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Abstract

We describe the both post- and pre-Lie algebra gsrso associated to the affine SISO
feedback transformation group. We show that it is a member of a family of post-Lie algebras
associated to representations of a particular solvable Lie algebra. We first construct the
extension of the magmatic product of a post-Lie algebra to its enveloping algebra, which
allows to describe free post-Lie algebras and is widely used to obtain the enveloping of
gsrso and its dual.
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Introduction

The affine SISO feedback transformation group Ggrso 4], which appears in Control Theory, can
be seen as the character group of a Hopf algebra Hgrso; let us start by a short presentation of
this object (we slightly modify the notations of [4]).

1. First, let us recall some algebraic structures on noncommutative polynomials.

(a) Let x1, 2 be two indeterminates. We consider the algebra of noncommutative poly-
nomials K(x1,x2). As a vector space, it is generated by words in letters xy, xo; its
product is the concatenation of words; its unit, the empty word, is denoted by 0.

(b) K(x1,x2) is a Hopf algebra with the concatenation product and the deshuffling co-
product A, defined by A, (z;) = 2; @ 0 + 0 @ x;, for i € {1,2}.

(¢) K(x1,x9) is also a commutative, associative algebra with the shuffle product w: for
example, if 7,7, k,l € {1,2},

T WX =225 + X524,
LT W T = TiTiTk + TiTpXj + TpXiky,
T W TjTp = TiTiTk + TjT;T) + TjTLT5,

TiTi W TpX] = TiT i TET] + TiTRTiT] + TiTpT]Ti + TEpTiTiT] + TRT;T1T5 + TpTIT;T5.
J J J J J J J

2. The vector space K(z1,x2)? is generated by words z, . . . x;, €5, where k >0, 41,...,1,] €
{1,2}, and (ey, €2) denotes the canonical basis of K2.

3. As an algebra, Hgrso is equal to the symmetric algebra S(K(z1,22)?); its product is
denoted by p and its unit by 1. Two coproducts A, and A, are defined on Hgrso. For all
h € Hsrso, we put Ayu(h) = Ax(h) —1®@ h and Aq(h) = Ag(h) — 1 ® h. Then:
e For all i € {1,2}, A.(De;) = Pe; @ 1.
e For all g € K(xy,z2), for all i € {1,2}:

(g9€i) = (0, @ Id) 0 As(gei) + (02, @ p) 0 (A @ Td)(Aw(g)e; ® €2),
g€i) = (0, @ p) 0 (Ax @ Id)(Awy(9)ei ® €1),

*09m1
*0912(

il

where 0, (he;) = zhe; for all © € {1, 22}, h € K(z1,22), i € {1,2}. These are formulas
of Lemma 4.1 of [4], with the notations a,, = wea, by, = wey, Oy = O,,, 61 = 0., and
A =A,.

o for all g € K(x1,x2):
Ad(ger) = (Id @ p) o (A @ 1d)(Aw(g)(e1 @ €1)),
Ad(ge2) = Aulgea) + (Id © p) o (As © Id)(Aw(g)(e2 ® €1)).

This coproduct A, makes Hgrso a Hopf algebra, and A, is a right coaction on this co-
product, that is to say:

(Ae @ Id) 0o Ag = (Id® As) 0 A, (A ®@Id)o Ay = (Id® As) 0 A,.

4. After the identification of (Je; with the unit of Hg7;s0, we obtain a commutative, graded
and connected Hopf algebra, in other words the dual of an enveloping algebra U(gsrso)-

Our aim is to give a description of the underlying Lie algebra gsrso. It turns out that it is both
a pre-Lie algebra (or a Vinberg algebra [1], see [5] for a survey on these objects) and a post-Lie



algebra [6, 10]: it has a Lie bracket ,[—, —] and two nonassociative products * and e, such that
for all x,y, z € gs150:

Tk gy, 2l = (wxy)xz—xx(y*2) — (x*2)xy +x*(2xy),

alz, Yl * 2 = alr* 2,y + a2,y * 2];

(roy)ez—xeo(yez)=(rez)ey—xe(zey).
The Lie bracket on gsrso corresponding to Ggrso 18 o[—, —|«:
VI, y € 95150, ol®,Yls = oz Y] trry—yrzr =20y —yeu
Let us be more precise on these structures. As a vector space, gsrso = K(r1,z2)?, and:

0ifi=j
vf7g € K<l‘1’];2>, VZ?] € {172}7 a[feivgej} = _f L g€g ifi=2and j = 17
fwgeifi=1and j=2.

The magmatic product * is inductively defined. If f, g € K(z1,22) and i,5 € {1,2}:

De; « gej = 0, xafe; * ge = xa(fe; * ger) + xo(f W g)e;,
z1fei* gej = x1(fe; * gej), xofe; x gea = xa(fe; * gea) + 1 (f W g)e;.

The pre-Lie product e, first determined in [4], is given by:

Vf,g € K(zi,22), Vi,j € {1,2}, fe; @ gej = (f W g)di1€5 + fei * gej.

We shall show here that this is a special case of a family of post-Lie algebras, associated to
modules over certain solvable Lie algebras.

We start with general preliminary results on post-Lie algebras. We extend the now classical
Oudom-Guin construction on prelie algebras [7, 8] to the post-Lie context in the first section:
this is a result of [2| (Proposition 3.1), which we prove here in a different, less direct way; our
proof allows also to obtain a description of free post-Lie algebras. Recall that if (V) %) is a pre-Lie
algebra, the pre-Lie product * can be extended to S(V') in such a way that the product defined
by:

VigeS(V), feg=>_ fxgg®?

is associative, and makes S(V') a Hopf algebra, isomorphic to ¢(V). For any magmatic algebra
(V,*), we construct in a similar way an extension of % to T(V') in Proposition 1. We prove in
Theorem 1 that the product ® defined by:

VigeT(V), fog=>Y frgMg?

makes T'(V') a Hopf algebra. The Lie algebra of its primitive elements, which is the free Lie algebra
Lie(V') generated by V, is stable under x and turns out to be a post-Lie algebra (Proposition 2)
satisfying a universal property (Theorem 2). In particular, if V' is, as a magmatic algebra, freely
generated by a subspace W, Lie(V) is the free post-Lie algebra generated by W (Corollary 1).
Moreover, if V' = ([—, —], %) is a post-Lie algebra, this construction goes through the quotient
defining U(V,[—, —]), defining a new product ® on it, making it isomorphic to the enveloping
algebra of V' with the Lie bracket defined by:

Vz,y eV, [z,yls = [z,yl +x*xy —y* .



For example, if x1,x0,23 € V:

T1 ® T2 = 2122 + T1 * T2
T1 ® Tox3 = T172x3 + (T1 * T2)x3 + (T1 * 23)T2 + (T1 * T2) * w3 — x1 * (X2 * T3)

T1x9 ® T3 = T1Tow3 + (X1 * 3)xe + 1 (T2 * X3).

In the particular case where [—, —] = 0, we recover the Oudom-Guin construction.

The second section is devoted to the study of a particular solvable Lie algebra g, associated to
an element a € KV. As the Lie bracket of g, comes from an associative product, the construction
of the first section holds, with many simplifications: we obtain an explicit description of U(g,)
with the help of a product < on S(g,) (Proposition 6). A short study of g,-modules when
a=(1,0,...,0) (which is a generic case) is done in Proposition 8, considering g, as an associative
algebra, and in Proposition 9, considering it as a Lie algebra. In particular, if K is algebraically
closed, any g, modules inherits a natural decomposition in characteristic subspaces.

Our family of post-Lie algebras is introduced in the third section; it is reminescent of the
construction of [3]. Let us fix a vector space V, (a1,...,ax) € KV and a family F,..., Fx of
endomorphisms of V. We define a product * on T(V)", such that for all f,g € T(V), z € V,
i,je{l,...,N}:

De; * ge; =0,
zfe; * gej = x(fei x gej) + Fy(z)(f W g)ei,

where (e1,...,ex) is the canonical basis of KV and W is the shuffle product of T'(V)). The Lie
bracket of T(V)" that we shall use here is:

Vf,geT(V),Vi,je{l,...,N}, ol fei, g¢j] = (f W g)(aiej — aje;).
This Lie bracket comes from an associative product ,LU defined by:
Vf,g e T(V), Vi,j € {l,...,N}, fe; o W gej = a;(f LW g)e;.
We put e = x + 1. We prove in Theorem 3 the equivalence of the three following conditions:
o (T(V)N, e) is a pre-Lie algebra.
o (T(V)N, o[—, ], %) is a post-Lie algebra.
e [1,..., Fy defines a structure of g,-module on V.

If this holds, the construction of the first section allows to obtain two descriptions of the en-
veloping algebra of U(T(V)Y), respectively coming from the post-Lie product % and from the
pre-Lie product e: the extensions of x and of e are respectively described in Propositions 15 and
16. It is shown in Proposition 17 that the two associated descriptions of U(T(V)N) are equal.
For gsrso, we take a = (1,0), V = Vect(x1, x2) and:

0 0 01
F1_<O 1>7 F2_<O 0>7

which indeed define a g(; g)-module. In order to relate this to the Hopf algebra Hsrso of [4],
we need to consider the dual of the enveloping of T(V). First, if a = (1,0,...,0), we observe
that the decomposition of V as a g,-module of the second section induces a graduation of the
post-Lie algebra T (V)" (Proposition 18), unfortunately not connected: the component of degree
0 is 1-dimensional, generated by (Je;. Forgetting this element, that is, considering the augmen-
tation ideal of the graded post-Lie algebra T'(V)", we can dualize the product ® of S(T(V)")
in order to obtain the coproduct of the dual Hopf algebra in an inductive way. For ggrso, we
indeed obtain the inductive formulas of Hgrgo, finally proving that the dual Lie algebra of this



Hopf algebra, which in some sense can be exponentiated to Ggrso, is indeed post-Lie and pre-Lie.

Aknowledgments. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.

Notations.
1. Let K be a commutative field. The canonical basis of K" is denoted by (e1,...,€p).
2. For all n > 1, we denote by [n] the set {1,...,n}.
3. We shall use Sweeder’s notations: if C is a coalgebra and z € C,
AW (z) = A(z) = Zx(l) ®z®,
AP(z) = (A@Id)oAlx) =) 2 @2® @a®,
AP (z) = (A@Ild@Id)o(A@Id)oAl) =) 2W@s® @a® 2™,

1 Extension of a post-Lie product

We first generalize the Oudom-Guin extension of a pre-Lie product in a post-Lie algebraic context,
as done in [2]. Let us first recall what a post-Lie algebra is.

Definition 1 1. A (right) post-Lie algebra is a family (g,{—, —}, *), where g is a vector
space, {—, —} and * are bilinear products on g such that:

e (g9,{—,—1}) is a Lie algebra.
o Forallxz,y,z€g:

rx{y, 2t =(v*xy)*xz—zx(y*x2)— (*2)xy+x*(2xy), (1)
{z,yt x 2 ={zxz,y} +{z,yx 2}. (2)
2. If (g,{—, —},*) is post-Lie, we define a second Lie bracket on g:
Ve,y € g, {z,y}s ={x,y} +xxy —yx*xzx.
Note that if {—, —} is 0, then (g, *) is a (right) pre-Lie algebra, that is to say:
Vo,y,z €9, (xxy)sz—ao*x(yx2z)=(xx2)*xy —x*(2xy). (3)

1.1 Extension of a magmatic product

Let V' be a vector space. We here use the tensor Hopf algebra T'(V'). In this section, we shall
denote the unit of T'(V') by 1. Its product is the concatenation of words, and its coproduct A,
is the cocommutative deshuffling coproduct. For example, if x1, 22,23 € V:

Ap(z) =21 ®1+1®a,
Ay(z172) = 1122 @ 1+ 21 @22 + 12 @ 71 + 1 @ 1179,
Am(l‘lfﬁg) =212023 R 1 + 122 @ 3 + 123 @ To + X223 ® T

+ 21 ®Tor3+ T2 R 2123+ T3 Q1122+ 1 ® 17273,

Its counit is denoted by e: e(1) =1 and if £ > 1 and x1,...,25, € V, e(x1...2) = 0.



Proposition 1 Let V' be a vector space and x : V@ V. — V be a magmatic product on
V. Then % can be uniquely extended as a map from T(V) @ T(V) to T(V) such that for all
frg,heT(V), z,yecV:

o fxl=f.

o 1xf=c(f)L

o wx(fy)=(wxf)ry—wx(fxy)
o (fg)xh=3(f*hW) (g+h®).

Proof. Eristence. We first inductively extend * from VT (V) to V. If n > 0, x, y1,...,yn €
V', we put:

zifn =0,

rxy if n=1,

THRYL...Yp = (:c*(y1...yn1*yn Zm* (Yi*yn) e Yn—1) ifn>2.
€V GV cV®(n-1)
ev ev

This product is then extended from T'(V) ® T'(V') to T'(V') in the following way:
o Forall feT(V), 1xf=¢e(f)L
e Foralln>1,forall zy,...,2, €V, feT(V):

(x1 * f = Z:rl*f (xn x fM) e vER

eV

Note that for all n > 0, V" %« T'(V) C V®" which induces the second point. Let us prove the
first point with f=mz1...2, e VO Ifn =0, fx1=1x1=e()l=1=f. Ifn=1,f€V, so0
f*1= f by definition of the extension of x on V@ T'(V). If n > 2:

frl=(z1...2p)x1l=(x1%1)...(zp*x)=21...2p = [.

Let us prove the third point for f = y;...y,. Then:

Moreover, as Ay (y) =y 1+ 1 y:

n

Fry= (n*D) . (ixy) .. (yax1) = Zyl (i y)- - yn-

i=1

So x* (fy) = (w* f)*y —ax* (f *y). Let us finally prove the last point for f = ..., and
g =Tk4+1---Tht- Then:

(fg)*h= Z (xl * h(1)> . (ka " h(k’+l))
= (= ( ) . (:cl * (h(l))(k)) (g;,m x (h(2))(1)) (IM « (h@))(z))

(
= ( ) * h(1)> <($k+1 e X)X h(2)>
(f « b ) (g + h(2 ))



We used the coassociativity of Ay, for the second equality.

Unicity. The first and third points uniquely determine = * (z7 ...zy) for z,21,...,2, € V,
by induction on n; the second and fourth points then uniquely determine f  (z1...x,) for all
f € T(V) by induction on the length of f. O

Examples. If x1, 29, 23,24 € V:

(r112) * x3 = (w1 * x3)x2 + 1 (22 * T3),
x1 * (xows) = (11 * T2) * T3 — o1 * (T2 * x3),
(x122w3) * x4 = (1 * T4)Tows + 1 (X2 * T4)T3 + T1T2(X3 * X4),
(r122) * (w3x4) = (11 * x3) * T4)T2 — (21 * (T3 * x4))x2 + x1((T2 * T3) * T4),
—x1(xg * (x3*xx4)) + (21 * x3) (22 * 24) + (21 * 24) (22 * X3),
x1 % (xowsxy) = (21 * x2) * x3) * x4 — (1 % (xa *xx3)) *xg — (1 % (xa *x x4)) *x T3

+ 21 * (22 % w4) * ¥3) — (@1 % T2) * (23 % T4) + 1 * (T2 * (T3 * T4)).
Lemma 1 1. Forallk e N, V5T (V) C V&,
2. Forall f,g e T(V), e(fxg)=c(f)e(g).
3. Forall f,geT(V), Au(f*g) =AL(f)*Au(g).
4. Forall f,geT(V),yeV, fx(gy) = (frg)xy—[fx(g*y)
5. Forall f,g,h € T(V), (f+g)xh=3 fx((g*hM)n?).
Proof. 1. This was observed in the proof of Proposition 1.

2. From the first point, Ker(e)«T(V)+T(V)x Ker(e) C Ker(e), soif e(f) =0 or e(g) = 0,
then e(f xg) = 0. As (1% 1) = 1, the second point holds for all f,g.

3. We prove it for f = z1...x,, by induction on n. If n = 0, then f = 1. Moreover,
Au(lxg) =¢e(g)Aw(l) =e(9)l ® 1, and:

Au(f) * Auw(g Zl*g ®1*g()—E(g(l))€<g(2))1®1:5(g)1®1.

If n = 1, then f € V. In this case, from the second point, fxg € V, so A,(f xg) =
fxg®1+1® f*g. Moreover:

Au(f)*Auwlg) = (f©1+1® f) * Au(g)
=Y frgW@1xg®+Y 1590 @ frg?
=S regWee (¢®) 1+ e (¢0) 10 fag®
=fxgR1+1® fx*g.

Ifn>2 weput fi =21...2,—1 and fo = x,. By the induction hypothesis applied to fi:

w(frg)=> Ay <<f1 *9(1)) (f2 *9(2)))
= Bu (fr9W) A (fo g% )
=3 (f<1> (g™ (1)) (fu) (1)) <f1(2> « (g<1>)(2>> (f2<2> X (g(2>)<2>)

= (Af)" )@ (f1f2)@ # g®
= Au(f) * Awly )



We used the cocommutativity of Ay, for the fourth equality.

4. We prove it for f = x1...x,, by induction on n. If n =0, then f =1 and:

Lx(gy) = (1xg)xy—1x(g*y) =e(g)e(y) —e(g*y) =0.

For n =1, this comes immediately from Proposition 1-3. If n > 2, we put fi = z1...2,-1 and
fo = x,. The induction hypothesis holds for fi;. Moreover:

et = X (50) (50 (520)) + 5 (55 6)) (+0%)
X (100) ((5057) +5) ~ 5 (00) (10 (52+)

1) (1) = 5 (1 (59+3)) (2209).

) (5e0))

13) (3e0) 5 (106) (5 252) 03,

) (s (0 +9)®)

S5 (1 (0 +9)) (197) 5 (10) (10 (5 ).

We use the third point for the third computation. So the result holds for all f.

5. We prove this for A = 21 ...z, and we proceed by induction on n. If n = 0, then h =1

and (fxg)*x1= fxg. Moreover,Zf*((g*h(l))h@)) =f*x{(g*x1D1)=(fxg)l = fxg. If
n=1,thenheV,so Ay(h)=h®1+1® h. So:

S+ ((9#h0)h®) = 5 (g m)1) + f * (g% D)

= f*(g*h)+ fx(gh)
=f*x(gxh)+(fxg)xh—fx(g*h)
= (fxg)xh.

We use Proposition 1-3 for the third equality. If n > 2, we put hy = 21...2,-1 and hy = z,.
From the fourth point:

(fxg)xh=((f*g)*hi)*hy = (f*g)* (h1 + ha)
_Z( < ((gnD) ) ) e =30 15 (g (e h2) V) (5 7o) )
3 ({2 )+ 5 () )
(o () (48
=200 (o) ) 12) 4 305+ ((00187) (157 )
(a3 () )
()0
=S s (g (n 5 hy 7 (g (nVn2) ) 1)
+3 1 (90 n") (AP he)
( *
( h

n?))
th *
nY))
ha
* hg 9
h( *

)
1)
1

1

1) )
X (o (759 ) - X (o) 17+ 12)
S5 (oo () ) 1 (o) 90



For the second equality, we used the induction hypothesis on h; and hy % he € VEE—1 Ly
the first point; we used the third point for the third equality. As A,(h2) = ho ® 1 + 1 ® ha,

Aw(h) = % @ B2 + 5T @ h{Phy, so the result holds for h. 0

1.2 Associated Hopf algebra and post-Lie algebra

Theorem 1 Let x be a magmatic product on V. This product is extended to T'(V') by Propo-
sition 1. We define a product ® on T'(V') by:

VigeT(V), fog=> (f * g‘”) 9.
Then (T(V),®,A) is a Hopf algebra.
Proof. For all f € T(V):

1o £ (1e W) 5O =36 (F0) 5@ = f; ®1=(f+1)1=f.

For all f,g,h € T(V), by Lemma 1-5:

As Ay is cocommutative, (f®g)®h = f®(g®h), so (T(V),®) is a unitary, associative algebra.

For all f,g € T(V), by Lemma 1-3:
Au(feg) =D Au((F+9)g?)
-y <f<1> § (gu))(”) (g@))(” - <f<2) . <g(1>)(2)> <g(2>)(2)
= (fu) § <g(1>)(1)) <g<1>)(2) - <f<2) B} <g(2>)(”> <g<2>)(2)

— Zf(l) ® g(l) ® f(Q) ® 9(2).

Note that we used the cocommutativity of Ay, for the third equality. Hence, (T'(V),®,Ay)) is a
Hopf algebra. O

Remark. By Lemma 1:
e Forall f,gheT(V), (fxg)xh=fx(g®h): (T(V),x)is aright (T'(V),®)-module.

e By restriction, for all n > 0, (V®", %) is a right (T'(V'), ®)-module. Moreover, for all n > 0,
(VO™ x) = (V,%)®™ as a right module over the Hopf algebra (T'(V), ®, A.,).



Examples. Let x1,x9,23 € V.

T1 ® T2 = 2122 + T1 * T2
T1 ® Tox3 = T1T2T3 + (T1 * T2)x3 + (T1 * T3)T2 + (T1 * T2) * T3 — T * (T2 * T3)

19 ® T3 = 12w + (X1 * r3)xe + 1 (T2 * X3).

The vector space of primitive elements of (T'(V), ®, Ay,) is Lie(V'). Let us now describe the
Lie bracket induced on Lie(V) by ®.

Proposition 2 1. Let x be a magmatic product on V. The Hopf algebras (T'(V),®, Ay)
and (T'(V),.,AL) are isomorphic, via the following algebra morphism:

¢_ (T(V)ayAu_l) — (T(V)>®aALU)
* €1 ..$k€V®k — T1®...®TL.

2. Lie(V)«T(V) C Lie(V). Moreover, (Lie(V),[—,—],*) is a post-Lie algebra. The induced
Lie bracket on Lie(V') is denoted by {—, —}.:

Vig e Lie(V), {f.gl«=figl+fxg—gxf=fg—gf+f*xg—gx]
The Lie algebra (Lie(V),{—, —}+) is isomorphic to Lie(V).

Proof. 1. There exists a unique algebra morphism ¢, : (T'(V),.) — (T(V), ®), sending any
x € V on itself. As the elements of V' are primitive in both Hopf algebras, ¢, is a Hopf algebra
morphism. As V&« T(V) C V& for all k > 0, we deduce that for all z1,..., 2y € V:

X1 Tk ® Tht1 -+ Thyl = 21 - .- Tty + & sum of words of length < k + [.
Hence, if z1,...,2p, € V:
Gu(T1 ... 2) =21 ® ... DT =1 ...7Tk + a sum of words of length < k.

Consequently:

e If k >0 and x1,...,z; € V, an induction on k proves that z1 ...z, € ¢.(T(V)), so ¢, is
surjective.

e If f is a nonzero element of T(V), let us write f = fo + ...+ fi, with f; € V®* for all i
and fi # 0. Then:

O(f)=fr+termsin Ko ...d V@(k—l)7
50 ¢« (f) # 0: ¢, is injective.

Hence, ¢, is an isomorphism.

2. We consider A = {f € Lie(V) | f+«T(V) C Lie(V)}. By Lemma 1-3, V C A. Let
fige A Forall he T(V):

[fsglxh=(fg)xh—(gf) *

( 1)) (g*h ) (g*h(l)) (f*h(2))
_Z(f*h(1)> (g*h ) (g*h(z))(f*h(l))
=Z[f*h ,g*h@)}.

10



We used the cocommutativity for the third equality. By hypothesis, f * (D, g% h(?) € Lie(V),
so [f,g] € A. As A is a Lie subalgebra of Lie(V) containing V, it is equal to Lie(V).

Let f,g,h € Lie(V). Then g®h =Y (g kD) h? = gh+gxh. Similarly, 3 (h % g1)) g@ =
hg + h * g, so, by Lemma 1-5:

fxlg,h] = fx(gh)— f=*(hg)

= [+ ((g*h ) ”) w(gxh) =Y [+ ((h*g )g(Q))Jrf*(h*g)
=(frg)xh—[fx(gxh)—(fxh)xg+f*(gxh)
Moreover:
[fs9] % h = (fg)«h—(gf)*h
= (fxh)g+ flgxh)=(gxh)f—g(f*h)
=[f*hgl+[f g*hl.
So Lie(V) is a post-Lie algebra.

Consequently, {—, —}. is a second Lie bracket on Lie(V). In (T(V),®), if f and g are
primitive:
feg—g@f=Ffg+fxg—gf—g=f={f g}
So, by the Cartier-Quillen-Milnor-Moore’s theorem, (T'(V'), ®, Ay,) is the enveloping algebra of
(Lie(V),{—, —}«). Asit is isomorphic to the enveloping algebra of Lie(V'), namely (T'(V), ., Ay)),
these two Lie algebras are isomorphic. O

Let us give a combinatorial description of ¢,.
Proposition 3 Let (V,*) be a magmatic algebra, and x1,...,x, € V.
o Let I ={i1,...,ip} C k], with iy < ... <1, We put:
oy = (o (g * @4y) *245) .. ) kxy, € V.
e Let P be a partition of [p|. We denote it by P = {P1,...,P,}, with the convention
min(P;) < ... <min(P,). We put:
Tp=2p ...Tp € Ver,
Then:
M (x1 ... xp) = Z Tp.

P partition of [k]
Proof. By induction on k. As ¢.(z) = x for all x € V, it is obvious if k = 1. Let us assume
the result at rank k.
Pul(T1 .. Tpy1) = Pu(T1 ... Tp) B T
= gf)*(l‘l .. .a:k):z:k+1 + qb*(xl S xk.) * Tht1

* *
= E TpTi+1 + g E Tp, .. (Tp * Tpy1) - Ty,

P partition of [k] P={p,...,P,}i=1
partition of [k]

_ *
- Z x{Plr~'7Pp7{k+1}} + Z Z :I:{Plv P U{k+1}7 7Pp}
P = {P1 ..... Pp} P = {P1 ..... Pp} i=1
partition of [k] partition of [k]

-y

P partition of [k + 1]

11



So the result holds for all k. O

Examples. Let 1, 20,23 € V.

Gx(21) = 21,
dx(T172) = 129 + X1 * X9,
Ox(T1213) = 123 + (71 * T2) T3 + (71 * x3)X2 + X1 (T2 * T3) + (X1 * T2) * 3.
Theorem 2 Let (V,*) be a magmatic algebra and let (L,{—,—},x) be a post-Lie algebra.

Let ¢ : (V, %) — (Lf,*) be a morphism of magmatic algebras. There exists a unique morphism
of post-Lie algebras ¢ : Lie(V) — L extending ¢.

Proof. Let ¢ : Lie(V) — L be the unique Lie algebra morphism extending ¢. Let us fix
h € Lie(V). We consider:
Ap ={h € Lie(V) | Vf € Lie(V), ¥(f * h) = ¢(f) x(h)}.
If f,g € Ap, then:

(1S, g1 % h) = »([f = h, 0] + [f, g+ h])
= {P(f + 1), 9(9)} +{P(f), (g * h)}
= {P(f) x ¥ (h), ¥(9)} + {o(f), ¥(9) x ¥ (h)}
= {0(f),¥(9)} * 9 (h)
= ¥([f; 9]) x ¢ (h).

So [f,g] € Ap: for all h € Lie(V), A, is a Lie subalgebra of Lie(V). Moreover, if h € V, as
Y|y = ¢ is a morphism of magmatic algebras, V' C Ap; as a consequence, it h € V', Aj = Lie(V).

Let A = {h € Lie(V) | A, = Lie(V)}. We put Lie(V), = Lie(V) N VE"; let us prove
inductively that Lie(V),, C A for all n. We already proved that V' C A, so this is true for n = 1.
Let us assume the result at all rank k < n. Let h € Lie(V),. We can assume that h = [hq, ho],
with hy € Lie(V)g, ha € Lie(V)p—k, 1 < k < n—1. From Lemma 1 and Proposition 2,
1f*xhg € Lie(V) and hg x hy € Lie(V),_k, so the induction hypothesis holds for hy, ha, hy * ha
and hg * h;. Hence, for all f € T(V):

]

Y(f *h) =p(f * [k, ha])

=((f *h1) *he — f* (h1 % he) — (f * ho) * h1 + f x (ha * hy))

= (U(f) x (b)) * ¥ (h2) = »(f) * (Y(h1) 1 (h2))

= (V(f) % ¥ (h2)) x (h1) + P (f) * (¥ (h2) * (1))

= (f) % {¥(h1),¢(h2)}

=(f) x(h).
As a consequence, Lie(V), C A. Finally, A = Lie(V), so for all f,g € Lie(V), ¥(f xg) =
U(f) *(g)- O

Corollary 1 Let V be a vector space. The free magmatic algebra generated by V is denoted
by Mag(V'). Then Lie(Mag(V')) is the free post-Lie algebra generated by V.

Proof. Let L be a post-Lie algebra and let ¢ be a linear map from V to L. From the univer-
sal property of Mag(V), there exists a unique morphism of magmatic algebras from Mag(V)
to L extending ¢; from the universal property of Lie(Mag(V')), this morphism can be uniquely
extended as a morphism of post-Lie algebras from Lie(Mag(V')) to V. So Lie(Mag(V)) satisfies
the required universal property to be a post-Lie algebra generated by V. |

Remark. Describing the free magmatic algebra generated by V is terms of planar rooted
trees with a grafting operation, we get back the construction of free post-Lie algebras of [6].

12



1.3 Enveloping algebra of a post-Lie algebra

Let (V,{—,—},*) be a post-Lie algebra. We extend * onto 7'(V') as previously in Proposition 1.
The usual bracket of Lie(V) C T(V) is denoted by [f, 9] = fg — gf, and should not be confused
with the bracket {—, —} of the post-Lie algebra V.

Lemma 2 Let I be the two-sided ideal of T(V') generated by the elements vy — yx — {z,y},
z,ye V. Then I«T(V)C I and T(V) =1 = (0).

Proof. First step. Let us prove that for all x,y € V, for all h € T(V):

o= o).

Note that the second member of this formula makes sense, as V «T'(V) C V by Lemma 1.
We assume that h = z1...2z, and we work by induction on n. If n = 0, then h = 1 and
{z,y}*1={z,y} ={r*x1,yx1}. f n=1then he V,s0o Ay(h) =h®1+1R h.

{x,y}*h:{x*h,y}—l—{x,y*h}:{x*h,y*1}+{x*1,y*h}:Z{x*h(l),y*h@)}.

If n > 2, we put hy = z1...2,—1 and he = z,. The induction hypothesis holds for hi, ho and
hl * hg:

{z,y} = h = ({z,y} = h1) * by — {z, y} * (h1 * h2)
:Z{x*h(” y*h@)}*hg—Z{m*(hl*hg)(l),y*(hl*hg)( '}

{(x*h )*hz),<y*h()) O S L (n) >7y*(h§2)*hgz>)}
Z{(w*h s hay e nPh 4 {x*h (y*h@))*h}

{a: ( *hg) y * } {x*hl)y*< *h2>}
{(x*h )*hQ—x*(h“*hQ) y i
{m*h(l (y*h())*hg—y*(h()*hg)}
{ ( )y*h }+Z{x*h§1>,y*(h§2)h2)}
:Z{x*h ,y*h()}.

Consequently, the result holds for all h € T'(V).

_|_

MM%M

Second step. Let J = Vect(zy —yx —{x,y} | z,y € V). For all z,y € V, for all h € T(V),
by the first step:

(xy —yxr—{z,y})xh = Z (x * h(1)> <y * h(2)> - (y * h(l)) (y * h(2)) — {:1; * h(D |y h(Q)} e J.

So J«xT(V)C J. lfge J, fi,fo,h e T(V):

(figf2) xh=" (fixdD) (g h®) (foxn®) e 1.

N——
eJ

So I«T(V)CI.
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Let us prove that T(V) * (T(V)JV®™) = (0) for all n > 0. We start with n = 0. First,
1% (T(V)J)=¢e(T(V)J)=(0). Let z,y,z € V, g € T(V). Then:
* (9yz — g2y — 9{y, z})
(@ (gy)) * 2z — 2 ((gy) * 2) — (xx (92)) xy + = ((92) *y)
—(zxg)«{y, 2} +x* (9% {y,2})
(xxg)xy)*xz—(xx(gxy)xz—xx((g*2)y)
—xx(gly*z)) = ((mxg)x2)xy— (v (g*z2))*y
zx ((g*y)z) +ox(g(zxy)) — (zxg)x{y, 2} +zx(gx{y,2})
(xg)xy)xz—(zx(gxy))xz—(zx(gx2)xy+zx((g*z)xy)
—(zxg)x(yxz)tax(gx(y*z))—((xxg)xz)ry+(zx(gx2))*y
(@x(gxy))xz—ax((gry)*2)+ (xxg)*(zxy) —xx(g*(z%y))
—(zxg)x{y, 2z} +ax(g+{y, 2})
=zx((grz)ry)+ax(gx(y*z)) —ax((gry)xz) —wx(g*(zxy)) +xx(gx{y 2})
t((@xg)xy)xz—(wxg)x(yx2) = (xxg)*x2)xy+ (wxg)x(zxy) — (wxg)x{y,z}
=0-+0.
So V x (T(V)J) = (0). As the elements of J are primitive, T(V)J is a coideal. If n > 1,
Z1,...,xn, € V and g € T(V)J, we put AEﬁ_l)(g) =S gW @ ... ® g™, with at least one
g € T(V)J. Then (z1...2,) xg = (z1 % gW) ... (2, xg™) =0, 50 T(V) x (T(V)J) = (0).
If n > 1, we take f € T(V), g € T(V)JV®"—1) and y € V. We put g = g19293, with
g €T(V), g2 €J, g3 € V=1 Then:

+

gxy=(91*y)g295+ g1 (92%y) g3+ 9192 (g3 xy) € T(V)JV"".
N—— S——
eJ¥T(V)CJ even
So the induction hypothesis holds for g and for g*y. Then fx (gy) = (f*xg)*xy— f*(g*y) = 0.
So T(V)x I = (0). O

As a consequence, the quotient T'(V')/I inherits a magmatic product *. Moreover, I is a
Hopf ideal, and this implies that it is also a two-sided ideal for ®. As T'(V')/I is the enveloping
algebra U(V,{—, —}), we obtain Proposition 3.1 of [2]:

Proposition 4 Let (g,{—, —}, *) be a post-Lie algebra. Its magmatic product can be uniquely
extended to U(g) such that for all f,g,h € U(g), x,y € g:

o fxl=f.

o 1xf=c(f)L

o fx(gy)=(fxg)xy—fx(g*y).

. g(gg)) xh =3 (f+hM) (gxh?), where A(h) = S hM @ h?) s the usual coproduct of

We define a product ® onU(g) by f+g =3 (f*gW) g?. Then (U(g),®,A) is a Hopf algebra,
isomorphic to U(g,{—, —}).

Proof. By Cartier-Quillen-Milnor-Moore’s theorem, (U(g), ®,A) is an enveloping algebra;
the underlying Lie algebra is Prim(U(g)) = g, with the Lie bracket defined by:

{r,yle =z@®y—y®r=cy+zrxy—yr—yx*x.
This is the bracket {—, —}.. O

Remarks.
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1. If g is a post-Lie algebra with {—, —} = 0, it is a pre-Lie algebra, and U(g) = S(g). We
obtain again the Oudom-Guin construction [7, 8].

2. By Lemma 1, (U(g),*) is a right (U(g),®)-module. By restriction, (g,*) is also a right
(U(g), ®)-module.
1.4 The particular case of associative algebras

Let (V, <) be an associative algebra. The associated Lie bracket is denoted by [—, —]4. As (V,0, <)
is post-Lie, the construction of the enveloping algebra of (V,[—, —]4) can be done: we obtain a
product < defined on S(V) and an associative product « making (S(V'), €4, A) a Hopf algebra,
isomorphic to the enveloping algebra of (V,[—, —]4).

Lemma 3 If z1,...,z,y1,...,y1 € V:

k
r1...C<Y1...Y = Z H Z; (H-Te(i)qyi>a
=1

0:111—[k] \i¢Im(0)

xl...xk<y1...ylzz Z H Z; Hyj (ng(l)q%>

IC[l) 0:I—[k] \i¢Im(0) jel iel

Proof. We first prove that for all k > 2, z,y1,...,yx €V, x<y1 ...y = 0. We proceed by
induction on k. For k =2, x <y1y2 = (x<y1) <y2 — < (y1 <y2) = 0, as < is associative. Let us
assume the result at rank k. Then:

k
nyl...ka:(:U<1y1...yk)<lyk+1—Zx<(y1...(yi<lyk+1)...yk):0.
i=1

Let us now prove the formula for <.

T1...Z<Y1...Yy1 = Z $1<1Hyi $k4Hyi

[l]:llu...ulk 1€lq i€l
Moreover, for all j:
ZL'j if Ij = @,
vja [Twi=a<mit I; = {p},
i€l 0 otherwise.
Hence:
T1...Z<Y1... Yy = Z .’L‘1<1Hyz' $k<]Hyi
[l]=I1|_l..‘|_lIk i€lh i€l
Vp7 |Ip|§1
k
=5 I o (TTown ).
0:[l]—[k] \i¢Im(0) i=1
Finally:

= Y (H%) (Hy)

IC[) \igI iel

as announced.
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Examples. Let x1,x2,y2,y2 € V.

r1 4y = T1Yy1 + 1 <Y1,
T1T2 4 Y1 = T172y1 + (21 <y1)T2 + 71 (T2 Y1),
T 4y1ye = r1y1y2 + (21 <y1)y2 + (1 Qy2) 1,
T1T2 A y1y2 = T172y192 + (21 4Y1)w2y2 + (21 Qy2)T2y1 + 21 (22 <Y1)Y2
+ 21(22 <y2)y1 + (21 <y1) (T2 QY2) + (21 <y2) (T2 <Y1).

Remark. The number of terms in x1... 2 <y1...y; is:

min(k,l) I N
E i ),
- 1 1
=0

see sequences A086885 and A176120 of [9].

2 A family of solvable Lie algebras

2.1 Definition
Definition 2 Let us fix a = (a1,...,an) € KN. We define an associative product < on K :
Vi, j € [N], € <€; = aje;.
The associated Lie bracket is denoted by [—, —]q:
Vi, j € [N], [€i,€jla = aje; — asej.
This Lie algebra is denoted by g,.
Remarks.

1. Let A € My (K), and a € KV. The following map is a Lie algebra morphism:

Ga.tA — Ga
r — Ax.

Consequently, if a # (0,...,0), g, is isomorphic to g(1,... 0)-

2. These Lie algebras g, are characterized by the following property: if g is a n-dimensional
Lie algebra such that any 2-dimensional subspace of g is a Lie subalgebra, there exists
a € K" such that g and g, are isomorphic.

Definition 3 Let A =T(V)N. The elements of A will be denoted by:

N
f= : = fie1 + ...+ fnen.
N
For alli,j € [N], we define bilinear products ;11 and L; :
fitld g1 Jiwg;
Vf,geT(V)N, fiw g= : ; g g=
fillgn N Wy,

In other words, if f,g € T(V), for all k,l € [N]:
feriW ge =0, k(f W g)e, fer Wy ga = 8;,(f Wg)e.

Ifa:(al,...,aN)eKN, we put gl =aj W +...+ay yWl and W, =a1 Wy +...+ayLy.
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Proposition 5 Let f,g € KN. For all f,g,h € A:

(f Wa g) Wy h=f W, (9 Wy h), (f Wa g)pW h=f Wy (gpW h),
(fa'—'—’g)LUbh:faLU(gU—’bh)v (fa'—'—’g>b|—|—’h:fa|—|—|(gb|—|—|h)v
JWe g=gaW f.

Proof. Direct verifications, using the associativity and the commutativity of Lu. O
Definition 4 Let a € KN. We define a Lie bracket on A:
Vig€A Wfigl=fallg—gal f=g W f~ [ Wag
This Lie algebra is denoted by g,

Remark. If A is an associative commutative algebra and g is a Lie algebra, then A® g is a
Lie algebra, with the following Lie bracket:

Vi,ge A zyeg [fRr,g0y] = fg® [z,y).

Then, as a Lie algebra, g, is isomorphic to the tensor product of the associative commutative
algebra (T'(V), ), and of the Lie algebra g_,. Consequently, if a # (0,...,0), g/, is isomorphic

to g/(1,0,...,0)'
2.2 Enveloping algebra of g,
Let us apply Lemma 3 to the Lie algebra g,:

Proposition 6 The symmetric algebra S(gq) is given an associative product 4 such that for
all i1,... %k, J1,---,J1 € [N}

€1 - €y, LEj ... € Zk —1 —‘I‘—f—l) Hajq Hejp €y -+ - Ejp -
(i) g€l pel
The Hopf algebra (S(g.), €, A) is isomorphic to the enveloping algebra of gq.

The enveloping algebra of g, has two distinguished bases, the Poincaré-Birkhoff-Witt basis
and the monomial basis:

(€iy €. €€, )k>0,1<i1<...<ix <N, (€iy - €y ) k>0, 1<ir <. <ig <N-
Here is the passage between them.

Proposition 7 Let us fixn > 1. For oll I = {i; < ... < i} C [n], we put:

MI) = (iy —1)... (i — k), u(I) = (—1)%(iy — V)ig(iz + 1) ... (ip + k — 2).
We use the following notation: if n]\ I ={q < ... <q}, Hﬁlq €ig, €... Wé, . Then:
q¢l
€, €... ¢, = Z AT H @i, H €ig | »

IC[n] pel a¢l

<

e = ) [ [Ta, | | T] e

ICn] pel q¢I
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Proof. First step. Let us prove the first formula by induction on n. It is obvious if n = 1,
as A(0) = 1 and A\({1}) = 0. Let us assume the result at rank n.

€, ... ¢, | = Z M) (H aip) (H eiq) <€,

IC[n] pel q¢l1

=D MD) (H ) (H €in€inis + (k= 11)ai, H)

IC|[n] pel q¢l q¢l

= E )\(I) (H aip> (H eip) + E )\(I) (H aip) (H qp)
I1C[n+1], pel q¢lI IC[n+1], pel q¢l1
n+1¢1 n+lel

= Z )\(I) (Haip> (HEZP> .
ICn+1] pel af1

Second step. Let us prove that for all I C [ Z AL\ J) = 05p.
JCI
We put I = {i; < ... < ix} and we proceed by induction on k. As A(0)) = p(0) = 1, the
result is obvious at rank k = 0 and £ = 1. Let us assume the result at rank k£ — 1, with £ > 2.

STOADUINT) =D AN I\ T) + > NI\ )

JCI JCI, JCI,

ikEJ ik¢J

= > AJU{ihe\ L\ D+ D AT\ )
JCI\{ix} JCI\{ix}

= > ANk — [TDu(I\A{ix} \ )
JCI\{i}

= > MDA\ )ik + T\ {ir} \ T+ 1)
JCI\{i}

= > MDp\ i\ ) ix = [J] =ik — [T+ 1+ |J| - 1)
JCI\{ix}

==l > M\ {ix}\J)

JCI\{ix}
=0.
Therefore:

o)) .50 ) 1
IC[n] pel q¢l1 IC[n] JC[n]\I pel peJ ge[n\I\J

D DI AV S (Haip> (Heiq>

IuJ=[n] | I'CI

=01,9

which ends the proof. O
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2.3 Modules over g ,..0)

Proposition 8 1. LetV be a module over the associative (non unitary) algebra (g(1.0,....0),<)-
Then V=V gV with:
e civ=vifveV® andel v=0ifve VO,
o Foralli>2, v e VO ifve VW gnd egv=0ifi e VO,

2. Conversely, let V=V aV O pe g vector space and let f; : VY — VO forall2 <i < N.
One defines a structure of (g1,0,....0), <)-module over V':

‘ (1) : ; (1)
o — 'U’L.fUEV , iFi>9 ew— f1<v) ifve Vi,
0ifve Vo, 0ifve Vo,
Shortly:
{0 0 . 10 fi
61.[0 Id}’ VZZZ,Q.[O O}

Proof. Note that in g1 9. ), € <€; = 01 5€;-
1. In particular, €; <€ = €. If F} : V — V is defined by Fi(v) = €;.v, then:
FioFi(v) =€1.(1.v) = (€1 <€1)v = ev = Fi(v),
so Fy is a projection, which implies the decomposition of V as V© @& V) Let 2z € V(1) and
i > 2. Then Fi(.v) = €1.(6.0) = (1 4€)v = 0, 50 v € VO, Let z € VO, Then

€.v=(€<¢€1)v=¢.Fi(v) =0, s0 ¢.v=0.

2. Let i >2and j € [N]. fv e V:

e1.(e1.v) =v =€rv, €i-(e1.0) = fi(v) = €v ¢j-(€i.v) = ¢;.fi(v) = 0.v.
Ifv e V©;
€1.(€1.v) =0 = €10, €.(€1.0) =0 = €., €j.(6i.v) =0 =0.0.
So V' is indeed a (g(1,0,...0), <)-module. O

Example. There are, up to an isomorphism, three indecomposable (9(1,0)7 <)-modules:

o] (42)
ool (4

Proposition 9 (We assume K algebraically closed). Let V' be an indecomposable finite-
dimensional module over the Lie algebra g1, 0y- There exists a scalar X and a decomposition:

v=vO0g. . ovh
such that, for all 0 < p < k:

o ¢ (V) CV® and there exists n > 1 such that (e; — (A —l—p)Id)W = (0).

o Ifi>2, ¢ (V(p)) C V=D with the convention V(=1 = (0).
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Proof. First, observe that in the enveloping algebra of g(1 . ¢y, if i > 2 and A € K:

¢, 4(eg—AN)=¢cer+e6—Xeg=¢€ie1+(1—=Ne; = (e — A+ 1) «e.
Therefore, for all i > 2, for all n € N, for all A € K:
€; 4 (61 — )\)<n = (61 — A+ 1)<n €.

Let V' be a finite-dimensional module over the Lie algebra g(1,..0)- We denote by Ej the
characteristic subspace of eigenvalue A for the action of €;. Let us prove that for all A € K| if
i1>2,¢(E\) C Ex_1. If x € E), there exists n > 1, such that (e; — AId)*".v = 0. Hence:

0=¢.((eg = Nd)"v) = (e1 — (A= 1)Id)".(¢;.v),

so € € By_q.

Let us take now V an indecomposable module, and let A be the spectrum of the action of
€1. The group Z acts on K by translation. We consider A’ = A + Z and let A” be a system of
representants of the orbits of A’. Then:

V=0 (@E,\+n) .

AeEN" \n€Z
Vi

By the preceding remarks, V) is a module. As V is indecomposable, A” is reduced to a single

element. As the spectrum of €; is finite, it is included in a set of the form {A\ A+ 1,..., A+ k}.
We then take V() = Ey, for all p. a

Example. Let us give the indecomposable modules of g(; gy of dimension < 3. For any

A €eK:
€ € €1 c2
! 2 X1 0 0 0 1
() (0)
S 01 00X O 000
0 0 A+1 000
0 A+1 0 0
N o X0 0 0 1 0
0A> <00> 0 A+1 1 000
0 0 A+1 000
X 0 0 0 1 0
X 10 000
0 A+1 0 00 1
0 0 A+2 000 0 A1 000
0 0 \ 00 0

Definition 5 Let V' be a module over the Lie algebra g,. The associated algebra morphism
18:
U(ga) = (S(90), 4) — End(V)
oy : 6 — { V. — V
v —> €.

For alliy,... iy € [N], we put Fy, ;. = ¢v(e ... € ); this does not depend on the order on the
indices ip.

By Proposition 7:
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Proposition 10 For all iy,...,i, € [N]:

Fj,o...0F, = o D) [T e | Fipiy

IC|n], pel
NJ={j1<...<ji}

Fiin = Z w(l) H ai, | Fi; 0...0 Fijl’
IC[n], pel
NJ={j1<...<ji}
When V is a module over the associative algebra (g4, <), these morphisms are easy to describe:

Proposition 11 Let V' be a module over the associative algebra (gq,<); it is also a module
over the Lie algebra (gq,[—, —|a). For all k> 2, 41,...,1 € [N], Fjy,.. 4, =0.

Proof. As V is a module over the associative algebra (g,,<), for any i1, i2 € [N]:
F;, o F, = a;, F, .
We proceed by induction on k. If k =2, €;,¢;, = €;;, €€, — aiy€;,, s0:
Fi i, = Fiy o Fyy —ai, Fy, = ai, Fy) — ai, Fyp = 0.

Let us assume the result at rank k. Then €1...€;, ., = €, ...¢;, A€, —ka;_ €, ...€,, and

Fi1,---7ik+1 = Fiy,ip, © Ek-H - kaik+lﬂlv---7ik =0. U

3 A family of post-Lie algebras

3.1 Reminders

We defined in [3] a family of pre-Lie algebras, associated to endomorphisms. Let us briefly recall
this construction.

Proposition 12 Let V be a vector space and F : V. — V' be an endomorphism. We define
a product x on T(V): for all f,g € T(V), for allz €V,

Oxg=0, vf*xg=ux(f*g)+ F(x)(fwyg).

This product is pre-Lie. The pre-Lie algebra (T(V'),*) is denoted by T'(V, F'). Moreover, for all
f,9.heT(V,F):
(furg)xh=(f+h)wg+ fuw(g*h).

We also proved the following result:

Proposition 13 Let k,1 > 0.

o The set Sh(k,l) of (k,l)-shuffles is the set of permutation o € Sy such that o(1) < ... <
o(k) and o(k+1) <...<o(k+1).

o If o € Sh(k,l), we put m(o) = max{i € [k] | o(1) = 1,...,0(i) = i}. In particular, if
(1) #1, mg(o) = 0.

Forall x1,..., 2k, y1,...,y1 € V:

my(o)

Tl TpkYL... .Y = Z Z (Id®(m) ® F®Id®(k+l_p)) o(x1...TEY1 .- Y1)
oeSh(kil) p=1
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3.2 Comnstruction

Let us fix a vector space V', a family of N endomorphisms (F,..., Fy)of Vanda = (ay,...

KY. We define inductively a product * on T(V)¥: for all f,g € T(V)N, 2z €V, i€ [N],
Dei x g =0, af xg=a(fx*g)+ F(2)(fwig)+...+ Fn(z)(f Wy g)
We define a second product e on T'(V)V:
VigeT(V)Y, feg=fxg+faw g
Examples. Let x,y,z €V, g€ T(V), i,j € [N]. Then:

ze; * gej = Fj(x)gej,
rye; x gej = (2 Fj(y)g + Fj(z)(y W g))e;,
zyze; x ge; = (vyFi(2)g + xFj(y) (2 W g) + Fj(z)(yz W g))ei.

Proposition 14 Let x1,...,25,91,...,y1 €V, i,j € [N].

my(o)

,CLN) S

T TREG YL Y= Y Z<1d®(p1)®Fj®Id®(k+l_p)>0.($1...$ky1...yl)ei.

o€Sh(k,) p=1

Proof. By induction on k. It is immediate if k¥ = 0, as both sides are equal to 0. Let us

assume the result at rank k& — 1.

T1...TE€ *Y1 .. Y€ :xl(:cg...xkei*yl...ylej)+Fj(x1)(x2...xkLl_lyl...yl)ei

my(o)

= Y D UdEPF @ Id*F TP )o (a1 . apyn - y)es

c€Sh(k,l), p=2

o(1)=1
+ (F;® Td®FH =g (&1 apyr . y)e
oeSh(k,),
o(1)=1
my(o)
= Z (Id®(p1) ®F‘j®Id®(k+l_p))0'.($1...l‘kyl...yl)ﬁi

o€Sh(k,), p=1
o(1)=1

my(o)

= Z Z (Id®(p1)®Fj®Id®(k+l_p))0'.(m‘1...$ky1...yl)ﬁi,

o€Sh(k,l) p=1

so the result holds for all k.

|

Remark. Let x; be the pre-Lie product of T'(V, F}), described in [3]. For all f,g € T'(V),

for all i,j € [N]:
feixgej = (f *j g)ei.

Corollary 2 For all f,g,h € T(V)N, for all i € [N]:

(fiw g)xh=(fxh);w g+ f ;w (g*h),
(fwig)xh=(f*h)w;g+ fuy(gxh),
(fwg)xh=(f*h)wg+ fu(gx*h).
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Proof. It is enough to prove these assertions for f = f'ex, g = ¢'¢, and h = h'e,,, with
1,9 0 € T(V). For the first assertion:

Sik(ffwd'e) e
ik (f W g') *m We

5z,k((f *m h/)Lng + f LLl(g *m h/))
(fxh)iW g+ fiw (g=h).

(fiwg)xh=

The second point is deduced from the first one, as Ww; = ; W °P. Finally:

(fiwg)«h=0,,(f ' Wwg'e)xhey
=01 (f W g') #pm e
=01 ((f *m P YW g + f (¢ *m 1))e
= (fxh)wg+ fui(g*h).

So the last point holds. O

Theorem 3 The following conditions are equivalent:
1. (T(V)N, @) is a pre-Lie algebra.
2. g = (TN, o[, =], *) is a post-Lie algebra.

3. V is a module over the Lie algebra g,, with the action given by €;.v = F;(v).

Proof. By Corollary 2, for all f,g,h € gl,, olf 9] *h = o[f *h,g] + olf,g*h].
1. <= 2. Let f,g,h € g.

(feg)eh—fe(geh)—(feh)eg+ fe(hey)
=(fxg)xh—[fx(gxh)—(f*xh)xg— [x(h*g)
+(fawg)xh—fow (gxh)—(faw h)xg+ faW (hxg)
+(f*g)aw h—fx(gaw h) = (f*h)aW g+ f*(hall g)

+(fa gaWh—fow (gaW h)—(faW g)aW h+ fall (gall h)
=(fxg)xh—fx(gxh)—(f*h)xg— fx*(hxg)

+f*(ga h)— fx(how g)

+[(faw g)xh—faw (gxh)—(f*h)aW g]

+[(faw h)xg—fal (hxg)— (f*g)aLuh}

—[(f*h)aw g—faw (hxg)—(f*g)a h

(faw g)aw h—fow (gaw R)] = [(fal g)ad h—fall (gald h)
=(fxg)xh—fx(gxh)—(fxh)xg+ fx(hxg)— fx g hl

_|_

So (g,,,®) is pre-Lie if, and only if, (g}, o[—, —], *) is post-Lie.
2. = 3. Let x,y,v € V and i,j,k € [N]. Then:

xe; x ye; = Fj(x)ye, xye; * zep, = xF(y)ze; + Fip(x)(y W 2)e;.
xe; * yzep = Fi(x)yze;,
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Hence:

(wej * yej) * zep, = F( Yye€; * zeg
Fj(x)Fy(y)ze; + Fy, o Fj(x)y W ze;,
xe; * (yej * zek) = xe; * Fi,(y)z¢;
= Fj(x)Fi(y)zei,
T€; o|yej, z€x) = a;xe; * (Y LU 2)e, — apxe; * (Y LU 2)€;
= (a; Fy.(2)(y W 2) — apFj(z)(y W 2))e;.
The post-Lie relation (2) gives:

(ajFi(x) — apFy(z))(y W 2)
= Fj(z)Fp(y)z + Fi o Fj(z)(y W 2) — Fj(2) Fi(y)z — Fj o Fi(x)(y W 2)
= (Fjo I, — Fy o F;)(z)(y W 2).

Let y = 2z be a nonzero element of V. Then y W z # 0, and we obtain that for all z € V,
a;Fr(xz) — apFj(x) = (Fj o F, — Fj, 0 Fj)(x): V is a ge-module.

3. = 2. Let us prove the post-Lie relation (2) for fe;, g and h, with f € T(V), i € [N],
g,h € g,,. We assume that f is a word and we proceed by induction on the length n of f. If
n = 0, then f = () and every term is 0 in the relation. Let us assume the result at rank n — 1.
We put f =z f’, with z € V, and f’ a word of length n — 1.

N
(fxg)=h=a((f'eixg)«h)+ Y Fp(x)((f'ei * g) Wy h)

p=1
N N
+) Fp(@)(fleiwpg) sh+ > Fyo Fy(x)(flei Wy g Wy h),
p=1 p,q=1

N
frlgeh)=a(flex(gxh)+> Fp(@)(f'e 1wy (g+h)),
p=1

N N N
Zapf *(gpWh) = Zapx(flei *(gpWh))+ Z apFy(x)(f'ei Wy (9 p W h)).
p=1 p=1 p,g=1
We put:
N
P(f,g,h) = fx(gxh) = (fxg)xh+Y apf*(gpwh).
p=1

In order to prove the post-Lie relation (2), we have to prove that P(f,g,h) = P(f,h,g). First:

N

(f*g)xh=a((f'eg)«h)+ Y Fyla)((f'ei* g) iy h)
=1
N ’ N
"‘ZFP(CC)((f/Gi LWy g) x h+ Z Fyo Fy(z)(f'ei Wp g Wy h),

p=1 p,q=1

N
frgxh) =a(f'ex(gxh)+ Y Fpl@)(feiy, (g+h),
p=1

N N
Zapf*(gpl_l_lh):Zapx(f’ei*(gpu_lh Zap z)(f'ei Wy (g p W A)).

p=1 p=1 p,q=1
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Consequently:
P(f.9, )::UP(f’ g,h)

+ZF —(f'eix g)wp b — ((f'ei Wy g) x h+ f'e; Wy, (g % h))
+ Z apFy(2)(f'ei Wy g p W R) — Fyo Fy(x)(f'e; Wy, g W, h)
1
p,q= N
P(f'.g,h) =Y Fp(x)((f'ei * g) Wy b+ (f'ei + h) Ly g)
p=1
+ Z apFy(x)(f'e; Wy hwy, g) — Fyo Fy(z)(f'e; Wy g Wy h)
1
p,q= N
P(f',g,h) =Y Fy(x)(f'ei * g) tp b+ (f'ei + h) Ly, g)
p=1
+f§: apFy(z) — Fy o Fy(z))(f'e; Wy g Wy h).
p,g=1

By the induction hypothesis, P(f’,g,h) = P(f’, h,g), so the first row is symmetric in g, h. As
V' is a go-module, a,Fy, — F, o F), = a,F), — F, o Fy, so the second row is symmetric in g, h, and
finally P(f,g,h) = P(f,h,g): g, is a post-Lie algebra. O

Example. The post-Lie algebra gsrso is associated to a = (1,0), V = Vect(z1,x2) and:

0 0 01
Fl_(o 1)’ F2_<0 0)'

As Fy and F define a module over the Lie algebra g(; ¢, even in fact over the associative algebra
(8(1,0), <), we obtain indeed a post-Lie algebra. For all f,g € T(V), for all i,j € {1,2}:
De; * gej = 0, xafe; * geg = xa(fe; * ge1) + xo(f W g)e;,
z1fei* gej = x1(fe; * gej), xofe; x geg = xa(fe; x gea) + 1 (f W g)e;

3.3 Extension of the post-Lie product
We now extend the post-Lie product of g/, to the enveloping algebra U(g),). As this Lie bracket

is obtained from an associative product < = 4L, we can see U(g,) as (S(g,), €, A). The post-
Lie product * is extended to U(g),), and we obtain a Hopf algebra (U(g),®,A), isomorphic to
U(gl, o[—,—]), with:

Vg€, alfigl=alfigl+frg—gxf=fawW g+t frg—ga f—g=*]

As o is a pre-Lie product, it can also be extended to S(g) and gives a product ®, making S(g/,)
a Hopf algebra isomorphic to U(gl,, [—, —]e)-

Remark. Let f,g € ¢,.

[f,gle=feg—gef
=foWgtf*xg—gal f—gx*f
=alfigl +fxg—gx*f
= a[f,g]*-
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Lemma 4 Let f1,...,fr,g € g,, k> 1.

k
(.. af)xg=> fia.. . 4(fyxg) ... 4f

p:l
(f2 fk*g—Zfl (fp*g)- fr

Proof. The first point comes by the very definition of *. For the second point, we proceed
by induction on k. This is obvious if k = 1. Let us assume the result at rank k, £ > 1. Observe
that:

fioo S =fioo fr € fipr - Zﬁ (fpalld frs1) - fr,

p=1
SO:

k
fioofrmxg=(f1- foxg) <frri+fi fo «<(frorr%9) =D fio (fpalld fis1) .- fexg
p=1

k
=Y i (fpx9) . S frpr+ fro fr 4 (fra1 % 9)

p=1
=D i (foall farr) . (fo*g). fk_Zfl (fpaW fe+1)*g) - fr
P#q

k
=> i (foxg) - b+ D Fro (fpald fag1) .- (fax9) - fa

p#q

k
Y A ((f*9) a firt) o fo— D i (foald frp1) - (Fax9) - f
= piq

k
=D fie((fox9)al frr) . fk—Zfl (fpalld (fre1%9) - fr
p=1

+ fi felfern % 9) +Zf1 (fpaW (fre1%9)) - fi

k+1

= Z fiooi(fpxg) - fosr
Finally, the result holds for all k£ > 1. O

The following result allows to compute f % g1 ... gr by induction on the length of f:
Proposition 15 Letz € V, k> 1, f,g1,...,9. € T(V)V, i € [N].
Dei* (g1 ... 4 gp) =0,

xf*x (g1 €... 4g;) = Z F’jlo...onl(:E)<<f>ngi> Wi, Gip - .- Wy, gil>;

I={i1<...<i;}C[k], i¢l
J1sesJ1€[N]

Oei * (91 -..9x) =0,

ef k(o)=Y oyl ((f*ﬂg@)mﬁg”...mjlgz-l>.

I={i1<...<i} [k, i¢l
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Proof. In order

Ik:{(f,jl,...,jl) ’I:{il <... <’il} - [k], G151 € [N]}
We proceed by induction on k. It is immediate if £ = 1. Let us assume the result at rank k,
k > 1. Then:
Dei* (g1 ... A gpi1) = (D6 * (g1 «... € gy))* g1
k
—Z@ei*(gl< < (9p * gk+1) € ... A gi)
p=1
=0.
Moreover:
rf* (g1 <. .. 4 gry1)
k
= (zf (g1 «... <gk))*9k+1—sz*(91 <4 (G rgrt1) .. gy
p=1
<«
_ZFJZO o Fj () [ H 9i | Wi Giy--- Wy Giy | * Gk+1
¢ JuU{k+1}
<
=) Fjo...oF(x) | fx I 9]« | Wy g wy g
I i JU{k+1}
<
—ZZ oFu@) | [+ TI @) wi g wy, (95, %g61) - Wy gi
p=1 Iy ig Ju{k+1}
<
= Z Z ]1(x) fx H 9i | Wi Giy - Wy Giy Wy, k+1
I jiy1€[N] igJu{k+1}
+ZFJZO onl(x)
Iy,
< <
fx I1 9| *orer—F» I 9| *an Wj, Giy - -+ Wy Gi,
i¢JU{k+1} ¢ Ju{k+1}
<«
= Z Z Fjo...0Fj(z) [ H 9i | Wi Giy - Wy Gy Wiy Gk+1
I jiy1€[N] i¢ Ju{k+1}
<«
Z o Fj, (x) [ H 9i A Ggy1 | Wy Giy - - Wy iy Wy Gt
i¢ JU{k-+1}
= Z Fjo...oF;(x ((f*ng> Wy Giy -+ Wy gil>
Ik+1,k+161 lé[
+ Z F o. <<f*ng> |—|—|j1 Giy - - - U—'jl gi;)
Tiyr, k+1¢1 il
<
:ZF o x)((f*Hgl> LI_Ij1 gil---u—’jl gil)‘
I} i¢l

to ease the redaction, we put:
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So, for all F € U(g)+, De; * F =0. As g1...9x € U(g)+, the first point holds. Let us prove
the second point by induction on k. The result is immediate if k = 1. Let us assume the result
at rank k£ > 1.

rf kg1 Grrt

=af* (91 Gk * Grt1) — (9paW Gkt1)---9k)

\\Mw

k
=(zf*g1... *gkﬂzxf (Gpalld Grr1) - gk) — D xf % (g1 (gp* Gra1) - - Gr)
p=1
Z et ( [ H Gi | * Gk+1 | Wi Giy - Wy g4

i¢ JU{k+1}

+ZZFJ'1,...,J‘I(%') F I 9| Wi g Wy, (9, % grs1) - Wy, g,

I, p=1 ig Ju{k+1}
+Z Z Fj 0 Fj,..5(x) o H gi | Wi Giy--- Wy g5
I jiy1€[N] i¢JU{k+1}
=Y Fiiql@) | [ I 9| ok | Wy g wy g,
ig¢ JU{k+1}

k
DI Foga@ [+ T o) Wi gn-- Wi, (9, xgke1) - Wy, g5

I p=1 ¢ JU{k+1}

_ZZ Jis- :Jl [ H 9i | Wi Gy - W, (gipau‘l k1) - Wy, G,

I, p=1 ig Ju{k+1}
Z i fx H 9i | * Gk+1 — H 9i | Gk+1 | Wy Giy - Wy g5
¢ Ju{k+1} ¢ JU{k+1}

=N "Fj () | £ T o)) Wi g Wi gi
i JO{k+1}

*Z Z i oFj @) [ | f* H gi Wiy Gy -+ Wy iy Wiy iy

Ik ],+1e[N] i¢ JU{k+1}
_ZZ Z ajFj .5 ( fx H ) Wiy Giy - Wi, (k1 Wy gp) -+ Wi giy
I, p=1j€[N] igJu{k+1}
= ZFjl,,..,jl(x) [ H Gi | k+1 | Wi Giy -+ Wy gy
i¢ JU{k+1}
1
20 > | F o Fiveii = D Fy 5 | (@)
Ie jiy1€[N] p=1
I x H gi Wiy Giq - - Wy gip W00 Gigyy
i¢ JU{k+1}
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= Z Fj,... Jl ((f*H%) LWy Giy - - - Wy, giz)

I, k+1¢J igl
+ Z Fjl,-n,jl(x) ((f*H%) Wiy Giy -+ - Wy giz)
I, k+1eJ i¢l
:ZFJL ,Jz ((f*ngl) LWy, Gy - .. Wy, giz>'
T4 igl
l
Note that we used Fj,,; 0 Fjy,..jy = Fjiojipn + Zaijjl,...,j;,...,jHl' .

p=1

Proposition 16 Let k> 1, f,g1,...,g9xr € T(V)N. Then:

fogigv="F*gi . ge+ Y (F*01  Gp10ps1---Gr) a L Gp.

Proof. We proceed by induction on k. This is obvious if £ = 1. Let us assume the result at
rank k, k > 1.

f.gl . -gk+1
=(feg1-..gk) ®grt1 — Zf (gp® gr41) - 9r)

:(f*gl-~-glc)*gk+1+(f*gl---gk)a‘—|—| Gk+1

k
+Z((f*gl---gp—lgp-i-l-‘-gk)a'—'—’ 9p) % Gra1 + D (F*91- - Gp10p41---Gk) a W Gpa W Gry1
p=1
k
- Zf (Gp O Ger1-g8) = D _(F*G1 - Gp1Gp+1--- gr) W (gp @ Grs1)
p=1
—Zf* (G @ Gkr1) Gy ) a W g
P#4q
=(f*g1-9K) x g1+ (f*g1.. ‘-ng+1+z fxg1  Gp—19p41--- 9k) * k1) a W Gp

) (F %91 Gp19pt1---Gk) a W (Gp * Gra1 — Gp ® Gt + p a W Gra1)

=Y fx(gr--(9p @ Gr1) -Gy ol gy — Zf (9p ® Gr1) - G)
p#q

=(f*g1- - 96)* g1+ (F*xg1-..gk) a W Grp1

Y (g gp1Gprt - Gr) * Grar — D F %G1 Gp1Gpr1- - (Gk ® Ght1) -Gk | ol Gp
q7#p
k

—Zf*gl (9p * Gr+1) - gk—Zf*gl (9p a W Gkt1) - - - Gk

k+1

=f*x|91-- 9k 4 Ggpp1 — 291 (9p a W Grt1) - - - Gr +Zf*91 - Gp—19p+1 - - - Gk+1) a W gp
p=1
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k+1

=fxg1 g1t D (F*G1- Gp10ps1-- - Grs1) a W Gp.
p=1

So the result holds for all & > 1. O
Proposition 17 On S(g)), ® = ©.

Proof. Let f,g € S(g,); let us prove that f ® g = f © g. We assume that f = f1... fx,
g9=01,---,qi, With f1,..., fk,91,...,91 € ¢, and we proceed by induction on k. If k = 0, then
f=1land f®g = f(®g = g. Let us assume the result at all ranks < k. We proceed by induction
onl. fl=0,theng=1and f®g= f©®g=f. Let us assume the result at all ranks < [. We
put:

Alfy=f1+1xf+fof, Alg)=g®1+10g+4¢d ®4".

The induction hypothesis on k& holds for f’ and f” and the induction hypothesis on [ holds for
¢ and ¢”. From:

A(f ® g— f @g) — f(l) ® g(l) ® f(2) ® 9(2) _ f(l) ® g(l) ® f(2) ® 9(2)7
these two induction hypotheses give:
A(feg-fog=Feg-fogel+le(feg—fog).

So f@g—f©®ge Prim(S(g,)) = g,,. Let m be the canonical projection on g/, in S(g,). We
obtain:

r(feg)=m(> (f*Hm) <9

1) icl jel

=7 Z fl*Hgi fk*ng <Hg@'

[{]=IoU...UI}, iely 1€l i€l
k
= Z H fp*HgZ’-i-Z fp* H gi | aW g5,
[(]=J1U...0J; p=1 = Jp€dp i€ Jp\{in}
k
=7 Z H foe H i
[ll=J1u..0uJd, \p=1 i€y
=m(feg)
=7(f©g).
Asf®g—fOgeEg, [®g=[f0Og. O

3.4 Graduation

We assume in this whole paragraph that a = (1,0,...,0) and V is finite-dimensional. We
decompose the g,-module V as a direct sum of indecomposables. By Proposition 9, decomposing
each indecomposables, we obtain a decomposition of V' of the form:

V=vO0g. . ovk,
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with Fy (V) C V®) and F; (V®) C V=1 for all i > 2, for all p € [k]. We put V, = V(F+1=¢)
for all p € [k + 1]. This defines a graduation of V', which induces a connected graduation of
T(V). For this graduation of V', F} is homogeneous of degree 0 and F; is homogeneous of degree
1 for all i > 2. We define a graduation of g/, = T(V)V:

¥ >0, (g)n = T(V)ner ® P T(V)n-16i.

Let v,w € T(V), homogeneous of respective degree k and [. Let 4,j > 2. Then:
e ve is homogeneous of degree k.
e ve; is homogeneous of degree k + 1.
e we; is homogeneous of degree [.
e we; is homogeneous of degree [ 4 1.
As v W w is homogeneous of degree k + I:
® Vel (1,0,..,0) LW wer = v W we; is homogeneous of degree k + [.
® Vel (1),..0) LW wej = v LW we; is homogeneous of degree k + 1 + 1.
® V€ (1,0,...,0) LW wer = 0 is homogeneous of degree k + 1 + 1.
® V€ (1,..0) L we; = 0 is homogeneous of degree k + 1 + 2.

Consequently, the product (1, . )W is homogeneous of degree 0. Proposition 14 implies that *
is homogeneous of degree 0; summing, e is also homogeneous of degree 0. Hence:

Proposition 18 The decomposition of V' in indecomposable g1 o,... 0)-modules induces a grad-
uation of the post-Lie algebra g’(LO’m,O).

We put:
k+1

Zdzm V,)X? € K[X].

the formal series of 9/(1,07...,0) is:

0))p) X"

sJgyeeey

R(X) = Z dim((g(l 0
p=1

1 X 1+(N-1)X
- (N-1) _ I+ WX
1- P(X) 1-P(X) 1-PX)
Note that R(0) = 1: indeed, (921707.._70))0 = Vect(De1). The augmentation ideal of 921707_“70) is:
(921,07”,70))+ =T (V)4 x T(V)N_l-

This is a graded, connected post-Lie algebra.

Example. For the SISO case, Vi = Vect(x2) and Vo = Vect(x1). The formal series of gsrso
is:
1+ X
X)= -~ "
RSISO( ) 1 _ X _ X2

Hence, (dim(gsrso)n)n>0 is the Fibonacci sequence A000045 [9]. For example:

=1+2X +3X2+5X3+8X* +13X° +

(gs1so)o = Vect(Der),

(gs1so)1 = Vect(zae1, Der),

(9s150)2 = Vect(:clel, ToTo€l, To€s),

(85150)3 = Vect(z1mae1, Tox1€1, ToTaTaer, T1€2, TaT2€ED).
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4 Graded dual

We assume in this section that a = (1,0,...,0). The augmentation ideal of g, is denoted by
(gl)+; recall that (g)o = Vect(Der).

e As (gl,)+ is a graded, connected Lie algebra, its enveloping algebra U((g),)+) is a graded,
connected Hopf algebra, and its graded dual also is. We denote it by Hy .

As an algebra, Hy is identified with S((g})*)/(De1). We identify (g,,)* with T(V*)V via
the pairing:

<f1 . fkei, Il ... :CZEj> = (51‘7]‘51{7[.]"1(1'1) e fk(xk)

The coproduct dual of ® = ® is denoted by A,.

The dual of the product W; defined on g, is denoted by A, , defined on (g),)* = T(V*)V.

We define a coproduct A, on S((g),)% ), dual of the right action *. Therefore, this is right
coaction of (Hy,A.) on itself:

(A ®@Id)o Ay = (Id® As) 0 A,.
Notations.
1. For all y € V*, we define 6, : (g,)* — (g,,)* by 0,(f) =yf.

2. For all z € (Hy)+, we put Ag(z) = Ag(z) — 1 ® z and Ay (x) = A (z) — 1 ® 2. For all
g o fi, - fe € (80)%:

(Aug) f@ i fo) =g, [* 1. fi)
4.1 Deshuflling coproducts
Proposition 19 For all g € T(V), for all i € [N], Ay, (ger) = Aw(g)(ex @ €5).
Proof. Let fi, fs € T(V), 11,12 € [N]

(Aw; (ger), frei, @ faeiy) = (ger, frei, W5 faeiy)
= 0iy,j (g€, f1 W fo€qy)
= 0iy,j0iy k(9 f1 W f2)
= 8iy,j0i k{Aw(9), f1 @ f2)
= (Aw(g)(ex @ €;), frei; @ faciy).

As the pairing is nondegenerate, we obtain the result. a

Notations. We define inductively, for [ > 0, j1,...,7; € [N]:

{Amm = Id,
— -
AU—'jl,.,.,jl — (A u_|j1 ® Id®( 1)) (@] Au-ljg

For all g € T(V*), for all i € [N]:

,,,,, L e =AY () a6, ® ... @e);

for all f1,..., f1e T(V):

Ay, 5 @) e .® fiy1) = (g, fr Wy, ... Wy fiy).
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4.2 Dual of the post-Lie product
Proposition 20 In Hy = S((g,)*)/{De1):
o Foralli € [N], A(De;) = 0e; @ 1+ 1@ (.

o ForallyeV*, ge(g,)*:

Z*Oey(g) :Z Z (QF;1 7-l(y)®ﬂ)O(Z*®Id)OAU-|j1 ,,,,, Jp (g)?

>0 j1,...,51€[N]

where we denote by v the sum of the iterated products of Hy :

,u‘{ T(Hv) — Hy
N1 ®...99%m — Gg1...9k.

Proof. The first point comes from fe; x U(g.,)+ = (0).

In order to prove the formula, it is enough to prove that, for f, fi,..., fx € g

<Z*°9y(9)7f®f1...fk>=<z Z (Orr ‘l(y)®M)O(A*®1d)OAmh o @) f&fi fi)s

120 j1,....j1 €[N]

or equivalently:

Oy(9), fxhro fi)=00 D, (O ewodi@ldoAy, (9, f®f-. fr),

] - KARIREY a2 2 T e
120 .717~"7]l€[N]

If f = De;, both sides are equal to 0. Otherwise, we can assume that f = xf’, with z € V and
f €g.

(0y(9), f* fr--- fr)

= vy, Z Z Ejp g (2) (f/* (Hfl> Wy fiy - Wy, fll>>
]

I={i1<...<4 }C[k] j1,e-01€EN i¢l

= Z Z <y7Fj1:-~~7jl($)><AU—'jl,.“?jl (g)vf/* (Hfz) ®fi1"'®fiz>

I={i1<..<i}C[k] g1, 1 €[N] i¢l
= Y (FLawse)deop)o(A@ld)oAw, . (9), ' ® f1-. fr)

.....

— Z <(9ij* """ jl(y)®Id)o([d®u)o(z*®fd)OAUJ].LM].Z (9),xf' @ f1... fr),
Iy J1 €[]

which ends the proof. O

In order to obtain a better description of the coproduct A,, we are going to identify the
following three objects:

S((ga)3)
S((ga)")/ (Der) S((ga)")/(Der — 1)
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Both identification sends = € (g/,)% to its class. Let us reformulate Proposition 20 in the vector

space S((g;)")/ (Der —1):

~ ~ l
W) =Y D e mene B eIl (9a e ®.. )
120 j1,....j1€[N]

=YY U L wene@el)aiMN e e.. 0 0a)
120 ji,....71€[N]

N l
= Z Z (QFJ_* llllll NOE: ) o (A ® Id)(A(uJ)(g)e;€ Rep ®...0¢€;)
120 ji,...,j1€[N]

oY (e M(y)®M)o(z*®1d)(A$>(g)ek®ejl@...@eﬁ) (1® fey).
120 jy.e i €IN]

Finally, identifying in S((g},)%):
Proposition 21 For all j1,...,j; € [N], we put:
Gijrrgi = Fjyg — gt
In 5((g2)1)/ (0er — 1)
e For alli € [N], A.(0e;) = 0e; @ 1.

o Forally e V*, forall g € (g})%:

=Y. D e wemwo@dieldoAy,  (g)

120 j1,....j1 €[N]

Example. For gsrso, as V is a module over the associative algebra (g(l,o),d), it > 2,
Fj, ..., = 0 by Proposition 11, so Gj, ... ;, = 0. Moreover:

N———
&
Il
7N
o O
S =
N———

Gy =

I
VR
o O
O =
N~~~

)
=
e

|

!

VRS
S =
o O
~_

D)
fint

7 N\
o O

_ o = O = O
N~

~_
Q
[0
Il
7N
_ O
o O
'

The coproduct A, on S((gsrso)?) is given by:
e For all i € [2], A,(e;) = Pe; @ 1.
e For all g € K(z1,x2), for all i € [2]:

© 0z, (9€:) = (02) @ Id) 0 Au(gei) + (0, ® 1) 0 (As @ Id)(Aw(g)€i ® €2),
0 Oy (g€i) = (B2, ® p) 0 (As @ Id)(Aw(g)€i @ 1)

l>\ l>\

These are formulas of Lemma 4.1 of [4], where a,, = weg, b, = wey, Oy = 0,,, 01 = 0, and
A=A,
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4.3 Dual of the pre-Lie product

Notations. We denote by A, the coproduct on T (V*) @ (V)N~1 dual to the product L.
As = w2, AL, =AYF | and for all g € T(V), for all i € [N]:

AL (ge) = Aw(g)(er @ ex).
Proposition 22 In S((g,)%)/(0e1), for all g € (gl)"
Ad(g) = Du(g) + (Id@ p)o (Ac @ Id) o A (g)-
Proof. Let f, fi,.. . fu € (g))+.
(Aelg), ffro o) =g, f o fr.. i)

k
:<g,f*f1...fk+Z<f*f1..ﬁ-..fk>1m )
= (Au(9), f@ f1-- fu) + Zf froidp- o T ® fp)

= (Ax(9): f @ fro fr) + (A @ Id) 0 A i (g Zf®f1 S ® fp)

:<Z*(9)af®f1---fk:>+<(Id®,u)o(A*®Id)OA1u.|(9)af®f1---fk>-

As (g),,*) is pre-Lie, Aq(g) € (g,)% ® S((gl,)%) and the nondegeneracy of the pairing implies the
formula. .

Rewriting this formula in S((g},)%)/(0er — 1):

Aulger) = Balger) + (Id @ 1) o (Be ® Id)(Aus(9) (61 ® 1))

A,(ger) + (Id @ p) o (A, @ Id)((Au(g) — g @ 0)(e1 ® €1))
A.(ge)(1® (1 — Ber)) + (Id ® ) o (Be ® Id)(Du(g)(e1 ® 1))
d @ p) o (Ax @ Id)(Au(g)(e1 @ €1)).

~

= (
Identifying in S((g,)%):
Proposition 23 In S((g;,)%)/(0er — 1), if g€ T(V*):

o(ge1) = (Id @ p) o (As @ Id)(A(g) (€1 ® €1)),

A
ifi > 2, Dalge:) = Di(ges) + (Id @ p) o (B, @ Id) (Aw(g) (& @ €1)),

with the convention Pe; = 1. We put Ae(g) = Au(g) + 1 ® g for all g € (g,)% and extend A, to
S((g,)%) as an algebra morphism. This coproduct makes S((g,)%) a Hopf algebra, isomorphic
to the graded dual of the enveloping algebra of ((g))+,[—, —]«)-

Remark. These are mutatis mutandis the formulas of Lemma 4.3 in [4].
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