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1 Introduction

Enveloping algebras of Lie algebras are known to be a fundamental notion,
for an impressive variety of reasons. Their bialgebra structure allows to make
a natural bridge between Lie algebras and groups. As such they are a key tool
in pure algebra, algebraic and differential geometry, and so on. Their combi-
natorial structure is interesting on its own and is the object of the theory of
free Lie algebras. Applications thereof include the theory of differential equa-
tions, numerics, control theory... From the modern point of view, featured in
Reutenauer’s Free Lie algebras [38], the “right” point of view on enveloping
algebras is provided by the descent algebra: most of their key properties can
indeed be obtained and finely described using computations in symmetric
group algebras relying on the statistics of descents of permutations. More re-
cently, finer structures have emerged that refine this approach. Let us quote,
among others, the Malvenuto-Reutenauer or free quasi-symmetric functions
Hopf algebra [30] and its bidendriform structure [14].

Many features of classical Lie theory generalize to the broader context
of algebras over Hopf operads [25]. However, this idea remains largely to
be developed systematically. Quasi-shuffle algebras provide for example an
interesting illustration of these phenomena, but have not been investigated
from this point of view.
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The notion of quasi-shuffle algebras was developed systematically only re-
cently, starting essentially with Hoffman’s work, that was motivated by mul-
tizeta values (MZVs) and featured their bialgebra structure [23]. The reason
for the appearance of quasi-shuffle products in many application fields (clas-
sical and stochastic integration, summation processes, probability, renormal-
ization...) is explained by the construction by Ebrahimi-Fard of a forgetful
functor from Rota–Baxter algebras of non-zero weight to quasi-shuffle alge-
bras [11]. Many partial results on the structure of quasi-shuffle bialgebras have
been obtained during the last two decades [29, 32, 31, 17, 24], fine structure
theorems have been obtained in [2], but, besides the fact that each of these
articles features a particular point of view, they fail to develop systematically
a complete combinatorial theory.

This article builds on these various results and develops the analog the-
ory, for quasi-shuffle bialgebras, of the theory of descent algebras and their
relations to free Lie algebras for classical enveloping algebras.

The plan is as follows. Sections 2 and 3 recall the fundamental definitions.
These are fairly standard ideas and materials, excepted for the fact that
bialgebraic structures are introduced from the point of view of Hopf operads
that will guide later developments.

The following section shows how the symmetrization process in the theory
of twisted bialgebras (or Hopf species) can be adapted to define a noncommu-
tative quasi-shuffle bialgebra structure on the operad of quasi-shuffle algebras
(Thm 1).

Section 5 deals with the algebraic structure of linear endomorphisms of
quasi-shuffle bialgebras and studies from this point of view the structure
of surjections. Section 6 deals with the projection on the primitives of quasi-
shuffle bialgebras -the analog in the present setting of the canonical projection
from an enveloping algebra to the Lie algebra of primitives. As in classical
Lie theory, a structure theorem for quasi-shuffle algebras follows from the
properties of this canonical projection.

Section 7 investigates the relations between the shuffle and quasi-shuffle
operads when both are equipped with the Hopf algebra structure inherited
from the Hopf operadic structure of their categories of algebras (as such they
are isomorphic respectively to the Malvenuto-Reutenauer Hopf algebra, or
Hopf algebra of free quasi-symmetric functions, and to the Hopf algebra of
word quasi-symmetric functions). We recover in particular from the existence
of a Hopf algebra morphism from the shuffle to the quasi-shuffle operad (Thm.
3) the exponential isomorphism relating shuffle and quasi-shuffle bialgebras.
Section 8 studies coalgebra endomorphisms of quasi-shuffle bialgebras and
classifies natural Hopf algebra endomorphisms and morphisms relating shuffle
and quasi-shuffle bialgebras.

Section 9 studies coderivations. Quasi-shuffle bialgebras are considered
classically as filtered objects (the product does not respect the tensor gradu-
ation), however the existence of a natural graded Hopf algebra structure can
be deduced from the general properties of their coderivations.



Lie theory for quasi-shuffle bialgebras 3

Section 10 recalls briefly how the formalism of operads can be adapted to
take into account graduations by using decorated operads. We detail then the
case of quasi-shuffle algebras and conclude by initiating the study of the ana-
log, in this context, of the classical descent algebra. Section 11 shows, using
the bidendriform rigidity theorem, that the decorated quasi-shuffle operad is
free as a noncommutative shuffle algebra.

Section 12 shows that the quasi-shuffle analog of the descent algebra,
QDesc, is, up to a canonical isomorphism, a free noncommutative quasi-
shuffle algebra over the integers (Thm. 6). The last section concludes by
investigating the quasi-shuffle analog of the classical sequence of inclusions
Desc ⊂ PBT ⊂ Sh of the descent algebra into the algebra of planar binary
trees, resp. the operad of shuffle algebras. In the quasi-shuffle context, this
sequence reads Desc ⊂ ST ⊂ QSh, where ST stands for the algebra of
Schröder trees and QSh for the quasi-shuffle operad.

Terminology Following a suggestion by the referee, we include comments
on the terminology. The behaviour of shuffle products was investigated by
Eilenberg and MacLane in the early 50’s [12]. They introduced the key idea
of splitting shuffle products into two “half-shuffle products” and used the
algebraic relations they satisfy to prove the associativity of shuffle products
in topology. Soon after, and independently, Schützenberger axiomatized the
shuffle products appearing in combinatorics and Lie algebra theory [42]. In
control theory, shuffles and their relations appear in relation to products of
iterated integrals under the name chronological products. The terminology
is probably inspirated by the physicists’ time-ordered products. The struc-
ture of the corresponding operad was implicit in Schützenberger’s work as a
consequence of his description of free shuffle algebras, it was introduced inde-
pendently by Loday in the early 2000’s [26]. Following a wit by the topologist
J.-M. Lemaire, this operad of shuffle algebras is now often called operad of
Zinbiel algebras (up to a few exceptions previous names such as “commu-
tative dendriform algebras” do not seem to be used anymore). The wit is
motivated by a Koszul duality phenomenon with the Bloh-Cuvier notion of
Leibniz algebras. The operad encoding the axioms associated naturally to
Hoffmann’s quasi-shuffle algebras is called instead operad of commutative
tridendriform algebras [29].

As far as the subject of the present article is concerned, quasi-shuffles
are usually viewed as a deformation of shuffles (Hoffmann’s isomorphism
states for example that under relatively mild technical conditions quasi-shuffle
bialgebras are isomorphic to shuffle bialgebras [23, 17]), and from this point of
view the (weird and heavy) terminology commutative tridendriform algebras
is not consistent with the one of Zinbiel algebras.

For that reason and other, historical and conceptual, ones we prefer to use
the simple and coherent terminology promoted in articles such as [31, 16, 17]
of “shuffle algebras” (resp. operad) and “quasi-shuffle algebras” (resp. operad)
for algebras equipped with product operations satisfying the axioms obeyed
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by the various usual commutative shuffle and quasi-shuffle products that
have appeared in the literature (resp. the corresponding operads). The reader
familiar with the operadic terminology should therefore have in mind the
dictionary:

• Shuffle algebra = Zinbiel algebra
• Quasi-shuffle algebra = commutative tridendriform algebra
• Noncommutative shuffle algebra = dendriform algebra
• Noncommutative quasi-shuffle algebra = tridendriform algebra.

Notations and conventions All the structures in the article (vector spaces,
algebras, tensor products...) are defined over a field k. Algebraic theories and
their categories (Com,As,Sh,QSh . . . ) are denoted in italic, as well as the
corresponding free algebras over sets or vector spaces (QSh(X), Com(V ) . . . ).
Operads (of which we will study underlying algebra structures) and abbrevi-
ations of algebra names are written in bold (QSh,NSh,Com,FQSym . . . ).

Acknowledgements The authors were supported by the grant CARMA
ANR-12-BS01-0017. We thank its participants and especially Jean-Christophe
Novelli and Jean-Yves Thibon, for stimulating discussions on noncommuta-
tive symmetric functions and related structures. This article is, among others,
a follow up of our joint works [31, 17]. We also thank the ICMAT Madrid for
its hospitality.

2 Quasi-shuffle algebras

Quasi-shuffle algebras have mostly their origin in the theory of Rota-Baxter
algebras and related objects such as MZVs (this because the summation
operator of series is an example of a Rota–Baxter operator [10]). As we just
mentioned, this is sometimes traced back to Cartier’s construction of free
commutative Rota-Baxter algebras [3]. They appeared independently in the
study of adjunction phenomena in the theory of Hopf algebras. The relations
defining quasi-shuffle algebras have also be written down in probability, in
relation to semimartingales, but this does not seem to have given rise to
a systematic algebraic approach. Recent developments really started with
Hoffman’s [23].

Another reason for the development of the theory lies in the theory of
combinatorial Hopf algebras and, more specifically, into the developments
originating in the theory of quasi-symmetric functions, the dual theory of
noncommutative symmetric functions and other Hopf algebras such as the
one of word quasi-symmetric functions. This line of thought is illustrated in
[32, 31, 24, 17].
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Still another approach originates in the work of Chapoton on the combi-
natorial and operadic properties of permutohedra and other polytopes (see
e.g. [6, 7] and the introductions of [32, 2]). These phenomena lead to the ax-
iomatic definition of noncommutative quasi-shuffle algebras (also known as
dendriform trialgebras) in [29].

We follow here the Rota–Baxter approach to motivate the introduction of
the axioms of quasi-shuffle algebras. This approach is the one underlying at
the moment most of the applications of the theory and the motivations for its
development. Rota–Baxter algebras encode for example classical integration,
summation operations (as in the theory of MZVs), but also renormaliza-
tion phenomena in quantum field theory, statistical physics and dynamical
systems (see the survey article [10]). As explained below, any commutative
Rota–Baxter algebra of weight non zero gives automatically rise to a quasi-
shuffle algebra.

Definition 1. A Rota–Baxter (RB) algebra of weight θ is an associative
algebra A equipped with a linear endomorphism R such that

∀x, y ∈ A,R(x)R(y) = R(R(x)y + xR(y) + θxy).

It is a commutative Rota–Baxter algebra if it is commutative as an algebra.

Setting R′ := R/θ when θ 6= 0, one gets that the pair (A,R′) is a Rota–
Baxter algebra of weight 1. This implies that, in practice, there are only
two interesting cases to be studied abstractly: the weight 0 and weight 1 (or
equivalently any other non zero weight). The others can be deduced easily
from the weight 1 case. Similar observations apply for one-parameter variants
of the notion of quasi-shuffle algebras.

A classical example of a Rota–Baxter operator of weight 1 is the summa-
tion operator acting on sequences (f(n))n∈N of elements of an associative
algebra A

R(f)(n) :=

n−1∑
i=0

f(i).

This general property of summation operators applies in particular to MZVs.
Recall that the latter are defined for k positive integers n1, . . . , nk ∈ N∗,
n1 > 1, by

ζ(n1, . . . , nk) :=
∑

m1>···>mk>0

1

mn1
1 · · ·m

nk
k

.

The Rota–Baxter property of summation operators translates then into the
identity

ζ(p)ζ(q) = ζ(p, q) + ζ(q, p) + ζ(p+ q).

From now on in this article, RB algebra will stand for RB algebra of weight
1. When other RB algebras will be considered, their weight will be mentioned
explicitly.
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An important property of RB algebras, whose proof is left to the reader,
is the existence of an associative product, the RB double product ?, defined
by:

x ? y := R(x)y + xR(y) + xy (1)

so that: R(x)R(y) = R(x ? y). If one sets, in a RB algebra, x ≺ y :=
xR(y), x � y := R(x)y, one gets immediately relations such as

(x · y) ≺ z = xyR(z) = x · (y ≺ z),

(x ≺ y) ≺ z = xR(y)R(z) = x ≺ (y ? z),

and so on. In the commutative case, x ≺ y = y � x, and all relations
between the products ≺,�, · and ? :=≺ + � +· follow from these two. In
the noncommutative case, the relations duplicate and one has furthermore
(x � y) ≺ z = R(x)yR(z) = x � (y ≺ z). These observations give rise to the
axioms of quasi-shuffle algebras and noncommutative quasi-shuffle algebras.

From now on, “commutative algebra” without other precision means com-
mutative and associative algebra; “product” on a vector space A means a
bilinear product, that is a linear map from A⊗A to A.

Definition 2. A quasi-shuffle (QSh) algebra A is a nonunital commutative
algebra (with product written •) equipped with another product ≺ such that

(x ≺ y) ≺ z = x ≺ (y ? z) (2)

(x • y) ≺ z = x • (y ≺ z). (3)

where x?y := x ≺ y+y ≺ x+x•y. We also set for further use x � y := y ≺ x.
As the RB double product in a commutative RB algebra, the product ? is
automatically associative and commutative and defines another commutative
algebra structure on A.

Recall, for further use, that shuffle algebras correspond to weight 0 commu-
tative RB algebras, that is quasi-shuffle algebras with a null product • = 0.
Equivalently:

Definition 3. A shuffle (Sh) algebra is a vector space equipped with a prod-
uct ≺ satisfying (2) with x ? y := x ≺ y + y ≺ x.

It is sometimes convenient to equip quasi-shuffle algebras with a unit. The
phenomenon is exactly similar to the case of shuffle algebras [42]: given a
quasi-shuffle algebra, one sets B := k ⊕ A, and the products ≺, • have a
partial extension to B defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x.

The products 1 ≺ 1 and 1 • 1 cannot be defined consistently, but one sets
1 ? 1 := 1, making B a unital commutative algebra for ?.
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The categories of quasi-shuffle and of unital quasi-shuffle algebras are
clearly equivalent (under the operation of adding or removing a copy of the
ground field).

Definition 4. A noncommutative quasi-shuffle algebra (NQSh algebra) is a
nonunital associative algebra (with product written •) equipped with two
other products ≺,� such that, for all x, y, z ∈ A:

(x ≺ y) ≺ z = x ≺ (y ? z) (4)

(x � y) ≺ z = x � (y ≺ z) (5)

(x ? y) � z = x � (y � z) (6)

(x ≺ y) • z = x • (y � z) (7)

(x � y) • z = x � (y • z) (8)

(x • y) ≺ z = x • (y ≺ z). (9)

where x ? y := x ≺ y + x � y + x • y.

As the RB double product, the product ? is automatically associative and
equips A with another associative algebra structure. Indeed, the associativity
relation

(x • y) • z = x • (y • z) (10)

and (4) + . . .+ (9) imply the associativity of ?:

(x ? y) ? z = x ? (y ? z). (11)

If A is furthermore a quasi-shuffle algebra, then the product ? is commutative.
One can show that these properties are equivalent to the associativity of

the double product ? in a Rota-Baxter algebra (this is because the free NQSh
algebras embed into the corresponding free Rota–Baxter algebras).

Noncommutative shuffle algebras correspond to weight 0 RB algebras, that
is NQSh algebras with a null product • = 0. Equivalently:

Definition 5. A noncommutative shuffle (NSh) algebra is a vector space
equipped with two products ≺,� satisfying (4,5,6) with x?y := x ≺ y+y ≺ x.

The most classical example of such a structure is provided by the topolo-
gists’ shuffle product and its splitting into two “half-shuffles”, an idea going
back to [12].

As in the commutative case, it is sometimes convenient to equip NQSh
algebras with a unit. Given a NQSh algebra, one sets B := k ⊕ A, and the
products ≺, �, • have a partial extension to B defined by, for x ∈ A:

1 • x = x • 1 := 0, 1 ≺ x := 0, x ≺ 1 := x, 1 � x := x, x � 1 := 0.

The products 1 ≺ 1, 1 � 1 and 1 • 1 cannot be defined consistently, but one
sets 1 ∗ 1 := 1, making B a unital commutative algebra for ∗.
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The categories of NQSh and unital NQSh algebras are clearly equivalent.

The following Lemma encodes the previously described relations between
RB algebras and quasi-shuffle algebras:

Lemma 1. The identities x ≺ y := xR(y), x � y := R(x)y, x • y := xy
induce a forgetful functor from RB algebras to NQSh algebras, resp. from
commutative RB algebras to QSh algebras.

Remark 1. Let A be a NQSh algebra.

1. If A is a commutative algebra (for the product •) and if for x, y ∈ A:
x ≺ y = y � x, we say that A is commutative as a NQSh algebra. Then,
(A, •,≺) is a quasi-shuffle algebra.

2. We put �=≺ +•. Then (4) + (7) + (9) + (10), (5) + (9) and (6) give:

(x � y) � z = x � (y � z + y � z), (12)

(x � y) � y = x � (y � z), (13)

(x � y + x � y) � z = x � (y � z). (14)

These are the axioms that define a noncommutative shuffle algebra struc-
ture (A,�,�) on A. Similarly, if �=� +•, then (A,≺,�) is a noncommu-
tative shuffle algebra.

Example 1 (Hoffman, [23]). Let V be an associative, non unitary algebra. The
product of v, w ∈ V is denoted by v.w. The augmentation ideal T+(V ) =⊕
n∈N∗

V ⊗n of the tensor algebra T (V ) =
⊕
n∈N∗

Tn(V ) =
⊕
n∈N∗

V ⊗n (resp. T (V ))

is given a unique (resp. unital) NQSh algebra structure by induction on the
length of tensors such that for all a, b ∈ V , for all v, w ∈ T (V ):

av ≺ bw = a(v− bw), av � bw = b(av−w), av • bw = (a.b)(v−w), (15)

where − =≺ + � +• is called the quasi-shuffle product on T (V ) (by defini-
tion: ∀v ∈ T (V ), 1− v = v = v− 1).

Definition 6. The NQSh algebra (T+(V ),≺,�, •) is called the tensor quasi-
shuffle algebra associated to V . It is quasi-shuffle algebra if, and only if, (V, .)
is commutative (and then is called simply the quasi-shuffle algebra associated
to V ).

Here are examples of products in T+(V ). Let a, b, c ∈ V .

a ≺ b = ab, a � b = ba, a • b = a.b,

a ≺ bc = abc, a � bc = bac+ bca+ b(a.c), a • bc = (a.b)c,

ab ≺ c = abc+ acb+ a(b.c), ab � c = cab, ab • c = (a.c)b.
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In particular, the restriction of • to V is the product of V . If the product of
V is zero, we obtain for − the usual shuffle product .

A useful observation, to which we will refer as ”Schützenberger’s trick”
(see [42]) is that, in T+(V ), for v1, . . . , vn ∈ V ,

v1 . . . vn = v1 ≺ (v2 ≺ . . . (vn−1 ≺ vn) . . . )). (16)

3 Quasi-shuffle bialgebras

We recall that graded connected and more generally conilpotent bialgebras
are automatically equipped with an antipode [5], so that the two notions
of bialgebras and Hopf algebras identify when these conditions are satisfied
–this will be most often the case in the present article.

Quasi-shuffle bialgebras are particular deformations of shuffle bialgebras
associated to the exponential and logarithm maps. They were first introduced
by Hoffman in [23] and studied further in [27, 17, 2]. The existence of a natural
isomorphism between the two categories of bialgebras is known as Hoffman’s
isomorphism [23] and has been studied in depth in [17].

We introduce here a theoretical approach to their definition, namely
through the categorical notion of Hopf operad, see [25]. The underlying ideas
are elementary and deserve probably to be better known. We avoid using the
categorical or operadic langage and present them simply (abstract definitions
and further references on the subject are given in [25]).

Let us consider categories of binary algebras, that is algebras defined by
one or several binary products satisfying homogeneous multilinear relations
(i.e. algebras over binary operads). For example, commutative algebras are
algebras equipped with a binary product · satisfying the relations x · (y · z) =
(x · y) · z and x · y = y · x, and so on. Multilinear means that letters should
not be repeated in the defining relations: for example, n-nilpotent algebras
defined by a binary product with xn = 0, n > 1 are excluded.

The category of algebras will be said non-symmetric if in the defining
relations the letters x, y, z... always appear in the same order. For example,
the category Com of commutative algebras is not non-symmetric because
of the relation x · y = y · x, whereas As, the one of associative algebras
(x · (y · z) = (x · y) · z) is.

Notice that the categories Sh, QSh of shuffle and quasi-shuffle algebras are
not non-symmetric (respectively because of the relation x?y = x ≺ y+y ≺ x
and because of the commutativity of the • product) and are equipped with
a forgetful functor to Com. The categories NSh, NQSh of noncommutative
shuffle and quasi-shuffle algebras are non-symmetric (in their defining rela-
tions the letters x, y, z are not permuted) and are equipped with a forgetful
functor to As.
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Definition 7. Let C be a category of binary algebras. The category is said
Hopfian if tensor products of algebras in C are naturally equipped with the
structure of an algebra in C (i.e. the tensor product can be defined internally
to C ).

Classical examples of Hopfian categories are Com and As.

Definition 8. A bialgebra in a Hopfian category of algebras C (or C -
bialgebra) is an algebra A in C equipped with a coassociative morphism
to A⊗A in C .

Equivalently, it is a coalgebra in the tensor category of C -algebras.
Further requirements can be made in the definition of bialgebras, for ex-

ample when algebras have units. When C = Com or As, we recover the usual
definition of bialgebras.

Proposition 1. A category of binary algebras equipped with a forgetful func-
tor to Com is Hopfian. In particular, Pois,Sh,QSh are Hopfian.

Here Pois stands for the category of Poisson algebras, studied in [25] from
this point of view.

Indeed, let C be a category of binary algebras equipped with a forgetful
functor to Com. We write µ1, . . . , µn the various binary products on A,B ∈ C
and · the commutative product (which may be one of the µi, or be induced by
these products as the ? product is induced by the ≺,� and • products in the
case of shuffle and quasi-shuffle algebras). Notice that a given category may
be equipped with several distinct forgetful functors to Com: the quasi-shuffle
algebras carry, for example, two commutative products (• and ?).

The Proposition follows by defining properly the C -algebra structure on
the tensor products A⊗B:

µi(a⊗ b, a′ ⊗ b′) := µi(a, a
′)⊗ b · b′.

The new products µi on A ⊗ B clearly satisfy the same relations as the
corresponding products on A, which concludes the proof. Notice that one
could also define a “right-sided” structure by µi(a⊗b, a′⊗b′) := a·a′⊗µi(b, b′).

A bialgebra (without a unit) in the category of quasi-shuffle algebras is
a bialgebra in the Hopfian category QSh, where the Hopfian structure is
induced by the ? product. Concretely, it is a quasi-shuffle algebra A equipped
with a coassociative map ∆ in QSh to A ⊗ A, where the latter is equipped
with a quasi-shuffle algebra structure by:

(a⊗ b) ≺ (a′ ⊗ b′) = (a ≺ a′)⊗ (b ? b′), (17)

(a⊗ b) • (a′ ⊗ b′) = (a • a′)⊗ (b ? b′). (18)

The same process defines the notion of shuffle bialgebra (without a unit), e.g.
by taking a null • product in the definition.
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Using Sweedler’s shortcut notation ∆(a) =: a(1) ⊗ a(2), one has:

∆(a ≺ b) = a(1) ≺ b(1) ⊗ a(2) ? b(2), (19)

∆(a • b) = a(1) • b(1) ⊗ a(2) ? b(2). (20)

In the unital case, B = k ⊕ A, one requires furthermore that ∆ be a
counital coproduct (with ∆(1) = 1 ⊗ 1) and, since 1 ≺ 1 and 1 • 1 are not
defined, sets:

(1⊗ b) ≺ (1⊗ b′) = 1⊗ (b ≺ b′),

(1⊗ b) • (1⊗ b′) = 1⊗ (b • b′).

Since unital quasi-shuffle and shuffle bialgebras are more important for appli-
cations, we call them simply quasi-shuffle bialgebras and shuffle bialgebras.
In this situation it is convenient to introduce the reduced coproduct on A,

∆̃(a) := ∆(a)− a⊗ 1− 1⊗ a.

Concretely, we get:

Definition 9. The unital QSh algebra k ⊕ A equipped with a counital
coassociative coproduct ∆ is a quasi-shuffle bialgebra if and only if for all
x, y ∈ A (we introduce for the reduced coproduct the Sweedler-type notation
∆̃(x) = x′ ⊗ x′′):

∆̃(x ≺ y) = x′ ≺ y′⊗x′′?y′′+x′⊗x′′?y+x ≺ y′⊗y′′+x′ ≺ y⊗x′′+x⊗y, (21)

∆̃(x • y) = x′ • y′ ⊗ x′′ ? y′′ + x′ • y ⊗ x′′ + x • y′ ⊗ y′′. (22)

The same constructions and arguments hold in the non-symmetric context.
We do not repeat them and only state the conclusions.

Proposition 2. A non-symmetric category of binary algebras equipped with a
forgetful functor to As is Hopfian. In particular, NSh and NQSh are Hopfian.

A bialgebra (without a unit) in the category of noncommutative quasi-
shuffle (NQSh) algebras is a bialgebra in the Hopfian category NQSh, where
the Hopfian structure is induced by the ? product. Concretely, it is a NQSh
algebra A equipped with a coassociative map ∆ in NQSh to A ⊗ A, where
the latter is equipped with a NQSh algebra structure by:

(a⊗ b) ≺ (a′ ⊗ b′) = (a ≺ a′)⊗ (b ? b′), (23)

(a⊗ b) � (a′ ⊗ b′) = (a � a′)⊗ (b ? b′), (24)

(a⊗ b) • (a′ ⊗ b′) = (a • a′)⊗ (b ? b′). (25)

The same process defines the notion of NSh (or dendriform) bialgebra (with-
out a unit), e.g. by taking a null • product in the definition.
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Recall that setting �:=≺ +• defines a forgetful functor from NQSh to
NSh algebras. The same definition yields a forgetful functor from NQSh to
NSh bialgebras.

In the unital case, one requires furthermore that ∆ be a counital coproduct
(with ∆(1) = 1⊗ 1) and sets

(1⊗ b) ≺ (1⊗ b′) = 1⊗ (b ≺ b′),

and similarly for � and •. Since this case is more important for applications,
we call simply NQSh and NSh bialgebras the ones with a unit.

Definition 10. The unital NQSh algebra k⊕A equipped with counital coas-
sociative coproduct ∆ is a NQSh bialgebra if and only if for all x, y ∈ A:

∆̃(x ≺ y) = x′ ≺ y′⊗x′′?y′′+x′⊗x′′?y+x ≺ y′⊗y′′+x′ ≺ y⊗x′′+x⊗y, (26)

∆̃(x � y) = x′ � y′⊗x′′?y′′+y′⊗x?y′′+x � y′⊗y′′+x′ � y⊗x′′+y⊗x, (27)

∆̃(x • y) = x′ • y′ ⊗ x′′ ? y′′ + x′ • y ⊗ x′′ + x • y′ ⊗ y′′. (28)

Recall, for later use, that a NQSh bialgebra k ⊕ A is connected if the
reduced coproduct is locally conilpotent:

A =
⋃
n≥0

Ker(∆̃(n)),

where ∆̃(n) is the iterated coproduct of order n (Ker(∆̃, the set of primi-
tive elements, is also denoted Prim(A)) and similarly for the other unital
bialgebras we will consider.

The reason for the importance of the unital case comes from Hoffman’s:

Example 2. Let V be an associative, non unitary algebra. With the decon-
catenation coproduct ∆, defined by:

∆(x1 . . . xn) =

n∑
i=0

x1 . . . xi ⊗ xi+1 . . . xn,

the tensor quasi-shuffle algebra T (V ) is a NQSh bialgebra. When V is com-
mutative, it is a quasi-shuffle bialgebra.

4 Lie theory for quasi-shuffle bialgebras

The structural part of Lie theory, as developed for example in Bourbaki’s
Groupes et Algèbres de Lie [1] and Reutenauer’s monograph on free Lie alge-
bras [38], is largely concerned with the structure of enveloping algebras and
cocommutative Hopf algebras. It was shown in [25] that many phenomena
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that might seem characteristic of Lie theory do actually generalize to other
families of bialgebras -precisely the ones studied in the previous section, that
is the ones associated with Hopfian categories of algebras equiped with a
forgetful functor to Com or As.

The most natural way to study these questions is by working with twisted
algebras over operads –algebras in the category of S-modules (families of
representations of all the symmetric groups Sn, n ≥ 0) or, equivalently, of
functors from finite sets to vector spaces. However, doing so systematically
requires the introduction of many terms and preliminary definitions (see [25]),
and we prefer to follow here a more direct approach inspired by the theory
of combinatorial Hopf algebras. The structures we are going to introduce are
reminiscent of the Malvenuto–Reutenauer Hopf algebra [30], whose construc-
tion can be deduced from the Hopfian structure of As, see [35, 36, 37] and
[25, Exple 2.3.4]. The same process will allow us to contruct a combinatorial
Hopf algebra structure on the operad QSh of quasi-shuffle algebras.

Recall that an algebraic theory such as the ones we have been studying
(associative, commutative, quasi-shuffle, NQSh... algebras) is entirely char-
acterized by the behaviour of the corresponding free algebra functor F : an
analytic functor described by a sequence of symmetric group representation
Fn (i.e. a S-module) so that, for a vector space V , F (V ) =

⊕
n

Fn ⊗Sn V
⊗n.

Composition of operations for F -algebras are encoded by natural transfor-
mations from F ◦ F to F . By a standard process, this defines a monad,
and F -algebras are the algebras over this monad. The direct sum F =

⊕
n

Fn

equipped with the previous (multilinear) composition law is called an operad,
and F -algebras are algebras over this operad. Conversely, the Fn are most
easily described as the multilinear part of the free F -algebras F (Xn) over
the vector space spanned by a finite set with n elements, Xn := {x1, . . . , xn}.
Here, multilinear means that Fn is the intersection of the n eigenspaces asso-
ciated to the eigenvalue λ of the n operations induced on F (Xn) by the map
that scales xi by λ (and acts as the identity on the xj , j 6= i).

Let X be a finite set, and let us anticipate on the next Lemma and write
QSh(X) := T+(k[X]+) for the quasi-shuffle algebra associated to k[X]+,
the (non unital, commutative) algebra of polynomials without constant term
over X. For I a multiset over X, we write xI the associated monomial (e.g.
if I = {x1, x3, x3}, xI = x1x

2
3). The tensors xI1 . . . xIn = xI1 ⊗ · · · ⊗xIn form

a basis of QSh(X).
There are several ways to show that QSh(X) is the free quasi-shuffle al-

gebra over X: the property can be deduced from the classical constructions
of commutative Rota-Baxter algebras by Cartier [3] or Rota [39, 40] (in-
deed the tensor product xI1 . . . xIn corresponds to the Rota–Baxter mono-
mial xI1R(xI2R(xI3 . . . R(xIn) . . . ))) in the free RB algebra over X). It can be
deduced from the construction of the free shuffle algebra over X by standard
filtration/graduation arguments. It can also be deduced from a Schur functor
argument [27]. The simplest proof is but the one due to Schützenberger for
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shuffle algebras that applies almost without change to quasi-shuffle algebras
[42, p. 1-19].

Lemma 2. The quasi-shuffle algebra QSh(X) is the (unique up to isomor-
phism) free quasi-shuffle algebra over X.

Proof. Indeed, let A be an arbitrary quasi-shuffle algebra generated by X.
Then, one checks easily by a recursion using the defining relations of quasi-
shuffle algebras that every a ∈ A is a finite sum of “normed terms”, that is
terms of the form

xI1 ≺ (xI2 ≺ (xI3 · · · ≺ xIn) . . . ).

But, if A = QSh(X), by the Schützenberger’s trick, xI1 ≺ (xI2 ≺ (xI3 · · · ≺
xIn) . . . ) = xI1 . . . xIn ; the result follows from the fact that these terms form
a basis of QSh(X). ut

Corollary 1. The component QShn of the operad QSh identifies therefore
with the linear span of tensors xI1 . . . xIk , where I1 q · · · q Ik = [n].

Let us introduce useful notations. We write xI := xI1 . . . xIk , where I
denotes an arbitrary ordered sequence of disjoint subsets of N∗, I1, . . . , Ik,
and set |I| := |I1|+ · · ·+ |Ik|. Recall that the standardization map associated
to a subset I = {i1, . . . , in} of N∗, where i1 < · · · < in is the map st
from I to [n] defined by: st(ik) := k. The standardization of I is then the
ordered sequence st(I) := st(I1, . . . , Ik), where st is the standardization map
associated to the subset I1 q · · · q Ik of the integers. We also set st(xI) :=
xst(I). For example, if I = {2, 6}, {5, 9}, st(I) = {1, 3}, {2, 4} and st(xI) =
x1x3 ⊗ x2x4. The shift by k of a subset I = {i1, . . . , in} (or a sequence of
subsets, and so on...) of N∗, written I + k, is defined by I + k := {i1 +
k, . . . , in + k}.

Theorem 1. The operad QSh of quasi-shuffle algebras inherits from the
Hopfian structure of its category of algebras a NQSh bialgebra structure whose
product operations are defined by:

xI ≺ xJ := xI ≺f xJ+n,

xI � xJ := xI �f xJ+n,

xI • xJ := xI •f xJ+n,

where I and J run over ordered partitions of [n] and [m]; the coproduct is
defined by:

∆(x) := (st⊗ st) ◦∆f (x),

where, on the right-hand sides, ≺f ,�f , •f , ∆f stand for the corresponding
operations on QSh(N∗) (where, as usual, x ≺f y =: y �f x).
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The link with the Hopfian structure of the category of quasi-shuffle alge-
bras refers to [25, Thm 2.3.3]: any connected Hopf operad is a twisted Hopf
algebra over this operad. The Theorem 1 can be thought of as a reformulation
of this general result in terms of NQSh bialgebras.

The fact that QSh is a NQSh algebra follows immediately from the fact
that QSh(N∗) is a NQSh algebra for ≺f ,�f , •f , together with the fact that
the category of NQSh algebras is non-symmetric. The coalgebraic properties
and their compatibility with the NQSh algebra structure are less obvious and
follow from the following Lemma (itself a direct consequence of the defini-
tions):

Lemma 3. Let I = I1, . . . , Ik and J = J1, . . . , Jl be two ordered sequence of
disjoint subsets of N∗ that for any n ∈ Ip, p ≤ k and any m ∈ Jq, q ≤ l we
have n < m. Then:

st(xI ≺f xJ ) = xst(I) ≺f xst(J )+|I| = xst(I) ≺ xst(J ),

st(xI �f xJ ) = xst(I) �f xst(J )+|I| = xst(I) � xst(J ),

st(xI •f xJ ) = xst(I) •f xst(J )+|I| = xst(I) • xst(J ).

The Hopf algebra QSh is naturally isomorphic with WQSym, the Chapo-
ton-Hivert Hopf algebra of word quasi-symmetric functions, that has been
studied in [31, 17], also in relation to quasi-shuffle algebras, but from a dif-
ferent point of view.

Let us conclude this section by some insights on the ”Lie theoretic” struc-
ture underlying the previous constructions on QSh (where ”Lie theoretic”
refers concretely to the behaviour of the functor of primitive elements in a
class of bialgebras associated to an Hopfian category with a forgetful functor
to As or Com). Recall that there is a forgetful functor from quasi-shuffle alge-
bras to commutative algebras defined by keeping only the • product. Dually,
the operad Com embeds into the operad QSh: Comn is the vector space of
dimension 1 generated by the monomial x1 . . . xn, and through the embed-
ding into QSh this monomial is sent to the monomial (a tensor of length 1)
x•n1 := x1 • · · · • x1 in QSh viewed as a NQSh algebra. Let us write slightly
abusively Com for the image of Com in QSh, we have, by definition of the
coproduct on QSh:

Theorem 2. The operad Com embeds into the primitive part of the operad
QSh viewed as a NQSh bialgebra. Moreover, the primitive part of QSh is
stable under the • product.

Proof. Only the last sentence needs to be proved. It follows from the relations:

1 • x = x • 1 = 0

for x ∈ QShn, n ≥ 1. ut
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From the point of view of S-modules, the Theorem should be understood
in the light of [25, Thm 2.4.2]: for P a connected Hopf operad, the space of
primitive elements of the twisted Hopf P -algebra P is a sub-operad of P.

As usual in categories of algebras a forgetful functor such as the one from
QSh to Com induced by • has a left adjoint, see e.g. [19] for the general case
and [27] for quasi-shuffle algebras. This left adjoint, written U (by analogy
with the case of classical enveloping algebras: U(A) ∈ QSh for A ∈ Com
equipped with a product written ·) is, up to a canonical isomorphism, the
quotient of the free quasi-shuffle over the vector space A by the relations
a • b = a · b. When the initial category is Hopfian, such a forgetful func-
tor to a category of algebras over a naturally defined sub-operad arises from
the properties of the tensor product of algebras in the initial category, see
[25, Thm 2.4.2 and Sect. 3.1.2] –this is exactly what happens with the pair
(As,Lie) in the classical situation where the left adjoint is the usual envelop-
ing algebra functor, and here for the pair (QSh,Com).

Lemma 4 (Quasi-shuffle PBW theorem). The left adjoint U of the for-
getful functor from QSh to Com, or ”quasi-shuffle enveloping algebra” func-
tor from Com to QSh, is (up to isomorphism) Hoffman’s quasi-shuffle algebra
functor T+.

Proof. An elementary proof follows once again from (a variant of) Schützen-
berger’s construction of the free shuffle algebra. Notice first that T+(A) is
generated by A as a quasi-shuffle algebra, and that, in it, the relations a•b =
a · b hold. Moreover, choosing a basis (ai)i∈I of A, the tensors ai1 . . . ain =
ai1 ≺ (ai2 ≺ · · · ≺ ain) . . . ) form a basis of T+(A). On the other hand, by
the definition of the left adjoint U(A) as a quotient of Sh(A) by the relations
a • b = a · b, using the defining relations of quasi-shuffle algebras, any term
in U(A) can be written recursively as a sum of terms in ”normed form”
ai1 ≺ (ai2 ≺ . . . (ain−1 ≺ ain) . . . ). The Lemma follows. ut

Notice that the existence of a basis of T+(A) of tensors ai1 . . . ain = ai1 ≺
(ai2 ≺ · · · ≺ ain) . . . ) is the analog, for quasi-shuffle enveloping algebras, of
the Poincaré-Birkhoff-Witt (PBW) basis for usual enveloping algebras.

5 Endomorphism algebras

We follow once again the analogy with the familiar notion of usual envelop-
ing algebras and connected cocommutative Hopf algebras and study, in this
section the analogs of the convolution product of their linear endomorphisms.
Surjections happen to play, for quasi-shuffle algebras T (A) associated to com-
mutative algebras A, the role played by bijections in classical Lie theory, see
[30] and [31, 17].
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Proposition 3. Let A be a coassociative (non necessarily counitary) coalge-
bra with coproduct ∆̃ : A −→ A⊗A, and B be a NQSh algebra. The space of
linear morphisms Lin(A,B) is given a NQSh algebra structure in the follow-
ing way: for all f, g ∈ Lin(A,B),

f ≺ g =≺ ◦(f ⊗ g) ◦ ∆̃, f � g =� ◦(f ⊗ g) ◦ ∆̃, f • g = • ◦ (f ⊗ g) ◦ ∆̃.
(29)

Proof. The construction follows easily from the fact that NQSh is non-
symmetric and from the coassociativity of the coproduct. As an example,
let us prove (5) using Sweedler’s notation for ∆̃. Let f, g, h ∈ Lin(A,B). For
all x ∈ A,

(f � g) ≺ h(x) = (f � g)(x′) ≺ h(x′′)

= (f((x′)′) � g((x′)′′)) ≺ h(x′′)

= f(x′) � (g((x′′)′) ≺ h((x′′)′′)

= f(x′) � (g ≺ h)(x′′)

= f � (g ≺ h)(x).

So (f � g) ≺ h = f � (g ≺ h). ut
Remark 2. The induced product ? on Lin(A,B) is the usual convolution prod-
uct.

Corollary 2. The set of linear endomorphisms of A, where k⊕A is a NQSh
bialgebra, is naturally equiped with the structure of a NQSh algebra.

Let us turn now to the quasi-shuffle analog of the Malvenuto-Reutenauer
noncommutative shuffle algebra of permutations. The appearance of a non-
commutative shuffle algebra of permutations in Lie theory in [30] can be un-
derstood operadically by noticing that the linear span of the n-th symmetric
group Sn is Asn, the n-th component of the operad of associative alge-
bras. The same reason explain why surjections appear naturally in the study
of quasi-shuffle algebras: ordered partitions of initial subsets of the integers
(say {2, 4}, {5}, {1, 3}) parametrize a natural basis of QShn, and such ordered
partitions are canonically in bijection with surjections (here, the surjection s
from [5] to [3] defined by s(2) = s(4) = 1, s(5) = 2, s(1) = s(3) = 3). Let
us show how the NQSh algebra structure of QSh can be recovered from the
point of view of the structure of NQSh algebras of linear endomorphisms. In
the process, we also give explicit combinatorial formulas for the corresponding
structure maps ≺,�, •. We also point out that composition of endomorphisms
leads to a new product on QSh (such a product is usually called “internal
product” in the theory of combinatorial Hopf algebras, we follow the use, see
[18, 31]).

Recall that a word n1 . . . nk over the integers is called packed if the under-
lying set S = {n1, . . . , nk} is an initial subset of N∗, that is, S = [m] for a cer-
tain m. For later use, recall also that any word n1 . . . nk over the integers can
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be packed: pack(n1 . . . nk) = m1 . . .mk is the unique packed word preserving
the natural order of letters (mi < mj ⇔ ni < nj , mi = mj ⇔ ni = nj , e.g.
pack(6353) = 3121).

Let n ≥ 0. We denote by Surjn the set of maps σ : [n] := {1, . . . , n} −→ N∗
such that σ({1, . . . , n}) = {1, . . . , k} for a certain k. The corresponding el-
ements in QShn are the ordered partitions σ−1({1}), . . . , σ−1({k}) of [n].
The integer k is the maximum of σ and denoted by max(σ). The element
σ ∈ Surjn will be represented by the packed word (σ(1) . . . σ(n)). We identify
in this way elements of Surjn with packed words of length n.

We assume that V is an associative, commutative algebra and work with
the quasi-shuffle algebra T+(V ). Let σ ∈ Surjn, n ≥ 1. We define Fσ ∈
Endk(T (V )) in the following way: for all x1, . . . , xl ∈ V ,

Fσ(x1 . . . xl) =



 ∏
σ(i)=1

xi

 . . .

 ∏
σ(i)=max(σ)

xi

 if l = n,

0 otherwise.

Note that in each parenthesis, the product is the product of V . For example,
if x, y, z ∈ V ,

F(123)(xyz) = xyz F(132)(xyz) = xzy F(213)(xyz) = yxz

F(231)(xyz) = zxy F(312)(xyz) = yzx F(321)(xyz) = zyx

F(122)(xyz) = x(y.z) F(212)(xyz) = y(x.z) F(221)(xyz) = z(x.y)

F(112)(xyz) = (x.y)z F(121)(xyz) = (x.z)y F(211)(xyz) = (y.z)x

F(111)(xyz) = x.y.z.

We also define F1, where 1 is the empty word, by F1(x1 . . . xn) = ε(x1 . . . xn)1,
where ε is the augmentation map from T (V ) to k (with kernel T+(V )).

Notations. Let k, l ≥ 0.

1. a. We denote by QShk,l the set of (k, l) quasi-shuffles, that is to say ele-
ments σ ∈ Surjk+l such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . <
σ(k + l).

b. QSh≺k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {1}.
c. QSh�k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {k+1}.
d. QSh•k,l is the set of (k, l) quasi-shuffles σ such that σ−1({1}) = {1, k+1}.
Note that QShk,l = QSh≺k,l tQSh

�
k,l tQSh•k,l.

2. If σ ∈ Surjk and τ ∈ Surjl, σ ⊗ τ is the element of Surjk+l represented
by the packed word στ [max(σ)], where [k] denotes the translation by k
(312[5] = 867).
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The subspace of EndK(T (V )) generated by the maps Fσ is stable under
composition and the products:

Proposition 4. Let σ ∈ Surjk and τ ∈ Surjl.

1. If max(τ) = k, then Fσ ◦ Fτ = Fσ◦τ . Otherwise, this composition is equal
to 0.

2.

Fσ ≺ Fτ =
∑

ζ∈QSh≺k,l

Fζ◦(σ⊗τ), Fσ � Fτ =
∑

ζ∈QSh�k,l

Fζ◦(σ⊗τ),

Fσ • Fτ =
∑

ζ∈QSh•k,l

Fζ◦(σ⊗τ), Fσ −Fτ =
∑

ζ∈QShk,l

Fζ◦(σ⊗τ).

The same formulas describe the structure of the operad QSh as a NQSh
algebra (i.e., in QSh, using the identification between surjections and or-
dered partitions, σ ≺ τ =

∑
ζ∈QSh≺k,l

ζ ◦ (σ ⊗ τ), and so on).

Proof. The proof of 1. and 2. follows by direct computations. The identifica-
tion with the corresponding formulas for QSh follows from the identities, for
all x1, . . . , xk+l ∈ V , in the quasi-shuffle algebra T+(V ):

x1 . . . xk ≺ xk+1 . . . xk+l =
∑

ζ∈QSh≺k,l

Fζ(x1 . . . xk+l),

x1 . . . xk � xk+1 . . . xk+l =
∑

ζ∈QSh�k,l

Fζ(x1 . . . xk+l),

x1 . . . xk • xk+1 . . . xk+l =
∑

ζ∈QSh•k,l

Fζ(x1 . . . xk+l),

x1 . . . xk−xk+1 . . . xk+l =
∑

ζ∈QShk,l

Fζ(x1 . . . xk+l).

Moreover:

x1 . . . xk xk+1 . . . xk+l =
∑

ζ∈Shk,l

Fζ(x1 . . . xk+l),

where Shk,l is the set of (k, l)-shuffles, that is to say Sk+l ∩QShk,l. ut

Remark 3. 1. F(1...n) is the projection on the space of words of length n.
Consequently:

Id =

∞∑
n=0

F(1...n).

2. In general, this action of packed words is not faithful. For example, if A is
a trivial algebra, then for any σ ∈ Surjk \Sk, Fσ = 0.
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3. Here is an example where the action is faithful. Let A = K[Xi | i ≥ 1]+.
Let us assume that

∑
aσFσ = 0. Acting on the word X1 . . . Xk, we obtain:

∑
σ∈Surjk

aσ

 ∏
σ(i)=1

Xi

 . . .

 ∏
σ(i)=max(σ)

Xi

 = 0.

As the Xi are algebraically independent, the words appearing in this sum
are linearly independent, so for all σ, aσ = 0.

6 Canonical projections on primitives

This section studies the analog, for quasi-shuffle bialgebras, of the canonical
projection from a connected cocommutative Hopf algebra to its primitive
part –the logarithm of the identity (see e.g. [38, 33, 34]). See also [2] where
this particular topic and related ones are addressed in a more general setting.

Recall that a coalgebra C with a coassociative coproduct ∆̃ is connected if
and only if the coproduct il locally conilpotent (for c ∈ C there exists n ∈ N∗

such that ∆̃(n)(c) = 0).

Proposition 5. Let A be a coassociative, non counitary, coalgebra with a
locally conilpotent coproduct

∆̃ : A −→ A⊗A, A =
⋃
n≥0

Ker(∆̃(n)),

and let B be a NQSh algebra. Then, for any f ∈ Lin(A,B), there exists a
unique map πf ∈ Lin(A,B), such that

f = πf + πf ≺ f.

Proof. For all n ≥ 1, we put Fn = Ker(∆̃(n)): this defines the coradical
filtration of A. In particular, F1 =: Prim(A). Moreover, if n ≥ 1:

∆̃(Fn) ⊆ Fn−1 ⊗ Fn−1.

Let us choose for all n a subspace En of A such that Fn = Fn−1 ⊕ En. In
particular, E1 = F1 = Prim(A). Then, A is the direct sum of the En’s and
for all n:

∆̃(En) ⊆
⊕
i,j<n

Ei ⊗ Ej .

Existence. We inductively define a map πf : En −→ B for all n ≥ 1 in the
following way:

• For all a ∈ E1, πf (a) = f(a).
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• If a ∈ En, as ∆̃(a) ∈
⊕
i+j<n

Ei⊗Ej , (πf ⊗ f) ◦ ∆̃(a) is already defined. We

then put:

πf (a) = f(a)− ≺ ◦(πf ⊗ f) ◦ ∆̃(a) = f(a)− (πf ≺ f)(a)

Unicity. Let µf such that f = µf + (µf ≺ f). For all a ∈ E1, f(a) =
µf (a) + 0, so µf (a) = πf (a). Let us assume that for all k < n, µf (a) = πf (a)
if a ∈ Ek. Let a ∈ En. Then:

a = µf (a) + µf (a′) ≺ a′′ = µf (a) + πf (a′) ≺ a′′ = µf (a) + a− πf (a),

so µf (a) = πf (a). Hence, µf = πf . ut

Proposition 6. When A = B = T+(V ) and f = Id, the map π := πf
defined in proposition 5 is equal to the projection F(1).

Proof. First, observe that, as QSh≺1,k = {(1, . . . , k)}, for all packed words
(a1 . . . ak), F(1) ≺ F(a1...ak) = F(1(a1+1)...(ak+1)). Hence, in A:

F(1) + F(1) ≺ IdA = F(1) +

∞∑
n=1

F(1) ≺ F(1...n) = F(1) +

∞∑
n=1

F(1...n+1)

=

∞∑
n=1

F(1...n) = IdA.

By unicity in proposition 5, πf = F(1). ut

More generally, we have:

Proposition 7. Let A be a non unital, connected NQSh bialgebra, and π the
unique solution to

IdA = π + π ≺ IdA,

then π is a projection on Prim(A), and for all x ∈ Prim(A), y ∈ A, π(x ≺
y) = 0.

Proof. Let us prove that for all a ∈ En, π(a) ∈ Prim(A) by induction on n.
As E1 = Prim(A), this is obvious if n = 1. Let us assume the result for all
k < n. Let a ∈ En. Then π(a) = a−π(a′) ≺ a′′. By the induction hypothesis,
we can assume that π(a′) ∈ Prim(A), so:

∆̃(π(a)) = a′ ⊗ a′′ − π(a′) ≺ a′′ ⊗ a′′′ − π(a′)⊗ a′′

= (a′ − (π ≺ Id)(a′)− π(a′))⊗ a′′ = 0.

Hence, for all a ∈ A, π(a) ∈ Prim(a). So π that, by its very definition, acts
as the identity on Prim(A), is a projection on Prim(A).

Let x ∈ Prim(A) and y ∈ En, let us prove that π(x ≺ y) = 0 by induction
on n. If n = 1, then y ∈ Prim(A), so ∆̃(x ≺ y) = x⊗ y, and π(x ≺ y) = x ≺
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y − π(x) ≺ y = x ≺ y − x ≺ y = 0. Let us assume the result at all rank < n.
We have:

∆̃(x ≺ y) = x ≺ y′ ⊗ y′′ + x⊗ y.

By the induction hypothesis, we can assume that π(x ≺ y′) = 0, so π(x ≺
y) = x ≺ y − 0− π(x) ≺ y = x ≺ y − x ≺ y = 0. ut

Remark 4. For all x, y ∈ Prim(A):

π(x ≺ y) = 0, π(x � y) = x � y − y ≺ x, π(x • y) = x • y.

Proposition 8. Let A be a nonunital, connected quasi-shuffle bialgebra.
Then Prim(A) is stable under • and the following map is an isomorphism
of quasi-shuffle bialgebras:

θ :

{
T+(Prim(A)) −→ A

a1 . . . ak −→ a1 ≺ (a2 ≺ (. . . ≺ ak) . . .).

Proof. Let a1, . . . , ak ∈ Prim(A). An easy induction on k proves that:

∆̃(θ(a1 ⊗ . . .⊗ ak)) =

k−1∑
i=1

θ(a1 ⊗ . . .⊗ ai)⊗ θ(ai+1 ⊗ . . .⊗ ak).

So θ is a coalgebra morphism.
From this coalgebra morphism property and the identity π(x ≺ y) = 0 for

x ∈ Prim(A), we get for a1, . . . , ak ∈ Prim(A), (IdA ⊗ π) ◦ ∆̃(θ(a1 ⊗ . . . ⊗
ak)) = θ(a1 ⊗ . . .⊗ ak−1)⊗ θ(ak). Since θ is the identity on its restriction to
Prim(A), its injectivity follows by induction.

Let a = a1 . . . ak and b = b1 . . . bl ∈ T+(Prim(A)). Let us prove by induc-
tion on k + l that:

θ(a ≺ b) = θ(a) ≺ θ(b), θ(a � b) = θ(a) � θ(b), θ(a • b) = θ(a) • θ(b).

If k = 1, then a ≺ b1 . . . bl = ab1 . . . bl, so θ(a ≺ b) = a ≺ θ(b) = θ(a) ≺ θ(b).
If l = 1, then a � b = ba, so θ(a � b) = b ≺ θ(a) = θ(b) ≺ θ(a) = θ(a) � θ(b).
If k = l = 1, , x • y = π(x • y) ∈ Prim(A), so θ(a • b) = a • b = θ(a) • θ(b).
All these remarks give the results for k + l ≤ 2. Let us assume the result at
all ranks < k + l. If k = 1, we already proved that θ(a ≺ b) = θ(a) ≺ θ(b).
If k ≥ 2, a ≺ b = a1(a2 . . . ak− b). By the induction hypothesis applied to
a2 . . . ak and b:

θ(a ≺ b) = a1 ≺ (θ(a2 . . . ak)?θ(b)) = (a1 ≺ θ(a2 . . . ak)) ≺ θ(b) = θ(a) ≺ θ(b).

Using the commutativity of T+(Prim(A)) and A, we obtain θ(a � b) =
θ(a) � θ(b). If l > 1, a• b = a• (b1 ≺ b2 . . . bl) = (a• b1) ≺ b2 . . . bl. Moreover,
a • b1 is a linear span of words of length ≤ k + 1, so, by the preceding
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computation and the induction hypothesis:

θ(a • b) = θ(a • b1) ≺ θ(b2 . . . bl).

The induction hypothesis holds for a and b1, so:

θ(a • b) = (θ(a) • θ(b1)) ≺ •(b2 . . . bl) = θ(a) • (b1 ≺ θ(b2 . . . bl)) = θ(a) • θ(b).

If l = 1, then k > 1 and we conclude with the commutativity of •.

Let us now prove that Prim(A) generates A as a quasi-shuffle algebra. Let
A′ be the quasi-shuffle subalgebra of A generated by Prim(A). Let a ∈ En, let
us prove that x ∈ A′ by induction on n. As E1 = Prim(A), this is obvious if
n = 1. Let us assume the result for all ranks < n. Then a = π(a)+π(a′) ≺ a′′.
By the induction hypothesis, a′′ ∈ A′. Moreover, π(a) and π(a′) ∈ Prim(A),
so a ∈ A′.

As a conclusion, θ is a morphism of quasi-shuffle algebras, whose image
contains Prim(A), which generates A, so θ is surjective. ut

7 Relating the shuffle and quasi-shuffle operads

A fundamental theorem of the theory of quasi-shuffle algebras relates quasi-
shuffle bialgebras and shuffle bialgebras and, under some hypothesis (combi-
natorial and graduation hypothesis on the generators in Hoffman’s original
version of the theorem [23]), shows that the two categories of bialgebras
are isomorphic. This result allows to understand quasi-shuffle bialgebras as
deformations of shuffle bialgebras and, as such, can be extended to other
deformations of the shuffle product than the one induced by Hoffman’s ex-
ponential map, see [17]. We will come back to this line of arguments in the
next section.

Here, we stick to the relations between shuffle and quasi-shuffle algebras
and show that Hoffman’s theorem can be better understood and refined in
the light of an Hopf algebra morphism relating the shuffle and quasi-shuffle
operads.

Let us notice first that the same construction that allows to define a NQSh
algebra structure on the operad QSh allows, mutatis mutandis, to define a
noncommutative shuffle algebra structure on Sh, the operad of shuffle al-
gebras. A natural basis of the latter operad is given by permutations (the
result goes back to Schützenberger, who showed that the tensor algebra over
a vector space V is a model of the free shuffle algebra over V [42]). Let us
stick here to the underlying Hopf algebra structures.

Recall first that the set of packed words (or surjections, or ordered par-
titions of initial subsets of the integers) Surj is a basis of QSh. As a Hopf
algebra, QSh is isomorphic to WQSym, the Hopf algebra of word symmet-
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ric functions, see e.g. [17] for references on the subject. This Hopf algebra
structure is obtained as follows. For all σ ∈ Surjk, τ ∈ Surjl:

σ ? τ =
∑

ζ∈QShk,l

ζ ◦ (σ ⊗ τ).

For all σ ∈ Surjn:

∆(σ) =

max(σ)∑
k=0

σ|{1,...,k} ⊗ Pack(σ|{k+1,...,max(σ)}),

where for all I ⊆ {1, . . . ,max(σ)}, σ|I is the packed word obtained by keeping
only the letters of σ which belong to I.

On the other hand, the set of permutations is a basis of the operad Sh.
As a Hopf algebra, the latter identifies with the Malvenuto-Reutenauer Hopf
algebra [30] and with the Hopf algebra of free quasi-symmetric functions
FQSym. Its Hopf structure is obtained as follows. For all σ ∈ Sk, τ ∈ Sl:

σ ? τ =
∑

ζ∈Shk,l

ζ ◦ (σ ⊗ τ).

For all σ ∈ Sn:

∆(σ) =

max(σ)∑
k=0

σ|{1,...,k} ⊗ Pack(σ|{k+1,...,max(σ)}).

There is an obvious surjective Hopf algebra morphism Ξ from QSh to Sh,
sending a packed word σ to itself if σ is a permutation, and to 0 otherwise.
From an operadic point of view, this maps amounts to put to zero the •
product. There is however another, non operadic, transformation, relating
the two structures.

We use the following notations:

1. Let σ ∈ Sn and τ ∈ Surjn. We shall say that τ ∝ σ if:

∀1 ≤ i, j ≤ n, (σ(i) ≤ σ(j) =⇒ τ(i) ≤ τ(j)).

2. Let τ ∈ Surjn. We put τ ! =

max(τ)∏
i=1

|τ−1({i})|!.
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Theorem 3. Consider the following map:

Φ :

 Sh −→ QSh

σ ∈ Sn −→
∑
τ∝σ

τ

τ !
.

Then Φ is an injective Hopf algebra morphism. Moreover it is equivariant:
for all σ, τ ∈ Sn,

Φ(σ ◦ τ) = Φ(σ) ◦ τ.

Proof. Let σ, τ ∈ Sn. Then τ ∝ σ if, and only if, σ = τ . So, for all σ ∈ Sn:

Φ(σ) = σ + linear span of packed words which are not permutations.

So Ξ ◦ Φ = IdSh, and Φ is injective.

Let τ ∈ Surjn and σ ∈ Sn. Then τ ∝ σ if, and only if, τ ◦ σ−1 ∝ In.
Moreover, |τ ◦ σ−1|! = τ !, as σ is a bijection. Hence:

Φ(σ) =
∑
τ∝σ

τ

τ !
=
∑
ρ∝In

ρ ◦ σ
ρ!

= Φ(In) ◦ σ.

More generally, if σ, τ ∈ Sn, Φ(σ ◦ τ) = Φ(In) ◦ (σ ◦ τ) = (Φ(In) ◦ σ) ◦ τ =
Φ(σ) ◦ τ .

Let σ1 ∈ Sn1 and σ2 ∈ Sn2 .

Φ(σ1) ? Φ(σ2) =
∑

τ1∝σ1,τ2∝σ2

ζ∈QSh(max(τ1),max(τ2))

ζ ◦ (τ1 ⊗ τ2)

τ1!τ2!
.

Let S be the set of elements σ ∈ Surjn1+n2
such that:

• For all 1 ≤ i, j ≤ n1, σ1(i) ≤ σ1(j) =⇒ σ(i) ≤ σ(j).
• For all 1 ≤ i, j ≤ n2, σ2(i) ≤ σ2(j) =⇒ σ(i+ n1) ≤ σ(j + n2).

Let τ1 ∝ σ1, τ2 ∝ σ2 and ζ ∈ QSh(max(τ1),max(τ2)). As ζ is increasing
on {1, . . . ,max(τ1)} and {max(τ1)+1, . . . ,max(τ1)+max(τ2)}, ζ◦(τ1⊗τ2) ∈
S. Conversely, if σ ∈ S, there exists a unique τ1 ∈ Surjn1

, τ2 ∈ Surjn2
and

ζ ∈ QShmax(τ1),max(τ2) such that σ = ζ ◦ (τ1 ⊗ τ2): in particular, τ1 =
Pack(σ(1) . . . σ(n1)) and τ2 = Pack(σ(n1 + 1) . . . σ(n1 + n2)). As σ ∈ S and
ζ ∈ QShmax(τ1),max(τ2), τ1 ∝ σ1 and τ2 ∝ σ2. Hence:

Φ(σ1) ? Φ(σ2) =
∑
σ∈S

σ

Pack(σ(1) . . . σ(n1))!Pack(σ(n1 + 1) . . . σ(n1 + n2))!
.
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On the other hand:

Φ(σ1 ? σ2) =
∑

ζ∈Sh(n1,n2)
τ∝ζ◦(σ1⊗σ2)

τ

τ !
.

Let ζ ∈ Sh(n1, n2) and τ ∝ ζ ◦ (σ1 ⊗ σ2). If 1 ≤ i, j ≤ n1 and σ1(i) ≤ σ1(j),
then:

ζ ◦ (σ1 ⊗ σ2)(i) = ζ(σ1(i)) ≤ ζ(σ1(j)) = ζ ◦ (σ1 ⊗ σ2)(i),

so τ(i) ≤ τ(j). If 1 ≤ i, j ≤ n2 and σ2(i) ≤ σ2(j), then:

ζ◦(σ1⊗σ2)(i+n1) = ζ(σ2(i)+max(σ1)) ≤ ζ(σ2(j)+max(σ1)) = ζ◦(σ1⊗σ2)(j+n1),

so τ(i+ n1) ≤ τ(j + n2). Hence, τ ∈ S and finally:

Φ(σ1 ? σ2) =
∑
τ∈S

τ

τ !
]{ζ ∈ Sh(n1, n2) | τ ∝ ζ ◦ (σ1 ⊗ σ2)}.

Let τ ∈ S. We put τ1 = (τ(1) . . . τ(n1)) and τ2 = (τ(n1 + 1) . . . τ(n1 + n2)).
Let ζ ∈ Sh(n1, n2), such that τ ∝ ζ ◦ (σ1 ⊗ σ2). For all 1 ≤ i ≤ max(τ),
ζ(τ−1({i})) = Ii is entirely determined and does not depend on ζ. By the
increasing conditions on ζ, the determination of such a ζ consists of choosing
for all 1 ≤ i ≤ max(τ) a bijective map ζi from τ−1({i}) to Ii, such that ζi
is increasing on τ−1({i}) ∩ {1, . . . , n1} = τ−11 ({i}) and on τ−1({i}) ∩ {n1 +
1, . . . , n1 + n2} = τ−12 ({i}). Hence, the number of possibilities for ζ is:

max(τ)∏
i=1

|τ−1(i)|!
|τ−11 ({i})|!|τ−12 ({i})|!

=

max(τ)∏
i=1

|τ−1({i})|!

max(τ1)∏
i=1

|τ−11 ({i})|!
max(τ2)∏
i=1

|τ−12 ({i})|!

=

max(τ)∏
i=1

|τ−1({i})|!

max(Pack(τ1))∏
i=1

|Pack(τ1)−1({i})|!
max(Pack(τ2))∏

i=1

|Pack(τ2)−1({i})|!

=
τ !

Pack(τ1)!Pack(τ2)!
.
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Hence:

Φ(σ1 ? σ2) =
∑
τ∈S

τ

τ !

τ !

Pack(τ(1) . . . τ(n1))!Pack(τ(n1 + 1) . . . τ(n1 + n2))!

= Φ(σ1) ? Φ(σ2).

So Φ is an algebra morphism.

Let σ ∈ Sn.

∆(Φ(σ))

=
∑
τ∝σ

max(τ)∑
k=0

1

τ !
τ|{1,...,k} ⊗ Pack(τ|{k+1,...,max(τ)}

=
∑
τ∝σ

max(τ)∑
k=0

1

τ|{1,...,k}!Pack(τ|{k+1,...,max(τ)}!
τ|{1,...,k} ⊗ Pack(τ|{k+1,...,max(τ)}

=

n∑
k=0

∑
τ1∝σ|{1,...,k}

τ2∝Pack(σ|{k+1,...,n})

τ1
τ1!
⊗ τ2
τ2!

= (Φ⊗ Φ) ◦∆(σ).

Hence, Φ is a coalgebra morphism. ut

Example 3.

Φ((1)) = (1),

Φ((12)) = (12) +
1

2
(11),

Φ((123)) = (123) +
1

2
(112) +

1

2
(122) +

1

6
(111),

Φ((1234)) = (1234) +
1

2
(1123) + +

1

2
(1223) + +

1

2
(1233)

+
1

4
(1122) +

1

6
(1112) +

1

6
(1222) +

1

24
(1111).

More generally:

Φ((1 . . . n)) =

n∑
k=1

∑
i1+...+ik=n

1

i1! . . . ik!
(1i1 . . . kik).

Remark 5. The map Φ is not a morphism of NSh algebras from (Sh,≺,�) to
(QSh,�,�), nor to (QSh,≺,�). Indeed:
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Φ((1) ≺ (1)) = (12) +
1

2
(11),

Φ((1)) ≺ Φ((1)) = (12),

Φ((1)) � Φ((1)) = (12) + (11).

We extend the map σ −→ Fσ into a linear map from QSh to End(T (V )).
By proposition 4, F is an algebra morphism.

Corollary 3 (Exponential isomorphism). Le us consider the following
linear map:

φ :

{
T (V ) −→ T (V )

x1 . . . xn −→ FΦ(In)(x1 . . . xn).

Then φ is a Hopf algebra isomorphism from (T (V ), , ∆) to (T (V ), − , ∆).

Proof. Let x1, . . . , xk+l ∈ V .

φ(x1 . . . xk xk+1 . . . xk+l) =
∑

ζ∈Sh(k,l)

FΦ(Ik+l) ◦ Fζ(x1 . . . xk+l)

=
∑

ζ∈Sh(k,l)

FΦ(Ik+l)◦ζ(x1 . . . xk+l)

=
∑

ζ∈Sh(k,l)

FΦ(ζ)(x1 . . . xk+l)

= FΦ(Ik?Il)(x1 . . . xk+l)

= FΦ(Ik)?Φ(Il)(x1 . . . xk+l)

= FΦ(Ik)−FΦ(Il)(x1 . . . xk+l)

=

k+l∑
i=0

FΦ(Ik)(x1 . . . xi)−FΦ(Il)(xi+1 . . . xk+l)

= FΦ(Ik)(x1 . . . xk)−FΦ(Il)(xk+1 . . . xk+l)

= φ(x1 . . . xk)−φ(xk+1 . . . xl).

So φ is an algebra morphism.

For any packed words σ ∈ Surjk, τ ∈ Surjl and all x1, . . . , xn ∈ V we
define Gσ⊗τ by:

Gσ⊗τ (x1 . . . xn) = Fσ(x1 . . . xk)⊗ Fτ (xk+1 . . . xn)

is k + l = n and = 0 else. Then, for all increasing packed word σ, for all
x ∈ T (V ):

∆(Fσ(x)) = G∆(σ)(x).

Hence, if x1, . . . , xn ∈ V :
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∆ ◦ φ(x1 . . . xn) = G∆(Φ(In))(x1 . . . xn)

= G(Φ⊗Φ)◦∆(In)(x1 . . . xn)

=

n∑
k=0

GΦ(Ik)⊗Φ(In−k)(x1 . . . xn)

=

n∑
k=0

FΦ(Ik)(x1 . . . xk)⊗ FΦ(In−k)(xk+1 . . . xn)

=

n∑
k=0

φ(x1 . . . xk)⊗ φ(xk+1 . . . xn)

= (φ⊗ φ) ◦∆(x1 . . . xn).

So φ is a coalgebra morphism.

As the unique bijection appearing in Φ(In) is In, for all word x1 . . . xn:

φ(x1 . . . xn) = x1 . . . xn + linear span of words of length < n.

So φ is a bijection. ut

Example 4. Let x1, x2, x3, x4 ∈ V .

φ(x1) = x1,

φ(x1x2) = x1x2 +
1

2
x1.x2,

φ(x1x2x3) = x1x2x3 +
1

2
(x1.x2)x3 +

1

2
x1(x2.x3) +

1

6
x1.x2.x3,

φ(x1x2x3x4) = x1x2x3x4 +
1

2
(x1.x2)x3x4 +

1

2
x1(x2.x3)x4

+
1

2
x1x2(x3.x4) +

1

4
(x1.x2)(x3.x4) +

1

6
(x1.x2.x3)x4

+
1

6
x1(x2.x3.x4) +

1

24
x1.x2.x3.x4.

More generally, for all x1, . . . , xn ∈ V :

φ(x1 . . . xn) =

n∑
k=1

∑
i1+...+ik=n

1

i1! . . . ik!
F(1i1 ...kik )(x1 . . . xn).

Remark 6. 1. This isomorphism is the morphism denoted by exp and ob-
tained in the graded case by Hoffman in [23].

2. If V is a trivial algebra, then φ = IdT (V ).
3. This morphism is not a NSh algebra morphism, except if V is a triv-

ial algebra. In fact, except if the product of V is zero, the NSh algebras
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(T (V ),�,�) and (T (V ),≺,�) are not commutative, so cannot be isomor-
phic to a shuffle algebra.

8 Coalgebra and Hopf algebra endomorphisms

In the previous section, we studied the links between shuffle and quasi-shuffle
operads and obtained as a corollary the exponential isomorphism of Cor.
3 between the shuffle and quasi-shuffle Hopf algebra structures on T (V ).
This section aims at classifying all such possible (natural, i.e. functorial in
commutative algebras V ) morphisms. We refer to our [17] for applications
of natural coalgebra endomorphisms to the study of deformations of shuffle
bialgebras.

Recall that we defined π as the unique linear endomorphism of the quasi-
shuffle bialgebra T+(V ) such that π+π ≺ IdT+(V ) = IdT+(V ). By proposition
6, it is equal to F(1), so is the canonical projection on V . This construction
generalizes as follows.

Hereafter, we work in the unital setting and write ε for the canonical
projection from T (V ) to the scalars (the augmentation map). It behaves
as a unit w.r.t. the NQSh products on End(T+(V )): for g ∈ End(T+(V )),
ε ≺ g = 0, g ≺ ε = g.

Proposition 9. Let f : T (V ) −→ V be a linear map such that f(1) = 0.
There exists a unique coalgebra endomorphism ψ of T (V ) such that π◦ψ = f .
This coalgebra endomorphism is the unique linear endomorphism of T (V )
such that ε+ f ≺ ψ = ψ.

Proof. First step. Let us prove the unicity of the coalgebra morphism ψ such
that π ◦ ψ = f . Let ψ1, ψ2 be two (non zero) coalgebra endomorphisms such
that π ◦ψ1 = π ◦ψ2. Let us prove that for all x1, . . . , xn ∈ V , ψ1(x1 . . . xn) =
ψ2(x1 . . . xn) by induction on n. If n = 1, as ψ1(1) and ψ2(1) are both nonzero
group-like elements, they are both equal to 1. Let us assume the result at all
rank < n. Then:

∆ ◦ ψ1(x1 . . . xn) = (ψ1 ⊗ ψ1) ◦∆(x1 . . . xn)

= ψ1(x1 . . . xn)⊗ 1 + 1⊗ ψ1(x1 . . . xn)

+

n−1∑
i=1

ψ1(x1 . . . xi)⊗ ψ1(xi+1 . . . xn),

∆ ◦ ψ2(x1 . . . xn) = ψ2(x1 . . . xn)⊗ 1 + 1⊗ ψ2(x1 . . . xn)

+

n−1∑
i=1

ψ2(x1 . . . xi)⊗ ψ2(xi+1 . . . xn).
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Applying the induction hypothesis, for all i ≤ 1 ≤ n − 1, ψ1(x1 . . . xi) =
ψ2(x1 . . . xi) and ψ1(xi+1 . . . xn) = ψ2(xi+1 . . . xn). Consequently, ψ1(x1 . . . xn)−
ψ2(x1 . . . xn) is primitive, so belongs to V and:

ψ1(x1 . . . xn)− ψ2(x1 . . . xn) = π ◦ ψ1(x1 . . . xn)− π ◦ ψ2(x1 . . . xn) = 0.

Second step. Let us prove the existence of a (necessarily unique) endo-
morphism ψ such that ψ = ε + f ≺ ψ. We construct ψ(x1 . . . xn) for all
x1, . . . , xn ∈ V by induction on n in the following way: ψ(1) = 1 and, if
n ≥ 1:

ψ(x1 . . . xn) := f(x1 . . . fn) +

n−1∑
i=1

f(x1 . . . xi) ≺ ψ(xi+1 . . . xn).

Then (ε+ f ≺ ψ)(1) = ε(1) = 1 = ψ(1). If n ≥ 1:

(ε+ f ≺ ψ)(x1 . . . xn)

= ε(x1 . . . xn) + f(x1 . . . xn) +

n−1∑
i=1

f(x1 . . . xi) ≺ ψ(xi+1 . . . xn)

= 0 + f(x1 . . . xn) +

n−1∑
i=1

f(x1 . . . xi) ≺ ψ(xi+1 . . . xn)

= ψ(x1 . . . xn).

Hence, ε+ f ≺ ψ = ψ.

Third step. Let ψ such that ε + f ≺ ψ = ψ. Let us prove that ∆ ◦
ψ(x1 . . . xn) = (ψ ⊗ ψ) ◦ ∆(x1 . . . xn) by induction on n. If n = 0, then
ψ(1) = ε(1) + f(1) = 1 + 0 = 1, so ∆ ◦ ψ(1) = (ψ ⊗ ψ) ◦ ∆(1) = 1 ⊗ 1. If
n ≥ 1, we put x = x1 . . . xn, ∆(x) = x⊗ 1 + 1⊗ x+ x′ ⊗ x′′. The induction
hypothesis holds for x′′. Moreover:

ψ(x) = ε(x) + f(x) + f(x′) ≺ ψ(x′′) = f(x) + f(x′) ≺ ψ(x′′).

As f(x), f(x′) ∈ V are primitive:

∆̃ ◦ ψ(x) = f(x′)⊗ ψ(x′′) + f(x′) ≺ ψ(x′′)′ ⊗ ψ(x′′)′

= f(x′)⊗ ψ(x′′) + f(x′) ≺ ψ(x′′)⊗ ψ(x′′′)

= ψ(x′)⊗ ψ(x′′)

= (ψ ⊗ ψ) ◦ ∆̃(x).

As ψ(1) = 1, we deduce that ∆ ◦ ψ(x) = (ψ ⊗ ψ) ◦∆(x). So ψ is a coalgebra
morphism. Moreover, π ◦ ψ(1) = π(1) = 0 = f(1). If ε(x) = 0:
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π ◦ ψ(x) = π ◦ f(x) + π(f(x′) ≺ f(x′′)) = f(x),

as f(x), (x′) ∈ V (so f(x′) ≺ f(x′′) is a linear span of words of length ≥ 2,
so vanishes under the action of π). Hence, π ◦ ψ = f . ut

Proposition 10. Let A =
∑
n≥1

anX
n be a formal series without constant

term. Let fA be the linear map from T (V ) to V defined by fA(x1 . . . xn) =
anx1• . . .•xn and let φA be the unique coalgebra endomorphism of T (V ) such
that π ◦ φA = fA. For all x1, . . . , xn ∈ V :

φA(x1 . . . xn) =

n∑
k=1

∑
i1+...+ik=n

ai1 . . . aikF(1i1 ...kik )(x1 . . . xn). (30)

Proof. Note that fA(x1 . . . xn) = anF(1n)(x1 . . . xn). Let φ be the morphism
defined by the second member of (30). Then (ε+ fA ≺ φ)(1) = 1 + fA(1) =
1 = φ(1). If n ≥ 1:

(ε+ fA ≺ φ)(x1 . . . xn)

= fA(x1 . . . xn) +

n−1∑
i=1

fA(x1 . . . xi) ≺ φ(xi+1 . . . xn)

= anF(1n)(x1 . . . xn)

+

n−1∑
i=1

n∑
k=2

∑
i2+...+ik=n−i

aiai2 . . . aikF(1i) ≺ F(1i2 ...(k−1)ik )(x1 . . . xn)

= anF(1n)(x1 . . . xn)

+

n−1∑
i=1

n∑
k=2

∑
i+i2+...+ik=n

aiai2 . . . aik ≺ F(1i2i2 ...kik )(x1 . . . xn)

= φ(x1 . . . xn).

By unicity in proposition 9, φ = φA. ut

Remark 7. The morphism φ defined in corollary 3 is φexp(X)−1.

Proposition 11. φX = Id and for all formal series A,B without constant
terms, φA ◦ φB = φA◦B.

Proof. For all x1, . . . , xn ∈ V , π◦Id(x1 . . . xn) = δ1,nx1 . . . xn = fX(x1 . . . xn).
By unicity in proposition 9, φX = Id. Moreover:
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π ◦ φA ◦ φB(x1 . . . xn)

= fA

(
n∑
k=1

∑
i1+...+ik=n

bi1 . . . bik(x1 • . . . • xi1) . . . (xi1+...+ik−1+1 • . . . • x1+...+ik)

)

=

n∑
k=1

∑
i1+...+ik=n

akbi1 . . . bikx1 • . . . • xn

= fA◦B(x1 . . . xn).

By unicity in proposition 9, φA ◦ φB = φA◦B . ut

So the set of all φA, where A is a formal series such that A(0) = 0 and
A′(0) 6= 1, is a subgroup of the group of coalgebra isomorphisms of T (V ),
isomorphic to the group of formal diffeomorphisms of the line.

Corollary 4. The inverse of the isomorphism φ defined in corollary 3 is
φln(1+X):

φ−1(x1 . . . xn) =

n∑
k=1

∑
i1+...+ik=n

(−1)n+k

i1 . . . ik
F(1i1 ...kik )(x1 . . . xn).

Proposition 12. Let A ∈ K[[X]]+.

1. φA : (T (V ), , ∆) −→ (T (V ), , ∆) is a Hopf algebra morphism for any
commutative algebra V if, and only if, A = aX for a certain a ∈ K.

2. φA : (T (V ), , ∆) −→ (T (V ), − , ∆) is a Hopf algebra morphism for any
commutative algebra V if, and only if, A = exp(aX) − 1 for a certain
a ∈ K.

3. φA : (T (V ), − , ∆) −→ (T (V ), − , ∆) is a Hopf algebra morphism for any
commutative algebra V if, and only if, A = (1 + X)a − 1 for a certain
a ∈ K.

4. φA : (T (V ), − , ∆) −→ (T (V ), , ∆) is a Hopf algebra morphism for any
commutative algebra V if, and only if, A = a ln(1+X) for a certain a ∈ K.

Proof. First, note that for any x1, . . . , xk ∈ V :

π ◦ φA(x1 . . . xk) = akF(1...1)(x1 . . . xk).

Consequently, for any commutative algebra V , for any x, x1, . . . , xk ∈ V ,
k ≥ 1:

π ◦ φA(x x1 . . . xk) = π(xx1 . . . xk+1 + . . .+ x1 . . . xk+1x)

= (k + 1)ak+1x.x1 · . . . · xk,
π(φA(x) φA(x1 . . . xk)) = 0,

π(φA(x)−φA(x1 . . . xk)) = a1akx.x1 · . . . · xk.
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1. We assume that φA is an algebra morphism for any V for the shuffle
product. Let us choose an algebra V and elements x, x1, . . . , xk ∈ V such that
x.x1 · . . . ·xk 6= 0 in V . As φ(x x1 . . . xk) = φ(x) φ(x1 . . . xk), applying π,
we deduce that for all k ≥ 1, (k+ 1)ak+1 = 0, so ak+1 = 0. Hence, A = a1X.
Conversely, for any x1, . . . , xk ∈ V , φaX(x1 . . . xk) = ak1x1 . . . xk, so φaX is
an endomorphism of the Hopf algebra (T (V ), , ∆).

2. We already proved that φexp(X)−1 is a Hopf algebra morphism from
(T (V ), , ∆) to (T (V ), − , ∆). By composition:

φexp(aX)−1 = φexp(X)−1◦φaX : (T (V ), , ∆) −→ (T (V ), , ∆) −→ (T (V ), − , ∆)

is a Hopf algebra morphism.
We assume that φA is an algebra morphism for any V from the shuf-

fle product to the quasi-shuffle product. Let us choose an algebra V , and
x, x1, . . . , xk ∈ V , such that x.x1 · . . . · xk 6= 0 in V . As φ(x x1 . . . xk) =
φ(x)−φ(x1 . . . xk), applying π, we deduce that for all k ≥ 1, (k + 1)ak+1 =

a1ak, so ak =
ak1
k! for all k ≥ 1. Hence, A = exp(a1X)− 1.

3. The following conditions are equivalent:

• For any V , φA : (T (V ), − , ∆) −→ (T (V ), − , ∆) is a Hopf algebra mor-
phism.

• For any V , φln(1+X)◦φA◦φexp(X)−1 : (T (V ), , ∆) −→ (T (V ), , ∆) is a
Hopf algebra morphism. For any V , φln(1+X)◦A◦(exp(X)−1) : (T (V ), , ∆) −→
(T (V ), , ∆) is a Hopf algebra morphism.

• There exists a ∈ K, ln(1 +X) ◦A ◦ (exp(X)− 1) = aX.
• There exists a ∈ K, A = (1 +X)a − 1.

4. Similar proof. ut

Remark 8. The Proposition 12 classifies actually all the Hopf algebra endo-
morphisms and morphisms relating shuffle and quasi-shuffle algebras T (V ),
that are natural (i.e. functorial) in V . This naturality property follows for-
mally from the study of nonlinear Schur-Weyl duality in [31, 17].

9 Coderivations and graduations

The present section complements the previous one that studied coalgebra
endomorphisms. We aim at investigating here coderivations of quasi-shuffle
bialgebras. As an application we recover the existence of a natural graded
structure on the Hopf algebras (T (V ), − , ∆) [17].
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Notations. Let A be a NQSh algebra, f ∈ EndK(A) and v ∈ A. We
define:

f ≺ v :

{
A −→ A
x −→ f(x) ≺ v, v ≺ f :

{
A −→ A
x −→ v ≺ f(x).

Proposition 13. Let f : T (V ) −→ V be a linear map. There exists a unique
coderivation D of T (V ) such that π◦D = f . Moreover, D is the unique linear
endomorphism of T (V ) such that D = f + π ≺ D + f ≺ Id.

Proof. First step. Let us prove that the unicity of the coderivation D such
that π ◦ D = f . The result is classical [20] and elementary, we include its
proof for completeness sake. Let D1 and D2 be two coderivations such that
π ◦D1 = π ◦D2. Let us prove that D1(x1 . . . xn) = D2(x1 . . . xn) by induction
on n.

∆ ◦D1(1) = (D1 ⊗ Id+ Id⊗D1)(1⊗ 1) = D1(1)⊗ 1 + 1⊗D1(1),

so D1(1) ∈ Prim(T (V )) = V . Similarly, D2(1) ∈ V . Hence, D1(1) = π ◦
D1(1) = π ◦ D2(1) = D2(1). Let us assume the result at all ranks < n. If
p = 1 or 2:

∆◦Dp(x1 . . . xn) =

n∑
i=0

Dp(x1 . . . xi)⊗xi+1 . . . xn+

n∑
i=0

x1 . . . xi⊗Dp(xi+1 . . . xn).

Applying the induction hypothesis at all ranks < k, we obtain by subtraction:

∆◦(D1−D2)(x1 . . . xn) = (D1−D2)(x1 . . . xn)⊗1+1⊗(D1−D2)(x1 . . . xn).

So (D1 −D2)(x1 . . . xn) ∈ V . Applying π:

(D1 −D2)(x1 . . . xn) = π ◦ (D1 −D2)(x1 . . . xn) = 0.

So D1(x1 . . . xn) = D2(x1 . . . xn).

Second step. Let us prove the existence of a map D such that D = f +π ≺
D + f ≺ Id. We define D(x1 . . . xn) by induction on n by D(1) = f(1) and:

D(x1 . . . xn) = x1 ≺ D(x2 . . . xn)+

n−1∑
i=0

f(x1 . . . xi) ≺ xi+1 . . . xn+f(x1 . . . xn).

Then (f + π ≺ D + f ≺ Id)(1) = f(1) = D(1). If n ≥ 1:
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(f + π ≺ D + f ≺ Id)(x1 . . . xn)

= f(x1 . . . xn) +

n∑
i=1

π(x1 . . . xi) ≺ D(xi+1 . . . xn)

+

n−1∑
i=0

f(x1 . . . xi) ≺ xi+1 . . . xn

= f(x1 . . . xn) + x1 ≺ D(x2 . . . xn) +

n−1∑
i=0

f(x1 . . . xi) ≺ xi+1 . . . xn

= D(x1 . . . xn).

So D = f + π ≺ D + f ≺ Id.

Last step. Let D be such that D = f + π ≺ D+ f ≺ Id. Let us prove that
∆ ◦ D(x1 . . . xn) = (D ⊗ Id + Id ⊗ D) ◦ ∆(x1 . . . xn) by induction on n. If
n = 0:

∆ ◦D(1) = ∆(f(1))

= f(1)⊗ 1 + 1⊗ f(1)

= D(1)⊗ 1 + 1⊗D(1)

= (D ⊗ Id+ Id⊗D)(1⊗ 1).

Let us assume the result at all ranks < n.

D(x1 . . . xn) = (f + π ≺ D + f ≺ Id)(x1 . . . xn)

=

n∑
i=1

π(x1 . . . xi) ≺ D(xi+1 . . . xn) +

n−1∑
i=0

f(x1 . . . xi) ≺ xi+1 . . . xn

+ f(x1 . . . xn)

= x1D(x2 . . . xn) +

n∑
i=0

f(x1 . . . xi)xi+1 . . . xn.
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Hence:

∆ ◦D(x1 . . . xn))

=

n∑
j=1

x1D(x2 . . . xj)⊗ xj+1 . . . xn

+

n∑
j=1

x1 . . . xj ⊗D(xj+1 . . . xn) + 1⊗ x1D(x2 . . . xn)

+

n∑
i=0

n∑
j=i

f(x1 . . . xi)xi+1 . . . xj ⊗ xj+1 . . . xn

+

n∑
i=0

1⊗ f(x1 . . . xi)xi+1 . . . xn

=
n∑
j=1

x1D(x2 . . . xj)⊗ xj+1 . . . xn

+

n∑
j=1

x1 . . . xj ⊗D(xj+1 . . . xn) + 1⊗ x1D(x2 . . . xn)

+

n∑
j=1

j∑
i=1

f(x1 . . . xi)xi+1 . . . xj ⊗ xj+1 . . . xn

+ f(1)⊗ x1 . . . xn +

n∑
i=0

1⊗ f(x1 . . . xi)xi+1 . . . xn

=

n∑
j=0

D(x1 . . . xj)⊗ xj+1 . . . xn +

n∑
j=1

x1 . . . xj ⊗D(xj+1 . . . xn)

= (D ⊗ Id+ Id⊗D) ◦∆(x1 . . . xn).

Moreover, π ◦D(1) = π ◦ f(1) = f(1); if n ≥ 1:

π ◦D(x1 . . . xn) = π(x1D(x2 . . . xn)) +

n∑
i=0

π(f(x1 . . . xi)xi+1 . . . xn)

= 0 + f(x1 . . . xn).

So π ◦D = f . ut

Proposition 14. Let A =
∑
n≥1

anX
n be a formal series without constant

term. Let DA be the unique coderivation of T (V ) such that π ◦ φA = fA.
For all x1, . . . , xn ∈ V :
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DA(x1 . . . xn) =

n∑
i=1

ai

n−i+1∑
j=1

F(12...j−1jij+1...n−i+1)(x1 . . . xn). (31)

Proof. Let D be the linear endomorphism defined by the right side of (31).
As fA(1) = 0, we get by induction on n:

(f + π ≺ D + f ≺ Id)(x1 . . . xn)

= f(x1 . . . xn) + x1D(x2 . . . xn) +

n−1∑
i=1

f(x1 . . . xi)xi+1 . . . xn

= x1D(x2 . . . xn) +

n∑
i=1

f(x1 . . . xi)xi+1 . . . xn

=

n−1∑
i=1

ai

n−i+1∑
j=2

F(12...j−1jij+1...n−i+1)(x1 . . . xn) +

n∑
i=1

aiF(1i2...n−i+1)(x1 . . . xn)

=

n∑
i=1

ai

n−i+1∑
j=1

F(12...j−1jij+1...n−i+1)(x1 . . . xn)

= D(x1 . . . xn).

Moreover, π ◦D(x1 . . . xn) = anx1 • . . . • xn = fA(x1 . . . xn). The unicity in
proposition 13 implies that D = DA. ut

Corollary 5. For all word x1 . . . xn, DX(x1 . . . xn) = nx1 . . . xn.

Proof. Indeed,DX(x1 . . . xn) =

n∑
j=1

F(12...j−1j1j+1...n)(x1 . . . xn) = nx1 . . . xn.

ut

Remark 9. Let A and B be two formal series and λ ∈ K. As DA + λDB is a
coderivation and π ◦ (DA + λDB) = fA + λfB = fA+λB :

DA + λDB = DA+λB .

Moreover, the group of coalgebra automorphims of T (V ) acts on the space
of coderivations of T (V ) by conjugacy. Let us precise this action if we work
only with automorphisms and coderivations associated to formal series.

Proposition 15. Let A,B be two formal series without constant terms, such
that A′(0) 6= 0. Then:

φ−1A ◦DB ◦ φA = DB◦A
A′
.

Proof. By linearity and continuity of the action, it is enough to prove this
formula if B = Xp. We denote by C the inverse of A for the composition.
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π ◦ φ−1A ◦DXp ◦ φA(x1 . . . xn)

= fC ◦DXp

(
n∑
k=1

∑
i1+...+ik=n

ai1 . . . aikF(1i1 ...kik )(x1 . . . xn)

)

=

n∑
k=p−1

∑
i1+...+ik=n

(k − p− 1)ck−p+1ai1 . . . aikx1 • . . . • xn.

So π ◦ φA−1 ◦DXp ◦ φA is the linear map associated to the formal series: ∞∑
k=p−1

(k − p+ 1)ck−p+1X
k

 ◦A =

( ∞∑
i=0

iaiX
i−1+p

)
◦A

= (XpC ′) ◦A
= ApC ′ ◦A

=
Ap

A′
.

Hence, φA−1 ◦DXp ◦ φA = DAp

A′
. ut

Corollary 6. The eigenspaces of the coderivation D(1+X)ln(1+X) give a gra-
dation of the Hopf algebra (T (V ), − , ∆).

Proof. Let D = φ ◦DX ◦ φ−1. As φ = φexp(X)−1:

D = φ−1ln(1+X) ◦DX ◦ φln(1+X) = D(1+X)ln(1+X).

As DX is a derivation of the algebra (T (V ), ) and φ is an algebra iso-
morphism from (T (V ), ) to (T (V ), − ), D is is a derivation of the algebra
(T (V ), − ). As it is conjugated to DX , its eigenvalues are the elements of
N. ut

Remark 10. As (1 +X)ln(1 +X) = 1 +

∞∑
k=2

(−1)k

k(k − 1)
Xk:

D(1+X)ln(1+X)(x1 . . . xn)

= nx1 . . . xn +

n∑
i=2

n−i+1∑
j=1

(−1)i

i(i− 1)
x1 . . . xj−1(xj • . . . • xj+i−1)xj+i . . . xn.

The gradation of A = (T (V ), − ) is given by:
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An = V ect


n∑
k=1

∑
i1+...+ik=n

1

i1! . . . ik!

(
i1∏
i=1

xi

)
. . .

 i1+...+ik∏
i=i1+...+ik−1+1

xi

 ,

x1, . . . , xn ∈ V

 .

10 Decorated operads and graded structures

In many applications, algebras over operads carry a natural graduation. This
is because geometrical objects (polynomial vector fields, spaces, differential
forms. . . ), but also combinatorial and algebraic ones carry often a graduation
(or a dimension, a cardinal. . . ) that is better taken into account in the asso-
ciated algebra structures. As far as quasi-shuffle algebras are concerned, they
often naturally carry a graduation in their application domains : think to
quasi-symmetric functions and multizeta values (MZVs) [4]; Ecalle’s mould
calculus and dynamical systems [13]; iterated integrals of Itô type in stochas-
tic calculus [8, 9].

Here, we recall briefly how the formalism of operads can be adapted to take
into account graduations [41]. We detail then the case of quasi-shuffle algebras
and conclude by studying the analogue, in this context, of the classical descent
algebra of a graded commutative or cocommutative Hopf algebra [34].

In this section, we denote by A =
⊕
n∈N

An (where A0 = k, the ground

field), a graded, connected, quasi-shuffle bialgebra. By graded we mean that
all the structure maps (≺, •, ∆) are graded maps. Then Prim(A) = V =⊕
n∈N∗

Vn is an associative, commutative graded algebra for the product •

and we can identify A and the quasi-shuffle bialgebra T (V ) as graded quasi-
shuffle algebras. Be aware however that the graduation of T (V ) is not the
tensor length: for example, for v1 ∈ Vn1 , . . . , vk ∈ Vnk , the degree of the
tensor v1 . . . vk ∈ V ⊗k is now n1 + · · ·+ nk.

It is an easy exercise to adapt the definition of operads to the graded
case: whereas the component Fn of an operad identifies with the set of
multilinear elements in the n letters x1, . . . , xn in the free algebra F (Xn),
Xn := {x1, . . . , xn}, the corresponding component of the associated graded
operad Fdn is obtained by allowing the xis to be decorated by integers (cor-
responding to degrees). Each sequence (d1, . . . , dn) of decorations gives then
rise to a component of the associated decorated operad, isomorphic to Fn
and corresponding to n-ary operations that act on a sequence (a1, . . . , an)
of elements of a F-graded algebra as the corresponding element of Fn would
when deg(ai) = di, and as the null map else, see [41]for details. We call
Fd = ∪nFdn the (integer-)decorated operad associated to F-algebras.

The decorated operad QShd is then spanned by decorated packed words,
where:
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Definition 11. A decorated packed word of length k is a pair (σ, d), where
σ is a packed word of length k and d is a map from {1, . . . , k} into N∗. We

denote it by

(
σ(1) . . . σ(k)
d(1) . . . d(k)

)
.

Notation. Let (σ, d) =

(
σ(1) . . . σ(k)
d(1) . . . d(k)

)
be a decorated packed word. Let

m be the maximum of σ. We define F(σ,d) ∈ Endk(A) in the following way:
for all x1, . . . , xl ∈ V , homogeneous,

F(σ,d)(x1 . . . xl) =



 ∏
σ(i)=1

xi

 . . .

 ∏
σ(i)=m

xi


if k = l and

deg(x1) = d(1),
...

deg(xk) = d(k),

0 otherwise.

Note that in each parenthesis, the product is the product • of V . For example,
if x, y, z ∈ V are homogeneous,

F 2 1 2
a b c

(xyz) = y(x • z)

if deg(x) = a, deg(y) = b, and deg(z) = c, and 0 otherwise.

The subspace of Endk(A) generated by these maps is stable under com-
position and the noncommutative quasi-shuffle products:

Proposition 16. Let

(σ, d) =

(
σ(1) . . . σ(k)
d(1) . . . d(k)

)
and (τ, e) =

(
τ(1) . . . τ(l)
e(1) . . . e(l)

)
be two decorated packed words. max(τ) = k and for all 1 ≤ j ≤ k,

∑
τ(i)=j

e(i) =

d(j), then:
F(σ,d) ◦ F(τ,e) = F( σ ◦ τ(1) . . . σ ◦ τ(l)

e(1) . . . e(l)

).
Otherwise, this composition is equal to 0. Moreover:
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F(σ,d) ≺ F(τ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ,

min(u(1)...u(k))<min(u(k+1)...u(k+l))

F( u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

),

F(σ,d) � F(τ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ,

min(u(1)...u(k))>min(u(k+1)...u(k+l))

F( u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

),

F(σ,d) • F(τ,e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ,

min(u(1)...u(k))=min(u(k+1)...u(k+l))

F( u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

).

Proof. Direct computations. ut

Remark 11. 1. For all packed word (σ(1) . . . σ(n)):

F(σ(1)...σ(n)) =
∑

d(1),...,d(n)≥1

Fσ(1) . . . σ(n)
d(1) . . . d(n)

.

2. In general, this action of decorated packed words is not faithful. For
example, if V = K[X]+, where X is homogeneous of degree n, then
F 1 2

1 1

 = F 2 1
1 1

. Indeed, both sends the word XX on itself and all

the other words on 0.
3. Here is an example where the action is faithful. Let V = K[Xi | i ≥

1]+, where Xi is homogeneous of degree 1 for all i. Let us assume that∑
a(σ,d)F(σ,d) = 0. Acting on the word (Xa1

1 ) . . . (Xak
k ), we obtain:

∑
length(σ)=k

aσ(1) . . . σ(k)
a1 . . . ak


 ∏
σ(i)=1

Xai
i

 . . .

 ∏
σ(i)=max(σ)

Xai
i

 = 0.

As the Xi are algebraically independent, the words appearing in this sum
are linearly independent, so for all (σ, d), a(σ,d) = 0.

Notations.

1. For all n ≥ 1, we put:

pn =

n∑
k=1

∑
d(1)+...+d(k)=n

F( 1 . . . k
d(1) . . . d(k)

).
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The map pn is the projection on the space of words of degree n, so
∑
n≥1

pn =

IdA.
2. For all n ≥ 1, we put:

qn = F( 1
n

).
The map qn is the projection on the space of letters of degree n, so, by

proposition 6, q =
∑
n≥1

qn = F(1) is the projection π of proposition 5. It is not

difficult to deduce, in the same way as proposition 12 of [16], the following
result:

Theorem 4. The NQSh subalgebra QDesc(A) of EndK(A) generated by the
homogeneous components pn of IdA is also generated by the homogeneous
components qn of the projection on Prim(A) of proposition 5. Moreover, for
all n ≥ 1:

qn =

n∑
k=1

(−1)k+1
∑

a1+...+ak=n

pa1 ≺ (pa2 − . . . − pak).

Remark 12. This result is the quasi-shuffle analog of the statement that the
descent algebra of a graded connected cocommutative Hopf algebra H (the
convolution subalgebra of End(H) generated by the graded projections) is
equivalently generated by the graded components of the convolution loga-
rithm of the identity [34].

11 Structure of the decorated quasi-shuffle operad

In this section, we show that the decorated quasi-shuffle operad QShd is free
as a NSh algebra using the bidendriform techniques developed in [14].

We denote by QShd+ the subspace of the decorated quasi-shuffle operad
generated by nonempty decorated packed words. As for a well-chosen graded
quasi-shuffle bialgebra A the action of packed words is faithful, we deduce
that QShd+ inherits a NQSh algebra structure by:
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(σ, d) ≺ (τ, e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ,

min(u(1)...u(k))<min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
,

(σ, d) � (τ, e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ,

min(u(1)...u(k))>min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
,

(σ, d) • (τ, e)

=
∑

Pack(u(1)...u(k))=σ,
Pack(u(k+1)...u(k+l))=τ,

min(u(1)...u(k))=min(u(k+1)...u(k+l))

(
u(1) . . . u(k) u(k + 1) . . . u(k + l)
d(1) . . . d(k) e(1) . . . e(l)

)
.

Notations. Let (σ, d) be a decorated packed word of length k and let
I ⊆ {1, . . . ,max(σ)}. We put σ−1(I) = {i1, . . . , il}, with i1 < . . . < il. The
decorated packed word (σ, d)|I is (Pack(σ(i1), . . . , σ(il)), (d(i1), . . . , d(il))).

Definition 12. We define two coproducts on QShd+ in the following way: for
all nonempty packed word (σ, d),

∆≺(σ, d) =

max(σ)−1∑
i=σ(1)

(σ, d)|{1,...,i} ⊗ (σ, d)|{{i+1,...,max(σ)},

∆�(σ, d) =

σ(1)−1∑
i=1

(σ, d)|{1,...,i} ⊗ (σ, d)|{{i+1,...,max(σ)}.

Then QShd+ is a NSh coalgebra, that is to say:

(∆≺ ⊗ Id) ◦∆≺ = (Id⊗ (∆≺ +∆�)) ◦∆≺, (32)

(∆� ⊗ Id) ◦∆≺ = (Id⊗∆≺) ◦∆�, (33)

((∆≺ +∆�)⊗ Id) ◦∆� = (Id⊗∆�) ◦∆�. (34)
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For all a, b ∈ QShd+:

∆≺(a ≺ b) = a′≺ ≺ b′ ⊗ a′′≺ ? b′′ + a′≺ ≺ b⊗ a′′≺ + a′≺ ⊗ a′′≺ ? b (35)

+ a ≺ b′ ⊗ b′′ + a⊗ b,
∆≺(a � b) = a′≺ � b′ ⊗ a′′≺ ? b′′ + a � b′ ⊗ b′′ + a′≺ � b⊗ a′′≺, (36)

∆≺(a • b) = a′≺ • b′ ⊗ a′′≺ ? b′′ + a′≺ • b⊗ a′′≺ + a • b′ ⊗ b′′, (37)

∆�(a ≺ b) = a′� ≺ b′ ⊗ a′′� ? b′′ + a′� ≺ b⊗ a′′� + a′� ⊗ a′′� ? b, (38)

∆�(a � b) = a′� � b′′ ⊗ a′′� ? b′′ + a′� � b⊗ a′′� + b′� ⊗ a ? b′′ + b⊗ a, (39)

∆�(a • b) = a′� • b′ ⊗ a′′� ? b′′ + a′� • b⊗ a′′�. (40)

Proof. Let (σ, d) be a decorated packed word. Then:

(∆≺ ⊗ Id) ◦∆≺(σ, d) = (Id⊗ (∆≺ +∆�)) ◦∆≺(σ, d)

=
∑

σ(1)≤i<j≤max(σ)−1

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,...,j} ⊗ (σ, d)|{j+1,...,max(σ)},

(∆� ⊗ Id) ◦∆≺(σ, d) = (Id⊗∆≺) ◦∆�(σ, d)

=
∑

1≤i<σ(1)≤j≤max(σ)−1

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,...,j} ⊗ (σ, d)|{j+1,...,max(σ)},

((∆≺ +∆�)⊗ Id) ◦∆�(σ, d) = (Id⊗∆�) ◦∆�(σ, d)

=
∑

1≤i<j<σ(1)

(σ, d)|{1,...,i} ⊗ (σ, d)|{i+1,...,j} ⊗ (σ, d)|{j+1,...,max(σ)}.

Let us prove (35), for a = (σ, d) and b = (τ, e) two decorated packed words
of respective length k and l. We put:

a⊗ b =

(
σ(1) . . . σ(k) τ(1) +max(σ) . . . τ(l) +max(τ)
d(1) . . . d(k) e(1) . . . e(l)

)
.

Then a ≺ b is the sum of all decorated packed words obtained by quasi-
shuffling in all possible ways the values of the letters in the first row of a⊗ b,
in such a way that 1 occurs only in the first k columns; ∆≺(a⊗b) is then given
by separating the letters of the first row of these decorated packed words in
such a way that the first letter appears in the left side. So at least one of the
k first letters appears on the left side. This gives five possible cases:

1. All the k first letters are on the left and all the l last letters are on the
right. Necessarily, this case comes from the decorated packed word a⊗ b,
and this gives the term a⊗ b.

2. All the k first letters are on the left and at least one of the l last letters is
on the left. This gives the term a ≺ b′ ⊗ b′′.
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3. At least one of the k first letters is on the right and all the l last letters
are on the left. This gives the term a′≺ ≺ b⊗ a′′≺.

4. At least one of the k first letters is on the right and all the l last letters
are on the right. This gives the term a′≺ ⊗ a′′≺ ? b.

5. At least one of the k first letters is on the right and there are some of the
l last letters on both sides. This gives the term a′≺ ≺ b′ ⊗ a′′≺ ? b′′.

Summing all these terms, we obtain (35). The other compatibilities can be
proved similarly. ut

Remark 13. We also obtain, by addition:

∆≺(a � b) = a′≺ � b′ ⊗ a′′≺ ? b′′ + a′≺ � b⊗ a′′≺ + a′≺ ⊗ a′′≺ ? b (41)

+ a � b′ ⊗ b′′ + a⊗ b,
∆≺(a � b) = a′≺ � b′ ⊗ a′′≺ ? b′′ + a � b′ ⊗ b′′ + a′≺ � b⊗ a′′≺, (42)

∆�(a � b) = a′� � b′ ⊗ a′′� ? b′′ + a′� � b⊗ a′′� + a′� ⊗ a′′� ? b, (43)

∆�(a � b) = a′� � b′′ ⊗ a′′� ? b′′ + a′� � b⊗ a′′� + b′� ⊗ a ? b′′ + b⊗ a; (44)

∆̃(a ≺ b) = a′ ≺ b′ ⊗ a′′ ? b′′ + a′ ≺ b⊗ a′′ + a′ ⊗ a′′ ? b (45)

+ a ≺ b′ ⊗ b′′ + a⊗ b,
∆̃(a � b) = a′ � b′ ⊗ a′′ ? b′′ + a′ � b⊗ a′′ + a � b′ ⊗ b′′ (46)

+ b′ ⊗ a ? b′′ + b⊗ a,
∆̃(a • b) = a′ • b′ ⊗ a′′ ? b′′ + a′ • b⊗ a′′ + a • b′ ⊗ b′′; (47)

∆̃(a � b) = a′ � b′ ⊗ a′′ ? b′′ + a′ � b⊗ a′′ + a′ ⊗ a′′ ? b (48)

+ a � b′ ⊗ b′′ + a⊗ b,
∆̃(a � b) = a′ � b′ ⊗ a′′ ? b′′ + a′ � b⊗ a′′ + a � b′ ⊗ b′′ (49)

+ b′ ⊗ a ? b′′ + b⊗ a.

Consequently, (QShd+,�op,�op, ∆
op
� , ∆

op
≺ ) and (QShd+,�op,≺op, ∆

op
� , ∆

op
≺ )

are bidendriform bialgebras. By the bidendriform rigidity theorem of [14],
we have:

Theorem 5. (QShd+,�,�) and (QShd+,≺,�) are free NSh algebras.

Forgetting the decoration, we get back theorem 2.5 of [32], up to a permu-
tation of maximum and minimum, and first and last letters.

Forgeting again the decorations, we obtain a NQSh algebra structure on
QSh+ and a NSh coalgebra structure, with compatibilities (35)-(40). Let us
describe, for completeness sake, the dual (half-)products and coproducts. The
elements of the dual basis of packed words are denoted by Nu.
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Proposition 17. 1. For all nonempty packed words σ, τ , of respective lengths
k and l:

Nσ ≺ Nτ =
∑

α∈Sh≺k,l

N(σ⊗τ)◦α−1 , Nσ � Nτ =
∑

α∈Sh�k,l

N(σ⊗τ)◦α−1 .

2. For any nonempty packed word σ of length n, denoting by f(σ) the index
of the first appearance of 1 in σ and by l(σ) the index of the last appearance
of 1 in σ:

∆̃≺(Nσ) =

n−1∑
k=l(σ)

Npack(σ(1)...σ(k)) ⊗Npack(σ(k+1)...σ(n)),

∆̃�(Nσ) =

f(σ)−1∑
k=1

Npack(σ(1)...σ(k)) ⊗Npack(σ(k+1)...σ(n)),

∆̃•(Nσ) =

l(σ)−1∑
k=f(σ)

Npack(σ(1)...σ(k)) ⊗Npack(σ(k+1)...σ(n)).

12 The quasi-shuffle analog of the descent algebra

Recall that, given a graded NQSh bialgebra A, we introduced QDesc(A), the
quasi-shuffle analogue of the descent algebra defined as the NQSh subalge-
bra of End(A) generated by the graded projections or, equivalently, by the
graded components of the projection on Prim(A). We write QDesc for the
corresponding NQSh subalgebra of QShd (the subalgebra generated by the(
1
d

)
).
Recall first some properties of NSh algebras.

Notations. Let n ≥ 1.

1. a. Let TSch(n) be the set of Schröder trees of degree n, that is to say
reduced planar rooted trees with n+ 1 leaves.

b. For any set D, let TDSch(n) be the set of reduced planar rooted trees t
with n + 1 leaves, such that the n spaces between the leaves of t are
decorated by elements of D.

c. TDSch =
⊔
n≥1

TDSch(n).

2. Let t1, . . . , tk ∈ TN∗
Sch and let d1, . . . , dk−1 ∈ N∗. The element t1∨d1 . . .∨dk−1

tk is obtained by grafting t1, . . . , tk on a common root; for all 1 ≤ i ≤ k,
the space between the right leaf of ti and the left leaf of ti+1 is decorated
by di.
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Following [29], TDSch is a basis of the free NQSh algebra generated by D,
NQSh(D). The three products are inductively defined: if t = t1∨d1 . . .∨dk−1

tk
and t′ = t′1 ∨d′1 . . . ∨d′l−1

t′l ∈ TSch(D), then

t � t′ = (t ? t′1) ∨d′1 t
′
2 ∨d′2 . . . ∨d′l−1

t′l,

t ≺ t′ = t1 ∨d1 . . . ∨ tk−1 ∨dk−2
. . . ∨dk−1

(tk ? t
′),

t • t′ = t1 ∨d1 . . . ∨dk−1
(tk ? t

′
1) ∨d′1 . . . ∨d′l−1

t′l.

Sending any non binary tree to 0, we obtain the free NSh algebra NSh(D)
generated by D. A basis is given by the set of planar binary trees Tbin(D) ⊆
TSch(D) whose spaces between the leaves are decorated by elements of D.
The products are given in the following way: if t = t1 ∨d t2 and t′ = t′1 ∨d′ t′2,
then:

t � t′ = (t ? t′1) ∨d′ t′2,
t ≺ t′ = t1 ∨d (t2 ? t

′).

We denote by NQSh(1) and by NSh(1) the free NQSh and the free NSh
algebra on one generator. The set TSch is a basis of NQSh(1), and Tbin is a
basis of NSh(1).

Example 5.

TSch(0) = Tbin(0) = { }, TSch(1) = Tbin(1) = {∨ },

TSch(2) =

 ∨∨ , ∨
∨
, ∨
 , Tbin(2) =

 ∨∨ , ∨
∨
 ,

TSch(3) =


∨∨
∨

, ∨
∨∨

, ∨
∨∨

, ∨
∨∨

�H , ∨
∨
, ∨
∨

, ∨
∨
,

∨∨ , ∨
∨
, �H∨


, Tbin(3) =

 ∨
∨∨

, ∨
∨∨

, ∨
∨∨

, ∨
∨∨

, �H

 .

We define now inductively a surjective map % from the set of packed words
decorated by D into TDSch in the following way:

1. %(1) = .
2. If w = (σ, d), let σ−1(1) = {i1, . . . , ik}, i1 < . . . < ik. We put:
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w1 = Pack

(
σ(1) . . . σ(i1 − 1)
d(1) . . . d(i1 − 1)

)
,

w2 = Pack

(
σ(i1 + 1) . . . σ(i2 − 1)
d(i1 + 1) . . . d(i2 − 1)

)
,

...

wk+1 = Pack

(
σ(ik + 1) . . . σ(n)
d(ik + 1) . . . d(n)

)
.

Then:
%(σ, d) = %(w1) ∨d(i1) . . . ∨d(ik) %(wk+1).

If w = (σ, d) is a decorated packed word of length n, %(w) is an element
of TDSch(n) such that the spaces between the leaves are decorated from left

to right by d(1), . . . , d(n). In particular %
(
1
d

)
is the tree ∨ d-decorated.

For any t ∈ TN∗
Sch, we put:

Ω(t) =
∑

σ∈Surj,%(σ)=t

σ ∈ QShd+.

We extend Ω : NQSh(N∗) −→ QShd+ by linearity map. It is clearly injective.

Example 6.

Ω(∨ ) = (1), Ω( ∨
∨

) = (21), Ω( ∨
∨

) = (12),

Ω(∨ ) = (11), Ω( ∨
∨∨

) = (321), Ω( ∨
∨∨

) = (231),

Ω( ∨
∨∨

) = (132), Ω( ∨
∨∨

) = (123), Ω( �H ) = (212) + (312) + (213),

Ω( ∨
∨

) = (221), Ω( ∨
∨

) = (211), Ω( ∨
∨

) = (121),

Ω( ∨
∨

) = (112), Ω( ∨
∨

) = (122), Ω(
�H∨ ) = (111).

Theorem 6. The map Ω is an injective morphism of NQSh algebras. Con-
sequently, QDesc, the NQSh subalgebra of QShd+ generated by the elements(
1
d

)
, d ≥ 1, is free and isomorphic to NQSh(N∗).

Proof. Let w = (σ, d) be a packed word of length n and let i1, . . . , ik be
integers such that i1 + . . .+ ik = n. For all d1, . . . , dk−1 ≥ 1, we put:



50 Löıc Foissy and Frédéric Patras

ins
d1,...,dk−1

i1,...,ik
(w)

=
(
σ(1) + 1 . . . σ(i1) + 1 1 . . . 1 σ(i1 + . . .+ ik−1 + 1) + 1 . . . σ(n) + 1
d(1) . . . d(i1) d1 . . . dk−1 d(i1 + . . .+ ik−1 + 1) . . . d(n)

)
.

It is not difficult to show that:

Ω(t1 ∨d1 . . . ∨dk−1
tk) = ins

d1,...,dk−1

|t1|,...,|tk| (Ω(t1) ? . . . ? Ω(tk)).

Hence, if t = t1 ∨d1 . . . ∨dk−1
tk and t′ = t′1 ∨d′1 . . . ∨d′l−1

t′l:

Ω(t) � Ω(t′) = ins
d′1,...,d

′
l−1

|t|+|t′1|,...,|t′l|
(Ω(t) ? Ω(t′1) ? . . . ? Ω(t′l)),

Ω(t) ≺ Ω(t′) = ins
d1,...,dk−1

|t1|,...,|tk|+|t|(Ω(t1) ? . . . ? Ω(tk) ? Ω(t′)),

Ω(t) •Ω(t′) = ins
d1,...,dk−1,d

′
1,...,d

′
l−1

[t1|,...,|tk|+|t′1|,...,|t′l|
(Ω(t1) ? . . . ? Ω(tk) ? Ω(t′1) ? . . . ? Ω(t′l)).

An induction on m+ n proves that for t ∈ TN∗
Sch(m), t′ ∈ TN∗

Sch(n):

Ω(t � t′) = Ω(t) � Ω(t′), Ω(t ≺ t′) = Ω(t) ≺ Ω(t′), Ω(t • t′) = Ω(t) •Ω(t′).

So Ω is an injective morphism of NQSh algebras. ut

13 Lie theory, continued

In classical Lie theory, it has been realized progressively that many appli-
cations of the combinatorial part of the theory rely on the freeness of the
Malvenuto-Reutenauer algebra of permutations (for us, the operad Sh or,
equivalently, the algebra of free quasi-symmetric functions FQSym) as a
noncommutative shuffle bialgebra (and more precisely, as a bidendriform
bialgebra [14]). As such, Sh has two remarkable subalgebras. The first is
PBT, the noncommutative shuffle sub-bialgebra freely generated as a non-
commutative shuffle algebra by the identity permutation in S1 (in particular
PBT is isomorphic to NSH(1), the free NQSh algebra on one generator).
Its elements can be understood as linear combinations of planar binary trees
(PBT can be constructed directly as a subspace of the direct sum of the
symmetric group algebras is by using a construction going back to Viennot:
a natural partition of the symmetric groups parametrized by planar binary
trees), see [21, 22, 28]. The second, Desc, is known as the descent algebra
[38], is isomorphic to Sym, the Hopf algebra of noncommutative symmetric
functions, and is the sub Hopf algebra of PBT and Sh freely generated as an
associative algebra by (all) the identity permutations using the convolution
product ?. We get:

Desc = Sym ⊂ PBT = NSH(1) ⊂ Sh = FQSym.
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The situation is similar when moving to surjections, that is to QSh. As we
already saw, the noncommutative quasi-shuffle sub-bialgebra freely generated
by the identity permutation in S1 (i.e. the packed word 1) is the free NQSh
algebra on one generator, identified with ST, the linear span of Schröder
trees. The sub Hopf algebra of ST and QSh freely generated as an associative
algebra by (all) the identity permutations using the convolution product ? is
isomorphic (using e.g. that it is a free associative algebra over a countable
set of generators) to Desc. We get:

Desc = Sym ⊂ ST = NQSH(1) ⊂ QSh = WQSym.

The aim of the present and last section is to compare explicitely the two
sequences of inclusions. The existence of a Hopf algebra map from Sh =
FQSym to QSh = WQSym was obtained in [17, Cor. 18]. The existence
of a map comparing the two copies of the descent algebra follows, a simple
direct proof was given in [8, Lemma 7.1]. We aim here at refining these results
and extend the constructions to planar and Schröder trees.

We start by showing how planar trees (PBT) can be embedded into
Schröder trees (ST).

Definition 13. Let t, t′ ∈ TSch.

1. We denote by R(t) the set of internal edges of t which are right, that is to
say edges e such that:

• both extremities of e are internal vertices.
• e is the edge which is at most on the right among all the edges with the

same origin as e.

2. Let I ⊆ R(T ). We denote by t/I the planar reduced tree obtained by
contracting all the edges e ∈ I.

3. We shall say that t′ ≤ t if there exists I ⊆ R(t), such that t′ = t/I.

Remark 14. If I ⊆ R(t), then R(t/I) = R(t) \ I. Moreover, if I, J ⊆ R(t) are
disjoint, then (t/I)/J = t/(I t J). This implies that ≤ is a partial order on
TSch.
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Example 7. Here are the Hasse graphs of TSch(2) and TSch(3).

∨∨ ∨∨

∨

; ∨∨
∨

∨∨
∨

�H ∨∨
∨

∨∨
∨

����������

<<<<<<<<<<

∨∨ ∨∨ ∨∨ ∨∨

=========
∨∨

���������

�H∨

It is possible to prove the following points:

• For any t ∈ TSch, there exists a unique b(t) ∈ Tbin, such that t ≤ b(t). We
denote by I(t) the unique subset I ⊆ R(b(t)), such that t = b(t)/I.

• For any t, t′ ∈ TSch, t ≤ t′ if, and only if, b(t) = b(t′) and I(t) ⊇ I(t′).

Theorem 7. The following map is an injective morphism of bidendriform
bialgebras:

ψ :


(PBT,≺,�, ∆≺, ∆�) −→ (ST,�,�, ∆≺, ∆�)

t ∈ Tbin −→
∑
t′≤t

t′.

Proof. By universal properties of free objects, there exists a unique mor-
phism of noncommutative shuffle algebras ψ′ from (NSh(1) = PBT,≺,�)

to (NQSh(1) = ST,�,�), sending ∨ to ∨ . As ∨ is a primitive element
(in the bidendriform sense) for both sides, ψ′ is a morphism of bidendriform
bialgebras. We shall prove that ψ = ψ′.

Let us show that for all t1, t2 ∈ Tbin,

ψ′(t1 ∨ t2) = ψ′(t1) � ∨ � ψ′(t2),

ψ(t1 ∨ t2) = ψ(t1) � ∨ � ψ(t2).

The identity ψ = ψ′ will follow by induction.
The identity involving ψ′ follows immediately from the identity, in Tbin:

t1 ∨ t2 = t1 � ∨ ≺ t2.

Let us consider the action of ψ. We put t = t1 ∨ t2. We first consider
the case where t2 = . In this case, R(t) = R(t1) and for any I ⊆ R(t1),
t/I = (t1/I) ∨ . Hence:



Lie theory for quasi-shuffle bialgebras 53

ψ(t) =
∑

I⊆R(t1)

(t1/I) ∨ =

 ∑
I⊆R(t1)

t1/I

 � ∨ = ψ(t1) � ∨ � .

We now consider the case where t2 6= . Let r be the internal edge of t relating
the root of t to the root of t2. Then R(t) = R(t1)tR(t2)t{r}. Let I1 ⊆ R(t1),
I2 ⊆ R(t2). Then:

t/I1 t I2 = (t1/I1) ∨ (t2/I2) = (t1/I1) � ∨ ≺ (t2/I2).

We put t2/i2 = t3 ∨ . . . ∨ tk. Then:

t/I1 t I2 t {r} = t1/I1 ∨ t3 ∨ . . . ∨ tk
= (t1/I1 ∨ ) • (t3 ∨ . . . ∨ tk)

= ((t1/I1) � ∨ ) • (t2/I2)

= (t1/I1) � ∨ • (t2/I2).

Hence:

ψ(t) =
∑

I1⊆R(t1),I2⊆R(t2)

(t1/I1) � ∨ ≺ (t2/I2) + (t1/I1) � ∨ • (t2/I2)

=
∑

I1⊆R(t1),I2⊆R(t2)

(t1/I1) � ∨ � (t2/I2)

= ψ(t1) � ∨ � ψ(t2).

So ψ = ψ′. As ≤ is an order, ψ is injective. ut

We investigate now how the injection of PBT into ST behaves with re-
spect to the respective embeddings into Sh and QSh. We consider the mor-
phism:

Ω :


ST = NQSh(1) −→ QSh

t −→
∑

σ,%(σ)=t

σ.

There exists a unique map from PBT = NSh(1) to Sh, denoted by Ω′,
making the following diagram commuting:

ST
Ω //

����

QSh

����
PBT

Ω′
// Sh
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where the vertical arrows are the canonical projection. For any t ∈ Tbin:

Ω′(t) =
∑

σ∈S,%(σ)=t

σ.

Example 8.

Ω′(∨ ) = (1), Ω′( ∨
∨

) = (21), Ω′( ∨
∨

) = (12),

Ω′( ∨
∨∨

) = (321), Ω′( ∨
∨∨

) = (231), Ω′( ∨
∨∨

) = (132),

Ω′( ∨
∨∨

) = (123), Ω′( �H ) = (312) + (213).

Proposition 18. [15] Let σ, τ be two packed words of the same length n. We
shall say that σ ≤ τ if:

1. If i, j ∈ [n] and σ(i) ≤ σ(j), then τ(i) ≤ τ(j).
2. If i, j ∈ [n], i < j and σ(i) > σ(j), then τ(i) > τ(j).

Then ≤ is a partial order. Moreover, the following map is a Hopf algebra
morphism:

Ψ :


Sh −→ QSh

σ −→
∑
τ≤σ

τ.

Here are the Hasse graphs of Surj2 and Surj3:

(12) (21)

(11)

;

(123)

GGGGGGGG

wwwwwwww

(122)

GGGGGGGG
(112)

wwwwwwww

(111)

(132)

(121)

(213)

(212)

(231)

(221)

(312)

(211)

(321)

Lemma 5. For any packed word σ, we put ι(σ) = min{i | σ(i) = 1}. If
σ ≤ τ , then ι(σ) = ι(τ).

Proof. We put i = ι(τ). For any j, τ(j) ≥ τ(i), so σ(j) ≥ σ(i) as σ ≤ τ . So
σ(i) = 1, and by definition ι(σ) ≤ i. Let us assume that j < i. By definition
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of ι(τ), τ(j) > τ(i). As σ ≤ τ , σ(j) > σ(i), so σ(j) 6= 1, and ι(σ) 6= j. So
ι(σ) = i. ut

Proposition 19. The map % : Surj −→ TSch is a morphism of posets: for
any packed words σ, τ ,

σ ≤ τ =⇒ %(σ) ≤ %(τ).

We define a map ω : TSch −→ Surj by:

• ω( ) = 1,
• ω(t1 ∨ . . . ∨ tk) = (ω(t1)[1])1 . . . 1(ω(tk)[1]).

Then % ◦ ω = IdTSch , and ω is a morphism of posets: for any t, t′ ∈ TSch,

t ≤ t′ =⇒ ω(t) ≤ ω(t′).

Proof. Let us prove that % is a morphism. Let σ, τ be two packed words, such
that σ ≤ τ ; let us prove that %(σ) ≤ %(τ). We proceed by induction on the
common length n of σ and τ . If n = 0 or 1, the result is obvious. Let us
assume the result at all rank < n. As ι(σ) = ι(τ), we can write σ = σ′1σ′′

and τ = τ ′1τ ′′, where σ′ and τ ′ have the same length and do not contain any
1. By restriction, Pack(σ′) ≤ Pack(τ ′) and Pack(σ′′) ≤ Pack(τ ′′). By the
induction hypothesis, s0 = %(σ′) ≤ %(τ ′) = t0 and s1 ∨ . . . ∨ sk = %(σ′′) ≤
%(τ ′′) = t1 ∨ . . . ∨ tl. Then:

%(σ) = s0 ∨ s1 ∨ . . . ∨ . . . sk ≤ t0 ∨ t1 ∨ . . . ∨ tl = %(τ).

Let us now prove that ω is a morphism. Let t, t′ ∈ TSch, such that t ≤ t′.
By transitivity, we can assume that there exists e ∈ R(t′), such that t = t′|e.

Let us prove that ω(t) ≤ ω(t′). We proceed by induction on the common
degree n of t and t′. The result is obvious if n = 0 or 1. Let us assume the
result at all ranks < n. We put t′ = t′1 ∨ . . . ∨ t′k. If e is an edge of t′i, then
t = t′1 ∨ . . . ∨ (t′i)|I ∨ . . . ∨ t′k. We put σ′j = ω(t′j) and σj = ω(tj) for all j. If
j 6= i, σ′j = σj ; by the induction hypothesis, σi ≤ σ′i. Then:

ω(t) = (σ1[1])1 . . . 1(σi[1])1 . . . 1(σk[1])

≤ (σ1[1])1 . . . 1(σ′i[1])1 . . . 1(σk[1]) = ω(t′).

If e is the edge relation the root of t to the root of t′k, putting t = t1∨ . . .∨
tk ∨ . . .∨ tl, then t′i = ti if i < k and t′k = tk ∨ . . .∨ tl. Putting σi = ω(ti), we
obtain:

ω(t) = (σ1[1])1 . . . 1(σk[1])1 . . . 1(σl[1]),

ω(t′) = (σ1[1])1 . . . 1(σk[2])2 . . . 2(σl[2]).

It is not difficult to prove that ω(t) ≤ ω(t′). ut
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Remark 15. There are similar results for decorated packed words, replacing
NSh(1) and NQSh(1) by NSh(N∗n) and NQSh(N∗).

Example 9.

ω(∨ ) = (1), ω( ∨
∨

) = (21), ω( ∨
∨

) = (12), ω(∨ ) = (11),

ω( ∨
∨∨

) = (321), ω( ∨
∨∨

) = (231), ω( ∨
∨∨

) = (132), ω( ∨
∨∨

) = (123),

ω(
�H

) = (212), ω( ∨
∨

) = (221), ω( ∨
∨

) = (211), ω( ∨
∨

) = (121),

ω( ∨
∨

) = (112), ω( ∨
∨

) = (122), ω(
�H∨ ) = (111).

Proposition 20. The map Ψ is a bidendriform bialgebra morphism from
(Sh,≺,�, ∆≺, ∆�) to (QSh,�,�, ∆≺, ∆�). Moreover, the following dia-
gram commutes:

PBT
ψ //

Ω′

��

ST

Ω

��
Sh

Ψ
// QSh

Proof. Let σ be a packed word. We put:

A = {(k, τ) | τ ≤ σ, k ∈ [max(τ)]},
B = {(k, τ ′, τ ′′) | k ∈ [max(σ)], τ ′ ≤ σ|[k], τ ′′ ≤ Pack(σ|[max(σ)]\[k]).

As Ψ is a coalgebra morphism,

∆ ◦ Ψ(σ) =
∑
τ≤σ

max(τ)∑
k=0

τ|[k] ⊗ Pack(τ|[max(τ)]\[k])

=
∑

(k,τ)∈A

τ|[k] ⊗ Pack(τ|[max(τ)]\[k])

= (Ψ ⊗ Ψ) ◦∆(σ) =

max(σ)∑
k=0

∑
τ ′≤σ|[k]

τ ′′≤Pack(σ|[max(σ)]\[k])

τ ′ ⊗ τ ′′

=
∑

(l,τ ′,τ ′′)∈B

τ ′ ⊗ τ ′′.

Hence, there exists a bijection F : A −→ B, such that, if F (k, τ) = (l, τ ′, τ ′′),
then:
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• τ ′ = τ|[k] and τ ′′ = Pack(τ|[max(τ)]\[k]);
• l is the unique integer such that τ ′ ≤ σ|[l].

If k ≥ τ(1), then the first letter of τ appears in τ|[k], so the first letter of
σ appears also in σ|[l]. Consequently l ≥ σ(1). Similarly, if l ≥ σ(1), then
k ≥ τ(1). We obtain:

∆≺ ◦ Ψ(σ) =

=
∑

(k,τ)∈A,k≥τ(1)

τ|[k] ⊗ Pack(τ|[max(τ)]\[k])

=
∑

(l,τ ′,τ ′′)∈B,l≥σ(1)

τ ′ ⊗ τ ′′

= (Ψ ⊗ Ψ) ◦∆≺(σ)

So Ψ is a morphism of dendriform coalgebras.

Let σ, τ be two permutations. We put:

C = {(α, ζ) | α ∈ Sh(max(σ),max(τ)), ζ ≤ α ◦ (σ ⊗ τ)},
D = {(β, σ′, τ ′) | σ′ ≤ σ, τ ′ ≤ τ, β ∈ QSh(max(σ′),max(τ ′))},

Then:

Ψ(σ τ) =
∑

α∈Sh(max(σ),max(τ))

∑
ζ≤α◦(σ⊗τ)

ζ

=
∑

(α,ζ)∈C

ζ

= Ψ(σ)−Ψ(τ) =
∑
σ′≤σ
τ ′≤τ

∑
β∈QSh(max(σ′),max(τ ′))

β ◦ (σ′ ⊗ τ ′)

=
∑

(β,σ′,τ ′)∈D

β ◦ (σ′ ⊗ τ ′).

Hence, there exists a bijection G : D −→ C, such that if G(β, σ′, τ ′) = (α, ζ),
then:

1. ζ = β ◦ (σ′ ⊗ τ ′);
2. α is the unique (max(σ),max(τ))-shuffle such that ζ ≤ α ◦ (σ ⊗ τ).

Let us assume that α(1) = 1, and let us prove that β(1) = 1. Denoting by
k the length of σ, 1 appears in the k first letters of ζ ′ = α ◦ (σ ⊗ τ). Let
i ∈ [k], such that ζ ′(i) = 1. For any j, ζ ′(i) ≤ ζ ′(j). As ζ ≤ ζ ′, ζ(i) ≤ ζ(j),
so ζ(i) = 1: 1 appears among the k first letters of ζ, so β(1) = 1.

Let us assume that α(1) 6= 1. Then 1 does not appear in the first k letters
of ζ ′. Let j > k, such that ζ ′(j) = 1. For all i ∈ [k], ζ ′(i) > ζ ′(j) and i < j. As
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ζ ≤ ζ ′, ζ(i) > ζ(j), so ζ(i) 6= 1: 1 does not appear among the first k letters
of ζ, so β(1) 6= 1. Finally, α(1) = 1 if, and only if, β(1) = 1. Hence:

Ψ(σ ≺ τ) =
∑

(α,ζ)∈C,α(1)=1

ζ =
∑

(β,σ′,τ ′)∈D,β(1)=1

β ◦ (σ′ ⊗ τ ′) = Ψ(σ) � Ψ(τ).

By composition, Ω ◦ψ and Ψ ◦Ω are both noncommutative shuffle algebra

morphisms, sending ∨ to (1), so, since PBT is a free NSh algebra, they are
equal. ut
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no. 1, 39–83.
14. L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions, Journal

of Pure and Applied Algebra 209 (2007), no. 2, 439–459.

15. L. Foissy and C. Malvenuto, The Hopf algebra of finite topologies and t-partitions,
Journal of Algebra 438 (2015), 130–169.

16. L. Foissy and F. Patras, Natural endomorphisms of shuffle algebras, International

Journal of Algebra and Computation 23 (2013), no. 4, 989–1009.
17. L. Foissy, F. Patras, and J.-Y. Thibon, Deformations of shuffles and quasi-shuffles,

Annales Inst. Fourier 66 (2016), 209–237.

18. I. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S Retakh, and J-Y Thibon, Noncom-
mutative symmetric functions, Adv. Math. 112 (1994), no. 2, 218–348.



Lie theory for quasi-shuffle bialgebras 59

19. E. Getzler and J.D.S. Jones, Operads, homotopy algebra and iterated integrals for

double loop spaces, arXiv preprint hep-th/9403055 (1994).
20. E. Getzler and J.D.S.s Jones, a∞-algebras and the cyclic bar complex, Illinois J. Math

34 (1990), no. 2, 256–283.

21. F. Hivert, J-C Novelli, and J-Y Thibon, The algebra of binary search trees, Theoretical
Computer Science 339 (2005), no. 1, 129–165.

22. F. Hivert, J.-C. Novelli, and J.-Y. Thibon, Trees, functional equations, and combina-

torial Hopf algebras, European Journal of Combinatorics 29 (2008), no. 7, 1682–1695.
23. M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin. 11 (2000), no. 1, 49–68.

24. D. Manchon K. Ebrahimi-Fard, The tridendriform structure of a discrete magnus
expansion, Discr. and Cont. Dynamical Systems 34 (2014), no. 3, 1021–1040.

25. M. Livernet and F. Patras, Lie theory for Hopf operads, Journal of Algebra 319 (2008),

4899–4920.
26. J.-L. Loday, Dialgebras, Dialgebras and related operads (2001), 7–66.

27. , On the algebra of quasi-shuffles, manuscripta mathematica 123 (2007), no. 1,

79–93.
28. J.-L. Loday and M. Ronco, Hopf algebra of the planar binary trees, Advances in Math-

ematics 139 (1998), no. 2, 293–309.

29. , Trialgebras and families of polytopes, Homotopy theory: relations with alge-
braic geometry, group cohomology, and algebraic K-theory, Contemp. Math., vol. 346,

Amer. Math. Soc., 2004, pp. 369–398.
30. C. Malvenuto and Ch. Reutenauer, Duality between quasi-symmetrical functions and

the solomon descent algebra, Journal of Algebra 177 (1995), no. 3, 967–982.

31. J-C Novelli, F. Patras, and J-Y Thibon, Natural endomorphisms of quasi-shuffle Hopf
algebras, Bull. Soc. math. France 141 (2013), no. 1, 107–130.

32. J.-C. Novelli and J.-Y. Thibon, Polynomial realizations of some trialgebras, Proceed-

ings of Formal Power Series and Algebraic Combinatorics, San Diego, California, 2006.
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