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Abstract

We study systems of combinatorial Dyson-Schwinger equations with an arbitrary num-
ber N of coupling constants. The considered Hopf algebra of Feynman graphs is NN -graded,
and we wonder if the graded subalgebra generated by the solution is Hopf or not. We first
introduce a family of pre-Lie algebras which we classify, dually providing systems generating
a Hopf subalgebra; we also describe the associated groups, as extensions of groups of for-
mal diffeomorphisms on several variables. We then consider systems coming from Feynman
graphs of a Quantum Field Theory. We show that if the number N of independent coupling
constants is the number of interactions of the considered QFT, then the generated subal-
gebra is Hopf. For QED, ϕ3 and QCD, we also prove that this is the minimal value of N .
All these examples are generalizations of the first family of Dyson-Schwinger systems in the
one coupling constant case, called fundamental. We also give a generalization of the second
family, called cyclic.
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Introduction

In a Quantum Field Theory (shortly, QFT), the Green functions are developed as a series in the
coupling constant, indexed by the set of Feynman graphs. These series can be seen at the level
of Feynman graphs. They satisfy a certain system pSq of combinatorial Dyson-Schwinger equa-
tion (briefly, SDSE), which uses combinatorial operators of insertion, and allows to inductively
compute the homogeneous components of the Green functions, according to their loop number
[1, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28]. Feynman graphs are organized as a Hopf algebra
HFG , graded by the loop number, and we consider the subalgebra HpSq of HFG generated by the
components of the unique solution of pSq. A natural question is to know if the graded subalgebra
generated by the Green functions is Hopf or not. This problem, and related questions about the
nature of the obtained Hopf subalgebras, are the main object of study in [6, 7, 8, 9]. It turns
out that in the case of QED or ϕ3, which are QFT with only one interaction, this subalgebra
is indeed Hopf; this is not the case for QCD, with its four interactions. A possibility in this
last case is to refine the graduation, or equivalently to introduce more coupling constants, which
makes the subalgebra HpSq generated by the components of the solution bigger; we shall prove
here that there exists a N4-graduation of the Hopf algebra of QCD Feynman graphs, such that
HpSq is a Hopf subalgebra.

The aim of this text is to study SDSE giving a Hopf subalgebra when the Hopf algebra of
Feynman graphs is given a NN -graduation, generalizing the results of [7] for the loop number
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graduation. Recall that if we consider only one coupling constant, the Hopf algebra of graphs we
consider is N-graded, and we obtained two families of SDSE, called fundamental and cyclic, and
four operations on SDSE, allowing to obtain all SDSE giving a Hopf subalgebra. The graded dual
of this Hopf subalgebra is the enveloping algebra of a pre-Lie algebra, described in [9]. In the
fundamental case, the constant structures of this pre-Lie algebra are polynomial of degree ď 1.
We generalize this definition to the NN -graded case (definition 2.1.1); these objects are called
deg1 pre-Lie algebras. Their classification is done in theorem 3.2.3. As enveloping algebras of
free pre-Lie algebras are Grossman-Larson Hopf algebras [10, 11], dually the enveloping algebra
of a deg1 pre-Lie algebra can be embedded in a Connes-Kreimer Hopf algebra of decorated rooted
trees [4, 5], giving in this way a family of SDSE such the associated subalgebra is Hopf (theorem
3.3.3). We also describe the group associated to such pre-Lie algebras; they all contain a group
of formal diffeomorphisms.

We then proceed to SDSE coming from a QFT. We first study all the possible graduations
of HFG which are defined from combinatorial datas associated to Feynman graphs, such as the
number of vertices, of internal or external half-edges or edges, or the external structure: we
prove that such a NN -graduation is associated to a matrix C P MN,|V|pQq, where V is the set
of possible vertices in the Feynman graphs of the theory (proposition 5.2.3); the rank of C is
of special importance here. We show how to lift these systems at the level of decorated rooted
trees, using a universal property, and we recover in this way SDSE associated to deg1 pre-Lie
algebras previously described, if the rank of C is the cardinality of V. We may ask the question
of the minimal rank of C required to obtain a Hopf subalgebra: it is smaller than |V|. In QED
or ϕn, as this cardinality is 1, the answer is obviously 1; for QCD, we prove in proposition 5.5.1
that it is also |V| “ 4. The main idea is to produce primitive Feynman graphs with an arbitrarily
large number of vertices of any kind, and we conjecture that for any QFT with enough primitive
Feynman graphs, the minimal rank of the graduation is the number of interactions of the theory.
We shall conclude with a generalization of the second family of SDSE in the N-graded case,
namely cyclic SDSE.

This article is organized as follows. The first section contains reminders on Connes-Kreimer
Hopf algebras of decorated rooted trees, their universal properties, their graduations and their
graded duals. In the second section, we introduce the notion of combinatorial SDSE in Connes-
Kreimer Hopf algebras; we give three operations on SDSE, and also study the effect of changing
the graduation of the subalgebra HpSq generated by the unique solution of such a SDSE. We
then introduce and classify deg1 pre-Lie algebras in the next section, which dually give us a
first family of NN -graded SDSE. The group associated to these pre-Lie algebras are described
in the fourth section. Feynman graphs of a given QFT, their Hopf-algebraic structure and their
SDSE are introduced and studied in the next section. The last, independent, section deals with
a generalization of cyclic SDSE.

Aknowledgment. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.

Notations 0.0.1. 1. Let M and N be nonnegative integers. We denote by rM s the set of
integers t1, . . . ,Mu and by NN˚ the set of nonzero elements of NN .

2. The canonical basis of KN (and of ZN ) is denoted by pε1, . . . , εN q.

3. Let a, b P K. We denote by Fa,bpXq the formal series:

Fa,bpXq “
8
ÿ

k“0

apa´ bq . . . pa´ bpk ´ 1qq

k!
Xk “

#

p1` bXq
a
b if b ‰ 0,

eaX if b “ 0.

Note that for all a, a1, b P K, Fa`a1,bpXq “ Fa,bpXqFa1,bpXq.
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1 Hopf algebras of decorated trees

Let us start with a few reminders on the Connes-Kreimer Hopf algebras of decorated trees
[4, 5] and related algebraic structures. We consider a nonempty set D, which we call the set of
decorations.

1.1 Definition and universal property

Definition 1.1.1. 1. A tree is a finite graph, connected, with no loop; a rooted tree is a tree
with a pointed vertex, called the root; a rooted tree decorated by D is a pair pT, dq, where T
is a rooted tree and d is a map from the set V pT q of vertices of T to D; for all v P V pT q,
dpvq is called the decoration of v. The set of isoclasses of rooted trees decorated by D is
denoted by TD.

2. The algebra HD of rooted trees decorated by D is the free commutative associative algebra
generated by TD. By definition, the set FD of rooted forests decorated by D, that is to
say monomials in TD, or finite disjoint unions of elements of TD, is a basis of HD. The
product of HD is the disjoint union of decorated rooted forests.

Example 1.1.1. We draw rooted trees with their root at the bottom.

1. The rooted trees decorated by D with n ď 4 vertices are:

a, a P D; a
b

, pa, bq P D2; a

cb

“ a

bc

, a
b

c

, pa, b, cq P D3;

a

dcb

“ a

cdb

“ . . . “ a

bcd

, a

db

c

“ a
b

c

d

, a
b

dc

“ a
b

cd

, a
b

c
d

, pa, b, c, dq P D4.

2. The rooted forests decorated by D with n ď 3 vertices are:

1; a, a P D; a
b

, a b “ b a, pa, bq P D2;

a

cb

“ a

bc

, a
b

c

, a
b

c “ c a
b

, a b c “ a c b “ . . . “ c b a, pa, b, cq P D3.

The algebra HD can also be defined by a universal property [4, 27]:

Proposition 1.1.2. Let d P D. The linear endomorphism Bd of HD sends any rooted forest
F P FD to BdpF q P TD obtained in grafting the different trees of F on a common root decorated by
d. This family of endomorphisms satisfy the following universal property: if A is a commutative
algebra, and for all d P D, Ld : A ÝÑ A is a linear endomorphism, there exists a unique algebra
morphism φ : HD ÝÑ A such that for all d P D, φ ˝Bd “ Ld ˝ φ.

Example 1.1.2. If a, b, c, d P D, Bap b c
d

q “ a
c

d
b

.
This universal property can be used to define the Connes-Kreimer coproduct of HD:

Proposition 1.1.3. 1. There exists a unique coproduct on HD such that for all d P D, for
all x P HD:

∆ ˝Bdpxq “ Bdpxq b 1` pIdbBdq ˝∆pxq.

With this coproduct, HD becomes a Hopf algebra. Its counit is the map:

ε :

"

HD ÝÑ K
F P FD ÝÑ δF,1.
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2. Let A be a commutative Hopf algebra, and for all d P D, let Ld : A ÝÑ A a linear
endomorphism such that for all x P A:

∆ ˝ Ldpxq “ Ldpxq b 1` pIdb Ldq ˝∆pxq.

The unique algebra morphism φ : HD ÝÑ A such that for all d P D, φ ˝ Bd “ Ld ˝ φ is a
Hopf algebra morphism.

This coproduct admits a combinatorial description in terms of admissible cuts. For example,
if a, b, c, d P D:

∆ d

c
b

a

“ d

c
b

a

b 1` 1b d

c
b

a

` b

a

b d

c

` a b d

cb

` c b d
b

a

` b

a
c b d ` a c b d

b

.

Here is another application of the universal property:

Proposition 1.1.4. Let a “ padqdPD be a family of elements of K. We denote by φa the unique
Hopf algebra endomorphism of HD such that for all d P D, φ ˝ Bd “ adBd ˝ φ. For any forest
F P FD, denoting by V pF q the set of vertices of F :

φapF q “

¨

˝

ź

vPV pF q

adpvq

˛

‚F.

Consequently, if for all d P D, ad ‰ 0, φa is an automorphism.

Proof. We consider the endomorphism ϕ defined by:

@F P FD, ϕpF q “

¨

˝

ź

vPV pF q

adpvq

˛

‚F.

Let F, F1, F2 P FD. As V pF1F2q “ V pF1q \ V pF2q, ϕpF1F2q “ ϕpF1qϕpF2q, ϕ is an algebra
endomorphism. As V pBdpF qq “ V pF q \ trootpF qu, ϕpBdpF qq “ adBdpϕpF qq. Consequently,
ϕ ˝Bd “ adBd ˝ ϕ. By unicity in the universal property, ϕ “ φa.

1.2 Graduation and duality

Definition 1.2.1. 1. A NN -graded set is a pair pD, degq, where D is a set and deg : D ÝÑ

NN is a map. For all α P NN , we put Dα “ deg´1pαq. We shall say that the NN -graded D
is connected if D0 “ H and if for all α P NN , deg´1pαq is finite.

2. Let D be a NN -graded connected set. For all forest F P FD, we put:

degpF q “
ÿ

vPV pF q

degpdpvqq.

This induces a connected NN -graduation of the Hopf algebra HD, with:

@α P NN , pHDqα “ V ectpF P FD | degpF q “ αq.

Moreover, for this graduation, Bd is homogeneous of degree degpdq for all d P D.

If D is a NN -graded connected set, then, as HD is a graded connected Hopf algebra, its
graded dual pHDq˚ is also a Hopf algebra [13, 23]. As a vector space, it can be identified with
HD, by the help of the symmetric pairing defined by:

@F,G P FD, xF,Gy “ sF δF,G,
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where sF is the number of symmetries of F . The coproduct ∆1 of pHDq˚ is given by:

@T1, . . . , Tk P TD, ∆1pT1 . . . Tkq “
ÿ

IĎrks

˜

ź

iPI

Ti

¸

b

˜

ź

iRI

Ti

¸

.

Its product ‹ is given by graftings: this is the Grossman-Larson product [10, 11, 12]. For example:

a
b

‹ c
d

“ a
b

c
d

` c

da

b

` c
d

a
b

.

Note that this graded dual does not depend of the choice of the connected graduation of D.

By the Cartier-Quillen-Milnor-Moore’s theorem, pHDq˚ is the enveloping algebra of a Lie
algebra gD. By construction of the coproduct ∆1, the set TD is a basis of gD; by definition of
the Grossman-Larson product, for all T, T 1 P TD:

rT, T 1s “
ÿ

v1PV pT 1q

grafting of T on v1 ´
ÿ

vPV pT q

grafting of T 1 on v.

We define a product ˚ on gD by:

T ˚ T 1 “
ÿ

v1PV pT 1q

grafting of T on v1.

For any x, y P gD, rx, ys “ x ˚ y ´ y ˚ x. For example:

c ˚ a
b

“ a

bc

` a
b

c

, a
b

˚ c “ c
a
b

.

This product is not associative, but is pre-Lie:

Definition 1.2.2. A (left) pre-Lie algebra is a pair pV, ˚q, where V is a vector space and ˚ is a
bilinear product on V , such that for all x, y, z P V :

px ˚ yq ˚ z ´ x ˚ py ˚ zq “ py ˚ xq ˚ z ´ y ˚ px ˚ zq.

If pV, ˚q is pre-Lie, the bracket defined by rx, ys “ x ˚ y ´ y ˚ x is a Lie bracket.

Moreover, Chapoton and Livernet proved, using the theory of operads, that gD is a free
pre-Lie algebra [2, 3]:

Theorem 1.2.3. Let A be a pre-Lie algebra and let ad P A for all d P D. There exists a unique
pre-Lie algebra morphism φ : gD ÝÑ A such that φp dq “ ad for all d P D. In other words, gD

is, as a pre-Lie algebra, freely generated by the elements d, d P D.

1.3 Completion

We graduate HD by the number of vertices of forests, that is to say we consider the graduation
induced by the map deg : D ÝÑ N, sending every element of D to 1. This graduation induces a
distance d on HD, defined by:

dpf, gq “ 2´valpf´gq.

The metric space HD is not complete: its completion is denoted by yHD. As a vector space, it
is the space of commutative formal series in TD. The product of HD, being homogeneous of
degree 0, is continuous, so can be extended to yHD: this gives the usual product of formal series.
Similary, for any d P D, Bd, being homogeneous of degree 1, is continuous so can be extended
to a map Bd : yHD ÝÑ yHD.
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2 Multigraded SDSE

2.1 Definition

Definition 2.1.1. Let D “ D1\. . .\DM be a partitioned set. Let pfdqdPD be a family of elements
of Krrx1, . . . , xM ss. The system of Dyson-Schwinger equations (briefly, SDSE) associated to these
elements is:

@i P rM s, Xi “
ÿ

dPDi

BdpfdpX1, . . . , XM qq,

where X “ pX1, . . . , XM q belongs to yHD
M
.

By convenience, we generally index the family of unknows by rM s, but it is of course possible
to index them by any finite set.

Proposition 2.1.2. Let pSq be a SDSE. It has a unique solution.

Proof. If X “ pX1, . . . , XM q is a solution of pSq, then for all i, Xi is a infinite span of trees,
so belongs to the augmentation ideal HD` . Hence, it is enough to prove that pSq has a unique

solution in yHD`
M
. Let us consider the following map:

Θ :

$

’

’

&

’

’

%

yHD
M
ÝÑ yHD

M

pX1, . . . , XM q ÝÑ

˜

ÿ

dPDi

BipfdpX1, . . . , XM qq

¸

iPrMs

.

As Bd is homogeneous of degree 1 for all d, we obtain that for all f, g P yHD
M
:

dpΘpfq,Θpfqq ď
1

2
dpf, gq.

So Θ is a contracting map. As yHD
M

is complete, Θ has a unique fixed point pX1, . . . , XM q,
which is the unique solution of pSq.

Remark 2.1.1. 1. As the Di are disjoint, the nonzero Xi are sum of trees with roots decorated
by elements of Di, so are algebraically independent.

2. If Xi “ 0, we can delete the i-th equation of pSq and replace fd by pfdq|xi“0 for all d P D,
without changing HpSq.

We now assume that all the Xi are nonzero (and, as a consequence, are algebraically
independent).

Definition 2.1.3. Let D be a connected NN -graded set, inducing a connected NN -graduation of
the Hopf algebra HD. Let pSq be a SDSE on D.

1. The unique solution of pSq is denoted by X “ pX1, . . . , XM q, and the homogeneous compo-
nents of Xi are denoted by Xipαq, i P rM s, α P NN˚ .

2. The subalgebra of HD generated by the Xipαq’s is denoted by HpSq.

3. We shall say that pSq is Hopf if HpSq is a Hopf subalgebra of HD.

Note that HpSq depends on the choice of the graduation.
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Example 2.1.1. Here is an example of SDSE. Le us fix k ě 1 and d0, . . . , dk P N. For any
α “ pα0, . . . , αkq P rN s

k`1, we put:

degpαq “ d0εα0 ` . . .` dkεαk P Z
N .

The set of decorations is:

D “ tα P rN sk`1 | degpαq P NNzt0uu.

The Hopf algebra HD inherits a connected NN -graduation. We consider the SDSE:

pSqFdB : @i P rN s, Xi “
ÿ

αPrNsk

Bpi,αq

´

p1`Xα1q
d1 . . . p1`Xαkq

dkp1`Xiq
d0`1

¯

. (1)

In particular, if pd0, . . . , dkq “ p0, 1, . . . , 1q, this gives:

@i P rN s, Xi “
ÿ

αPrNsk

Bpi,αq pp1`Xα1q . . . p1`Xαkqq .

Taking k “ 2, the components of X are a commutative version of the elements of Definition
20 in [6], which generate a Hopf algebra isomorphic to the free Faà di Bruno Hopf algebra on
N variables. We shall prove that it is indeed a Hopf SDSE, related to the Faà di Bruno Hopf
algebra on N variables.

2.2 Simplification of the hypotheses

Lemma 2.2.1. Let pSq be a Hopf SDSE, and let d P D. If fdp0, . . . , 0q “ 0, then fd “ 0.

Proof. Let i P rM s, such that d P Di. As fdp0, . . . , 0q “ 0, d does not appear in Xi, so
d never appears in any element of HpSq. Let us assume that fd ‰ 0. As the Xj are al-

gebraically independent, fdpX1, . . . , XN q ‰ 0, and there exists a linear form g on yHD, such
that gpfdpX1, . . . , XN qq “ 1. Then pg b Idq ˝ ∆pXiq is an element of HpSq, where the term
gpfdpX1, . . . , XN qq d “ d appears: this is a contradiction. So fd “ 0.

Consequently, if HpSq is Hopf and fd0p0, . . . , 0q “ 0 for a certain d0 P Di, we can rewrite the
i-th equation of pSq in the following way:

Xi “
ÿ

dPDiztd0u

BdpfdpX1, . . . , XM qq.

We now assume that for all d P D, fdp0, . . . , 0q ‰ 0.

Lemma 2.2.2. We consider the two SDSE:

pSq : @i P rM s, Xi “
ÿ

dPDi

BdpfdpX1, . . . , XM qq,

pS1q : @i P rM s, Yi “
ÿ

dPDi

Bd

ˆ

fdpY1, . . . , YM q

fdp0, . . . , 0q

˙

.

For all d P D, we put ad “ fdp0, . . . , 0q. Let φa be the Hopf algebra isomorphism defined in
proposition 1.1.4. Then:

1. For all i P rM s, Xi “ φapYiq.

2. HpSq “ φapHpS1qq.

3. pSq is Hopf, if and only if, pS1q is Hopf.
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Proof. We put:

gdpx1, . . . , xM q “
fdpx1, . . . , xM q

fdp0, . . . , 0q
.

As φa ˝Bd “ fdp0, . . . , 0qBd ˝ φa for all d, we obtain:

φapYiq “
ÿ

dPDi

φa ˝BdpgdpY1, . . . , YM qq

“
ÿ

dPDi

fdp0, . . . , 0qBd ˝ φapgdpY1, . . . , YM qq

“
ÿ

dPDi

fdp0, . . . , 0qBdpgdpφapY1q, . . . , φapYM qqq

“
ÿ

dPDi

BdpfdpφapY1q, . . . , φapYM qqq.

So pφapY1q, . . . , φapYM qq is the unique solution of pSq. Points 2 and 3 are immediate consequences.

We now assume that fdp0, . . . , 0q “ 1 for all d P D.

Lemma 2.2.3. Let pSq be a Hopf SDSE, d1, d2 be two elements in the same Di, of the same
degree. Then fd1 “ fd2.

Proof. Let us denote by α the common degree of d1 and d2. The homogeneous component of Xi

of degree α has the form d1 ` d2 ` . . .; consequently, if we consider the linear forms:

f1 :

#

HD ÝÑ K
F P FD ÝÑ δ

F, d1
,

f2 :

#

HD ÝÑ K
F P FD ÝÑ δ

F, d2
,

then the restriction of f1 and f2 to HpSq are equal. As HpSq is Hopf:

fd1pX1, . . . , XM q “ pIdb f1q ˝∆pXiq “ pIdb f2q ˝∆pXiq “ fd2pX1, . . . , XM q.

So fd1 “ fd2 .

Note that, if the SDSE is Hopf, we can write it under the form:

@i P rM s, Xi “
ÿ

αPNN˚

¨

˝

ÿ

iPDi,degpiq“α

Bi

˛

‚

loooooooooomoooooooooon

“Bi,α

pfαpX1, . . . , XM qq “
ÿ

αPNN˚

Bi,αpfαpX1, . . . , XM qq.

2.3 Operations on SDSE

Definition 2.3.1. Let D “ D1\. . .\DM be a NN -graded connected partitioned set. We consider
the SDSE given by:

pSq : @i P rM s, Xi “
ÿ

dPDi

BdpfdpX1, . . . , XM qq.

1. (Change of variables) Let a “ pa1, . . . , aM q be a family of nonzero scalars. The SDSE
obtained from pSq by the change of variables associated to these coefficients is:

pSqa : @i P rM s, Yi “
ÿ

dPDi

Bdpfdpa1Y1, . . . , aMYM qq.
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2. (Restriction) Let I Ď rM s. The restriction of pSq to I is the SDSE given by:

pSq|I : @i P I, Xi “
ÿ

dPDi

BdpgdpXj , j P Iqq,

where for all d P I, gd “ fd|xj“0 for all jRI P KrrXj , j P Iss.

Proposition 2.3.2. 1. Let pSq be a SDSE and let pSqa be another SDSE, obtained from pSq
by a change of variables. We define the coefficients ad, d P D, by:

ad “ ai if d P Di.

Let φa be the Hopf algebra isomorphism defined in proposition 1.1.4.

(a) The unique solution of pSqa is:
ˆ

1

a1
φapX1q, . . . ,

1

aM
φapXM q

˙

.

(b) Hence, HpSqa “ φapHpSqq
(c) pSq is Hopf if, and only if pSqa is Hopf.

2. Let I ĎM . We define the coefficients ad, d P D, by:

ad “

$

&

%

1 if d P
ğ

iPI

Di,

0 otherwise.

Let φa be the Hopf algebra morphism defined in proposition 1.1.4.

(a) The unique solution of pSq|I is:
pφapXiqqiPI .

(b) Hence, HpSq|I “ φapHpSqq
(c) If pSq is a Hopf SDSE, then pSq|I is also a Hopf SDSE.

Proof. 1. For all i P rM s, we put Yi “ 1
ai
φapXiq. Then:

Yi “
1

ai

ÿ

dPDi

φa ˝BdpfdpX1, . . . , XM qq

“
ÿ

dPDi

Bd ˝ φapfdpX1, . . . , XM qq

“
ÿ

dPDi

BdpfdpφapX1q, . . . , φapXM qqq

“
ÿ

dPDi

Bdpfdpa1Y1, . . . , aNYM qq.

So Y “ pY1, . . . , YM q is the solution of pSqa.

2. Proved in a similar way, noting that φapXiq “ Yi if i P I and 0 otherwise.

Definition 2.3.3 (Concatenation). Let pSq and pS1q be two SDSE, respectively associated to
partitioned NN -graded sets D “ D1 \ . . .\DM and D1 “ D11 \ . . .\D

1
M 1 , and to formal series

pfdqdPrMs and pf 1dqdPrM 1s. The concatenation of pSq and pS1q is the system associated to the
NN -graded partitioned set D \D1 “ D1 \ . . .\DM \D

1
1 \ . . .\D

1
M 1 given by:

pSq \ pS1q :

$

’

’

’

&

’

’

’

%

if 1 ď i ďM, ,Xi “
ÿ

dPDi

BdpfdpX1, . . . , XM qq,

if M ` 1 ď i ďM `M 1, Xi “
ÿ

dPD1i´M

Bdpf
1
dpXM`1, . . . , XM`M 1qq.
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Proposition 2.3.4. Let pSq and pS1q be two SDSE. Then pSq \ pS1q is Hopf if, and only if, pSq
and pS1q are Hopf.

Proof. ùñ. Let us assume that pSq \ pS1q is Hopf. Then pSq \ pS1q|rMs “ pSq and, up to a
reindexation, pSq \ pS1q|rM`M 1szrMs “ pS

1q. By proposition 2.3.2, pSq and pS1q are Hopf.

ðù. Let us assume that pSq and pS1q are Hopf. ThenHpSq\pS1q is isomorphic toHpSqbHpS1q Ď
HD bHD1 Ď HD\D1 . As HpSq and HpS1q are Hopf subalgebras of HD and HD1 , HpSq bHpS1q is
a Hopf subalgebra of HD\D1 , so pSq \ pS1q is Hopf.

Remark 2.3.1. As in [7], it is possible to define an operation of dilatation for multigraded SDSE.
We will not use it here.

2.4 Changes of graduation

Let D be a NN -graded connected set. Let C PMN 1,N pQq. We assume the following hypothesis:
if α P NN satisfies Dα ‰ p0q, then Cα P NN

1

˚ . We give D a NN 1-graduation by:

D1β “
ğ

αPNN ,Cα“β

Dα.

This defines another connected graduation of D. Consequently, HD inherits a second graduation:

HDpβq1 “
à

α,Cα“β

HDpαq.

Let pSq be a SDSE on D. The solution X of pSq can be decomposed into two ways:

Xi “
ÿ

αPNN
Xipαq “

ÿ

βPNN 1
X 1ipβq.

Hence, we obtain two subalgebras, denoted by HpSq and H1pSq.

Lemma 2.4.1. Under the preceding hypotheses:

1. H1
pSq Ď HpSq; if KerpCq “ p0q, this is an equality.

2. If H1
pSq is Hopf, then HpSq is Hopf.

Proof. Let β P NN 1 . Then:
X 1ipβq “

ÿ

Cα“β

Xipαq P HpSq.

Hence, H1
pSq Ď HpSq. Let us assume that KerpCq “ p0q. Let α P NN . We put β “ Cα. As C is

injective, X 1ipβq “ Xipαq, so Xipαq P H1pSq, and finally HpSq “ H1pSq.

Let us assume that H1
pSq is Hopf. We denote by πα the canonical projection on HDpαq. For

all β P NN 1 :

παpX
1
ipβqq “

#

Xipαq if Cβ “ α,

0 otherwise.

Moreover, for all x, y P HD:

παpxyq “
ÿ

α1`α2“α

πα1pxqπα2pyq.
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This implies that for all α P NN˚ ,, πα
´

H1
pSq

¯

Ď HpSq. For β “ Cα:

∆pXipαqq “ ∆ ˝ παpX
1
ipβqq

“
ÿ

α1`α2“α

pπα1 b πα2q ˝∆pXipβqq

P
ÿ

α1`α2“α

πα1
´

H1pSq
¯

b πα2
´

H1pSq
¯

P HpSq bHpSq.

So HpSq is a Hopf subalgebra of HD.

We shall often restrict ourselves to matrices C whose rank is N 1. One natural question is to
find the smallest N such that there exists a NN -graduation making the studied SDSE Hopf.

3 A family of pre-Lie algebras

If pSq is a Hopf SDSE, as Xi is an infinite span of trees with roots decorated by Di. Moreover,
in HpSq, any linear span of rooted trees with roots decorated by Di is a linear span of Xipαq;
hence, we can write the coproduct of Xi under the form:

∆pXiq “ Xi b 1`
ÿ

αPNN˚

Pi,αpX1, . . . , Xnq bXipαq.

So HpSq is a commutative combinatorial Hopf algebra in the sense of [21]. Hence, its dual is the
enveloping of algebra of a pre-Lie algebra gpSq. It is generated by the elements fipαq, dual to the
nonzero Xipαq; for all i, j P rM s, for all α, β P NN˚ , there exists a scalar λi,jpα, βq, such that:

fjpβq ˚ fipαq “ λi,jpα, βqfipα` βq,

where ˚ is the pre-Lie product of gpSq. When N “ 1, if the system is fundamental, we proved in
[9] that these coefficients are polynomial of degree ď 1. We here generalize this case for any N .

3.1 Definition and examples

Definition 3.1.1. Let pg, ˚q be a pre-Lie algebra. We shall say that it is deg1 if there exists a
basis pfipαqqiPrMs,αPNN˚ of g, and Api,jq P KN , bpi,jq P K, such that for all i, j P rM s, α, β P NN˚ :

fjpβq ˚ fipαq “ pA
pi,jq ¨ α` bpi,jqqfipα` βq,

where we denote by ¨ the usual inner product of KN . The elements Api,jq and bpi,jq will be called
the structure coefficients of g.

Example 3.1.1. We take M “ N . The pre-Lie product of the N -dimensional Faà di Bruno Lie
algebra is given by:

fjpβq ˚ fipαq “ pαj ` δi,jqfipα` βq.

Here, Api,jq “ εj , and bpi,jq “ δi,j .
Let pg, ˚q be a deg1 pre-Lie algebra of structure coefficients Api,jq and bpi,jq. Let λi P K´t0u

for all i P rM s. We put gipαq “ λifipαq for all i P rM s, α P NN˚ . Then:

gjpβq ˚ gipαq “ pλjA
pi,jq ¨ α` λjb

pi,jqqgipα` βq.

So the deg1 pre-Lie algebra with structure coefficients Api,jq and bpi,jq is isomorphic to the deg1
pre-Lie algebra with structure coefficients λjApi,jq and λjbpi,jq: we shall say that these two pre-
Lie algebras are equivalent. Our aim in this section is to find all deg1 pre-Lie algebras, up to
equivalence.
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Lemma 3.1.2. Let g be a vector space with a basis pfipαqqiPrMs,αPNN˚ , elements Api,jq P KN ,
bpi,jq P K, for i, j P rM s. We define a product ˚ on g by:

fjpβq ˚ fipαq “ pA
pi,jq ¨ α` bpi,jqqfipα` βq.

Then pg, ˚q is a pre-Lie algebra if, and only if, for all i, j, k P rM s:

pApi,jq “ 0 and bpi,jq “ 0q or pApi,jq “ Api,kqq, (2)

Api,jqbpj,kq “ Api,kqbpk,jq, (3)

bpi,jqbpj,kq “ bpi,kqbpk,jq. (4)

Proof. Let α, β, γ P NN˚ , i, j, k P rM s. Then:

pfkpγq ˚ fjpβqq ˚ fipαq ´ fkpγq ˚ pfjpβq ˚ fipαqq

“ pApi,jq ¨ α` bpi,jqqpApj,kq ¨ β ` bpj,kqqfipα` β ` γq

´ pApi,jq ¨ α` bpi,jqqpApi,kq ¨ pα` βq ` bpi,kqqfipα` β ` γq

“ pApi,jq ¨ α` bpi,jqqppApj,kq ´Api,kqq ¨ β ´Api,kq ¨ α` bpj,kq ´ bpi,kqqfipα` β ` γq.

Consequently:

pg, ˚q is pre-Lie

ðñ @i, j, k P rM s,@α P NN˚ ,
$

’

&

’

%

pApi,jq ¨ α` bpi,jqqpApj,kq ´Api,kqq “ 0,

pApi,kq ¨ α` bpi,kqqpApk,jq ´Api,jqq “ 0,

pApi,jq ¨ α` bpi,jqqpbpj,kq ´ bpi,kq ´Api,kq ¨ αq “ pApi,kq ¨ α` bpi,kqqpbpk,jq ´ bpi,jq ´Api,jq ¨ αq,

ðñ @i, j, k P rM s,
$

’

’

’

’

&

’

’

’

’

%

Api,jq “ 0 or Apj,kq “ Api,kq,

bpi,jq “ 0 or Apj,kq “ Api,kq,

Api,jqpbpj,kq ´ bpi,kqq ´ bpi,jqApi,kq “ Api,kqpbpk,jq ´ bpi,jqq ´ bpi,kqApi,jq,

bpi,jqpbpj,kq ´ bpi,kqq “ bpi,kqpbpk,jq ´ bpi,jqq,

which is equivalent to conditions (2)-(4).

Proposition 3.1.3. Let rM s “ I0 \ . . . \ Ik be a partition of rM s, such that I1, . . . , Ik ‰ H

(note that I0 may be empty), A1, . . . , Ak P KN , b1, . . . , bp P K, and bpiqp P K for all i P I0 and
p P rks. We define a deg1 pre-Lie algebra by:

Api,jq “

#

Aq if j P Iq, q ě 1,

0 if j P I0.
bpi,jq “

$

’

&

’

%

δp,qbq if j P Iq, q ě 1, i P Ip, p ě 1,

0 if j P I0,
b
piq
q if j P Iq, q ě 1, i P I0.

This pre-Lie algebra will be called the fundamental deg1 pre-Lie algebra of parameters I “
pI0, . . . , Ikq, A “ pA1, . . . , Akq PMN,kpKq, b “ pb1, . . . , bkq P Kk and bpi,jq.

Proof. Direct verifications prove that these structure coefficients satisfy conditions (2)-(4).

Remark 3.1.1. 1. For example, the Faà di Bruno pre-Lie algebra of dimension N is funda-
mental, with Ij “ tju for all j P rM s, I0 “ H, A “ IN and b “ p1, . . . , 1q.

2. The pre-Lie product of such a pre-Lie algebra is given in the following way: if i P Ip, j P Iq,
α, β P NN˚ ,

fjpβq ˚ fipαq “

$

’

&

’

%

pAq ¨ α` δp,qbqqfipα` βq if p, q ‰ 0,

pAq ¨ α` b
piq
q qfipα` βq if p “ 0, q ‰ 0,

0 if q “ 0.
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3.2 Classification of deg1 pre-Lie algebras

Let g be a deg1 pre-Lie algebra. We attach to it an oriented graph Gpgq, defined as follows:

• The vertices of Gpgq are the elements of rM s.

• There exists an oriented edge from i to j if, and only if, bpi,jq ‰ 0.

We shall write i ÝÑ j if there is an oriented edge from i to j in Gpgq.

Lemma 3.2.1. Let g be a fundamental deg1 pre-Lie algebra and let i ÝÑ j ÝÑ k in Gpgq. Then,
in Gpgq:

j::
** kjj
yy

i

@@��������

]]<<<<<<<<

Proof. By condition (4), if i ÝÑ j ÝÑ k, then bpi,jqbpj,kq “ bpi,kqbpk,jq ‰ 0, so i ÝÑ k and k ÝÑ j.
With the same argument, as k ÝÑ j ÝÑ k, k ÝÑ k. As j ÝÑ k ÝÑ j, j ÝÑ j.

Proposition 3.2.2. Let g be a fundamental deg1 pre-Lie algebra. The graph Gpgq has the
following structure:

1. The set of vertices rM s admits a partition rM s “ I0 \ . . .\ Ik.

2. For all 1 ď p ď k, the complete subgraph of Gpgq whose vertices are the elements of Ip is,
either complete, either an isolated vertex.

3. For all i P I0, there exists Dpiq Ď rks, such that for all j P rM s, i ÝÑ j if, and only if,
j P

ğ

pPDpiq

Ip.

4. If i P I0, there is no vertex j such that j ÝÑ i.

Proof. First step. Let i0 P rM s. For all p ě 1, we denote by Jp the sets of vertices j P rM s, such
that there exists i1, . . . , ip´1 P rM s, i0 ÝÑ i1 ÝÑ . . . ÝÑ ip´1 ÝÑ j. We put J “

ď

pě1

Jp and we

consider a connected component K of the subgraph of Gpgq of vertices J . Let us prove that K
is either complete, or is an isolated vertex. First, observe that if j ÝÑ k in K, by definition of
J , there exists jp´1, such that jp´1 ÝÑ j ÝÑ k. By lemma 3.2.1, tj, ku is a complete subgraph
of K.

If K has no edge, as it is connected, it is an isolated vertex; let us assume it has at least one
edge j ÝÑ k. By the preceding observation, tj, ku is a complete subgraph of K, so K contains
complete subgraphs. Let L be a maximal complete subgraph of K. If L Ĺ K, as K is connected,
there exists k P KzL, l P L, such that k ÝÑ l or l ÝÑ k. We already observed that tk, lu is
complete in both cases. Let l1 P L. As L is complete, then k ÝÑ l ÝÑ l1 and l1 ÝÑ l ÝÑ k: by
lemma 3.2.1, k ÝÑ l1, and l1 ÝÑ k: L\ tku is complete, which contradicts the maximality of L.
So K “ L is complete.

Second step. We denote by I0 the set of vertices i such that there is no j with j ÝÑ i. Let
K be a connected component of the subgraph of vertices rM szI0. If k P K, then k R I0, so there
exists j P I, such that j ÝÑ k. By the first step, K is an isolated vertex or is complete. We
denote by I1 \ . . .\ Ik the decomposition of rM szI0 in connected components. Let i0 P I0, and
j such that i0 ÝÑ j. Then j R I0, so there exists p ě 1, j P Ip. If Ip is an isolated vertex, then
i0 ÝÑ j1 for any j1 P Ip. If Ip is complete, for any j1 P Ip, then i0 ÝÑ j ÝÑ j1, so i0 ÝÑ j1 by
lemma 3.2.1. Denoting by Dpi0q the set of p such that there exists j P Ip with i0 ÝÑ j, then
i0 ÝÑ j if, and only if, j P Ip for a p P Dpi0q.
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Theorem 3.2.3. Let g be a deg1 pre-Lie algebra. Up to an equivalence, it is the direct sum of
fundamental deg1 pre-Lie algebras.

Proof. First case. We assume first that Gpgq is complete. Let us choose i0 P I. For all j,
bpi0,jq ‰ 0: up to an equivalence, we assume that bpi0,jq “ 1 for all j. Condition (4), with i “ i0
becomes: for all j, k, bpj,kq “ bpk,jq. Still by condition (4), as bpj,kq “ bpk,jq ‰ 0, for all i, j, k,
bpi,jq “ bpi,kq. Hence, for all i, j:

bpi,jq “ bpi,i0q “ bpi0,iq “ 1.

Condition (2) becomes: for all i, j, k, Apj,kq “ Api,kq. We denote by Apkq the unique vector such
that Api,kq “ Apkq for all i. Condition (3) becomes: for all j, k, Apkq “ Apjq. So there exists
a unique vector A, such that for all i, j, Api,jq “ A. Finally, g is a fundamental deg1 pre-Lie
algebra, with rM s “ I1.

Second case. We assume that Gpgq is connected. We use the notations of proposition 3.2.2.
If there is an edge from i to j, by condition (2), for all k, Apj,kq “ Api,kq. By connectivity,
there exists vectors Apkq, such that for all i, j, k, Api,kq “ Apj,kq “ Apkq. We consider the pre-Lie
subalgebra gp of g generated by the elements fipαq, i P Ip, α P NN˚ . They are deg1 pre-Lie
algebras; if p ě 1 and Ip is not a single element, then the graph associated to gp is complete. By
the first step, up to an equivalence, we can assume that Apkq is constant on Ip: there exists a
vector Ap such that Apkq “ Ap for all k P Ip, p ě 1. Moreover, there exists a scalar bp, such that
bpi,jq “ bp for all i, j P Ip, if p ě 1.

Let j P I0. By connectivity of Gpgq, and by definition of I0, there exists k such that j ÝÑ k,
so bpj,kq ‰ 0 and bpk,jq “ 0. By condition (3), Api,jq “ 0 for all i, so Apjq “ 0 if j P I0.

By definition of the graph, if i P Ip, j P Iq, p, q ě 1 and p ‰ q, then bpi,jq “ 0. If j P I0,
then bpi,jq “ 0 for all i. Let i P I0, j, k P Ip, p ě 1. If j “ k, then bpi,jq “ bpi,kq. If j ‰ k, then
Ip is complete and j ÝÑ k in Gpgq: bpj,kq “ bpj,kq ‰ 0. By condition (4), bpi,kq “ bpi,jq. So there
exists bpiqp , such that bpi,jq “ b

piq
p for all j P Ip. Finally, the structure coefficients are given in the

following arrays:

Api,jq :

izj I0 I1 . . . Ik
I0 0 A1 . . . Ak

I1 0
...

...
... 0

...
...

Ik 0 A1 . . . Ak

bpi,jq :

izj I0 I1 . . . Ik

I0 0 b
piq
1 . . . b

piq
k

I1 0 b1 . . . 0
... 0

...
. . .

...
Ik 0 0 . . . bk

So this is a fundamental deg1 pre-Lie algebra.

General case. Let G1, . . . , Gl be the connected components of Gpgq. By the second step,
up to an equivalence of g, the pre-Lie subalgebra of g corresponding to these subgraphs are
fundamental deg1 pre-Lie algebras.

First subcase. Let us assume that there exists i P Gp, j P Gq, with p ‰ q, such that Api,jq ‰ 0.
By condition (2), for all k, Apj,kq “ Api,kq. By connectivity of Gp and Gq, we deduce that for all
i1 P Gp, j1 P Gq, for all k, Api

1,kq “ Apj
1,kq.

Second subcase. Let us assume that for all i P Gp, j P Gq, Api,jq “ 0. As bpi,jq “ 0, for all
α, β P NN˚ , for all i P Gp, j P Gq, fjpβq ˚ fipαq “ 0.

We define an equivalence relation „ on rM s in the following way: i „ j if for all k, Api,kq “
Apj,kq. The first subcase implies that the equivalence classes are disjoint union of Gp: we denote
them by H1, . . . ,Hn. The second step gives that the corresponding subalgebras g1, . . . gn are
fundamental deg1 pre-Lie algebras. By the second subcase, g “ g1 ‘ . . .‘ gn.
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3.3 SDSE associated to a deg1 pre-Lie algebra

We here describe the dual of the enveloping algebra of a deg1 pre-Lie algebra, as a subalgebra
of a Hopf algebra of decorated rooted trees. We use for this the Guin-Oudom extension of the
pre-Lie product [22].

Lemma 3.3.1. Let g be a fundamental deg1 pre-Lie algebra. For all i P Ip, p ‰ 0, α, β1, . . . , βk P
NN˚ :

fj1pβ1q . . . fjkpβkq ˚ fipαq “

$

’

’

&

’

’

%

0 if one of the jp is in I0,
k
ź

q“1

εq´1
ź

r“0

pAq ¨ α` bqpδp,q ´ rqqfipα` β1 ` . . .` βkq otherwise,

where εq “ 7tp P rks | jp P Iqu. If i P I0:

fj1pβ1q . . . fjkpβkq ˚ fipαq “

$

’

’

&

’

’

%

0 if one of the jp is in I0,
k
ź

q“1

εq´1
ź

r“0

pAq ¨ α` b
piq
q ´ rbqqfipα` β1 ` . . .` βkq otherwise.

Proof. We proceed by induction on k. The result is obvious if k “ 1. Let us assume the result
at rank k. We assume that i P Ip, p ě 1. We put:

fj1pβ1q . . . fjkpβkq ˚ fipαq “ Ppj1,...,jkqpαqfipα` β1 ` . . .` βkq.

Then:

fj1pβ1q . . . fjk`1
pβk`1q ˚ fipαq “ fjk`1

pβk`1q ˚ pfj1pβ1q . . . fjkpβkq ˚ fipαqq

´

k
ÿ

p“1

fj1pβ1q . . . pfjk`1
pβk`1q ˚ fjppβpqq . . . fjkpβkq ˚ fipαq.

If jk`1 P I0, this is zero. Let us assume that jk`1 P Iq, q ě 1. For all p, let blppq be the unique r
such that jp P Ir. Then:

fj1pβ1q . . . fjk`1
pβk`1q ˚ fipαq

“ Ppj1,...,jkqpαqfjk`1
pβk`1q ˚ fipα` β1 ` . . .` βkq

´

k
ÿ

p“1

pAq ¨ βp ` δblppq,qbqqfj1pβ1q . . . fjppβp ` βkk`1
q . . . fjkpβkq ˚ fipαq

“ Ppj1,...,jkqpαqpAq ¨ pα` β1 ` . . .` βkq ` δp,qbqqfipα` β1 ` . . .` βk`1q

´ Ppj1,...,jkqpαqpAq ¨ pβ1 ` . . .` βkq ` bqpεq ´ 1qqfipα` β1 ` . . .` βk`1q

“ Ppj1,...,jkqpαqpAq ¨ α` bqpδp,q ´ εq ` 1qqfipα` β1 ` . . .` βk`1q.

The computation is similar if i P I0.

We shall write shortly:

fj1pβ1q . . . fjkpβkq ˚ fipαq “ Ppj1,...,jkqpαqfipα` β1 ` . . .` βkq.

Let DM,N “ rM sˆNN˚ . Recall that gDM,N is the free pre-Lie algebra generated by the rooted
trees d , d P DM,N . The set DM,N is NN -graded, with degpi, αq “ α, and this graduation is
connected.

If g is a deg1 pre-Lie algebra, one defines a connected NN -graduation of the pre-Lie g
pNq
T by

putting fipαq homogeneous of degree α. We define a pre-Lie algebra morphism:

φ :

#

g
pNq
T ÝÑ g
pi, αq ÝÑ fipαq.
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Lemma 3.3.2. Let T P TDM,N . We denote by prpT q, dpT qq the decoration of the root of T . There
exists a scalar λT , such that:

φpT q “ λT frpT qpdegpT qq.

These coefficients can be inductively defined by:

λT “

#

1 if T “ pi, αq ,

λT1 . . . λTkPprpT1q,...,rpTkqqpαq if t “ Bpi,αqpT1 . . . Tkq.

Proof. We proceed by induction on the number n of vertices of T . It is obvious if n “ 1. Let us
assume the result at all rank ă n, n ě 2. We put t “ Bpi,αqpT1 . . . Tkq. Then T “ T1 . . . Tk ˚pi, αq ,
so:

φpT q “ φpT1q . . . φpTkqfipαq

“ λT1 . . . λTkfrpT1qp|T1|q . . . frpTkqp|Tk|q ˚ fipαq

“ λT1 . . . λTkPprpT1q,...,rpTkqqpαqfipα` degpT1q ` . . .` degpTkqq

“ λT1 . . . λTkPprpT1q,...,rpTkqqpαqfipdegptqq.

Hence, the result holds for all n.

By duality, we obtain a Hopf algebra morphism:

φ˚ :

$

’

&

’

%

Upgq˚ ÝÑ HDM,N

fipαq
˚ ÝÑ

ÿ

degpT q“α,rpT q“i

λT
sT
T.

We put µT “ λT
sT

for any rooted tree T P TDM,N , and, for any i P rM s:

Xi “
ÿ

rpT q“i

µTT.

If t “ Bpi,αq

´

T β11 . . . T βll

¯

, where T1, . . . , Tk are distinct trees, with i P Ip, p ě 1, denoting by εq

the number of trees t1 in T β11 . . . T βll such that rpTiq P Iq:

µT “
λβ1T1 . . . λ

βl
Tl

sβ1T1 . . . s
βl
Tl
β1! . . . βl!

k
ź

q“1

εq´1
ź

r“0

pAq ¨ α` bqpδp,q ´ rqq

“ µα1
T1
. . . µαlTl

ε1! . . . εk!

β1! . . . βl!

k
ź

q“1

1

εq!

εq´1
ź

r“0

pAq ¨ α` bqpδp,q ´ rqq.

Consequently, if i P Ip, p ě 1:

Xi “
ÿ

αPNN˚

Bpi,αq

¨

˝

k
ź

q“1

fi,q,α

¨

˝

ÿ

jPIq

Xj

˛

‚

˛

‚,

with:

fi,q,αpXq “ FAq ¨α`bqδp,q ,bqpXq “ FAq ¨α,bqpXqFbqδp,q ,bqpXq “ FAq ¨α,bqpXqp1` bqXq
δp,q .

A similar computation for i P I0 gives:

Xi “
ÿ

αPNN˚

Bpi,αq

¨

˝

k
ź

q“1

FAq ¨α,bq

¨

˝

ÿ

jPIq

Xj

˛

‚

k
ź

q“1

F
b
piq
q ,bq

¨

˝

ÿ

jPIq

Xj

˛

‚

˛

‚.

We proved:
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Theorem 3.3.3. Let rM s “ I0\ I1\ . . .\ Ik, A1, . . . , Ak P KN , b1, . . . , bk P K, bpiq1 , . . . , b
piq
k P K

for all i P I0. We consider the following SDSE:

@i P Ip, p ě 1, Xi “
ÿ

αPNN˚

Bpi,αq

¨

˝

k
ź

q“1

FAq ¨α,bq

¨

˝

ÿ

jPIq

Xj

˛

‚

¨

˝1` bp
ÿ

jPIp

Xj

˛

‚

˛

‚,

@i P I0, Xi “
ÿ

αPNN˚

Bpi,αq

¨

˝

k
ź

q“1

FAq ¨α,bq

¨

˝

ÿ

jPIq

Xj

˛

‚

k
ź

q“1

F
b
piq
q ,bq

¨

˝

ÿ

jPIq

Xj

˛

‚

˛

‚.

The NN -graded subalgebra of HDM,N generated by the unique solution of this SDSE is Hopf. Its
dual is the enveloping algebra of the fundamental deg1 pre-Lie algebra associated to I, A and b.

Example 3.3.1. We choose N “M , I “ t1u \ . . .\ tNu, A “ IN and bi “ 1 for all i P rN s. The
associated Hopf SDSE is:

pSq : @i P rN s, Xi “
ÿ

αPNN˚

Bpi,αq

˜

N
ź

q“1

p1`Xqq
αqp1`Xiq

¸

.

This is related to the SDSE described in (1). We only conserve as decorations the elements of:

D1 “ tdegpαq | α P Du.

For all α “ pα0, . . . , αkq P rN s
k`1, we put B1α “ Bpα0,degpαqq. The SDSE pSq becomes:

pS1q : @i P rN s, Xi “
ÿ

αPNk
B1pi,αq

˜

N
ź

q“1

p1`Xqq

ř

p,αp“q
dp
p1`Xiq

d0`1

¸

ðñ @i P rN s, Xi “
ÿ

αPNk
B1pi,αq

´

p1`Xα1q
d1 . . . p1`Xαkq

dkp1`Xiq
d0`1

¯

.

This is the system of (1), which is consequently a Hopf SDSE.

4 Group associated to a fundamental pre-Lie algebra

4.1 Lie algebra associated to a fundamental pre-Lie algebra

Proposition 4.1.1. Let g be a fundamental deg1 pre-Lie algebra, with parameters I, A and b.
We denote by r the rank of A. Then g is isomorphic, as a Lie algebra, to a fundamental deg1
pre-Lie algebra g1 with structure coefficients given by:

A1pi,jq :
izj 1 . . . r r ` 1 . . .M

1 . . .M A1j 0
b1pi,jq :

izj 1 . . . k k ` 1 . . .M

1 . . . k 0 0

k ` 1 . . .M b
1piq
j 0

A1 “

ˆ

Ir
˚

˙

,

with 0 ď r ď k ďM . We shall say that such a fundamental deg1 pre-Lie algebra is reduced.

Proof. First step. For any p ě 1, let us fix i0 P Ip. If i P Ipzti0u, we put gipαq “ fipαq ´ fi0pαq
for all α P NN˚ . If j P Iq, q ‰ 0:

fjpβq ˚ gipαq “ pAq ¨ α` bqδp,qqgipα` βq.

17



Consequently:

gjpβq ˚ gipαq “ 0 if j P Ipzti0u, fjpβq ˚ gipαq “ 0 if j P I0.

Replacing the elements fipαq by gipαq for all i P Ipzti0u, these computations proves that g is
isomorphic to a deg1 pre-Lie algebra g1, with rM s “ I 10 \ . . .\ I

1
k, such that

I 1q “

$

’

&

’

%

ti0u if q “ p,

I0 \ Ipzti0u if q “ 0,

Iq otherwise.

Proceding in this way for all p, and after a reindexation, we obtain that g is isomorphic to a
fundamental deg1 pre-Lie algebra with:

Api,jq :
izj 1 . . . k k ` 1 . . .M

1 . . .M A1 . . . Ak 0

bpi,jq :

izj 1 . . . . . . k k ` 1 . . .M

1 b1 0 . . . 0 0
... 0

. . . . . .
...

...
...

...
. . . . . . 0

...

k 0 . . . 0 bk
...

k ` 1 . . .M b
piq
1 . . . . . . b

piq
k 0

If 1 ď i, j ď k, in g1:

rfjpβq, fipαqs “ pAj ¨ α` δi,jbiqfipα` βq ´ pAi ¨ β ` δi,jbjqfjpα` βq

“ Aj ¨ αfipα` βq ´Ai ¨ βfjpα` βq.

Hence, the Lie bracket of g does not depend of b.

Second step. Up to a Lie algebra isomorphism, we can now assume that b1 “ . . . “ bk “ 0.
Let P P GLkpKq. For all i P rks, we put:

gipαq “
ÿ

j

pj,ifjpαq.

Then pgipαqqiďk,αPNN˚ \ pfipαqqiąk,αPNN˚ is a basis of g. Moreover, if i, j P rks:

gjpβq ˚ gjpαq “
ÿ

i1,j1

pj1,jpi1,ifj1pβq ˚ fi1pαq

“
ÿ

i1,j1

pj1,jpi1,iAj1 ¨ αfi1pα` βq

“

¨

˝

ÿ

j1

pj1,jAj1

˛

‚¨ αgipα` βq.

Similar computations give, if 1 ď j ď k ă i ď N :

gjpβq ˚ fipαq “

¨

˝

¨

˝

ÿ

j1

pj1,jAj1

˛

‚¨ α`

¨

˝

ÿ

j1

pj1,jb
piq
j1

˛

‚

˛

‚fipα` βq.
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Moreover, if 1 ď i ď k ă j ď N :
fjpβq ˚ gipαq “ 0.

Hence, g is isomorphic, as a Lie algebra, to the fundamental deg1 pre-Lie g1, with A1 “ AP , and
b1pi,jq “ 0 if i, j ď k. Up to a permutations of the rows and the columns of A, we can assume
that:

A “

ˆ

A1 A2

A3 A4

˙

,

with A1 P GLrpKq. As r “ RankpAq, there exists Q PMr,k´r, such that:
ˆ

A2

A4

˙

“

ˆ

A1

A3

˙

Q.

We then take:

P “

ˆ

A´11 ´Q
0 Ik´r

˙

,

and then:

A1 “

ˆ

Ir 0
˚ 0

˙

,

which finally gives the announced result.

4.2 Group associated to a reduced deg1 pre-Lie algebra

Notations 4.2.1. Let p P N˚ and q P N. We fix a matrix B PMq,ppKq. For all i P rps, we denote:

Gi “ txip1` F q | F P Krrx1, . . . , xp, y1, . . . , yqss`u Ď Krrx1, . . . , xp, y1, . . . , yqss`.

Proposition 4.2.1. Let GB “ G1 ˆ . . . ˆ Gp Ď Krrx1, . . . , xp, y1, . . . , yqssp, with the product
defined in the following way: if F “ pF1, . . . , Fpq and G “ pG1, . . . , Gpq P GB,

F ‚G “ G

˜

F1, . . . , Fp, y1

ˆ

F1

x1

˙B1,1

. . .

ˆ

Fp
xp

˙B1,p

, . . . , yq

ˆ

F1

x1

˙Bq,1
. . .

ˆ

Fp
xp

˙Bq,p
¸

.

Then GB is isomorphic to the group of characters of a Np`q-graded Hopf algebra HB. The
graded dual of HB is the enveloping algebra of the reduced deg1 pre-Lie algebra gB associated to
the structure coefficients:

Api,jq :
izj 1 . . . p

1 . . . p Aj
A “

ˆ

Ip
B

˙

bpi,jq :
izj 1 . . . p

1 . . . p 0

Proof. We shall write shortly F ‚G “ G
´

F, Y
`

F
x

˘B
¯

. Let us first prove that GB is a monoid.
Let F,G,H P GB.

F ‚ pG ‚Hq “ G ‚H

˜

F, y

ˆ

F

x

˙B
¸

“ H

¨

˚

˝

G

˜

F, y

ˆ

F

x

˙B
¸

, y

ˆ

F

x

˙B
¨

˝

G
´

F, y
`

F
x

˘B
¯

F

˛

‚

B˛

‹

‚

“ H

¨

˚

˝

G

˜

F, y

ˆ

F

x

˙B
¸

, y

¨

˝

G
´

F, y
`

F
x

˘B
¯

x

˛

‚

B˛

‹

‚

“ H

˜

F ‚G, y

ˆ

F ‚G

x

˙B
¸

“ pF ‚Gq ‚H.
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The identity of this monoid is the element I “ px1, . . . , xpq.

Let λ “ pλ1, . . . , λp, µ1, . . . , µqq P pK˚qp`q. We define:

φλ :

#

GB ÝÑ GB

F ÝÑ

´

1
λi
Fipλ1x1, . . . , λpxp, µ1y1, . . . , µqyqq

¯

1ďiďp
.

Let us prove that this defines a action of the torus T “ pK˚qp`q on the monoid GB by auto-
morphisms. We shall write shortly φλ,µpF q “ 1

λF pλx, µyq. Clearly, φλ,µ ˝ φλ1,µ1 “ φλλ1,µµ1 and
φ1,1 “ IdGB , so this is indeed an action. Let F,G P GB.

φpλ,µqpF ‚Gq “
1

λ
G

˜

F pλx, µyq, µy

ˆ

F pλx, µyq

λx

˙B
¸

“ φpλ,µqpF q ‚ φpλ,µqpGq.

For all i P rps, λ P Np`q˚ , we put:

Xipλq :

"

GB ÝÑ K
G ÝÑ coefficient of xixλ11 . . . x

λp
p y

µ1
1 . . . y

µq
q in Gi.

We obtain an action on the torus T on these functions by transposition:

φ˚λpXipαqqpGq “ XipαqpφλpGqq

“ Xipαq

ˆ

1

λ
Gpλx, µyq

˙

“
1

λi
λα1
1 . . . λ

αp
p µ

αp`1

1 . . . µ
αp`q
q XipαqpGq.

So this action is given by φλpXipαqq “ λαXipαq. Consequently, denoting by HB the algebra
generated by the elements Xipαq, it gives it a Np`q-graduation, for which Xipαq is homogeneous
of degree α: this graduation is finite-dimensional and connected.

We define a coproduct ∆ : HB ÝÑ {HB bHB in the following way:

@X P HB, @F,G P GB, ∆pXqpF,Gq “ XpF ‚Gq.

As the torus acts by automorphisms, for all λ P T :

∆pφ˚λpXqqpF,Gq “ XpφλpF ‚Gqq “ XpφλpF q ‚ φλpGqq “ pφ
˚
λ b φ

˚
λq ˝∆pXqpF,Gq.

Hence, ∆ respects the action of T , so respects the graduation implied by this action, and conse-
quently is homogeneous of degree 0. As the graduation is finite-dimensional, ∆pHBq Ď HBbHB.
As GB is a monoid, HB is a bialgebra. As it is connected, it is a Hopf algebra, so GB is a group.
By construction, the group of characters of HB is GB.

By Cartier-Quillen-Milnor-Moore’s theorem, the graded dual of HB is the enveloping algebra
of a Lie algebra g, whose basis is given by elements fipαq dual to the elements Xipαq. Moreover,
as the composition of GB is linear in the second variable, the Lie bracket of g is induced by a
pre-Lie product ˚; by homogeneity, for all i, j P rps, α, β P Np`q˚ , there exists a scalar λpi,jqpα, βq
such that:

fjpβq ˚ fipαq “ λpi,jqpα, βqfipα` βq.

Moreover, λpi,jqpα, βq is the coefficient of Xjpβq bXipαq in ∆pXipα` βqq. Direct computations
give that:

fjpβq ˚ fipαq “

¨

˝αj `

q
ÿ

j1“1

Aj1,jαj1`p ` δi,j

˛

‚fipα` βq,

so g is isomorphic to gB as a Lie algebra.
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Example 4.2.1. If q “ 0, we obtain a Faà di Bruno group of formal diffeomorphisms, with the
composition. This is the case for the SDSE pSqFdB in (1), where A “ IN . The associated group
is:

G “ ptpx1p1` F1q, . . . , xN p1` FN qq | F1, . . . , FN P Krrx1, . . . , xN ss`u , ˝q .

Proposition 4.2.2. Let V0 be the group pKrrx1, . . . , xp, y1, . . . , yqss`,`q. The group GB acts by
automorphisms on V0 by:

@F P GB, @P P V0, F ãÑ P “ P

˜

F, y

ˆ

F

x

˙B
¸

.

For all r ě 0, the group V r
0 ¸GB is isomorphic to the character group of a Np`q-graded Hopf

algebra HB,r, whose graded dual is the enveloping algebra of a fundamental deg1 pre-Lie algebra
gB with structure coefficients:

Api,jq :
izj 1 . . . p p` 1 . . . p` r

1 . . . p` r Aj 0
A “

ˆ

Ip
B

˙

.

bpi,jq :
izj 1 . . . p` r

1 . . . p` r 0

Proof. Let F P GB, P,Q P V0. Obviously, F ãÑ pP ` Qq “ F ãÑ P ` F ãÑ Q. Let F,G P GB,
P P V0. Then:

F ãÑ pG ãÑ P q “ P

¨

˚

˝

G

˜

F, y

ˆ

F

x

˙B
¸

, y

ˆ

F

x

˙B
¨

˝

G
´

F, y
`

F
x

˘B
¯

F

˛

‚

B˛

‹

‚

“ P

¨

˚

˝

G

˜

F, y

ˆ

F

x

˙B
¸

, y

¨

˝

G
´

F, y
`

F
x

˘B
¯

x

˛

‚

B˛

‹

‚

“ G

˜

F, y

ˆ

F

x

˙B
¸

ãÑ P

“ pF ‚Gq ãÑ P.

We define an action of the torus T “ pK˚qp`q over V0 by:

ψλpP q “ P pλ1x1, . . . , λpxp, µ1y1, . . . , µqyqq.

It is easy to prove that this is an action by automorphisms, and for all F P GB, P P V0:

ψλpF ãÑ P q “ φλpF q ãÑ ψλpP q.

A system of coordinates of the group V r
0 ¸GB is given by the elements Xipαq defined on GB

and Yjpαq defined on V r
0 by:

Yjpαq :

"

V r
0 ÝÑ K

pP1, . . . , Prq ÝÑ coefficient of xα in Pj .

These elements generate an algebra HB,r, containing HB. The action of the torus extends the
graduation of HB to HB,r, making a graded connected algebra. Consequently, it inherits a
coproduct, dual of the composition of the group V r

0 ¸GB, making it a graded connected Hopf
algebra. Note that HB,r contains HB, and by construction its character group is V r

0 ¸GB.
The composition in V r

0 ¸GB is given by:

pP1, . . . , Pr, F q ‚ pQ1, . . . , Qr, Gq “ ppP1 ` F ãÑ Q1, . . . , Pr ` F ãÑ Qr, F ‚Gq.
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Consequently, it is linear in the second variable; hence, the graded dual of HB,r is the enveloping
algebra of a pre-Lie algebra g. This has a basis pfipαqqiPrps,αPNp`q˚

\ pgjpβqqjPrrs,βPNp`q˚
, dual of

the SDSE of coordinates Xipαq and Yjpβq. The pre-Lie product of fjpβq and fipαq is the same
as in gB, and direct computations give:

fjpβq ˚ gipαq “ Aj ¨ αgipα` βq, gjpβq ˚ fipαq “ 0, gjpβq ˚ gipαq “ 0.

So this is indeed isomorphic to a reduced deg1 pre-Lie algebra, as announced.

This last result is proved similarly:

Proposition 4.2.3. Let a P Kr and b P Kp. Let Va,b be the group pKrrx1, . . . , xp, y1, . . . , yqss`,`q.
The group V r

0 ¸GB acts by automorphisms on Va,b by:

pP1, . . . , Pr, F q ãÑ Q “ Q

˜

F, y

ˆ

F

x

˙B
¸

ea1P1`...`arPr

ˆ

F1

x1

˙b1

. . .

ˆ

Fp
xp

˙bp

.

If ap1q, . . . , apsq P Kr and bp1q, . . . , bpsq P Kp, the group pVap1q,bp1q ‘ . . .‘apsq,bpsqq ¸ pV
r
0 ¸GBq is

isomorphic to the character group of a Np`q-graded Hopf algebra HB,r,a,b, whose graded dual is
the enveloping algebra of a fundamental deg1 pre-Lie algebra gB with structure coefficients:

Api,jq :
izj 1 . . . p p` 1 . . . p` r ` s

1 . . . p` r Aj 0
A “

ˆ

Ip
B

˙

.

bpi,jq :

izj 1 . . . p p` 1 . . .` p` r p` r ` 1 . . . p` r ` s

1 . . . p` r 0 0 0

p` r ` 1 . . . p` r ` s b
pi´p´rq
j a

pi´p´rq
j´p 0

5 SDSE associated to a family of Feynman graphs

5.1 Feynman graphs

Definition 5.1.1. A theory of Feynman graphs T is given by:

• A set HE of types of half-edges, with an incidence rule, that is to say an involutive map
ι : HE ÝÑ HE.

• A set V of vertex types, that is to say a set of finite multisets (in other words finite unordered
sequences) of elements of HE, of cardinality at least 3.

The edges of T are the multisets tt, ιptqu, where t is an element of HE. The set of edges of T is
denoted by E.

Example 5.1.1. 1. In QED, HEQED “ t , , u, and the incidence rule is given
by:

ÐÑ , ÐÑ .

Hence, there are two edges, “ t , u and “
 

,
(

. There

is one vertex type, “ t , , u.

2. In QCD, HEQCD “ t , , , , u, and:

VQCD “

$

&

%

, , ,

,

.

-

.
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The incidence rule is given by:

ÐÑ , ÐÑ , ÐÑ .

There are three edges, (gluon), (fermion) and (ghost).

3. Let N ě 3. In ϕN , EϕN “ t u. There is only one vertex type, which is the multiset
formed by N copies of . There is only one edge, denoted by .

Definition 5.1.2. Let T “ pHE ,V, ιq be a theory of Feynman graphs. A 1PI graph G of the
theory T is given by:

• A nonempty, finite set HE of half-edges, with a map type : HE ÝÑ HE.

• A nonempty, finite set V of vertices.

• An incidence map for half-edges, that is to say an involution map i : HE ÝÑ HE.

• A source map for half-edges, that is to say a map s : HE ÝÑ V .

The following conditions must be satisfied:

1. (Respect of the incidence rule) for any e P HE such that ipeq ‰ e, ιptypepeqq “ typepipeqq.

2. (Respect of the vertex types) for any v P V , the multiset typepvq “ ttypepeq | speq “ vu
belongs to V.

3. (Connectivity and one-particule irreducibility) the set of internal edges of G is:

IntpGq “ tte, ipequ | e P HE, ipeq ‰ eu.

The source map makes pV, IntpGqq a graph. This graph is 1-PI, that is to say that it is
connected and remains connected if one edge e P IntpGq is deleted.

4. (External structure) the set of external half-edges f G is:

ExtpGq “ te | e P HE, ipeq “ eu.

We define typeExtpGq as the multiset ttypepeq | e P ExtpGqu. Two case are possible:

(a) typeExtpGq “ tt1, t2u, with ιpt1q “ t2. In this case, we shall say that the external
structure of G is of type edge typeExtpGq.

(b) typeExtpGq P V. In this case, we shall say that the external structure of G is of type
vertex typeExtpGq.

A Feynman graph is the disjoint union of a finite number (possibly 0) 1-PI Feynman graphs,
called its connected components. The set of Feynman graphs of the theory T is denoted by FGT .

We shall only consider theories such that there exists 1-PI Feynman graphs for all type of
external structures.

Example 5.1.2. 1. Here are examples of 1-PI Feynman graphs in QED.

External structure Examples

, , , , ,

, ,

, ,
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2. Here are examples of 1-PI Feynman graphs in QCD.

External structure Examples

, , ,

, , ,

,

, , ,

, ,

, ,

3. Here are examples of 1-PI Feynman graphs in ϕ3.

External structure Examples

, , , , ,

, ,

Definition 5.1.3. 1. Let G “ pHE,V, i, sq and G1 “ pHE1, V 1, i1, s1q be two Feynman graphs
of a theory T . We shall say that G1 is a subgraph of G if:

(a) HE1 Ď HE, V 1 “ spHE1q and s1 “ s|HE1 .
(b) For any e P HE1, i1peq “ e or i1peq “ ipeq.
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2. Let G1 be a connected subgraph of G. We define a structure G{G1 “ pHE2, V 2, i2, s2q in
the following way:

• If the type of the external structure of G1 is a vertex:
(a) HE2 “ pHEzHE1q \ ExtpG1q.
(b) V 2 “ pV zV 1q \ t0u.
(c) For all e P HE2:

s2peq “

#

speq if e P HEzHE1,
0 if e P ExtpG1q.

(d) For all e P HE2, i2peq “ ipeq.
• If the type of the external structure of G1 is an edge, let us denote by e1 and e2 its two
external half-edges.
(a) HE2 “ HEzHE1.
(b) V 2 “ V zV 1.
(c) For all e P HE2, s2peq “ speq.
(d) For all e P HE2:

i2peq “

$

’

&

’

%

ipe2q if e “ ipe1q,

ipe1q ife “ ipe2q,

ipeq otherwise.

If G1 is not connected, we put G1 “ G11 . . . G
1
k its decomposition into connected parts, and

define G{G1 “ p. . . pG{G11q{G
1
2q . . .q{G

1
k. It does not depend of the order chosen on the

connected components of G1.

3. If G{G1 is a Feynman graph, we shall say that G1 is an admissible subgraph and we shall
write G1 Ď G.

Roughly speaking, G{G1 is obtained by deleting G1 from G and contracting the hole which
appeared until it vanishes. By convention, G{G “ 1 and G{1 “ G. Observe that if G1 Ĺ G and
G is 1-PI, then G{G1 is also 1-PI, with the same external structure as G.

The set FGpT q is a basis of the Hopf algebra HFGpT q associated to a theory T of Feynman
graphs. Its product is given by the disjoint union of Feynman graphs; its coproduct is given by:

@G P FGpT q, ∆pGq “
ÿ

G1ĎG

G1 bG{G1.

Example 5.1.3. In QED:

∆ “ b 1` 1b ` b ,

∆ “ b 1` 1b ` b ,

∆ “ b 1` 1b ` 2 b .

Definition 5.1.4. Let G be a Feynman graph of a given theory T . The loop number of G is:

`pGq “ 7IntpGq ´ 7V ertpGq ` 7tconnected components of Gu.

Note that because of the 1-PI condition, for all nonempty graph G, `pGq ě 1.

We shall prove afterwards that the loop number defines a connected N-graduation of the Hopf
algebra HFGpT q.
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5.2 Graduations

Let us fix a theory T “ pHE ,V, ιq. We look for graduations of the Hopf algebra HFGpT q. We
shall use the following notions:

Definition 5.2.1. 1. The incidence matrix of T is the matrix AT “ pae,vqePHE,vPV , where
ae,v is the multiplicity of e in the multiset v.

2. The reduced incidence matrix of T is the matrix A1T “ pa
1
e,vqePE,vPV , where:

a1e,v “

$

’

&

’

%

ae1,v
2

if e “ te1, e1u,
ae1,v ` ae2,v

2
if e “ te1, e2u with e1 ‰ e2.

3. Let G P FGpT q. We define four vectors related to G:

(a) VG “ pvtpGqqtPV , where vtpGq is the number of vertices v of G such that typepvq “ t.

(b) EG “ phetpGqqtPHE , where hetpGq is the number of half-edges e of G such that
typepeq “ t.

(c) E1G “ petpGqqtPE , where etpGq is the number of internal edges e of G such that
typepeq “ t.

(d) SG “ pstpGqqtPV\E , where stpGq is the number of connected components of G of
external structure t.

Example 5.2.1.

AQED “

¨

˝

1
1
1

˛

‚, AQCD “

¨

˚

˚

˚

˚

˝

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
1 1 3 4

˛

‹

‹

‹

‹

‚

, Aϕn “ pnq.

A1QED “

ˆ

1
1
2

˙

, A1QCD “

¨

˝

1 0 0 0
0 1 0 0
1
2

1
2

3
2 2

˛

‚, A1ϕn “
´n

2

¯

.

Proposition 5.2.2. Let G P FGpT q. Then:

1. EG “ AT VG.

2. E1G “ A1T VG ´ pA
1
T IdqSG.

3. The number of external half-edges of G is p1 . . . 1qpAT 2IdqSG.

4. The loop number of G is:

`pGq “

ˆ

p1 . . . 1qAτ
2

´ p1 . . . 1q

˙

VG ´

ˆ

p1 . . . 1q

ˆ

AT
2

0

˙

´ p1 . . . 10 . . . 0q

˙

SG.

Proof. The first three points are easy results of graph theory. The number of connected compo-
nents of G is p1 . . . 1qSG; the number of external half-edges of G is given, from the third point,
by p1 . . . 1qpAT 2IdqSG. Hence, the number of internal edges of G is given by:

p1 . . . 1qEG ´ p1 . . . 1qpAT 2IdqSG
2

.
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The loop number of G is consequently given by:

`pGq “
p1 . . . 1qEG ´ p1 . . . 1qpAT 2IdqSG

2
´ p1 . . . 1qVG ` p1 . . . 1qSG

“

ˆ

p1 . . . 1qAτ
2

´ p1 . . . 1q

˙

VG ´

ˆ

p1 . . . 1q

ˆ

AT
2
Id

˙

´ p1 . . . 1q

˙

SG

“

ˆ

p1 . . . 1qAτ
2

´ p1 . . . 1q

˙

VG ´

ˆ

p1 . . . 1q

ˆ

AT
2

0

˙

´ p1 . . . 10 . . . 0q

˙

SG,

which proves the last point.

We now look for QN -graduations of the Hopf algebra HFGpT q, which only depend on the
combinatorial datas of definition 5.2.1-3. According to proposition 5.2.2, for such a graduation,
there exists a map f : N|V| ˆ N|V|`|E| ÝÑ QN , such that for any graph G, degpGq “ fpVG, SGq.

Proposition 5.2.3. Let f : N|V| ˆ N|V|`|E| ÝÑ QN . We consider the QN -graduation of HFGpT q
defined by degpGq “ fpVG, SGq. It is a Hopf algebra graduation if, and only if, there exists
C PMN,|V|pQq such that for any Feynman graph G:

degpGq “ CVG ´ pC 0qSG.

Proof. Let G and G1 be two graphs. Then VGG1 “ VG`VG1 and SGG1 “ SG`SG1 . Consequently,
the graduation respects the product if, and only if, for all G,G1:

fpVG ` VG1 , SG ` SG1q “ fpVG, SGq ` fpVG1 , SG1q.

that is to say if, and only if, f is additive. Hence, f gives a graduation of the algebra HFGpT q if,
and only if, there exists C PMN,|V|pQq and D PMN,|V|`|E|pQq such that for any Feynman graph
G, degpGq “ CVG `DSG.

Let G1 Ď G. By definition of G2 “ G{G1, VG2 “ VG´VG1 `pId 0qSG1 and SG2 “ SG. Hence:

degpGq “ CVG `DSG

“ CVG2 ` CVG1 ´ CpId 0qSG1 `DSG2

“ degpG1q ` degpG2q ´ pD ` CpId 0qqSG1 .

So f gives a graduation ofHFGpT q if, and only if, for all subdiagramG1 Ď G, pD`CpId0qqSG1 “ 0.
As there exists diagrams for any external structure, we can choose G and G1 such that SG1 is
the i-th vector of the canonical basis; hence, we have a graduation of HFGpT q if, and only if,
D ` CpId 0q “ 0.

Consequently, any matrix C P MN,|V|pQq defines a QN -graduation of the Hopf algebra
HFGpT q. This of course may be not a NN -graduation, or may be not connected.

Example 5.2.2. 1. The loop number ` gives a Hopf algebra N-graduation with C` “
p1 . . . 1qAτ

2
´

p1 . . . 1q. This is a connected N-graduation, as we only consider 1-PI graphs.

2. Let t P ET , and let C be the t-th row of A1T ; the associated graduation is noted degt.
For all G P FGpT q, degtpGq “ etpGq ` stpGq. This is a N-graduation, which may be not
connected.
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5.3 Insertions

Definition 5.3.1. Let G and G1 be two Feynman graphs of a theory T .

1. We denote by G11, . . . , G
1
k the connected components of G1. A place of insertion fof G1 into

G is given by:

(a) for all G1i of external structure of type a vertex t, a pair pvi, fiq, where vi is a vertex of G
of type t, and fi a bijection from the set of external edges of Gi to the set of half-edges e
of G1 such that speq “ t, compatible with the type, that is to say typepfipe1qq “ typepe1q
for all e1. Moreover, if G1i and G

1
j are both of external structure of type t, with i ‰ j,

then vi ‰ vj.

(b) for all G1i of external structure of type an edge t, a pair pei, fiq where ei “ te
p1q
i , e

p2q
i u

is an internal edge of G of type t, and fi a bijection from the set of the two external
half-edges of t into tep1qi , e

p2q
i u.

(c) For all internal edge e of G, the set of components Gi such that ei “ e is totally
ordered.

Note that the set of places of insertion of G1 into G is finite and may be empty. Its
cardinality is denoted inspG1, Gq.

2. Let F be a place of insertion of G1 into G. The insertion G1
F

ãÑ G is the Feynman graph
obtained in this way:

(a) For all G1i of external structure of type vertex, delete vi and all the half-edges e such
that speq “ vi; then glue each external edge e1 of G1i to ipfipe

1qq if if is not equal to
fipe

1q; otherwise, e1 becomes an external edge.

(b) For each internal edge e, such that there exists components G1i with ei “ e, first
separate the two half-edges constituing this internal edge; then insert all these compo-
nents G1i, following their total order, by gluing their external edges with the two open
half-edges according to fi.

For any Feynman graph such that inspG1, Gq ‰ 0, we put:

BGpG
1q “

1

inspG1, Gq

ÿ

F

G1
F

ãÑ G.

Proposition 5.3.2. 1. For all graph G, the space IG “ V ectpG1, inspG1, Gq ‰ 0q is a left
comodule.

2. For all primitive graph G, for all x P IG:

∆ ˝BGpxq “ BGpxq b 1` pIdbBGq ˝∆pxq.

3. We define a graduation on HFGpT q with the help of a matrix C PMN,|V|pQq. Then for any
Feynman graph G, BG is homogeneous of degree degpGq.

Proof. 1. Let G and G1 be two graphs. Then G1 P IG if, and only if, the two following conditions
hold:

• For any t P V, stpG1q ď vtpGq.

• For any t P E , pstpG1q ě 1q ùñ petpG
1q ě 1q.
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Consequently, if G1 P IG and G2 Ă G1, noting that stpG1{G2q ď stpG
1q for all t P V \ E , then

G1{G2 P IG. So IG is a left comodule.

2. LetG1 P FGpT q, such that inspG1, Gq ‰ 0. AsG is primitive, ∆pGq “ G “ b1`1bG, soG
has no proper subgraph. For all insertion place f , let us consider a subgraph H of G2 “ G1

f
ãÑ G.

If H contains internal edges of G2 which does not belong to G1, as G1 has no proper subgraph, it
contains all the edges of G, and, as H is a subgraph, it is equal to G. Otherwise, H is a subgraph
of G1, and then G2{H “ G1{H

f 1
ãÑ G for a particular F 1. Summing, we obtain:

∆pBGpG
1qq “

1

inspG1, Gq

ÿ

f

˜

G1
f

ãÑ Gb 1`
ÿ

HĎG1

H 1 bG1{H
f 1
ãÑ G

¸

“ BGpG
1q b 1`

ÿ

HĎG1

H bBGpG
1{Hq

“ BGpG
1q b 1` pIdbBGq ˝∆pG1q.

By linearity, the result holds for all x P IG.

3. Let G and G1 be Feynman graphs, and G2 “ G1
F

ãÑ G. Then SG2 “ SG and VG2 “
VG ` VG1 ´ pId 0qSG1 . Hence:

degpG2q “ CVG ` CVG1 ´ CpId 0qSG1 ´ pC 0qSG

“ CVG ´ pC 0qSG ` CVG1 ´ pC 0qSG1

“ degpGq ` degpG1q.

So BG is homogeneous of degree degpGq.

5.4 SDSE associated to a theory of Feynman graphs

Let T be a family of Feynman graphs. We put V “ tt1, . . . , tku, E “ ttk`1, . . . , tk`lu and
M “ k ` l. We choose a connected NN -graduation of HFGpT q given by a N ˆ k matrix C. In
order to ease the notation, for all i P rks, we put vtipGq “ vipGq and for all k ` 1 ď j ď k ` l,
etj pGq “ ejpGq, for any Feynman graph G.

Notations 5.4.1. 1. For each i, we denote by Pi the set of primitive 1-PI Feynman graphs of
the theory T of external structure of type ti.

2. Let α1, . . . , αN beN indeterminates (the coupling constants). For any graphG, if degpGq “
pd1, . . . , dN q, we put αdegpGq “ αd11 . . . αdNN .

We consider the following SDSE on HFGpT q:

pST q : @i P rM s, Xi “
ÿ

GPPi

αdegpGqBG

¨

˝

k
ź

j“1

p1`Xjq
vipGq

k`l
ź

j“k`1

p1´Xjq
´ejpGq

˛

‚.

We decompose Xi according to the powers of the αi:

Xi “
ÿ

dPNN˚

αdXipdq.

It is not difficult to show that Xipdq is homogeneous of degree d, as BG is homogeneous of degree
degpGq. The subalgebra generated by the Xipdq

1s is denoted by HpST q.
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Combinatorially, Xi is a span of all connected graph of external structure of type ti; its ho-
mogeneous components can be inductively computed by taking all possible insertions of already
computed homogeneous components of Xj into primitive Feynman graphs of the good external
structure, in order to obtain the expected degree.

We lift this SDSE to the level of rooted trees. The set of decorations is the set of primitive
connected Feynman graphs:

P “
k`l
ğ

i“1

Pi.

The graduation of HDCK is given by the degree of primitive Feynman graphs, and we consider
the SDSE on HDCK :

pS1T q : @i P rM s, Yi “
ÿ

GPPi

BG

¨

˝

k
ź

j“1

p1` Yjq
vipGq

k`l
ź

j“k`1

p1´ Yjq
´ejpGq

˛

‚.

The homogeneous component of Yi of degree d is denoted by Yipdq and the subalgebra of HDCK
generated by the Yipdq is denoted by HpS1T q.

Proposition 5.4.1. If HpS1T q is a Hopf subalgebra of HDCK , then HpST q is a Hopf subalgebra
of HFGpT q, and the algebra morphism defined by Yipdq ÝÑ Xipdq is a surjective Hopf algebra
morphism from HpS1T q to HpST q.

Proof. Let T be a rooted tree decorated by D. We shall say it is admissible if for all vertex v
of T , denoting by G the decoration of v and by G1, . . . ,Gk the decorations of the children of v,
then G1 . . .Gk P IG. We denote by A1 the subalgebra generated by all admissible trees. If T is
admissible, then for all admissible cut c of T , P cpT q and RcpT q are admissible, so A1 is a Hopf
subalgebra. By definition of pST q, Yipdq P A1 for all i P rM s, d P NN˚ .

One can define an algebra morphism φ from A1 to HFGpT q inductively by:

φpB`GpT1 . . . Tkqq “ BGpφpT1q . . . φpTkqq,

for all admissible tree B`GpT1 . . . Tkq. It is well-defined: indeed, if φpT1q, . . . , φpTkq are well-
defined, then for all i, φpTiq is a linear span of graphs with the external structure given by the dec-
oration of the root of Ti. As BGpT1 . . . Tkq is admissible, φpT1q . . . φpTkq P IG, so φpB`GpT1 . . . Tkqq
is well-defined. As BG and B`G are both homogeneous of degree degpGq, an easy induction proves
that φ is homogeneous of degree 0. As φ ˝B`G “ BG ˝φ on A1 for all G1, φpYipdqq “ Xipdq for all
i P rM s and all d P NN˚ . By the one-cocycle property of B`G and BG on IG, pφbφq˝∆ “ ∆˝φ on
A1. Consequently, if HpS1T q is a Hopf subalgebra of HDCK , its image HpST q is a Hopf subalgebra
of HFGpT q.

Theorem 5.4.2. If RankpCq “ |V|, then HpS1T q is a Hopf subalgebra of HDCK ; moreover, the
SDSE pS1T q is associated to a deg1 pre-Lie algebra.

Proof. First, observe that, as C is a N ˆ k-matrix, RankpCq ď k “ |V|.

Let us assume that RankpCq “ k. There exists a matrix C 1 PMk,N pKq, such that C 1C “ Idk.
For any primitive Feynman graph G of external structure ti and of degree d, if pε1, . . . , εM q is
the canonical basis of KM , noting that d “ CVG ´ pC 0qεi:

VG “ C 1d` pIdk 0qεi, E1G “ A1T C
1d´ p0 Idlqεi.

For all i P rM s, for all d P NN˚ , we put:

B`i,n “
ÿ

GPPi,degpGq“d

B`G .
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The SDSE can be written as:

Yi “
ÿ

dPNN˚

Bi,d

¨

˝

k
ź

j“1

p1` Yjq
ř

p c
1
j,pdp

k`l
ź

j“k`1

p1´ Yjq
ř

p,q a
1
j,pc

1
p,qdj p1` Yiq

˛

‚ if i ď k,

Yi “
ÿ

dPNN˚

Bi,d

¨

˝

k
ź

j“1

p1` Yjq
ř

p c
1
j,pdp

k`l
ź

j“k`1

p1´ Yjq
ř

p,q a
1
j,pc

1
p,qdj p1´ Yiq

˛

‚ if i ě k ` 1.

Hence, we recognize the deg1 pre-Lie algebra with Ip “ tpu for all 1 ď p ď k ` l, b given by:

bpi,jq “

#

δi,j if i ď k,

´δi,j if i ě k ` 1,

and A given by the matrix
ˆ

C 1

´A1T C
1

˙

.

As C 1 has also rank k:

Corollary 5.4.3. If RankpCq “ |V| “ k, the graded dual of the Hopf algebra HpS1T q is the
enveloping algebra of the reduced deg1 pre-Lie algebra with structure coefficients given by:

A1pi,jq :
izj 1 . . . k k ` 1 . . . k ` l

1 . . .M A1j 0
A1 “

ˆ

Ik
A2

˙

b1pi,jq :
izj 1 . . .M

1 . . .M 0

If C is invertible, then A2 “ ´A1T . Moreover, HpS1T q is isomorphic to the coordinate Hopf algebra
of the group V l

0 ¸GA2 .

Proof. It remains to consider the case where C is invertible. In this case, C 1 “ C´1 and A “
ˆ

C 1

´A1T C
1

˙

. We then take A “ A1C “

ˆ

Idk
´A1T

˙

.

Example 5.4.1. 1. If there is only one vertex type, we can choose the graduation by the loop
number.

(a) For QED, C “
`

1
2

˘

, so C 1 “ p2q; hence, A “

¨

˝

1
2
´1

2
´´14

˛

‚ and A1 “

¨

˝

1
´1
´1

2

˛

‚. The

SDSE is:

X1 “
ÿ

kě1

αk
ÿ

GPD1pkq

BG

ˆ

p1`X1q
2k`1

p1´X2q
kp1´X3q

2k

˙

,

X2 “
ÿ

kě1

αk
ÿ

GPD2pkq

BG

ˆ

p1`X1q
2k

p1´X2q
k´1p1´X3q

2k

˙

,

X3 “
ÿ

kě1

αk
ÿ

GPD3pkq

BG

ˆ

p1`X1q
2k

p1´X2q
kp1´X3q

2k´1

˙

,

where D1pkq, D2pkq and D3pkq are sets of primitive Feynman graphs with k loops and

respective external structures , and . In particular:

D2pkq “

$

’

&

’

%

# +

if k “ 1,

H otherwise;

D3pkq “

#

! )

if k “ 1,

H otherwise.
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(b) In ϕn, C “
`

n´2
2

˘

, so C 1 “
´

2
n´2

¯

; hence, A “
ˆ 2

n´2

´ n
n´2

˙

and A1 “
ˆ

1
´n

2

˙

. The

SDSE is:

X1 “
ÿ

kě1

αk
ÿ

GPD1pkq

BG

˜

p1`X1q
2k
n´2

`1

p1´X2q
nk
n´2

¸

,

X2 “
ÿ

kě1

αk
ÿ

GPD2pkq

BG

˜

p1`X1q
2k
n´2

p1´X2q
nk
n´2

´1

¸

,

where D1pkq and D2pkq are sets of primitive Feynman graphs with k loops and re-
spective external structures the vertex and the edge.

2. In QCD, we take:

C “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
1
2

1
2

3
2 2

1
2

1
2

1
2 1

˛

‹

‹

‚

.

If G is a QCD Feynman graph, then:

degpGq “
´

deg pGq, deg pGq, deg pGq, `pGq
¯

.

It is a connected N4-graduation. Moreover, C 1 “ C´1, and:

A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
1 1 2 ´4
´1 ´1 ´1 3
´1 0 0 0
0 ´1 0 0
0 0 ´1 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, A1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
´1 0 0 0
0 ´1 0 0
´1

2 ´1
2 ´3

2 ´2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The SDSE is:

X1 “
ÿ

kPN4
˚

αk
ÿ

GPD1pkq

BG

˜

p1`X1q
k1`1p1`X2q

k2p1`X3q
αpkqp1`X4q

βpkq

p1´X5q
k1p1´X6q

k2p1´X7q
k3

¸

,

X2 “
ÿ

kPN4
˚

αk
ÿ

GPD2pkq

BG

˜

p1`X1q
k1p1`X2q

k2`1p1`X3q
αpkqp1`X4q

βpkq

p1´X5q
k1p1´X6q

k2p1´X7q
k3

¸

,

X3 “
ÿ

kPN4
˚

αk
ÿ

GPD3pkq

BG

˜

p1`X1q
k1p1`X2q

k2p1`X3q
αpkq`1p1`X4q

βpkq

p1´X5q
k1p1´X6q

k2p1´X7q
k3

¸

,

X4 “
ÿ

kPN4
˚

αk
ÿ

GPD4pkq

BG

˜

p1`X1q
k1p1`X2q

k2p1`X3q
αpkqp1`X4q

βpkq`1

p1´X5q
k1p1´X6q

k2p1´X7q
k3

¸

,

X5 “
ÿ

kPN4
˚

αk
ÿ

GPD5pkq

BG

˜

p1`X1q
k1p1`X2q

k2p1`X3q
αpkqp1`X4q

βpkq

p1´X5q
k1´1p1´X6q

k2p1´X7q
k3

¸

,

X6 “
ÿ

kPN4
˚

αk
ÿ

GPD6pkq

BG

˜

p1`X1q
k1p1`X2q

k2p1`X3q
αpkqp1`X4q

βpkq

p1´X5q
k1p1´X6q

k2´1p1´X7q
k3

¸

,

X7 “
ÿ

kPN4
˚

αk
ÿ

GPD7pkq

BG

˜

p1`X1q
k1p1`X2q

k2p1`X3q
αpkqp1`X4q

βpkq

p1´X5q
k1p1´X6q

k2p1´X7q
k3´1

¸

,
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with αpkq “ k1` k2` 2k3´ 4k4 and βpkq “ ´k1´ k2´ k3` 3k4, and where D1pkq, D2pkq,
D3pkq, D4pkq, D5pkq, D6pkq and D7pkq are sets of primitive Feynman graphs of degree k
and respective external structures:

, , , , , .

Remark 5.4.1. We can extend the set of considered Feynman graphs by admiting other external
structures, indexed by k` l`1, . . . , k` l`m. for k`1 ď j ď k` l and k` l`1 ď i ď k` l`m,
let λpiqj be the number of copies of half-edges of the j-th type of edge tj in the i-th external
structure, divided by 2. We obtain a SDSE given by:

Xi “
ÿ

dPNN˚

Bi,d

¨

˝

k
ź

j“1

p1`Xjq
ř

p c
1
j,pdp

k`l
ź

j“k`1

p1´Xjq
ř

p,q a
1
j,pc

1
p,qdj p1`Xiq

˛

‚ if i ď k,

Xi “
ÿ

dPNN˚

Bi,d

¨

˝

k
ź

j“1

p1`Xjq
ř

p c
1
j,pdp

k`l
ź

j“k`1

p1´Xjq
ř

p,q a
1
j,pc

1
p,qdj p1´Xiq

˛

‚ if k ` 1 ď i ď k ` l,

Xi “
ÿ

dPNN˚

Bi,d

¨

˝

k
ź

j“1

p1`Xjq
ř

p c
1
j,pdp

k`l
ź

j“k`1

p1´Xjq
ř

p,q a
1
j,pc

1
p,qdj

k`l
ź

j“k`1

p1´Xjq
λ
piq
j

˛

‚ otherwise.

We recognize the deg1 pre-Lie algebra with Ip “ tpu for all 1 ď p ď k` l, I0 “ tk` l`1, . . . , k`
l ` nu, b given by:

bpi,jq “

$

’

&

’

%

δi,j if i ď k,

´δi,j if k ` 1 ď i ď k ` l,

´λ
piq
j if i ě k ` l ` 1,

and A given by the matrix
ˆ

C 1

´A1T C
1

˙

. If C is invertible, HpS1T q is isomorphic to the Hopf

algebra of coordinates of the group:

pVλpk`l`1q,0 ‘ . . .‘ Vλpk`l`mq,0q ¸ pV
l
0 ¸GA2q.

5.5 Minimal rank for QCD

Let us consider a QFT, the SDSE pS1T q associated to it, and a matrix C giving a connected
NN -graduation. We proved that if RankpCq “ |V|, then HpST q is Hopf; we would like to know
what the minimal rank of C required to make HpS1T q a Hopf subalgebra is. For QED or ϕn, as
|V| “ 1, this is obviously 1. If the theory has enough primitive Feynman graphs, this minimal
rank is |V|: we now prove this result for QCD.

Proposition 5.5.1. In the QCD case, the graduation induced by C gives a Hopf SDSE if, and
only if RankpCq “ 4.

Proof. We already proved the implication ðù. We first construct enough primitive Feynman

graphs of external structure . Let pa, b, c, dq P N4
˚. We start with G “ . Judiciously

gluing the external edges of a copies of , b copies of , c copies of and d copies

of on the edges and , creating in this way new 2a ` 2b ` 3c ` 4d new vertices
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of type , we obtain a primitive Feynman graph G1 with:

VG1 “

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

` a

¨

˚

˚

˝

2
0
0
0

˛

‹

‹

‚

` b

¨

˚

˚

˝

2
2
0
0

˛

‹

‹

‚

` c

¨

˚

˚

˝

3
0
1
0

˛

‹

‹

‚

` d

¨

˚

˚

˝

4
0
0
1

˛

‹

‹

‚

.

Let us assume that HpS1T q is Hopf and that RankpCq ď 3. There exists a nonzero vector
v P Q4, such that Cv “ p0q. We decompose this vector v in the basis:

¨

˚

˚

˝

¨

˚

˚

˝

2
0
0
0

˛

‹

‹

‚

,

¨

˚

˚

˝

2
2
0
0

˛

‹

‹

‚

,

¨

˚

˚

˝

3
0
1
0

˛

‹

‹

‚

,

¨

˚

˚

˝

4
0
0
1

˛

‹

‹

‚

˛

‹

‹

‚

.

After a multiplication by a nonzero integer and separation of the terms according to their signs,
we obtain that there exists two different vectors w and w1, such that:

w “ a

¨

˚

˚

˝

2
0
0
0

˛

‹

‹

‚

` b

¨

˚

˚

˝

2
2
0
0

˛

‹

‹

‚

` c

¨

˚

˚

˝

3
0
1
0

˛

‹

‹

‚

` d

¨

˚

˚

˝

4
0
0
1

˛

‹

‹

‚

, a, b, c, d P N,

w1 “ a1

¨

˚

˚

˝

2
0
0
0

˛

‹

‹

‚

` b1

¨

˚

˚

˝

2
2
0
0

˛

‹

‹

‚

` c1

¨

˚

˚

˝

3
0
1
0

˛

‹

‹

‚

` d1

¨

˚

˚

˝

4
0
0
1

˛

‹

‹

‚

, a1, b1, c1, d1 P N,

Cw “ Cw1.

Let G and G1 be primitive Feynman graphs of external structure such that:

VG “

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

` w, VG1 “

¨

˚

˚

˝

1
0
0
0

˛

‹

‹

‚

` w1.

Their degree are:

degpGq “ CVG ´ pC 0q

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

“ Cw, degpG1q “ CVG1 ´ pC 0q

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

“ Cw1.

So degpGq “ degpG1q. According to lemma 2.2.3, fG “ fG1 , so in particular, for all i P r4s,
vipGq “ vipG

1q, which implies that VG “ VG1 and finally w “ w1, which is a contradiction. We
conclude that RankpCq “ 4.

6 SDSE associated to coloured graphs

We now generalize multicylic SDSE of [7, 9]. We are interested here in SDSE of the form:

pSq : @i P rM s, Xi “
ÿ

αPNN˚

Bi,α

¨

˝1`
ÿ

jPIi,α

Xj

˛

‚,

where the Ii,α are nonempty sets.
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Definition 6.0.1. 1. A N -coloured oriented graph is an oriented graph G, with a map from
the set EpGq of edges of G into rN s. We denote by V pGq the set of vertices of G. For
all i, j P V pGq, for all α “ pα1, . . . , αN q P NN , we shall write i α

ÝÑ j if there exists an
oriented path from i to j in G, with αi edges coloured by i for all i P rN s.

2. Let G be a N -coloured oriented graph. The SDSE associated to G is associated to the
NN -graded partitioned set D “ V pGq ˆ NN˚ :

pSGq : @i P V pGq, Xi “
ÿ

αPNN˚

Bi,α

¨

˝1`
ÿ

i
α
ÝÑj

Xj

˛

‚.

3. Let G be a N -coloured oriented graph. We shall say that G is Hopf if, for all i, j, k P V pGq,
for all α, β P NN˚ ,

pi
α
ÝÑ j and j β

ÝÑ kq ðñ pi
α
ÝÑ j and i α`βÝÑ kq.

(Note that ùñ is always satisfied for any G).

Proposition 6.0.2. We consider a SDSE of the form:

pSq : @i P rM s, Xi “
ÿ

αPNN˚

Bi,α

¨

˝1`
ÿ

jPIi,α

Xj

˛

‚,

It is Hopf, if, and only if, there exists a N -coloured Hopf graph on rM s such that pSq is
equal to pSGq. If this holds, the dual pre-Lie algebra of HpSGq is associative; it has a basis
pfipαqqiPV pGq,αPNN˚ and the product is given by:

fjpβq ˚ fipαq “

#

fipα` βq if i
α
ÝÑ j,

0 otherwise.

Proof. ùñ. First step. Let us assume that pSq is Hopf. We fix i, j, k P rM s and α, β, γ P NN˚ .
We put:

a “

#

1 if j P Ii,α,
0 otherwise;

b “

#

1 if k P Ii,α`β,
0 otherwise;

c “

#

1 if k P Ij,β,
0 otherwise.

We obtain:

Xipα` βq “i, α ` β ` a i, α
j, β

` . . . ,

Xipα` β ` γq “i, α ` β ` γ ` bi, α ` β
k, γ

` ac i, α
j, β
k, γ

` . . .

Hence:
∆pXipα` β ` γqq “ k, γ b

ˆ

bi, α ` β ` ac i, α
j, β

` . . .

˙

looooooooooooooomooooooooooooooon

“X

. . .

As HpSq is Hopf, X is a multiple of Xipα`βq, so ab “ ac: a “ 0 or b “ c. In particular, if a ‰ 0,
b “ c. Hence, for all i, j, k P rM s, for all α, β P NN˚ , j P Ii,α and k P Ij,β if, and only if, i P Ii,α
and k P Ii,α`γ .

Second step. We define a coloured graph G on rM s in the following way: for all i, j P rM s,
for all p P rN s, there exists an edge from i to j decorated by p if, and only if, j P Ii,εp . Let us
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prove that for all i, k P rM s, for all α P NN˚ , k P Ii,α if, and only if, i α
ÝÑ k in G. We proceed by

induction on |α| “ α1 ` . . . ` αN . This is obvious if |α| “ 1. Let us assume the result at rank
|α| ´ 1.
ùñ. Let us choose α1 and α2, such that α “ α1`α2, |α1| “ |α|´1 and |α2| “ 1. Let j P Ii,α1 .

By the first step, then k P Ij,α2 . By the induction hypothesis, i α1
ÝÑ j and j α2

ÝÑ k, so i α
ÝÑ k.

ðù. Let us assume that i α
ÝÑ k. We consider a path in G from i to k, of weight α. If j is

the last step, there exists α1, α2, such that α “ α1 ` α2, |α1| “ |α| ´ 1 and |α2| “ 1, i α1
ÝÑ j and

j
α2
ÝÑ k. By the induction hypothesis, j P Ii,α1 and k P Ij,α2 . By the first step, k P Ii,α.
Hence:

pSq : @i P rM s, Xi “
ÿ

αPNN˚

Bi,α

¨

˝1`
ÿ

i
α
ÝÑj

Xj

˛

‚.

So pSq “ pSGq. The first step implies that pGq is Hopf.

ùñ. Let us consider a Hopf N -coloured graph G. We define a product on the vector space
g “ V ectpfipαqqiPV pGq,αPNN˚ by:

fjpβq ˚ fipαq “

#

fipα` βq if i
α
ÝÑ j,

0 otherwise.

Let i, j, k P V pGq. For any α, β, γ P NN˚ :

pfkpγq ˚ fjpβqq ˚ fipαq “

#

fipα` β ` γq if i
α
ÝÑ j and j β

ÝÑ k,

0 otherwise;

fkpγq ˚ pfjpβqfipαqq “

#

fipα` β ` γq if i
α
ÝÑ j and i α`βÝÑ k,

0 otherwise.

So ˚ is associative. Hence, g is a NN -graded connected pre-Lie algebra. It is not difficult to prove
that the graded dual of its enveloping algebra, imbedded in HD, is the subalgebra generated by
the solution of the SDSE pSGq, which as a consequence is Hopf.

An example of coloured graph is given by families of commuting endofunctions:

Proposition 6.0.3. Let V be a set and, for all 1 ď p ď rN s, let fp : V ÝÑ V be a map. We
construct a graph Gf in the following way:

• V pGq “ V .

• For all i, j P V , for all p P rN s, i
εp
ÝÑ j if, and only if, fppiq “ j.

In other terms, G is the coloured graph of maps f1, . . . , fN . Then Gf is Hopf, if and only if, for
all p, q P rN s, fp ˝ fq “ fq ˝ fp.

Proof. ùñ. Let us assume that Gf is Hopf. Let i, j P V . We put j “ fqpiq, j1 “ fppiq,

k “ fq ˝ fppiq, α “ εq and β “ εp. Then i
α
ÝÑ j and i

α`β
ÝÑ k, so j

β
ÝÑ k: hence,

fppjq “ fp ˝ fqpjq “ k “ fq ˝ fppiq.

ðù. Let us assume that i α
ÝÑ j and i

α`β
ÝÑ k. There exists a sequence p1, . . . , pm such

that εp1 ` . . . ` εpm “ α, fp1 ˝ . . . ˝ fpmpiq “ j. There exists a sequence p1, . . . , pm such that
εq1 ` . . . ` εqm`n “ α ` β, fq1 ˝ . . . ˝ fqm`npiq “ k. Note that m “ |α|, and m ` n “ |α ` β|.
Moreover, the multiset tp1, . . . , pmu is included in the multiset tq1, . . . , qm`nu. We proceed by
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induction on n “ |β|. If n “ 1, let us assume that tq1, . . . , qm`nuztp1, . . . , pmu “ tqru. The
commutation relation implies that:

fq1 ˝ . . . ˝ fqm`npiq “ fr ˝ fq1 ˝ . . . fqr´1 ˝ fqr`1 ˝ . . . ˝ fqm`1piq.

By permuting the pj ’s using the commutation relations, we obtain that these two elements are

equal. Hence, frpjq “ l, so j β
ÝÑ k.

Let us assume the result at rank n ´ 1. There exists k1, such that i α`β1
ÝÑ k1 k1

β2
ÝÑ k,

β “ β1 ` β2, |β1| “ n´ 1 and |β2| “ 1. By the induction hypothesis, j β2
ÝÑ k1, so j β

ÝÑ k.

Example 6.0.1. Let V “ Z{NZ, N “ 1 and:

f :

"

Z{NZ ÝÑ Z{NZ
k ÝÑ k ` 1.

The SDSE associated to f is a cyclic SDSE of [7, 9].

Remark 6.0.1. There are other examples of coloured Hopf graphs, for example:

‚

1
��

1

��@@@@@@@ ‚

2
��

‚ ‚

.

Availability statement. The data that support the findings of this study are available from
the author upon reasonable request.
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