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Abstract. We exhibit an internal coproduct on the Hopf algebra of finite topologies recently
defined by the second author, C. Malvenuto and F. Patras, dual to the composition of ”quasi-
ormoulds”, which are the natural version of J. Ecalle’s moulds in this setting. All these results
are displayed in the linear species formalism.
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1. Introduction

The study of finite topological spaces was initiated by Alexandroff in 1937 [4], and revived at
several periods since then, using the natural bijection, recalled below, which exists between these
spaces and finite sets endowed with a quasi–order. In [15], the topic was reexamined through the
angle of Hopf algebraic techniques, which have proved quite pervasive in algebraic combinatorics
in recent years. A number of so–called combinatorial Hopf algebras (graded and linearly spanned
by combinatorial objects) are now of constant use in many parts of mathematics, with frequent
occurences of the Hopf algebras of shuffles and quasishuffles, quasi-symmetric functions QSym

[20], non commutative symmetric functions, Connes–Kreimer, Malvenuto–Reutenauer, word qua-
sisymmetric functions WQSym, etc [8, 17, 18, 20, 21, 22]. This type of machinery to study finite
spaces was implemented in the article [15], with the introduction of a commutative Hopf algebra
H based on (isomorphism classes of) quasi–posets. These constructions were investigated further
in the article [16] (see also [13, 14], with in particular the description of a non commutative and
non cocommutative Hopf algebra HT based on labelled quasi–posets. In the present text we show
that both H and HT can be endowed with a second coproduct, which is degree–preserving and
as such called internal. The construction of the coproduct is non–trivial and is in fact achieved
within the formalism of linear species.

In [16], a family of natural morphisms from HT to WQSym was also constructed, based
on the classical concept of linear extensions [28]. In the present text, we show that one of these
morphisms also respects the internal coproduct. Once again, this is realized at the level of species:
we construct a morphism L : T →→ SC where T is the linear species of finite topological spaces and
SC is the linear species of set compositions (or ordered partitions). This morphism specializes
to applications from the Hopf algebras of quasi–posets H and HT onto QSym and WQSym,
respecting the products and both the external and internal products.

The internal coproduct on the species T would certainly have been very difficult to find by
simple guess but it is in fact directly inspired by an operation known in J. Ecalle’s mould calculus
[10, 11, 12, 26] as mould composition. A mould is a collection M• = {Mω} of elements of some
commutative algebra A, indexed by finite sequences ω = (ω1, . . . , ωr) of elements of a set Ω;
equivalently, it is an A–valued function on the set of words ω1 . . . ωr in the alphabet Ω. In what
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follows, the alphabet is in fact the underlying set of an additive semi–group, a typical example
in the applications being the set of positive integers Ω = N>0. We can already notice that from
the outset, moulds involve combinatorial objects which are both labelled and decorated: the la-
bels form a finite sequence [n] = {1, . . . , n} and the decorations belong to ω. When the values
of a mouldM• are in fact independent from any set Ω, the mouldM• is said to be of constant type.

In the context in which they originated, namely the classification of dynamical sytems, moulds
naturally appear matched with dual objects, named comoulds, in expansions of the following
form:

F =
∑

MωBω =
∑

r>0

∑

ω=(ω1,...,ωr)

MωBω

A comould B• = {Bω} is a collection, indexed by sequences ω as above, of elements of some
bialgebra (B,+, ., σ) , and such expansions, known as mould–comould contractions, make sense
in the completed algebra spanned by the Bω, with respect to the gradings given by the length
of sequences (other gradings may be relevant). In most situations, the Bω are products of some
building blocks Bω (ω ∈ Ω) : Bω = Bωr . . . Bω1 ; the building blocks themselves are abstracted
from the dynamical system under study and are mapped to ordinary differential operators acting
on spaces of formal series, through some evaluation morphism ([10, 12]).

Accordingly, these expansions can be realized as elements of completions of huge linear spaces
of operators, typically End(C[[x]]), and as such they are naturally endowed with a linear structure
and two non–linear operations, a product × and a composition product ◦. Indeed, for a given
comould B• and two moulds M• and N•, the product of the operators associated respectively to
N• and M• can be expanded as a contraction with B•, yielding a new mould P • = M• ×N• :

(∑
NωBω

)(∑
MωBω

)
=
∑

PωBω =
∑

r>0

∑

ω=(ω1,...,ωr)

PωBω

and the formula giving the components of the product mould P• is as follows:

P (ω1,...,ωr) =
∑

M (ω1,...,ωi)N (ωi+1,...,ωr)

The product is obviously associative, non commutative in general, and distributive over the sum.

But besides this product of operators, we can also use some given mould M to change the

alphabet Bω and this will give us the composition ◦ of moulds, B• −→ C• with:

Cω0 =
∑

‖ω‖=ω0

MωBω

where the norm of the sequence ω is by definition ‖(ω1, . . . , ωr)‖ = ω1 + . . .+ ωr.

Performing this natural change of alphabets successively with two mouldsM• andN• , amounts
to a change of alphabet with respect to a mould Q• = M• ◦N• which is given by:

Q(ω1,...,ωr) =
∑

M (‖ω1‖,...‖ωs‖)Nω
1
. . . Nω

s

the sum being performed over all the ways of obtaining the sequence ω by concatenation of the
subsequences ωi : ω = ω

1 . . .ωs.

The composition product is also associative, non commutative in general, and right–distributive
over the sum and product. It is worth noticing that the operation of mould composition involve
compositions of integers.
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Next, to tackle difficult questions of analytic classification, J. Ecalle had been driven to reorder
mould–comould contractions by a systematic use of trees ([10]), by considering so–called arbores-
cent moulds, armoulds for short, which are indexed by sequences with arborescent partial orders
(each element has at most one antecedent) on the labelling sets [r] = {1, . . . , r}.

In this context, the product of armoulds is nothing but the convolution with respect to Connes–
Kreimer coproduct, when armoulds are seen as characters of the relevant Hopf algebra on trees
([12]). There is also a natural definition of composition of armoulds (it appears in particular
in [25]), related to another coproduct on the algebra of decorated forests, which is a decorated
version of the coproduct introduced and studied in [7] (see also [24]) and which corresponds to
the operation of substitution in the theory of B–series. This last coproduct involves suppression
of edges on a given tree and a notion of quotient tree which is the one that was to be conveniently
generalized to partial orders and finally to quasi–orders in the present text.

In fact, as mentioned e.g. in the paper [11], the natural operations +,×, ◦ on (ordinary) moulds
and armoulds can be extended to moulds associated to sequences with a general partial order, the
name ormoulds being coined for such objects by J. Ecalle. An ormould M ♯, with values in the
commutative algebra A, and indexed by elements of a semi–group Ω, is a collection of elements of
A indexed by orsequences ω♯, namely sequences ω = (ω1, . . . , ωr) of elements of Ω endowed with
an order on the labelling set [r]. It is indeed possible to give ([9]) quite natural definitions for the
product and composition product of ormoulds, involving the concept of “orderable partition” of
a poset and the general study of ormoulds with Hopf algebraic techniques will be the object of a
separate article.

All these definitions, constructions, symmetries and operations on moulds can in fact be ap-
plied to quasi–posets, yielding very natural definitions of a product and a composition product on
sequences of elements with a quasi order on the labelling sets ( “quasi–ormoulds”). Eventually,
when the quasi–ormoulds are interpreted as characters, the product corresponds to the external
coproduct on H and HT and the composition product yields the internal coproduct that we in-
troduce and describe in the present text.

This paper is organized as follows: after some background material on finite topological spaces,
we introduce the notion of quotient of a topology T on a finite set X by another topology T ′

finer than T . The “quotient topology” T /T ′ thus obtained lives on the same set. We introduce
the relation #≺ on the topologies on X defined by T ′

#≺T if and only if T ′ is finer than T and
fulfills the technical condition of “T -admissibility” given in Definition 1. This enables us to give
in Section 3.1 the “internal” coproduct:

(1) Γ(T ) =
∑

T ′
#≺T

T ′ ⊗ T /T ′.

and prove its coassociativity. Each TX , where T is the linear species of finite topological spaces, is
thus endowed with a structure of (finite-dimensional) pointed counital coalgebra. The species T
has also a Hopf monoid structure which we account for in Sections 3.2 and 3.3. A key result is The-
orem 12, which states that the internal coproduct Γ and the external coproduct ∆ are compatible.

In Section 4, we obtain from this result an extra internal coproduct on the two Hopf algebras
H and HT introduced in [15, 16]. The Hopf algebra H is commutative and the two coproducts
are compatible in it, in the sense that (H, ·,∆) is comodule-coalgebra on the bialgebra (H, ·,Γ).
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Finally we define in Section 5 the set LT of linear extensions of a topology T on a finite set
X. These are ordered partitions of the set X subject to natural compatibility conditions with
respect to the topology. It is well-known that the species SC of set compositions admits a Hopf
monoid structure and an internal coproduct, the latter being dual to the Tits product [6, 2, 3, 5].
We recall these facts in some detail and we show (Theorem 19) that the surjective species map
L : T →→ SC defined by:

L(T ) :=
∑

C∈LT

C

respects both Hopf monoid structures as well as the internal coproducts. As an application we
give two surjective Hopf algebra maps λ : H →→ QSym and Λ : HT →→ WQSym which moreover
respect the internal coproducts. The maps L, λ and Λ are analogues of the arborification map
of J. Ecalle [10, 12] from the Connes-Kreimer Hopf algebra of rooted forests to the shuffle or
quasi-shuffle Hopf algebra.

Acknowlegdements: This work is supported by Agence Nationale de la Recherche, projet
CARMA (Combinatoire Algébrique, Résurgence, Moules et Applications, ANR-12-BS01-0017).

2. Refinement and quotient topologies

2.1. Finite topological spaces and quasi-orders. Recall (see e.g. [30, 31]) that a topology
on a finite set X is given by the family T of open subsets of X subject to the three following
axioms:

• ∅ ∈ T , X ∈ T ,
• The union of a finite number of open subsets is an open subset,
• The intersection of a finite number of open subsets is an open subset.

The finiteness of X allows to consider only finite unions in the second axiom, so that axioms 2
and 3 become dual to each other. In particular the dual topology is defined by

(2) T := {X\Y, Y ∈ T }.

In other words, open subsets in T are closed subsets in T and vice-versa. Any topology T on X
defines a quasi-order (i.e. a reflexive transitive relation) denoted by ≤T on X:

(3) x ≤T y ⇐⇒ any open subset containing x also contains y.

Conversely, any quasi-order ≤ on X defines a topology T≤ given by its upper ideals, i.e. subsets
Y ⊂ X such that (y ∈ Y and y ≤ z) ⇒ z ∈ Y . Both operations are inverse to each other:

≤T≤ =≤, T≤T
= T .

Hence there is a natural bijection between topologies and quasi-orders on a finite set X.

Any quasi-order (hence any topology T ) on X gives rise to an equivalence class:

(4) x ∼T y ⇐⇒ (x ≤T y and y ≤T x).

This equivalence relation is trivial if and only if the quasi-order is a (partial) order, which is
equivalent to the fact that the topology T is T0. Any topology T on X defines a T0 topology on
the quotient X/ ∼T , corresponding to the partial order induced by the quasi-order ≤T . Hence
any finite topological set can be represented by the Hasse diagram of its T0 quotient.
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A finite topological space with 10 elements and 4 equivalence classes

2.2. Refinements and quotient topologies. Let T and T ′ be two topologies on a finite set
X. We say that T ′ is finer than T , and we write T ′ ≺ T , when any open subset for T is an open
subset for T ′. This is equivalent to the fact that for any x, y ∈ X, x ≤T ′ y ⇒ x ≤T y.

The quotient T /T ′ of two topologies T and T ′ with T ′ ≺ T is defined as follows: the associated
quasi-order ≤T /T ′ is the transitive closure of the relation R defined by:

(5) xRy ⇐⇒ (x ≤T y or y ≤T ′ x).

Note that, contrarily to what is usually meant by “quotient topology”, T /T ′ is a topology on the
same finite space X than the one on which T and T ′ are given. The definitions immediately yield
compatibility of the quotient with the involution, i.e.

(6) T /T ′ = T
/
T ′.

Examples:

(1) If D is the discrete topology on X, for which any subset is open, the quasi-order ≤D is
nothing but x ≤D y ⇔ x = y, and then T /D = T .

(2) For any topology T , the quotient T /T has the same connected components than T , and
the restriction of T /T to any connected component is the coarse topology. In other
words, for any x, y ∈ X, x and y are in the same connected component for T if and only
if x ≤T /T y, which is also equivalent to x ∼T /T y.

Lemma 1. Let T ′′ ≺ T ′ ≺ T be three topologies on X. Then T ′/T ′′ ≺ T /T ′′, and we have the

following equality between topologies on X:

(7) T /T ′ = (T /T ′′)
/
(T ′/T ′′)

Proof. We compare the associated quasi-orders. The first assertion is obvious. For x, y ∈ X we
write xRy for (x ≤T y or y ≤T ′ x), and xQy for (x ≤T /T ′′ y or y ≤T ′/T ′′ x). We have x ≤T /T ′ y
if and only if there exist a1, . . . , ap ∈ X such that

xRa1R· · ·RapRy.

On the other hand,

x ≤
(T /T ′′)

/
(T ′/T ′′)

y ⇐⇒ ∃b1, . . . , bq ∈ X, xQb1Q· · · QbqQy

⇐⇒ ∃c1, . . . , cr ∈ X, xR̃c1R̃ · · · R̃crR̃y,

with

aR̃b ⇐⇒ (a ≤T b or b ≤T ′′ a) or (b ≤T ′ a or a ≤T ′′ b)

⇐⇒ a ≤T b or b ≤T ′ a

⇐⇒ aRb.
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Hence,
x ≤

(T /T ′′)
/
(T ′/T ′′)

y ⇐⇒ x ≤T /T ′ y.

�

Definition 1. Let T ′ ≺ T be two topologies on X. We will say that T ′ is T -admissible if

• T ′
|Y

= T |Y
for any subset Y ⊂ X connected for the topology T ′,

• For any x, y ∈ X, x ∼T /T ′ y ⇐⇒ x ∼T ′/T ′ y.

In particular, T is T -admissible. We write T ′
#≺T when T ′ ≺ T and T ′ is T -admissible. Note

that the reverse implication in the second axiom is always true for T ′ ≺ T . It easily follows from
(6) that T ′

#≺T if and only if T ′
#≺T .

Lemma 2. If T ′
#≺T , then we have for any x, y ∈ X:

x ∼T ′ y ⇐⇒ x ∼T y.

Proof. The direct implication is obvious. Conversely, if x ∼T y then x ∼T /T ′ y, hence x ∼T ′/T ′ y,

which means that x and y are in the same T ′-connected component. The restrictions of T and
T ′ on this component coincide, hence x ∼T ′ y . �

Lemma 3. If T ′ ≺ T , the connected components of T /T ′ are the same as those of T .

Proof. The connected components of T , resp. T /T ′, are nothing but the equivalence classes for
T /T , resp.(T /T ′)

/
(T /T ′). These two topologies coincide according to Lemma 1. �

Proposition 4. The relation#≺ is transitive.

Proof. Let T ′′ ≺ T ′ ≺ T be three topologies on X. Suppose that T ′′ is T ′-admissible, and that
T ′ is T -admissible. If Y ⊂ X is T ′′-connected, it is also T ′-connected, hence T ′′

|Y
= T ′

|Y
= T |Y

.

Now let x, y ∈ X with x ∼T /T ′′ y. By definition of the transitive closure, there exist a1, . . . , ap
and b1, . . . , bp in X such that

x ≤T a1, b1 ≤T a2, . . . , bp ≤T y

and ai ≥T ′′ bi for i = 1, . . . , p. We also have ai ≥T ′ bi for i = 1, . . . , p because T ′′ ≺ T ′. Hence,

x ∼T /T ′ a1 ∼T /T ′ b1 ∼T /T ′ · · · ∼T /T ′ ap ∼T /T ′ bp ∼T /T ′ y,

from which we get:

x ∼T ′/T ′ a1 ∼T ′/T ′ b1 ∼T ′/T ′ · · · ∼T ′/T ′ ap ∼T ′/T ′ bp ∼T ′/T ′ y,

hence x and y are in the same T ′-connected component. Using that the restrictions of T and T ′

on this component coincide, we get x ∼T ′/T ′′ y. From T ′
#≺T we get then x ∼T ′′/T ′′ y. This ends

up the proof of Proposition 4. �

Lemma 5. If T ”#≺T ′
#≺T , then T ′/T ′′

#≺T /T ′′.

Proof. Let x, y ∈ X with x ∼(T /T ′′)/(T ′/T ′′) y. Then x ∼T /T ′ y according to Lemma 1, hence
x ∼T ′/T ′ y, hence x ∼(T ′/T ′′)/(T ′/T ′′) y applying Lemma 1 again. �

Proposition 6. Let T and T ′′ be two topologies on X. If T ′′
#≺T , then T ′ 7→ T ′/T ′′ is a bijection

from the set of topologies T ′ on X such that T ′′
#≺T ′

#≺T , onto the set of topologies U on X such

that U#≺T /T ′′.

Proof. Given U#≺T /T ′′, we have to prove the existence of a unique T ′ such that T ′′
#≺T ′

#≺T and
U = T ′/T ′′. According to Lemma 3, the connected components of T ′ must be those of U . The
topologies T ′ and T must coincide on each of these components, which uniquely defines T ′.
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Let us now check T ′′
#≺T ′

#≺T : if x ≤T ′ y, then x and y are in the same T ′-connected component,
on which T and T ′ coincide. Hence x ≤T y, which means T ′ ≺ T . Now suppose x ≤T ′′ y. Then
x ≤T y, which implies x ≤T /T ′′ y, which in turn implies x ≤(T /T ′′)/U y. The latter is equivalent
to x ≤U/U y, as well as to x ≤T ′/T ′ y. In other words, x and y are in the same T ′-connected
component. Moreover, since x ≤T y we also have x ≤T ′ y by definition of T ′. This proves T ′′ ≺ T ′.

If x ≤U y, it means that x and y are in the same U -connected component, and moreover
x ≤T /T ′′ y, because U#≺T /T ′′. By definition of the transitive closure, there exist a1, . . . , ap and
b1, . . . , bp in X such that

(8) x ≤T a1, b1 ≤T a2, . . . , bp ≤T y

and ai ≥T ′′ bi for i = 1, . . . , p. In particular, ai ∼T /T ′′ bi, hence:

x ∼T /T ′′ a1 ∼T /T ′′ b1 ∼T /T ′′ a2 ∼T /T ′′ · · · ∼T /T ′′ bp ∼T /T ′′ y

which immediately yields:

x ∼(T /T ′′)/U a1 ∼(T /T ′′)/U b1 ∼(T /T ′′)/U a2 ∼(T /T ′′)/U · · · ∼(T /T ′′)/U bp ∼(T /T ′′)/U y

since T /T ′′ ≺ (T /T ′′)/U . Now using U#≺T /T ′′ again, we get

x ∼U/U a1 ∼U/U b1 ∼U/U a2 ∼U/U · · · ∼U/U bp ∼U/U y.

Hence all the chain is included in the same U -connected component. By definition of T ′ we can
then rewrite (8) as:

(9) x ≤T ′ a1, b1 ≤T ′ a2, . . . , bp ≤T ′ y

with ai ≥T ′′ bi for i = 1, . . . , p, which means x ≤T ′/T ′′ y.

Conversely, if x ≤T ′/T ′′ y, then x and y are in the same U -component according to the definition

of T ′, and (9) implies (8). Hence x ≤T /T ′′ y, hence x ≤U y. We have then:

(10) U = T /T ′.

To finish the proof, we have to show T ′
#≺T and T ′′

#≺T ′. Any T ′-connected subset Y ⊂ X is
also U -connected, hence the restrictions of T and T ′ on Y coincide. Similarly, the restrictions of
T ′ and T ′′ on any T ′′-connected subset coincide. If x ∼T /T ′ y, then x ∼(T /T ′′)/(T ′/T ′′) y, which
means x ∼(T /T ′′)/U y, which in turn yields x ∼U/U y, i.e. x ∼T ′/T ′ y. Hence T ′

#≺T . Finally, if

x ∼T ′/T ′′ y, then x ∼T /T ′′ y, hence x ∼T ′′/T ′′ y, which yields T ′′
#≺T ′. This ends up the proof of

Proposition 6. �

3. Algebraic structures on finite topologies

The collection of all finite topological spaces shows very rich algebraic features, best viewed in
the linear species formalism. We describe a commutative product, an“internal” coproduct and an
“external” coproduct, as well as the interactions between them.

3.1. The coalgebra species of finite topological spaces. Recall that a linear species is a
contravariant functor from the category of finite sets with bijections into the category of vector
spaces1 (on some field K). The species T of topological spaces is defined as follows: TX is the
vector space freely generated by the topologies on X. For any bijection ϕ : X −→ X ′, the
isomorphism Tϕ : TX′ −→ TX is defined by the obvious relabelling:

Tϕ(T ) := {ϕ−1(Y ), Y ∈ T }

1Contravariance yields actions of the permutation groups on the right. It is a pure matter of convention: [2]
prefers the covariant setting.
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for any topology T on X ′. For any finite set X, let us introduce the coproduct Γ on TX defined
as follows:

(11) Γ(T ) =
∑

T ′
#≺T

T ′ ⊗ T /T ′.

Examples. If X = E ⊔ F = A ⊔A ⊔ C are two partitions of X:

Γ( qX) = qX ⊗ qX,

Γ( q
q

E
F) = q

q

E
F ⊗ qX + qE qF ⊗ q

q

E
F

Γ( qE qF ) = qE qF ⊗ qE qF

Γ( q

qq

∨A
CB
) = q

qq

∨A
CB
⊗ qX + q

q

A
B
qC ⊗ q

q

A ⊔ B
C + q

q

A
C
qB ⊗ q

q

A ∪ C
B + qA qB qC ⊗ q

qq

∨A
CB

Γ( q
q

q

A
B
C

) = q

q

q

A
B
C

⊗ qX + q

q

A
B
qC ⊗ q

q

A ⊔ B
C + qA q

q

B
C ⊗ q

q

A
B ⊔ C+ qA qB qB ⊗ q

q

q

A
B
C

Γ(
q

∧qq AB C) =
q

∧qq AB C ⊗ qX + q

q

B
A
qC ⊗ q

q

C
A ⊔ B+ q

q

C
A
qB ⊗ q

q

B
A ⊔ C+ qA qB qC ⊗

q

∧qq AB C

Γ( q
q

A
B
qC) = q

q

A
B
qC ⊗ qA ⊔ B qC + qA qB qC ⊗ q

q

A
B
qC

Γ( qA qB qC) = qA qB qC ⊗ qA qB qC

3.1.1. The coalgebra structure.

Theorem 7. The coproduct Γ is coassociative.

Proof. For any topology T on X we have:

(12) (Γ⊗ Id)Γ(T ) =
∑

T ′′
#≺T ′

#≺T

T ′′ ⊗ T ′/T ′′ ⊗ T /T ′,

whereas

(13) (Id⊗Γ)Γ(T ) =
∑

T ′′
#≺T ′

∑

U#≺T ′/T ′′

T ′′ ⊗ U ⊗ (T /T ′′)
/
U .

The result then comes from Lemmas 4 and 1, and from Proposition 6. �

3.1.2. Grading and counit. Let X be a finite set. Given any topology T on X, we introduce
d(T ) as the number of equivalence classes minus the number of connected components of T . It
is easy to see that this grading makes (TX ,Γ) a finite-dimensional graded coalgebra. The degree
zero topologies in TX are precisely the topologies TP where P is a partition of X, defined as the
product of the coarse topologies on each block of P. In other words, d(T ) = 0 if, and only if, ≤T

is an equivalence. The maximum possible degree |X| − 1 is reached for connected T0 topologies.
For any topology T on X, there exists a unique degree zero topology T ′

#≺T , namely the topology
T ′ such that ≤T ′=∼T ; moreover, T /T ′ = T . The unique topology T ′′ such that T /T ′′ is of
degree zero is T ′′ = T .

Lemma 8. The group-like elements in (TX ,Γ) are the degree zero topologies.

Proof. Any group-like element of TX is of degree zero, and it is easy to check that any degree zero
topology is group-like. A degree zero element of TX is a finite linear combination T =

∑
λT T of

degree zero topologies. It is group-like if and only if λT λT ′ = 0 for T 6= T ′ and λ2
T = λT , and

T 6= 0. Hence there is a degree zero topology T such that λT ′ = 0 for T ′ 6= T and λT = 1, hence
T = T . �

The linear form εX on TX defined on the basis of topologies by εX(T ) = 1 if T is group-like
and ε(T ) = 0 otherwise is a counit. The homogeneous component of degree zero elements is the
coradical of the coalgebra TX . The involution T 7→ T obviously extends linearly to a coalgebra
involution on TX . Any relabelling induces an involutive coalgebra isomorphism in a functorial
way. To summarize:
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Corollary 9. T is a species in the category of counital pointed coalgebras with involution.

3.2. The monoid structure. A commutative monoid structure ([2, Chapter 8], [3, Paragraph
2.3]) on the species of finite topologies is defined as follows: for any pair X1,X2 of finite sets we
introduce

m : TX1 ⊗ TX2 −→ TX1⊔X2

T1 ⊗ T2 7−→ T1T2,

where T1T1 is characterized by Y ∈ T1T2 if and only if Y ∩X1 ∈ T1 and Y ∩X2 ∈ T2. The notation
⊔ stands for disjoint union, and the unit is given by the unique topology on the empty set.

Proposition 10. The species coproduct Γ and the product are compatible, i.e. for any pair X1,X2

of finite sets the following diagram commutes:

TX1 ⊗ TX2

m
//

Γ⊗Γ
��

TX1⊔X2

Γ
��

TX1 ⊗ TX1 ⊗ TX2 ⊗ TX2

τ2,3 ++❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳
TX1⊔X2 ⊗ TX1⊔X2

TX1 ⊗ TX2 ⊗ TX1 ⊗ TX2

m⊗m

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

Proof. Let T1, resp. T2 be a topology on X1, resp. X2. Let U1#≺T1 and U2#≺T2. Then U1U2#≺T1T2.
Conversely, any topology U on X1 ⊔X2 such that U#≺T1T2 can be written U1U2 with Ui = U|Xi

for i = 1, 2, and we have Ui#≺Ti. We have then:

Γ(T1T2) =
∑

U#≺T1T2

U ⊗ (T1T2)/U

=
∑

U1#≺T1
U2#≺T2

U1U2 ⊗ (T1/U1)(T2/U2)

= Γ(T1)Γ(T2).

�

3.3. The external coproduct. For any topology T on a finite set X and for any subset Y ⊂ X,
we denote by T |Y

the restriction of T to Y . It is defined by:

T |Y
= {Z ∩ Y, Z ∈ T }.

Restriction and taking quotients commute: for any subset Y ⊂ X and for any T ′
#≺T we have

T ′
|Y
#≺T |Y

and:

(14) (T /T ′)|Y
= T |Y

/
T ′

|Y
.

The external coproduct is defined on TX as follows:

∆ : TX −→
⊕

Y⊂X

TX\Y ⊗ TY

T 7−→
∑

Y ∈T

T |X\Y
⊗ T |Y

.
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Proposition 11. The external coproduct is coassociative and multiplicative, i.e. the two following

diagrams commute:

TX
∆

//

∆

��

⊕

Y⊂X

TX\Y ⊗ TY

I⊗∆

��⊕

Z⊂X

TX\Z ⊗ TZ
∆⊗I

//
⊕

Z⊂Y⊂X

TX\Y ⊗ TY \Z ⊗ TZ

and

TX1 ⊗ TX2

m
//

∆⊗∆

��

TX1⊔X2

∆

��⊕

Y1⊂X1
Y2⊂X2

TX1\Y1
⊗ TY1 ⊗ TX2\Y2

⊗ TY2

τ2,3

**❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

⊕

Y⊂X1⊔X2

T(X1⊔X2)\Y ⊗ TY

⊕

Y1⊂X1
Y2⊂X2

TX1\Y1
⊗ TX2\Y2

⊗ TY1 ⊗ TY2

m⊗m

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Proof. we have:

(15) (∆ ⊗ I)∆(T ) =
⊕

Z∈T , Ỹ ∈T |X\Z

T |X\Z⊔Ỹ
⊗ T |Ỹ

⊗ T |Z

and

(16) (I ⊗∆)∆(T ) =
⊕

Y,Z∈T , Z⊂Y

T |X\Y
⊗ T |Y \Z

⊗ T |Z

Coassociativity then comes from the obvious fact that (Ỹ , Z) 7→ Ỹ ⊔Z is a bijection from the set

of pairs (Ỹ , Z) with Z ∈ T and Ỹ ∈ T |X\Z
, onto the set of pairs (Y,Z) of elements of T subject

to Z ⊂ Y . The inverse map is given by (Y,Z) 7→ (Y ∩X \ Z,Z). The multiplicativity property
∆(T1T2) = ∆(T1)∆(T2) comes straightforwardly from the very definition of the topology T1T2 on
the disjoint union X1 ⊔X2. �

Theorem 12. The internal and external coproducts are compatible, in the sense that the following

diagram commutes for any finite set X:
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TX
Γ

//

∆
��

TX ⊗ TX

I⊗∆
��⊕

Y⊂X

TX\Y ⊗ TY

Γ⊗Γ
))❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

⊕

Y⊂X

TX ⊗ TX\Y ⊗ TY

⊕

Y⊂X

TX\Y ⊗ TX\Y ⊗ TY ⊗ TY

m1,3

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Proof. For any T ∈ TX we have:

(I ⊗∆) ◦ Γ(T ) = (I ⊗∆)
∑

U#≺T

T ⊗ T /U

=
∑

U#≺T

∑

Y ∈T /U

U ⊗ (T /U)|X\Y
⊗ (T /U)|Y

=
∑

U#≺T

∑

Y ∈T /U

U ⊗ T |X\Y

/
U|X\Y

⊗ T |Y

/
U|Y

,(17)

whereas

m1,3 ◦ (Γ⊗ Γ) ◦∆(T ) = m1,3 ◦ (Γ⊗ Γ)
∑

Z∈T

T |X\Z
⊗ T |Z

=
∑

Z∈T

∑

U1#≺T |X\Z
U2#≺T |Z

U1U2 ⊗ T |X\Z

/
U1 ⊗ T |Z

/
U2.(18)

Now, Y ∈ T /U means that Y is a final segment for ≤T /U , i.e. for any y ∈ Y , if z ≤T /U y, then
z ∈ Y . A fortiori z ∈ Y if z ≤U y or y ≤U z. Then Y is both a final and initial segment for ≤U ,
i.e. both closed and open for U , which yields U = U1U2, with U1 = U|X\Y

and U2 = U|Y
.

Conversely, if U = U|X\Y
U|Y

, then for y ∈ Y and any z ∈ X such that y ≤U z or z ≤U y, we

have z ∈ Y . By iteration we have y ≤U/U z ⇒ z ∈ Y . But U #≺T , hence y ≤T /U z ⇒ z ∈ Y ,
which means Y ∈ T /U . This proves that (17) and (18) coincide. �

4. Two commutative bialgebra structures

Consider the graded vector space:

(19) H = K(T) =
⊕

n≥0

Hn,

where H0 = k.1, and where Hn is the linear span of topologies on {1, . . . , n} when n ≥ 1, modulo
the action of the symmetric group Sn. The vector space H can be seen as the quotient of the
species T by the “forget the labels” equivalence relation: T ∼ T ′ if T (resp. T ′) is a topology on a
finite set X (resp. X ′), such that there is a bijection from X onto X ′ which is a homeomorphism
with respect to both topologies. This equivalence relation is compatible with the product and
both coproducts introduced in Section 3, giving rise to a product · and two coproducts Γ and ∆
on H, the first coproduct being internal to each Hn. The functor K from linear species to graded
vector spaces thus obtained is intensively studied in [2, Chapter 15] under the name “bosonic
Fock functor”. This naturally leads to the following:
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Theorem 13. The graded vector space H is endowed with the following algebraic structures:

• (H, ·,∆) is a commutative graded connected Hopf algebra.

• (H, ·,Γ) is a commutative bialgebra, graded by the degree d introduced at the end of § 3.1.

• (H, ·,∆) is a comodule-coalgebra on (H, ·,Γ). More precisely the following diagram of

unital algebra morphisms commutes:

H
Γ

//

∆
��

H⊗H

I⊗∆
��

H⊗H

Γ⊗Γ ((PP
PPP

PPP
PPP

P H⊗H⊗H

H⊗H⊗H⊗H
m1,3

55❧❧❧❧❧❧❧❧❧❧❧❧❧

Remark 14. The Hopf algebra of finite topologies HT of [16] can be seen as K(T) where K is the
“full Fock functor” of [2, Chapter 15]. It is closely related to the Hopf algebra H above, but the
product is noncommutative due to renumbering. In fact, Tn stands for the set of topologies on
[n] = {1, . . . , n}, and T is the (disjoint) union of the Tn’s for n ≥ 0. For T ∈ Tn and T ′ ∈ Tn′ ,
the product T T ′ is the topology on [n + n′] the open sets of which are Y ⊔ (Y ′ + n), where
Y ∈ T and Y ′ ∈ T ′. The two topologies T T ′ and T ′T are not equal, though homeomeorphic.
The ”joint” product ↓, for which the open sets of T ↓ T ′ are the open sets Y ′ of T ′ and the sets
Y ⊔ {n+ 1, . . . , n+ n′} with Y ∈ T , is also associative. The empty set ∅ is the common unit for
both products.

For any totally ordered finite set E of cardinality n, let us denote by Std : E → [n] the
standardization map, i.e. the unique increasing bijection from E onto [n]. This map yields a
bijection form P(E) onto P([n]) also denoted by Std. The coproduct is defined by:

(20) ∆(T ) =
∑

Y ∈T

Std(T |[n]\Y
)⊗ Std(T |Y

).

Proposition 15 ([16] Proposition 6). Let HT be the graded vector space freely generated by the

Tn’s. Then

(1) (HT, ·,∆) is a graded Hopf algebra,

(2) (HT, ↓,∆) is a graded infinitesimal Hopf algebra,

(3) The involution T 7→ T is a morphism for the product · and an antimorphism for the

coproduct ∆.

The internal coproduct Γ on each homogeneous component of HT does not interact so nicely
with the external coproduct ∆ as it does in the commutative setting because of the shift and the
standardization. Here is an example:

m1,3 ◦ (Γ⊗ Γ) ◦∆( q
q

3
1, 2) = q

q

3
1, 2 ⊗ q1, 2, 3⊗ 1 + q1, 2 q3 ⊗ q

q

3
1, 2 ⊗ 1 + q

q

3
1, 2 ⊗ 1⊗ q1, 2, 3

+ q1, 2 q3 ⊗ 1⊗ q

q

3
1, 2 + q1 q2, 3 ⊗ q1 ⊗ q1, 2 ,

(Id⊗∆) ◦ Γ( q
q

3
1, 2) = q

q

3
1, 2 ⊗ q1, 2, 3⊗ 1 + q1, 2 q3 ⊗ q

q

3
1, 2 ⊗ 1 + q

q

3
1, 2 ⊗ 1⊗ q1, 2, 3

+ q1, 2 q3 ⊗ 1⊗ q

q

3
1, 2 + q1, 2 q3 ⊗ q1 ⊗ q1, 2 .

Let us conclude this section with the description of the antipodes of (H, ·,∆) and (HT, ·,∆).
Note that both (H, ·,Γ) and (HT, ·,Γ) have non invertible group-like elements, so are not Hopf
algebras.
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Proposition 16. For all finite topology T on X, in (H, ·,∆):

S(T ) =
n∑

k=0

(−1)k+1
∑

∅(X1(...(Xk(X
X1,...,Xk∈T

T|X\Xk
T|Xk\Xk−1

. . . T|X2\X1
T|X1

.(21)

Proof. We denote by S′ the endomorphism of H defined by the right side of (21). Then S′(1) = 1,
so Id ∗ S′(1) = 1. For any nonempty T :

(Id ∗ S′)(T ) = S′(T ) + T +
∑

∅(X1(X
X1∈T

T|X\X1
S(T|X)

= S′(T ) + T +
n∑

k=1

(−1)k
∑

∅(X1(...(Xk(X
X1,...,Xk∈T

T|X\Xk
T|Xk\Xk−1

. . . T|X2\X1
T|X1

= S′(T ) +

n∑

k=0

(−1)k
∑

∅(X1(...(Xk(X
X1,...,Xk∈T

T|X\Xk
T|Xk\Xk−1

. . . T|X2\X1
T|X1

= 0.

So Id ∗ S′(T ) = ε(T )1 for all T : S′ is indeed the antipode of H. �

Similarly, in (HT, ·,∆), if T is a topology on [n] = {1, . . . , n}:

S(T ) =

n∑

k=0

(−1)k+1
∑

∅(X1(...(Xk([n]
X1,...,Xk∈T

Std(T|[n]\Xk
)Std(T|Xk\Xk−1

) . . . Std(T|X2\X1
)Std(T|X1

).(22)

For example:

S( q
q

q

1
2
3

) = − q

q

q

1
2
3

+ q1 q

q

2
3 + q

q

1
2
q3 − q1 q2 q3 , S( q

q

q

3
2
1

) = − q

q

q

3
2
1

+ q1 q

q

3
2 + q

q

2
1
q3 − q1 q2 q3 .

5. Linear extensions and set compositions

5.1. Two Hopf algebras on words. We first recall some facts on two well-known Hopf alge-
bras. Let us start with the Hopf algebra of quasi-symmetric functions [20]. A presentation close
to ours, including the internal coproduct, can be found in [1, Paragraph 11].

LetX be a denumerable well-ordered alphabet. A map ρ : x 7→ |x| fromX into N>0 = {1, 2, . . .}
is a rank if |x+1| ≥ |x| for any x ∈ X (where x+1 stands for the successor of x, i.e. the smallest
element bigger that x), and if the preimage ρ−1(n) is finite for each n ∈ N>0. Let Q[[X]] be the
algebra of formal series generated by X, i.e. formal sums:

(23)
∑

P finite subset of X

∑

ν:P→N>0

λP,ν

∏

x∈P

xν(x),

where the coefficients λP,ν belong to the base field K. The algebra Q[[X]] is complete for the
topology induced by the decreasing filtration given by the weighted valuation: to be precise, a
monomial

∏
x∈P xν(x) is of degree

∑
x∈P ν(x) and of weight

∑
x∈P |x|ν(x), and the valuation of the

series (23) in Q[[X]] is the minimal weight of a monomial arising with a nonvanishing coefficient.
The topology on Q[[X]] is as usual given by the distance:

d(f, g) = 2− val(f−g),
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and one can easily show that it does not depend on the choice of the rank map, due to the fact
that for any sequence x1, x2, x3, . . . of distinct letters of X, we have |xk| −→

k→+∞
+∞ for any choice

of rank.

A formal series f ∈ Q[[X]] is quasi-symmetric if for any x1 < . . . < xk and y1 < . . . < yk
in X, for any a1, . . . , ak ≥ 1, the coefficients of xa11 . . . xakk and of ya11 . . . yakk in f are equal. The
subalgebra of quasi-symmetric functions onX will be denoted byQSym(X). For any composition
(a1, . . . , ak), we put:

M(a1,...,ak)(X) =
∑

x1<...<xk

xa11 . . . xakk .

The family (Mc(X)) indexed by compositions linearly spends QSym(X); if X is infinite, this is
a basis.

Let k, l, r be three nonnegative integers. We shall denote by QSh(k, l; r) the set of surjections
u : [k + l] −→−→ [k + l − r], such that u1 < · · · < uk and uk+1 < · · · < uk+l−r. With this notation,
for all compositions (c1, . . . , ck), (ck+1, . . . , ck+l):

M(c1,...,ck)(X)M(ck+1,...,ck+l)(X) =
∑

r≥0

∑

σ∈QSh(k,l;r)

M(cσ1 ,...,c
σ
k+l−r

)(X)

with cσj :=
∑

σi=j

ci (this sum contains one or two terms).

Let X and Y be two denumerable well-ordered alphabets. The alphabet X ⊔ Y is also well-
ordered, the elements of X being smaller than the elements of Y , and the alphabet X × Y is
well-ordered by the lexicographic order. If ρX and ρY are rank maps on X and Y respectively,
we can define rank maps on X ⊔ Y and on X × Y as follows:

ρX⊔Y (x) = ρX(x), ρX⊔Y (y) = ρY (y), ρX×Y (x, y) = ρX(x) + ρY (y)

for any x ∈ X and y ∈ Y . One can identify Q[[X ⊔ Y ]] with the completed tensor product
Q[[X]]⊗̂Q[[Y ]] by separation of variables: the unique unital algebra morphism ι : Q[[X ⊔ Y ]] →
Q[[X]]⊗̂Q[[Y ]] such that ι(x) = x⊗ 1 and ι(y) = 1⊗ y is an isomorphism.

Finally we embed Q[[X ×Y ]] into Q[[X]]⊗̂Q[[Y ]] also by separation of variables, by the unique
unital algebra morphism  : Q[[X × Y ]] → Q[[X]]⊗̂Q[[Y ]] such that (x, y) = x⊗ y. Now we have
for any composition (c1, . . . , ck):

(1)

ι
(
M(c1,...,ck)(X ⊔ Y )

)
= ι

(
k∑

i=0

M(c1,...,ci)(X)M(ci+1,...,ck)(Y )

)

=
k∑

i=0

M(c1,...,ci)(X)⊗M(ci+1,...,ck)(Y ),

(2)


(
M(c1,...,ck)(X × Y )

)
= 




∑

i1+···+ip=k

M(c1,...,ci1)
(Y ) . . .M(ci1+···+ip−1+1,...,ci1+···+ip)

(Y )MC1,...,Cp(X)




=
∑

i1+···+ip=k

M(c1,...,ci1 )
(Y ) . . .M(ci1+···+ip−1+1,...,ci1+···+ip)

(Y )⊗MC1,...,Cp(X)
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with C1 = c1 + · · · + ci1 , . . . , Cp = ci1+···+ip−1+1 + · · · + ci1+···+ip . With these identifications at
hand, we define two coproducts on QSym(X) by:

∆ϕ := ϕ(X ⊔ Y ),

Γϕ := ϕ(X × Y ),

with the shorthand notations ϕ(X ⊔ Y ) := ι
(
ϕ(X ⊔ Y )

)
and ϕ(X × Y ) := 

(
ϕ(X × Y )

)
. We thus

obtain a Hopf algebra (QSym, ·,∆) together with an extra internal coproduct Γ, with a basis
(Mc) indexed by compositions:

M(c1,...,ck)M(ck+1,...,ck+l) =
∑

r≥0

∑

σ∈QSh(k,l;r)

M(cσ1 ,...,c
σ
k+l−r

),

∆(M(c1,...,ck)) =

k∑

i=0

M(c1,...,ci) ⊗M(ci+1,...,ck),

Γ(M(c1,...,ck)) =
∑

i1+···+ip=k

M(c1,...,ci1)
. . .M(ci1+···+ip−1+1,...,ci1+···+ip)

⊗M(C1,...,Cp).

The construction of the Hopf algebra of packed words WQSym is similar. We now work in
B = Q〈〈X〉〉, the algebra of noncommutative formal series generated by X. Recall that a packed
word is a surjective map w : [k] −→−→ [max(w)], which we write as the word w = w1 . . . wk. Now let
w′ = x1 . . . xk be a monomial in B, i.e. a word of length k with letters in X, and let suppw′ ⊂ X
be the support of w′, i.e. the set of letters appearing in w′. There is a unique bijective, increasing
map f , from suppw′ to a set [m]. Then Pack(w′) is the packed word f(x1) . . . f(xk). For any
packed word w, we put:

Mw(X) =
∑

Pack(x1...xk)=w

x1 . . . xk ∈ B.

The subspace of B generated by these elements is a subalgebra of B, denoted by WQSym(X).
Abstracting this, we obtain an algebra WQSym, with a basis (Mw) indexed by the set of packed
words. Its product is given by:

MuMv =
∑

r≥0

∑

w∈QSh(max(u),max(v);r)

Mw◦(uv[max(u)]),

where v[max(u)] is the word obtained from v by adding max(u) to each of its letters. The disjoint
union of alphabets makes it a Hopf algebra, with the following coproduct:

∆(Mw) =

max(w)∑

k=0

Mw|{1,...,k}
⊗MPack(w|{k+1,...,max(w)}),

where for all set I, w|I is the word obtained by taking the letters of w belonging to I. The
cartesian product of alphabets gives WQSym an internal coproduct:

Γ(Mu) =
∑

i1+...+ip=max(u)

∑

r≥0

∑

v∈QSh(i1,...,ip;r)

Mv◦u ⊗M(1 . . . 1︸ ︷︷ ︸
i1

...p . . . p︸ ︷︷ ︸
ip

)◦u,

where QSh(i1, . . . , ip; r) stands for the set of surjective maps σ : [i1+ · · ·+ ip] −→→ [i1+ · · ·+ ip− r]
which are increasing on each block {i1 + · · · + iq + 1, . . . , i1 + · · · + iq+1}. One can also write [5,
Paragraph 5.2]:

Γ(Mu) =
∑

a∧b=u

Ma ⊗Mb,

where ∧ is the Tits product of the surjections viewed as set compositions of [n] ([6, Paragraph
2.3], see also [5, Remark 2] and Paragraph 5.2 below).
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5.2. The coalgebra species of set compositions. We now give an account of the set com-
position species SC together with its bimonoid structure in the category of coalgebra species.
Applying the functors K and K to SC will give QSym and WQSym respectively.

Definition 2. [29] Let X be a finite set. A set composition or an ordered partition of X is a

finite sequence (X1, . . . ,Xk) of finite sets such that:

(1) For all 1 ≤ i ≤ k, Xi 6= ∅.
(2) X = X1 ⊔ . . . ⊔Xk.

For any finite space X, the space generated by the set of set compositions of X will be denoted by

SCX . This defines a species SC.

The Hilbert formal series of SC is given by Fubini numbers, sequence A000670 of the OEIS.
We first give this species a structure of bialgebra in the category of species.

Definition 3. (1) Let Y ⊆ X be two finite sets and let C = (X1, . . . ,Xk) be a set composition

on X. We put I = {i ∈ [k] | Xi ∩ Y 6= ∅} = {m1 < . . . < ml}. The set composition C|Y

of Y is:

C|Y = (Xm1 ∩ Y, . . . ,Xml
∩ Y ).

For any finite sets X,Y , recall the quasi-shuffle product [2, Paragraph 10.1.6]:





SCX ⊗ SCY −→ SCX⊔Y

C ′ ⊗ C ′′ −→ C ′C ′′ =
∑

C,C|X=C′,C|Y =C′′

C.

(2) For any finite set X, we define a coproduct:

∆ :





SCX −→
⊕

Y⊆X

SCX\Y ⊗ SCY

C = (X1, . . . ,Xk) −→
k∑

i=0

(X1, . . . ,Xi)⊗ (Xi+1, . . . ,Xk).

(3) For any finite set X, we define an internal coproduct Γ on SCX , making it a coassociative,

counitary coalgebra by:

Γ((X1, . . . ,Xk)) =
∑

i1+...+ip=k

(X1, . . . ,Xi1) . . . (Xi1+...+ip−1+1, . . . ,Xi1+...+ip)

⊗ (X1 ⊔ . . . ⊔Xi1 , . . . ,Xi1+...+ip−1+1 ⊔ . . . ⊔Xi1+...+ip).

Remark 17. The Tits product ([6, Paragraph 2.3], [5, Paragraph 5.1], [3, Paragraph 1.6]) of two
set compositions C = (X1, . . . ,Xk) and C ′ = (X ′

1, . . . ,X
′
l) of the same finite set X is defined by:

C ∧ C ′ = (X1 ∩X ′
1, ...,X1 ∩X ′

l ,X2 ∩X ′
1, ...,X2 ∩X ′

l , . . . ,Xk ∩X ′
1, ...,Xk ∩X ′

l).

The internal coproduct can then be written as:

Γ(C) =
∑

C1∧C2=C

C1 ⊗ C2.

Note that the Tits product is not commutative, although C ∧ C ′ and C ′ ∧ C define the same
underlying set partition.
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Examples. Let A,B,C be finite, nonempty sets.

(A)(B) = (A,B) + (B,A) + (A ⊔B).

(A,B)(C) = (A,B,C) + (A,C,B) + (C,A,B) + (A,B ⊔C) + (A ⊔ C,B).

(A)(B,C) = (A,B,C) + (B,A,C) + (B,C,A) + (A ⊔B,C) + (B,A ⊔ C);

Γ((A)) = (A)⊗ (A).

Γ((A,B)) = (A,B)⊗ (A ⊔B) + (A)(B)⊗ (A,B)

= (A,B)⊗ (A ⊔B) + ((A,B) + (B,A) + (A ⊔B))⊗ (A,B).

Γ((A,B,C)) = (A,B,C)⊗ (A ⊔B ⊔ C) + (A,B)(C) ⊗ (A ⊔B,C)

+ (A)(B,C)⊗ (A,B ⊔ C) + (A)(B)(C) ⊗ (A,B,C)

= (A,B,C)⊗ (A ⊔B ⊔ C)

+ ((A,B,C) + (A,C,B) + (C,A,B) + (A ⊔ C,B) + (A,B ⊔ C))⊗ (A ⊔B,C)

+ ((A,B,C) + (B,A,C) + (B,C,A) + (A ⊔B,C) + (B,A ⊔ C))⊗ (A,B ⊔ C)

+
(
(A,B,C) + (A,C,B) + (B,A,C) + (B,C,A) + (C,A,B) + (C,B,A)

+ (A ⊔B,C) + (A ⊔ C,B) + (B ⊔ C,A) + (A,B ⊔ C) + (B,A ⊔ C) + (C,A ⊔B)

+ (A ⊔B ⊔ C)
)
⊗ (A,B,C).

Proposition 18. SC is a Hopf monoid in the category of coalgebra species.

This is already known: the Hopf monoid structure of SC appears in [3, Paragraph 11.1], and
the internal coproduct is dual to the Tits product. We shall recover this result from Theorem
19 below, which will make the coalgebra species Hopf monoid SC appear as a quotient of the
coalgebra species Hopf monoid T.

The counit of the coalgebra SCX is given by:

ε(C) =

{
1 if C = (X),

0 otherwise.

Applying the functors K and K, we obtain from SC two bialgebras with an internal coproduct.
First, it induces a bialgebra structure on the vector space generated by the set compositions, up
to a renumbering. For any set composition C = (X1, . . . ,Xk), we put type(C) = (|X1|, . . . , |Xk|).
If C,C ′ are two set compositions, C and C ′ are equal up to a renumbering if, and only if,
type(C) = type(C ′). So this bialgebra has a basis (Mc), indexed by compositions, and direct
computations shows this is QSym. Secondly, we restrict ourselves to sets [n], n ≥ 0; we identify
any subset I ⊆ [n] with [|I|] via the unique increasing bijection. Set compositions on [n] are
identified with packed words of length n, via the bijection:

{
{Packed words of length n} −→ SC[n]

u −→ (u−1(1), . . . , u−1(max(u))).

We obtain a bialgebra with a basis indexed by packed words, which is precisely WQSym.

5.3. Linear extensions.

Definition 4. Let T ∈ TX and let C = (X1, . . . Xk) ∈ SCX . We shall say that C is a linear

extension of T if :

(1) For all i, j ∈ [k], for all x ∈ Xi, y ∈ Xj , x <T y =⇒ i < j.
(2) For all i, j ∈ [k], for all x ∈ Xi, y ∈ Xj , x ∼T y =⇒ i = j.
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The set of linear extensions of T will be denoted by LT .

This notion of linear extension is used in [16], where it is related to Stanley’s theory of P-
partitions extended to finite topologies [27].

Theorem 19. Let X be a finite set. We define:

L :





TX −→ SCX

T −→
∑

C∈LT

C.

Then L is a surjective morphism of bialgebras in the category of coalgebra species, that is to say:

(1) For all finite sets X,Y , for all T ∈ TX , T ′ ∈ TY ,

L(T T ′) = L(T )L(T ′).

(2) For all finite set X, for all T ∈ TX ,

∆ ◦ L(T ) = (L⊗ L) ◦∆(T ).

(3) For all finite set X, for all T ∈ TX ,

Γ ◦ L(T ) = (L⊗ L) ◦ Γ(T ).

Proof. First step. Let us prove the following lemma: if Y ⊆ X, T ∈ TX and C ∈ LT , then
C|Y ∈ LT|Y .

We put C = (X1, . . . ,Xk) and C|Y = (Xm1 ∩ Y, . . . ,Xml
∩ Y ) = (Y1, . . . , Yl). Let i, j ∈ [l],

x ∈ Yi, y ∈ Yj. If x <T |Y
y, then x <T y, so mi < mj, and finally i < j. If x ∼T|Y y, then x ∼T y,

so mi = mj, and finally i = j.

Second step. We prove (1). Let T ∈ TX and T ′ ∈ TY . Let us prove that:

LT T ′ = {C ∈ SCX⊔Y | C|X ∈ LT , C|Y ∈ LT ′}.

As T T ′
|X = T and T T ′

|Y = T ′, the first step implies that inclusion ⊆ holds. Moreover, if x <T T ′ y

or x ∼T T ′ y in X ⊔ Y , then (x, y) ∈ X2 or (x, y) ∈ Y 2, which implies the second inclusion.
Consequently:

L(T T ′) =
∑

C,C|X∈LT ,C|Y ∈LT ′

C

=
∑

C′∈LT

∑

C′′∈LT ′

∑

C,C|X=C′,C|Y =C′′

C

=
∑

C′∈LT

∑

C′′∈LT ′

C ′C ′′

= L(T )L(T ′).

Third step. We prove (2). Let T be a topology on a set X. We put:

A = {(Y,C1, C2) | Y ∈ T , C1 ∈ LT|X\Y
, C2 ∈ LT|Y },

B = {(C, i) | C ∈ LT , 0 ≤ i ≤ lg(C)},

which gives:

(L⊗ L) ◦∆(T ) =
∑

(Y,C1,C2)∈A

C1 ⊗ C2,

∆ ◦ L(T ) =
∑

((X1,...,Xk),i)∈B

(X1, . . . ,Xi)⊗ (Xi+1, . . . ,Xk).
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We define two maps:

f :

{
A −→ B

(Y, (X1, . . . ,Xk), (Xk+1, . . . ,Xk+l)) −→ ((X1, . . . ,Xk+l), k),

g :

{
B −→ A

((X1, . . . ,Xk), i) −→ (Xi+1 ⊔ . . . ⊔Xi, (X1, . . . ,Xi), (Xi+1, . . . ,Xk)).

Let us prove that f is well-defined. If (Y,C1, C2) ∈ A, we put C1 = (X1, . . . ,Xk), C2 =
(Xk+1, . . . ,Xk+l), and C = (X1, . . . ,Xk+l). Let us prove that C ∈ LT T ′ . Let x ∈ Xi, y ∈ Xj . If
x <T y, as Y is an open set of T , there are only three possibilities:

• x, y ∈ Y . As C2 is a linear extension of T|Y , i < j.
• x, y ∈ X \ Y . As C1 is a linear extension of T|X\Y , i < j.
• x ∈ X \ Y and y ∈ Y . Then i ≤ k < j.

If x ∼T y, as Y is an open set of T , so is a union of equivalence classes of ∼T , there are only two
possibilities:

• x, y ∈ Y . As C2 is a linear extension of T|Y , i = j.
• x, y ∈ X \ Y . As C1 is a linear extension of T|X\Y , i = j.

So f(Y,C1, C2) ∈ B.
Let us prove that g is well-defined. If ((X1, . . . ,Xk), i) ∈ B, we put f((X1, . . . ,Xk), i) =

(Y,C1, C2). Y is an open set of T : let x ∈ Y , x ∈ X, such that x ≤T y. We assume that x ∈ Xj ,
with j ≥ i, and y ∈ Xk. If x ∼T y, then j = k ≥ i and y ∈ Y . If x <T y, then i ≤ j < k, so
y ∈ Y . Moreover, C1 = (X1, . . . ,Xi) = C|X\Y and C2 = (Xi+1, . . . ,Xk) = C|Y . By the lemma of
the first point, C1 ∈ LT|X\Y

and C2 ∈ LT|Y . So (Y,C1, C2) ∈ A.
Moreover:

f ◦ g((X1, . . . ,Xk), i) = f(Xi+1 ⊔ . . . ⊔Xk, (X1, . . . ,Xi), (Xi+1, . . . ,Xk))

= ((X1, . . . ,Xk), i);

g ◦ f(Y,C1, C2) = g(C1.C2, lg(C1))

= (Y,C1, C2).

So f and g are bijections, inverse one from each other. Consequently:

(L⊗ L) ◦∆(T ) =
∑

(Y,C1,C2)∈A

C1 ⊗ C2

=
∑

((X1,...,Xk),i)∈B

(X1, . . . ,Xi)⊗ (Xi+1, . . . ,Xk)

= ∆ ◦ L(T ).

Fourth step. Let A be the set of triples (C, (i1, . . . , ip), C
′) such that:

(1) C = (X1, . . . ,Xk) and C ′ = (X ′
1, . . . ,X

′
p) are set compositions of X, of respective length

k and p.
(2) For all j, ij > 0 and i1 + . . .+ ip = k.
(3) For all j, C ′

|Xi1+...+ij−1+1⊔...⊔Xi1+...+ij

= (Xi1+...+ij−1+1, . . . ,Xi1+...+ij).

Let B be the set of triples (T ′, C ′, C ′′) such that:

(1) T ′
#≺T .

(2) C ′ is a linear extension of T ′.
(3) C ′′ is a linear extension of T /T ′.
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Then:

Γ ◦ L(T ) =
∑

((X1,...,Xp),(i1,...,ip),C′)∈A

C ′ ⊗ (X1 ⊔ . . . ⊔Xi1 , . . . ,Xi1+...+ip−1+1 ⊔ . . . ⊔Xi1+...+ip),

(L⊗ L) ◦ Γ(T ) =
∑

(T ,C,C′)∈B

C ′ ⊗ C ′′.

We now prove the following lemma: if (T , C ′, C ′′) ∈ B, with C ′′ = (X ′′
1 , . . . ,X

′′
q ), then:

T ′ = T|X′′
1
. . . T|X′′

q
.

We first show that for all i, T ′
|X′′

i
= T|X′′

i
. Let us assume that x, y ∈ X ′′

i , such that x ≤T y. Then

x ≤T /T ′ y. If x <T /T ′ y, as C ′′ is a linear extension of T /T ′, we would have x ∈ X ′′
a , y ∈ X ′′

b ,
with a < b: this is a contradiction. So x ∼T /T ′ y. As T ′

#≺T , x ∼T ′/T ′ y, so x and y are in the
same connected component Y of T ′. As T ′

#≺T , x ≤T|Y y, so x ≤T ′
|Y

y, so x ≤T ′ y. Conversely, if

x ≤T ′ y, as T ′ ≺ T , x ≤T y.
Let x ∈ X ′′

i , y ∈ X ′′
j , with i < j. As C ′′ is a linear extension of T /T ′, we do not have x ∼T /T ′ y,

and, as T ′
#≺T , we do not have x ∼T ′/T ′ y. Consequently:

T ′ = T ′
|X′′

1
. . . T ′

|X′′
q
= T|X′′

1
. . . T|X′′

q
.

Fifth step. We prove (3). We define a map f : A −→ B by f(C, (i1, . . . , ip), C
′) = (T ′, C ′, C ′′),

where:

(1) C ′′ = (X1 ⊔ . . . ⊔Xi1 , . . . ,Xi1+...+ip−1+1 ⊔ . . . ⊔Xi1+...+ip).
(2) T ′ = T|X′′

1
. . . T|X′′

p
.

Let us prove that f is well-defined. First, T ′ ≺ T . If Y ⊆ X is connected for T ′, then necessarily
there exists a i, such that Y ⊆ X ′′

i . Then T ′
|Y = (T ′

|X′′
i
)|Y = (T|X′′

i
)|Y = T|Y .

Let us assume that x ∼T /T ′ y. There exists a sequence of elements of x such that:

x ≤T x1 ≥T ′ y1 ≤T x2 ≥T ′ . . . ≤T xr ≥T ′ y.

If ya ∈ X ′′
j , as C is a linear extension of T , necessarily xa+1 ∈ X ′′

k , with k ≥ j. If xa ∈ X ′′
j , as

xa ≥T ′ ya, ya ∈ X ′′
j . Consequently, if x ∈ X ′′

i , then x1, y1, . . . , xr, y ∈ X ′′
i ⊔ . . . X ′′

p . By symmetry

of x and y, x, x1, y1, . . . , xr, y ∈ X ′′
i . So, by restriction to X ′′

i :

x ≤T ′ x1 ≥T ′ y1 ≤T ′ x2 ≥T ′ . . . ≤T ′ xr ≥T ′ y.

This gives x ∼T ′/T ′ y: we finally obtain that T ′
#≺T .

By the lemma of the first step, C|X′′
i
is a linear extension of T|X′′

i
, so, by definition of A, C ′ is

a linear extension of T|X′′
1
. . . T|X′′

p
= T ′.

Let us assume that x <T /T ′ y. Let i, j such that x ∈ X ′′
i , y ∈ X ′′

j . Up to a change of x ∈ X ′′
i ,

y ∈ X ′′
j , we can assume that x <T y. If i = j, then by restriction x <T ′ y, so x ∼T ′/T ′ y and

finally x ∼T /T ′ y, as T ′
#≺T : this is a contradiction. Hence, i 6= j, and x <T y; as C is linear

extension of T , necessarily i < j.
Let us assume that x ≤T /T ′ y. Let i, j such that x ∈ X ′′

i , y ∈ X ′′
j . By definition of ≤T /T ′ , we

can assume that x ≤T y or x ∼T ′ y. In the first case, as C is a linear extension of T , we have
x ∈ Xa, y ∈ Xb, with a ≤ b, so i ≤ j. In the second case, i = j. Consequently, if x ∼T /T ′ y, then

i ≤ j and j ≤ i, so i = j. We proved that C ′′ ∈ LT /T ′ .

We now consider the map g : B −→ A, defined by g(T ′, C ′, C ′′) = (C, (i1, . . . , ip), C
′), with:

(1) C = C ′
|X′′

1
. . . C ′

|X′′
p
, if C ′′ = (X ′′

1 , . . . ,X
′′
p ).
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(2) For all j, ij = |X ′′
j |.

Let us prove that g is well-defined. Let us assume x <T y, with x ∈ X ′′
i , y ∈ X ′′

j . Let a, b such

that x ∈ Xa, y ∈ Xb, if C = (X1, . . . ,Xk). If i = j, then by the lemma of the fourth step, x <T ′ y.
As C ′ is a linear extension of T ′, x ∈ C ′

c, y ∈ C ′
d, with c < d. By definition of C, a < b. If i 6= j,

then x ≤T /T ′ y; as C ′′ is a linear extension of T /T ′, i < j, so a < b. If x ∼T y, a similar argument
proves that x, y ∈ Xa for a certain a. So C ∈ LT . Moreover, for all j:

C ′
|Ci1+...+ij−1+1⊔...⊔Ci1+...+ij

= C ′
|C′′

j
= C|C′′

j
= (Ci1+...+ij−1+1, . . . , Ci1+...+ij ).

So g is well-defined. The lemma of the fourth step implies that f ◦ g = IdB , and by definition of
A, g ◦ f = IdA, so f and g are bijective, inverse one from each other. Finally:

(L⊗ L) ◦ Γ(T ) =
∑

(T ′,C′,C′′)∈B

C ′ ⊗ C ′′

=
∑

((X1,...,Xp),(i1,...,ip),C′)∈A

C ′ ⊗ (X1 ⊔ . . . ⊔Xi1 , . . . ,Xi1+...+ip−1+1 ⊔ . . . ⊔Xi1+...+ip)

= Γ ◦ L(T ).

Last step. It remains to prove the surjectivity of L. Let (X1, . . . ,Xk) be a set composition of
X. Let T be the topology whose open sets are Xi ⊔ . . . Xk, for 1 ≤ i ≤ k, and ∅. Then T has a
unique linear extension, which is C, so L(T ) = C. �

Examples. If X = E ⊔ F = A ⊔A ⊔ C are two partitions of X:

L( qX) = (X),

L( q
q

E
F) = (E,F ),

L( qE qF ) = (E,F ) + (F,E) + (E ⊔ F ),

L( q

qq

∨A
CB
) = (A,B,C) + (A,C,B) + (A,B ⊔C),

L( q
q

q

A
B
C

) = (A,B,C),

L(
q

∧qq AB C) = (B,C,A) + (C,B,A) + (B ⊔ C,A),

L( q
q

A
B
qC) = (A,B,C) + (A,C,B) + (C,A,B) + (A ⊔ C,B) + (A,B ⊔C),

L( qA qB qC) = (A,B,C) + (A,C,B) + (B,A,C) + (B,C,A) + (C,A,B) + (C,B,A)

+ (A ⊔B,C) + (A ⊔ C,B) + (B ⊔ C,A) + (A,B ⊔ C) + (B,A ⊔ C) + (C,A ⊔B)

+ (A ⊔B ⊔ C).

Now we consider isomorphism classes of finite topologies and set compositions. Let T be a
topology on a finite set X, and let Z be an infinite, totally ordered alphabet. A linear extension
of T is map f : X −→ Z, such that:

(1) x <T y in X =⇒ f(x) < f(y).
(2) w ∼T y in X =⇒ f(x) = f(y).

The set of linear extensions of T with values in Z is denoted by LT (Z).

Theorem 20. Let Z be an infinite, denumerable, totally ordered alphabet. Identifying QSym(Z)
and QSym, we define a map:

λ :





H −→ QSym

T ∈ TX −→
∑

f∈LT (Z)

∏

x∈X

f(x).

Then λ is a Hopf algebra morphism, compatible with the internal coproducts of H and QSym.
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Examples.

λ( qa ) = M(a),

λ( q
q

a
b ) = M(a,b),

λ( qa qb ) = M(a,b) +M(b,a) +M(a+b),

λ( q

qq

∨a
cb
) = M(a,b,c) +M(a,c,b) +M(a,b+c),

λ( q
q

q

a
b
c

) = M(a,b,c),

λ(
q

∧qq ab c ) = M(b,c,a) +M(c,b,a) +M(b+c,a),

λ( q
q

a
b
qc ) = M(a,b,c) +M(a,c,b) +M(c,a,b) +M(a+c,b) +M(a,b+c),

λ( qa qb qc ) = M(a,b,c) +M(a,c,b) +M(b,a,c) +M(b,c,a) +M(c,a,b) +M(c,b,a)

+M(a+b,c) +M(a+c,b) +M(b+c,a) +M(a,b+c) +M(b,a+c) +M(c,a+b) +M(a+b+c).

Restricting to finite topologies and set compositions on sets [n], we obtain the following theorem:

Theorem 21. Let Z be a denumerable well-ordered alphabet. Identifying WQSym(Z) and

WQSym, we define a map:

Λ :





HT −→ WQSym

T ∈ T[n] −→
∑

f∈LT (Z)

f(1) . . . f(n).

Then Λ is a Hopf algebra morphism, compatible with internal coproducts of HT and WQSym.

The situation is summarized by the commutative diagram below:

T
L

// //

K

����☞☞
☞☞
☞☞
☞☞
☞☞
☞☞
☞

K

�� ��
✯
✯
✯✯
✯
✯
✯
✯✯
✯
✯
✯✯
✯
✯
✯
✯✯
✯
✯
✯ SC

K

����✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄✄
✄

K

�� ��
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴
✴✴

HT

'' ''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖❖
Λ=K(L)

// // WQSym

)) ))❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚

H
λ=K(L)

// // QSym

The triangle on the right of the diagram concerns algebraic structures well-known by now. We
have shown that it is the image of a similar triangle, on the left of the diagram, which projects
on the former by the explicit morphisms L, λ and Λ.
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Examples.

Λ( q1 ) = M(1),

Λ( q
q

1
2 ) = M(1,2),

Λ( q
q

2
1 ) = M(2,1),

Λ( q1 q2 ) = M(1,2) +M(2,1) +M(1,1),

Λ( q

qq

∨1
23
) = M(1,2,3) +M(1,3,2) +M(1,2,2),

Λ( q

qq

∨2
31
) = M(2,1,3) +M(3,1,2) +M(2,1,2),

Λ( q

qq

∨3
21
) = M(2,3,1) +M(3,2,1) +M(2,2,1),

Λ( q
q

q

1
2
3

) = M(1,2,3),

Λ( q
q

q

2
3
1

) = M(3,1,2),

Λ( q
q

q

3
1
2

) = M(2,3,1),

Λ(
q

∧qq 12 3 ) = M(3,1,2) +M(3,2,1) +M(2,1,1),

Λ(
q

∧qq 21 3 ) = M(1,3,2) +M(2,3,1) +M(1,2,1),

Λ(
q

∧qq 31 2 ) = M(1,2,3) +M(2,1,3) +M(1,1,2),

Λ( q
q

1
2
q3 ) = M(1,2,3) +M(1,3,2) +M(2,3,1) +M(1,2,1) +M(1,2,2),

Λ( q1 q2 q3 ) = M(1,2,3) +M(1,3,2) +M(2,1,3) +M(2,3,1) +M(3,1,2) +M(3,2,1)

+M(1,1,2) +M(1,2,1) +M(2,1,1) +M(1,2,2) +M(2,1,2) +M(2,2,1) +M(1,1,1).

Finally, as recalled in the text for QSym and WQSym, many interesting combinatorial Hopf
algebras have polynomial realizations, in which the basis elements are realized as polynomials
in an auxiliary set of commuting or non commuting variables. Such presentations have many
advantages, beyond e.g. the very fast way of proving coassociativity by the doubling of alphabet
trick implemented above. Polynomial realizations were recently obtained in [17] for the algebra of
labelled forests and several related Hopf algebras: the extensions of the ideas of [17] to the posets
and quasi–posets Hopf algebras remains to be done. The existence of a polynomial realization
would be expected, as the internal coproduct of WQSym is exactly the one induced by the
cartesian product of alphabets.
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