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ABSTRACT. These le
ture notes 
ontain a review of the results of [15, 16,

17, 19℄ about 
ombinatorial Dyson-S
hwinger equations and systems. Su
h an

equation or system generates a subalgebra of a Connes-Kreimer Hopf algebra of

de
orated trees, and we shall say that the equation or the system is Hopf if the

asso
iated subalgebra is Hopf. We �rst give a 
lassi
ation of the Hopf 
ombinato-

rial Dyson-S
hwinger equations. The proof of the existen
e of the Hopf subalgebra

uses pre-Lie stru
tures and is di�erent from the proof of [15, 17℄.

We 
onsider afterwards systems of Dyson-S
hwinger equations. We give a de-

s
ription of Hopf systems, with the help of two families of spe
ial systems (quasi-


y
li
 and fundamental) and four operations on systems (
hange of variables, di-

latation, extension, 
on
atenation). We also give a few result on the dual Lie

algebras. Again, the proof of the existen
e of these Hopf subalgebras uses pre-Lie

stru
tures and is di�erent from the proof of [16℄.
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Introdu
tion

In Quantum Field Theory, the Green's fun
tions of a given theory are developed

as a series in the 
oupling 
onstant, indexed by the set of Feynman graphs of the

theory. These series 
an be seen at the level of the algebra of Feynman graphs.

They satisfy then a 
ertain system of 
ombinatorial Dyson-S
hwinger equations.

These equations use a 
ombinatorial operator of insertion, and they allow to in-

du
tively 
ompute the homogeneous 
omponents of the Green's fun
tions lifted at

the level of Feynman graphs [2, 26, 28, 29, 30, 31, 32, 33, 40, 41, 42, 44℄. As the

Feynman graphs are organised as a Hopf algebra, a natural question is to know

if the graded subalgebra generated by the Green's fun
tions is Hopf or not. This

problem, and related questions about the nature of the obtained Hopf subalgebras,

are the main obje
t of study in [15, 16, 17, 19℄.
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Here is an example 
oming from Quantum Ele
trodynami
s [44℄, see the �rst

se
tion of this text for more details. For any Feynman graph γ, the operator Bγ
is 
ombinatorially de�ned by the operation of insertion into γ. The system holds

on three series in Feynman graphs, denoted by , and . After a

trun
ation, it is given by the following equations:

= Bγ1

(
(1 + )3

(1− )2(1 − )

)

,

= Bγ2

(
(1 + )2

(1− )2

)

, = Bγ3

(
(1 + )2

(1 − )(1 − )

)

,

with γ1 = , γ2 = , and γ3 = .

The insertion operators appearing in this system are 1-
o
yles of a 
ertain

subspa
e of a quotient of the Hopf algebra of Feynman graphs, that is to say for

all x in this subspa
e:

∆ ◦Bγ(x) = Bγ(x)⊗ 1 + (Id⊗Bγ) ◦∆(x).

This allows to lift the problem to the level of rooted trees. Repla
ing insertion by

grafting of trees on a root, we obtain a system in the Hopf algebra of rooted trees

de
orated by {1, 2, 3}:

x1 = B1

(
(1 + x1)

3

(1− x2)(1− x3)2

)

,

x2 = B2

(
(1 + x1)

2

(1 − x3)2

)

, x3 = B3

(
(1 + x1)

2

(1 − x2)(1 − x3)

)

,

where, for all trees t1, . . . , tn, Bi(t1 . . . tn) is the tree obtained by grafting t1, . . . , tn
on a 
ommon root de
orated by i. The graph of dependen
e of this system is:
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This system has a unique solution X = (x1, x2, x3). Here are the 
omponents of

degree ≤ 3 of X :

x1 = q
1

+ 3 q

q

1

1 + q

q

1

2 + 2 q

q

1

3 + 9 q
q

q

1

1

1

+ 3 q
q

q

1

1

2

+ 6 q
q

q

1

1

3

+ 2 q
q

q

1

2

1

+ 2 q
q

q

1

2

3

+ 4 q
q

q

1

3

1

+2 q
q

q

1

3

2

+ 2 q
q

q

1

3

3

+ 3 q∨
qq

1

11

+ 3 q∨
qq

1

21

+ 6 q∨
qq

1

31

+ q∨
qq

1

22

+ 2 q∨
qq

1

32

+ 3 q∨
qq

1

33

+ . . .

x2 = q
2

+ 2 q

q

2

1 + 2 q

q

2

3 + 6 q
q

q

2

1

1

+ 2 q
q

q

2

1

2

+ 4 q
q

q

2

1

3

+ 4 q
q

q

2

3

1

+ 2 q
q

q
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3

2

+ 2 q
q

q

2

3

3

+ q∨
qq

2
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+ 3 q∨
qq

2

33

+ 4 q∨
qq

2

31

+ . . .

x3 = q
3

+ 2 q

q

3

1 + q

q

3

2 + q

q

3

3 + 6 q
q

q
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1

+ 2 q
q

q

3

1

2
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q

3

1

3

+ 2 q
q

q

3

2

1

+ 2 q
q

q

3

2

3

+ 2 q
q

q

3

3

1

+ q

q

q

3

3

2

+ q

q

q

3

3

3

+ q∨
qq

3

11

+ 2 q∨
qq

3

21

+ 2 q∨
qq

3

31

+ q∨
qq

3

22

+ q∨
qq

3

32

+ q∨
qq

3

33

+ . . .

It 
an be proved that the subalgebra generated by the homogeneous 
omponents



4

of x1, x2 and x3 is a Hopf subalgebra. In fa
t, this system is an example of a

fundamental system (de�nition 51). The aim of this text is to present the 
lassi-

�
ation of the systems of 
ombinatorial Dyson-S
hwinger equations whi
h give a

Hopf subalgebra. We shall limit ourselves to systems with only one 1-
o
y
le per
equation. More general 
ases are studied in [18℄; it turns out that if the 
orre-

sponding subalgebra is Hopf, then the trun
ation of the equations to 1-
o
y
le of
degree 1 allows to get ba
k the whole system.

We begin with a single equation x = B(f(x)), where f is a formal series in one

indeterminate, with f(0) = 1. The question is answered in the third and fourth

se
tions. The subalgebra generated by the 
omponents of the solution is Hopf,

if, and only if, f is 
onstant, or f = eαh for a 
ertain α, or f = (1 − αβh)−1/β

for a 
ertain 
ouple (α, β), with β 6= 0 (theorem 24). The dire
t sense is proved

using a "leaf-
utting" result (proposition 21), applied on two families of trees,

the ladders

q , q
q

, q
q

q

, q
q

q

q

. . . and the 
orollas

q , q
q

, q∨
qq

, q∨
qq q

. . .. The other sense uses a

omplementary stru
ture on the dual of the Hopf algebra of trees HCK . By the

Cartier-Quillen-Milnor-Moore theorem, it is an enveloping algebra. The asso
iated

Lie algebra is based on trees, and is in fa
t a free pre-Lie algebra (de�nition 6 and

theorem 8), that is to say it has a (non-asso
iative) produ
t ◦ su
h that:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

The Lie bra
ket is given by [x, y] = x ◦ y − y ◦ x. For example, the spa
e of

Feynman graphs is a pre-Lie algebra, with a produ
t de�ned by insertions. In

the 
ase of trees, the pre-Lie produ
t is de�ned by graftings. This pre-Lie alge-

bra is denoted by gT . Another espe
ially interesting pre-Lie algebra is the Faà

di Bruno Lie algebra gFdB, related to the group of formal di�eomorphisms of

the line. As gT is a free pre-Lie algebra (theorem 8), this allows to de�ne mor-

phisms φλ from gT to gFdB (proposition 14). This morphism is 
omputed with

the help of an expli
it 
onstru
tion of the enveloping algebra of a pre-Lie algebra

(theorem 9, applied in propositions 10 and 12). Dually, we obtain a Hopf alge-

bra morphism from the Faà di Bruno Hopf algebra HFdB to the Connes-Kreimer

Hopf algebra, and the image of the generators of HFdB, whi
h are linear spans of

trees, satisfy a Dyson-S
hwinger equation (proposition 16); as a 
onsequen
e, this

Dyson-S
hwinger equation is Hopf. This result is proved in [15, 17℄ in a di�erent

way, with the help of an identity on a family of symmetri
 polynomials whi
h is

not used here.

The 
ase of systems of Dyson-S
hwinger equations (brie�y, SDSE) is studied in

the last four se
tions. We �rst generalize the results on a single equation, espe
ially

the "leaf-
utting" result and its 
onsequen
es (proposition 29 and lemma 30). Four

operations are introdu
ed on SDSE, 
hange of variables, dilatation, extension and


on
atenation. The latter leads to the notion of 
onne
ted SDSE, that is to say

a SDSE whi
h 
annot be obtained by a 
on
atenation of two smaller ones. The

main obje
ts of study are now 
onne
ted systems. Another tool is also introdu
ed,

the graph of dependen
e. A graph-theoreti
al study proves that this graph always
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ontains an oriented 
y
le (proposition 41). A study of SDSE whose graph is an

oriented 
y
le allows to separate the SDSE into two 
lasses, the quasi-
y
li
 and

the fundamental 
ase. The quasi-
y
li
 
ase is entirely des
ribed in theorem 45.

The fundamental 
ase is the obje
t of the seventh se
tion. We �rst introdu
e the

notion of the level of a vertex of the graph of dependen
e. This notion de�nes

a sort of gradation of the graph (proposition 48). A study of verti
es, level by

level, �nally allows to des
ribe all fundamental SDSE. As a 
on
lusion, any SDSE

whi
h gives a Hopf subalgebra is obtained from the 
on
atenation of quasi-
y
li


or fundamental systems, after the appli
ation of a dilatation, a 
hange of variables,

and a �nite number of extensions.

This text is organised as follows. The �rst se
tion of the text deals with Feyn-

man graphs. The algebrai
 stru
tures (produ
t, 
oprodu
t, insertions) on Feyn-

man graphs of a given theory are introdu
ed here, and this leads to the �rst

example of a system of Dyson-S
hwinger equations, 
oming from Quantum Ele
-

trodynami
s. The se
ond se
tion gives the alternative Hopf algebras in quantum

�eld theory, namely the Connes-Kreimer Hopf algebras of de
orated rooted trees.

Their universal property (theorem 5) allows to de�ne Hopf algebra morphisms from

rooted trees to Feynman graphs. The role of the insertion operators on graphs are

played for trees by the grafting operators, and Dyson-S
hwinger equations are

lifted to the level of trees.

The third se
tion adopts the dual point of view. We give the pre-Lie produ
ts

on gT and gFdB, and 
onstru
t the pre-Lie morphism φλ from gT to gFdB with the

help of an expli
it des
ription of their enveloping algebra. Dually, the image under

φ∗λ of the generators of the Faà di Bruno Hopf algebra satis�es a Dyson-S
hwinger

equation (proposition 16).

Single Dyson-S
hwinger equations are reviewed in the fourth se
tion. Proposi-

tion 21 gives a 
ombinatorial 
riterion of "leaf-
utting" to know if the solution of

the 
onsidered Dyson-S
hwinger equation is Hopf. This 
riterion and proposition

16 for the other dire
tion, imply the main theorem for Dyson-S
hwinger equations

(theorem 24).

The study of systems of Dyson-S
hwinger equations is a
hieved in the last se
-

tions. The �fth se
tion introdu
es the tool of "leaf-
utting" for systems (lemma

30), and the four operations on Hopf SDSE. The oriented graph of dependen
e of

the equations of a Hopf SDSE is also studied here. The next se
tion introdu
es

quasi-
y
li
 SDSE, and a
hieves their des
ription. The se
ond family of SDSE

(fundamental ones) is studied in the seventh se
tion. In parti
ular, the notion of

level is introdu
ed, and the verti
es are separated a

ording to their level being 0,
1, or ≥ 2. The last se
tion gives a few more results and 
omments on fundamental

SDSE, espe
ially on the dual pre-Lie algebras, as well as several examples found

in the literature.

Thanks. I would like to thank the organizers of the meeting DSFdB2011,

espe
ially for the opportunity of giving a mini-
ourse on the algebrai
 aspe
ts of

Dyson-S
hwinger equations. The le
ture notes of this mini-
ourse are the frame-

work of the present text. I would also like to thank both referees, for their useful
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and relevant 
omments whi
h help me to greatly improve the quality of this do
-

ument.

Notations.

(1) Let K be a 
ommutative �eld of 
hara
teristi
 zero. All the ve
tor spa
es,

algebras, 
oalgebras, Lie algebras. . . of this text will be taken over K.

(2) We use the 
onvention N = {0, 1, 2, 3, . . .} and N∗ = {1, 2, 3, . . .}.

1 Feynman graphs

1.1 De�nition

For more pre
ise results and de�nitions, see [8, 44℄ and more generally the refer-

en
es listed in the introdu
tion. Let us 
onsider a quantum �eld theory. In this

theory, a 
ertain number of parti
les intera
t in di�erent possible ways. The pos-

sible 
on�gurations of intera
tions are des
ribed by the Feynman graphs of the

theory. The graphs we shall 
onsider here are des
ribed in the following way:

(1) There are several types of edges (one for ea
h parti
le of the theory).

(2) The verti
es 
an be external or internal.

(a) There are at least two internal verti
es.

(b) If a vertex v is external, it is related to a single edge, whi
h is said to

be external. The other edges are said to be internal.

(
) There are several types of internal verti
es (one for ea
h intera
tion of

the theory).

(3) The graph should be 
onne
ted and 1-parti
le irredu
ible, that is to say that

it remains 
onne
ted if one deletes any internal edge.

(4) The number of external verti
es (or external edges) belongs to a 
ertain set

of integers (
ondition of global divergen
e in Renormalization).

The number of loops of a Feynman graph γ is:

l(γ) = ♯{internal edges of γ} − ♯{internal verti
es of γ}+ 1.

The 
ondition of 1-parti
le irredu
ibility implies that l(γ) ≥ 1 for all Feynman

graphs γ.

Example. We take in this se
tion the example of Quantum Ele
trodynami
s

(QED). In this theory:

(1) There are two types of parti
les, ele
trons and photons. So there are two

types of edges: ele
tron and photon .

(2) There is one intera
tion: an ele
tron 
an 
apture or eje
t a photon. So there

is one type of internal vertex .
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(3) The number of external edges is equal to 2 or 3.

Here are examples of Feynman graphs in QED:

, , , ,

, , , , , , . . .

Remark. Feynman graphs are often 
onsidered without external verti
es. The

external edges are then 
onsidered as half-edges ; The internal edges are the union

of two half-edges. A Feynman subgraph of γ is then a set of half-edges of γ whi
h

forms a Feynman graph.

1.2 Insertion

Let us �x a QFT. For this theory, the external stru
tures of the Feynman graphs


orrespond to the di�erent types of verti
es and edges of the theory. For example,

in QED, there are three possible external stru
tures:

(1) Two ele
tron edges, 
orresponding to the edge .

(2) Two photon edges, 
orresponding to the edge .

(3) One photon and two ele
tron edges, 
orresponding to the vertex .

Let γ and γ′ be two Feynman graphs. Inserting γ′ into γ 
onsists in repla
ing

in γ an internal edge or vertex 
orresponding to the external stru
ture of γ′ by γ′.
For example, in QED:

(1) There is one possible insertion of in . The result is .

(2) There are two possible insertions of in . Both of them give

.

(3) There are three possible insertions of in itself. The results are ,

and .

More generally, one 
an insert a family γ1, . . . , γk of Feynman graphs into a

Feynman graph γ: one inserts γ1, . . . , γn in γ in su
h a way that the set of internal

edges and verti
es of the 
opies of γ1, . . . , γk are disjoint. It is not di�
ult to prove

that if Γ is obtained by the insertion of γ1, . . . , γn in γ, then:

l(Γ) = l(γ) + l(γ1) + . . .+ l(γk).

Let us des
ribe the "dual" operation. For any Feynman graph Γ, let γ =
γ1 . . . γk be a family of disjoint Feynman subgraphs of Γ. The 
ontra
tion of Γ by

γ1, . . . , γk is the graph obtained from Γ by repla
ing any γi be an edge or a vertex


orresponding to its external stru
ture. It is denoted by Γ/γ. Moreover:

l(Γ) = l(γ1) + . . .+ l(γk) + l(Γ/γ) = l(γ) + l(Γ/γ).
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1.3 Algebrai
 stru
tures on Feynman graphs

See [11, 31, 35, 36, 44℄. Let us 
onsider the free 
ommutative algebra generated

by the set of Feynman graphs of a given theory. We denote it by HFG, without
pre
ising the 
onsidered QFT. A basis of this algebra is given by monomials in

Feynman graphs, that is to say disjoint unions of Feynman graphs, or equivalently

graphs su
h that every 
onne
ted 
omponent is a Feynman graph. The unit is the

empty graph 1. This algebra is given a 
oasso
iative 
oprodu
t. For any Feynman

graph Γ:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ

γ ⊗ Γ/γ,

where the sum is over all the family of disjoint Feynman subgraphs of Γ, not empty

nor equal to Γ. With this 
oprodu
t, HFG is a Hopf algebra, graded by the num-

ber of loops.

For example, in QED:

∆( ) = ⊗ 1 + 1⊗ + ⊗ ,

∆( ) = ⊗ 1 + 1⊗ + 2 ⊗ .

Remark. For any Feynman graph Γ, the right fa
tors in the tensor produ
ts

appearing in ∆(Γ) are 1 or Feynman graphs, wherear the left fa
tors 
an be prod-

u
ts of several Feynman graphs. This is an example of left 
ombinatorial Hopf

algebra [34℄. As a 
onsequen
e, the spa
e of primitive elements of the dual of

HFG inherits a left pre-Lie produ
t (see de�nition 6 below); a basis of this pre-Lie

algebra is given by the set of Feynman graphs and the pre-Lie produ
t is given by

insertion, see [29, 31℄.

For this 
oprodu
t, any Feynman graph with no proper Feynman subgraph is

primitive. For example, the following Feynman graphs are primitive in QED:

, , ,

Let us take a primitive Feynman graph γ. The insertion operator Bγ sends a

monomial γ1 . . . γk to the sum of all possible insertions of γ1, . . . , γk into γ, up to

symmetries 
oe�
ients we won't detail here (see [44℄). In parti
ular, Bγ(1) = γ.
Moreover, Bγ is homogeneous for the number of loops, of degree l(γ).

1.4 Dyson-S
hwinger equations

See [2, 30, 33, 44℄. The Green's fun
tions of the QFT are developped as a series

in the 
oupling 
onstant x (we assume here it is equal to 1), indexed by the set of

Feynman graphs of the theory. To any Feynman graph is atta
hed a s
alar, by the

Feynman rules and the pro
edure of renormalisation, [8, 10, 11, 12℄. At the level

of the Hopf algebra of Feynman graphs, we have then to 
onsider the in�nite sum

of all Feynman graphs, with a �xed external stru
ture, up to 
ertain symmetry
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oe�
ients. Is there an easy way to des
ribe these series?

Let us 
onsider the example of QED. There are three possible external stru
-

tures, so we have to 
onsider three series, denoted here by , , and

. Let us 
onsider a Feynman graph Γ appearing in . It 
an be ob-

tained by the insertions of 
ertain γ1, . . . , γk into a primitive Feynman graph with

an external stru
ture of type . So 
an be written as:

=
∑

γ

Bγ (fγ ( , , )) ,

where the sum runs over all the primitive Feynman graphs with a external

stru
ture, and fγ is a formal series in three indeterminates. Let us now determine

fγ . For example, let us take γ = .

(1) This graph has three verti
es , and we 
an insert 1 + at any of

these verti
es.

(2) It has two internal edges , and we 
an insert 1 + + 2 + . . .
at any of these edges.

(3) It has one internal edge , and we 
an insert 1 + + 2 + . . .
at this edge.

So:

fγ( , , ) = (1 + )3

(
∞∑

k=0

k

)2( ∞∑

k=0

k

)

=
(1 + )3

(1− )2(1− )
.

Treating any primitive Feynman graph in this way, one obtains:

=
∑

γ

Bγ

(
(1 + )1+2l(γ)

(1− )2l(γ)(1− )l(γ)

)

. (1.1)

Let us then 
onsider a graph appearing in . It 
an be obtained by an

insertion in . As this graph has two verti
es and two internal edges

, this gives:

= B

(
(1 + )2

(1 − )2

)

. (1.2)

Similarly, we obtain for the last series:

= B

(
(1 + )2

(1− )(1− )

)

. (1.3)

The three equations (1.1), (1.2) and (1.3) are the Dyson-S
hwinger equations of

the QFT. They allow to indu
tively 
ompute the irredu
ible 
omponents (for the

number of loops) of , and . For a more "physi
al" des
ription,

see [44℄ (we did not pay here attention to signs and we took the 
oupling 
onstant



10

x equal to 1).

The question we shall answer here is if the Hopf algebra generated by these

homogeneous 
omponents is Hopf or not. We restri
t ourselves to the 
ase where

a single insertion operator, homogeneous of degree 1, appears in any of these

equations (this the 
ase for (1.2) and (1.3) only; we should have to trun
ate (1.1)

to apply the obtained result; see [18℄ for more details). For this, we shall use trees

instead of Feynman graphs. The key point is the following:

Proposition 1. [2, 29℄ In a suitable subspa
e of a quotient of HFG, we 
an

assume that the operators appearing in the Dyson-S
hwinger equations satisfy the

following assertion: for any x,

∆(L(x)) = L(x)⊗ 1 + (Id⊗ L) ◦∆(x).

2 Rooted trees

We shall repla
e Feynman graphs by rooted trees and insertion operators by graft-

ing operators, with the help of the universal property of the Hopf algebra of rooted

trees (theorem 5).

2.1 The Connes-Kreimer Hopf algebra

Let T be the set of rooted trees :

T =

{

q , q
q

, q∨
qq

, q
q

q

, q∨
qq q

, q∨
qq

q

,
q∨
qq

q , q
q

q

q

. . .

}

Note that rooted trees are 
onsidered unordered; for example,

q∨
qq

q

= q∨
qq

q

.

The Connes-Kreimer Hopf algebra [10, 13℄ is the free 
ommutative algebra

generated by T . As a 
onsequen
e, a basis of HCK is given by the set of rooted

forests F :

F = {1, q , q
q

, q q , q∨
qq

, q
q

q

, q
q

q , q q q , q∨
qq q

, q∨
qq

q

,
q∨
qq

q , q
q

q

q

, q∨
qq

q , q
q

q

q , q
q

q

q

, q
q

q q , q q q q , . . .}.

The produ
t of two forests is their disjoint union. The unit is the empty forest 1.

We give HCK a 
oprodu
t, with the help of admissible 
uts :

De�nition 2. Let t ∈ T . An admissible 
ut of t is a non-empty 
ut su
h that

every downward path in the tree meets at most one 
ut edge. The set of admissible


uts of t is denoted by Adm(t). If c is an admissible 
ut of t, one of the trees
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obtained after the appli
ation of c 
ontains the root of t: we shall denote it by

Rc(t). The produ
t of the other trees will be denoted by P c(t).

The 
oprodu
t is given for any t ∈ T by:

∆(t) = t⊗ 1 + 1⊗ t+
∑

c∈Adm(t)

P c(t)⊗Rc(t).

The 
ounit ε sends any non-empty forest to 0 and the empty forest 1 to 1.

Examples.

∆( q∨
qq q

) = q∨
qq q

⊗ 1 + 1⊗ q∨
qq q

+ 3 q ⊗ q∨
qq

+ 3 q q ⊗ q

q

+ q q q ⊗ q ,

∆( q∨
qq

q

) = q∨
qq

q

⊗ 1 + 1⊗ q∨
qq

q

+ q

q

q ⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

+ q q ⊗ q

q

+ q ⊗ q∨
qq

,

∆(
q∨
qq

q ) =
q∨
qq

q ⊗ 1 + 1⊗
q∨
qq

q + q∨
qq

⊗ q + q q ⊗ q

q

+ 2 q ⊗ q

q

q

,

∆( q
q

q

q

) = q

q

q

q

⊗ 1 + 1⊗ q

q

q

q

+ q

q

q

⊗ q + q

q

⊗ q

q

+ q ⊗ q

q

q

.

Moreover, this Hopf algebra is graded by the number of verti
es of the forests.

For any F ∈ F , we shall denote by |F | its degree, that is to say the number of

verti
es of F .

The following operator will repla
e the insertion operators:

De�nition 3. The operator B : HCK −→ HCK is the linear map whi
h sends

any rooted forest F = t1 . . . tn to the rooted tree obtained by grafting the trees

t1, . . . , tn on a 
ommon root.

For example, B( q
q

q) = q∨
qq

q

. Clearly, B indu
es a bije
tion of degree 1 from F
to T .

Notations. We shall need two families of spe
ial rooted trees: for all n ≥ 1,

(1) ln = Bn(1) is the ladder of degree n: l1 = q , l2 = q

q

, l3 = q

q

q

, l4 = q

q

q

q

. . .

(2) cn = B( qn−1) is the 
orolla of degree n: c1 = q , c2 = q

q

, c3 = q∨
qq

, c4 = q∨
qq q

. . .

2.2 De
orated rooted trees

In order to treat Dyson-S
hwinger systems, we will use de
orated rooted trees.

We �x a (nonempty) set of de
orations I. A de
orated rooted tree is a pair (t, d),
where t is a rooted tree and d is a map from the set of verti
es of t to I. The set
of rooted trees de
orated by I is denoted by T I . For example, here are the rooted

trees de
orated by D with n ≤ 4 verti
es:

qa ; a ∈ I, q

q

a
b (a, b) ∈ I2; q∨

qq

a

cb

= q∨
qq

a

bc

, q

q

q

a
b

c

, (a, b, c) ∈ I3;
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q∨
qq q

a

d
c

b

= q∨
qq q

a

c
d

b

= . . . = q∨
qq q

a

b
c

d

, q∨
qq

q

a

db

c

= q∨
qq

q

a

bd

c

,
q∨
qq

q

a

b

dc

=
q∨
qq

q

a

b

cd

, q

q

q

q

a
b

c
d

, (a, b, c, d) ∈ I4.

The 
onstru
tion of HCK is generalized to de
orated rooted trees, and we

obtain in this way a Hopf algebra HICK . A basis of HICK is given by the set of

de
orated forests, denoted by FI . Here is an example of the 
oprodu
t:

∆( q∨
qq

q

d

cb

a

) = q∨
qq

q

d

cb

a

⊗1+1⊗ q∨
qq

q

d

cb

a

+ q

q

b
a ⊗ q

q

d
c + qa⊗ q∨

qq

d

cb

+ q c⊗ q

q

q

d
b

a

+ q

q

b
a
q c⊗ qd+ qa q c⊗ q

q

d
b .

For any i ∈ I, we de�ne the operator Bi : HCK −→ HCK , sending a de
orated

rooted forest F to the de
orated tree obtained by grafting the trees of F on a


ommon root de
orated by i. For example, Ba( q b q

q

c
d ) = q∨

qq

q

a

cb

d

.

Proposition 4. For all i ∈ I, for all x ∈ HICK :

∆ ◦Bi(x) = Bi(x) ⊗ 1 + (Id⊗Bi) ◦∆(x).

Proof. If x is a forest, by a study of the admissible 
uts of the trees of x and the

admissible 
uts of Bi(x).

Remark. In other words, Bi is a 1-
o
y
le for a 
ertain 
ohomology of 
oalge-

bras [10℄, 
alled the Cartier-Quillen 
ohomology, dual to the Ho
hs
hild homology

for algebras.

Theorem 5 (Universal property). Let A be a 
ommutative Hopf algebra and let

Li be a 1-
o
y
le of A for all i ∈ I. There exists a unique Hopf algebra morphism

φ : HICK −→ A su
h that φ ◦Bi = Li ◦ φ for all i ∈ I.

Proof. We de�ne φ(F ) for any de
orated forest F indu
tively on the degree of F
in the following way:

(1) φ(1) = 1.

(2) If F is not a tree, let us denote F = t1 . . . tk, with k ≥ 2 for trees t1, . . . , tk.
We put φ(F ) = φ(t1) . . . φ(tk).

(3) If F is a tree, there exists a unique i ∈ I and a unique forest G su
h that

F = Bi(G). We put φ(F ) = Li ◦ φ(G).

This is well-de�ned, as A is 
ommutative: in the se
ond point, φ(F ) does not

depend on the way to write F as a produ
t of trees (that is to say up to the

order of the appearing trees). From the �rst and se
ond point, it is an algebra

morphism. From the third point, φ ◦ Bi = Li ◦ φ for all i ∈ I. Let us now prove

that it is a 
oalgebra morphism. We put:

A = {x ∈ HICK | (φ⊗ φ) ◦∆(x) = ∆ ◦ φ(x)}.

As φ and ∆ are algebra morphisms, A is a subalgebra of HICK . Let us take x ∈ A.
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For all i ∈ I:

(φ⊗ φ) ◦∆(Bi(x)) = (φ⊗ φ)(Bi(x)⊗ 1 + (Id⊗Bi) ◦∆(x))

= φ ◦Bi(x) ⊗ 1 + (φ⊗ φ ◦Bi) ◦∆(x)

= Li ◦ φ(x) ⊗ 1 + (Id⊗ Li) ◦ (φ⊗ φ) ◦∆(x)

= Li(φ(x)) ⊗ 1 + (Id⊗ Li) ◦∆(φ(x))

= ∆(Li(x)).

So Li(x) ∈ A, and A is stable under Bi for all i. It is not di�
ult to show then

that A 
ontains any de
orated forests, so is equal to HICK . Hen
e, φ is a Hopf

algebra morphism. It is not di�
ult to prove that ε ◦ φ = εA.

Remarks.

(1) The �rst part of this proof means that (HCK , B) is an initial obje
t in a


ertain 
ategory, see [37, 43℄ for appli
ations.

(2) If Bγ is an insertion operator ofHFG, homogeneous of degree 1, from theorem

5 there exists a Hopf algebra morphism φγ : HCK −→ HFG, su
h that

φγ ◦ B = Bγ ◦ φγ . It is not di�
ult to prove that φγ is homogeneous of

degree 1.

(3) If we 
onsider a Dyson-S
hwinger equation (E) : X = Bγ(f(X)) in HFG,
it 
an be lifted to a Dyson-S
hwinger equation (E′) : X = B(f(X)) in

HCK . Moreover, if X is the solution of (E′), then the solution of (E) is

φγ(X). As a 
onsequen
e, if the homogeneous 
omponents of X generate a

Hopf subalgebra of HCK , the homogeneous 
omponents of the solution of

(E) generate a Hopf subalgebra of HFG. This result is easily extended to

Dyson-S
hwinger systems.

(4) The 
onstru
tion of the morphism φγ 
an easily be extended when we 
on-

sider several insertion operators, repla
ing trees by de
orated trees, see [27℄

for a 
onstru
tion of this kind.

2.3 Completion of a graded Hopf algebra

In order to treat Dyson-S
hwinger equations, we shall 
onsider series in trees,

instead of polynomials in trees, whi
h are elements of HCK . Let us give a general

frame to this purpose. Let H be a graded Hopf algebra. We de�ne a valuation

on H by:

val(a) = max






n ∈ N | a ∈

⊕

k≥n

Ak






.

In parti
ular, val(0) = +∞. We de�ne a distan
e on H by d(a, b) = 2−val(a−b).
This metri
 spa
e is not 
omplete. Its 
ompletion is denoted by H . It is equal, as

a ve
tor spa
e, to

∞∏

n=0

Hn.
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The produ
t of H , being homogeneous, is 
ontinuous, so 
an be extended as a

produ
t from H⊗H to H . The 
oprodu
t 
an also be extended from H to H ⊗H .

Note that H is not in general a Hopf algebra, as H ⊗H ( H ⊗H (ex
ept if H is

�nite-dimensional).

For example, the elements of HCK 
an be uniquely written as

∑

F∈F

aFF , where

the 
oe�
ients aF are s
alars.

3 Pre-Lie algebras

We already mentioned that the spa
e of Feynman graphs is given a pre-Lie algebra

stru
ture by insertion. A similar result is here des
ribed for rooted trees, and we

apply a freeness result (theorem 8) to the Faà di Bruno pre-Lie algebra in order to

obtain solutions of Dyson-S
hwinger equations. As a 
onsequen
e, the subalgebras

asso
iated to the Dyson-S
hwinger equations of proposition 16 are Hopf. This was

proved in a di�erent way in [15, 17℄.

3.1 De�nition and examples

De�nition 6. A (left) pre-Lie algebra (or left-symmetri
 algebra, or Vinberg

algebra) is a pair (g, ◦), where g is a K-ve
tor spa
e and ◦ : g⊗ g −→ g, with the

following axiom: for all x, y, z ∈ g,

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (y ◦ x) ◦ z − y ◦ (x ◦ z).

Remark. A right pre-Lie algebra satis�es:

(x ◦ y) ◦ z − x ◦ (y ◦ z) = (x ◦ z) ◦ y − x ◦ (z ◦ y).

If (g, ◦) is right pre-Lie, then (g,−◦op) is left pre-Lie. In the sequel all the pre-Lie

algebras will be left, and we shall write everywhere "pre-Lie algebra" instead of

"left pre-Lie algebra".

Proposition 7. Let (g, ◦) be a pre-Lie algebra. Then [x, y] = x ◦ y − y ◦ x
de�nes a Lie bra
ket on g.

Proof. This bra
ket is obviously skew-symmetri
. The Ja
obi identity is proved

by a dire
t 
omputation.

Remarks.

(1) The pre-Lie axiom 
an be reformulated as [x, y] ◦ z = x ◦ (y ◦ z)− y ◦ (x ◦ z).
In other words, (g, ◦) is a left-module over (g, [−,−]).

(2) There exists other types of produ
ts whi
h indu
e a Lie bra
ket by skew-

symmetrization: see [21℄ for other examples.
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Examples.

(1) Asso
iative algebras are obviously pre-Lie.

(2) Let gFdB = V ect(ei | i ≥ 1) and let λ ∈ K. One de�nes a produ
t on gFdB

by ei ◦ ej = (j + λ)ei+j . For all i, j, k ≥ 1:

(ei ◦ ej) ◦ ek − ei ◦ (ej ◦ ek)

= (j + λ)(k + λ)ei+j+k − (k + λ)(j + k + λ)ei+j+k

= −k(k + λ)ei+j+k.

This expression is symmetri
 in i, j, so gFdB is pre-Lie. The asso
iated Lie

bra
ket is given by [ei, ej ] = (j − i)ei+j , so does not depend of λ. This Lie
algebra is the Faà di Bruno Lie algebra. The graded dual of the enveloping

algebra of gFdB is known as the Faà di Bruno Hopf algebra or Hopf algebra

of formal di�eomorphisms, see [9, 10℄ for the link with the Hopf algebra of

trees.

(3) Let gT be the ve
tor spa
e generated by the set T of rooted trees. We de�ne

a produ
t on gT by:

t ◦ t′ =
∑

s′ vertex of t′

grafting of t over s′.

For example,

q

q

◦ q∨
qq

= q∨
qq q

q

+ q∨
qq

q

q

+ q∨
qq

q

q

= q∨
qq q

q

+2 q∨
qq

q

q

. This produ
t is 
alled

natural growth [3, 13℄. It is indeed a pre-Lie produ
t: if t, t′, t′′ are three

rooted trees,

t ◦ (t′ ◦ t′′)− (t ◦ t′) ◦ t′′ =
∑

s′′∈t′′, s′∈t′∪t′′

grafting of t′ over s′′, t over s′

−
∑

s′′∈t′′, s′∈t′

grafting of t′ over s′′, t over s′

=
∑

s′,s′′∈t′′

grafting of t over s′, t′ over s′′.

This is symmetri
 in t, t′, so ◦ is pre-Lie. This 
onstru
tion is easily gener-

alized to rooted trees de
orated by a set I. The obtained pre-Lie algebra is

denoted by gT I . For example, if a, b, c, d ∈ I:

qa ◦ q∨
qq

b

dc

= q∨
qq q

b

d
c

a

+ q∨
qq

q

b

dc

a

+ q∨
qq

q

b

dc

a

.

Theorem 8. [7℄ gT is, as a pre-Lie algebra, freely generated by

q
, that is to

say: if g is a pre-Lie algebra and if x ∈ g, there exists a unique pre-Lie algebra

morphism from gT to g sending

q
to x. More generally, for any set I, the pre-Lie

algebra gT I of rooted trees de
orated by I is freely generated by the elements

q i ,

i ∈ I.
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Other examples of pre-Lie algebras are known, see [38℄ for a list of examples,

in
luding ve
tor �elds on an a�ne variety. Generalization of the Faà di Bruno

pre-Lie algebras are des
ribed in [1℄.

3.2 Enveloping algebra of a pre-Lie algebra

Let V be a ve
tor spa
e and let S(V ) be the symmetri
 algebra generated by V . It
is a 
o
ommutative Hopf algebra, with the 
oprodu
t de�ned by∆(v) = v⊗1+1⊗v
for all v ∈ V . So, if v1, . . . , vn ∈ V :

∆(v1 . . . vn) =
∑

I⊆{1,...,n}

vI ⊗ v{1,...,n}−I ,

where for all I ⊆ {1, . . . , n}, vI is the produ
t of the vi's, i ∈ I. The underlying


oalgebra is denoted by coS(V ).

The Poin
aré-Birkho�-Witt theorem implies that the 
oalgebrasU(g) and coS(g)
are isomorphi
: 
hoosing a basis (vi)i∈I of g indexed by a totally ordered set I, we
obtain a 
oalgebra isomorphism sending the element of the Poin
aré-Birkho�-Witt

va1i1 . . . v
an
in
∈ U(g), with i1 < . . . < in in I, to va1i1 . . . v

an
in
∈ S(g). Ex
ept if g is

abelian, it is not an algebra morphism; moreover, this 
onstru
tion depends of the


hoi
e of the basis of g, espe
ially of the total order on the set of indi
es I.

When g is pre-Lie, one 
an des
ribe a "
anoni
al" 
oalgebra isomorphism from

U(g) to coS(g). For this, we 
an give coS(g) a new produ
t denoted by ⋆, de�ned
by indu
tion on g with the help of the pre-Lie produ
t g. This makes coS(g) a
Hopf algebra, and it is now isomorphi
 to U(g). Here are the formulas de�ning ⋆:

Theorem 9. [20, 38℄ Let (g, ◦) a pre-Lie algebra. Let S+(g) the augmentation

ideal of S(g). One 
an extend the produ
t ◦ to S(g) in the following way: if

a, b, c ∈ S+(g), x ∈ g,







a ◦ 1 = ε(a),
1 ◦ b = b,

(xa) ◦ b = x ◦ (a ◦ b)− (x ◦ a) ◦ b,
a ◦ (bc) =

∑
(a′ ◦ b)(a′′ ◦ c).

One then de�nes a produ
t on S+(g) by a ⋆ b =
∑
a′(a′′ ◦ b), with the Sweedler

notation ∆(a) =
∑
a′ ⊗ a′′. This produ
t is extended to S(g), making 1 the unit

of ⋆. With its usual 
oprodu
t, S(g) is a Hopf algebra, isomorphi
 to U(g) via the

isomorphism:

Φg :

{
U(g) −→ (S(g), ⋆)
v ∈ g −→ v.

The proof in [38℄ is indu
tive. In parti
ular, the fa
t that ◦ is well-de�ned (in

the se
ond point, the 
hoi
e of the �rst letter x in the 
ommutative word xa is ar-

bitrary) uses the pre-Lie axiom. The 
omputations are dire
t but rather 
omplex.
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Examples. If x, y, z, t ∈ g :

x ◦ (yz) = (x ◦ y)z + y(x ◦ z)

(xy) ◦ z = x ◦ (y ◦ z)− (x ◦ y) ◦ z

x ◦ (yzt) = (x ◦ y)zt+ y(x ◦ z)t+ yz(x ◦ t)

(xy) ◦ (zt) = (x ◦ (y ◦ z))t+ (y ◦ z)(x ◦ t) + (x ◦ z)(y ◦ t)

+z(x ◦ (y ◦ t))− ((x ◦ y) ◦ z)t− z((x ◦ y) ◦ t)

(xyz) ◦ t = x ◦ (y ◦ (z ◦ t))− x ◦ ((y ◦ z) ◦ t)− y ◦ ((x ◦ z) ◦ t)

+(y ◦ (x ◦ z)) ◦ t− z ◦ ((x ◦ y) ◦ t) + (z ◦ (x ◦ y)) ◦ t.

Remarks.

(1) An easy indu
tion proves that for all n ≥ 0, g ◦Sn(g) ⊆ Sn(g). So (Sn(g), ◦)
is a g-module for all n ≥ 0. Moreover, (Sn(g), ◦) is isomorphi
 to Sn(g, ◦) as
a g-module (4th point).

(2) (S+(g), ◦) is not pre-Lie. For example, in gT :

q q ◦ q = q ◦ ( q ◦ q)− ( q ◦ q) ◦ q = q ◦ q

q

− q

q

◦ q = q∨
qq

+ q

q

q

− q

q

q

= q∨
qq

,

so:

q q ◦ ( q ◦ q) = q q ◦ q

q

= q ◦ ( q ◦ q

q

)− ( q ◦ q) ◦ q

q

= q ◦ ( q∨
qq

+ q

q

q

)− q

q

◦ q

q

= q∨
qq q

+ 2 q∨
qq

q

+ q∨
qq

q

+
q∨
qq

q + q

q

q

q

− q∨
qq

q

− q

q

q

q

= q∨
qq q

+ 2 q∨
qq

q

+
q∨
qq

q ,

( q q ◦ q) ◦ q = q∨
qq

◦ q

=
q∨
qq

q ,

q ◦ ( q q ◦ q) = q ◦ q∨
qq

= q∨
qq q

+ 2 q∨
qq

q

,

( q ◦ q q) ◦ q = (( q ◦ q) q + q( q ◦ q)) ◦ q

= 2 q

q

q ◦ q

= 2 q∨
qq

q

.

So

q q ◦ ( q ◦ q)− ( q q ◦ q) ◦ q − q ◦ ( q q ◦ q) + ( q ◦ q q) ◦ q = 2 q∨
qq

q

6= 0.

Remark. It turns out that S≥n(g) is a left ideal for ⋆. In parti
ular, S≥2(g)
is a left ideal su
h that S+(g) = g ⊕ S≥2(g). One dedu
es that U(g) 
ontains a
left ideal I su
h that U+(g) = g ⊕ I. Dually, we re
over the notion of left-sided


ombinatorial Hopf algebra [34℄.
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3.3 Examples

Let us start by gT . A basis of S(gT ) is given by the set of rooted forests F .

Proposition 10. Let F = t1 . . . tn, G ∈ F . Then:

F ◦G =
∑

s1,...,sn∈G

grafting of t1 over s1,. . ., tn over sn.

Proof. Indu
tively on n. Let us start with n = 1. We put G = s1 . . . sm and we

pro
eed indu
tively on m. If m = 1, it is the de�nition of ◦ on gT . Let us assume

the result at rank m− 1. We put G′ = s1 . . . sm−1. Then:

t1 ◦G = t1 ◦ (G
′sm)

= (t1 ◦G
′)sm +G′(t1 ◦ sm)

=
∑

s∈G′

(grafting of t1 over s)sm +
∑

s∈sm

G′(grafting of t1 over s)

=
∑

s∈G

grafting of t1 over s.

So the result is true at rank 1. Let us assume it at rank n−1. We put F ′ = t2 . . . tn.
Then:

F ◦G = t1 ◦ (F
′ ◦G)− (t1 ◦ F

′) ◦G

=
∑

s2,...,sn∈G

∑

s∈F ′∪G

grafting of t2 over s2,. . ., tn over sn, t1 over s

−
∑

s2,...,sn∈G

∑

s∈F ′

grafting of t2 over s2,. . ., tn over sn, t1 over s

=
∑

s2,...,sn∈G

∑

s∈G

grafting of t2 over s2,. . ., tn over sn, t1 over s

=
∑

s1,...,sn∈G

grafting of t1 over s1,. . ., tn over sn.

So the result is true for all n.

Corollary 11. If F = t1 . . . tm, G ∈ F , then:

F⋆G =

m∑

k=0

∑

1≤i1<...<ik≤m

∑

s1,...,sk∈G

(grafting of t1 over s1, . . ., tk over sk)
∏

i6=i1,...,ik

ti.

The Hopf algebra S(gT ) is known as the Grossman-Larson Hopf algebra [22,

23, 24℄. The �rst known proof of its existen
e is dire
t and does not use the pre-Lie

stru
ture.

Let us 
onsider now the Faà di Bruno pre-Lie algebra.



19

Proposition 12. In S(gFdB):

(ei1 . . . eim) ◦ ej = (j + λ)j(j − λ) . . . (j − (m− 2)λ)ei1+...+im+j .

Proof. We put Pm(j) = (j+λ)j(j −λ) . . . (j− (m− 2)λ). We pro
eed indu
tively

on m. If m = 1, it is the de�nition of the pre-Lie produ
t of gFdB. Let us assume

the result at rank m− 1. Then:

(ei1 . . . eim) ◦ ej

= ei1 ◦ ((ei2 . . . eim) ◦ ej)− (ei1 ◦ (ei2 . . . eim)) ◦ ej

= Pm−1(j)ei1 ◦ ei2+...+im+j −
m∑

k=2

(ik + λ)(ei2 . . . ei1+ik . . . eim) ◦ ej

= Pm−1(j)(i2 + . . .+ im + j + λ)ei1+...+im+j −
m∑

k=2

Pm−1(j)(ik + λ)ei1+...+im+j

= Pm−1(j)(i2 + . . .+ im + j + λ− i2 − . . .− im − (m− 1)λ)ei1+...+im+j

= Pm(j)ei1+...+im+j .

So the result is true for all m.

Notation. If λ 6= −1, we put α = 1+λ and β = −λ
1+λ . Then, for all i1, . . . , im:

(ei1 . . . eim)◦ej = αm(j+β(j−1))(j+β(j)) . . . (j+β(j+m−2))ei1+...+im+j . (3.1)

This formula is still true if λ = −1 and j = 1, with α = 0, for any value of β.
Indeed, if λ = −1 (so α = 0) and j = 1, then (ei1 . . . eim) ◦ e1 = 0.

3.4 From rooted trees to Faà di Bruno

From theorem 8, there exists a unique morphism of pre-Lie algebras φλ : gT −→
gFdB, sending q

to e1.

De�nition 13. Let β ∈ K.

(1) For any n ≥ 1, we put [n]β = 1 + (n− 1)β.

(2) For any n ≥ 0, we put [n]β ! = [1]β . . . [n]β, with the 
onvention [0]β ! = 1.

(3) Let t ∈ T and let x be a vertex of t. The fertility of x is the number of


hildren of x.

(4) Let t ∈ T . We put [t]β ! =
∏

s vertex of t

[fertility of s]β !.

Remarks.

(1) If β = 1, then [n]β = n for all n ≥ 1.

(2) With these notations, (3.1) be
omes, for j = 1:

(ei1 . . . eim) ◦ e1 = αm[m]β !ei1+...+im+1.
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Proposition 14. For all t ∈ T , φλ(t) = α|t|−1[t]β !e|t|. Moreover, φλ is sur-

je
tive if, and only if, λ 6= −1.

Proof. We extend φλ as a Hopf algebra morphism from (S(gT ), ⋆) to (S(gFdB), ⋆).
Then φλ(a◦b) = φλ(a)◦φλ(b) for all a, b ∈ S(gT ). We prove the result by indu
tion

on the degree of t. It is obvious if |t| = 1, as then t = q
and φλ( q) = e1. Let us

assume the result for all trees of degrees stri
tly smaller than t. Let t1, . . . , tm be

the trees obtained by deleting the root of t. Then, from proposition 10 and (3.1):

φλ(t) = φλ((t1 . . . tm) ◦ q)

= (φλ(t1) . . . φλ(tm)) ◦ e1

= α|t1|+...+|tm|−m[t1]β ! . . . [tm]β !(e|t1| . . . e|tm|) ◦ e1

= α|t1|+...+|tm|−mαm[m]β![t1]β ! . . . [tm]β !e|t1|+...+|tm|+1

= α|t|−1[t]β !e|t|.

So the result is true for all trees.

If λ = −1, then Im(φλ) = Ke1 as α = 0. If λ 6= −1, then φλ(ln) = αn−1en, so
φλ is surje
tive.

3.5 Duality

The aim of this se
tion is to des
ribe a family of inje
tions of the dual of the Faà

di Bruno Hopf algebra in the Hopf algebra of rooted trees, with the help of the

pre-Lie stru
tures. Non
ommutative versions are given in [4, 5, 14℄; the 
ase of

free Faà di Bruno Hopf algebras is studied in [15℄.

gT and gFdB are graded pre-Lie algebras, so S(gT ) and S(gFdB) are graded

Hopf algebras (for the produ
t ⋆). As (gT )0 = (gFdB)0 = (0), the homogeneous


omponents of S(gT ) and S(gFdB) are �nite-dimensional, so the graded dual of

S(gT ) and S(gFdB) are also Hopf algebras. The graded dual of S(gFdB) is denoted
by HFdB.

Let us give a more pre
ise des
ription of S(gT )
∗
. A basis of S(gT ) is given by

rooted forests. We identify S(gT ) and S(gT )
∗
as ve
tor spa
es with the help of

the pairing de�ned in the following way:

〈F,G〉 = sF δF,G,

where sF is the number of automorphisms of the rooted forest F , that is to say

the number of automorphisms of the graph F whi
h map all roots to roots.

Let F,G,H be three forests. We put F = tα1
1 . . . tαn

n , G = tβ1

1 . . . tβn
n and
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H = tγ11 . . . tγnn , where t1, . . . , tn are di�erent rooted trees. Then:

〈∆(H), F ⊗G〉

=
∑

i1,...,in

(
γ1
i1

)

. . .

(
γn
in

)

〈ti11 . . . t
in
n , t

α1
1 . . . tαn

n 〉〈t
γ1−i1
1 . . . tγn−inn , tβ1

1 . . . tβn
n 〉

=
∑

i1,...,in

(
γ1
i1

)

. . .

(
γn
in

)

sF sGδi1,α1 . . . δin,αn
δγ1−i1,β1 . . . δγn−in,βn

.

So this is zero if there exists i su
h that γi 6= αi+βi. If γi = αi+βi for all i, then:

sH = γ1! . . . γn!s
γ1
t1 . . . s

γn
tn

=

(
γ1
α1

)

. . .

(
γn
αn

)

α1! . . . αn!s
α1
t1 . . . s

αn

tn β1! . . . βn!s
β1

t1 . . . s
βn

tn

=

(
γ1
α1

)

. . .

(
γn
αn

)

sF sG.

So:

〈∆(H), F ⊗G〉 =

(
γ1
α1

)

. . .

(
γn
αn

)

sF sG = sH .

In both 
ases, 〈∆(H), F ⊗G〉 = 〈H,FG〉. So the produ
t of S(gT )∗ is the "usual"
produ
t of forests (disjoint union).

Let us now 
onsider the 
oprodu
t of S(gT )
∗
. From the pre
eding point, S(gT )

∗

is generated by the set of rooted trees. It is then enough to 
ompute ∆(t) for any
rooted tree t. Moreover, by 
onstru
tion of ⋆, for all n ≥ 1:

S(gT ) ⋆ Sn(gT ) ⊆
⊕

p≥n

Sp(gT ).

So, if F,G are two forests su
h that G has at least two trees, then F ⋆ G is a sum

of forests with at least two trees. Hen
e, if t is a rooted tree, 〈F ⊗ G,∆(t)〉 =
〈F ⋆ G, t〉 = 0. If t′ is a tree, from 
orollary 11:

〈F ⊗ t′,∆(t)〉 = 〈F ⋆ t′, t〉 = st♯{graftings of F over t′ that yield t}.

This is equal to sF st′♯{admissible 
uts c of t su
h that P c(t) = F and Rc(t) = t′},
see [25℄. So:

〈F ⊗ t′,∆(t)〉 =
∑

c∈Adm(t)

〈F ⊗ t′, P c(t)⊗Rc(t)〉.

As a 
on
lusion, we obtain the following formula: for any rooted tree t ∈ S(gT )∗,

∆(t) = 1⊗ t+ t⊗ 1 +
∑

c∈Adm(t)

P c(t)⊗Rc(t).

In other words, S(gT )
∗
is the Connes-Kreimer Hopf algebra HCK [6, 25, 39℄. This

result is proved similarly for de
orated rooted trees.
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We now give a des
ription of HFdB. Let (xn)n≥1 be the dual basis of (en)n≥1.

Then a basis of HFdB is given by the monomials in the xi's and the duality is

given by:

〈xi11 . . . xinn , e
j1
1 . . . ejnn 〉 = i1! . . . in!δi1,j1 . . . δin,jn .

Dualising proposition 12 we obtain, for all n ≥ 1:

∆(xn) = xn ⊗ 1 +

n∑

j=1

n−j
∑

m=0

∑

i1+...+im+j=n

(j + λ) . . . (j − (m− 2)λ)

m!
xi1 . . . xim ⊗ xj .

Let us reformulate this formula. We put X =
∑
xn ∈ HFdB. If λ 6= 0:

∆(X) = X ⊗ 1 +

∞∑

j=1

∞∑

m=0

∑

i1,...,im

(j + λ) . . . (j − (m− 2)λ)

m!
xi1 . . . xim ⊗ xj

= X ⊗ 1 +

∞∑

j=1

(
∞∑

m=0

(j + λ) . . . (j − (m− 2)λ)

m!
Xm

)

⊗ xj

= X ⊗ 1 +

∞∑

j=1

(1 + λX)1+
j
λ ⊗ xj . (3.2)

If λ = 0, we obtain:

∆(X) = X ⊗ 1 +

∞∑

j=1

ejX ⊗ xj .

Remark. Let us 
onsider more pre
isely the 
ase λ = 1. As HFdB is 
om-

mutative, we 
an 
onsider it as the Hopf algebra of 
oordinates on its group of


hara
ters GFdB. As HFdB is the free 
ommutative algebra generated by the xi's,
any element φ ∈ GFdB is entirely determined by its values on the xi's. In other

words, there exists a bije
tion:







GFdB −→ h+ h2K[[h]]

φ −→ Fφ = h+

∞∑

n=1

φ(xn)h
n+1.

So, taking Y = 1 +
∑
xnh

n
, this morphism 
an be summarized as Fφ = hφ(Y ).

Moreover, the formula on X implies that:

∆(Y ) = Y ⊗ 1 +

∞∑

j=1

Y j+1 ⊗ hjxj =
∞∑

j=0

hjY j+1 ⊗ xj ,

with the 
onvention x0 = 1. Then, if φ, ψ ∈ GFdB:

Fφψ = h(φ⊗ ψ) ◦∆(Y ) =

∞∑

j=0

hj+1φ(Y )j+1ψ(xj) = Fψ ◦ Fφ.

So, up to an isomorphism, GFdB is the (opposite of the) group of formal di�eo-

morphisms tangent to the identity at 0, with the usual 
omposition of formal series.
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Let us now dualise the pre-Lie algebra morphism φλ. The Hopf algebra HFdB
is generated by the elements xi, i ≥ 1, dual to the elements ei ∈ gFdB. It is

enough to des
ribe the image of the xi's. By homogeneity, φ∗λ(xi) is a linear span

of rooted trees of degree i. Let t ∈ T , of degree i. Then:

〈t, φ∗λ(xi)〉 = 〈φλ(t), xi〉 = αi−1[t]β〈ei, xi〉 = αi−1[t]β .

As a 
onsequen
e:

φ∗λ(xi) = αi−1
∑

t∈T , |t|=i

1

st
[t]β !t.

If λ 6= −1, φλ is surje
tive, so φ∗λ is inje
tive. We proved:

Proposition 15. For all n ≥ 1, we put:

x(n) = αn−1
∑

t∈T , |t|=n

1

st
[t]β !t.

The subalgebra of HCK generated by these elements is Hopf. If λ 6= −1 (or equiv-

alently if α 6= 0), it is isomorphi
 to HFdB.

Examples.

x(1) = q ,

x(2) = α q

q

,

x(3) = α2

(
(1 + β)

2
q∨
qq

+ q

q

q

)

,

x(4) = α3

(

(1 + 2β)(1 + β)

6
q∨
qq q

+ (1 + β) q∨
qq

q

+
(1 + β)

2

q∨
qq

q + q

q

q

q
)

,

x(5) = α4











(1+3β)(1+2β)(1+β)
24

q∨
qq

✟❍
q q

+ (1+2β)(1+β)
2

q∨
qq q

q

+ (1+β)2

2
q∨
qq∨
qq

+ (1 + β) q∨
qq

q

q

+ (1+2β)(1+β)
6

q∨
qq

q

q

+ (1+β)
2

q∨
qq

qq

+ (1 + β)
q∨
qq

q

q

+ (1+β)
2

q

q

q∨
q q

+ q

q

q

q

q











.

3.6 From the Faà di Bruno Lie algebra to Dyson-S
hwinger

equations

Let us use the operator B to indu
tively des
ribe the x(n)'s. We denote by at the

oe�
ient of t in x(|t|). Let F be the unique forest su
h that t = B(F ). We put
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F = tα1
1 . . . tαk

k , where the ti's are di�erent rooted trees. Then:

at = α|t|−1 [t]β !

st

= αα1|t1|+...+αk|tk|
[t1]

α1

β . . . [tk]
αk

β [α1 + . . .+ αk]β !

sα1
t1 . . . s

αk

tk α1! . . . αk!

= αα1+...+αk
[α1 + . . .+ αk]β !

(α1 + . . .+ αk)!

(α1 + . . .+ αk)!

α1! . . . αk!
aα1
t1 . . . a

αk

tk
.

We put X =
∑
x(i). This is a priori not an element of HCK (it is an in�nite

sum), but it lives in the 
ompletion HCK of HCK . The pre
eding 
omputations

imply that X satis�es the following equation:

X = B

(
∞∑

n=0

αn
[n]β !

n!
Xn

)

.

This equation is a 
ombinatorial Dyson-S
hwinger equation. Let us 
onsider the

formal series f =
∑
αn

[n]β!
n! h

n
. Denoting its 
oe�
ients by an, there is the obvious

indu
tive relation:

(n+ 1)an+1 = α(1 + nβ)an.

Summing these relations after multipli
ation by hn, we obtain:

f ′ = αf + αβhf ′.

An easy indu
tion proves that for all n ≥ 0:

an =
[n]β!

n!
αn =

{
(
− 1

β
n

)
(−αβ)n if β 6= 0,

αn

n! if β = 0.

Hen
e, f(h) = eαh if β = 0 (that is to say if λ = 0) or (1− αβh)−
1
β
if β 6= 0.

Proposition 16. The element X ∈ HCK de�ned using the pre-Lie morphism

φλ from gT to gFdB satis�es the 
ombinatorial Dyson-S
hwinger equation:

X = B(f(X)),

where f = 1 if λ = −1, f = eh if λ = 0, f = (1 + λh)
1+λ
λ

if λ 6= 0,−1.

Remark. In all 
ases, f =
∞∑

k=0

(1 + λ)(1)(1 − λ) . . . (1 − λ(k − 2))

k!
hk.
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4 Combinatorial Dyson-S
hwinger equations

4.1 De�nition

De�nition 17. Let f ∈ K[[h]]. The 
ombinatorial Dyson-S
hwinger equation

asso
iated to f is:

X = B(f(X)),

where X ∈ HCK .

Proposition 18. The Dyson-S
hwinger equation asso
iated to the formal se-

ries f =
∑
anh

n
admits a unique solution X =

∑
x(n), indu
tively de�ned by:







x(0) = 0,
x(1) = a0 q ,

x(n+ 1) =

n∑

k=1

∑

i1+···+ik=n

akB(x(i1) · · ·x(ik)).

Proof. It is enough to identify the 
oe�
ients of ea
h t ∈ T in the two sides of the


ombinatorial Dyson-S
hwinger equation asso
iated to f .

Remark. We 
an put X =
∑

t∈T

att. The 
oe�
ients at are indu
tively 
om-

puted by the following formula: if t = B(tk11 . . . tknn ), where t1, . . . , tn are distin
t

trees, then:

at = ak1+...+kn
(k1 + . . .+ kn)!

k1! . . . kn!
ak1t1 . . . a

kn
tn . (4.1)

The indu
tion is initiated by a q = a0.

De�nition 19. The subalgebra of HCK generated by the homogeneous 
ompo-

nents x(n) of the unique solution X of the Dyson-S
hwinger equation asso
iated

to f will be denoted by Hf .

We would like to give a ne
essary and su�
ient 
ondition on f for Hf to be a

Hopf subalgebra ofHCK . If this is the 
ase, we shall say that the Dyson-S
hwinger
equation asso
iated to f is Hopf.

Remarks.

(1) If f(0) = 0, the unique solution of the 
ombinatorial Dyson-S
hwinger equa-

tion asso
iated to f is 0. As a 
onsequen
e, Hf = K is a Hopf subalgebra.

(2) For all µ ∈ K, if X =
∑
x(n) is the solution of the Dyson-S
hwinger equa-

tion asso
iated to f , the unique solution of the Dyson-S
hwinger equation

asso
iated to µf is

∑
µnx(n). As a 
onsequen
e, if µ 6= 0, Hf = Hµf . We

shall then suppose in the sequel that a0 = 1. In this 
ase, x(1) = q
.
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(3) Let µ ∈ K −{0}. the unique solution of the 
ombinatorial Dyson-S
hwinger

equation asso
iated to

1
µf(µh) is

1
µX . Combining with the pre
eding re-

mark, the equation asso
iated to f(µh) is Hopf if, and only if, the equation

asso
iated to f is Hopf (this is the operation of 
hange of variables, given

for systems in de�nition 33).

4.2 Pre-Lie stru
ture asso
iated to a Hopf Dyson-S
hwinger

equation

Lemma 20. Let V be a subspa
e of V ect(T ) and let us 
onsider the subalgebra

A of HCK generated by V . We 
onsider the following map:

f q :

{
HCK −→ K
F ∈ F −→ δF, q .

If A is a Hopf subalgebra, then (f q ⊗ Id) ◦∆(V ) ⊆ V ⊕K.

Proof. If A is Hopf, then ∆(V ) ⊆ A ⊗ A. As V ⊆ V ect(T ), ∆(V ) ⊆ HCK ⊗
(V ect(T )⊕K). So:

∆(V ) ⊆ (A⊗A) ∩ (HCK ⊗ (V ect(T )⊕K)) = A⊗ (V ⊕K).

This implies the assertion.

Remarks.

(1) In the duality between HCK and S(gT ), f q = 〈 q ,−〉.

(2) This result is easily generalized to de
orated rooted trees, repla
ing

q
by the

q i 's, i ∈ I.

4.3 De�nition of the stru
ture 
oe�
ients

Proposition 21. Let (E) be a 
ombinatorial Dyson-S
hwinger equation. If it

is Hopf, then for all n ≥ 1, there exists a s
alar λn su
h that for all t′ ∈ T , of
degree n:

∑

t∈T

n(t, t′)at = λnat′ ,

where n(t, t′) is the number of leaves l of t su
h that the 
ut of l gives t′.

Proof. Let us assume that (E) is Hopf. Then Hf is a Hopf subalgebra of HCK .
Let us use lemma 20, with V = V ect(x(n), n ≥ 1). So (f q ⊗ Id) ◦ ∆(x(n + 1))
belongs to Hf , and is a linear span of trees of degree n, so is a multiple of x(n).
We then denote:

(f q ⊗ Id) ◦∆(x(n+ 1)) = λnx(n) =
∑

t′∈T
|t′|=n

λnat′t
′.
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By de�nition of the 
oprodu
t ∆:

(f q ⊗ Id) ◦∆(x(n + 1)) =
∑

t,t′∈T
|t′|=n

n(t, t′)att
′.

The result is proved by identifying the 
oe�
ients in the basis T of these two

expressions of (f q ⊗ Id) ◦∆(x(n + 1)).

If f is Hopf and if all the x(n)'s are non zero, let us 
onsider the dual basis

(en)n≥1 of the x(n)'s. It is a basis of gf = Prim(H∗
f ). As Hf is generated by a

subspa
e of V ect(T ), gf is naturally a pre-Lie algebra. Let us des
ribe this pre-Lie
produ
t.

Proposition 22. For all k, l ≥ 1, el ◦ ek = λkek+l.

Proof. Let us �rst prove the following result: for all t′, t′′ ∈ T ,

∑

t∈T

n(t′, t′′; t)at = λ|t′′|at′at′′ ,

where n(t′, t′′; t) is the number of admissible 
uts c of t su
h that P c(t) = t′ and
Rc(t) = t′′ (that is to say the 
oe�
ient of t′⊗t′′ in∆(t)). We pro
eed by indu
tion

on |t′′|. If |t′′| = 1, then t′′ = q
and:

∑

t∈T

n(t′, t′′; t)at = aB(t′) = a1at′ = λ1at′at′′ ,

as λ1 = a1 and a q = 1. Let us assume the result at all rank < k and let us assume

that |t′′| = k. We put t′′ = B(F ), with F =
∏

s∈T

sps , p =
∑

s∈T

ps.

First step. By de�nition of λk, using (4.1):

λkat′′ = (p q + 1)aB( qF ) +
∑

s,s′∈T ,ps′≥1

(ps + 1)n(s, s′)aB( s

s′
F)

= (p q + 1)
p+ 1

p q + 1

ap+1

ap
at′′ +

∑

s,s′∈T ,ps′≥1

(ps + 1)n(s, s′)
ps′

ps + 1

as
as′

at′′

= (p+ 1)
ap+1

ap
at′′ +

∑

s′∈T

ps′λ|s′|at′′ .

We obtain

(

(p+ 1)
ap+1

ap
+
∑

s′∈T

ps′λ|s′|

)

at′′ = λkat′′ .
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Se
ond step. Let us now �x t′ ∈ T . Then:
∑

t∈T

n(t′, t′′; t)at = (pt′ + 1)aB(t′F ) +
∑

s,s′∈T ,ps′≥1

(ps + 1)n(t′, s′; s)aB( s

s′
F)

= (pt′ + 1)
(p+ 1)!

(pt′ + 1)
∏
ps!

ap+1at′
∏

s

apss

+
∑

s,s′∈T ,ps′≥1

(ps + 1)n(t′, s′; s)
ps′

ps + 1
at′′

as
as′

= (p+ 1)
ap+1

ap
at′at′′ +

∑

s′∈T ,ps′≥1

ps′λ|s′|at′at′′

= λkat′′at′ .

We used the indu
tion hypothesis on s′ and then the �rst step.

As a 
onsequen
e, for all n ≥ 1:

∆(x(n)) =

n−1∑

k=1

λkx(n− k)⊗ x(k) + terms with forests whi
h are not trees.

Dually, we dedu
e that en−k ◦ ek = λken for all 1 ≤ k ≤ n.

4.4 Main theorem for single equations

Assume that the Dyson-S
hwinger equation asso
iated to the formal series f =

1 +
∑

n≥1

anh
n
is Hopf. If a1 6= 0, the 
oe�
ients λn are entirely determined by a1

and a2, and this also determines all the an's, as it is explained in the following

result:

Lemma 23. (1) λ1 = a1.

(2) For all n ≥ 2, λna
n−1
1 = an−2

1 (a21 + 2a2(n− 1)).

(3) For all n ≥ 2, an =
λn − a1(n− 1)

n
an−1.

Proof. Re
all that the ladders ln and the 
orollas cn are de�ned in se
tion 2.1.

Using proposition 21with t′ = q
, λ1a q = a

q

q = a1 and t′ = ln gives:

λnaln = λna
n−1
1

= aln+1 + 2aBn−1( q q ) +
n−2∑

i=1

aBi( qBn−i(1))

= an1 + 2a2a
n−2
1 +

n−2∑

i=1

2an−2
1 a2.
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So λna
n−1
1 = an1 +2a2a

n−2
1 (n−1). We now use proposition 21 with t′ = cn, n ≥ 2:

λnacn = nacn+1 + aB( q
q

qn−2),

so λnan−1 = nan + (n− 1)a1an−1.

Theorem 24. Let f = 1 + a1h + . . . ∈ K[[h]]. The following assertions are

equivalent:

(1) The 
ombinatorial Dyson-S
hwinger equation asso
iated to f is Hopf.

(2) There exists (α, β) ∈ K2
, su
h that f = 1 if α = 0, f = eαh if β = 0,

f = (1− αβh)−
1
β
if αβ 6= 0.

Proof. 1 =⇒ 2. If a1 = 0, by lemma 23-3, an = 0 for all n ≥ 1, so f = 1. We now

assume that a1 6= 0. From lemma 23-2, for all n ≥ 1, λn = a1 + 2a2a1 (n − 1) and,
for all n ≥ 2:

an =
a1
n

(

1 +

(
2a2
a21
− 1

)

(n− 1)

)

an−1.

We put α = a1 and β = 2a2
a21
− 1. An easy indu
tion proves that for all n,

an = αn[n]β !/n!. The result is then proved in se
tion 3.6.

2 =⇒ 1. From proposition 16, the result is true if f = 1, f = eh or f =

(1 + λh)
1+λ
λ
, λ 6= 0,−1. From a pre
eding remark, as we 
an repla
e h by µh for

any non-zero µ, the result is already proved for all (α, β) su
h that β 6= −1. If

β = −1, we 
an assume that α = 1. Then f = 1+h, so X satis�es X = B(1+X).
Hen
e, for all n ≥ 1, Xn = ln and then:

∆(ln) =
n∑

i=0

li ⊗ ln−i,

with the 
onvention l0 = 1. So X = B(1 +X) is Hopf.

Remarks.

(1) If a1 6= 0, the pre-Lie stru
ture 
onstants λk are given by:

λk = α(1 + (1 + β)(k − 1)) = α(−β + k(1 + β)).

(2) The 
oprodu
t of the x(n)'s is given by formula (3.2).

(3) Apart from H1 = K, for Hopf equations we �nd that Hf is isomorphi
 to

HFdB whenever β 6= −1, and otherwise the 
o
ommutative ladders Hopf

algebra.



30

5 Systems of Dyson-S
hwinger equations

5.1 De�nition

De�nition 25. Let I be a �nite, non-empty set, and let fi ∈ K[[hj , j ∈ I]] be
a non-
onstant formal series for all i ∈ I. The system of 
ombinatorial Dyson-

S
hwinger equations (brie�y, the SDSE) asso
iated to (fi)i∈I is:

∀i ∈ I, xi = Bi(fi(xj , j ∈ I)),

where xi ∈ HICK for all i ∈ I.

In order to ease the notation, we shall often assume that I = {1, . . . , N}, espe-

ially in the proofs, without loss of generality.

Notations.

(1) Let (S) be an SDSE. We shall denote, for all i ∈ I:

fi =
∑

p1,··· ,pN

a
(i)
(p1,··· ,pN )h

p1
1 · · ·h

pN
N .

(2) Let 1 ≤ j ≤ N . We put εj = (0, · · · , 0, 1, 0, · · · , 0) where the 1 is in position

j. We shall denote, for all i ∈ I, a
(i)
j = a

(i)
εj ; for all j, k ∈ I, a

(i)
j,k = a

(i)
εj+εk ,

and so on.

Proposition 26. Let (S) be an SDSE. Then it admits a unique solution

(xi)i∈I ∈
(

HICK

)I

.

Proof. If (x1, · · · , xN ) is a solution of S, then xi is a linear (in�nite) span of rooted
trees with a root de
orated by i. We denote:

xi =
∑

att,

where the sum is over all trees whi
h root is de
orated by i. These 
oe�
ients are

uniquely determined by the following formulas: if t ∈ T I , we put t = Bi(F ) and
F = tp11 . . . tpkk , where the tj 's are di�erent trees. Let rj be the number of roots of
F de
orated by j for all j ∈ I. Then:

at =
r1! . . . rN !

p1! . . . pk!
a
(i)
(r1,...,rN )a

p1
t1 . . . a

pk
tk
.

So (S) has a unique solution.

De�nition 27. Let (S) be an SDSE and let X = (xi)i∈I be its unique solution.
The subalgebra of HICK generated by the homogeneous 
omponents xi(k)'s of the

xi's will be denoted by H(S). If H(S) is Hopf, we shall say that the system (S) is
Hopf.

Remarks.
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(1) This de�nition makes sense for systems of equations with a single 
oupling


onstant only. If one allows for di�erent 
oupling 
onstants, the perturbation

series are in more than one variable. Algebrai
ally, this 
orresponds to a

re�ned grading of H(S), given by 
ounting not just the total number of

verti
es, but the number of verti
es of ea
h de
oration type i ∈ I separately.
Taking the homogeneous 
omponents then produ
es larger subalgebras whi
h

might be Hopf in more general 
ases.

(2) We assume that there is no 
onstant fi. Indeed, if fi ∈ K, then xi is a

multiple of

q i . We shall always avoid this 
ase in all this text. All the same,

let us give examples of systems with 
onstant formal series:

Proposition 28. Let us 
onsider the following system:

(S) :







x1 = B1(1),

x2 = B2

(
∞∑

k=0

akx
k
1

)

,

with a1 = 1. It is Hopf, if and only if, the following assertion is satis�ed: for all

n ≥ 1,
(an = 0) =⇒ (an+1 = 0).

Moreover, the Hopf algebra H(S) depends only on N = min{n | an = 0} ∈
N∗ ∪ {∞}, and in parti
ular does not depend of the values of the non-zero an's.

Proof. For all n ≥ 1, we put dn = B2( q1
n−1):

d1 = q2 , d2 = q

q

2
1 , d3 = q∨

qq

2

11
, d4 = q∨

qq q

2

1
1

1
. . .

Then x1(1) = q1 , x1(n) = 0 if n ≥ 2, and x2(n) = an−1dn for all n ≥ 1. So H(S)

is the subalgebra generated by

q1 and the dn's su
h that an−1 6= 0.
Moreover, for all n ≥ 1:

∆(dn) = dn ⊗ 1 +

n−1∑

k=0

(
n− 1

k

)

q1
k ⊗ dn−k.

=⇒. Let us assume that an+1 6= 0. Then dn+2 ∈ H(S), so ∆(dn+2) ∈
H(S) ⊗ H(S). Taking the terms of ∆(dn+2) in H(S)(1) ⊗ H(S)(n + 1), we ob-

tain that

q1 ⊗ dn+1 ∈ H(S) ⊗H(S), so dn+1 ∈ H(S). As a 
onsequen
e, an 6= 0.

⇐=. Let us put N = min{n | an = 0} ∈ N∗ ∪ {∞}. Then H(S) is generated

by

q1 and the dn's su
h that n − 1 < N . Clearly, H(S) is a Hopf subalgebra of

HCK .

5.2 General results

We here generalize the results dealing with single Dyson-S
hwinger equations,

without detailed proofs.
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Proposition 29. Let (S) be an SDSE. If it is Hopf, then, for all i, j ∈ I, for

all n ≥ 1, there exists a s
alar λ
(i,j)
n su
h that for all t′ ∈ T , whi
h root is de
orated

by i:
∑

t∈T

nj(t, t
′)at = λ

(i,j)
|t′| at′ ,

where nj(t, t
′) is the number of leaves l of t de
orated by j su
h that the 
ut of l

gives t′.

Remark. Let (S) be a Hopf SDSE. We assume that fi(0) = a q i = 0. For any
forest F , let δF : HICK −→ K, de�ned by δF (G) = δF,G for any forest G. Then,

putting t = Bi(F ):

at q i = (δF ⊗ Id) ◦∆(xi(|t|)) ∈ H(S).

As

q i /∈ H(S), at = 0. Hen
e, xi = 0, so we do not 
hange H(S) by dropping the

index i from I alltogether. From now on, we will assume that fi(0) 6= 0 for all

i ∈ I. Applying a 
hange of variables, without loss of generality we restri
t to

fi(0) = 1 for all i ∈ I.

We generalize lemma 23:

Lemma 30. Let us assume that (S) is Hopf. Let us �x i ∈ I.

(1) For all sequen
es i = i1, . . . , in of elements of I su
h that a
(ip)
ip+1
6= 0 for all

1 ≤ p ≤ n− 1:

λ(i,j)n = a
(in)
j +

n−1∑

p=1

(1 + δj,ip+1)
a
(ip)
j,ip+1

a
(ip)
ip+1

.

In parti
ular, λ
(i,j)
1 = a

(i)
j .

(2) For all p1, · · · , pN ∈ N:

a
(i)
(p1,··· ,pj+1,··· ,pN ) =

1

pj + 1

(

λ
(i,j)
p1+···+pN+1 −

∑

l∈I

pla
(l)
j

)

a
(i)
(p1,··· ,pN ).

Proof. The �rst point is proved using the de�nition of the 
oe�
ients λ
(i,j)
n , with

t′ = q

q
.

.

.

q

q

i1

i2

in−1

in

. The se
ond point uses t′ = Bi( q1
p1 · · · qNpN ).

Remarks.

(1) From the se
ond point of lemma 30, if a
(i)
m = 0 for a parti
ular m ∈ NI , then

for any n ∈ NI , a
(i)
m+n = 0.

(2) If a
(i)
j = 0, then fi does not depend on hj .

(3) We assume that there are no 
onstant fi, so for all i ∈ I there exists j ∈ I,

su
h that a
(i)
j 6= 0. As a 
onsequen
e, the sequen
es of elements 
onsidered

in the �rst point of lemma 30 exist for any i ∈ I and any n ≥ 1.
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(4) By lemma 30-1, the 
oe�
ients λ
(i,j)
n are determined by the 
oe�
ients of

degree 1 and 2 of the fi's. Moreover, they 
ompletely determined the fi's,
a

ording to lemma 30-2.

Lemma 31. Let (S) be a Hopf SDSE and let i, i′ ∈ I su
h that a
(i)
i′ 6= 0. For

all j ∈ I, for all n ≥ 2:

λ(i,j)n = (1 + δj,i′)
a
(i)
j,i′

a
(i)
i′

+ λ
(i′,j)
n−1 .

Proof. It is enough to apply proposition 30-1 with i2 = i′.

Proposition 32. Let (S) be a Hopf SDSE. Let i ∈ I su
h that:

fi = 1 +
∑

j∈I

a
(i)
j hj .

Then if a
(i)
i′ 6= 0, for all j, for all n ≥ 1, λ

(i,j)
n+1 = λ

(i′,j)
n . As a 
onsequen
e, if

a
(i)
i′ , a

(i)
i′′ 6= 0, fi′ = fi′′ .

Proof. By hypothesis on fi, a
(i)
j,i′ = 0 for all j, i′. The result 
omes then immedi-

ately from lemma 31. So, if i′ and i′′ are two dire
t des
endants of i, for all k ∈ I,

for all n ≥ 1, λ
(i′,k)
n = λ

(i′′,k)
n . So, fi′ = fi′′ .

5.3 Operations on Hopf SDSE

Proposition 33 (
hange of variables). Let (S) be the SDSE asso
iated to

(fi(hj , j ∈ I))i∈I . Let λi and µi be non-zero s
alars for all i ∈ I. The system (S)
is Hopf if, and only if, the SDSE system (S′) asso
iated to (µifi(λjhj, j ∈ J))i∈I
is Hopf.

Proof. We assume that I = {1, . . . , N}. We 
onsider the following morphism:

φ :

{
HI −→ HI

F ∈ F −→ (µ1λ1)
n1(F ) · · · (µNλN )nN (F )F,

where ni(F ) is the number of verti
es of F de
orated by i. Then φ is a Hopf

algebra automorphism and for all i, φ ◦ Bi = µiλiBi ◦ φ. Moreover, if we put

Yi =
1
λi
φ(xi) for all i:

Yi =
1

λi
φ ◦Bi(fi(x1, · · · , xN ))

=
1

λi
µiλiB

+
i (fi(φ(x1), · · · , φ(xN )))

= µiB
+
i (fi(λ1Y1, · · · , λNYN )).
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So (Y1, · · · , YN ) is the solution of the system (S′). Moreover, φ sends H(S) onto

H(S′). As φ is a Hopf algebra automorphism, H(S) is a Hopf subalgebra of HI if,
and only if, H(S′) is.

Proposition 34 (restri
tion). Let (S) be the SDSE asso
iated to the family

(fi(hj , j ∈ I))i∈I and let I ′ ⊆ I, non-empty. Let (S′) be the SDSE asso
iated to

the family

(
fi(hj , j ∈ I)|hj=0, ∀j /∈I′

)

i∈I′
. If (S) is Hopf, then (S′) also is.

Proof. Let φ : HI −→ HI
′

be the unique Hopf algebra morphism su
h that:

φ ◦Bi =

{
Bi ◦ φ if i ∈ I ′,
0 if i /∈ I ′.

For any forest F , φ(F ) = 0 if at least one vertex of F is de
orated by an element

whi
h is not in I ′, and F otherwise. Then φ sends H(S) to H(S′). As φ is a

morphism of Hopf algebras, if H(S) is a Hopf subalgebra of HI , H(S′) is a Hopf

subalgebra of HI
′

.

Proposition 35 (dilatation). Let (S) be the system asso
iated to (fi)i∈I and

(S′) be a system asso
iated to a family (gj)j∈J , su
h that there exists a partition

J =
⋃

i∈I

Ji, with the following property: for all i ∈ I, for all p ∈ Ji,

gp = fi




∑

q∈Jj

hq, j ∈ I



 .

Then (S) is Hopf, if, and only if, (S′) is Hopf. We shall say that (S′) is a dilatation

of (S).

Proof. ⇐=. Let us assume that (S) is Hopf. For all i ∈ I, we 
an then write:

∆(xi) =
∑

n≥0

P (i)
n (x1, · · · , xN )⊗ xi(n),

where the P
(i)
n are elements ofH(S) = K[[x1, . . . , xN ]], with the 
onvention xi(0) =

1. Let φ : HI −→ HJ be the Hopf algebra morphism su
h that, for all 1 ≤ i ≤ N :

φ ◦Bi =
∑

j∈Ji

Bj ◦ φ.

Then, immediately, for all 1 ≤ i ≤ N :

φ(xi) =
∑

j∈Ji

x′j .

As a 
onsequen
e:

∑

j∈Ji

∆(x′j) =
∑

j∈Ji

∑

n≥0

P (i)
n

(
∑

k∈J1

x′k, · · · ,
∑

k∈JN

x′k

)

⊗ x′j(n).
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Conserving the terms of the form F ⊗ t, where t is a tree with root de
orated by

j, for all j ∈ Ji:

∆(x′j) =
∑

n≥0

P (i)
n

(
∑

k∈J1

x′k, · · · ,
∑

k∈JN

x′k

)

⊗ x′j(n).

So (S′) is Hopf.

=⇒. Let us assume that (S′) is Hopf. We 
hoose one representative qi in ea
h

Ji. Taking the restri
tion of (S
′) to these elements, we obtain that (S) is Hopf.

Example. Let f, g ∈ K[[h1, h2]]. Let us 
onsider the following SDSE:

(S) :

{
x1 = B1(f(x1, x2)),
x2 = B2(g(x1, x2)),

The following SDSE is a dilatation of (S):

(S′) :







x1 = B1(f(x1 + x2 + x3, x4 + x5)),
x2 = B2(f(x1 + x2 + x3, x4 + x5)),
x3 = B3(f(x1 + x2 + x3, x4 + x5)),
x4 = B4(g(x1 + x2 + x3, x4 + x5)),
x5 = B5(g(x1 + x2 + x3, x4 + x5)).

Remark. If i, i′ are in the same Jq, then, by lemma 31, sin
e gi = gi′ , for all

n ≥ 1, for all j ∈ J , λ
(i,j)
n = λ

(i′,j)
n . Conversely, if there exists a partition of the

set of indi
es J su
h that this 
ondition holds, lemma 30 (2) su�
es to prove that

(S) is a dilatation of another SDSE.

Proposition 36 (extension). Let (S) be the SDSE asso
iated to (fi)i∈I . Let

0 /∈ I and let (S′) be asso
iated to (fi)i∈I∪{0}, with:

f0 = 1+
∑

i∈I

a
(0)
i hi.

We assume that for all i, j ∈ I(0) =
{

j ∈ I / a
(0)
j 6= 0

}

, fi = fj. If (S) is Hopf,

then (S′) also is. We shall say that (S′) is an extension of (S).

Proof. As (S) is Hopf, we 
an put for all 1 ≤ i ≤ N :

∆(xi) = xi ⊗ 1 +

+∞∑

k=1

P
(i)
k ⊗ xi(k),

where P
(i)
k is an element of the 
ompletion of H(S). By the se
ond hypothesis, if

i, j ∈ I(0), fi = fj , so P
(i)
k = P

(j)
k . We then denote by Pk the 
ommon value of
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P
(i)
k for all i ∈ I(0). So:

∆(x0) = q0 ⊗ 1 + 1⊗ q0 +

N∑

i=1

a
(0)
i ∆ ◦B0(xi)

= x0 ⊗ 1 +

(

1 +

N∑

i=1

a
(0)
i xi

)

⊗ q0 +

N∑

i=1

∞∑

k=1

a
(0)
i P

(i)
k ⊗B0(xi(k))

= x0 ⊗ 1 +

(

1 +

N∑

i=1

a
(0)
i xi

)

⊗ q0 +

N∑

k=1

Pj ⊗ x0(k + 1).

This belongs to the 
ompletion of H(S′) ⊗H(S′), so (S′) is Hopf.

Remark. From proposition 32, the 
ondition of equalities of the fi's for i ∈ I(0)

is ne
essary.

Example. This 
onstru
tion 
an be iterated. For example, we 
onsider the

following system:

(S) :

{
x1 = B1(f(x1, x2)),
x2 = B2(g(x1, x2)).

Here is an iterated extension of (S):

(S′) :







x1 = B1(f(x1, x2)),
x2 = B2(g(x1, x2)),
x3 = B3(1 + x1),
x4 = B4(1 + x1),
x5 = B5(1− x2),
x6 = B6(1 + 2x3 − 4x4).

Proposition 37 (
on
atenation). Let (S) be the SDSE asso
iated to (fi)i∈I
and let (S′) be the SDSE asso
iated to (gj)j∈J , where I and J are two disjoint

sets. Then the system (S′′) asso
iated to (fi)i∈I ∪ (gj)j∈J is Hopf if, and only if,

(S) and (S′) are Hopf. We shall say that (S′′) is the 
on
atenation of (S) and

(S′).

Proof. In this 
ase, H(S′′) = H(S) ⊗ H(S′) ⊆ H
I
CK ⊗ H

J
CK ⊆ H

I⊔J
. So if H(S)

and H(S′) are Hopf subalgebras, H(S′′) also is. By restri
tion, the 
onverse is also

true.

Example. Let us 
onsider the two following systems:

(S) :

{
x1 = B1(f1(x1, x2)),
x2 = B2(f2(x1, x2));

(S′) :







x1 = B1(g1(x1, x2, x3)),
x2 = B2(g2(x1, x2, x3)),
x3 = B3(g3(x1, x2, x3)).
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The 
on
atenation of (S) and (S′) is:

(S′′) :







x1 = B1(f1(x1, x2)),
x2 = B2(f2(x1, x2)),
x3 = B3(g1(x3, x4, x5)),
x4 = B4(g2(x3, x4, x5)),
x5 = B5(g3(x3, x4, x5)).

5.4 The graph asso
iated to a Dyson-S
hwinger system

De�nition 38. Let (S) be an SDSE.

(1) We 
onstru
t an oriented graph G(S) asso
iated to (S) in the following way:

• The verti
es of G(S) are the elements of I.

• There is an edge from i to j if, and only if, a
(i)
j 6= 0.

(2) If a
(i)
i 6= 0, the vertex i will be said to be self-dependent. In other words, if

i is self-dependent, there is a loop from i to itself in G(S).

(3) If G(S) is 
onne
ted, we shall say that (S) is 
onne
ted.

Remarks.

(1) As 
onstant fi are ex
luded, ea
h vertex of G(S) hase at least one outgoing

edge.

(2) Let us 
onsider the a
tion of the di�erent operations de�ned earlier on the

asso
iated graphs.

• If (S′) is obtained from (S) by a 
hange of variables, then G(S′) = G(S).

• If (S′) is obtained from (S) by a dilatation, the set of verti
es J of

the graph G(S′) admits a partition indexed by the verti
es of G(S), and

there is an edge from x ∈ Ji to y ∈ Jj in G(S′) if, and only if, there is

an edge from i to j in G(S).

• If (S′) is obtained from (S) by an extension, then G(S′) is obtained

from G(S) by adding a new vertex with no an
estor. The added vertex

is 
alled an extension vertex.

• If (S′′) is the 
on
atenation of (S) and (S′), then G(S′′) is the disjoint

union of G(S) and G(S′).

• Conversely, if G(S) is the disjoint union of two subgraphs G′
and G′′

,

then (S) is the 
on
atenation of the two subsystems (S′) and (S′′),
formed by the equations indexed by the elements of G′

and G′′
respe
-

tively. As a 
onsequen
e, taking the 
onne
ted 
omponents of G(S), (S)
is the 
on
atenation of a �nite number of 
onne
ted Hopf SDSE.

Notations. Let i, j ∈ I.
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(1) We shall write i −→ j if there is an edge from i to j in G(S), that is to say

if a
(i)
j 6= 0. In this 
ase, we shall say that i is an dire
t an
estor of j or that

j is a dire
t des
endant of i.

(2) If there is an oriented path from i to j in G(S), we shall say that i is an

an
estor of j or that j is a des
endant of i.

5.5 Stru
ture of the graph of a Hopf SDSE

Let us �rst give two lemmas on the graph of a Hopf SDSE:

Lemma 39. Let (S) be a Hopf SDSE and let i ∈ I. Let j, k and l ∈ I su
h

that a
(i)
j 6= 0, a

(j)
k 6= 0 and a

(i)
l 6= 0. Then a

(i)
k 6= 0 or a

(l)
k 6= 0.

Proof. Let us assume that a
(i)
k = 0. As a

(i)
j 6= 0, j 6= k. As a

(i)
k = 0, a

q∨
qq

i

kj
= a

(i)
j,k =

0. Then λ
(i,k)
2 a

(i)
j = λ

(i,k)
2 a q

q

i
j = a

q

q

q

i
j

k + a
q∨
qq

i

kj
= a

(i)
j a

(j)
k + 0; hen
e, λ

(i,k)
2 = a

(j)
k .

Moreover, As a
(i)
l 6= 0, l 6= k. Then a

(i)
l λ

(i,k)
2 = λ

(i,k)
2 a q

q

i
l = a

q

q

q

i
l

k + a
q∨
qq

i

kl
=

a
(i)
l a

(l)
k + 0, so λ

(i,k)
2 = a

(l)
k . Hen
e, a

(l)
k = a

(j)
k 6= 0.

Remarks.

(1) In other words, if (S) is Hopf, then, in G(S):

i //

��

j

��
l k

=⇒ i //

��

j

��
l // k

or i //

�� ��❁
❁❁

❁❁
❁❁

❁ j

��
l k

.

(2) A �rst spe
ial 
ase is given by i = k:

i oo //

��

j

l

=⇒ i oo //
OO

��

j

l

.

(3) A se
ond spe
ial 
ase is given by i = l, that is to say when i is self-dependent:

i //;; j

��
k

=⇒ i //;;

��❁
❁❁

❁❁
❁❁

❁ j

��
k

.

Hen
e, any des
endant of of a self-dependent vertex is a dire
t des
endant.

Lemma 40. Let (S) be a Hopf SDSE and let i be a vertex of G(S). We suppose

that there exists a vertex j, su
h that:
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• j is a des
endant of i.

• All oriented path from i to j are of length ≥ 3.

Then fi = 1 +
∑

i−→l

a
(i)
l hl.

Proof. Let L be the minimal length of the oriented paths from i to j. By hypoth-

esis, L ≥ 3. Then the homogeneous 
omponent of degree L+1 of xi 
ontains trees
with a leaf de
orated by j, and all these trees are de
orated ladders. By de�nition

of the 
oe�
ients λ
(i,j)
n , if t′ is a tree with L verti
es and its root de
orated by i:

λ
(i,j)
L at′ =

∑

t∈T I

nj(t, t
′)at.

For a good-
hosen ladder t′, the right-hand side is non-zero, so λ
(i,j)
L is non-zero.

If t′ is not a ladder, the right-hand side is 0, so at′ = 0. As a 
on
lusion, xi(L) is
a linear span of ladders. Considering its 
oprodu
t, for all p ≤ L, xi(p) is a linear

span of ladders. In parti
ular, xi(3) is a linear span of ladders. But:

xi(3) =
∑

l,m

a
(i)
l a(l)m q

q

q

i
l

m

+
∑

l≤m

a
(i)
l,m

q∨
qq

i

ml

,

so a
(i)
l,m = 0 for all l,m. Hen
e, fi 
ontains only terms of degree ≤ 1.

Remark. This lemma 
an be applied with i = j, if i is not a self-dependent

vertex.

Let us now study the stru
ture of the graph of a SDSE:

Proposition 41. Let G be a �nite oriented graph, su
h that any vertex of G
has at least one dire
t des
endant. The set of verti
es of G is denoted by I. There
exists a sequen
e G0 ⊆ G1 ⊆ . . . ⊆ Gn = I of subgraphs of G su
h that:

(1) For any element i ∈ G0, the des
endants of i are all in G0.

(2) For any element i ∈ G0, i has an an
estor in G0.

(3) For all 1 ≤ k ≤ n, Gk is obtained from Gk−1 by adding an element ik, with
no an
estor in Gk−1 and with all its des
endants in Gk−1.

Moreover, G0 
ontains an oriented 
y
le. More pre
isely, any vertex i ∈ G0 is the

des
endant of a vertex in
luded in an oriented 
y
le.

Proof. Let us prove the existen
e of G0, . . . , Gn by indu
tion on the number N of

elements of I. If N = 1, we take G0 = I. If N > 1, and if I has no vertex with no

an
estor, we take G0 = I. If I has a vertex i with no an
estor, let us 
onsider the

restri
tion of (S) to I − {i}. This gives a sequen
e G0 ⊆ . . . ⊆ Gn = I − {i}. We


omplete it by putting Gn+1 = I.
Let i ∈ G0. As any vertex has a dire
t an
estor, it is possible to de�ne indu
-

tively a sequen
e (xl)l≥0 of verti
es of G, su
h that x0 = i and xl+1 is a dire
t

an
estor of xl for all l. As G is �nite, there exists 0 ≤ l < m, su
h that xl = xm.
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Then xl ← xl+1 ← · · · ← xm−1 ← xm = xl is a 
losed path of G, in
luded in G0.

If we take su
h a path of minimal length, it is ne
essarily an oriented 
y
le.

Remark. Although the sequen
e (Gi)0≤i≤n is not unique, it is possible to

prove that G0 is unique; this fa
t will not be used in the sequel.

We shall 
lassify the Hopf SDSE a

ording to the minimal length L of an

oriented 
y
le in
luded in G0. If L = 1, then the 
onsidered SDSE has a self-

dependent vertex. We begin with the 
ases where L ≥ 2.

6 Quasi-
y
li
 SDSE

6.1 Stru
ture of the 
y
les

Proposition 42. Let (S) be a Hopf SDSE su
h that G(S) is an oriented 
y
le

of length N ≥ 2, that is:

G(S) = 1 // . . . // N
ww

.

Two 
ases are possible.

(1) Up to a 
hange of variables, for all i ∈ I, fi = 1 +
∑

i→j

hj.

(2) N = 2 and up to a 
hange of variables, for all i ∈ I, fi =



1−
∑

i→j

hj





−1

.

In this 
ase, λ
(i,j)
n = n− δi,j for all i, j ∈ {1, 2}.

Proof. Up to a 
hange of variables, we 
an assume that a
(i)
i+1 = 1 for all 1 ≤ i ≤

N − 1 and a
(N)
1 = 1. If N ≥ 3, we 
an apply lemma 40 and we immediately obtain

the �rst 
ase. Let us study the 
ase N = 2. In other words, G(S) = 1←→ 2. We

put:

f1(h2) =

∞∑

i=0

aih
i
2, f2(h1) =

∞∑

i=0

bih
i
1,

with a1 = b1 = 1. Then λ
(1,1)
3 = λ

(1,1)
3 a

q

q

q

1
2
1 = 2a

q∨
qq

q

1

2

11 = 2b2. On the other hand,

λ
(1,1)
3 a

q∨
qq

1

22
= a

q∨
qq

q

1

22

1
= 2a2, so 2a2b2 = 2a2: a2 = 0 or b2 = 1. Similarly, b2 = 0 or

a2 = 1. So a2 = b2 = 0 or 1. In the �rst 
ase, f1(h2) = 1+h2 and f2(h1) = 1+h1.
In the se
ond 
ase, let us apply lemma 30-1 with (i1, · · · , in) = (1, 2, 1, 2, · · · ). If

n = 2k is even, we obtain λ
(1,2)
n = 2 + 2(k − 1) = 2k = n. If n = 2k + 1 is

odd, λ
(1,2)
n = 1 + 2k = n. So λ

(1,2)
n = n for all n ≥ 1. By lemma 30-2, for all

n ≥ 1, an+1 = an. So for all n ≥ 0, an = 1 and f1(h2) = (1 − h2)−1
. Similarly,

f2(h1) = (1− h1)−1
.
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The se
ond 
ase is a spe
ial 
ase of a fundamental system; we postpone its

study to se
tion 7. We now 
on
entrate on the �rst 
ase.

De�nition 43. Let I = Z/NZ, N ≥ 2. We 
onsider the SDSE asso
iated to

the following formal series:

fi = 1 + hi+1, for all i ∈ I.

These SDSE and the ones obtained from them by a dilatation and a 
hange of

variables are 
alled N -quasi-
y
li
 systems.

Example. Here is an example of quasi-
y
li
 SDSE:







x1 = B1(1 + x2 + x3),
x2 = B2(1 + x4),
x3 = B3(1 + x4),
x4 = B4(1 + x5),
x5 = B5(1 + x1).

Remark. If (S) is aN -quasi-
y
li
 SDSE without dilatation, then xi is the sum
of all the ladders 
y
li
ally de
orated, with root de
orated by i. The subalgebra

generated by these ladders is 
learly Hopf. It is not di�
ult to prove that λ
(i,j)
n =

δi+n,j .

6.2 Conne
ted Hopf SDSE with a quasi-
y
le

Notations.

(1) Let (S) and (S′) be two Hopf SDSE. We shall say that (S) 
ontains (S′) if
(S′) is a restri
tion of (S) to a subset of its verti
es.

(2) Let G and H be two oriented graphs. We shall say that G 
ontains H if the

verti
es of H are verti
es of G, and the edges of H are pre
isely the edges of

G between the verti
es of H .

Remark. If (S) 
ontains (S′), then G(S) 
ontains G(S′).

Lemma 44. (1) Let (S) be a Hopf SDSE 
ontaining a quasi-
y
li
 SDSE

with set of verti
es I1 ⊔ · · · ⊔ IM . Then any vertex of G(S) has dire
t de-

s
endants in at most one Ik. Moreover, if a vertex has at least one dire
t

des
endant in a Ik, it is non self-dependent.

(2) Let (S) be a Hopf SDSE su
h that I admits a partition I = I1 ⊔ · · · ⊔ IM
indexed by Z/MZ, with the following 
onditions:

• For all 1 ≤ p ≤ M , the dire
t des
endants of any i ∈ Ip are pre
isely

the elements of Ip+1.

• For all i ∈ I, fi = 1 +
∑

i→j

a
(i)
j hj .
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Then (S) is quasi-
y
li
.

Proof. 1. Let us assume that the vertex 0 of G(S) has dire
t des
endants x ∈ Ik
and y ∈ Il with k 6= l. Then lemma 39 implies that any dire
t des
endant of x is a

dire
t des
endant of 0, so 0 has also a dire
t des
endant in Ik+1. Similarly, 0 has

a dire
t des
endant in Il+1. Iterating this pro
ess, 0 has dire
t des
endants in all

the Ii's; it even holds that all the elements of all the Ii's are dire
t des
endants of
0. Up to a restri
tion, the situation is the following:

0

�� ��❃
❃❃

❃❃
❃❃

❃

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲

1 // 2 // 3 // · · · // Mee

with, for all 1 ≤ i ≤M , fi(hi+1) = 1 + hi+1, with the 
onvention hM+1 = h1.

We �rst assume M ≥ 3. In order to ease the notation, we do not write the

index

(0)
in the sequel of the proof. By lemma 30-1, with (i1, i2) = (0, 1) and

(0, 2):

λ
(0,2)
2 = 1 +

a1,2
a1

= 2
a2,2
a2

.

By lemma 30-1, with (i1, i2, i3) = (0, 2, 3) and (0, 1, 2):

λ
(0,2)
3 =

a1,2
a1

= 2
a2,2
a1

.

Finally,

a1,2
a1

= 1 +
a1,2
a1

, whi
h is absurd. So M = 2. By lemma 30-1 with

(i1, i2) = (0, 1) and (0, 2):

λ
(0,1)
2 =

a1,2
a2

+ 1 =
2a1,1
a1

.

By lemma 30-1 with (i1, i2, i3) = (0, 1, 2) and (0, 2, 1):

λ
(0,1)
3 =

2a1,1
a1

+ 1 =
a1,2
a1

.

We obtain:

2a1,1
a1

=
a1,2
a1

+ 1 =
a1,2
a1
− 1.

This is a 
ontradi
tion.

Finally, if the vertex 0 has a dire
t des
endant in Ik, it 
omes that the elements

of Ik+1 are des
endants of 0 whi
h are not dire
t. If 0 is self-dependent, this 
on-

tradi
ts lemma 39 with i = l = 0. So 0 is not self-dependent.
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2. Let us 
hoose an element ip in ea
h Ip. Up to a 
hange of variables, we 
an

assume that for all 1 ≤ p ≤M :

fip = 1 +
∑

j∈Ip+1

hj .

Let us 
hoose j ∈ Ip and k ∈ Ip+1; with (i1, . . . , iM+1) = (j, ip+1, . . . , ip+M ), we ob-

tain λ
(j,k)
N+1 = a

(ip)
k = 1. By lemma 30-1 with (i1, . . . , iM+1) = (j, ip+1, . . . , ip+M−1, j),

we obtain λ
(j,k)
N+1 = a

(j)
k , so a

(j)
k = 1. Hen
e:

fj = 1 +
∑

j→k

hk.

So (S) is the dilatation of the system asso
iated to the formal series 1 + hj , for

j ∈ Z/MZ. So it is quasi-
y
li
.

Let us state more pre
isely the stru
ture of 
onne
ted Hopf SDSE 
ontaining

a quasi-
y
le.

Theorem 45. Let (S) be a 
onne
ted Hopf SDSE 
ontaining a N -quasi-
y
li


SDSE. Then I admits a partition I = I1 ⊔ · · · ⊔ IN , with the following 
onditions:

(1) If i ∈ Ip, its dire
t des
endants are all in Ip+1.

(2) If i and j have a 
ommon dire
t an
estor, then they have the same dire
t

des
endants.

(3) For all i ∈ I, fi = 1 +
∑

i−→j

a
(i)
j hj .

(4) If i and j have a 
ommon dire
t an
estor, then fi = fj.

Su
h an SDSE will be 
alled an extended quasi-
y
li
 SDSE.

Proof. Let S0 a maximal quasi-
y
li
 subsystem of SDSE. We denote by I(0) the

set of its verti
es. By de�nition 43, it admits a partition I(0) = I
(0)

1
⊔ . . . ⊔ I

(0)

N
,

and for all i ∈ Ik:

(fi)|hj=0 if j /∈I(0) = 1 +
∑

j∈I
(0)

k+1

a
(i)
j hj.

Moreover, if i ∈ I
(0)

k
and j ∈ I

(0)

k+1
, a

(i)
j 6= 0.

Let j be a dire
t des
endant of an element i ∈ I(0). Let us assume that j /∈ I(0).

Up to a reindexation, we 
an suppose that i ∈ I
(0)

1
. Applying lemma 39, for all

k ∈ I
(0)

3
, k is a dire
t des
endant of j. By lemma 44-1, the dire
t des
endants of

j whi
h are in I(0) are the elements of I
(0)

3
, and j is not self-dependent. Similarly,

for all k ∈ I
(0)

1
, j is a dire
t des
endant of k.

Let us 
hoose a vertex ik ∈ I
(0)

k
for all k. We restri
t ourselves to the oriented


y
le formed by i1, j, i3, . . . , iN . If N ≥ 3, by proposition 42, a
(j)
i3,i3

= 0 = a
(i1)
j,j = 0.
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If N = 2, we obtain:

λ
(i1,i1)
3 a

q

q

q

i
1

i
2

i
1 = a

q∨
qq

q

i
1

i
2

i
1

i
1

+ a
q∨
qq

q

i
1

i
2

i
1

i
1 + a

q

q

q

q

i
1

i
2

i
1

i
1
= 0,

so λ
(i1,i1)
3 = 0. Restri
ting to i1 and j, this implies that 
ase (2) of proposition 42


annot hold, so a
(j)
i1,i1

= a
(i1)
j,j = 0.

Hen
e, we have in both 
ases a
(j)
k,k = 0 for all k ∈ I

(0)
3 and a

(i)
j,j = 0 for all i ∈ I

(0)
1 .

Let us now take two elements k, k′ of I
(0)

3
. Then λ

(j,k)
2 a q

q

j
k = a

q

q

q

j
k

k +2a
q∨
qq

j

kk
= 0+0,

so λ
(j,k)
2 = 0. As a 
onsequen
e, 0 = λ

(j,k)
2 a q

q

j
k′ = a

q

q

q

j
k

k′ + a
q∨
qq

j

k′k
= 0+ a

(j)
k,k′ . Hen
e:

(fj)|hk=0 if k/∈I(0)∪{j} = 1 +
∑

k∈I
(0)

3

a
(j)
k hk.

Similarly, for all i ∈ I
(0)

1
:

(fi)|hk=0 if k/∈I(0)∪{j} = 1 + a
(i)
j hj +

∑

k∈I
(0)

2

a
(i)
k hk.

By lemma 44-2, I(0) ∪ {j} forms a quasi-
y
li
 SDSE: this 
ontradi
ts the maxi-

mality of I(0). So all the des
endants of I(0) are in I(0).

As a 
onsequen
e, we shall take G0 = I(0) in proposition 41. We pro
eed by

indu
tion on n. If n = 0, (S) is quasi-
y
li
 and the result is immediate. Let us

assume the result at rank n − 1 and let (S′) be the restri
tion of (S) to all the

verti
es ex
ept the last one, denoted by i. By the indu
tion hypothesis, the set of

its verti
es admits a partition I ′ = I ′
1
∪ · · · ∪ I ′

N
, with the required 
onditions. Let

us �rst prove that all the dire
t des
endants of i are in the same I ′p. Let j ∈ I ′p
and k ∈ I ′q be two dire
t des
endants of i, with p 6= q. Let j′ ∈ I ′

p+1
be a dire
t

des
endant of j and k′ ∈ I ′
q+1

be a dire
t des
endant of k. Lemma 39 implies

that i is a dire
t an
estor of j′ and k′, as j 
an't be a dire
t an
estor of k′ and k

an't be a dire
t an
estor of j′ be
ause p 6= q. So we 
an repla
e j by j′ and k by

k′. Iterating the pro
ess, we 
an assume that i and j are in the quasi-
y
le: this


ontradi
ts lemma 44. So the dire
t des
endants of i are all in Im for a good m.

We then take Il = I ′
l
if l 6= m− 1 and Im−1 = I ′

m−1
∪ {i} and this proves the �rst

assertion on G(S).

We now prove the assertion on fi. We separate the proof into two sub
ases.

Let us �rst assume N ≥ 3. There is an oriented path i → im → · · · → im+M−1,

with ii ∈ I
′
i
for all i. Moreover, there is no shorter oriented path from i to im+M−1.

As N ≥ 3, from lemma 40:

fi = 1 +
∑

i−→j

a
(i)
j hj.

Let us se
ondly assume that N = 2. Let 1, . . . , p be the dire
t des
endants of i
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and let 0 be a dire
t des
endant of 1. Then as 1, . . . , p are in the same part of

the partition of I ′, they are not dire
t des
endants of 1. Let us �rst restri
t to

{i, 1, 0}. So λ
(i,0)
3 a

q

q

q

i
1
0 = 0 as a

(1)
0,0 = 0 by the indu
tion hypothesis, λ

(i,0)
3 = 0.

Moreover, 0 = λ
(i,0)
3 a

q∨
qq

i

11
= a

q∨
qq

q

i

11

0
, so a

(i)
1,1 = 0. Similarly, a

(i)
2,2 = · · · = a

(i)
p,p = 0.

Let us now take 1 ≤ j < k ≤ p. Then λ
(i,j)
2 a q

q

i
j = 2a

q∨
qq

i

jj
= 0, so λ

(i,j)
2 = 0 and

0 = λ
(i,j)
2 a q

q

i
k = a

q∨
qq

i

kj
, so a

(i)
j,k = 0. As a 
on
lusion, fi is of the required form.

Proposition 32-3 implies that fi = fi′ if i and i
′
have a 
ommon an
estor, and

this implies the se
ond assertion on G(S).

Remark. In parti
ular, the vertex added to Gi in order to obtain Gi+1 in

proposition 41 is an extension vertex. So (S) is obtained from a quasi-
y
li
 SDSE

by a 
hange of variables, a dilatation, and a �nite number of extensions. Hen
e,

it is Hopf.

Example. Here is an example of a quasi-
y
li
 SDSE:







X1 = B1(1 +X2 +X3)
X2 = B2(1 +X1)
X3 = B3(1 +X1)
X4 = B4(1 + aX1)
X5 = B5(1 + aX1)
X6 = B6(1 +X4 +X5).

where a is a nonzero s
alar. In this 
ase, N = 2, I1 = {1, 6} and I2 = {2, 3, 4, 5}.

7 Fundamental systems

We now study the 
ase of 
onne
ted Hopf SDSE 
ontaining a self-dependent vertex.

We shall use the notion of level of a vertex.

7.1 Level of a vertex

Proposition 46. Let (S) be a Hopf SDSE. Let i be a self-dependent vertex of

G(S). Then for all j ∈ I, for all n ≥ 1:

λ(i,j)n = a
(i)
j + (1 + δi,j)(n− 1)

a
(i)
i,j

a
(i)
i

.

Proof. Apply lemma 30, �rst point, with i1 = . . . = in = i, as a
(i)
i 6= 0.
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So for a self-dependent vertex i, the sequen
es

(

λ
(i,j)
n

)

n≥1
are polynomial of

degree ≤ 1. We formalize this in the following de�nition:

De�nition 47. Let (S) be a Hopf SDSE, and let i be a vertex of G(S). It will

be said to be of level ≤ M if for all verti
es j, there exist s
alar b
(i)
j , ã

(i)
j , su
h

that for all n > M :

λ(i,j)n = b
(i)
j (n− 1) + ã

(i)
j .

The vertex i will be said to be of level M if it is of level ≤ M and not of level

≤M − 1.

Remarks.

(1) λ
(i,j)
1 = a

(i)
j . So if i is of level 0, ã

(i)
j = a

(i)
j .

(2) Self-dependent verti
es are of level 0, with ã
(i)
j = a

(i)
j and b

(i)
j = (1+δi,j)

a
(i)
i,j

a
(i)
i

.

(3) In a quasi-
y
li
 SDSE, λ
(i,j)
n = δi+n,j , for all i, j ∈ I, as it was observed in

se
tion 6.1. So in this 
ase the verti
es are not of �nite level.

Proposition 48. Let (S) be a Hopf SDSE, i a vertex of G(S) and i
′
a dire
t

des
endant of G(S).

(1) i has level 0 or 1 if, and only if, i′ has level 0.

(2) Let M ≥ 2. Then i has level M if, and only if, i′ has level M − 1.

Moreover, if this holds, then for all k ∈ I, b
(i)
k = b

(i′)
k .

Proof. Lemma 31 immediately implies that for all M ≥ 1, i is of level ≤ M if,

and only if, i′ is of level ≤ M − 1. Moreover, if this holds, then b
(i)
k = b

(i′)
k for all

k. The �rst point is a reformulation of this result for M = 1. Let us assume that

M ≥ 2. If i is of level M , then i′ is of level ≤ M − 1. If i′ is of level ≤ M − 2,
then i is of level ≤M − 1: 
ontradi
tion. So i′ is of level M − 1. The 
onverse is
proved in the same way.

Corollary 49. Let (S) be a 
onne
ted Hopf SDSE. Then if one of the verti
es

of G(S) is of �nite level, then all verti
es of G(S) are of �nite level. Moreover, the


oe�
ients b
(i)
j depend only on j. They will now be denoted by bj.

Lemma 50. Let (S) be a 
onne
ted Hopf SDSE su
h that any vertex is of �nite

level. Let j be a vertex of G(S) su
h that there exists a vertex i whi
h is not an

an
estor of j. Then bj = 0.

Proof. We apply lemma 30-1. We obtain:

λ(i,j)n = a
(in)
j +

n−1∑

p=1

(1 + δj,ip+1)
a
(ip)
j,ip+1

a
(ip)
ip+1

.
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Moreover, i1, . . . , in are des
endants of i, so j is not a des
endant of i1, . . . , in and

a
(in)
j = a

(ip)
j,ip+1

= 0 for all p. So λ
(i,j)
n = 0 for all n. As i is of �nite level, we dedu
e

that ã
(i)
j = 0 and bj = 0.

7.2 De�nition of fundamental SDSE

Notations. For any β ∈ K, we put:

Fβ(h) =

∞∑

k=1

[n]β !

n!
xk =

{

(1− βh)−
1
β
if β 6= 0,

eh if β = 0.

For all β 6= −1:

F β
1+β

((1 + β)h) =

∞∑

k=0

(1 + β) . . . (1 + nβ)

n!
hn,

so we shall put F β
1+β

((1 + β)h) = 1 if β = −1.

De�nition 51. Let I be a set with a partition I = I0∪J0∪K0∪L0, su
h that:

• I0, J0, K0, L0 
an be empty.

• I0 ∪ J0 is not empty.

• If I0 = ∅, then J0 is not redu
ed to a single element.

We de�ne a SDSE in the following way:

(1) For all i ∈ I0, there exists βi ∈ K, su
h that:

fi = Fβi
(hi)

∏

j∈I0−{i}

F βj

1+βj

((1 + βj)hj)
∏

j∈J0

F1(hj).

(2) For all i ∈ J0:

fi =
∏

j∈I0

F βj

1+βj

((1 + βj)hj)
∏

j∈J0−{i}

F1(hj).

(3) For all i ∈ K0:

fi =
∏

j∈I0

F βj

1+βj

((1 + βj)hj)
∏

j∈J0

F1(hj).

(4) For all i ∈ L0, there exists a family of s
alars

(

a
(i)
j

)

j∈I0∪J0∪K0

, su
h that

(∃j ∈ I0, a
(i)
j 6= 1 + βj) or (∃j ∈ J0, a

(i)
j 6= 1) or (∃j ∈ K0, a

(i)
j 6= 0).

fi =
∏

j∈I0

F βj

a
(i)
j

(

a
(i)
j hj

) ∏

j∈J0

F 1

a
(i)
j

(

a
(i)
j hj

) ∏

j∈K0

F0

(

a
(i)
j hj

)

.

These SDSE and the ones obtained from them by a dilatation and a 
hange of

variables are 
alled fundamental SDSE.
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Remarks.

(1) It is not di�
ult to prove that in su
h a SDSE, all the verti
es are of level

0. Moreover, the 
oe�
ients bj are given by:

j I0 J0 K0 L0

bj 1 + βj 1 0 0

The following array gives the 
oe�
ients a
(i)
j = ã

(i)
j :

j \ i I0 J0 K0 L0

I0 1 + (1− δi,j)βj 1 + βj 1 + βj a
(i)
j

J0 1 1− δi,j 1 a
(i)
j

K0 0 0 0 a
(i)
j

L0 0 0 0 0

(2) The 
ondition in (4) on L0 is equivalent to the property that for ea
h i ∈ L0,

there is some j ∈ I with a
(i)
j 6= bj.

(3) The elements of I0 are pre
isely the self-dependent verti
es of a fundamental

system.

7.3 Fundamental systems are Hopf

We now give a new proof that fundamental SDSE are Hopf. We shall use for this

a pre-Lie algebra atta
hed to the 
oe�
ients λ
(i,j)
n .

Let us 
onsider a fundamental SDSE (S), without dilatation. We keep the

notations of se
tion 7.2 for 
oe�
ients a
(i)
j and bj. The 
oe�
ients λ

(i,j)
n have the

form:

λ(i,j)n = a
(i)
j + bj(n− 1).

Proposition 52. Let g be a ve
tor spa
e with basis (ein)i∈I,n≥1. We de�ne a

produ
t on g by:

eim ◦ e
j
n = λ(j,i)n ejm+n.

Then g is a pre-Lie algebra. It is graded, ein being homogeneous of degree n for all

n ≥ 1.

Proof. Let eim, e
j
n and ekp be three elements of the basis of g. Then:

eim ◦ (e
j
n ◦ e

k
p)− (eim ◦ e

j
n) ◦ e

k
p

= λ(k,j)p (λ
(k,i)
n+p − λ

(j,i)
n )ejm+n+p

= (a
(k)
j + bj(p− 1))(a

(k)
i − a

(j)
i + bi(n+ p− 1)− bi(n− 1))ejm+n+p

= (a
(k)
j + bjp− bj)(a

(k)
i + bip− a

(j)
i )ejm+n+p.

Three 
ases are possible.
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(1) If i = j, this is trivially symmetri
 in eim and ejn.

(2) If i and j are two di�erent elements of I0 ∪ J0 ∪K0, then a
(j)
i = bi and this

expression be
omes symmetri
 in eim and ejn.

(3) If i ∈ L0, then a
(k)
i = a

(j)
i = bi = 0, so this expression is 0. Similarly, if

j ∈ L0, then a
(k)
j = bj = 0, so this expression is 0.

In any 
ase, we obtain the pre-Lie relation for these three elements. So g is pre-

Lie.

Theorem 8 implies that there exists a unique pre-Lie algebra morphism:

φ :

{
gT I −→ g

q i , i ∈ I −→ ei1.

Let us study this morphism. We shall use the following notation:

Notation. Let F ∈ FI . For all i ∈ I, let di(F ) be the number of roots of F
de
orated by i. We put d(F ) = (d1(F ), . . . , dN (F )).

Proposition 53. For all t ∈ T I , there exists a 
oe�
ient at ∈ K su
h that:

φ(t) = a′te
i
|t|,

where i is the de
oration of the root of t. Moreover, these 
oe�
ients 
an be

indu
tively 
omputed by:

{

a′
q i

= 1,

a′Bi(t1...tk)
= d1(t1 . . . tk)! . . . dN (t1 . . . tk)!a

(i)
d(t1...tk)

a′t1 . . . a
′
tk
.

Proof. Let t1, . . . , tk ∈ T I and i ∈ I. The de�nition of the pre-Lie produ
t of gT I

in terms of grafting easily gives:

Bi(t1 . . . tk) = t1 ◦Bi(t2 . . . tk)−
k∑

j=2

Bi(t2 . . . (t1 ◦ tj) . . . tk). (7.1)

First step. The morphism φ is 
learly homogeneous. Moreover, for all i ∈ I,
gi = V ect(ein | n ≥ 1) is a right pre-Lie ideal of g; it is not di�
ult to prove

that the right pre-Lie ideal of gT I
generated by

q i is the subspa
e generated by

rooted trees whose root is de
orated by i. Hen
e, if t is a rooted tree whose root

is de
orated by i, then φ(t) is an element of gi, homogeneous of degree |t|, so is


ollinear to ei|t|. This proves the existen
e of the 
oe�
ients at.

Se
ond step. Let us �rst prove that there exists a family of 
oe�
ients b
(i)
(p1,...,pN )

su
h that for all forest F = t1 . . . tk ∈ FI , for all i ∈ I:

a′Bi(F ) = b
(i)
d(F )a

′
t1 . . . a

′
tk .
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We pro
eed by indu
tion on k. If k = 0, then Bi(F ) = q i and a′t = 1: we take

b
(i)
(0,...,0) = 1. If k = 1, we denote by j the de
oration of the root of t1:

φ(Bi(t1)) = φ(t1 ◦ q i ) = φ(t1)◦e
i
1 = a′t1e

j
|t1|
◦ei1 = a′t1λ

(i,j)
1 ei1+|t1|

= a′t1a
(i)
j ei|Bi(t1)|

.

We then take b
(i)
(0,...,0,1,0,...,0) = a

(i)
j , when the 1 is in position j. Let us assume the

result at rank k − 1. The de
oration of the root of tj is denoted by dj . For all

k ≥ 2, t1 ◦ tj is a linear span of rooted trees whose root is de
orated by dj , so the

indu
tion hypothesis on k gives that:

φ(Bi(t2 . . . t1 ◦ tj . . . tk)) = b
(i)
d(t2...tk)

a′t1 . . . a
′
tk
λ
(dj ,d1)

|tj |
ei|Bi(t1...tk)|

.

By (7.1):

φ(Bi(t1 . . . tk)) = b
(i)
d(t2...tk)

a′t1 . . . a
′
tke

d1
|t1|
◦ ei|Bi(t2...tk)|

−
k∑

j=2

a′t1 . . . a
′
tk
b
(i)
d(t2...tk)

λ
(dj ,d1)

|tj |
ei|Bi(t1...tk)|

= b
(i)
d(t2...tk)



λ
(i,d1)
|Bi(t2...tk)|

−
k∑

j=2

λ
(dj ,d1)

|tj |





︸ ︷︷ ︸

B

a′t1 . . . a
′
tk
ei|Bi(t1...tk)|

.

Moreover:

λ
(i,d1)
|Bi(t2...tk)|

−
k∑

j=2

λ
(dj ,d1)

|tj |
= a

(i)
d1

+ bd1(|t2|+ . . .+ |tk|)−
k∑

j=2

(a
(dj)
d1

+ bj(|tj | − 1)

= a
(i)
d1
− bd1(k − 1) +

k∑

j=2

a
(dj)
d1

.

Hen
e, B depends only on the de
oration of the roots of t1, . . . , tk and on i; note
that as the morphism φ is well-de�ned, it does not depend on the 
hoi
e of t1. We

then put B = b
(i)
d(t1...tk)

.

Last step. Let us �x (p1, . . . , pN ) ∈ NN and 1 ≤ j ≤ N . We apply the se
ond

step to t = Bi( q1
p1 . . . q1 pN ). It immediately gives:

a′t = b
(i)
(p1,...,pN ).

Moreover, by (7.1):

Bi( q1
p1 . . . q j

pj+1 . . . qN
pN ) = q j ◦Bi( q1

p1 . . . q1
pN )

−
N∑

k=1

pkBi( q
q

k
j
q1
p1 . . . qk

pk−1 . . . qN
pN ).
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Applying φ:

b
(i)
(p1,...,pj+1,...,pN ) =

(

λ
(i,j)
p1+...+pN+1 −

N∑

k=1

a
(k)
j

)

b
(i)
(p1,...,pN ).

Lemma 30-2 easily implies that b
(i)
(p1,...,pN ) = p1! . . . pN !a

(i)
(p1,...,pN ).

As in se
tion 3.5, let us use the duality between S(gT I ) and HICK de�ned by:

〈F,G〉 = sF δF,G.

Let us dualize the pre-Lie algebra morphism φ. It be
omes a Hopf algebra mor-

phism φ∗ : S(g)∗ = S(g∗) −→ HICK . We denote by (xin)i∈I,n≥1 the dual basis of

the basis (ein)i∈I,n≥1 of g. Proposition 53 implies that:

φ(xin) =
∑

t∈T I ,|t|=n
the root of t is de
orated by i

a′′t t,

where the 
oe�
ients a′′t satis�es the following property: if t ∈ T I , we put t =
Bi(F ) and F = tp11 . . . tpkk , where the tj 's are di�erent trees. Let rj be the number
of roots of F de
orated by j for all j ∈ I. Then:

a′′t =
r1! . . . rN !

p1! . . . pk!
a
(i)
(r1,...,rN )a

′′p1
t1 . . . a′′pktk .

By proposition 26, these 
oe�
ients are the 
oe�
ients at's. Hen
e, the image of

φ∗ is the subalgebra of HICK generated by the homogeneous 
omponents of the

solution of (S). As φ∗ is a Hopf algebra morphism, it is a Hopf subalgebra. Finally:

Proposition 54. Let (S) be a Hopf fundamental SDSE. Then it is Hopf.

Remark. We also proved that the Hopf algebra H(S) is dual to the enveloping

algebra of the Lie algebra g, de�ned by the help of the stru
ture 
onstants λ
(i,j)
n .

7.4 Self-dependent verti
es

Theorem 55. Let (S) be a Hopf SDSE, and let i be a self-dependent vertex

of (S). The subsystem formed by i and all its des
endants is fundamental, with

K0 = L0 = ∅. Moreover, if k is a dire
t des
endant of i and j is not a dire
t

des
endant of i, then a
(k)
j = 0.

Proof. From lemma 39 with i = l, we dedu
e that any des
endant of i is a dire
t

des
endant of i. Up to a restri
tion, we now assume that any vertex of (S) is a
dire
t des
endant of i. We won't write the indi
es

(i)
in the proof. Up to a 
hange

of variables, we assume that aj = 1 for all j. As i has level 0, the 
oe�
ients of
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f = fi satisfy an indu
tion of the form (lemma 30-2):







a(0,··· ,0) = 1,

a(p1,··· ,pj+1,··· ,pN ) =
1

pj + 1

(

1 +

N∑

l=1

µ
(l)
j pl

)

a(p1,··· ,pN ),

with µ
(l)
j = (1 + δi,j) ai,j − a

(l)
j for all j, l ∈ I.

Let us �x j 6= k in I. For (p1, · · · , pN) = (0, · · · , 0), as a(0,··· ,0) = 1:

µ
(k)
j = µ

(j)
k . (7.2)

For (p1, · · · , pN) = εl, we obtain:
(

1 + µ
(k)
j + µ

(l)
j

)(

1 + µ
(l)
k

)

=
(

1 + µ
(j)
k + µ

(l)
k

)(

1 + µ
(l)
j

)

.

So:

µ
(k)
j µ

(l)
k = µ

(j)
k µ

(l)
j . (7.3)

Let j, k ∈ I. We shall say that j R k if j = k or if µ
(k)
j 6= 0. Let us show that

R is an equivalen
e. By (7.2), it is 
learly symmetri
. Let us assume that j R k

and kR l. If j = k or k = l or j = l, then jR l. If j, k, l are distin
t, then µ
(k)
j 6= 0

and µ
(l)
k 6= 0. By (7.3), µ

(l)
j = µ

(l)
k 6= 0, so j R l. We denote by I1, · · · , IM the

equivalen
e 
lasses of R .

Let us assume that j R k, j 6= k. Then µ
(k)
j 6= 0, so for all l, µ

(l)
k = µ

(l)
j . In

parti
ular, µ
(j)
k = µ

(j)
j = µ

(k)
j = µ

(k)
k . So, �nally, there exists a family of s
alars

(βn)1≤n≤M , su
h that:

• If j, k ∈ In, then µ
(k)
j = βn.

• If j and k are not in the same In, then µ
(k)
j = µ

(j)
k = 0.

The 
oe�
ients −a
(k)
j + (1 + δi,j) a

(i)
i,j are given for all j, k by the array:

j \ k I1 I2 · · · IM
I1 β1 0 · · · 0

I2 0 β2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
IM 0 · · · 0 βM

An easy indu
tion proves:

a(p1,··· ,pN ) =
1

p1! · · · pN !

M∏

n=1

(1 + βn) · · ·

(

1 + βn

(
∑

l∈In

pl − 1

))

.

So:

fi =

M∏

p=1

Fβp




∑

l∈Ip

hl



 .
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We assume that i ∈ I1, without loss of generality. From the expression of

f = fi, we dedu
e that bj = (1 + δi,j)a
(i)
i,j = β1 + 1 if j ∈ I1, 1 if j ∈ I2 ∪ · · · ∪ IM

(see se
tion 7.2). So a
(k)
j is given for all j, k by the array:

j \ k I1 I2 I3 · · · IM
I1 1 β1 + 1 · · · · · · β1 + 1

I2
.

.

. 1− β2 1 · · · 1

I3
.

.

. 1 1− β3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1
IM 1 1 · · · 1 1− βM

As a 
onsequen
e, if j ∈ I1, then for all 1 ≤ k ≤ N , a
(j)
k = a

(i)
k and λ

(j,k)
n = λ

(i,k)
n

for all n ≥ 1. Note that if j, j′ are in the same Ip, then λ
(j,k)
n = λ

(j′,k)
n for all

n ≥ 1, for all k ∈ I. So, the Hopf SDSE formed by i and its des
endants is the

dilatation of a system with the following 
oe�
ients λ
(j,k)
n :

j \ k 1 2 3 · · · M
1 (β1 + 1)(n− 1) + 1 n · · · · · · n
2 (β1 + 1)n n− β2 n · · · n

3
.

.

. n n− β3
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. n
M (β1 + 1)n n · · · n n− βM

with i = 1, and f1 =

M∏

j=1

Fβj
(hj). If j 6= 1, for all (k1, · · · , kM ):

a
(j)
(k1+1,··· ,kM ) =

(

(β1 + 1)
M∑

l=1

kl + β1 + 1− (β1 + 1)
M∑

l=2

kl − k1

)
a
(j)
(k1,··· ,kM )

k1 + 1

= (β1 + 1 + β1k1)
a
(j)
(k1,··· ,kM )

k1 + 1
,

a
(j)
(k1,··· ,kj+1,··· ,kM ) =

(
M∑

l=1

kl + 1− βj −
M∑

l=1

kl + βjkj

)
a
(j)
(k1,··· ,kM )

kj + 1

= (1− βj + βjkj)
a
(j)
(k1,··· ,kM )

kj + 1
.

If l 6= 1 and l 6= j:

a
(j)
(k1,··· ,kl+1,··· ,kM ) =

(
M∑

p=1

kp −
M∑

p=1

kp + βlkl

)
a
(j)
(k1,··· ,kM )

kl + 1
= (1 + βlkl)

a
(j)
(k1,··· ,kM )

kl + 1
.
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So, if j 6= 1:

fj = F β1
1+β1

((1 + β1)h1)F βj
1−βj

((1 − βj)hj)
∏

k 6=1,j

Fβk
(hk).

Let us put I ′0 = {j ≥ 2 / βj 6= 1} and J ′
0 = {j ≥ 2 / βj = 1}. Then, after the


hange of variables hj −→
1

1−βj
hj for all j ∈ I ′0:







f1 = Fβ1(h1)
∏

j∈I′0

Fβj

(
1

1− βj
hj

)
∏

j∈J′

0

F1(hj),

fj = F β1
1+β1

((1 + β1)h1)F βj

1−βj

(hj)
∏

l∈I′0−{j}

Fβl

(
1

1− βl
hl

)
∏

l∈J′

0

F1(hl) if j ∈ I
′
0,

fj = F β1
1+β1

((1 + β1)h1)
∏

l∈I′0

Fβl

(
1

1− βl
hl

)
∏

l∈J′

0−{j}

F1(hl) if j ∈ J
′
0.

Putting γj =
βj

1−βj
for all j ∈ I0, as βj =

γj
1+γj

and 1− βj =
1

1+γj
:







f1 = Fβ1(h1)
∏

j∈I′0

F γj

1+γj

((1 + γj)hj)
∏

j∈J′

0

F1(hj),

fj = F β1
1+β1

((1 + β1)h1)Fγj (hj)
∏

j∈I′0−{j}

F γj

1+γj

((1 + γj)hj)
∏

j∈J′

0

F1(hj) if j ∈ I
′
0,

fj = F β1
1+β1

((1 + β1)h1)
∏

j∈I′0

F γj
1+γj

((1 + γj)hj)
∏

j∈J′

0−{j}

F1(hj) if j ∈ J
′
0.

So this a fundamental system, with I0 = {1} ∪ I ′0, J0 = J ′
0, and K0 = L0 = ∅.

7.5 Hopf SDSE 
ontaining a 2-
y
le

We �rst introdu
e a family of Hopf SDSE with no self-dependent verti
es. More

pre
isely, we are looking for the Hopf SDSE (S) su
h that G(S) is 
omplete M -

partite, that is to say there exists a partition I1 ⊔ . . . ⊔ IM of the set of verti
es

of G into nonempty parts, su
h that if x, y are two verti
es of G, there is an edge

from x to y if, and only if, x and y are in di�erent Ij 's.

Proposition 56. Let (S) be a Hopf SDSE su
h that G(S) is a 
omplete M -

partite graph. Let I = I1 ⊔ . . . ⊔ IM be the partition of the set of verti
es. Then

one, and only one, of the following results holds:

(1) Up to a 
hange of variables, for all 1 ≤ n ≤ M , for all i ∈ In, fi =

∏

m 6=n



1−
∑

j∈Im

hj





−1

.

(2) (S) is 2-quasi-
y
li
.

Proof. First, let us 
hoose two verti
es i→ j in G(S). Then j → i in G(S). Then

a
(j)
j = 0, so a

(j)
i,j = 0; by lemma 30-1 with (i1, i2) = (j, i), a

(i)
j = λ

(j,j)
2 , so a

(i)
j
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depends only on j. So, up to a 
hange of variables, we 
an suppose that all the

a
(i)
j 's are equal to 0 or 1. We �rst study two preliminary 
ases.

First preliminary 
ase. Let us suppose that G(S) is the following graph (whi
h

is 
omplete 3-partite):
1 oo //
^^

��❃
❃❃

❃❃
❃❃

❃ 2@@

����
��
��
��

3

So, a
(i)
j = 1 if i 6= j. Moreover, if {i, j, k} = {1, 2, 3}, by lemma 30-1 with

(i1, i2) = (i, k):

λ
(i,j)
2 = a

(i)
j,k + 1.

Consequently, λ
(i,j)
2 = λ

(i,k)
2 . So, applying proposition 42 to the restri
tion to

{i, j} implies that two 
ases are possible:

(1) For all i 6= j, for all n ≥ 1, λ
(i,j)
n = n.

(2) For all i 6= j, for all n ≥ 1, λ
(i,j)
n = 1 if n is odd and 0 if n is even.

In the se
ond 
ase, we dedu
e that if {i, j, k} = {1, 2, 3}, a
(i)
j,k = −1. By lemma

30-1 with (i1, i2, i3) = (1, 3, 2):

1 = λ
(1,2)
3 = a

(1)
2,3 = −1.

This is a 
ontradi
tion. So the �rst 
ase holds. It is then not di�
ult to prove

that if {i, j, k} = {1, 2, 3}, fi(hj , hk) = (1− hj)−1(1− hk)−1
.

Se
ond preliminary 
ase. We now 
onsider the graph with three verti
es

1←→ 2←→ 3.

It is 
omplete 2-partite, with I1 = {1, 3} and I2 = {2}. By lemma 30-1 with

(i1, i2) = (2, 3) and (2, 1):

λ
(2,1)
2 = a

(2)
1,3 = λ

(2,3)
2 .

Applying proposition 42 to the restri
tion to {1, 2} and {2, 3} shows that two 
ases
are possible:

(1) For all n ≥ 1, λ
(1,2)
n = λ

(2,1)
n = λ

(2,3)
n = λ

(3,2)
n = n.

(2) For all n ≥ 1, λ
(1,2)
n = λ

(2,1)
n = λ

(2,3)
n = λ

(3,2)
n = 0 if n is even and 1 if n is

odd.

In the �rst 
ase, proposition 42 implies that f1 = f3 = (1 − h2)−1
. Lemma 30-2

implies that for all m,n ≥ 0:

a
(2)
(m+1,n) =

m+ n+ 1

m+ 1
a(m,n), a

(2)
(m,n+1) =

m+ n+ 1

n+ 1
a(m,n).

Consequently, for allm,n ≥ 0, a
(2)
(m,n) =

(m+n)!
m!n! , so f2 = (1−h1−h3)−1

. In the se
-

ond 
ase, proposition 42 implies that f1 = f3 = 1+h2. Moreover, f2(h1, 0) = 1+h1
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and f2(0, h3) = 1 + h3, so a
(2)
1,1 = a

(2)
3,3 = 0. As λ

(2,1)
2 = a

(2)
1,3 = 0, f2 = 1 + h1 + h3.

We separate the proof of the general 
ase into two sub
ases.

General 
ase, �rst sub
ase. We assume that M = 2. We put I1 = {i1, · · · , ir}
and I2 = {j1, · · · , js}. For ip ∈ I1, we put:

fip =
∑

(q1,··· ,qs)

a
(ip)

(q1,··· ,qs)
hq1j1 · · ·h

qs
js
.

Restri
ting to the verti
es ip and jq, by proposition 42, two 
ases are possible.

(1) a
(ip)
jq,jq

= 0. Then, by the se
ond preliminary 
ase, restri
ting to ip, jq and

jq′ , for all jq′ , a
(ip)
jq,jq′

= a
(ip)
j′q,j

′

q
= 0. So fip = 1 +

∑

q

hjq .

(2) λ
(ip,jq)
n = n for all n ≥ 1. We obtain:

a
(ip)

(q1,··· ,qm+1,··· ,qs)
=

1 + q1 + · · ·+ qs
qm + 1

a
(ip)

(q1,··· ,qs)
.

An easy indu
tion proves that a
(ip)

(q1,··· ,qs)
= (q1+···+qs)!

q1!···qs!
, so:

fip =

(

1−
∑

q

hjq

)−1

.

A similar result holds for the jq's. So, we prove that for any vertex i of G(S):

(a) : fi = 1 +
∑

i−→j

hj or (b) : fi =



1−
∑

i−→j

hj





−1

.

Moreover, by the se
ond preliminary 
ase, if i and j are related, they satisfy both

(a) or both (b). As the graph is 
onne
ted, every vertex satis�es (a) or every

vertex satis�es (b).

General 
ase, se
ond sub
ase. We now assume that M ≥ 3. Let us �x i ∈ G
and let j a dire
t des
endant of i. Let us 
hoose a 
ommon dire
t des
endant k
of i and j: as M ≥ 3, this exists. By the �rst preliminary 
ase, after restri
tion

to i, j, k we obtain that λ
(i,j)
n = n for all n ≥ 1. We obtain, similarly to the 
ase

M = 2, if i ∈ Ip, fi =
∏

q 6=p



1−
∑

j∈Iq

hj





−1

.

Remark. The system of 
ase (1) is fundamental, with I = J0.

Theorem 57. Let (S) be a Hopf SDSE, 
ontaining a 2-
y
le. Then the subsys-

tem formed by the verti
es of this 2-
y
le and all their des
endants is fundamental

or is quasi-
y
li
.
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Proof. We assume, up to a restri
tion, that any vertex of (S) is a des
endant of

a vertex of the 2-
y
le. Let k, l ∈ G(S), su
h that l is a dire
t des
endant of k.
There exists i, j, i2, . . . , ip su
h that in G(S):

j ←→ i −→ i2 −→ . . . −→ ip −→ k −→ l.

Applying repeatedly lemma 39 (
ase i = k), we obtain that there is an edge from

i2 to i, from i3 to i2, . . ., from l to k. So if there is an edge from k to l in G(S),

there is also an edge from l to k. We shall say that G(S) is symmetri
.

Let us now prove that G(S) is a 
ompleteM -partite graph, for a 
ertainM ≥ 2.
Let us 
onsider a maximal 
omplete partite subgraph G′

of G(S). This exists, as

G(S) 
ontains at least a 2-
y
le. Let us assume that G′ 6= G(S). As G(S) is


onne
ted, there exists a vertex i ∈ G(S), related to a vertex of G′
. Let us put

I ′ = I ′1 ∪ · · · ∪ I
′
M be the partition of the set of verti
es of G′

.

First, if i is related to a vertex j of I ′p, it is related to any vertex of I ′p. Indeed,
let j′ be another vertex of I ′p and let k ∈ I ′q, q 6= p. By lemma 39, j′ is related to

i. As G(S) is symmetri
, i is related to j′.
Let us assume that i is not related to at least two I ′p's. Let us take k, l in G

′
,

in two di�erent I ′p's, not related to i. By the �rst step, j, k and l are in di�erent

I ′p's, so are related. By lemma 39, k or l is related to i. As G(S) is symmetri
,

then i is related to k or l: 
ontradi
tion. So i is not related to at most one I ′p.
As a 
on
lusion:

(1) If i is related to every I ′p's, by the �rst step i is related to every vertex ofG
′
, so

G′∪{i} is an 
ompleteM+1-partite graph, with partition I ′1∪· · ·∪I
′
M ∪{x}.

(2) If i is related to every I ′p's but one, we 
an suppose up to a reindexation that

i is not related to IM . Then, by the �rst step, i is related to every vertex of

I ′1 ∪ · · · ∪ I
′
M−1. So G

′ ∪ {x} is an 
omplete M -partite graph, with partition

I ′1 ∪ · · · ∪ (′IM ∪ {x}).

Both 
ases 
ontradi
t the maximality of G′
, so G(S) = G′

is a 
omplete M -partite

graph. From proposition 56, (S) is 2-quasi-
y
li
 or fundamental, with I = J0.

7.6 Systems with only verti
es of level 0

Theorem 58. Let (S) be a 
onne
ted Hopf SDSE with only verti
es of degree

0. Then it is fundamental.

Proof. We use notations of proposition 41. We prove indu
tively that Gi is a fun-

damental system for all i ≥ 0. Let us �rst 
onsider the 
ase i = 0. From theorem

55 and 57, for any vertex i ∈ I0, i and all its des
endants are part of a fundamental

system with K0 = L0 = ∅. A simple study of the possible graphs shows that (S0)
(
orresponding to G0) is a 
on
atenation of fundamental systems. If (S0) is not

onne
ted, let us take i and j in two di�erent 
onne
ted 
omponents of G0. Then

i 
annot be a des
endant of j and j 
annot be a des
endant of i. By lemma 50,

bi = bj = 0. So the fundamental system 
orresponding to any 
onne
ted 
ompo-

nent of (S0) satis�es J0 = K0 = L0 = ∅ and βi = −1 for all i ∈ I0. It is then 
lear
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that (S0) is a fundamental system, with I = I0 and βi = −1 for all i ∈ I0.

Let us assume that the system asso
iated to Gk−1 is fundamental. The vertex

added to Gk−1 in order to obtain Gk is denoted by 0. For all i ∈ Ik−1, λ
(0,i)
n =

bi(n − 1) + a
(0)
i . Let us take i, j ∈ Ik−1, with i 6= j. Using lemma 30-1 in two

di�erent ways:

a
(0)
i,j =

(

bj + a
(0)
j − a

(i)
j

)

a
(0)
i =

(

bi + a
(0)
i − a

(j)
i

)

a
(0)
j .

So, for all i, j ∈ Ik−1:

(

bj − a
(i)
j

)

a
(0)
i =

(

bi − a
(j)
i

)

a
(0)
j . (7.4)

If the fundamental system formed byGk−1 has a dilatation, as bj−a
(i)
j = bi−a

(j)
i 6=

0 if i and j are in the same part of the dilatation, we dedu
e that a
(0)
i = a

(0)
j and

for all n ≥ 1, λ
(0,i)
n = λ

(0,j)
n . Hen
e, up to a restri
tion, we 
an assume that there

is no dilatation.

Let i ∈ L0. Let us 
hoose j ∈ I0 ∪ J0 ∪ K0, su
h that a
(i)
j 6= bj. Then

bi = a
(j)
i = 0, so (7.4) gives

(

bj − a
(i)
j

)

a
(0)
i = 0. So a

(0)
i = 0 for all i ∈ L0.

So the dire
t des
endants of 0 are all in I0 ∪ J0 ∪ K0. Using lemma 30-2 with

i ∈ I0 ∪ J0 ∪K0:

a
(0)
(p1,··· ,pi+1,··· ,pN )

=



a
(0)
i + bi(p1 + · · ·+ pN )−

∑

j∈I0∪J0∪K0−{i}

bipj − a
(i)
i pi




a
(0)
(p1,··· ,pN )

pi + 1

=
(

a
(0)
i +

(

bi − a
(i)
i

)

pi

) a
(0)
(p1,··· ,pN )

pi + 1
.

So:

f0 =
∏

i∈I0

F βi

a
(0)
i

(

a
(0)
i hi

) ∏

i∈J0

F 1

a
(0)
i

(

a
(0)
i hi

) ∏

i∈K0

F0

(

a
(0)
i hi

)

.

So the system of equations asso
iated to Gk is fundamental, with 0 ∈ K0∪L0.

7.7 Verti
es of level 1

As a 
onsequen
e, if (S) is a 
onne
ted Hopf SDSE, two disjoint 
ases are possible:

(1) (S) 
ontains a quasi-
y
li
 subsystem, so is des
ribed by theorem 45.

(2) Any vertex of (S) is of �nite level, and the subsystem (S(0)) formed by the

verti
es of level 0 is fundamental.

In order to 
on
lude the des
ription of all 
onne
ted Hopf SDSE, let us study now

verti
es of level ≥ 1.
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Theorem 59. Let (S) be a 
onne
ted Hopf SDSE su
h that any vertex is of

�nite level. Let (S0) be the subsytem formed by the verti
es of level 0. The set of

verti
es of level 1 whi
h are not extension verti
es 
an be de
omposed into I1 ∪ J1,
su
h that:

(1) For all i ∈ I1, there exists νi ∈ K, a family of s
alars

(

a
(i)
j

)

j∈I0∪J0∪K0

, su
h

that νi 6= 1 and, if νi 6= 0:

fi =
1

νi

∏

j∈I0

F βj

νia
(i)
j

(

νia
(i)
j hj

) ∏

j∈J0

F 1

νia
(i)
j

(

νia
(i)
j hj

) ∏

j∈K0

F0

(

νia
(i)
j hj

)

+1−
1

νi
.

If νi = 0:

fi = −
∑

j∈I0

a
(i)
j

βj
ln(1 − βjhj)−

∑

j∈J0

a
(i)
j ln(1− hj) +

∑

j∈K0

a
(i)
j hj + 1.

(2) For all i ∈ J1, there exists νi ∈ K−{0}, a family of s
alars

(

a
(i)
j

)

j∈L0

, with

the following 
onditions:

• L
(i)
0 = {j ∈ L0 / a

(i)
j 6= 0} is not empty.

• For all j, k ∈ L
(i)
0 , fj = fk. In parti
ular, we put c

(i)
t = a

(j)
t for any

j ∈ L
(i)
0 , for all t ∈ I0 ∪ J0 ∪K0.

Then:

fi =
1

νi

∏

j∈I0

F βj

c
(i)
j

−1−βj

((

c
(i)
j − 1− βj

)

hj

) ∏

j∈J0

F 1

c
(i)
j

−1

((

c
(i)
j − 1

)

hj

)

∏

j∈K0

F0

(

c
(i)
j hj

)

+
∑

j∈L
(i)
0

a
(i)
j hj + 1−

1

νi
.

Proof. First 
ase. Let us assume that 0 is of level 1. Then all the dire
t des
en-

dants of 0 are of level 0, so are in I0 ∪ J0 ∪ K0 ∪ L0. Moreover, for all i ∈ I,

λ
(0,i)
1 = a

(0)
i and λ

(0,i)
n = bi(n− 1) + ã

(0)
i if n ≥ 2.

First step. Let us �rst assume that all the dire
t des
endants of 0 are in L0.

Up to a 
hange of variables, we 
an assume that for all dire
t des
endants i of 0,

a
(0)
i = 1.Let i be a dire
t des
endant of 0 and let 0, j, i3, . . . , in be a sequen
e of

elements of I as in lemma 30-2. Then j ∈ L0, i3, . . . , in ∈ I0 ∪ J0 ∪ L0, so i is not
a dire
t des
endant of j, i3, . . . , in. Hen
e:

λ(0,i)n = (1 + δi,j)a
(0)
i,j .

Moreover:

λ(0,i)n = λ(0,j)n = (1 + δi,j)a
(0)
i,j .
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So there exists a s
alar γ, su
h that λ
(0,i)
n = γ for all n ≥ 2, for all dire
t des
en-

dants i of 0. An easy indu
tion using lemma 30-2 proves that for all n ≥ 1:

a
(0)

i, . . . , i
︸ ︷︷ ︸

n

=
γn−1

n!
.

Let i be a dire
t des
endant of 0 and let k be a dire
t des
endant of i. Then k
is not a dire
t des
endant of 0, and lemma 30-1 implies that for all n ≥ 2:

λ(0,jkn = λ
(i,k)
n−1 = bk + a

(i)
k (n− 2).

For t = B0( q i
n), we obtain:

λ
(0,k)
n+1 at = (bk + a

(i)
k (n− 1))

γn−1

n!
= aB0( q

q

i
k
q i

n−1) = na
(i)
k

γn−1

n!
.

If γ 6= 0, we obtain that bk = a
(i)
k for all dire
t des
endants k of i, whi
h 
ontra-

di
ts the fa
t that i ∈ L0. So γ = 0. This implies that for all dire
t des
endants

i, j of 0, a
(0)
i,j = 0, so f0 = 1 +

∑

i−→i

a
(0)
i hi and 0 is an extension vertex. We shall

assume in the sequel that at least one of the dire
t des
endant of 0 is not in L0.

Se
ond step. Let us take i, j ∈ I, with i 6= j. Using lemma 30-1 in two di�erent

ways:

a
(0)
i,j =

(

bj + ã
(0)
j − a

(i)
j

)

a
(0)
i =

(

bi + ã
(0)
i − a

(j)
i

)

a
(0)
j . (7.5)

Let us take i, j ∈ L0. Then a
(i)
j = a

(j)
i = bi = bj = 0, so (7.5) gives:

ã
(0)
j a

(0)
i = ã

(0)
i a

(0)
j .

So

(

ã
(0)
i

)

i∈L0

and

(

a
(0)
i

)

i∈L0

are 
ollinear. We dedu
e that there exists a s
alar

ν ∈ K, su
h that for all i ∈ L0, ã
(0)
i = νa

(0)
i . Let us now take i, j ∈ I0 ∪ J0 ∪K0,

with i 6= j. Then bi = a
(j)
i and bj = a

(i)
j , so (7.5) gives:

ã
(0)
j a

(0)
i = ã

(0)
i a

(0)
j .

So

(

ã
(0)
i

)

i∈I0∪J0∪K0

and

(

a
(0)
i

)

i∈I0∪J0∪K0

are 
ollinear. We dedu
e that there

exists a s
alar ν′ ∈ K, su
h that for all i ∈ I0 ∪ J0 ∪ K0, ã
(0)
i = ν′a

(0)
i . Let

us now take i ∈ I0 ∪ J0 ∪ K0 and j ∈ L0. Then bj = a
(i)
j = 0, so νa

(0)
j a

(0)
i =

(

bi + ν′a
(0)
i − a

(j)
i

)

a
(0)
j . In other words:

∀i ∈ I0 ∪ J0 ∪K0, ∀j ∈ L0, (ν − ν
′)a

(0)
i a

(0)
j = (bi − a

(j)
i )a

(0)
j . (7.6)

Third step. Let us assume that there is a dilatation on (S0). If this dilatation
holds only on verti
es of K0 or L0, this system 
an all the same be 
onsidered

as a fundamental system with no dilatation. Similarly, if the dilatation holds on

a vertex of i of I0 su
h that βi = 0, then as F0(h1 + h2) = F0(h1)F0(h2) (as
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F0 = exp), this dilated system 
an be seen as a fundamental system with no

dilatation. It remains to 
onsider the 
ase of dilatations holding on a vertex of I0
with βi 6= 0 or on a vertex of J0. Let us take i, j in the same part of the dilatation.

(7.5) be
omes:

(

bj + ν′a
(0)
j − a

(i)
j

)

a
(0)
i =

(

bi + ν′a
(0)
i − a

(j)
i

)

a
(0)
j .

As i, j are in the same part of the dilatation, ne
essarily bi = bj and a
(i)
j = a

(j)
i . It

remains that (bj−a
(i)
j )(a

(0)
i −a

(0)
j ) = 0. By hypothesis on the dilatation, bj 6= a

(i)
j ,

so a
(0)
i = a

(0)
j . Consequently, ã

(0)
i = ν′a

(0)
i = ν′a

(0)
j = ã

(0)
j . As the level of 0 is

1, we dedu
e that λ
(0,i)
n = λ

(0,j)
n for all n ≥ 1. Hen
e, the vertex 0 respe
ts the

dilatation; up to a restri
tion, we 
an assume there is no dilatation in (S0).

Fourth step. Let us assume that L
(0)
0 = ∅. Then all the dire
t des
endants of

0 are in I0 ∪ J0 ∪K0. Moreover, if i ∈ I0 ∪ J0 ∪K0 and p1 + . . .+ pN > 0:

a
(0)
(p1,··· ,pi+1,··· ,pN ) =

(

ν′a
(0)
i +

(

bi − a
(i)
i

)

pi

) a
(0)
(p1,··· ,pN )

pi + 1
.

It is then not di�
ult to show that 0 is in I1. Note that this 
ase holds if ν = ν′.
Indeed, if ν = ν′, let j ∈ L0. For a good 
hoi
e of i, bi − a

(j)
i 6= 0 in (7.6), so

a
(0)
j = 0: then L

(0)
0 = ∅, and the result is proved in the third step.

Fifth step. Let us assume that L
(0)
0 6= ∅. By the pre
eding step, ν 6= ν′. Let

us take j ∈ L
(0)
0 . By (7.6), for all i ∈ I0 ∪ J0 ∪K0, a

(j)
i = bi − (ν − ν′)a

(0)
i does

not depend on j. As a 
onsequen
e, fj = fk for all j, k ∈ L
(0)
0 . Let us use lemma

30-2. For all i ∈ I0 ∪ J0 ∪K0, if (p1, · · · , pN ) 6= (0, · · · , 0):

a
(0)
(p1,··· ,pi+1,··· ,pN ) =




ν

′a
(0)
i +

(

bi − a
(i)
i

)

pi + (ν − ν′)a
(0)
i

∑

j∈L
(0)
0

pj






a
(0)
(p1,··· ,pN )

pi + 1
.

For all i ∈ L
(0)
0 , if (p1, · · · , pN ) 6= (0, · · · , 0):

a
(0)
(p1,··· ,pi+1,··· ,pN ) = νa

(0)
i

a
(0)
(p1,··· ,pN )

pi + 1
.

Let us �x i ∈ I0 ∪ J0 ∪K0 and j ∈ L
(0)
0 . Then:

a
(0)
i,i =

1

2

(

ν′a
(0)
i + bi − a

(i)
i

)

a
(0)
i ,

a
(0)
i,i,j =

1

2
νa

(0)
i a

(0)
j

(

ν′a
(0)
i + bi − a

(i)
i

)

,

a
(0)
i,j = νa

(0)
i a

(0)
j ,

a
(0)
i,i,j =

1

2
νa

(0)
i a

(0)
j

(

ν′a
(0)
i + bi − a

(i)
i + (ν − ν′)a

(0)
i

)

.
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Identifying the two expressions of a
(0)
i,i,j , as ν 6= ν′ and a

(0)
j 6= 0, we obtain

ν
(

a
(0)
i

)2

= 0. Let us 
hoose i ∈ I0 ∪ J0 ∪K0 su
h that a
(0)
i 6= bi. Then a

(0)
i 6= 0

by (7.6) and thus ν = 0, ν′ 6= 0. We then easily obtain that 0 ∈ J1.

Remarks.

(1) For all i ∈ I1 ∪ J1, bi = 0 by lemma 50 and by proposition 48, i 
annot be

the des
endant of a vertex of level 0. The 
oe�
ients a
(i)
j and ã

(i)
j are given

by the following arrays:

a
(i)
j :

j \ i I1 J1

I0 a
(i)
j (c

(i)
j − 1− βj)/νi

J0 a
(i)
j (c

(i)
j − 1)/νi

K0 a
(i)
j c

(i)
j /νi

L0 0 a
(i)
j

ã
(i)
j :

j \ i I1 J1

I0 νia
(i)
j c

(i)
j − 1− βj

J0 νia
(i)
j c

(i)
j − 1

K0 νia
(i)
j c

(i)
j

L0 0 0

(2) It is possible to prove that the SDSE of theorem 59 are Hopf, as this was

done for fundamental SDSE in se
tion 7.3.

7.8 Verti
es of level ≥ 2

Proposition 60. Let (S) be a Hopf SDSE and let i be a vertex of (S) of level
≥ 2. Then i is an extension vertex.

Proof. We denote by M the level of i. Then all the des
endants of i are of level
≤M − 1, so i is not a des
endant of itself.

Let M be the level of i and let us assume that M ≥ 3. Let j be a dire
t

des
endant of i, k be a dire
t des
endant of j, l be a dire
t des
endant of k. Then
j has level M − 1, k has level M − 2, l has level M − 3. Hen
e, all the paths from
i to l have a length ≥ 3. The result is then dedu
ed from lemma 40.

Let us now assume that i is of level 2. The dire
t des
endants of i are of level
1, and the dire
t des
endants of the dire
t des
endants of i are of level 0. Hen
e, if
i→ j → k in G(S), i, j and k are distin
t. Up to a 
hange of variables, we assume

that if i→ j → k in G(S), then a
(i)
j = a

(j)
k = 1.

First step. Let us assume that there exists a dire
t des
endant j of i, su
h that

a
(i)
j,j 6= 0. Let us �x a dire
t des
endant k of j. Then k has level 0, so k is not an

an
estor of j; by lemma 50, bj = 0. As the level of i is 2, there exists a s
alar b

su
h that if n ≥ 3, λ
(i,j)
n = b. The level of j is 1, so there exists s
alars c, d su
h

that:

λ(j,k)n =

{
1 if n = 1,

c(n− 1) + d if n ≥ 2.
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Considering the levels, k is not a dire
t des
endant of i, so a
(i)
j,k = 0. By lemma

31, for all n ≥ 2, λ
(i,k)
n = λ

(j,k)
n−1 . Moreover:

• By lemma 30-1 with (i1, i2, i3) = (i, j, k), b = λ
(i,j)
3 = 2a

(i)
j,j . So b 6= 0.

• By lemma 30-2, a
(i)
j,j,j =

b
3a

(i)
j,j , as a

(j)
j = 0. So a

(i)
j,j,j 6= 0.

• (c + d)a
(i)
j,j = λ

(j,k)
2 a

q∨
qq

i

jj
= λ

(i,k)
3 a

q∨
qq

i

jj
= a

q∨
qq

q

i

jj

k
= 2a

(i)
j,j . As a

(i)
j,j 6= 0,

c+ d = 2.

• (2c + d)a
(i)
j,j,j = λ

(j,k)
3 a

q∨
qq q

i

j
j

j
= λ

(i,k)
4 a

q∨
qq q

i

j
j

j
= a

q∨
qq q

q

i

j
j

j

k= 3a
(i)
j,j,j . As a

(i)
j,j,j 6= 0,

2c+ d = 3.

As a 
on
lusion, c = d = 1. Hen
e, for any dire
t des
endant of j, λ
(j,k)
n = n for

all n ≥ 1. Lemma 30-2 implies that fj(0, . . . , 0, hk, 0, . . . , 0) = (1 − hk)−1
, so for

all n ≥ 0, aBj( qkn−1) = 1.
Let now l ∈ I whi
h is not a dire
t des
endant of j and let k be a dire
t

des
endant of j. For all n ≥ 1:

λ(j,l)n = λ(j,l)n aBj( qkn−1) = aBj( qkn−2
q

q

k
l
) = (n− 1)a

(k)
l .

We proved that for any vertex l of G(S), for all n ≥ 1:

λ(j,l)n =

{
n if l is a dire
t des
endant of j,

a
(k)
l (n− 1) if l is not a dire
t des
endant of j,

where k is any dire
t des
endant of j. This proves that j has level 0, so i has level

1: 
ontradi
tion. So for all dire
t des
endants j of i, a
(i)
j,j = 0.

Se
ond step. Let j and j′ be two di�erent dire
t des
endants of i. Let us use
lemma 30-1 with (i1, i2) = (i, j) and (i, j′). This gives:

λ
(i,j)
2 = 2a

(i)
j,j = a

(i)
j,j′ = 0.

So all the terms of fi of degree 2 are equal to 0. Finally:

fi = 1 +
∑

i→j

a
(i)
j hj ,

so i is an extension vertex.

8 Comments and examples of fundamental systems

8.1 Graph of a fundamental system

Figure 8.1 illustrates the stru
ture of the graph of a fundamental system (with

no dilatation). An arrow between two boxes means that there is an arrow from

any vertex of the in
oming box to any vertex of the outgoing box. A dotted edge
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Figure 1. Stru
ture of the graph of a fundamental SDSE.
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between two boxes means that there may be an edge from a vertex of the in
oming

edge to a vertex of the outgoing box. The bla
k verti
es are extension verti
es.

The subgraph of the verti
es of I0 is separated into two parts. One (the verti
es
with βi 6= −1) is a 
omplete graph with self-dependent verti
es; the se
ond one (the

verti
es with βi = −1) is made of isolated self-dependent verti
es. The subgraph

of the verti
es of J0 is a 
omplete graph with only non self-dependent verti
es; the

other boxes are made of isolated non self-dependent verti
es.

8.2 Examples of fundamental systems

Here are examples of Dyson-S
hwinger equations or systems found in the literature:

(1) The following equation is found in [26, 28, 33, 40℄:

x = B

(
1

1− x

)

,

where B is a 1-
o
yle of a 
ertain graded Hopf algebra. This generates Hopf

subalgebra, by theorem 24.

(2) The following equation is found in [2, 29, 40℄:

x =
∑

n≥1

Bn((1 + x)n+1),

where for all n ≥ 1, Bn is a 1-
o
yle of 
ertain graded Hopf algebra, homo-

geneous of degree n. If we trun
ate all the Bn with n 6= n0, we obtain the

equation:

x = Bn0((1 + x)n0+1),

whi
h gives a Hopf subalgebra. It is possible to prove, working in the Hopf

algebra of rooted trees de
orated by N∗
, that the initial equation gives a

Hopf subalgebra [18℄.

(3) The following system is the trun
ation of a system appearing in [29, 32℄:

N ≥ 2, and for all 1 ≤ n ≤ N ,

xn = Bn

(
(1 + x2)

n

(1 + x1)n

)

.

This is obtained from a fundamental system, with I0 = {1, 2}, L0 = {3, . . . , N},

β1 = 1, β2 = −1/2, a
(n)
1 = n and a

(n)
2 = n/2 if n ≥ 3, by a 
hange of variables

h1 −→ −h1 and h2 −→ 2h2.

(4) The following system appears in [44℄ and in the �rst se
tion of this text:







x1 = B1

(
(1 + x1)

3

(1 − x2)(1 − x3)2

)

,

x2 = B2

(
(1 + x1)

2

(1 − x3)2

)

,

x3 = B3

(
(1 + x1)

2

(1 − x2)(1 − x3)

)

.
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This is obtained from a fundamental system,with I0 = {1, 3}, J0 = {2},
β1 = −1/3, β3 = 1, by a 
hange of variables h1 −→ 3h1.

8.3 Dual pre-Lie algebras

Let us give a few results on the dual pre-Lie algebras. Let (S) be an extended

fundamental SDSE. The pre-Lie algebra of primitive elements of the dual H∗
(S)

has a basis (ein)i∈I,n≥1. As observed in 7.3, the pre-Lie produ
t is given by:

eim ◦ e
j
n = λ(j,i)n ejm+n.

As a 
onsequen
e, gi = V ect(eik, k ≥ 1) is a pre-Lie subalgebra. Three 
ases are

possible:

(1) i ∈ I0, with βi = −1. Then eik ◦ e
i
l = eik+l: gi is an asso
iative, 
ommutative

algebra, isomorphi
 to the augmentation ideal of K[X ].

(2) i ∈ K0 ∪ L0 ∪ I1 ∪ J1 or is an extension vertex. Then eik ◦ e
i
l = 0: gi is a

trivial pre-Lie algebra.

(3) i ∈ I0 with βi 6= −1, or i ∈ J0. Then bj 6= 0, and gi is a Faà di Bruno pre-Lie

algebra with parameter given by:

λi =
a
(i)
i

bi
− 1 =

{ −βi

1+βi
if i ∈ I0,

−1 if i ∈ J0.

Note that in both 
ases (1) and (2), the Lie algebra gi is abelian.

Let us des
ribe the Lie algebra g(S) in two simple 
ases; see [19℄ for more general

results.

Proposition 61. Let (S) be a fundamental SDSE with no dilatation, su
h that

L0 = ∅. Two 
ases are possible:

(1) If J0 = ∅ and for all i ∈ I0, βi = −1, then the Lie algebra g(S) is abelian.

(2) If J0 6= ∅ or if there exists i ∈ I0, su
h that βi 6= −1, then the Lie algebra

g(S) 
an be de
omposed in a semi-dire
t produ
t:

g(S) = (M1 ⊕ . . .⊕Mk)⋊ g0,

where:

• g0 is a Lie subalgebra of g(S), isomorphi
 to the Faà di Bruno Lie

algebra, with basis (f0
n)n≥1 su
h that for all m,n ≥ 1:

[f0
m, f

0
n] = (n−m)f0

n+m.

• For all 1 ≤ i ≤ k, Mi is an abelian Lie subalgebra of g(S), with basis

(f in)n≥1.

• For all 1 ≤ i ≤ k, Mi is a left g0-module in the following way:

f0
m.f

i
n = nf im+n.
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Proof. We use here the notations of se
tion 7.2.

1. In this 
ase, for all i ∈ I, bi = 0, so the pre-Lie produ
t is given by:

eim ◦ e
j
n = a

(j)
i ejm+n.

Moreover, the following array gives the 
oe�
ients a
(i)
j :

j \ i I0 K0

I0 δi,j 0
K0 0 0

Hen
e, the pre-Lie produ
t is 
ommutative. Consequently, the asso
iated Lie

bra
ket is abelian.

2. In this 
ase, there exists 0 ∈ I, su
h that b0 6= 0. Then, for all i, j ∈ I,

a
(i)
j = bj + δi,jcj . For all n ≥ 1, we put:







f0
n =

1

b0
e0n,

f in = ein −
b1
b0
e0n if i 6= 0.

The family (f in)i∈I,n≥1 is a basis of g(S). For all i ∈ I, we put:

ci =







−βi if i ∈ I0,
−1 if i ∈ J0,
0 if i ∈ K0.

Dire
t 
omputations show that if i, j 6= 0:

f0
m ◦ f

0
n =

(

n+
c0
b0

)

f0
m+n,

f im ◦ f
0
n = −

bi
b0
c0f

0
m+n,

f0
m ◦ f

j
n = nf jm+n −

bj
b0
c0f

0
m+n,

f im ◦ f
j
n = δi,jxie

j
m+n −

bibjc0
b20

e0m+n.

So V ect(f0
n | n ≥ 1) is a Faà di Bruno pre-Lie algebra, with parameter:

c0
b0

=







−β0
1 + β0

if 0 ∈ I0,

−1 if 0 ∈ J0.

Moreover, we obtain, if i, j 6= I:

[f0
m, f

0
n] = (n−m)f0

m+n, [f0
m, f

j
n] = nf jm+n, [f im, f

j
n] = 0,

whi
h is pre
isely the announ
ed result.

Proposition 62. Let (S) be a quasi-
y
li
 SDSE. The pre-Lie g(S) admits a
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basis (ein)i∈I,n≥1 su
h that:

eim ◦ e
j
n =

{

ejm+n if there exists a path from j to i in G(S) of length n,
0 if not.

This pre-Lie produ
t is asso
iative.

Proof. Up to a 
hange of variables, for all i ∈ I, we have:

xi = 1 +
∑

i→j

Bi(xj).

Hen
e, for all i ∈ I, for all n ≥ 1:

xi(n) =
∑

i→i2→...→in

q

q
.

.

.

q

q

i
i2

in−1

in

.

So:

∆(xi(n)) =
∑

i→i2→...→in

n∑

k=0

q

q
.

.

.

q

q

ik+1

ik+2

in−1

in

⊗ q

q
.

.

.

q

q

i
i2

ik−1

ik

=
n∑

k=0

∑

ik

xik(n− k)⊗ xi(k),

where the last sum is over all ik su
h that there exists a path of length k from i
to ik in G(S). Let (e

i
n)i∈I,n≥1 be the dual basis of the basis (xi(n))i∈I,n≥1; this is

a basis of g(S) and the formula for the 
oprodu
t of xi(n) implies the formula for

the pre-Lie produ
t of two elements of this basis. Moreover, for all i, j, k ∈ I, for
all m,n, p ≥ 1:

• (eim ◦ e
j
n) ◦ e

k
p = ekm+n+p if there exists a path from k to j of length p and a

path from j to i of length n, and 0 otherwise.

• eim ◦ (e
j
n ◦ e

k
p) = ekm+n+p if there exists a path from k to j of length p and a

path from k to i of length n+ p, and 0 otherwise.

As (S) is quasi-
y
li
, there exists a partition I = I1 ⊔ . . . ⊔ IN su
h that there is

an edge from i to j in G(S) if, and only if, there exists a ∈ Z/NZ su
h that i ∈ Ia
and j ∈ Ia+1. Let a, b, c ∈ Z/NZ su
h that i ∈ Ia, j ∈ Ib and k ∈ Ic. Then:

• (eim ◦ e
j
n) ◦ e

k
p = ekm+n+p if c+ p = b and b+ n = a, and 0 otherwise.

• eim ◦ (e
j
n ◦ e

k
p) = ekm+n+p if c+ p = b and c+ n+ p = a, and 0 otherwise.

Consequently, (eim ◦ e
j
n) ◦ e

k
p = eim ◦ (e

j
n ◦ e

k
p) and the produ
t ◦ is asso
iative.
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