two

di�erent ways:

a
(0)
i,j =

(

bj + a
(0)
j − a

(i)
j

)

a
(0)
i =

(

bi + a
(0)
i − a

(j)
i

)

a
(0)
j .

So, for all i, j ∈ Ik−1:

(

bj − a
(i)
j

)

a
(0)
i =

(

bi − a
(j)
i

)

a
(0)
j . (7.4)

If the fundamental system formed byGk−1 has a dilatation, as bj−a
(i)
j = bi−a

(j)
i 6=

0 if i and j are in the same part of the dilatation, we dedue that a
(0)
i = a

(0)
j and

for all n ≥ 1, λ
(0,i)
n = λ

(0,j)
n . Hene, up to a restrition, we an assume that there

is no dilatation.

Let i ∈ L0. Let us hoose j ∈ I0 ∪ J0 ∪ K0, suh that a
(i)
j 6= bj. Then

bi = a
(j)
i = 0, so (7.4) gives

(

bj − a
(i)
j

)

a
(0)
i = 0. So a

(0)
i = 0 for all i ∈ L0.

So the diret desendants of 0 are all in I0 ∪ J0 ∪ K0. Using lemma 30-2 with

i ∈ I0 ∪ J0 ∪K0:

a
(0)
(p1,··· ,pi+1,··· ,pN )

=



a
(0)
i + bi(p1 + · · ·+ pN )−

∑

j∈I0∪J0∪K0−{i}

bipj − a
(i)
i pi




a
(0)
(p1,··· ,pN )

pi + 1

=
(

a
(0)
i +

(

bi − a
(i)
i

)

pi

) a
(0)
(p1,··· ,pN )

pi + 1
.

So:

f0 =
∏

i∈I0

F βi

a
(0)
i

(

a
(0)
i hi

) ∏

i∈J0

F 1

a
(0)
i

(

a
(0)
i hi

) ∏

i∈K0

F0

(

a
(0)
i hi

)

.

So the system of equations assoiated to Gk is fundamental, with 0 ∈ K0∪L0.

7.7 Verties of level 1

As a onsequene, if (S) is a onneted Hopf SDSE, two disjoint ases are possible:

(1) (S) ontains a quasi-yli subsystem, so is desribed by theorem 45.

(2) Any vertex of (S) is of �nite level, and the subsystem (S(0)) formed by the

verties of level 0 is fundamental.

In order to onlude the desription of all onneted Hopf SDSE, let us study now

verties of level ≥ 1.
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Theorem 59. Let (S) be a onneted Hopf SDSE suh that any vertex is of

�nite level. Let (S0) be the subsytem formed by the verties of level 0. The set of

verties of level 1 whih are not extension verties an be deomposed into I1 ∪ J1,
suh that:

(1) For all i ∈ I1, there exists νi ∈ K, a family of salars

(

a
(i)
j

)

j∈I0∪J0∪K0

, suh

that νi 6= 1 and, if νi 6= 0:

fi =
1

νi

∏

j∈I0

F βj

νia
(i)
j

(

νia
(i)
j hj

) ∏

j∈J0

F 1

νia
(i)
j

(

νia
(i)
j hj

) ∏

j∈K0

F0

(

νia
(i)
j hj

)

+1−
1

νi
.

If νi = 0:

fi = −
∑

j∈I0

a
(i)
j

βj
ln(1 − βjhj)−

∑

j∈J0

a
(i)
j ln(1− hj) +

∑

j∈K0

a
(i)
j hj + 1.

(2) For all i ∈ J1, there exists νi ∈ K−{0}, a family of salars

(

a
(i)
j

)

j∈L0

, with

the following onditions:

• L
(i)
0 = {j ∈ L0 / a

(i)
j 6= 0} is not empty.

• For all j, k ∈ L
(i)
0 , fj = fk. In partiular, we put c

(i)
t = a

(j)
t for any

j ∈ L
(i)
0 , for all t ∈ I0 ∪ J0 ∪K0.

Then:

fi =
1

νi

∏

j∈I0

F βj

c
(i)
j

−1−βj

((

c
(i)
j − 1− βj

)

hj

) ∏

j∈J0

F 1

c
(i)
j

−1

((

c
(i)
j − 1

)

hj

)

∏

j∈K0

F0

(

c
(i)
j hj

)

+
∑

j∈L
(i)
0

a
(i)
j hj + 1−

1

νi
.

Proof. First ase. Let us assume that 0 is of level 1. Then all the diret desen-

dants of 0 are of level 0, so are in I0 ∪ J0 ∪ K0 ∪ L0. Moreover, for all i ∈ I,

λ
(0,i)
1 = a

(0)
i and λ

(0,i)
n = bi(n− 1) + ã

(0)
i if n ≥ 2.

First step. Let us �rst assume that all the diret desendants of 0 are in L0.

Up to a hange of variables, we an assume that for all diret desendants i of 0,

a
(0)
i = 1.Let i be a diret desendant of 0 and let 0, j, i3, . . . , in be a sequene of

elements of I as in lemma 30-2. Then j ∈ L0, i3, . . . , in ∈ I0 ∪ J0 ∪ L0, so i is not
a diret desendant of j, i3, . . . , in. Hene:

λ(0,i)n = (1 + δi,j)a
(0)
i,j .

Moreover:

λ(0,i)n = λ(0,j)n = (1 + δi,j)a
(0)
i,j .
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So there exists a salar γ, suh that λ
(0,i)
n = γ for all n ≥ 2, for all diret desen-

dants i of 0. An easy indution using lemma 30-2 proves that for all n ≥ 1:

a
(0)

i, . . . , i
︸ ︷︷ ︸

n

=
γn−1

n!
.

Let i be a diret desendant of 0 and let k be a diret desendant of i. Then k
is not a diret desendant of 0, and lemma 30-1 implies that for all n ≥ 2:

λ(0,jkn = λ
(i,k)
n−1 = bk + a

(i)
k (n− 2).

For t = B0( q i
n), we obtain:

λ
(0,k)
n+1 at = (bk + a

(i)
k (n− 1))

γn−1

n!
= aB0( q

q

i
k
q i

n−1) = na
(i)
k

γn−1

n!
.

If γ 6= 0, we obtain that bk = a
(i)
k for all diret desendants k of i, whih ontra-

dits the fat that i ∈ L0. So γ = 0. This implies that for all diret desendants

i, j of 0, a
(0)
i,j = 0, so f0 = 1 +

∑

i−→i

a
(0)
i hi and 0 is an extension vertex. We shall

assume in the sequel that at least one of the diret desendant of 0 is not in L0.

Seond step. Let us take i, j ∈ I, with i 6= j. Using lemma 30-1 in two di�erent

ways:

a
(0)
i,j =

(

bj + ã
(0)
j − a

(i)
j

)

a
(0)
i =

(

bi + ã
(0)
i − a

(j)
i

)

a
(0)
j . (7.5)

Let us take i, j ∈ L0. Then a
(i)
j = a

(j)
i = bi = bj = 0, so (7.5) gives:

ã
(0)
j a

(0)
i = ã

(0)
i a

(0)
j .

So

(

ã
(0)
i

)

i∈L0

and

(

a
(0)
i

)

i∈L0

are ollinear. We dedue that there exists a salar

ν ∈ K, suh that for all i ∈ L0, ã
(0)
i = νa

(0)
i . Let us now take i, j ∈ I0 ∪ J0 ∪K0,

with i 6= j. Then bi = a
(j)
i and bj = a

(i)
j , so (7.5) gives:

ã
(0)
j a

(0)
i = ã

(0)
i a

(0)
j .

So

(

ã
(0)
i

)

i∈I0∪J0∪K0

and

(

a
(0)
i

)

i∈I0∪J0∪K0

are ollinear. We dedue that there

exists a salar ν′ ∈ K, suh that for all i ∈ I0 ∪ J0 ∪ K0, ã
(0)
i = ν′a

(0)
i . Let

us now take i ∈ I0 ∪ J0 ∪ K0 and j ∈ L0. Then bj = a
(i)
j = 0, so νa

(0)
j a

(0)
i =

(

bi + ν′a
(0)
i − a

(j)
i

)

a
(0)
j . In other words:

∀i ∈ I0 ∪ J0 ∪K0, ∀j ∈ L0, (ν − ν
′)a

(0)
i a

(0)
j = (bi − a

(j)
i )a

(0)
j . (7.6)

Third step. Let us assume that there is a dilatation on (S0). If this dilatation
holds only on verties of K0 or L0, this system an all the same be onsidered

as a fundamental system with no dilatation. Similarly, if the dilatation holds on

a vertex of i of I0 suh that βi = 0, then as F0(h1 + h2) = F0(h1)F0(h2) (as
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F0 = exp), this dilated system an be seen as a fundamental system with no

dilatation. It remains to onsider the ase of dilatations holding on a vertex of I0
with βi 6= 0 or on a vertex of J0. Let us take i, j in the same part of the dilatation.

(7.5) beomes:

(

bj + ν′a
(0)
j − a

(i)
j

)

a
(0)
i =

(

bi + ν′a
(0)
i − a

(j)
i

)

a
(0)
j .

As i, j are in the same part of the dilatation, neessarily bi = bj and a
(i)
j = a

(j)
i . It

remains that (bj−a
(i)
j )(a

(0)
i −a

(0)
j ) = 0. By hypothesis on the dilatation, bj 6= a

(i)
j ,

so a
(0)
i = a

(0)
j . Consequently, ã

(0)
i = ν′a

(0)
i = ν′a

(0)
j = ã

(0)
j . As the level of 0 is

1, we dedue that λ
(0,i)
n = λ

(0,j)
n for all n ≥ 1. Hene, the vertex 0 respets the

dilatation; up to a restrition, we an assume there is no dilatation in (S0).

Fourth step. Let us assume that L
(0)
0 = ∅. Then all the diret desendants of

0 are in I0 ∪ J0 ∪K0. Moreover, if i ∈ I0 ∪ J0 ∪K0 and p1 + . . .+ pN > 0:

a
(0)
(p1,··· ,pi+1,··· ,pN ) =

(

ν′a
(0)
i +

(

bi − a
(i)
i

)

pi

) a
(0)
(p1,··· ,pN )

pi + 1
.

It is then not di�ult to show that 0 is in I1. Note that this ase holds if ν = ν′.
Indeed, if ν = ν′, let j ∈ L0. For a good hoie of i, bi − a

(j)
i 6= 0 in (7.6), so

a
(0)
j = 0: then L

(0)
0 = ∅, and the result is proved in the third step.

Fifth step. Let us assume that L
(0)
0 6= ∅. By the preeding step, ν 6= ν′. Let

us take j ∈ L
(0)
0 . By (7.6), for all i ∈ I0 ∪ J0 ∪K0, a

(j)
i = bi − (ν − ν′)a

(0)
i does

not depend on j. As a onsequene, fj = fk for all j, k ∈ L
(0)
0 . Let us use lemma

30-2. For all i ∈ I0 ∪ J0 ∪K0, if (p1, · · · , pN ) 6= (0, · · · , 0):

a
(0)
(p1,··· ,pi+1,··· ,pN ) =




ν

′a
(0)
i +

(

bi − a
(i)
i

)

pi + (ν − ν′)a
(0)
i

∑

j∈L
(0)
0

pj






a
(0)
(p1,··· ,pN )

pi + 1
.

For all i ∈ L
(0)
0 , if (p1, · · · , pN ) 6= (0, · · · , 0):

a
(0)
(p1,··· ,pi+1,··· ,pN ) = νa

(0)
i

a
(0)
(p1,··· ,pN )

pi + 1
.

Let us �x i ∈ I0 ∪ J0 ∪K0 and j ∈ L
(0)
0 . Then:

a
(0)
i,i =

1

2

(

ν′a
(0)
i + bi − a

(i)
i

)

a
(0)
i ,

a
(0)
i,i,j =

1

2
νa

(0)
i a

(0)
j

(

ν′a
(0)
i + bi − a

(i)
i

)

,

a
(0)
i,j = νa

(0)
i a

(0)
j ,

a
(0)
i,i,j =

1

2
νa

(0)
i a

(0)
j

(

ν′a
(0)
i + bi − a

(i)
i + (ν − ν′)a

(0)
i

)

.
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Identifying the two expressions of a
(0)
i,i,j , as ν 6= ν′ and a

(0)
j 6= 0, we obtain

ν
(

a
(0)
i

)2

= 0. Let us hoose i ∈ I0 ∪ J0 ∪K0 suh that a
(0)
i 6= bi. Then a

(0)
i 6= 0

by (7.6) and thus ν = 0, ν′ 6= 0. We then easily obtain that 0 ∈ J1.

Remarks.

(1) For all i ∈ I1 ∪ J1, bi = 0 by lemma 50 and by proposition 48, i annot be

the desendant of a vertex of level 0. The oe�ients a
(i)
j and ã

(i)
j are given

by the following arrays:

a
(i)
j :

j \ i I1 J1

I0 a
(i)
j (c

(i)
j − 1− βj)/νi

J0 a
(i)
j (c

(i)
j − 1)/νi

K0 a
(i)
j c

(i)
j /νi

L0 0 a
(i)
j

ã
(i)
j :

j \ i I1 J1

I0 νia
(i)
j c

(i)
j − 1− βj

J0 νia
(i)
j c

(i)
j − 1

K0 νia
(i)
j c

(i)
j

L0 0 0

(2) It is possible to prove that the SDSE of theorem 59 are Hopf, as this was

done for fundamental SDSE in setion 7.3.

7.8 Verties of level ≥ 2

Proposition 60. Let (S) be a Hopf SDSE and let i be a vertex of (S) of level
≥ 2. Then i is an extension vertex.

Proof. We denote by M the level of i. Then all the desendants of i are of level
≤M − 1, so i is not a desendant of itself.

Let M be the level of i and let us assume that M ≥ 3. Let j be a diret

desendant of i, k be a diret desendant of j, l be a diret desendant of k. Then
j has level M − 1, k has level M − 2, l has level M − 3. Hene, all the paths from
i to l have a length ≥ 3. The result is then dedued from lemma 40.

Let us now assume that i is of level 2. The diret desendants of i are of level
1, and the diret desendants of the diret desendants of i are of level 0. Hene, if
i→ j → k in G(S), i, j and k are distint. Up to a hange of variables, we assume

that if i→ j → k in G(S), then a
(i)
j = a

(j)
k = 1.

First step. Let us assume that there exists a diret desendant j of i, suh that

a
(i)
j,j 6= 0. Let us �x a diret desendant k of j. Then k has level 0, so k is not an

anestor of j; by lemma 50, bj = 0. As the level of i is 2, there exists a salar b

suh that if n ≥ 3, λ
(i,j)
n = b. The level of j is 1, so there exists salars c, d suh

that:

λ(j,k)n =

{
1 if n = 1,

c(n− 1) + d if n ≥ 2.
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Considering the levels, k is not a diret desendant of i, so a
(i)
j,k = 0. By lemma

31, for all n ≥ 2, λ
(i,k)
n = λ

(j,k)
n−1 . Moreover:

• By lemma 30-1 with (i1, i2, i3) = (i, j, k), b = λ
(i,j)
3 = 2a

(i)
j,j . So b 6= 0.

• By lemma 30-2, a
(i)
j,j,j =

b
3a

(i)
j,j , as a

(j)
j = 0. So a

(i)
j,j,j 6= 0.

• (c + d)a
(i)
j,j = λ

(j,k)
2 a

q∨
qq

i

jj
= λ

(i,k)
3 a

q∨
qq

i

jj
= a

q∨
qq

q

i

jj

k
= 2a

(i)
j,j . As a

(i)
j,j 6= 0,

c+ d = 2.

• (2c + d)a
(i)
j,j,j = λ

(j,k)
3 a

q∨
qq q

i

j
j

j
= λ

(i,k)
4 a

q∨
qq q

i

j
j

j
= a

q∨
qq q

q

i

j
j

j

k= 3a
(i)
j,j,j . As a

(i)
j,j,j 6= 0,

2c+ d = 3.

As a onlusion, c = d = 1. Hene, for any diret desendant of j, λ
(j,k)
n = n for

all n ≥ 1. Lemma 30-2 implies that fj(0, . . . , 0, hk, 0, . . . , 0) = (1 − hk)−1
, so for

all n ≥ 0, aBj( qkn−1) = 1.
Let now l ∈ I whih is not a diret desendant of j and let k be a diret

desendant of j. For all n ≥ 1:

λ(j,l)n = λ(j,l)n aBj( qkn−1) = aBj( qkn−2
q

q

k
l
) = (n− 1)a

(k)
l .

We proved that for any vertex l of G(S), for all n ≥ 1:

λ(j,l)n =

{
n if l is a diret desendant of j,

a
(k)
l (n− 1) if l is not a diret desendant of j,

where k is any diret desendant of j. This proves that j has level 0, so i has level

1: ontradition. So for all diret desendants j of i, a
(i)
j,j = 0.

Seond step. Let j and j′ be two di�erent diret desendants of i. Let us use
lemma 30-1 with (i1, i2) = (i, j) and (i, j′). This gives:

λ
(i,j)
2 = 2a

(i)
j,j = a

(i)
j,j′ = 0.

So all the terms of fi of degree 2 are equal to 0. Finally:

fi = 1 +
∑

i→j

a
(i)
j hj ,

so i is an extension vertex.

8 Comments and examples of fundamental systems

8.1 Graph of a fundamental system

Figure 8.1 illustrates the struture of the graph of a fundamental system (with

no dilatation). An arrow between two boxes means that there is an arrow from

any vertex of the inoming box to any vertex of the outgoing box. A dotted edge
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Figure 1. Struture of the graph of a fundamental SDSE.
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between two boxes means that there may be an edge from a vertex of the inoming

edge to a vertex of the outgoing box. The blak verties are extension verties.

The subgraph of the verties of I0 is separated into two parts. One (the verties
with βi 6= −1) is a omplete graph with self-dependent verties; the seond one (the

verties with βi = −1) is made of isolated self-dependent verties. The subgraph

of the verties of J0 is a omplete graph with only non self-dependent verties; the

other boxes are made of isolated non self-dependent verties.

8.2 Examples of fundamental systems

Here are examples of Dyson-Shwinger equations or systems found in the literature:

(1) The following equation is found in [26, 28, 33, 40℄:

x = B

(
1

1− x

)

,

where B is a 1-oyle of a ertain graded Hopf algebra. This generates Hopf

subalgebra, by theorem 24.

(2) The following equation is found in [2, 29, 40℄:

x =
∑

n≥1

Bn((1 + x)n+1),

where for all n ≥ 1, Bn is a 1-oyle of ertain graded Hopf algebra, homo-

geneous of degree n. If we trunate all the Bn with n 6= n0, we obtain the

equation:

x = Bn0((1 + x)n0+1),

whih gives a Hopf subalgebra. It is possible to prove, working in the Hopf

algebra of rooted trees deorated by N∗
, that the initial equation gives a

Hopf subalgebra [18℄.

(3) The following system is the trunation of a system appearing in [29, 32℄:

N ≥ 2, and for all 1 ≤ n ≤ N ,

xn = Bn

(
(1 + x2)

n

(1 + x1)n

)

.

This is obtained from a fundamental system, with I0 = {1, 2}, L0 = {3, . . . , N},

β1 = 1, β2 = −1/2, a
(n)
1 = n and a

(n)
2 = n/2 if n ≥ 3, by a hange of variables

h1 −→ −h1 and h2 −→ 2h2.

(4) The following system appears in [44℄ and in the �rst setion of this text:







x1 = B1

(
(1 + x1)

3

(1 − x2)(1 − x3)2

)

,

x2 = B2

(
(1 + x1)

2

(1 − x3)2

)

,

x3 = B3

(
(1 + x1)

2

(1 − x2)(1 − x3)

)

.
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This is obtained from a fundamental system,with I0 = {1, 3}, J0 = {2},
β1 = −1/3, β3 = 1, by a hange of variables h1 −→ 3h1.

8.3 Dual pre-Lie algebras

Let us give a few results on the dual pre-Lie algebras. Let (S) be an extended

fundamental SDSE. The pre-Lie algebra of primitive elements of the dual H∗
(S)

has a basis (ein)i∈I,n≥1. As observed in 7.3, the pre-Lie produt is given by:

eim ◦ e
j
n = λ(j,i)n ejm+n.

As a onsequene, gi = V ect(eik, k ≥ 1) is a pre-Lie subalgebra. Three ases are

possible:

(1) i ∈ I0, with βi = −1. Then eik ◦ e
i
l = eik+l: gi is an assoiative, ommutative

algebra, isomorphi to the augmentation ideal of K[X ].

(2) i ∈ K0 ∪ L0 ∪ I1 ∪ J1 or is an extension vertex. Then eik ◦ e
i
l = 0: gi is a

trivial pre-Lie algebra.

(3) i ∈ I0 with βi 6= −1, or i ∈ J0. Then bj 6= 0, and gi is a Faà di Bruno pre-Lie

algebra with parameter given by:

λi =
a
(i)
i

bi
− 1 =

{ −βi

1+βi
if i ∈ I0,

−1 if i ∈ J0.

Note that in both ases (1) and (2), the Lie algebra gi is abelian.

Let us desribe the Lie algebra g(S) in two simple ases; see [19℄ for more general

results.

Proposition 61. Let (S) be a fundamental SDSE with no dilatation, suh that

L0 = ∅. Two ases are possible:

(1) If J0 = ∅ and for all i ∈ I0, βi = −1, then the Lie algebra g(S) is abelian.

(2) If J0 6= ∅ or if there exists i ∈ I0, suh that βi 6= −1, then the Lie algebra

g(S) an be deomposed in a semi-diret produt:

g(S) = (M1 ⊕ . . .⊕Mk)⋊ g0,

where:

• g0 is a Lie subalgebra of g(S), isomorphi to the Faà di Bruno Lie

algebra, with basis (f0
n)n≥1 suh that for all m,n ≥ 1:

[f0
m, f

0
n] = (n−m)f0

n+m.

• For all 1 ≤ i ≤ k, Mi is an abelian Lie subalgebra of g(S), with basis

(f in)n≥1.

• For all 1 ≤ i ≤ k, Mi is a left g0-module in the following way:

f0
m.f

i
n = nf im+n.
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Proof. We use here the notations of setion 7.2.

1. In this ase, for all i ∈ I, bi = 0, so the pre-Lie produt is given by:

eim ◦ e
j
n = a

(j)
i ejm+n.

Moreover, the following array gives the oe�ients a
(i)
j :

j \ i I0 K0

I0 δi,j 0
K0 0 0

Hene, the pre-Lie produt is ommutative. Consequently, the assoiated Lie

braket is abelian.

2. In this ase, there exists 0 ∈ I, suh that b0 6= 0. Then, for all i, j ∈ I,

a
(i)
j = bj + δi,jcj . For all n ≥ 1, we put:







f0
n =

1

b0
e0n,

f in = ein −
b1
b0
e0n if i 6= 0.

The family (f in)i∈I,n≥1 is a basis of g(S). For all i ∈ I, we put:

ci =







−βi if i ∈ I0,
−1 if i ∈ J0,
0 if i ∈ K0.

Diret omputations show that if i, j 6= 0:

f0
m ◦ f

0
n =

(

n+
c0
b0

)

f0
m+n,

f im ◦ f
0
n = −

bi
b0
c0f

0
m+n,

f0
m ◦ f

j
n = nf jm+n −

bj
b0
c0f

0
m+n,

f im ◦ f
j
n = δi,jxie

j
m+n −

bibjc0
b20

e0m+n.

So V ect(f0
n | n ≥ 1) is a Faà di Bruno pre-Lie algebra, with parameter:

c0
b0

=







−β0
1 + β0

if 0 ∈ I0,

−1 if 0 ∈ J0.

Moreover, we obtain, if i, j 6= I:

[f0
m, f

0
n] = (n−m)f0

m+n, [f0
m, f

j
n] = nf jm+n, [f im, f

j
n] = 0,

whih is preisely the announed result.

Proposition 62. Let (S) be a quasi-yli SDSE. The pre-Lie g(S) admits a
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basis (ein)i∈I,n≥1 suh that:

eim ◦ e
j
n =

{

ejm+n if there exists a path from j to i in G(S) of length n,
0 if not.

This pre-Lie produt is assoiative.

Proof. Up to a hange of variables, for all i ∈ I, we have:

xi = 1 +
∑

i→j

Bi(xj).

Hene, for all i ∈ I, for all n ≥ 1:

xi(n) =
∑

i→i2→...→in

q

q
.

.

.

q

q

i
i2

in−1

in

.

So:

∆(xi(n)) =
∑

i→i2→...→in

n∑

k=0

q

q
.

.

.

q

q

ik+1

ik+2

in−1

in

⊗ q

q
.

.

.

q

q

i
i2

ik−1

ik

=
n∑

k=0

∑

ik

xik(n− k)⊗ xi(k),

where the last sum is over all ik suh that there exists a path of length k from i
to ik in G(S). Let (e

i
n)i∈I,n≥1 be the dual basis of the basis (xi(n))i∈I,n≥1; this is

a basis of g(S) and the formula for the oprodut of xi(n) implies the formula for

the pre-Lie produt of two elements of this basis. Moreover, for all i, j, k ∈ I, for
all m,n, p ≥ 1:

• (eim ◦ e
j
n) ◦ e

k
p = ekm+n+p if there exists a path from k to j of length p and a

path from j to i of length n, and 0 otherwise.

• eim ◦ (e
j
n ◦ e

k
p) = ekm+n+p if there exists a path from k to j of length p and a

path from k to i of length n+ p, and 0 otherwise.

As (S) is quasi-yli, there exists a partition I = I1 ⊔ . . . ⊔ IN suh that there is

an edge from i to j in G(S) if, and only if, there exists a ∈ Z/NZ suh that i ∈ Ia
and j ∈ Ia+1. Let a, b, c ∈ Z/NZ suh that i ∈ Ia, j ∈ Ib and k ∈ Ic. Then:

• (eim ◦ e
j
n) ◦ e

k
p = ekm+n+p if c+ p = b and b+ n = a, and 0 otherwise.

• eim ◦ (e
j
n ◦ e

k
p) = ekm+n+p if c+ p = b and c+ n+ p = a, and 0 otherwise.

Consequently, (eim ◦ e
j
n) ◦ e

k
p = eim ◦ (e

j
n ◦ e

k
p) and the produt ◦ is assoiative.

Referenes

[1℄ Mihael Anshelevih, Edward G. E�ros, and Mihai Popa, Zimmermann type anel-

lation in the free Faà di Bruno algebra, J. Funt. Anal. 237 (2006), no. 1, 76�104,

arXiv:math/0504436.



69

[2℄ Christoph Bergbauer and Dirk Kreimer, Hopf algebras in renormalization theory:

loality and Dyson-Shwinger equations from Hohshild ohomology, IRMA Let.

Math. Theor. Phys., vol. 10, Eur. Math. So., Zürih, 2006, arXiv:hep-th/0506190.

[3℄ D. J. Broadhurst and D. Kreimer, Towards ohomology of renormalization: bigrading

the ombinatorial Hopf algebra of rooted trees, Comm. Math. Phys. 215 (2000), no. 1,

217�236, arXiv:hep-th/0001202.

[4℄ Christian Brouder and Alessandra Frabetti, QED Hopf algebras on planar binary

trees, J. Algebra 267 (2003), no. 1, 298�322, arXiv:hep-th/0011161.

[5℄ Christian Brouder, Alessandra Frabetti, and Christian Krattenthaler, Non-

ommutative Hopf algebra of formal di�eomorphisms, Adv. Math. 200 (2006), no. 2,

479�524, arXiv:math/0406117.

[6℄ Frédéri Chapoton, Algèbres pré-lie et algèbres de Hopf liées à la renormalisation,

C. R. Aad. Si. Paris Sér. I Math. 332 (2001), no. 8, 681�684.

[7℄ Frédéri Chapoton and Muriel Livernet, Pre-Lie algebras and the rooted trees operad,

Internat. Math. Res. Noties 8 (2001), 395�408, arXiv:math/0002069.

[8℄ John C. Collins, Renormalization, Cambridge Monographs on Mathematial

Physis, Cambridge University Press, Cambridge, 1984, An introdution to renor-

malization, the renormalization group, and the operator-produt expansion.

[9℄ A. Connes and H. Mosovii, Hopf algebras, yli ohomology and the transverse in-

dex theorem, Comm. Math. Phys. 198 (1998), no. 1, 199�246, arXiv:math/9806109.

[10℄ Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Nonom-

mutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203�242, arXiv:hep-

th/9808042.

[11℄ , Renormalization in quantum �eld theory and the Riemann-Hilbert problem.

I. The Hopf algebra struture of graphs and the main theorem, Comm. Math. Phys.

210 (2000), no. 1, 249�273, arXiv:hep-th/9912092.

[12℄ , Renormalization in quantum �eld theory and the Riemann-Hilbert problem.

II. The β-funtion, di�eomorphisms and the renormalization group, Comm. Math.

Phys. 216 (2001), no. 1, 215�241, arXiv:hep-th/0003188.

[13℄ Loï Foissy, Finite-dimensional omodules over the Hopf algebra of rooted trees, J.

Algebra 255 (2002), no. 1, 85�120, arXiv:math.QA/0105210.

[14℄ Loï Foissy, Les algèbres de Hopf des arbres enrainés déorés. II, Bull. Si. Math.

126 (2002), no. 4, 249�288, arXiv:math/0105212.

[15℄ Loï Foissy, Faà di Bruno subalgebras of the Hopf algebra of planar trees from ombi-

natorial Dyson-Shwinger equations, Advanes in Mathematis 218 (2008), 136�162,

ArXiv:0707.1204.

[16℄ Loï Foissy, Classi�ation of systems of Dyson-Shwinger equations of the Hopf

algebra of deorated rooted trees, Adv. Math. 224 (2010), no. 5, 2094�2150,

arXiv:1101.5231.

[17℄ , Hopf subalgebras of rooted trees from Dyson-Shwinger equations, Motives,

quantum �eld theory, and pseudodi�erential operators, Clay Math. Pro., vol. 12,

Amer. Math. So., Providene, RI, 2010, pp. 189�210.

[18℄ , General Dyson-Shwinger equations and systems, arXiv:1112.2606, 2011.

[19℄ , Lie algebras assoiated to systems of Dyson-Shwinger equations, Adv.

Math. 226 (2011), no. 6, 4702�4730, arXiv:1101.5231.



70

[20℄ Wee Liang Gan and Travis Shedler, The neklae Lie oalgebra and renormalization

algebras, J. Nonommut. Geom. 2 (2008), no. 2, 195�214.

[21℄ Mihel Goze and Elisabeth Remm, Lie-admissible algebras and operads, J. Algebra

273 (2004), no. 1, 129�152, arXiv:math/0210291.

[22℄ Robert L. Grossman and Rihard G. Larson, Hopf-algebrai struture of families of

trees, J. Algebra 126 (1989), no. 1, 184�210, arXiv:0711.3877.

[23℄ , Hopf-algebrai struture of ombinatorial objets and di�erential operators,

Israel J. Math. 72 (1990), no. 1-2, 109�117.

[24℄ , Di�erential algebra strutures on families of trees, Adv. in Appl. Math. 35

(2005), no. 1, 97�119, arXiv:math/0409006.

[25℄ Mihael E. Ho�man, Combinatoris of rooted trees and Hopf algebras, Trans. Amer.

Math. So. 355 (2003), no. 9, 3795�3811.

[26℄ David J.Broadhurst and Dirk Kreimer, Exat solutions of Dyson-Shwinger equa-

tions for iterated one-loop integrals and propagator-oupling duality, Nulear Physis

B 600 (2001), 403�422, arXiv:hep-th/0012146.

[27℄ Dirk Kreimer, On overlapping divergenes, Comm. Math. Phys. 204 (1999), no. 3,

669�689, arXiv:hep-th/9810022.

[28℄ Dirk Kreimer,What is the trouble with Dyson-Shwinger equations?, Nulear Physis

B Proeedings Supplements 135 (2004), 238�242, arXiv:hep-th/0407016.

[29℄ Dirk Kreimer, Anatomy of a gauge theory, Ann. Physis 321 (2006), no. 12, 2757�

2781, arXiv:hep-th/0509135.

[30℄ , Dyson-Shwinger equations: from Hopf algebras to number theory, Uni-

versality and renormalization, Fields Inst. Commun., no. 50, Amer. Math. So.,

Providene, RI, 2007, arXiv:hep-th/0609004.

[31℄ , The ore Hopf algebra, Quanta of maths, Clay Math. Pro., vol. 11, Amer.

Math. So., Providene, RI, 2010, arXiv:0902.1223, pp. 313�321.

[32℄ Dirk Kreimer and Walter D. van Suijlekom, Reursive relations in the ore Hopf

algebra, Nulear Phys. B 820 (2009), no. 3, 682�693, arXiv:0903.2849.

[33℄ Dirk Kreimer and Karen Yeats, An étude in non-linear Dyson-Shwinger equations,

Nulear Phys. B Pro. Suppl. 160 (2006), 116�121, arXiv:hep-th/0605096.

[34℄ Jean-Louis Loday and María Rono, Combinatorial Hopf algebras, Quanta of maths,

Clay Math. Pro., vol. 11, Amer. Math. So., Providene, RI, 2010, arXiv:0810.0435,

pp. 347�383.

[35℄ Dominique Manhon, Hopf algebras in renormalisation, Handbook of algebra. Vol.

5, Handb. Algebr., vol. 5, Elsevier/North-Holland, Amsterdam, 2008, pp. 365�427.

[36℄ , On bialgebras and Hopf algebras of oriented graphs, arXiv:1011.3032, 2011.

[37℄ I. Moerdijk, On the Connes-Kreimer onstrution of Hopf algebras, Homotopy meth-

ods in algebrai topology (Boulder, CO, 1999), Contemp. Math., vol. 271, Amer.

Math. So., Providene, RI, 2001, pp. 311�321.

[38℄ Jean-Mihel Oudom and Daniel Guin, Sur l'algèbre enveloppante d'une algèbre pré-

Lie, C. R. Math. Aad. Si. Paris 340 (2005), no. 5, 331�336, arXiv:math/0404457.

[39℄ Florin Panaite, Relating the Connes-Kreimer and Grossman-Larson Hopf al-

gebras built on rooted trees, Lett. Math. Phys. 51 (2000), no. 3, 211�219,

arXiv:math/0003074.



71

[40℄ Adrian Tanasa and Dirk Kreimer, Combinatorial Dyson-Shwinger equations in non-

ommutative �eld theory, arXiv:0907.2182, 2009.

[41℄ Guillaume van Baalen, Dirk Kreimer, David Uminsky, and Karen Yeats, The QED

β-funtion from global solutions to Dyson-Shwinger equations, Ann. Physis 324

(2009), no. 1, 205�219, arXiv:0805.0826.

[42℄ , The QCD β-funtion from global solutions to Dyson-Shwinger equations,

Ann. Physis 325 (2010), no. 2, 300�324, arXiv:0906.1754.

[43℄ Pepijn van der Laan and Ieke Moerdijk, Families of Hopf algebras of trees and pre-Lie

algebras, Homology, Homotopy Appl. 8 (2006), no. 1, 243�256, arXiv:math/0402022.

[44℄ Karen Yeats, Rearranging Dyson-Shwinger equations, Mem. Amer. Math. So. 211

(2011), no. 995, x+82, With a foreword by Dirk Kreimer.


