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Abstract

We study systems of combinatorial Dyson-Schwinger equations with an arbitrary num-
ber N of coupling constants. The considered Hopf algebra of Feynman graphs is NV-graded,
and we wonder if the graded subalgebra generated by the solution is Hopf or not. We first
introduce a family of pre-Lie algebras which we classify, dually providing systems generating
a Hopf subalgebra; we also describe the associated groups, as extensions of groups of for-
mal diffeomorphisms on several variables. We then consider systems coming from Feynman
graphs of a Quantum Field Theory. We show that if the number N of independent coupling
constants is the number of interactions of the considered QFT, then the generated subal-
gebra is Hopf. For QED, ¢* and QCD, we also prove that this is the minimal value of N.
All these examples are generalizations of the first family of Dyson-Schwinger systems in the
one coupling constant case, called fundamental. We also give a generalization of the second
family, called cyclic.

Keywords. Dyson-Schwinger systems; Feynman graphs; pre-Lie algebras; combinatorial
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Introduction

In a Quantum Field Theory (shortly, QFT), the Green functions are developed as a series in the
coupling constant, indexed by the set of Feynman graphs. These series can be seen at the level
of Feynman graphs. They satisfy a certain system (S) of combinatorial Dyson-Schwinger equa-
tion (briefly, SDSE), which uses combinatorial operators of insertion, and allows to inductively
compute the homogeneous components of the Green functions, according to their loop number
[1, 14], 15, 16, 17, 18, 19, 20} 24, 25] 26, 28]. Feynman graphs are organized as a Hopf algebra
Hrg, graded by the loop number, and we consider the subalgebra H gy of Hrg generated by the
components of the unique solution of (S). A natural question is to know if the graded subalgebra
generated by the Green functions is Hopf or not. This problem, and related questions about the
nature of the obtained Hopf subalgebras, are the main object of study in [6] [7, 8, @]. It turns
out that in the case of QED or ¢?, which are QFT with only one interaction, this subalgebra
is indeed Hopf; this is not the case for QCD, with its four interactions. A possibility in this
last case is to refine the graduation, or equivalently to introduce more coupling constants, which
makes the subalgebra H 52 generated by the components of the solution bigger; we shall prove
here that there exists a N*-graduation of the Hopf algebra of QCD Feynman graphs, such that
H(s) is a Hopf subalgebra.

The aim of this text is to study SDSE giving a Hopf subalgebra when the Hopf algebra of
Feynman graphs is given a N"V-graduation, generalizing the results of [7] for the loop number



graduation. Recall that if we consider only one coupling constant, the Hopf algebra of graphs we
consider is N-graded, and we obtained two families of SDSE, called fundamental and cyclic, and
four operations on SDSE, allowing to obtain all SDSE giving a Hopf subalgebra. The graded dual
of this Hopf subalgebra is the enveloping algebra of a pre-Lie algebra, described in [9]. In the
fundamental case, the constant structures of this pre-Lie algebra are polynomial of degree < 1.
We generalize this definition to the NV-graded case (definition ; these objects are called
degl pre-Lie algebras. Their classification is done in theorem [3.:2.3] As enveloping algebras of
free pre-Lie algebras are Grossman-Larson Hopf algebras [10, [I1], dually the enveloping algebra
of a degl pre-Lie algebra can be embedded in a Connes-Kreimer Hopf algebra of decorated rooted
trees [4, 5], giving in this way a family of SDSE such the associated subalgebra is Hopf (theorem
. We also describe the group associated to such pre-Lie algebras; they all contain a group
of formal diffeomorphisms.

We then proceed to SDSE coming from a QFT. We first study all the possible graduations
of Hrg which are defined from combinatorial datas associated to Feynman graphs, such as the
number of vertices, of internal or external half-edges or edges, or the external structure: we
prove that such a NV-graduation is associated to a matrix C € M ~,[v|(Q), where V is the set
of possible vertices in the Feynman graphs of the theory (proposition ; the rank of C' is
of special importance here. We show how to lift these systems at the level of decorated rooted
trees, using a universal property, and we recover in this way SDSE associated to degl pre-Lie
algebras previously described, if the rank of C' is the cardinality of V. We may ask the question
of the minimal rank of C required to obtain a Hopf subalgebra: it is smaller than |V|. In QED
or ¢", as this cardinality is 1, the answer is obviously 1; for QCD, we prove in proposition [5.5.]
that it is also |V| = 4. The main idea is to produce primitive Feynman graphs with an arbitrarily
large number of vertices of any kind, and we conjecture that for any QFT with enough primitive
Feynman graphs, the minimal rank of the graduation is the number of interactions of the theory.
We shall conclude with a generalization of the second family of SDSE in the N-graded case,
namely cyclic SDSE.

This article is organized as follows. The first section contains reminders on Connes-Kreimer
Hopf algebras of decorated rooted trees, their universal properties, their graduations and their
graded duals. In the second section, we introduce the notion of combinatorial SDSE in Connes-
Kreimer Hopf algebras; we give three operations on SDSE, and also study the effect of changing
the graduation of the subalgebra H(g) generated by the unique solution of such a SDSE. We
then introduce and classify degl pre-Lie algebras in the next section, which dually give us a
first family of NV-graded SDSE. The group associated to these pre-Lie algebras are described
in the fourth section. Feynman graphs of a given QFT, their Hopf-algebraic structure and their
SDSE are introduced and studied in the next section. The last, independent, section deals with
a generalization of cyclic SDSE.

Aknowledgment. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.

Notations 0.0.1. 1. Let M and N be nonnegative integers. We denote by [M] the set of
integers {1,..., M} and by N¥ the set of nonzero elements of NV,
2. The canonical basis of KV (and of Z") is denoted by (e1,...,en).

3. Let a,be K. We denote by Fy;(X) the formal series:

Sala—0b)...(a—bk—1)) ., [(@T+bX)Tifb#0,
F“"’(X):,;) Kl T e e =0

Note that for all a,a’,b € K, Fyiqp(X) = Fop(X)For p(X).



1 Hopf algebras of decorated trees

Let us start with a few reminders on the Connes-Kreimer Hopf algebras of decorated trees
[4, 5] and related algebraic structures. We consider a nonempty set D, which we call the set of
decorations.

1.1 Definition and universal property

Definition 1.1.1. 1. A tree is a finite graph, connected, with no loop; a rooted tree is a tree
with a pointed vertex, called the root; a rooted tree decorated by D is a pair (T,d), where T
is a rooted tree and d is a map from the set V(T) of vertices of T to D; for all ve V(T),
d(v) is called the decoration of v. The set of isoclasses of rooted trees decorated by D is
denoted by TP.

2. The algebra HP of rooted trees decorated by D is the free commutative associative algebra
generated by TP. By definition, the set FP of rooted forests decorated by D, that is to
say monomials in TP, or finite disjoint unions of elements of TP, is a basis of HP. The
product of HP is the disjoint union of decorated rooted forests.

Example 1.1.1. We draw rooted trees with their root at the bottom.

1. The rooted trees decorated by D with n < 4 vertices are:

o, a € D; IZ, (a,b) € D?; b\/zcl = C\/l;, }Z, (a,b,c) e D?;
c c cd de d
2. The rooted forests decorated by D with n < 3 vertices are:
1; e, a € D; IZ, caeb = wbea, (a,b) € D?;
b\/::C\/l;, {E, Iz.c:.cIZ, ciebec = waecab = ... = scubea, (a,b,c) € D

The algebra H” can also be defined by a universal property [4, 27]:

Proposition 1.1.2. Let d € D. The linear endomorphism By of HP sends any rooted forest
F e FP to By(F) € TP obtained in grafting the different trees of F on a common root decorated by
d. This family of endomorphisms satisfy the following universal property: if A is a commutative
algebra, and for allde D, Ly : A —> A is a linear endomorphism, there exists a unique algebra
morphism ¢ : HP — A such that for alld € D, ¢ o By = Lg o .
d

o _ 4

Ezxample 1.1.2. If a,b,c,d € D, By(evle) = Va.
This universal property can be used to define the Connes-Kreimer coproduct of H:
Proposition 1.1.3. 1. There exists a unique coproduct on HP such that for all d € D, for
all x € HP:
Ao By(r) = Ba(z) ® 1 + (Id® Bg) o A(w).

With this coproduct, HP becomes a Hopf algebra. Its counit is the map:

. HP — K
Sl FeFP — 4py.



2. Let A be a commutative Hopf algebra, and for all d € D, let Ly : A — A a linear
endomorphism such that for all x € A:

Ao Ly(r) = La(z) @1+ (Id® Lg) o A(z).

The unique algebra morphism ¢ : HP — A such that for alld € D, ¢ o By = Lgo ¢ is a
Hopf algebra morphism.

This coproduct admits a combinatorial description in terms of admissible cuts. For example,
if a,b,c,d € D:

c c c a ¢ b c @ a
Abkzz:bk/d®1+1®bk/d+ I lo+ .a®\&+.c®}3+ lhee ® ed + eaec @ la.
Here is another application of the universal property:

Proposition 1.1.4. Let a = (aq)qep be a family of elements of K. We denote by ¢, the unique
Hopf algebra endomorphism of HP such that for all d € D, ¢ o By = agBq o ¢. For any forest
F e P, denoting by V(F) the set of vertices of F:

Qba(F): H ad(v) F.

veV (F)
Consequently, if for allde D, aq # 0, ¢4 is an automorphism.

Proof. We consider the endomorphism ¢ defined by:

VEeFP, o(F) = | [] aiw |F
veV (F)

Let F,F,Fy € FP. As V(FLFy) = V(F) u V(F), p(FiFy) = o(F1)p(Fy), ¢ is an algebra
endomorphism. As V(By(F)) = V(F) u {root(F)}, ¢(Bi(F)) = aqBi(e(F)). Consequently,
wo Bg = aqBgo . By unicity in the universal property, ¢ = ¢,. O
1.2 Graduation and duality

Definition 1.2.1. 1. A N¥_graded set is a pair (D,deg), where D is a set and deg : D —>
NV is a map. For all o € NV, we put D, = deg™'(a). We shall say that the NV -graded D
is connected if Do = & and if for all o € NV | deg™ () is finite.

2. Let D be a NN -graded connected set. For all forest F € FP, we put:

deg(F) = 3 deg(d(v).
)

veV (F
This induces a connected NN -graduation of the Hopf algebra HP, with:
Vae NV, (HP), = Vect(F e FP | deg(F) = a).
Moreover, for this graduation, By is homogeneous of degree deg(d) for all d € D.

If D is a NV-graded connected set, then, as H” is a graded connected Hopf algebra, its
graded dual (HP)* is also a Hopf algebra [I3, 23]. As a vector space, it can be identified with
HP, by the help of the symmetric pairing defined by:

VF,GE FDa <F7G> = SF(SF,Ga



where sp is the number of symmetries of F. The coproduct A’ of (HP)* is given by:
VTy,..., T, e TP, A(Ty...T}) = 2 (Hﬂ) ® (Hn) .
Ic[k] \iel ¢l

Its product * is given by graftings: this is the Grossman-Larson product |10, 11} 12]. For example:

b
b a
o] d
o _ve AL E
Note that this graded dual does not depend of the choice of the connected graduation of D.
By the Cartier-Quillen-Milnor-Moore’s theorem, (HP)* is the enveloping algebra of a Lie

algebra g”. By construction of the coproduct A’, the set TP is a basis of g”; by definition of
the Grossman-Larson product, for all T, 7" € TP:

[T,T'] = Z grafting of T on v/ — Z grafting of 7" on v.
v'eV (T") veV(T)

We define a product * on g by:

T+T = Z grafting of T' on v'.
v'eV (T")

For any z,y € g?, [2,y] =  *y — y * x. For example:

c b
b $ 3 b b a
LoVl e = 10
This product is not associative, but is pre-Lie:

Definition 1.2.2. A (left) pre-Lie algebra is a pair (V, ), where V is a vector space and * is a
bilinear product on V', such that for all z,y,z€ V:

(xy)rz—an(ysz) = (yra)ez—ys(@x2).
If (V, =) is pre-Lie, the bracket defined by [x,y] = x *y —y * x is a Lie bracket.

Moreover, Chapoton and Livernet proved, using the theory of operads, that g” is a free
pre-Lie algebra [2, [3]:

Theorem 1.2.3. Let A be a pre-Lie algebra and let ag € A for all d € D. There exists a unique
pre-Lie algebra morphism ¢ : g — A such that ¢(«d) = aq for all d € D. In other words, g”
18, as a pre-Lie algebra, freely generated by the elements «a, d € D.

1.3 Completion

We graduate H” by the number of vertices of forests, that is to say we consider the graduation
induced by the map deg : D — N, sending every element of D to 1. This graduation induces a
distance d on HP, defined by:

d(f.g) = 277109,

The metric space HP is not complete: its completion is denoted by ;[B. As a vector space, it
is the space of commutative formal series in TP. The product of #”, being homogeneous of
degree 0, is continuous, so can be extended to ’;QB: this gives the usual product of formal series.
Similary, for any d € D, By, being homogeneous of degree 1, is continuous so can be extended
toamade:ﬁB%ﬁ.



2  Multigraded SDSE

2.1 Definition

Definition 2.1.1. Let D = Dyu...uDyy be a partitioned set. Let (fq)aep be a family of elements
of K[[x1,...,znm]]. The system of Dyson-Schwinger equations (briefly, SDSE) associated to these
elements is:

Vie[M], X; = Z Ba(fa(X1,..., X)),
deD;

—M
where X = (X1,...,Xp) belongs to HP

By convenience, we generally index the family of unknows by [M], but it is of course possible
to index them by any finite set.

Proposition 2.1.2. Let (S) be a SDSE. It has a unique solution.

Proof. If X = (X1,..., X)) is a solution of (5), then for all i, X; is a infinite span of trees,
so belongs to t]}\lf augmentation ideal ’HE. Hence, it is enough to prove that (S) has a unique
solution in Hf . Let us consider the following map:

M

—M

HD — WD

(X1,...,Xy) — (Z Bi(fd(Xl,...,XM))) .
€[ M]

dEDi

O

—M
As By is homogeneous of degree 1 for all d, we obtain that for all f, g e HP

1
ae(f), 6(f)) < 5d(f.9).
—M
So © is a contracting map. As HP is complete, © has a unique fixed point (X7,..., Xp),
which is the unique solution of (5). O
Remark 2.1.1. 1. As the D; are disjoint, the nonzero X; are sum of trees with roots decorated

by elements of D;, so are algebraically independent.

2. If X; =0, we can delete the i-th equation of (S) and replace fgq by (f4)|,—0 for all d € D,
without changing Hg).

We now assume that all the X; are nonzero (and, as a consequence, are algebraically
independent).

Definition 2.1.3. Let D be a connected NV -graded set, inducing a connected N -graduation of
the Hopf algebra HP. Let (S) be a SDSE on D.

1. The unique solution of (S) is denoted by X = (X1,...,Xnr), and the homogeneous compo-
nents of X; are denoted by X;(a), i € [M], a € NY.

2. The subalgebra of HP generated by the X;(c)’s is denoted by H(s)-
3. We shall say that (S) is Hopf if H sy is a Hopf subalgebra of HP.

Note that Hg) depends on the choice of the graduation.



Example 2.1.1. Here is an example of SDSE. Le us fix £ > 1 and dp,...,dr € N. For any
a = (ap,...,a;) € [N]¥, we put:

deg(a) = do€ay + ... + diéq, € ZN.
The set of decorations is:
D = {a e [N]F" | deg(ar) e NV\{0}}.
The Hopf algebra HP inherits a connected NV-graduation. We consider the SDSE:

(S)rap s Vi€ [N], Xi= ) By (14 Xa)™ . (14 X ) (1L+ X) @) (1)
ae[N]*
In particular, if (dy,...,dr) = (0,1,...,1), this gives:
Vie [N], X; = >, B (1+Xa,)... (1+ Xq,)).
a€e[N]k

Taking k = 2, the components of X are a commutative version of the elements of Definition
20 in [6], which generate a Hopf algebra isomorphic to the free Faa di Bruno Hopf algebra on
N variables. We shall prove that it is indeed a Hopf SDSE, related to the Faa di Bruno Hopf
algebra on N variables.

2.2 Simplification of the hypotheses
Lemma 2.2.1. Let (S) be a Hopf SDSE, and let d € D. If f4(0,...,0) =0, then f4 = 0.

Proof. Let i € [M], such that d € D;. As f4(0,...,0) = 0, «a does not appear in X;, so
-4 never appears in any element of H(g). Let us assume that f; # 0. As the X; are al-

gebraically independent, f;(X1,...,Xn) # 0, and there exists a linear form g on ;[B, such
that g(fa(X1,...,Xn)) = 1. Then (g ® Id) o A(X;) is an element of Hg), where the term
9(fa(X1,...,XN))ed = «a appears: this is a contradiction. So fg = 0. O

Consequently, if Hg) is Hopf and fdo(0,...,0) =0 for a certain dy € D;, we can rewrite the
i-th equation of (.5) in the following way:

Xi = 2 Bd(fd(le"'vXM))'
dEDi\{do}

We now assume that for all de D, f;(0,...,0) # 0.

Lemma 2.2.2. We consider the two SDSE:

(S):Vie [M], Xi = > Ba(fa(X1,...,Xn)),

deD;
" Vi = Ja, ..., Yir)
(S)'WE[M]’K_C%B‘{< £a(0,-.0) )

For all d € D, we put ag = f4(0,...,0). Let ¢, be the Hopf algebra isomorphism defined in
proposition |1.1.4. Then:

1. For allie [M], X; = ¢o(Y;).
2. Hsy = da(H(sn))-
3. (S) is Hopf, if and only if, (S’) is Hopf.



Proof. We put:

_ fd(ml,...,xM)
gd(xla---aiUM) = m

As ¢g 0 By = f4(0,...,0)Bg o ¢, for all d, we obtain:

$a(Yi) = > $a© Balga(1,. .., Yar))

deD;

= > fa(0,...,0)Byo ¢a(ga(V1, .-, Y1)
deD;

= Z fd(07 e ,O)Bd(gd(¢a(Y1), Tt ¢G(YM)))
deD;

= Z Bd(fd(¢a(yl)a ) Qba(YM)))-
deD;

So (Y1), ..., Pa(Yar)) is the unique solution of (S). Points 2 and 3 are immediate consequences.

O

We now assume that f;(0,...,0) =1 for all de D.

Lemma 2.2.3. Let (S) be a Hopf SDSE, di,ds be two elements in the same D;, of the same
degree. Then fq, = fa,-

Proof. Let us denote by a the common degree of d; and ds. The homogeneous component of X;

of degree o has the form «1 + 42 + ...; consequently, if we consider the linear forms:
f HD — K f HD — K
1 D 2 D
FelF” —s 5F,d1’ FelF” — 6F,.dz’

then the restriction of f1 and f2 to Hg) are equal. As H gy is Hopf:
fa, (X1, .., X)) = (Id® f1) o A(X;) = (1d® fa) o A(X;) = fa, (Xay.o o, Xnr).
S0 fa, = fas- O
Note that, if the SDSE is Hopf, we can write it under the form:
Vie [M], X;= ), >0 Bi|(fa(X1 o X)) = Y Bialfa(X1,- -, X)),
aely \ieDidegli)=a | aeNy

v~

:Bi,a

2.3 Operations on SDSE

Definition 2.3.1. Let D = Dyu...uDyy be a NN-graded connected partitioned set. We consider
the SDSE given by:

(S): Vie [M], Xi= > Ba(fa(X1,...,Xu)).
deD;

1. (Change of variables) Let a = (ay,...,ap) be a family of nonzero scalars. The SDSE
obtained from (S) by the change of variables associated to these coefficients is:

(S)UL: Vie [M]a Y, = Z Bd(fd(al}/l,"'vaMYM))‘
deD;

8



2. (Restriction) Let I < [M]. The restriction of (S) to I is the SDSE given by:
(S)r: Viel, X;= ). Ba(ga(Xj,j 1)),
dGDi
where for all d € I, ga = faju;—0 for au jer € K[[X;,j € I]].
Proposition 2.3.2. 1. Let (S) be a SDSE and let (S), be another SDSE, obtained from (S)
by a change of variables. We define the coefficients aq, d € D, by:
aq = a; ide Di.

Let ¢, be the Hopf algebra isomorphism defined in proposition |1.1.4).

(a) The unique solution of (S)q is:
1 1
<a1¢>a(X1), s aM¢a(XM)> :

(b) Hence, H(s), = ¢a('H(5))
(¢) (S) is Hopf if, and only if (S), is Hopf.
2. Let I < M. We define the coefficients aq, d € D, by:
1ifde| |D;,
aq = 1€l
0 otherwise.

Let ¢ be the Hopf algebra morphism defined in proposition [1.1.7)

(a) The unique solution of (S)r is:
(¢a(Xi))ier -
(b) Hence, H(S)U = ¢a(H(5))
(c) If (S) is a Hopf SDSE, then (S)| is also a Hopf SDSE.

Proof. 1. For all i € [M], we put Y; = 2¢,(X;). Then:

Yi= — 3 600 BalfulXi,..., Xar))
v deD;

= Z Baq o ¢a(fa(X1,..., Xnm))

dEDi

= 2, Ba(fa(¢a(X1),- -, 6a(Xnr)))

dEDi

= Z Bd(fd(al)/M ey CLNYM))
deD;

SoY = (Y1,...,Y)) is the solution of (S),.

2. Proved in a similar way, noting that ¢4(X;) = Y; if i € I and 0 otherwise. O

Definition 2.3.3 (Concatenation). Let (S) and (S’) be two SDSE, respectively associated to
partitioned NN -graded sets D = Dy ... 1 Dy and D' = Dy u ... u D)y, and to formal series
(fa)aerary and (f))aepry- The concatenation of (S) and (S') is the system associated to the
NN _graded partitioned set D D' = Dy L ...u Dy u Dy w...u D)y, given by:

ifl<i< M, X; =) Ba(fa(X1,...,Xn)),
dEDi
M+1<i<M+M,X; = > Ba(fi(Xns,- - Xagenrr))-
deD;_

(S)u (S :



Proposition 2.3.4. Let (S) and (S’) be two SDSE. Then (S) u (S’) is Hopf if, and only if, (S)
and (S") are Hopf.

Proof. =. Let us assume that (S) u (S') is Hopf. Then (S) u (") = (S) and, up to a
reindexation, (S) u (S")jr+mp g = (7). By propositionm (S) and (S’) are Hopf.

<=. Let us assume that (S) and (S’) are Hopf. Then H gy (g is isomorphic to Hs)®@H gy &
HP @ HP < HPPP'. As H(sy and H gy are Hopf subalgebras of HP and HY', His) ® Hgry is
a Hopf subalgebra of HP=P' | so (S) i (S') is Hopf. O

Remark 2.3.1. As in [7], it is possible to define an operation of dilatation for multigraded SDSE.
We will not use it here.

2.4 Changes of graduation

Let D be a NV-graded connected set. Let C € M NN (Q). We assume the following hypothesis:
if o« € NV satisfies D, # (0), then Ca € NY'. We give D a NV -graduation by:

Dy= || Da
aeNN Ca=p

This defines another connected graduation of D. Consequently, H? inherits a second graduation:

D _ D
Higy = D Hiy
a,Ca=p
Let (S) be a SDSE on D. The solution X of (S) can be decomposed into two ways:

Xi = Z Xi(a) = Z X;(B).

aeNN BeNN’
Hence, we obtain two subalgebras, denoted by Hg) and 7-[’( s)"
Lemma 2.4.1. Under the preceding hypotheses:
1. st) < Hsy; if Ker(C) = (0), this is an equality.
2. If H’(S) is Hopf, then H gy is Hopf.

Proof. Let 8 € NY'. Then:

X/(B) = . Xi(a) e Hg).
Ca=p
Hence, H/(S) S H(s)- Let us assume that Ker(C) = (0). Let e NV. We put 8 = Ca. As C is
injective, X/(8) = X;(«), so X;(a) € 7-[’(5), and finally H gy = '(S).

Let us assume that 7-[’( 9) is Hopf. We denote by 7, the canonical projection on H” (). For

all e NV
Xi(a) if CB = «,
(X! =
ma(Xi(5)) {0 otherwise.

Moreover, for all z,y € HP:

T (my) = Z T (w)ﬂ—a” (y)

o' +a"=«

10



This implies that for all o € NV, 7, (’H’(S)> < H)- For p=Ca:

A(X (@) = A oo (XU(B))
= > (e ®mar) 0 A(Xi(B))

o' +a'=a

€ Z To <7—[’(S)) & mar (7—[’(5)>

a'+a"=a

€ H(S) ® 7’[(5).
So Hg) is a Hopf subalgebra of HP. O

We shall often restrict ourselves to matrices C' whose rank is N’. One natural question is to
find the smallest N such that there exists a NV-graduation making the studied SDSE Hopf.

3 A family of pre-Lie algebras

If (S) is a Hopf SDSE, as X; is an infinite span of trees with roots decorated by D;. Moreover,
in H(g), any linear span of rooted trees with roots decorated by D; is a linear span of Xi(a);
hence, we can write the coproduct of X; under the form:

AX)=Xi®1+ ) Pia(X1,..., Xn) ® Xi().

N
aeNy

So H(g) is a commutative combinatorial Hopf algebra in the sense of [2I]. Hence, its dual is the
enveloping of algebra of a pre-Lie algebra g(g). It is generated by the elements f;(), dual to the
nonzero X;(a); for all i, € [M], for all a, 3 € NI, there exists a scalar \; j(«, ), such that:

fi(B) = fila) = Aijj(a, B) fila + B),

where * is the pre-Lie product of g(s). When NV = 1, if the system is fundamental, we proved in
[9] that these coefficients are polynomial of degree < 1. We here generalize this case for any N.

3.1 Definition and examples

Definition 3.1.1. Let (g,*) be a pre-Lie algebra. We shall say that it is degl if there exists a
basis (fi(a))ie[M]’aeN*N of g, and A e KN, b(9) € K, such that for all i,j € [M], o, B € NY:

£3(8) * fi(e) = (A% o + b0y fi (o + B),

where we denote by - the usual inner product of KN. The elements A% and b9 will be called
the structure coefficients of g.

Ezample 3.1.1. We take M = N. The pre-Lie product of the N-dimensional Faa di Bruno Lie
algebra is given by:
fi(B) = fila) = (o + 8i ) file + B).
Here, A(i’j) = €5, and b(i’j) = (51'7]'.
Let (g, #) be a degl pre-Lie algebra of structure coefficients A®7) and b(+7). Let \; € K — {0}
for all i € [M]. We put g;(a) = \;fi(a) for all i € [M], o € NY. Then:

9:(B) % gi(a) = (\AD) - a4+ X)) gi(a + B).

So the degl pre-Lie algebra with structure coefficients A7) and b9 is isomorphic to the degl
pre-Lie algebra with structure coefficients )\jA(i’j) and )\jb(i’j): we shall say that these two pre-
Lie algebras are equivalent. Our aim in this section is to find all degl pre-Lie algebras, up to
equivalence.
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Lemma 3.1.2. Let g be a vector space with a basis (fi(a))ie[M],aeNQ’f elements A7) ¢ KN,
bd) e K, fori,je [M]. We define a product + on g by:

f3(8) * file) = (A" - 00D) i + ),
Then (g, *) is a pre-Lie algebra if, and only if, for all i,j,k € [M]:

(A = 0 and b = 0) or (ABI) = AGR)) (2)
AGDpGR) = AR k) (3)
pled) pk) — p(i:k) p(kd) (4)

Proof. Let o, 3,7 € N¥ i, ke [M]. Then:
(fe(7) = f5(B)) * filer) = fr(y) * (f5(B) * fila))
= (AGI) o 4 ) (AR . g 4 b(j’k))f«(a +8+7)
— (AW a4 D) (AR m+ﬁww D fila+8+7)
= (A6 o 4 b)Y (AGR) — ARy g AGR) Lo 4 pUR) — p(R)) (0 4+ B+ ).
Consequently:
(g, *) is pre-Lie
— Vi, j ke[M], VaeNiV,
(AG9) - o+ b)) (AGH) — AH)) = 0,
(Auﬁ).a_+b@kU(A(u)__Auu» 0,
(AGD) - oy 4 plEDY (HGHR) — pik) — AGR) o) = (AGK) . o 4 pR)) (p(RT) — p(@d) — AI) . ),
Vi, j, ke [M],
AGd) = or AGK) = AGK)
b(id) = 0 or AGK) = AGK)
AGD) (pER) — plik)y — plid) AGR) — AGR) (p(Red) — pid)) — pik) 4(d)
() (p(@k) — plik)) = p(ik) (p(kd) — pind)y,

which is equivalent to conditions —. O

Proposition 3.1.3. Let [M] = Ip u ... u I be a partition of [M], such that I,..., I # &
(note that Iy may be empty), A1,..., A, € KV, bi,...,bp € K, and bg) € K for all i € Iy and
p € [k]. We define a degl pre-Lie algebra by:

f 7 Opgbg tf JE€ Lgyq =10 € Ip,p > 1,
0 if j e Iy. W e '
by ifjelyq=1i€ .

This pre-Lie algebra will be called the fundamental degl pre-Lie algebra of parameters I =
(Io, R ,Ik), A= (Al, R ,Ak) € MN,k(K); b= (bl, R ;bk> e K* and b('L:J)

Proof. Direct verifications prove that these structure coefficients satisfy conditions —. O

Remark 3.1.1. 1. For example, the Faa di Bruno pre-Lie algebra of dimension N is funda-
mental, with I; = {j} for all je [M], In =&, A=1Iyand b= (1,...,1).

2. The pre-Lie product of such a pre-Lie algebra is given in the following way: if i € I,,, j € I,
a,feNy,

(Aq a+5qu ) fila + B) if p,q # 0,
[i(B) = fi(a) = § (A - a+b )fl(a—kﬂ)lfp—Oq#O
0if g=0.
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3.2 Classification of degl pre-Lie algebras
Let g be a degl pre-Lie algebra. We attach to it an oriented graph G(g), defined as follows:

e The vertices of G(g) are the elements of [M].
e There exists an oriented edge from i to j if, and only if, b9 0.
We shall write i — j if there is an oriented edge from ¢ to j in G(g).

Lemma 3.2.1. Let g be a fundamental degl pre-Lie algebra and let i —> j — k in G(g). Then,
in G(g):

Proof. By condition (4), if i — j —> k, then b@)p0k) = pERp(k0) £ 0 50§ —> k and k —> j.
With the same argument, ask — j — k, k— k. Asj— k—j, j — j. O

Proposition 3.2.2. Let g be a fundamental degl pre-Lie algebra. The graph G(g) has the
following structure:

1. The set of vertices [M] admits a partition [M] = Ip 1 ... I.

2. For all 1 < p < k, the complete subgraph of G(g) whose vertices are the elements of I, is,
either complete, either an isolated vertex.

3. For all i € Iy, there exists D(i) < [k], such that for all j € [M], i —> j if, and only if,

JE |_| 1.

peD(d)
4. If i € Iy, there is no vertex j such that j — 1.

Proof. First step. Let ig € [M]. For all p > 1, we denote by J, the sets of vertices j € [M], such

that there exists 41,...,ip,—1 € [M], igp — i1 — ... — ip—1 —> j. We put J = U Jp and we
p=1

consider a connected component K of the subgraph of G(g) of vertices J. Let us prove that K

is either complete, or is an isolated vertex. First, observe that if j — k in K, by definition of

J, there exists j,_1, such that j,_1 — j — k. By lemma , {j,k} is a complete subgraph

of K.

If K has no edge, as it is connected, it is an isolated vertex; let us assume it has at least one
edge j — k. By the preceding observation, {j, k} is a complete subgraph of K, so K contains
complete subgraphs. Let L be a maximal complete subgraph of K. If L € K, as K is connected,
there exists k € K\L, | € L, such that Kk — [ or | — k. We already observed that {k,1} is
complete in both cases. Let I’ € L. As L is complete, then ¥ — [ — I’ and I’ — | —> k: by
lemma k— 1, and I’ — k: L u {k} is complete, which contradicts the maximality of L.
So K = L is complete.

Second step. We denote by I the set of vertices ¢ such that there is no j with j — 4. Let
K be a connected component of the subgraph of vertices [M|\Iy. If k € K, then k ¢ Iy, so there
exists j € I, such that j — k. By the first step, K is an isolated vertex or is complete. We
denote by I; u ... u I the decomposition of [M]\Iy in connected components. Let ig € Iy, and
J such that ig — j. Then j ¢ Iy, so there exists p > 1, j € I,. If I, is an isolated vertex, then
iop —> j' for any j' € I,,. If I, is complete, for any j' € I, then ig — j — 5, so ip — j' by
lemma Denoting by D(ip) the set of p such that there exists j € I, with {9 — j, then
iop — j if, and only if, j € I, for a p € D(ip). O

13



Theorem 3.2.3. Let g be a degl pre-Lie algebra. Up to an equivalence, it is the direct sum of
fundamental degl pre-Lie algebras.

Proof. First case. We assume first that G(g) is complete. Let us choose ig € I. For all j,
bli0:3) 2 0: up to an equivalence, we assume that b7 = 1 for all j. Condition , with i = i
becomes: for all j, k, b0+ = p(*:3). Still by condition (@), as bGF) = p*3) 0, for all 4,7, k,
b(h3) = (k) Hence, for all 7, j:

b(lzj) — b(ivio) — b(i()vi) =1.

Condition becomes: for all i, j, k, AUKF) = Ak We denote by A% the unique vector such
that A% — A®) for all i. Condition becomes: for all j,k, A®) = AU So there exists
a unique vector A, such that for all 7,5, A®) = A. Finally, g is a fundamental degl pre-Lie
algebra, with [M] = I.

Second case. We assume that G(g) is connected. We use the notations of proposition
If there is an edge from ¢ to j, by condition , for all k, AWK = AGK) By connectivity,
there exists vectors A% such that for all 7, j, k, A@*) = AGK) — A®)  We consider the pre-Lie
subalgebra g, of g generated by the elements f;(a), i € I, a € NY. They are degl pre-Lie
algebras; if p > 1 and I, is not a single element, then the graph associated to g, is complete. By
the first step, up to an equivalence, we can assume that A*) is constant on Ip,: there exists a
vector A, such that Ak) = Ay for all k € I, p > 1. Moreover, there exists a scalar b,, such that
b(3) = b, for all i,j € I, if p > 1.

Let j € Iy. By connectivity of G(g), and by definition of Iy, there exists k such that j — k,
so bk = 0 and b*J) = 0. By condition , AI) = 0 for all i, so AW =0 if j e I.

By definition of the graph, if 1 € I,, j € I, p,¢ = 1 and p # ¢, then b(@d) = 0. If j € Io,
then b(") = 0 for all i. Let i € Iy, j,k € I, p = 1. If j = k, then b)) = p(K) If j # &, then
I, is complete and j — k in G(g): b9*) = pUk) 0. By condition (4)), (%) = (i), So there
exists bl(f), such that b(47) = g) for all j € I,. Finally, the structure coefficients are given in the
following arrays:

N o[ 1 |- ] Ik N ol L. ] In
To | 0| Ay | ... | Ay I |0 [0 ] |60
AGD o : b)) | L [0 by |...] 0
o : o] S
. 10| A .. [4, L 101 0 .. |t

So this is a fundamental degl pre-Lie algebra.

General case. Let Gi,...,G| be the connected components of G(g). By the second step,
up to an equivalence of g, the pre-Lie subalgebra of g corresponding to these subgraphs are
fundamental degl pre-Lie algebras.

First subcase. Let us assume that there exists ¢ € G, j € G, with p # ¢, such that A9) £ (.
By condition , for all k, AGK) — Ak By connectivity of G, and Gy, we deduce that for all
i' € Gp, j' € Gy, for all k, AWK = AU'F),

Second subcase. Let us assume that for all i € G, j € G, AWI) = 0. As b3) = 0, for all
a,BeNY forallieG,, je Gy, fi(B)* fila) = 0.

We define an equivalence relation ~ on [M] in the following way: i ~ j if for all k, AGR) =
AUK) | The first subcase implies that the equivalence classes are disjoint union of Gp: we denote
them by Hi,...,H,. The second step gives that the corresponding subalgebras gi,...g, are
fundamental degl pre-Lie algebras. By the second subcase, g =g1 ® ... D gn- O
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3.3 SDSE associated to a degl pre-Lie algebra

We here describe the dual of the enveloping algebra of a degl pre-Lie algebra, as a subalgebra
of a Hopf algebra of decorated rooted trees. We use for this the Guin-Oudom extension of the
pre-Lie product [22].

Lemma 3.3.1. Let g be a fundamental degl pre-Lie algebra. For alli € Iy, p # 0, o, B1,..., Bk €
NN
0 if one of the j, is in Iy,
) k €q—1
Jir(Bo) - (B) # H H (Ag-a+by(6pq — 7)) fila+ B1 + ... + Br) otherwise,
q=1 r=

where eq = H{p € [k] | jp € I;}. Ifie Ip:

0 if one of the j, is in Iy,

' ' o f k €q—1
Fin(Br) -+ fi: (Br) # fi(e) H H (Ag -+ b —rby) fila+ By + ... + B) otherwise.

q=1 r=0

Proof. We proceed by induction on k. The result is obvious if £ = 1. Let us assume the result
at rank k. We assume that i € I,, p > 1. We put:

f]1(51)f]k(ﬁk) fZ( ) J1, Jk( )fi(a+51+‘--+/8k)’
Then:

ﬁ&&%~meWmﬂ*ﬁ()=ﬁmdﬁﬂ)(ﬁd@%~fﬁ@w*ﬁ®»
—th B1) - (Fiss Bran) * F5,(8p)) - F1 (Be) * filc).

If ji+1 € o, this is zero. Let us assume that ji1; € I, ¢ = 1. For all p, let bl(p) be the unique r
such that j, € I,. Then:

Jir(B1) - fir (Brs1) * fi(@)
:P(Jl, ( )fjkﬂ(ﬁk—i—l) fila+ By + ...+ Br)

k

- Z A Bp"‘ébl(p )f]1(61> fjp(6p+5kk+1>"'fjk(6k)*fi(a)

p=1
= Py, (@)(Ag - (a0 + B+ ..+ Br) + dpgbg) fila + B+ ... + Bry1)
= P (@(Ag - (Br+ o+ Br) + by(eg — 1)) fila+ B1 + .. + Brya)
= P(jl,m,jk)(o‘)(Aq ca+by(Opg —eq + 1)) fila+ P14+ ...+ Bry1)-

The computation is similar if ¢ € Ij. O

We shall write shortly:

f]1(/81)f]k(ﬁk) fila) = ]1, ,jk( a)fila+ B+ ...+ Br).

Let Dyn = [M] x N¥. Recall that gP™.~ is the free pre-Lie algebra generated by the rooted
trees «d, d € Dyrn. The set Dy n is N/V-graded, with deg(i,a) = a, and this graduation is
connected.

If g is a degl pre-Lie algebra, one defines a connected NV -graduation of the pre-Lie ggj—v ) by
putting f;(a) homogeneous of degree a. We define a pre-Lie algebra morphism:

b GS{V) — 9
’ @ — fl(oz)
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Lemma 3.3.2. Let T € TPMN. We denote by (r(T),d(T)) the decoration of the root of T. There
exists a scalar A, such that:

O(T) = A frer)(deg(T)).
These coefficients can be inductively defined by:

\ 1if T =6 |
o=
ATy - AT Py, () (@) it = By (Th - - Tk).

Proof. We proceed by induction on the number n of vertices of T'. It is obvious if n = 1. Let us
assume the result at all rank < n,n > 2. Weputt = B(; o)(T1...T;). Then T' =T ... T *%c
so:

(T) = ¢(T1) ... o(Tk) fi(a)
= Ary - Ar o) (T1]) -+ fre (I Tk]) * fi)
= A1y - AT Pomy),. ey (@) fila + deg(Th) + ... + deg(T),))
= A1y - AP, ey (@) fi(deg (1)),
Hence, the result holds for all n. O
By duality, we obtain a Hopf algebra morphism:
Ul — HOwr
"y fila)r — > AT,
deg(T)=ar(T)=i °T

We put up = 2‘—; for any rooted tree T' e TPM.N and, for any i € [M]:

X; = 2 prT.
r(T)=1

If t = B o) (Tl Lo Tlﬁl>, where T1,. .., T} are distinct trees, with ¢ € I,,, p > 1, denoting by ¢,
the number of trees ¢ in T ... T such that r(T;) € I:

/\/31 )\gf k eq—1
HT = —3; : HH (Ag -+ bg(dpg — 7))
Sy - STZ a=1 7=0
gq—1
= g - MTlﬂl ,Hg HA s+ bg(Gpq —1))-
q r=0

Consequently, if i € I,,, p > 1:

with:

Figa(X) = Fagatbgsy.obe(X) = Fagaby (X)Foys, gbe(X) = Fagap, (X)(1 + bgX)%re

A similar computation for ¢ € Iy gives:

k
X; = Z B(i,a) H FAq'aqu Z H (Z) ,bg Z J

aeNy g=1 Jjelq j€lq

We proved:
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Theorem 3.3.3. Let [M] = Igu Ty u... Ul Ay, A e KV by e K B 00 e K
for all i € Iy. We consider the following SDSE:

k
Viely,p>1 X;= Y Bja HFAq.a,bq X[ t+b ) X5,

aeN*N q=1 J€lq Jelp
k
Vielo, Xi= 3 Bua | [[Facas, | 2% H W, | 20 X
aeNY g=1 iely iely

The NN -graded subalgebra of HPMN generated by the unique solution of this SDSE is Hopf. Its
dual is the enveloping algebra of the fundamental degl pre-Lie algebra associated to I, A and b.

Ezample 3.3.1. We choose N = M, I ={1}u...u{N}, A= Iy and b; =1 for all i € [N]. The
associated Hopf SDSE is:

N
(S) : Vie [N], X; = Z B(i,oz) <1_[(1 + Xq)o‘q(l + Xﬂ) .
aENg q=1
This is related to the SDSE described in . We only conserve as decorations the elements of:

= {deg(a) | a« € D}.

For all a = (o, ..., o) € [N]*™, we put B, = B(a,.deg(a))- The SDSE (S) becomes:

(S) VZE , X; = Z B/za ( 1+Xq)2p,apqdp(1+Xi)d0+1>
qg=1

aeNk

«—Vie [N]’ XZ = Z BEi,a) ((1 + Xal)dl . (1 + Xak)dk(]. + Xi)doJrl) )

aeNF

This is the system of , which is consequently a Hopf SDSE.

4 Group associated to a fundamental pre-Lie algebra

4.1 Lie algebra associated to a fundamental pre-Lie algebra

Proposition 4.1.1. Let g be a fundamental degl pre-Lie algebra, with parameters I, A and b.
We denote by r the rank of A. Then g is isomorphic, as a Lie algebra, to a fundamental degl
pre-Lie algebra g with structure coefficients given by:

— i\J 1...k|k+1...M
gy N |l.r el M yod 1.k 0 0
1M | A 0 ' 70)
L k+1...M | b, 0
with 0 < r < k < M. We shall say that such a fundamental degl pre-Lie algebra is reduced.

Proof. First step. For any p > 1, let us fix ig € I,. If i € I,\{io}, we put gi(a) = fi(a) — fi, (@)
for all a € NY. Ifjely, q#0:

f](ﬁ) * gi(a) = (Aq cot bq(sp,q>9i(04 + B).
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Consequently:

9i(B) * gi(a) = 0'if j € Ip\{io}, fi(B) * gi(e) = 0if j € Io.
Replacing the elements f;(«) by gi(«) for all ¢ € I,\{ig}, these computations proves that g is
isomorphic to a degl pre-Lie algebra g¢’, with [M] = I u ... u I}, such that

{io} if ¢ = p,
Illl = IO [ Ip\{ZO} if q= O,

I, otherwise.

Proceding in this way for all p, and after a reindexation, we obtain that g is isomorphic to a
fundamental degl pre-Lie algebra with:

T M AL A 0
i\Jj L. [k [k+1...M
1 b1 | O |...1 O 0
: 0 : :
pli:d)
0
k O |...] 0| b :
k1 M B0 [l 0

If1<i,7<k,ing"

[fi(B), fila)] = (Aj - a+ i jb;) fila + B) — (Ai - B+ 8 5bj) fi(a + B)
=Aj-afila+B) = A - Bfi(a+ ).

Hence, the Lie bracket of g does not depend of b.

Second step. Up to a Lie algebra isomorphism, we can now assume that by = ... = b = 0.
Let P € GLi(K). For all i € [k], we put:

gi(@) = Y pjifj(a).
J
Then (gi(a));<paeny U (fi(@))ispaeny is a basis of g. Moreover, if 4, j € [k]:

9;(B) = gj(a) = Z pjr,ipi il (B) * fu(a)

Y
? )-]

= Z Py ipiriAj - afy (o + B)

sl
? ’-7

5

Similar computations give, if 1 < j <k <i < N:
95(B) * file) = | [ Dopjrjdy |-+ ij/,jbéf) fila+ B).
7 7
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Moreover, if 1 i<k <j < N:

£i(B) # gi(a) = 0.
Hence, g is isomorphic, as a Lie algebra, to the fundamental degl pre-Lie g’, with A’ = AP, and
Y3 = 0if i,j < k. Up to a permutations of the rows and the columns of A, we can assume

that:
(A A
A_<A3 A4>’

with Ay € GL,(K). As r = Rank(A), there exists ) € M, j_,, such that:
Ay [ A
(a)-(2)e
p_ (4 —Q
B 0 Iy ’

, (1, 0
=(70)

which finally gives the announced result. O

We then take:

and then:

4.2 Group associated to a reduced degl pre-Lie algebra
Notations 4.2.1. Let p e N* and ¢ € N. We fix a matrix B € M, ,(K). For all i € [p], we denote:

Gi={z;(1+F)| FeK[[z1,...,2p,y1, .-, Ygll+} S K[[z1, .., Zp,¥1,- - Ygl]+-

Proposition 4.2.1. Let Gg = G x ... x G, € K[[z1,...,2p,Y1,...,Yq]]P, with the product
defined in the following way: if F' = (F1,...,F,) and G = (G1,...,G,) € Gg,

B B B B
F 1,1 F 1,p F q,1 F q,p
FOG=G<F1,...,Fp,y1<1> ...<p> ,...,yq<1> ...<p> )
T xp Il f]}'p

Then Gg is isomorphic to the group of characters of a NPT9-graded Hopf algebra Hg. The
graded dual of Hp is the enveloping algebra of the reduced degl pre-Lie algebra gp associated to
the structure coefficients:

ig) .| 0N [ 1...p e @i | A [L...p
AT 1...p| A 4 < b 1...p 0




The identity of this monoid is the element I = (z1,...,z)).

Let A= (A1,..., Ap, i1, - - -, fig) € (K*)PT2. We define:

Gz — Gg
My R LR A
— (@, ApTp, Y, - HqYg)

1<i<p

Let us prove that this defines a action of the torus T' = (K*)P™? on the monoid Gp by auto-
morphisms. We shall write shortly ¢y ,(F) = %F(Ax,uy). Clearly, ¢ 0 dx = Gan pw and
¢1,1 = Idgy, so this is indeed an action. Let F,G € Gg.

B
Yo (F1e G) = %G <F(Mf7uy),uy <W> >

= ¢(A,u)(F) i ¢(A,u)(G)
For all i € [p], A e N.*9, we put:

Gg — K
XlO‘) : ; AL Ap, p1 Hq - )
G — coefficient of ;7" .. 2"y . yg” in Gy
We obtain an action on the torus 7' on these functions by transposition:
PA(Xi(@))(G) = Xi(a)(¢a(G))

1
= X;(a) (AG()\x,uy)>
1
by
So this action is given by o) (X;(a)) = A*X;(a). Consequently, denoting by Hp the algebra
generated by the elements X;(«), it gives it a NP*9-graduation, for which X;(«) is homogeneous
of degree «: this graduation is finite-dimensional and connected.

AP gt X ()(G).

We define a coproduct A : Hg — HB/®\HB in the following way:
VX € Hp, VF,G € G, A(X)(F,G) = X(F ¢ G).
As the torus acts by automorphisms, for all A e T"
A(X(X))(F, G) = X(pA(F' 0 G)) = X(dA(F) @ A(G)) = (63 ® ¢}) © A(X)(F, G).

Hence, A respects the action of T', so respects the graduation implied by this action, and conse-
quently is homogeneous of degree 0. As the graduation is finite-dimensional, A(Hp) € Hp@Hp.
As Gp is a monoid, Hpg is a bialgebra. As it is connected, it is a Hopf algebra, so G is a group.
By construction, the group of characters of Hp is Gg.

By Cartier-Quillen-Milnor-Moore’s theorem, the graded dual of Hp is the enveloping algebra
of a Lie algebra g, whose basis is given by elements f;(«) dual to the elements X;(a). Moreover,
as the composition of Gg is linear in the second variable, the Lie bracket of g is induced by a
pre-Lie product #; by homogeneity, for all 7,5 € [p], o, 3 € N9, there exists a scalar A7) (a, 3)
such that:

£5(B) * file) = A¥)(a, B) fila + ).
Moreover, A7) (q, B) is the coefficient of X;(8) ® X;(a) in A(X;(a + B)). Direct computations
give that:

q
Fi(B) % file) = [+ ) Ay jogegy + 6ij | fila + B),

i'=1

so g is isomorphic to g as a Lie algebra. O
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Example 4.2.1. If ¢ = 0, we obtain a Faa di Bruno group of formal diffeomorphisms, with the
composition. This is the case for the SDSE (S)pgp in , where A = Iy. The associated group
is:

G = ({(x1(1+F1)77xN(1+FN)) ‘ Fl,...,FNEK[[$1,...,$N]]+},O)

Proposition 4.2.2. Let Vj be the group (K[[z1,...,2p,y1,...,Yqll+,+). The group Gg acts by
automorphisms on Vy by:

B
VF € Gg, VPevO,FHP=P<F,y(F> )
X

For all r = 0, the group V§ x Gg is isomorphic to the character group of a NPT -graded Hopf
algebra Hpg ., whose graded dual is the enveloping algebra of a fundamental degl pre-Lie algebra
gB with structure coefficients:

@) .| N 1..plp+tl..p+r N
pid) | l..p+r
' 1...p—|—r 0

Proof. Let F € Gp, P,Q € Vy. Obviously, F — (P+ Q) =F — P+ F — Q. Let F,G € Gp,

P e Vy. Then:
G =P ( <§>> o(5)° (v &)

= (FeG)—
We define an action of the torus T = (K*)P*7 over Vj by:

YA(P) = P(MT1, -+, ApTp, 1YL -+ - 5 HqYq)-

It is easy to prove that this is an action by automorphisms, and for all F'€ Gg, P € Vj:
UA(EF = P) = $\(F) = ¥a(P).

A system of coordinates of the group V{j % Gp is given by the elements X;(a) defined on Gp

and Yj(a) defined on Vj by:
Vi — K
Y. 0
i) { (Pi,...,P,) —> coefficient of % in FP;.

These elements generate an algebra Hp,, containing Hp. The action of the torus extends the
graduation of Hp to Hp,, making a graded connected algebra. Consequently, it inherits a
coproduct, dual of the composition of the group Vj x Gp, making it a graded connected Hopf

algebra. Note that Hp, contains Hg, and by construction its character group is Vj x Gp.
The composition in Vi’ x Gg is given by:

(Pl,...,PT,F)O(Ql,...,Qr,G)=((Pl+F‘—>Q1,...,PT+F;>QT,FOG).
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Consequently, it is linear in the second variable; hence, the graded dual of Hp , is the enveloping

algebra of a pre-Lie algebra g. This has a basis (fi(a))ie[p] aenete U (g) (B))J.em gene+a, dual of
) * ’ *

the SDSE of coordinates X;(a) and Y;(5). The pre-Lie product of f;(8) and f;(«) is the same
as in gp, and direct computations give:

fi(B) # gi(a) = A; - agi(a + ), 9;(B) * fila) =0, 9;(B) * gi(a) = 0.
So this is indeed isomorphic to a reduced degl pre-Lie algebra, as announced. O

This last result is proved similarly:

Proposition 4.2.3. Leta € K" andbe KP. Let Vg, be the group (K[[z1, ..., 2p,y1,-- ., Ygl]+, +)-
The group Vi’ x Gg acts by automorphisms on V,y by:
F\ "
2, )

B by
<P17 cee ) Q Q < (F) ) ea1P1+...+aTPr (ﬂ)
T

Ifa®, ... a® e K and bV, ..., b®) € KP, the group (Vo p0) @+ . @) o)) ¥ (Vg < Gp) s
isomorphic to the character group of a NP*9-graded Hopf algebra Hp rqp, whose graded dual is
the enveloping algebra of a fundamental degl pre-Lie algebra g with structure coefficients:

AG9) . i\J 1...p|p+1...p+7r+s Ao I,
' 1...p+7’ Aj 0 B .
i\ L...p |p+1...4+p+riptr+l...p+tr+s
b(i’j): 1...p+r 0 0
ptr+l..ptrts|of P a\" ) 0

5 SDSE associated to a family of Feynman graphs

5.1 Feynman graphs
Definition 5.1.1. A theory of Feynman graphs T is given by:

o A set HE of types of half-edges, with an incidence rule, that is to say an involutive map
L:HE — HE.

o A setV of vertex types, that is to say a set of finite multisets (in other words finite unordered
sequences) of elements of HE, of cardinality at least 3.

The edges of T are the multisets {t,.(t)}, where t is an element of HE. The set of edges of T is
denoted by .

Ezxample 5.1.1. 1. In QED, HEgQEep = { ~~, =, —=<—}, and the incidence rule is given
by:
e ¢ > e —_—— > —C—‘

9

Hence, there are two edges, ~~~ = { ~~  ~~~}and —— = { —_ —‘-} There

is one vertex type, MA( ={~r~

) 9

Vocp = Qp’(‘m’\ @’%%‘%
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The incidence rule is given by:

[V Ve PR > m7 —— ,—1—7 c - ¢ > B

There are three edges, ~~ (gluon), —*— (fermion) and ™ (ghost).
3. Let N > 3. In ¢V, E,n = {7 }. There is only one vertex type, which is the multiset
formed by N copies of . There is only one edge, denoted by

Definition 5.1.2. Let T = (HE,V,t) be a theory of Feynman graphs. A 1PI graph G of the
theory T is given by:

o A nonempty, finite set HE of half-edges, with a map type : HE — HE.

o A nonempty, finite set V of vertices.
e An incidence map for half-edges, that is to say an involution map i : HE — HE.
o A source map for half-edges, that is to say a map s : HE — V.
The following conditions must be satisfied:
1. (Respect of the incidence rule) for any e € HE such that i(e) # e, t(type(e)) = type(i(e)).

2. (Respect of the vertex types) for any v € V, the multiset type(v) = {type(e) | s(e) = v}
belongs to V.

3. (Connectivity and one-particule irreducibility) the set of internal edges of G is:
Int(G) = {{e,i(e)} | e€ HE,i(e) # e}.

The source map makes (V,Int(G)) a graph. This graph is 1-PI, that is to say that it is
connected and remains connected if one edge e € Int(G) is deleted.

4. (Ezternal structure) the set of external half-edges f G is:
Ext(G) = {e| ec HE,i(e) = e}.
We define type Ext(G) as the multiset {type(e) | e € Ext(G)}. Two case are possible:

(a) type Ext(G) = {t1,ta}, with o(t1) = ta. In this case, we shall say that the external
structure of G is of type edge typeExt(G).

(b) typeExt(G) € V. In this case, we shall say that the external structure of G is of type

vertex type Ext(Q).
A Feynman graph is the disjoint union of a finite number (possibly 0) 1-PI Feynman graphs,
called its connected components. The set of Feynman graphs of the theory T is denoted by FG.

We shall only consider theories such that there exists 1-PI Feynman graphs for all type of
external structures.

Ezrample 5.1.2. 1. Here are examples of 1-PI Feynman graphs in QED.

External structure Examples

< LALLHLE

— OB
= =N
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2. Here are examples of 1-PI Feynman graphs in QCD.

External structure Examples

PR
it @‘é @@@”@% “”‘é
=2 -4

w | HA

SR G WS« 0«
B e N

Y

3. Here are examples of 1-PI Feynman graphs in ¢3.

External structure Examples

< (R

_ o~<P>-_A

Definition 5.1.3. 1. Let G = (HE,V,i,s) and G' = (HE",V',i',s") be two Feynman graphs
of a theory T. We shall say that G’ is a subgraph of G if:

(e) HE' € HE, V' = s(HE') and s’ = s|gp.
(b) For anyee HE', i'(e) = e ori'(e) = i(e).
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2. Let G' be a connected subgraph of G. We define a structure G/G' = (HE",V",i" s") in
the following way:
o [f the type of the external structure of G' is a vertex:
(o) HE" = (HE\HE'") u Ext(G").
(b) V" = (VAV') L {0}.
(c) For allee HE":
o) = {s(g) ifec HE\HE',
0 if e € Ext(G").
(d) For allee HE", i"(e) = i(e).
o [f the type of the external structure of G’ is an edge, let us denote by e1 and ey its two
external half-edges.
(o) HE" = HE\HEFE'.
(b) V' =V\V".
(c) For allee HE", s"(e) = s(e).
(d) For allee HE":
i(e2) if e =i(ey1),
i"(e) = iler) ife = i(ea),

i(e) otherwise.

If G is not connected, we put G' = G ... G}, its decomposition into connected parts, and
define G/G' = (...(G/GY)/GS)...)/G.. It does not depend of the order chosen on the

connected components of G.

3. If G/G' is a Feynman graph, we shall say that G' is an admissible subgraph and we shall
write G' < G.

Roughly speaking, G/G’ is obtained by deleting G’ from G and contracting the hole which
appeared until it vanishes. By convention, G/G = 1 and G/1 = G. Observe that if G’ < G and
G is 1-PI, then G/G’ is also 1-PI, with the same external structure as G.

The set FG(T) is a basis of the Hopf algebra H rg(7) associated to a theory 7 of Feynman

graphs. Its product is given by the disjoint union of Feynman graphs; its coproduct is given by:

VG e FG(T), A(G) = ). G'®G/C.
G'cG
Example 5.1.3. In QED:

Awé=%é®1+1®%é+0®m<,
Aﬁ<{=“<{®1+1®"<{+v<®w<,
S SN S

Definition 5.1.4. Let G be a Feynman graph of a given theory T . The loop number of G is:
UG) = tInt(G) — §Vert(G) + t#{ connected components of G}.
Note that because of the 1-PI condition, for all nonempty graph G, {(G) > 1.

We shall prove afterwards that the loop number defines a connected N-graduation of the Hopf
algebra H rg(1).
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5.2 Graduations

Let us fix a theory 7 = (HE,V,1). We look for graduations of the Hopf algebra Hrg(). We
shall use the following notions:

Definition 5.2.1. 1. The incidence matriz of T is the matric AT = (Gew)eene vey, where
Qe 15 the multiplicity of e in the multiset v.

2. The reduced incidence matriz of T is the matriz A% = (ag,,)ece vev, where:

a .
—2% if e = {e1, e1},
/ 2

&v Qey v T Qey v

5 if e = {e1, ea} with e # es.

3. Let G e FG(T). We define four vectors related to G:

(a) Vo = (v+(Q))ey, where vi(G) is the number of vertices v of G such that type(v) = t.

(b) Eg = (hei(G))tens, where he (G) is the number of half-edges e of G such that
type(e) = t.

(d) Sa¢ = (s¢(G))evoe, where si(G) is the number of connected components of G of
external structure t.

Ezxample 5.2.1.

1000
1 1000
Agep =1 1 |, Agecp=1| 01 0 0 |, Agn = (n)
1 0100
113 4
) 1000 .
bED=(1>, bCD: 01 0 0], A;HZ(E).
2 1 1 3 9
2 2 2

Proposition 5.2.2. Let G € FG(T). Then:
1. Eg = AV,
2. B, = AL Vg — (A 1d)Sq.
3. The number of external half-edges of G is (1...1)(Ar 21d)Sg.

4. The loop number of G is:
UG) = ((1‘“21)‘47—(1...10 Ve — ((1...1) (ATo) —(1...10...0)> Se.

Proof. The first three points are easy results of graph theory. The number of connected compo-
nents of G is (1...1)Sg; the number of external half-edges of G is given, from the third point,
by (1...1)(A7 21d)Sg. Hence, the number of internal edges of G is given by:

(1...1)Eg — (1...1)(Ay 2Id)Sc
: .
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The loop number of G is consequently given by:

0G) = (1...1)Eg—(1.2..1)(147‘216056' (1. 1)Ve+(1...1)Sa

:(u”;VL—UHJQVb—QL“U<iTM>—GHJOSG
:(ﬂ“;VL—GHJOVb—CL”D<?h>—ﬂ”JUHm)&;

which proves the last point. O

We now look for QV-graduations of the Hopf algebra H Fg(7)» Which only depend on the
combinatorial datas of definition [5.2.1}3. According to proposition [5.2.2] for such a graduation,
there exists a map f : NVl x NVI+I€l — QN such that for any graph G, deg(G) = f(Va, Sq).

Proposition 5.2.3. Let f: NVl x NVIHEl — QN We consider the QN -graduation of Hrgm)
defined by deg(G) = f(Vg,Sq). It is a Hopf algebra graduation if, and only if, there exists
C € My y|(Q) such that for any Feynman graph G:

deg(G) = CVg — (C 0)Sq.

Proof. Let G and G’ be two graphs. Then Vg = Vg + Vir and Sgr = S+ Sgr. Consequently,
the graduation respects the product if, and only if, for all G, G":

J(Va+ Ve, Sa + Se) = f(Va, Sa) + f(Ver, Ser).

that is to say if, and only if, f is additive. Hence, f gives a graduation of the algebra H g7 if,
and only if, there exists C'€ My y|(Q) and D € My y|4¢|(Q) such that for any Feynman graph
G, deg(G) = CVg + DSg.

Let G’ € G. By definition of G” = G/G’, Vgn = Vg — Vir + (Id0) S and S = S¢. Hence:

deg(G) = CVg + DSq
= CVgr + CVg — C(Id0)Se + DS
= deg(G') + deg(G") — (D + C(Id 0))S¢.

So f gives a graduation of H zg(7) if, and only if, for all subdiagram G’ < G, (D+C(1d0))Sgr = 0.
As there exists diagrams for any external structure, we can choose G and G’ such that Sg is
the i-th vector of the canonical basis; hence, we have a graduation of Hrg() if, and only if,

D+ C(Id0) = 0. m

Consequently, any matrix C' € My y|(Q) defines a QN-graduation of the Hopf algebra
Hrg(T)- This of course may be not a N¥_graduation, or may be not connected.

1...1)A
Ezxample 5.2.2. 1. The loop number £ gives a Hopf algebra N-graduation with Cy = (2)7—

(1...1). This is a connected N-graduation, as we only consider 1-PI graphs.
2. Let t € &7, and let C be the t-th row of A%; the associated graduation is noted deg;.
For all G € FG(T), degi(G) = e:(G) + s¢(G). This is a N-graduation, which may be not

connected.
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5.3 Insertions

Definition 5.3.1. Let G and G’ be two Feynman graphs of a theory T .

1. We denote by GY,. .., G}, the connected components of G'. A place of insertion fof G' into
G s given by:

(a) for all G of external structure of type a vertext, a pair (v;, f;), where v; is a vertez of G
of type t, and f; a bijection from the set of external edges of G; to the set of half-edges e
of G' such that s(e) = t, compatible with the type, that is to say type(f;(e')) = type(e’)
for all €. Moreover, if G and G;- are both of external structure of type t, with i # j,
then v; # v;.

(b) for all G of external structure of type an edge t, a pair (e;, f;) where e; = {ez(-l), 652)}
is an internal edge of G of type t, and f; a bijection from the set of the two external
half-edges of t into {egl),egz)}.

(c) For all internal edge e of G, the set of components G; such that e; = e is totally

ordered.

Note that the set of places of insertion of G' into G is finite and may be empty. Its
cardinality is denoted ins(G', Q).

2. Let F be a place of insertion of G' into G. The insertion G’ £ G is the Feynman graph
obtained in this way:

(a) For all G of external structure of type vertex, delete v; and all the half-edges e such
that s(e) = v;; then glue each external edge € of G to i(fi(e')) if if is not equal to
fi(€'); otherwise, €' becomes an external edge.

(b) For each internal edge e, such that there exists components G with e; = e, first
separate the two half-edges constituing this internal edge; then insert all these compo-
nents G, following their total order, by gluing their external edges with the two open
half-edges according to f;.

For any Feynman graph such that ins(G’, G) # 0, we put:

n o 1 /(E)
Bo(@) = z‘ns(G’,G);G ¢

Proposition 5.3.2. 1. For all graph G, the space Ig = Vect(G',ins(G',G) # 0) is a left
comodule.

2. For all primitive graph G, for all x € Iq:

Ao Bg(x) = Bg(z)®1+ (Id® Bg) o A(x).

3. We define a graduation on Hrg1) with the help of a matriz C € MN7|V|(Q). Then for any
Feynman graph G, Bg is homogeneous of degree deg(G).

Proof. 1. Let G and G’ be two graphs. Then G’ € I if, and only if, the two following conditions
hold:

e For any t € V, s;(G') < v (QG).

e Forany t € &, (s¢(G') =2 1) = (e4(G') = 1).
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Consequently, if G’ € I and G” < G, noting that s;(G'/G") < s,(G’) for all t € V 1 &, then
G'/G" € Ig. So Ig is a left comodule.

2. Let G' € FG(T), such that ins(G’, G) # 0. As G is primitive, A(G) = G = ®1+1QG, so G

has no proper subgraph. For all insertion place f, let us consider a subgraph H of G” = G’ ENYe]
If H contains internal edges of G” which does not belong to G’; as G’ has no proper subgraph, it
contains all the edges of G, and, as H is a subgraph, it is equal to G. Otherwise, H is a subgraph

of &', and then G"/H = G'/H L Gtora particular F’. Summing, we obtain:

1 /
A<BG<G'>>—ms<GfG>Z(G/i’G®” ) H’®G'/HLG>
’ f Hc@

= Bg(G)®1+ Y, H®Ba(G'/H)
HcG
= Bg(G/) ®1+ (Id@B(;) o A(G/)

By linearity, the result holds for all z € I5.

3. Let G and G’ be Feynman graphs, and G” = G’ £, @ Then Sqr = Sg and Vgr =
Ve + Ver — (1d 0)S¢r. Hence:

deg(G”) =CVg+ CVg — C(Id0)Se — (C 0)Sa
=CVq—(C0)Sg + CVg — (C0)Se
= deg(G) + deg(G').

So B¢ is homogeneous of degree deg(G). O

5.4 SDSE associated to a theory of Feynman graphs

Let 7 be a family of Feynman graphs. We put V = {t1,..., 4}, € = {tgs+1,...,tk+1} and
M = k + 1. We choose a connected N"V-graduation of HrgT) given by a N x k matrix C. In
order to ease the notation, for all i € [k], we put v, (G) = v;(G) and for all k +1 < j <k +1,
et;(G) = ¢;(G), for any Feynman graph G.

Notations 5.4.1. 1. For each i, we denote by P; the set of primitive 1-PI Feynman graphs of
the theory 7T of external structure of type ;.

2. Let ai,...,ay be N indeterminates (the coupling constants). For any graph G, if deg(G) =
(dy,...,dy), we put a®9(@) = adl ?VN

We consider the following SDSE on H rg(7):

k k+1
(S7): Vie [M], X; = )| a9 H 1+ X)) TT 1= X;)~©
GeP; j=1 j=k+1

We decompose X; according to the powers of the q;:

Xi = Z OédXZ(d)

deNlY

It is not difficult to show that X;(d) is homogeneous of degree d, as B is homogeneous of degree
deg(G). The subalgebra generated by the X;(d)'s is denoted by H g, ).
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Combinatorially, X; is a span of all connected graph of external structure of type t;; its ho-
mogeneous components can be inductively computed by taking all possible insertions of already
computed homogeneous components of X; into primitive Feynman graphs of the good external
structure, in order to obtain the expected degree.

We lift this SDSE to the level of rooted trees. The set of decorations is the set of primitive

connected Feynman graphs:
k+l1

P = |_|H-.
=1

The graduation of ’Hg  1s given by the degree of primitive Feynman graphs, and we consider
the SDSE on HgK:

k k+l
(S7): Vie [M],Y; = Z Ba H(l + Y},)Ui(G) H (1— Yj)—ej(G)
GeP; j=1 j=k+1

The homogeneous component of Y; of degree d is denoted by Y;(d) and the subalgebra of ’Hg e
generated by the Yi(d) is denoted by H s ).

Proposition 5.4.1. If H(S/T) is a Hopf subalgebra of HgK, then Hs,y is a Hopf subalgebra
of Hrg(T), and the algebra morphism defined by Yi(d) — X;(d) is a surjective Hopf algebra
morphism from H(Sir) to Hsr)-

Proof. Let T be a rooted tree decorated by D. We shall say it is admissible if for all vertex v
of T, denoting by G the decoration of v and by Gy, ..., Gy the decorations of the children of v,
then Gi...Gy € Ig. We denote by A’ the subalgebra generated by all admissible trees. If T is
admissible, then for all admissible cut ¢ of T', P¢(T) and R°(T) are admissible, so A’ is a Hopf
subalgebra. By definition of (S7), Y;(d) € A’ for all i € [M], d e N¥.

One can define an algebra morphism ¢ from A’ to Hzg() inductively by:

¢(BE(T1 ... Tyy)) = Ba(o(Th) - .. ¢(Tr)),

for all admissible tree B(T1...Ty). It is well-defined: indeed, if ¢(T1),...,d(T}) are well-
defined, then for all i, ¢(7;) is a linear span of graphs with the external structure given by the dec-
oration of the root of Tj. As Bg(Th ... Ty) is admissible, ¢(T1) ... ¢(T;) € Ig, so ¢(BL(Th ... Ty))
is well-defined. As Bg and Bg are both homogeneous of degree deg(G), an easy induction proves
that ¢ is homogeneous of degree 0. As ¢po Bf; = Bgop on A for all G/, (Yi(d)) = X;(d) for all
i€ [M]and all d e NY. By the one-cocycle property of Bé and Bg on I, (p®¢p)oA = Aog on
A’. Consequently, if H( st is a Hopf subalgebra of Hg & its image H (g, is a Hopf subalgebra
of H]—‘g(7')~ OJ

Theorem 5.4.2. If Rank(C) = |V|, then Hsry is a Hopf subalgebra of HE.; moreover, the
SDSE (S%) is associated to a degl pre-Lie algebra.

Proof. First, observe that, as C' is a N x k-matrix, Rank(C) < k = |V|.

Let us assume that Rank(C) = k. There exists a matrix C’ € M}, y(K), such that C'C = Idy,.
For any primitive Feynman graph G of external structure ¢; and of degree d, if (e1,...,€enr) is
the canonical basis of KM noting that d = CVg — (C 0)¢;:

Va = C'd + (Idk O)Ei, Eé; = %—C/d — (0 Idl)ﬁi.

For all i € [M], for all d € NI, we put:

+ _ +
B}, = > B,
GeP;,deg(G)=d
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The SDSE can be written as:

k k+1
Yi= ) B IT1+Y )2 oty [T (1= Y))Zra%nradi(14+Y;) | if i <k,
deNY J=1 J=k+1
k k+l
Y;=Z H1+Y » ot H(l—Y)ZMH’Pq (1-Y;) | ifi=k+1.
deNY J=1 J=k+1

Hence, we recognize the degl pre-Lie algebra with I, = {p} for all 1 < p <k + 1, b given by:

5lj1fz k:+1

. . C’
and A given by the matrix ( A ) O
As C" has also rank k:
Corollary 5.4.3. If Rank(C) = |V| = k, the graded dual of the Hopf algebra Hs: ) is the
enveloping algebra of the reduced degl pre-Lie algebra with structure coefficients given by:
A 1. M A;- 0 4 A"

Nj |1...M
1...M| 0

b/(iuj) .

If C is invertible, then A" = —A’-. Moreover, ’H(S/T) is isomorphic to the coordinate Hopf algebra
of the group V{ x G pn.

Proof. It remains to consider the case where C is invertible. In this case, C' = C~! and A =

!
( ,AS ,>.WethentakeA=A’C=( I;ll’f > O
~ALC —AL
Ezrample 5.4.1. 1. If there is only one vertex type, we can choose the graduation by the loop
number.

: 1
(a) For QED, C = (%), so C" = (2); hence, A = —% and A" = —1 ]. The

-1 1

T4 T2

SDSE is:

1 X 2k+1
=Yoot Y BG( o (11>_X3)2k),

k=1 GeDi(k)

1+ X4)2k
X2 = Z Z Ba ( ;2):1(11) XS)Qk) ’

k=1 GeDa(k)

(14 X;)%
D 3 ).

k=1  GeDs(k

where Dj(k), D2(k) and Ds(k) are sets of primitive Feynman graphs with & loops and
respective external structures W<, ~~~ and ——. In particular:

{%:%}ﬁk:L de:{{#ﬁ.}ﬁkzL

& otherwise.

Dy (k) =

& otherwise;
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2
(b) In ", C = (%2), s0 O’ = (%), hence, A = ( s ) and A’ = < _12 ) The
2

SDSE is:
2k 41
“ Yot Y Bo <(1+X1);>

k>1  GeDi(k)
2k
1+ X;)nz
Xp= " >} Bg (%) :
k=1 GEDQ(k (

where Dj(k) and Dy(k) are sets of primitive Feynman graphs with & loops and re-
spective external structures the vertex and the edge.

2. In QCD, we take:

C =

NI O =
NN = = O
N O O
— NN OO

If G is a QCD Feynman graph, then:
deg(G) = (deg o (G), deg . (G), deg ann (G), U(G)).

It is a connected N4-graduation. Moreover, C' = C~!, and:

1 0 0 0 1 0 0 0
0 1 0 0 0o 1 0 0
1 1 2 —4 0 0 1 0
A= -1 -1 -1 3 |, A=]1 0 0 0 1
-1 0 0 0 -1 0 0 0
0 -1 0 0 0 -1 0 0
0 0 -1 0 -3 -3 -3 -2

The SDSE is:

X1= ) o
keN4

1+ Xy) ki+1 1+X2)k2(1+X3) a(k) 14+ Xy) Bk)
1 — X5)k1(1 — X6)k2(1 — X7 k3

1+ Xy) k1 1 + Xg)k2+1(1 + Xg) alk) (1 + Xy) Bk)
1 — X5)k1(1 — X6)k2(1 — X7 k3

1 — X5)k1(1 — X6)k2(1 — X7 k3

(14 X)P1 (1 + Xo)k2(1 + Xg)a(+1 ﬁ“f)
1 — X5)k1(1 — X6)k2(1 — X7 k3 )

+X1 ka 1+X2)k2(1+X3> a(k) 1+X4
1 —X5 kl 1(1 —X6)k2(1 —X7 k3

+X1 ka 1+X2)k2(1+X3> a(k) 1+X4
1 —X5 kl(l —X6)k2 1(1 —X7 k3

\_/

Xy = Z < (1+ XM (1 + Xo)™2 (1 + X5)*® (1 + Xy)"
GeDy(

+X1 ka 1+X2)k2(1+X3> a(k) 1+X4
1 —X5 kl(l—X6)k2(1—X7 k3—1
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with a(k) = k1 + ko + 2ks — 4ky and B(k) = —k1 — k2 — k3 + 3k4, and where D;(k), Da(k),
Ds(k), Dy(k), D5(k), Dg(k) and D7(k) are sets of primitive Feynman graphs of degree k
and respective external structures:

7

I

Remark 5.4.1. We can extend the set of considered Feynman graphs by admiting other external
structures, indexed by k+{+1,...,k+l+m. fork+1<j<k+land k+I+1<i<k+1+m,
let )\5.1) be the number of copies of half-edges of the j-th type of edge ¢; in the i-th external
structure, divided by 2. We obtain a SDSE given by:

k ket
Xi= 3 Bia | [JO+ X% [T (1= Xj)mra®inhati (14 Xy) | ifi <k,
deNY j=1 j=k+1
k / ket o
Xi= Y Bia| [T+ X% %% [T (01— X;)Zna®ora®(1-X;) | ifk+1<i<k+1,
deNl Jj=1 j=k+1
k / ket o k+l »
X; = Z B4 H(l + Xj)zp o H (1-— Xj)zm Gppadi H (1—X;)%" | otherwise.
deNY Jj=1 j=k+1 Jj=k+1

We recognize the degl pre-Lie algebra with I, = {p} forall 1 <p < k+1, Ip = {k+1+1,...,k+
[ 4+ n}, b given by:
;5 if 1 <k,
b)) = 5, ifk+1<i<hk+l,
TR AT

!
—ALC
algebra of coordinates of the group:

and A given by the matrix ( > If C' is invertible, H s is isomorphic to the Hopf

(VA(’HHU,O @ e (—D V)\(kJer)’O) X (Vbl X GA//).

5.5 Minimal rank for QCD

Let us consider a QFT, the SDSE (S7) associated to it, and a matrix C' giving a connected
N”-graduation. We proved that if Rank(C) = |V|, then H g is Hopf; we would like to know
what the minimal rank of C' required to make H Sty @ Hopf subalgebra is. For QED or ", as
|V| = 1, this is obviously 1. If the theory has enough primitive Feynman graphs, this minimal
rank is |V|: we now prove this result for QCD.

Proposition 5.5.1. In the QCD case, the graduation induced by C' gives a Hopf SDSE if, and
only if Rank(C) = 4.

Proof. We already proved the implication <. We first construct enough primitive Feynman

graphs of external structure @< Let (a,b,c,d) € Ni. We start with G = @< Judiciously
@:.A:\m wj‘%

gluing the external edges of a copies of ~~~ b copies of ~ | ¢ copies of and d copies

of%%g‘) on the edges —— and —=—, creating in this way new 2a + 2b + 3¢ + 4d new vertices
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of type @(7 we obtain a primitive Feynman graph G’ with:
2 2

Vor = +a +b +d

S O O
o o O
S O N
O = O W
_ O O

Let us assume that H(S'T) is Hopf and that Rank(C') < 3. There exists a nonzero vector
v e Q*, such that Cv = (0). We decompose this vector v in the basis:

2 2 3 4
0 2 0 0
o]t of’r1y{o
0 0 0 1

After a multiplication by a nonzero integer and separation of the terms according to their signs,
we obtain that there exists two different vectors w and w’, such that:

2 2 3 4
w=a 8 +b 3 +c (1) +d 8 , a,b,c,d €N,
0 0 0 1
2 2 3 4
w =d 8 + 0 (2) +c (1) +d 8 ,a v, d,d eN,
0 0 0 1
Cw = Cw'.

Let G and G’ be primitive Feynman graphs of external structure @( such that:

1 1
0 0
VG = 0 —+ w, VG/ = O —+ w/,
0 0
Their degree are:
1 1
0 0
deg(G) =CVg—(CO)| . |=Cw, deg(G') = CVgy — (CO) | . |=Cuw.

0 0

So deg(G) = deg(G'). According to lemma [2.2.3) fo = fqr, so in particular, for all i € [4],
vi(G) = v;(G"), which implies that Vi = Vi and finally w = w’, which is a contradiction. We
conclude that Rank(C) = 4. O
6 SDSE associated to coloured graphs

We now generalize multicylic SDSE of [7, [9]. We are interested here in SDSE of the form:

(S):Vie[M], X;= > Bia |1+ > X;|,

aeNJﬂY jEIi,a

where the I; o, are nonempty sets.
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Definition 6.0.1. 1. A N-coloured oriented graph is an oriented graph G, with a map from
the set E(G) of edges of G into [N]. We denote by V(G) the set of vertices of G. For
all i,j € V(G), for all o = (o, ...,an) € NN, we shall write i —=> j if there exists an
oriented path from i to j in G, with «; edges coloured by i for all i € [N].

2. Let G be a N-coloured oriented graph. The SDSE associated to G is associated to the
NN -graded partitioned set D = V(G) x NI :

(Sa): VieV(G), Xi= > Bia |1+ ) X;

aeNﬁY -5

3. Let G be a N-coloured oriented graph. We shall say that G is Hopf if, for alli,j, k € V(G),
for all o, p e NV,

(i % j and § 25 k) = (i - j and i 25 k).
(Note that = is always satisfied for any G).

Proposition 6.0.2. We consider a SDSE of the form:

(S):Vie[M], Xi= Y Bia |1+ > X;|,

OéEN]ﬂY jeji,a

It is Hopf, if, and only if, there exists a N-coloured Hopf graph on [M] such that (S) is
equal to (Sg). If this holds, the dual pre-Lie algebra of H(sy) s associative; it has a basis
(fi(a))iev(G)@eNg and the product is given by:

fila+ B) if i = 4,
0 otherwise.

[i(B) * fi(e) = {

Proof. =. First step. Let us assume that (S) is Hopf. We fix 4, j,k € [M] and «, 3,y € NY.
We put:

1 ifjel;q, b 1 ifkel;qop, 1 ifkeljg,
a = = Cc =
0 otherwise; 0  otherwise; 0 otherwise.

We obtain:

Xi(a+B) = e- +al + ..,

/

Xi(a+B+7) =+ b —i—acf:( +...

Hence:

AXi(a+B+7)) =& ®<ba +acl +)

. >
N~

=X
As Hg) is Hopf, X is a multiple of Xi(a+ ), s0ab=ac: a=0orb=c. Inparticular, if a # 0,
b = c. Hence, for all 4,7,k € [M], for all a,3 € NY, j e I, and k € I, 5 if, and only if, i € I; ,
and k € Ii7a+,y.

Second step. We define a coloured graph G on [M] in the following way: for all ,j € [M],
for all p € [N], there exists an edge from i to j decorated by p if, and only if, j € I;,. Let us
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prove that for all 4,k € [M], for all a e NY | k € I; o if, and only if, 4 —% k in G. We proceed by
induction on |a| = a1 + ... 4+ a. This is obvious if |a] = 1. Let us assume the result at rank
|| — 1.

—. Let us choose o’ and o, such that & = &/ + ", |&/| = |a| -1 and |o"| = 1. Let j € I, o.
By the first step, then k € I ,». By the induction hypothesis, i 2 jand j 55k, soi — k.

<. Let us assume that i — k. We consider a path in G from i to k, of weight a. If j is
the last step, there exists o/, o, such that a = o/ + o, |o/| = |a| — 1 and |o”| = 1, i > j and
j = k. By the induction hypothesis, j € I; o and k € I; o». By the first step, k € I; 4.

Hence:

(S): Vie[M], X;= > Bia |1+ ) X;
aeNy 25

So (S) = (Si). The first step implies that (G) is Hopf.

=—. Let us consider a Hopf N-coloured graph G. We define a product on the vector space
g= VeCt(fi(Oé))ieV(G),aeN,,fy by:

fila+ B) if i = 4,
0 otherwise.

fi(B) = fila) = {

Let i,j,k € V(G). For any a, 8,7 € NY:

fi(oz+ﬁ—|—*y)ifii>jandji>k,

0 otherwise;

(fr() * f5(B)) = fi(e) = {

Fila+ B +7)if i -2 j and i 5 k,

0 otherwise.

Fe(y) = (f;(B) fi(a)) = {

So # is associative. Hence, g is a NV-graded connected pre-Lie algebra. It is not difficult to prove
that the graded dual of its enveloping algebra, imbedded in HP”, is the subalgebra generated by
the solution of the SDSE (S¢), which as a consequence is Hopf. O

An example of coloured graph is given by families of commuting endofunctions:

Proposition 6.0.3. Let V be a set and, for all1 < p < [N], let f : V. — V be a map. We
construct a graph Gy in the following way:

e V(G)=V.
e Foralli,jeV, for allpe[N], i lj if, and only if, fp(i) = j.

In other terms, G is the coloured graph of maps f1,..., fn. Then Gy is Hopf, if and only if, for
all p,q € [N], fpofg=fgo fp-

Proof. =. Let us assume that Gy is Hopf. Let 4,5 € V. We put j = f,(4i), 7/ = fp(4),

k= f,0f(i), « = ¢ and B = ¢,. Then i —> j and i i k, so j 2k hence,

fp(j) = fpo fq(]) =k=fq0 fp(i)-

«—. Let us assume that i — j and i 2*8 . There exists a sequence pi,...,Pm such
that €y, + ...+ €p,, = a, fp, ©...0 fp,. (i) = j. There exists a sequence pi,...,py, such that
€+ F€guin =+, fgo0o...0 fg . (i) = k. Note that m = |a|, and m +n = |a + 3.
Moreover, the multiset {p1,...,pmn} is included in the multiset {q1, ..., gm+n}. We proceed by
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induction on n = |B]. If n = 1, let us assume that {q1,...,¢min}\{P1,---sPm} = {¢}. The
commutation relation implies that:

fa oo fgmn(@®) =frofg o fo 0 fgn om0 fg (D)

By permuting the p;’s using the commutation relations, we obtain that these two elements are
equal. Hence, f.(j) =1, s0 j Pk,
Let us assume the result at rank n — 1. There exists &/, such that ¢ B g g P k,

B=p+08"18]=n-1and |8”| =1. By the induction hypothesis, j LN K soj Lok O
Ezample 6.0.1. Let V =Z/NZ, N = 1 and:

f Z/NZ — Z/NZ
' kE— k+1
The SDSE associated to f is a cyclic SDSE of [7, ©].

Remark 6.0.1. There are other examples of coloured Hopf graphs, for example:

N

Availability statement. The data that support the findings of this study are available from
the author upon reasonable request.
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