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DEFORMATIONS OF SHUFFLES AND
QUASI-SHUFFLES

by Löıc FOISSY, Frédéric PATRAS and Jean-Yves THIBON (*)

Abstract. We investigate deformations of the shuffle Hopf algebra
structure Sh(A) which can be defined on the tensor algebra over a
commutative algebra A. Such deformations, leading for example to
the quasi-shuffle algebra QSh(A), can be interpreted as natural trans-
formations of the functor Sh, regarded as a functor from commutative
nonunital algebras to coalgebras. We prove that the monoid of nat-
ural endomophisms of the functor Sh is isomorphic to the monoid
of formal power series in one variable without constant term under
composition, so that in particular its natural automorphisms are in
bijection with formal diffeomorphisms of the line.

These transformations can be interpreted as elements of the Hopf
algebra of word quasi-symmetric functions (or, equivalently, of sur-
jections) WQSym, and in turn define deformations of its structure.
This leads to a new embedding of free quasi-symmetric functions into
WQSym, whose relevance is illustrated by a simple and transpar-
ent proof of Goldberg’s formula for the coefficients of the Hausdorff
series.

Résumé. On s’intéresse aux déformations de la structure d’algèbre
de Hopf des battages (ou shuffles) Sh(A) définie sur l’algèbre ten-
sorielle sur une algèbre commutative A. Ces déformations, dont un
cas remarquable est donné par l’algèbre de Hopf des quasi-shuffles
QSh(A), s’interprètent comme transformations naturelles du fonc-
teur Sh vu comme foncteur des algèbres commutatives non unitaires
vers les coalgèbres. On montre en particulier que le monöıde des en-
domorphismes naturels du foncteur Sh est isomorphe au monöıde
des séries formelles en une variable sans terme constant pour la loi
de composition des séries. Les automorphismes naturels du foncteur
sont donc en bijection avec les difféomorphismes formels de la droite.

Ces transformations s’interprètent aussi comme des élements de
l’algèbre de Hopf des surjections (ou, de façon équivalente des fonc-
tions quasi-symmetriques en mots) WQSym, et en définissent à
leur tour des déformations. Cette remarque conduit entre autres à
un nouveau plongement des fonctions quasi-symétriques libres dans
WQSym dont la pertinence est illustrée par une preuve simple de
la formule de Goldberg pour les coefficients de la série de Hausdorff.
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Introduction

The tensor algebra over a commutative algebra A is provided by the

shuffle product with a commutative (Hopf) algebra structure. However,

other products (resp. Hopf algebra) structures can be defined, the best

known one being the quasi-shuffle product (resp. quasi-shuffle Hopf alge-

bra). These products arise in many contexts, e.g., Rota–Baxter algebras,

multiple zeta values (MZVs), noncommutative symmetric functions, oper-

ads ... Moreover, they are natural: they commute with morphisms of com-

mutative algebras; in other terms, they define functors from the category

of commutative algebras to that of commutative Hopf algebras.

The present paper aims at studying and classifying these products and

Hopf algebra structures. The Faà di Bruno Hopf algebra plays a key role in

this classification: its characters (in bijection with formal diffeomorphisms

tangent to the identity) happen to classify the natural deformations of

shuffle algebras considered in this article.

Our approach also sheds a new light on classical constructions such as

quasi-shuffles. Most structure properties of quasi-shuffle algebras appear,

from our point of view, as straightforward consequences of their definition

as deformations by conjugacy of shuffle algebras. This allows to transport

automatically all known results on shuffle algebras to quasi-shuffles and

does not require the algebra A to be graded (compare, e.g., [11]). We may

quote the existence of a “natural” (but not straightforward !) gradation,

and of fine Hopf algebraic properties such as the ones studied in [14].

Most of these results can be phrased in terms of combinatorial properties

of Hopf algebras based on permutations (free quasi-symmetric functions)

and surjections (word quasi-symmetric functions). In particular, the analy-

sis of the relations between shuffles and quasi-shuffles leads to a new poly-

nomial realization of noncommutative symmetric functions, which can be

extended to free quasi-symmetric functions. Beyond its naturalness from

the point of view of quasi-shuffle algebras, this new realization has an inter-

est on its own: as an application, a simple (and, in our opinion, enlightening)

proof of Goldberg’s formula for the coefficients of the Haudorff series and

a generalization thereof to other, similar, series is obtained.
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DEFORMATIONS OF SHUFFLES 3

1. The shuffle algebra over a commutative algebra

Let V be a vector space over the rationals(1) , and let T (V ) be its tensor

algebra

T (V ) =
⊕
n∈N

Tn(V ) =
⊕
n∈N

V ⊗n

with V ⊗0 := Q. Tensors v1 ⊗ ... ⊗ vn in Tn(V ) will be written as words

v1...vn, the ⊗ sign being reserved for tensor products of elements of T (V ).

The concatenation product in T (V ) is written ×

v1...vn × w1...wm := v1...vnw1...wm.

Definition 1.1. — The shuffle bialgebra Sh(V ) =
⊕
n∈N

Shn(V ) is the

graded connected (i.e. Sh0(V ) = Q) commutative Hopf algebra such that

• As vector spaces Shn(V ) = Tn(V ).

• Its product is defined recursively as the sum of the two half-

shuffle products ≺, �

v1...vn ≺ w1...wp := v1 × (v2...vn w1...wp)

v1...vn � w1...wp := v1...vp ≺ w1...wn = w1 × (v1...vn w2...wp),

and =≺ + �.

• Its coalgebra structure is defined by the deconcatenation coproduct

∆(v1...vn) :=
∑

06k6n

v1...vk ⊗ vk+1...vn.

Recall that the notions of connected commutative Hopf algebra and con-

nected commutative bialgebra are equivalent since a graded connected com-

mutative bialgebra always has an antipode [13].

The above construction is functorial: Sh : V → Sh(V ) is a functor from

the category of vector spaces to the category of graded connected commu-

tative Hopf algebras.

Equivalently, for all v1, . . . , vk+l ∈ V ,

v1 . . . vk ≺ vk+1 . . . vk+l =
∑

α∈Des⊆{k}, α−1(1)=1

vα−1(1) . . . vα−1(k+l),

v1 . . . vk � vk+1 . . . vk+l =
∑

α∈Des⊆{k}, α−1(1)=k+1

vα−1(1) . . . vα−1(k+l),

where the α are permutations of [k + l] = {1, ..., k + l}.

(1) Any field of characteristic zero would be suitable as well in all our forthcoming
developments.
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4 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

The notation α ∈ Des⊆{k} means that α has at most one descent in

position k. Recall that a permutation σ of [n] is said to have a descent in

position i < n if σ(i) > σ(i+ 1). The descent set of σ, desc(α) is the set of

all descents of α,

desc(σ) := {i < n, σ(i) > σ(i+ 1)}.

For I ⊂ [n], we write DesI := {σ, desc(σ) = I} and Des⊆I := {σ, desc(σ) ⊆
I}.

A Theorem due to Schützenberger [20] characterizes abstractly the shuffle

algebras:

Proposition 1.2. — As a commutative algebra, Sh(V ) is the free al-

gebra over the vector space V for the relation

(1.1) (a ≺ b) ≺ c = a ≺ (b ≺ c+ c ≺ b).

An algebra equipped with a product ≺ satisfying this relation is some-

times refered to as a chronological algebra (although the term has also other

meanings) or as a Zinbiel algebra (because it is dual to Cuvier’s notion of

Leibniz algebra), we refer to [6] for historical details.

Let now A be a commutative algebra over the rationals (not necessarily

with a unit). The (internal) product of a and b in A will be always written

a · b ∈ A to distinguish it from ab, which will represent as previously an

element in A⊗2.

The shuffle bialgebra over A, Sh(A) is defined as previously (the defini-

tion of Sh(A) does not make use of the product in A: in functorial terms,

we simply use the forgetful functor from commutative algebras to vector

spaces to define Sh(A)). From now on we will consider accordingly Sh as

a functor from the category of commutative algebras (without a unit) to

the category of connected bialgebras and also as a functor to the category

of connected coalgebras.

An ingredient of the theory of tensors and shuffle algebras over com-

mutative algebras will be useful in our forthcoming developments: namely,

the nonlinear Schur-Weyl duality established in [14]. Let us recall that

WQSym stands for the Hopf algebra of word quasi-symmetric functions.

This algebra can be given various equivalent realizations (that is, its ele-

ments can be encoded by means of surjections, packed words, set composi-

tions or faces of permutohedra) and carries various algebraic structures on

which we will come back later. We refer, e.g., to [14] for details. It will ap-

pear later in this article that, whereas the realization of WQSym in terms
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DEFORMATIONS OF SHUFFLES 5

of surjections is the one suited for studying deformations of shuffle algebras,

that in terms of words is the one suited to the analysis of Hausdorff series.

For the time being, we simply recall that WQSym can be realized as

the linear span of all surjections f from [n] to [p], where n runs over the

integers and 1 6 p 6 n and postpone the definition of the product and

the coproduct. We say that such a map f is of degree n, relative degree

n−p, and bidegree (n, p). The linear span of degree n (resp. bidegree (n, p))

elements is written WQSymn (resp. WQSymn,p). We write ŴQSym for∏
n,p

WQSymn,p.

We consider now natural endomorphisms of the functor T , viewed as a

functor from nonunital commutative algebras to vector spaces. Concretely,

we look for families of linear maps µA from Tn(A) to Tm(A) (where A runs

over nonunital commutative algebras and m and n run over the nonzero

integers) such that, for any map f of nonunital commutative algebras from

A to B,

(1.2) Tm(f) ◦ µA = µB ◦ Tn(f).

Let us say that such a family µA satisfies the nonlinear Schur-Weyl duality

(with parameters n,m). We have [14]:

Proposition 1.3. — The vector space of linear maps that satisfy the

nonlinear Schur-Weyl duality with parameters n,m is canonically isomor-

phic to WQSymn,m, the linear span of surjections from [n] to [m]. Equiv-

alently, the vector space of natural endomorphisms of the functor T is

canonically isomorphic to ŴQSym.

2. Natural coalgebra endomorphisms

The nonlinear Schur-Weyl duality shows that ŴQSym is the natural

object for investigating the linear structure of the tensor and shuffle alge-

bras over a commutative algebra. In this section and the following ones, we

study shuffle algebras from a refined point of view. Namely, we aim at char-

acterizing, inside ŴQSym, the linear endomorphisms that preserve some

extra structure. Particularly important from this point of view are the

coalgebra endomorphisms, whose classification is the object of the present

section.

From now on, coalgebras C are coaugmented, counital and conilpotent.

That is, writing ∆ the coproduct and idC the identity map of C: the coal-

gebra is equipped with a map ηC (the counit) from C to the ground field
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6 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

Q which satisfies

(ηC ⊗ idC) ◦∆ = idC = (idC ⊗ ηC) ◦∆.

The ground field embeds (as a coalgebra) into C so that, canonically, C =

C+ ⊕Q with C+ := Ker ηC (coaugmentation) and, finally, writing ∆ the

reduced coproduct (∆(x) := ∆(x) − x ⊗ 1 − 1 ⊗ x), for all x ∈ C+, there

exists an integer n (depending on x) such that ∆
n
(x) = 0 (conilpotency).

Coalgebra maps φ : C → C ′ are required to preserve the coaugmentation

and the counit, so that φ(C+) ⊂ C ′+.

Recall that Sh(A) is equipped with a coalgebra structure

∆(a1...an) :=

n∑
i=0

a1...ai ⊗ ai+1...an ∈ Sh(A)⊗ Sh(A).

Its counit is the projection onto Sh0(A) = Q and we write

Sh(A)+ =
⊕
n>1

A⊗n.

The usual universal properties of the tensor algebra T (A) as a free asso-

ciative algebra over A (viewed as a vector space) dualize, and we have the

adjunction property

Homlin(C+, A) ∼= Homcoalg(C,Sh(A)),

where C runs over coalgebras and Homlin, resp. Homcoalg, stand for the set

of linear maps, resp. coalgebra maps. In other terms, the coaugmentation

coideal functor from coalgebras to vector spaces is left adjoint to the free

coalgebra functor. Recall that in this statement coalgebra means coaug-

mented, counital and conilpotent coalgebra. The fact that we consider only

conilpotent coalgebras is essential for the adjunction to hold, see e.g. [1]

for details on the structure of cofree coalgebras in general. In particular,

we get:

Corollary 2.1. — There is a canonical bijection

Homlin(Sh+(A), A) ∼= Homcoalg(Sh(A),Sh(A)).

That is, a coalgebra endomorphism φ of Sh(A) is entirely determined by

the knowledge of f := π◦φ, where we write π for the projection from Sh(A)

to A orthogonally to A0 = Q and to the A⊗n, n > 1. Conversely, any map

f ∈ Homlin(Sh+(A), A) determines a unique coalgebra endomorphism φ of

Sh(A) by

φ(a1...an) :=
∑

i1+...+ik=n

f(a1...ai1)⊗ · · · ⊗ f(ai1+....+ik−1+1...an).
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A triangularity argument that we omit shows that φ is a coalgebra auto-

morphism if and only if the restriction of f to A is a linear isomorphism. For

reasons that will become clear soon, we say that f ∈ Homlin(Sh+(A), A) is

tangent to identity if its restriction to A (that is to a linear endomorphism

of A) is the identity map.

Recall that by natural endomophism of the functor Sh viewed as a func-

tor from commutative nonunital algebras to coalgebras is meant a familly

µA (indexed by commutative nonunital algebras A) of coalgebra endomor-

phisms of the Sh(A) commuting with the morphisms (from Sh(A) to Sh(B))

induced by algebra maps (from A to B).

Theorem 2.2. — Let Coalg be the monoid of natural endomophisms of

the functor Sh viewed as a functor from commutative nonunital algebras to

coalgebras. Then, there is an isomorphism between Coalg and the monoid

Diff of formal power series without constant term, Coalg ∼= XQ[[X]]

equipped with the substitution product (for P (X), Q(X) ∈ XQ[[X]], P ◦
Q(X) := P (Q(X)).

In particular, the set Coalg1 of tangent-to-identity natural endomor-

phisms of the functor Sh is a group canonically in bijection with the group

Diff1 = X +X2Q[[X]] of tangent-to-identity formal diffeomorphisms.

Let us prove first that Coalg ∼= XQ[[X]]. Since we have a natural isomor-

phism Homlin(Sh+(A), A) ∼= Homcoalg(Sh(A),Sh(A)), Coalg is canonically

in bijection with natural transformations from Sh+ to the identity func-

tor (viewed now as functors from commutative algebras to vector spaces).

By Schur-Weyl duality, we get Coalg ∼=
∏
n>1

WQSymn,1. Identifying the

unique surjection from [n] to [1] with the monomial Xn yields the bijection

Coalg ∼= XQ[[X]].

We will write from now on φP for the element in Homcoalg(Sh(A),Sh(A))

associated with a given formal power series P (X) ∈ XQ[[X]] and fP for

the corresponding element in Homlin(Sh+(A), A).

Notice that for P (X) =
∞∑
i=1

piX
i, the action of fP and φP on an arbitrary

tensor a1...an ∈ Sh(A) can be described explicitely

(2.1) fP (a1...an) = pn · (a1 · ... · an) ∈ A,

(2.2)

φP (a1...an) =

n∑
k=1

∑
i1+...+ik=n

pi1 ...pik(a1 ·...·ai1)⊗...⊗(ai1+...+ik−1+1 ·...·an)
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8 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

This last formula describes the embedding of Coalg into ŴQSym induced

by Schur-Weyl duality (the tensor product (a1 ·...·ai1)⊗...⊗(ai1+...+ik−1+1 ·
...·an) corresponding to the nondecreasing surjection from [n] to [k] sending

the first i1 integers to 1,..., the last ik integers to k). This embedding is of

course different from the one induced by the bijection with
∏
n>1

WQSymn,1

and corresponds to the fact that elements in Coalg can be represented

equivalently by a fP or a φP : the fP s are naturally encoded by elements

in
∏
n>1

WQSymn,1 (Formula (2.1)), whereas the φP s are most naturally

encoded by elements in ŴQSym (Formula (2.2)).

Let us show now that, for arbitrary P (X), Q(X) ∈ XQ[[X]],

(2.3) φP ◦ φQ = φP◦Q,

where (P ◦ Q)(X) := P (Q(X)). For an arbitrary commutative algebra A

and a1, ..., an ∈ A, we have indeed (with self-explaining notations for the

coefficients of P and Q)

π ◦ φP ◦ φQ(a1...an) =

= fP (

n∑
k=1

∑
i1+...+ik=n

qi1 ...qik(a1 · ... · ai1)⊗ ...⊗ (ai1+...+ik−1+1 · ... · an))

=

n∑
k=1

∑
i1+...+ik=n

pkqi1 ...qik(a1 ·...·an) = fP (Q)(a1...an) = π◦φP (Q)(a1...an).

Thus, φP ◦ φQ = φP◦Q and the theorem follows.

3. Formal diffeomorphisms and WQSym

We have shown that Coalg and Diff embed naturally into ŴQSym

(Formula (2.2)). We have already noticed that they are actually embedded

in ̂IQSym, where IQSym stands for the linear span of nondecreasing sur-

jections. Since a nondecreasing surjection f from [n] to [k] is characterized

by the number of elements fi := |f−1(i)| in the inverse images of the ele-

ments of i ∈ [k], nondecreasing surjections from [n] to [k] are in bijection

with compositions of n of length k, that is, ordered sequences of integers

f1, ..., fk adding up to n. Said otherwise, nondecreasing surjections are nat-

urally in bijection with a linear basis of Sym and QSym, respectively the

Hopf algebra of noncommutative symmetric functions and the dual Hopf

algebra of quasi-symmetric functions, see [7], although the linear embed-

dings of Sym and QSym into WQSym induced by the bijection between
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DEFORMATIONS OF SHUFFLES 9

the basis and the embedding of IQSym into WQSym are not standard

ones.

We shall return later on these various embeddings into WQSym; the

present section studies the compatibility relations between the group struc-

ture of Diff1 and the coalgebra structure existing on WQSym.

Let us recall the relevant definitions. The word realization of WQSym

to be introduced now will be useful when we will discuss later some of its

combinatorial properties. We denote by A = {a1 < a2 < . . . } a denumer-

able infinite linearly ordered alphabet and by A∗ the corresponding set of

words.

The packed word u = pack(w) associated with a word w ∈ A∗ is obtained

by the following process. If b1 < b2 < · · · < br are the letters occuring in w,

u is the image of w by the homomorphism bi 7→ ai. For example, if A = N∗,
pack(3 5 3 8 1) = 2 3 2 4 1. A word u is said to be packed if pack(u) = u.

We denote by PW the set of packed words. With a word u ∈ PW, we

associate the noncommutative polynomial(2)

(3.1) Mu(A) :=
∑

pack(w)=u

w .

For example, restricting A to the first five integers,

M13132(A) = 13132 + 14142 + 14143 + 24243

+ 15152 + 15153 + 25253 + 15154 + 25254 + 35354.
(3.2)

Packed words u = u1...un are in bijection with surjections: taking for A
the set of integers, if 1, ..., p are the letters occuring in u, the surjection

associated with u is simply the map from [n] to [p] defined by f(i) := ui.

The Mu can therefore be chosen as linear generators of WQSym. Since

the product of two Mus is a linear combination of Mus, this presentation

induces an algebra structure on WQSym and an algebra embedding into

Q〈A〉. This algebra structure on WQSym is closely related to the Hopf

algebra structure of QSh(A), see [14] for details. Since both presentations

of WQSym (Mu or surjections) are equivalent, we will not distinguish

between them, except notationally.

As for classical symmetric functions, the nature of the ordered alphabet

A chosen to define word quasi-symmetric functions Mu(A) is largely irrel-

evant provided it is denumerable infinite. We will therefore often omit the

(2) As is customary in this theory, “polynomial” means a formal series of bounded degree
in an infinite number of noncommuting variables, where each monomial of finite degree
may carry a non zero scalar coefficient. We still denote by Q〈A〉 the corresponding
algebra. Since these are elements of a projective limit of polynomial rings, purists may
want to call these objects (noncommutative) polynomials.
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10 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

A-dependency and write simply Mu for Mu(A), except when we want to

emphasize this dependency (and similarly for the other types of generalized

symmetric functions we will have to deal with).

The important point for us now is that WQSym carries naturally a

Hopf algebra structure for the coproduct:

(3.3) ∆(Mu) :=

n∑
i=0

Mu|[1,i] ⊗Mpack(u|[i+1,n])).

Here, u is a packed word over the letters 1, ..., n and, for an arbitrary subset

S of [n], u|S stands for the word obtained from u by erasing all the letters

that do not belong to S.

Lemma 3.1. — The direct sum of the spaces of nondecreasing surjec-

tions, and of the scalars, IQSym, is a subcoalgebra of WQSym. It is a

cofree coalgebra, cogenerated by the set Γ ∼= N+ of “elementary” surjections

γn from [n] to [1], n > 1. That is, as a coalgebra, IQSym identifies with

T (Γ) (the linear span of words over the alphabet of elementary surjections)

equipped with the deconcatenation coproduct.

In particular, IQSym is isomorphic as a coalgebra to QSym, the coalge-

bra of quasi-symmetric functions [8, 12, 21] and the embedding of IQSym

in WQSym induces a coalgebra embedding of QSym in WQSym.

Recall that coalgebra means here coaugmented counital conilpotent coal-

gebra, so that the cofree coalgebra over a generating set X identifies with

the tensor algebra over QX equipped with the deconcatenation coprod-

uct. The Lemma follows then from the definition of ∆. Indeed, if we write

γi1 ...γik for the unique surjection f from [i1 + ... + ik] to [k] such that

f(1) = ... = f(i1) := 1, . . . , f(i1 + ...+ ij−1 +1) = ... = f(i1 + ...+ ik) := k,

then,

∆(γi1 ...γik) =

k∑
j=0

γi1 ...γij ⊗ γij+1
...γik .

Proposition 3.2. — The embedding of Diff1 into ̂IQSym factorizes

through the set of grouplike elements in ̂IQSym (the same statement holds

if we replace IQSym by the isomorphic coalgebra QSym). In other terms,

the group structure of Diff1 is compatible with the coalgebra structure of

WQSym (resp. QSym).

Let P (X) = X +
∑
i>1 piX

i and p1 := 1. Then, in the basis Mu,

φP =
∑
n>0

n∑
k=1

∑
i1+...+ik=n

pi1 ...pikM1i1 ...kik ,
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where 1i1 ...kik stands for the nondecreasing packed word with i1 copies of

1, ..., ik copies of k (so that e.g. 132232 = 1112233) with the convention

that the component n = 0 of the sum contributes 1 ∈ Q (this corresponds

to φP (1) = 1). We get

∆(φP ) =
∑
n>0

n∑
k=1

∑
a+b=k

∑
i1+...+ik=n

pi1 ...piaM1i1 ...aia⊗pia+1 ...pikM1ia+1 ...(b−a)ik

= φP ⊗ φP .
Notice that, as a by-product of Thm. 2.2 and Prop. 3.2, we have charac-

terized the grouplike elements φ in ŴQSym which are natural coalgebra

endomorphisms of Sh, that is, which satisfy for an arbitrary commutative

algebra A and elements a1, ..., an ∈ A, the compatibility property

(3.4) (∆(φ) ◦∆)(a1...an) = (∆ ◦ φ)(a1...an).

where ∆(φ) = φ⊗ φ. In general, for φ in ŴQSym (not necessarily group-

like), equation (3.4) cannot hold if φ /∈ ̂IQSym (this is because the decon-

catenation coproduct ∆ preserves the relative ordering of the ais). The

converse statement is true and follows from the definition of the coproduct

on WQSym (its proof is left to the reader):

Lemma 3.3. — Equation (3.4) holds for all φ ∈ ̂IQSym, This property

characterizes ̂IQSym as a subspace of ŴQSym.

Proposition 3.4. — We define an internal product ◦ on IQSym in the

following way:

• On IQSym+, this is the composition of surjections.

• On Q = IQSym0 = IQSym∩WQSym0, this is the usual product.

• The product of elements in IQSym+ and Q is null.

This internal product provides IQSym with a bialgebra(3) structure. That

is, the coproduct ∆ and the composition of surjections ◦ satisfy

(3.5) ∆(f ◦ g) = ∆(f) ◦∆(g).

Indeed, by nonlinear Schur-Weyl duality, the identity is true if and only

if the following identity holds for arbitrary A, and a1, ..., an in A

∆(f ◦ g) ◦∆(a1...an) = ∆(f) ◦∆(g) ◦∆(a1...an),

(3) By “bialgebra”, we simply mean in the present article a compatible product and
coproduct as in identity (3.5), without requiring extra properties (very often one requires
the coproduct and the product to have also compatibility properties with the unit of the
algebra and the counit of the coalgebra).
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12 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

which follows from the previous Lemma and from the stability of IQSym

by composition (the composition of two nondecreasing surjections is an

nondecreasing surjection).

The identity map I ∈ ̂IQSym (the sum of all identity maps on the

finite sets [n]) is a unit for ◦ and behaves as a grouplike element for ∆.

However, I /∈ IQSym and problems arise if one tries to provide IQSym

with a classical graded unital bialgebra structure. A natural gradation of

IQSym would be the relative degree of surjections (since the relative degree

of the composition of two surjections f and g is the sum of their relative

degrees). However, for this gradation, each graded component of IQSym is

infinite dimensional (even in degree 0), so that many of the usual arguments

regarding graded Hopf algebras do not apply directly to IQSym.

Since we aim at providing a group-theoretical picture of the theory of

shuffle algebras, our final goal is to understand the fine structure of the im-

age of Diff in ̂IQSym. The next section aims at clarifying these questions.

4. Natural coderivations and the Faà di Bruno algebra

In the previous section, we have characterized the natural coalgebra en-

domorphisms of shuffle algebras, or, equivalently, grouplike elements in
̂IQSym. We have also shown that the tangent-to-identity elements form

a group isomorphic to the group of tangent-to-identity formal diffeomor-

phisms. We are going to study now the corresponding Lie algebra L of

natural coderivations of shuffle algebras.

Recall the canonical isomorphism IQSym ∼= T (QΓ) (with Γ ∼= N∗). Let

S(Γ) stand for the subspace of symmetric tensors in T (QΓ) and SIQSym

be the corresponding subspace of IQSym. By construction, the embed-

ding of Diff into IQSym factorizes through SIQSym (see Eq. (2.2)).

Since symmetric tensors form a subcoalgebra of the tensor algebra for the

deconcatenation coproduct and since the composition of two elements in

SIQSym is still in SIQSym, the following Lemma is a consequence of our

previous results.

Lemma 4.1. — The embedding of SIQSym into IQSym is an embed-

ding of bialgebras (for the composition product).

Let us call tangent-to-identity an element µ in Ŝ(Γ) if µ−I is a (possibly

infinite) linear combination of nondecreasing strict surjections (nondecreas-

ing surjections from [n] to [m] with n > m).
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A coderivation D in Sh(A) (that is, a linear endomorphism such that

∆◦D = (D⊗ I+ I⊗D)◦∆, where I stands for the identity map) is called

infinitesimal if its restriction to A ⊂ Sh(A) is the null map. As usual, a

natural coderivation of the shuffle algebras is a family of coderivations (of

the Sh(A)) commuting with the morphisms induced by algebra maps (from

A to B, where A and B run over commutative nonunital algebras).

Lemma 4.2. — Natural tangent-to-identity coalgebra endomorphisms

of shuffle algebras identify with tangent-to-identity grouplike elements in
̂SIQSym ∼= Ŝ(Γ). The corresponding Lie algebra of primitive elements in

Ŝ(Γ) is the Lie algebra of natural infinitesimal coalgebra coderivations of

the shuffle algebras. It is canonically in bijection with the Lie algebra of

formal power series X2Q[[X]] equipped with the Lie bracket [Xm, Xn] :=

(m− n)Xm+n−1.

The Lemma follows from the general property according to which, in

a bialgebra, grouplike elements and primitive elements are in bijection

through the logarithm and exponential maps, provided these maps make

sense (that is, provided no convergence issue of the series arises). This is

because, formally, for φ a grouplike element,

∆(log(φ)) = log(∆(φ)) = log(φ⊗ φ) = log(φ)⊗ I + I ⊗ log(φ),

since log(ab) = log(a) + log(b) when a and b commute and since I is the

unit element for the composition product.

The formal convergence of the series under consideration in the present

case is ensured by the fact that a surjection from n to p < n can be written

as the product of at most n− p strict surjections (so that the coefficient of

such a surjection in the expansion of log(φ) is necessarily finite and equal

to its coefficient in the expansion of the truncation of the logarithmic series

at order n− p).
The last statement of the Lemma follows from the isomorphism be-

tween tangent-to-identity coalgebra endomorphisms of shuffle algebras and

tangent-to-identity formal diffeomorphisms. It can also be deduced directly

from the adjunction property (dual to the one according to which deriva-

tions in the tensor algebra are in bijection with linear morphisms from V to

T (V )): writing Coder+(Sh(A)) for the coderivations of Sh(A) vanishing on

Q, we have Coder+(Sh(A)) ∼= Lin(Sh+(A), A), which implies, by nonlin-

ear Schur-Weyl duality that natural coalgebra coderivations of the shuffle

algebras are canonically in bijection with XQ[[X]].
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14 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

This bijection with XQ[[X]] can be made explicit: dualizing the formula

for the derivation associated with a map f : V −→ T (V )

f(v1...vn) :=

n∑
i=1

v1...vi−1f(vi)vi+1...vn,

we get, for P =
∑
i>1 piX

i

DP (a1...an) =

n∑
i=1

n−i+1∑
j=1

pia1...aj−1(aj · ... · aj+i−1)aj+i...an.

In particular, the restriction of φP and DP to maps from Sh(A) to A agree

and are both given by

φP (a1...an) = DP (a1...an) = pna1 · ... · an.

The simplest example of a coderivation is for P (X) = X: it is the degree

operator, Y := DX ,

Y (a1...an) =

n∑
i=1

a1...ai−1I(ai)ai+1...an = n a1...an.

Similarly, DλX(a1...an) = n · λ (a1...an). In general we have, for arbitrary

polynomials P,Q and λ ∈ Q,

DP + λDQ = DP+λQ.

The description of the Lie algebra structure on XQ[[X]] induced by the

isomorphism with the Lie algebra of natural coalgebra coderivations follows

from the explicit formula for the action of coderivations ([DXm , DXn ] =

(m−n)DXm+n−1) but can also be deduced from the fact that composition of

coalgebra endomorphisms is reflected in the composition of formal power

series. Recall indeed that the set of formal power series X + X2Q[[X]]

equipped with the composition product is the group of characters of the

Faà di Bruno Hopf algebra, see e.g. [5].

Summarizing our previous results, we get:

Theorem 4.3. — The Lie algebra of natural infinitesimal coalgebra

coderivations of shuffle algebras is naturally isomorphic to (the comple-

tion of) the Lie algebra generated by the Xn, n > 1, with Lie bracket

[Xm, Xn] := (m − n)Xm+n−1. Equivalently, it is isomorphic to (the com-

pletion of) the Lie algebra of primitive elements in the Hopf algebra dual

to the Faà di Bruno Hopf algebra.
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Here, “completion” is understood with respect to the underlying implicit

grading of these Lie algebras and Hopf algebras (e.g. Xn is naturally of

degree n− 1, see [5] for details).

5. Deformations of shuffles

Let us restrict again our attention to tangent-to-identity coalgebra au-

tomorphisms of the Sh(A). Any such ΦP (with P (X) − X ∈ X2Q[[X]])

defines a natural deformation of Sh, that is, a new functor from commuta-

tive algebras to Hopf algebras

ShP (A) = (Sh(A),∆, P ),

that is, ShP (A) identifies with Sh(A) (and with T (A) equipped with the

deconcatenation coproduct) as a coalgebra, but carries a new product de-

fined by conjugacy

x P y := φP (φ−1
P (x) φ−1

P (y)).

Definition 5.1. — The Hopf algebra ShP (A) is called the P -twisted

shuffle algebra. It is isomorphic to Sh(A) as a Hopf algebra.

It inherits therefore all the properties of Sh(A). The reader is referred

to Reutenauer’s book [19] for a systematic study of shuffle algebras. As an

algebra, Sh(A) is, for example, a free commutative algebra over a set of

generators parametrized by Lyndon words.

The fundamental example of a deformation is provided by the “q-exponential”

map

Eq :=
∑
n∈N∗

qn−1xn

n!

which interpolates between the identity E0 = x and E1 = ex − 1. The

corresponding isomorphism between Sh(A) and ShEq
(A) is then given by

φEq
(a1...an) =

∑
P

qn−k

P1!...Pk!
aP1

...aPk
,

where P = (P1, ..., Pk) runs over the nondecreasing partitions of [n] (P1

∐
...
∐
Pk =

[n] and Pi < Pj if i < j; aPi
:=

∏
j∈Pi

aj and P1! is a shortcut for |P1|!.

Lemma 5.2. — When q = 1, ShE1(A) identifies with QSh(A), the quasi-

shuffle algebra over A, whose product, written − , is defined recursively by

a1...an− b1...bm :=

a1(a2...an− b1...bm) + b1(a1...an− b2...bm) + (a1 · b1)(a2...an− b2...bm).
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16 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

The exponential map φE1
generalizes the Hoffman isomorphism between

Sh(A) and QSh(A) introduced and studied in [11] in the case where A

is a locally finite dimensional graded connected algebra. Using a graded

connected commutative algebra A (instead of an arbitrary commutative

algebra as in the present article), although a strong restriction in view

of applications, has some technical advantages: it allows, for example, to

treat directly QSh(A) as a graded connected Hopf algebra, making possi-

ble the use of structure theorems for such algebras (Cartier-Milnor-Moore,

Leray...). The classical illustration of these phenomena is provided by the

algebra of quasi-symmetric functions (the quasi-shuffle algebra over the

monoid algebra of the positive integers) and the dual algebra of noncom-

mutative symmetric functions: using the gradation on QSym induced by

the one of the integers, N∗, the exponential/logarithm transform amounts

then to a mere change of basis (between a family of grouplike vs primitive

generators) see [8, 7, 11] for details.

The proof amounts to showing that

φE1
(a1...an an+1...an+m) = φE1

(a1...an)−φE1
(an+1...an+m).

Let us write R1...Rk for an arbitrary partition of [n + m] such that for

1 6 i < j 6 n or n + 1 6 i < j 6 n + m i ∈ Rp, j ∈ Rq ⇒ p 6 q. The

problem amounts to computing the coefficient of aR1
...aRk

in the expansion

of the left and right-hand sides of the equation. We leave to the reader

the verification that only such tensors appear in these expansions. The

coefficient is in both cases 1
P1!...Pk!

1
Q1!...Qk! , where Pi := Ri ∩ [n], Qi :=

Ri ∩ {n + 1, ..., n + m}. This is straightforward for the right-hand side

(the reader not familiar with quasi-shuffle products is encouraged to write

down the tedious but straightforward details of the proof -using e.g. the

recursive definition of − ). For the left-hand side, it follows from the identity(|Ri|
|Pi|
)
× 1
Ri!

= 1
Pi!Qi!

and the fact that the number of words in the expansion

of a shuffle product x1...xl y1...yk is
(
l+k
k

)
.

As we shall see in the sequel, even in the well-known special case of

a graded algebra, the point of view developed in the present article is not

without interest: being more general and conceptual than usual approaches

to quasi-shuffle algebras, it allows the derivation of new insights on the fine

structure of their operations, refining the results already obtained in [14].

Interesting new phenomena do actually occur as soon as one considers

natural linear endomorphisms of shuffle algebras. We have already recalled

from [14] that, by Schur-Weyl duality, they belong to WQSym, which
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inherits an associative (convolution) product from the Hopf algebra struc-

ture of the Sh(A): for f ∈ WQSymn, g ∈ WQSymm and arbitrary

a1, ..., an+m ∈ A, where A is an arbitrary commutative algebra,

f g(a1...an+m) := f(a1...an) g(an+1...an+m).

When f and g belong to FQSym, the subset of permutations in WQSym,

this convolution product has a simple expression and defines the “usual”

product on FQSym, see e.g. [12, 2]. Writing Shn,m for the set of (n,m)-

shuffles (that is the elements σ in the symmetric group Sn+m of order n+m

such that σ(1) < ... < σ(n) and σ(n+ 1) < ... < σ(n+m)), we get

f g =
∑

ζ∈Shn,m

ζ ◦ (f · g),

where f · g stands for the “concatenation” of permutations: f · g(i) := f(i)

for i 6 n and f · g(i) := n+ g(i− n) else.

Recall that word and free quasisymmetric functions (WQSym and FQSym)

carry a coproduct, defined on packed words f over k letters by

∆(f) :=

k∑
i=0

f|{1,...,i} ⊗ pack(f|{i+1,...,k}),

this coproduct together with defines a graded Hopf algebra structure

on both WQSym and FQSym (the grading is then defined by requiring

a surjection from [n] to [p] to be of degree n). In particular, the embedding

FQSym ⊂ WQSym is an embedding of Hopf algebras for these struc-

tures. Recall however that is not the usual product used when studying

WQSym, see below for details.

The following lemma is instrumental and will prove quite useful. Its proof

is left to the reader.

Lemma 5.3. — For f a nondecreasing surjection (f ∈ IQSym) and

g ∈WQSym,

∆(f ◦ g) = ∆(f) ◦∆(g).

Notice that the Lemma would not hold with f arbitrary in WQSym.

From our previous considerations, any formal power series in XQ[[X]]

will allow us to define a new convolution product on WQSym associated

with the P-twisted Hopf algebra structure of the ShP (A). This new product,

written P (resp. − when P = E1, resp. q when P = Eq) is defined by

∀f ∈WQSymn, g ∈WQSymm,

f P g(a1...am+n) := f(a1...an) P g(an+1...an+m),
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18 LOÏC FOISSY, FRÉDÉRIC PATRAS, AND JEAN-YVES THIBON

(the product f P g acts as the null map on tensors of length different from

n+m).

The following result, although elementary, is stated as a theorem in view

of its importance:

Theorem 5.4. — For an arbitrary P ∈ X+X2Q[[X]], the composition

map

f 7−→ ΦP (f) = fP := φP ◦ f
induces an isomorphism of bialgebras from (WQSym,∆, ) to (WQSym,∆, P ).

For P = E1 (resp. P = Eq) , we will write simply Φ1(f) (resp. Φq(f)) for

ΦP (f). This isomorphism is equivariant with respect to the composition

product:

φP (f ◦ g) = φP (f) ◦ g.

The compatibility with the coproduct follows from Lemma 5.3, from

the definition of fP as the composition of f with a sum of nondecreasing

surjections, and from the fact that ∆(φP ) = φP ⊗ φP . On an other hand,

the definition of the twisted product P implies

fP P gP = φP ◦ (f g) = (f g)P .

The following corollaries are motivated by the key role of FQSym and

WQSym in the theory of noncommutative symmetric functions and their

various application fields:

Corollary 5.5. — Any P ∈ X + X2Q[[X]] induces a Hopf algebra

embedding of (FQSym,∆, ) into (WQSym,∆, P ). This embedding

is Sn-equivariant: for σ, β ∈ Sn = FQSymn, we have:

(σ ◦ β)P = σP ◦ β.

Corollary 5.6. — For P = E1, we get that (FQSym,∆, ) embeds

naturally into (WQSym,∆, − ). As in the previous corollary, this embed-

ding is Sn-equivariant.

These corollaries allow to give an explicit formula for the embeddings.

Indeed, for an arbitrary σ ∈ Sn, we get (writing 1n the identity permutation

in Sn)

σP = (1n)P ◦ σ.
Since (1n)P is simply the component of φP in WQSymn, we get finally

σP =

n∑
k=1

∑
i1+...+ik=n

pi1 ...pik1i1 ...kik ◦ σ,
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where we write 1i1 ...kik for the surjection sending the first i1 integers to

1, ..., the integers from i1 + ... + ik−1 + 1 to n to k. For Eq this formula

simplifies:

Lemma 5.7. — Let σ ∈ Sn and τ ∈ WQSymn. We shall say that

τ ∝ σ if for all 1 6 i, j 6 n, σ(i) < σ(j) ⇒ τ(i) 6 τ(j). We also set

τ ! :=
max(τ)∏
i=1

|τ−1({i})|! and r(τ) for the relative degree of τ . Then, the

Hopf algebra embedding Φp from FQSym into WQSym is given by

Φp(σ) =
∑
τ∝σ

qr(τ)τ

τ !
.

Other consequences of the existence of such embeddings will be drawn

in the sequel.

6. Structure of twisted shuffle algebras

The map φP defines an isomorphism from Sh(A) to ShP (A) for an ar-

bitrary commutative algebra A and an isomorphism between WQSym

equipped with the shuffle product to WQSym equipped with the

twisted shuffle product P .

In this section, we briefly develop the consequences of these isomorphisms

and recover, among others, the results of [14] on projections onto the inde-

composables in QSh(A).

Recall from [17, 18] that e1 := log (Id) (the logarithm of the identity

map of Sh(A) computed using the shuffle product ) is a canonical section

of the projection from Sh(A) to the indecomposables Sh(A)+/(Sh(A)+)2.

In particular, due to the structure theorems for graded connected Hopf

algebras over a field of characteristic 0 (Leray, in that particular case),

Sh(A) is a free commutative algebra over the image of e1. Equivalently,

e1 is the projection on the eigenspace of eigenvalue k of the k-th Adams

operation, that is, the k-th power of the identity (Id) k.

These properties are clearly invariant by conjugacy and we get, since φP ◦
Id ◦ φ−1

P = Id, the following description of ShP (A) as a free commutative

algebra:

Proposition 6.1. — For an arbitrary tangent-to-identity P , e1 := log P (Id)

(the logarithm of the identity for the P product) is a section of the

projection from ShP (A) to the indecomposables ShP (A)+/(ShP (A)+)2. In

particular, ShP (A) is a free commutative algebra over the image of e1.
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Equivalently, e1 is the projection on the eigenspace associated with the

eigenvalue k of the k-th Adams operation, that is, the k-th power of the

identity (Id) P k.

The particular case of the quasi-shuffle algebra was investigated in [14].

The projection e1 can then be computed explicitly. Recall that a surjection

f from [n] to [p] has a descent in position i if and only if f(i) > f(i + 1).

Let us call conjugate surjection and write f̃ for the surjection from [n] to

[p] defined by: f̃(i) := f(n− i). We have:

Proposition 6.2. — In WQSym equipped with the quasi-shuffle − ,

e1 := log− (Id) =
∑
n>1

1

n

∑
I|=n

(−1)l(I)−1(
n−1
l(I)−1

) ∑
Des(f)=[n]−{il(I),...,il(I)+···+i1}

f̃ ,

where I |= n means that I = (i1, ..., il(I)) is a composition of n.

To start investigating the word interpretation of WQSym and the com-

binatorial meaning of the formulas and results obtained so far, recall that,

as any formula regarding WQSym, this proposition can be translated into

a result on words (and actually also into a result on Rota–Baxter alge-

bras, due to the relationship established in [3] between WQSym and free

Rota–Baxter algebras).

Recall that the elements of WQSym can be realized as formal sums of

words over a totally ordered alphabet X. For example, the identity map

Id ∈ ŴQSym identifies under this correspondence with the formal sum of

all nondecreasing words over X.

When the alphabet is taken to be the sequence of values of a function

from [n − 1] into an associative algebra, this formal sum identifies with

the n-th value of the function (unique, formal) solution to the recursion

F = 1+S(F ·f), where S is the summation operator S(f)(j) :=
∑j−1
i=1 f(i),

S(f)(1) := 0. That is,

F (k) = 1 +

k−1∑
i=1

∑
16a1<...<ak6k−1

f(a1)...f(ak).

Since the concatenation product of words induces an associative product

on WQSym that identifies with − [2], we get finally that e1 computes in

that case log(F )(n). This phenomenon was studied recently in [4], to which

we refer for details.
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7. Graduations

In the context of shuffle algebras, the conjugacy map by φP , for an ar-

bitrary tangent-to-identity P , maps the degree operator Y on Sh(A) to a

degree operator YP := φP ◦ Y ◦ φ−1
P on ShP (A). That is, more explicitly:

Proposition 7.1. — The operator YP := φP ◦Y ◦φ−1
P acting on ShP (A)

is a derivation and a coderivation which leaves invariant the subspaces

Sh6nP (A) :=
⊕
i6n

A⊗n. Its action is diagonalizable, with eigenvalues i ∈ N.

The eigenspaces for the eigenvalues 0 and 1 are the scalars, resp. A. In

general, the eigenspace for the eigenvalue n is contained in Sh6nP (A) and

its intersection with Sh6n−1
P (A) is the null vector space, more precisely:

Sh6nP (A) = Sh6n−1
P (A)⊕Ker(Yp − nId).

Concretely, conjugacy by φP defines an isomorphism between A⊗n ⊂
Sh(A) and the eigenspace associated with the eigenvalue n of YP in ShP (A).

The conjugacy map can be described explicitely as follows:

Proposition 7.2. — For U ∈ X + X2Q[[X]] (or more generally in

Q∗X+X2Q[[X]]) and V an arbitrary formal power series without constant

term,

φ−1
U ◦DV ◦ φU = DV ◦U

U′
.

By linearity of D and (formal) continuity of the action by conjugacy, it

is enough to prove the formula when V = Xp. We denote by W the inverse

of U for the composition and write ui the coefficients of U , and similarly

for V and W . Then,

π ◦ φW ◦DXp ◦ φU (a1...an)

= fW ◦DXp(

n∑
k=1

∑
i1+...+ik=n

ui1 ...uik(a1 · ... · ai1)...(ai1+...+ik−1+1 · ... · an))

=

n∑
k=p

∑
i1+...+ik=n

(k − p+ 1)wk−p+1ui1 ...uik(a1 · ... · an),

so that π ◦φW ◦DXp ◦φU is the linear map associated to the formal power

series:
∞∑
k=p

(k − p+ 1)wk−p+1U
k =

( ∞∑
k=p

(k − p+ 1)wk−p+1X
k
)
◦ U

=
( ∞∑
i=1

iwiX
i−1+p

)
◦ U = (XpW ′) ◦ U = Up · (W ′ ◦ U) =

Up

U ′
.
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Hence,

φ−1
U ◦DXp ◦ φU = DUp

U′
,

and the proposition follows.

In particular, taking P = E1, we get:

Proposition 7.3. — The eigenspaces of the coderivationD(1+X) ln(1+X)

provide the quasi-shuffle algebras QSh(A) with a grading and, more pre-

cisely, provide the triple (QSh(A), − ,∆) with the structure of graded con-

nected commutative Hopf algebra.

Indeed, with D = ψ ◦DX ◦ ψ−1 = ψ ◦ Y ◦ ψ−1 and ψ := φexp(X)−1,

D = φ−1
ln(1+X) ◦DX ◦ φln(1+X) = D(1+X) ln(1+X).

Notice that, since (1 +X) ln(1 +X) = 1 +
∞∑
k+2

(−1)k

k(k+1)X
k,

D(1+X) ln(1+X)(a1...an) = n·a1...an+

n∑
i=2

n−i+1∑
j=1

(−1)i

i(i− 1)
a1...aj−1(aj ·...·aj+i−1)aj+i...an.

8. A new realization of Sym

In the last sections, we develop some combinatorial applications of our

previous results. We will focus mainly on the consequences of Lemma 5.7,

that is, the existence of a new isomorphic embedding of FQSym into

WQSym.

The present section explains briefly how these results translate in terms

of polynomial realizations of these algebras. In particular, we emphasize

that the previous embedding gives rise to new realizations of Sym and

FQSym that will appear in the forthcoming section to be meaningful for

the combinatorial study of the Hausdorff series.

Recall that Sym, the Hopf algebra of noncommutative symmetric func-

tions, is the free associative algebra generated by a sequence Si, i ∈ N∗

of divided powers (∆(Sn) :=
n∑
i=0

Si ⊗ Sn−i, where S0 := 1 ∈ Q). In

[7], it has been shown that this Hopf algebra could bring considerable

simplifications in the analysis of the so-called continuous BCH (Baker-

Campbell-Hausdorff) series, the formal series Ω(t) = logX(t) expressing

the logarithm of the solution of the (noncommutative) differential equation
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X ′(t) = X(t)A(t) (X(0) = 1) as iterated integrals of products of factors

A(ti). The new polynomial realization of Sym to be introduced will lead

instead to a straightforward proof of Goldberg’s formula for the coefficients

of the (usual) Hausdorff series.

This algebra Sym can be embedded as a Hopf subalgebra into FQSym

by sending Sn to the identity element in the symmetric group of order n.

This results into the usual polynomial realization of Sym introduced in [7]

(that is, its realization through an embedding into the algebra of noncom-

mutative polynomials Q〈X〉) sending Sn to the sum of all nondecreasing

words of length n. We refer e.g. to [15] for details.

Instead of doing so, we may now take advantage of Lemma 5.7 and define

a new polynomial realization of Sym using the existence of an isomorphic

embedding Φ1 of FQSym into WQSym:

(8.1) Ŝn =
∑

u nondecreasing, |u|=n

1

u!
Mu,

where for notational convenience we write Ŝn for Φ1(Sn) (and similarly for

the images by Φ1 of the other elements of Sym and FQSym in WQSym).

In view of Formula (3.1), we have equivalently

(8.2) σ̂t :=
∑
n>0

tnŜn = etx1etx2 · · · =
→∏
i>1

etxi .

Notice that σ̂t is (as expected) a grouplike element for the standard co-

product of noncommutative polynomials for which letters xi are primitive.

An interesting feature of this realization is that Φ := log σ̂1 is now the

Hausdorff series

(8.3) Φ = log(ex1ex2 · · · ) = H(x1, x2, x3, . . . ) .

Moreover, two nondecreasing words v and w such that pack(v) = pack(w) =

u have the same coefficient in σ̂1, that is,

(8.4)
1

u!
, where u! :=

∏
i

mi(u)!

and mi(u) is the number of occurences of i in u.

The Hausdorff series can now be expanded in the basis Mu of WQSym

as

(8.5) Φ =
∑
u

cuMu

and one may ask whether the previous formalism can shed any light on the

coeffients cu. There is actually a formula for cu, due to Goldberg [9], and

SUBMITTED ARTICLE : DEFORMATION˙SHUFFLE˙VERSIONREFERENCEFINALE.TEX
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reproduced in Reutenauer’s book [19, Th. 3.11 p. 63]. This formula, which

was obtained as a combinatorial tour de force, will be shown in the sequel

to be a direct consequence of our previous results.

9. Goldberg’s formula revisited

Let us fix first some notations. For I = (i1, ..., ir), we set SI := Si1 ...Sir ;

we also write `(I) = r and |I| = i1 + ...+ ir (so that I � |I|). By definition,

(9.1)

Φ = log(1 + Ŝ1 + Ŝ2 + · · · ) =
∑
r>1

(−1)r−1

r

∑
`(I)=r

ŜI =

∫ 0

−1

(∑
I

t`(I)ŜI

)
dt

t

so that the coefficient cu of Mu in the Hausdorff series is, denoting by Nu

the dual basis of Mu,

(9.2) cu =

∫ 0

−1

〈
Nu,

∑
I

t`(I)ŜI

〉
dt

t
.

For u a word of length n, we have therefore to evaluate
〈
Nu, Ân(t)

〉
with

An(t) :=
∑
|I|=n

tl(I)SI . This last sum is related to a well-known series. The

noncommutative Eulerian polynomials are defined by [7, Section 5.4]

(9.3) An(t) =

n∑
k=1

(
∑
|I|=n
`(I)=k

RI)t
k =

n∑
k=1

A(n, k) tk.

where RI is the ribbon basis (the basis of Sym obtained from the SI basis

by Möbius inversion in the boolean lattice) [7, Section 3.2]. The generating

series of the An(t) is given by

(9.4) A(t) :=
∑
n>0

An(t) = (1− t) (1− t σ1−t)
−1

,

where σ1−t =
∑

(1− t)nSn. Let A∗n(t) = (1− t)−nAn(t). Then,

(9.5) A∗(t) :=
∑
n>0

A∗n(t) =
∑
I

(
t

1− t

)`(I)
SI .

and

(9.6)
∑
I�n

t`(I)SI = An(t) = A∗n
(

t

1 + t

)
= (1 + t)nAn

(
t

1 + t

)
.
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To evaluate, for a packed word u of length n, the pairing 〈Nu, Ân(t)〉,
let us start with the observation that, if u = 1n, then, writing Fσ for the

dual basis to the σ ∈ Sn = FQSymn,

(9.7) Φ†1(Nu) =
1

n!

∑
σ∈Sn

Fσ,

where Φ†1 is the adjoint map, so that in this case,

(9.8)

〈Nu, Ân(t)〉 = 〈Φ†1(Nu), An(t)〉 =
1

n!

∑
σ∈Sn

td(σ)+1(1+t)r(σ) =
1

n!
tEn(t, t+1)

where d(σ) is the number of descents of σ, r(σ) = n − d(σ) the number

of rises, and En is the homogeneous Eulerian polynomial normalized as in

[19]

(9.9) En(x, y) =
∑
σ∈Sn

xd(σ)yr(σ) .

Now, recall that the coproduct of Nu dual to the product of the Mu is

[16]

(9.10) ∆Nu =
∑

u=u1u2

Npack(u1) ⊗Npack(u2)

(deconcatenation). We can omit the packing operation in this formula if

we make the convention that Nw = Nu if u = pack(w). Then, since Φ1,

and hence also Φ†1 are morphisms of Hopf algebras, for a composition L =

(l1, . . . , lp),

(9.11) 〈Φ†1(Nu), SL〉 = 〈∆[k](Nu), Sl1 ⊗ ...⊗ Slp〉 =

p∏
k=1

〈Φ†1(Nuk
), Slk〉

where ∆[k] is the k-th iterated coproduct and u = u1u2 · · ·up with |uk| = lk
for all k. Moreover, this is nonzero only if all the uk are nondecreasing, in

which case the result is 1/(u1! · · ·up!).
Thus, if

(9.12) u = w1 · · ·wm

is the factorization of u into maximal nondecreasing words, with |wk| = nk,

we have

(9.13) 〈Φ†1(Nu), An(t)〉 =

m∏
k=1

〈Φ†1(Nwk
), Ank

(t)〉
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since

(9.14)

m∏
k=1

Ank
(t) =

∑
I∈Cu

t`(I)SI

where Cu is the set of compositions which are a refinement of (n1, ..., nm)

and are the ones such that 〈Φ†1(Nu), SI〉 6= 0.

Next, if v = 1l12l2 · · · plp ,

(9.15) 〈Φ†1(Nv), S
L〉 =

p∏
k=1

〈Φ†1(Nklk ), Slk〉

(both sides are equal to 1/(l1! · · · lp!)), so that

(9.16) 〈Φ†1(Nv), A|L|(t)〉 =

(
1 +

1

t

)r(v) p∏
k=1

〈Φ†1(Nklk ), Alk(t)〉 .

where r(v) is the number of different letters (or of strict rises) of v. Indeed,

A|L|(t) =
∑
|I|=|L|

tl(I)SI and, since the Sl are grouplike,

〈Φ†1(Nu), SI〉 =

p∏
k=1

〈Φ†1(Nlk
k ), SI|k〉,

where I|k is the partition of {l1 + ... + lk−1 + 1, ..., l1 + .... + lk} induced

by the partition I of [|L|]. Finally, writing I ∪ L for the partition refining

I and L (obtained, e.g., by gluing the I|k), using

(9.17) 〈Φ†1(Nu), tl(I)SI〉 = tl(I)−l(I∩L)〈Φ†1(Nu), tl(I∩L)SI∩L〉

and noting that |{I |= |L|, I ∩ L = K, l(I) − l(K) = k < r(u)}| =
(
r(u)
k

)
,

we get (9.16).

We can now see that if we decompose u into maximal blocks of identical

letters,

(9.18) u = ij11 i
j2
2 · · · ijss

we have finally

〈Φ†1(Nu), An(t)〉 =

(
1 +

1

t

)r(u) s∏
k=1

〈Φ†1(N
i
jk
k

), Ajk(t)〉

= td(u)+1(1 + t)r(u)
s∏

k=1

Ejk(t, 1 + t)

jk!

which implies Goldberg’s formula:
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Theorem 9.1. — The coefficient cu of Mu in the Hausdorff series Φ is

given by:

(9.19) cu =

∫ 0

−1

td(u)+1(1 + t)r(u)
s∏

k=1

Ejk(t, 1 + t)

jk!

dt

t

More generally, for an arbitrary moment generating function

(9.20) f(z) =
∑
n>1

fnz
n.

with

(9.21) fn =

∫
R
tndµ(t)

the coefficient of Mu in f(σ̂1) is

(9.22)

∫
R
td(u)+1(1 + t)r(u)

s∏
k=1

Ejk(t, 1 + t)

jk!
dµ(t).
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