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Abstract

We here both unify and generalize nonassociative structures on typed binary trees, that
is to say plane binary trees which edges are decorated by elements of a set Ω. We prove
that we obtain such a structure, called an Ω-dendriform structure, if Ω has four products
satisfying certain axioms (EDS axioms), including the axioms of a diassociative semigroup.
This includes matching dendriform algebras introduced by Zhang, Gao and Guo and family
dendriform algebras associated to a semigroup introduced by Zhang, Gao and Manchon , and
of course dendriform algebras when Ω is reduced to a single element. We also give examples
of EDS, including all the EDS of cardinality two; a combinatorial description of the products
of such a structure on typed binary trees, but also on words; a study of the Koszul dual
of the associated operads; and considerations on the existence of a coproduct, in order to
obtain dendriform bialgebras.
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Introduction

Dendriform algebras are associative algebras with an associativity splitting, that is to say their
associative product can be written as a sum of two products ă and ą, with the following axioms:

px ă yq ă z “ x ă py ă z ` y ą zq,

px ą yq ă z “ x ą py ă zq,

px ă y ` x ą yq ą z “ x ą py ą zq.

Note that summing these three relations proves that, indeed, ă ` ą is associative. Classical
examples of dendriform algebras are given by shuffle algebras, based on words, as noticed by
Schützenberger in [13], which justifies the terminology of noncommutative shuffle algebras used
for example in [7]. Free dendriform algebras were first described by Loday and Ronco [11] and
studied in [2]: the free dendriform algebra on one generator is based on plane binary trees, and
its two products ă and ą are inductively defined using the decomposition of any plane binary
tree (except the unit ) into a left and a right plane binary tree. For example, here are plane
binary trees with k “ 2, 3 or 4 leaves:

, , , , , , , .

Here are examples of products on plane binary trees:

ą “ , ă “ ,

ą “ ` , ă “ ,

ą “ , ă “ ,

ą “ , ă “ ,

ă “ ` , ą “ .

Recently, a new interest in typed trees were developed in the seminal work of Bruned, Hairer
and Zambotti on stochastic PDEs [4]. Given a nonempty set Ω, called the set of types, an Ω-
typed tree is a tree with a map from this set of edges to Ω: they are related to a generalization
of pre-Lie algebras [6]. Similarly, several generalizations of dendriform algebras were recently
introduced, where plane binary trees are replaced by typed plane binary trees.
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• Firstly, if Ω is a set, an Ω-matching dendriform algebras [15] is a vector space A with
products ăα, ąα, where α P Ω, such that:

px ăα yq ăβ z “ x ăα py ăβ zq ` x ăβ py ąα zq,

px ąα yq ăβ z “ x ąα py ăβ zq,

px ăβ yq ąα z ` px ąα yq ąβ z “ x ąα py ąβ zq.

• Secondly, if pΩ, ˚q is a semigroup, an Ω-family dendriform algebra [16] is a vector space A
with products ăα, ąα, where α P Ω, such that:

px ăα yq ăβ z “ x ăα˚β py ăβ z ` y ąα zq,

px ąα yq ăβ z “ x ąα py ăβ zq,

px ăβ y ` x ąα yq ąα˚β z “ x ąα py ąβ zq.

In both cases, it was proved that the free object on one generator is based on plane Ω-typed binary
trees, with products inductively defined in a similar way as the Loday-Ronco’s construction. A
plane Ω-typed binary tree is a plane binary tree given a map from the set of its internal edges
to Ω. We shall denote them in the following way:

, 1
pαq, 1

pαq, 1
2

pα, βq, 1
2

pα, βq, 1
2

pα, βq, 1
2

pα, βq, 1 2
pα, βq,

where α, β P Ω. In all cases, the type of the internal edge 1 is α and the type of the internal
edge 2 is β. Here are examples of products in the Ω-matching case:

ąα pαq “ 1
pαq, ăα “

1
pαq,

ąα
1
pβq “ 1

2

pβ, αq ` 1
2

pα, βq, ăα
1
pβq “ 1

2

pα, βq,

ąα
1
pβq “ 1 2

pα, βq, ăα
1
pβq “ 1

2

pα, βq,

1
pαq ąβ “

1
2

pβ, αq, 1
pαq ăβ “

1 2
pα, βq,

1
pαq ăβ “

1
2

pα, βq ` 1
2

pβ, αq, 1
pαq ąβ “

1
2

pβ, αq.

Here are examples of products in the Ω-family case:

ąα pαq “ 1
pαq, ăα “

1
pαq,

ąα
1
pβq “ 1

2

pα ˚ β, αq ` 1
2

pα ˚ β, βq, ăα
1
pβq “ 1

2

pα, βq,

ąα
1
pβq “ 1 2

pα, βq, ăα
1
pβq “ 1

2

pα, βq,

1
pαq ąβ “

1
2

pβ, αq, 1
pαq ăβ “

1 2
pα, βq,

1
pαq ăβ “

1
2

pα ˚ β, βq ` 1
2

pα ˚ β, αq, 1
pαq ąβ “

1
2

pβ, αq.

Our aim in this article is to give both a unification and a generalization of the extended
dendriform structures. We start with a set of types Ω, given four operations Ð, Ñ, Ÿ, Ź. An
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Ω-dendriform algebra is a vector space A with products ăα, ąα, where α P Ω, such that:

px ăα yq ăβ z “ x ăαÐβ py ăαŸβ zq ` x ăαÑβ py ąαŹβ zq,

x ąα py ăβ zq “ px ąα yq ăβ z,

x ąα py ąβ zq “ px ąαŹβ yq ąαÑβ z ` px ăαŸβ yq ąαÐβ z.

We recover the notion of Ω-matching dendriform algebra if we take:

@α, β P Ω, αÐ β “ α, αÑ β “ β,

αŸ β “ β, αŹ β “ α;

and we recover the notion of Ω-family dendriform algebra if we take:

@α, β P Ω, αÐ β “ α ˚ β, αÑ β “ α ˚ β,

αŸ β “ β, αŹ β “ α;

We prove in Proposition 15 that the free Ω-dendriform algebra on one generator is based on
plane Ω-typed binary trees, with an inductive definition of the products ăα and ąβ , if, and only
if, the four operations of Ω satisfy a bunch of 15 axioms, see Definitions 1 and 2; a similar result
is proved for words in Proposition 17, giving typed versions of shuffle algebras. Such a structure
on Ω will be called an extended diassociative semigroup (briefly, EDS); in particular, the first
five axioms only involve the two operations Ð and Ñ:

pαÐ βq Ð γ “ αÐ pβ Ð γq “ αÐ pβ Ñ γq,

pαÑ βq Ð γ “ αÑ pβ Ð γq,

pαÑ βq Ñ γ “ pαÐ βq Ñ γ “ αÑ pβ Ñ γq.

These axioms are ruled by the operad on diassociative algebras, which suggested our terminology.
A noticeable fact is that this operad is the Koszul dual of the dendriform operad. Examples of
EDS include the ones, denoted by EDSpΩq, giving matching dendriform algebras; the ones,
denoted by EDSpΩ, ˚q, giving family dendriform algebras; and lots more. For example, if Ω is of
cardinality two, we found 24 EDS, including EDSpΩq and 5 coming from associative semigroups.

We prove that any Ω-dendriform algebra A gives a dendriform algebra structure on the space
KΩbA (Proposition 18): this was already known in the case of Ω-matching dendriform algebras
[14]. The converse implication is true under a condition of nondegeneracy of the EDS Ω.

The description of free Ω-dendriform algebras induces a combinatorial description of their
operad. When Ω is finite, this is a quadratic finitely generated operad, which Koszul dual is
described in Proposition 27. This operad is not always Koszul, and we produce a necessary con-
dition (Ω should be weakly nondegenerate, Definition 28) and a sufficient condition on it (if Ω is
nondegenerate, see Definition 4) for the associated operad to be Koszul. For example, EDSpΩq
is nondegenerate; if pΩ, ˚q is a finite associative semigroup, then EDSpΩ, ˚q is nondegenerate if,
and only pΩ, ˚q is a group.

We also give a study of these objects, from a Hopf-algebraic and a combinatorial point of
view. In particular, we give a description of the products on trees and on words in Propositions
33 and 36, generalizing in the latter case the usual half-shuffle products. Shuffle algebras and the
Loday-Ronco algebra are known to be Hopf algebras; this is not always true for Ω-dendriform
algebras, as described in Proposition 38. If Ω is nondegenerate, then such a structure exists on
trees and on words (Propositions 39 and 40), which is combinatorially described in Propositions
42 and 43. These coproducts generalize the Loday-Ronco coproduct on trees and the deconcate-
nation coproducts on words.
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This paper is organized as follows: the first section is devoted to the study of EDS. We
give examples based on (diassociative) monoids, and semidirect products of groups. We also
introduce nondegenerate EDS, with a reformulation of their axioms due to a transformation
of the four defining operations into four other ones; this allows to associate to any group G a
nondegenerate EDS EDS˚pGq (Proposition 9). We prove some results on particular families of
EDS: for example, we give in Proposition 10 all nondegenerate finite Ω such that if α and β P Ω,

αÐ β “ β Ñ α “ α.

We also give in this section a complete classification of EDS of cardinality 2 (24 objects, which
4 are nondegenerate).

The second section is devoted to the definition of Ω-dendriform algebras and to the structure
on trees and words, when Ω is an EDS. The operadic aspects are considered in the next section,
with in particular the results on the Koszulity; we also study the associative products and the
dendriform products (that is to say, morphisms from the operad of associative algebras and from
the the operad of dendriform algebras) in Ω-dendriform algebras in particular cases of Ω.

We finally give a combinatorial description of the products in Section 5 and the last section
is devoted to the existence of the coproducts and their combinatorial descriptions.

Acknowledgements. The author is grateful to Professor Xing Gao, his team and Lanzhou
University for their warm hospitality. his work benefited from the support of the project
CARPLO ANR-20-CE40-0007 of the French National Research Agency (ANR).

Notations 1. K is a commutative field. All the vector spaces in this text will be taken over K.
If S is a set, we denote by KS the vector space generated by S.

1 (Extended) diassociative semigroups

1.1 Diassociative semigroups

Definition 1. A diassociative semigroup is a family pΩ,Ð,Ñq, where Ω is a set and Ð,Ñ:
Ωˆ Ω ÝÑ Ω are maps such that, for any α, β, γ P Ω:

pαÐ βq Ð γ “ αÐ pβ Ð γq “ αÐ pβ Ñ γq, (1)
pαÑ βq Ð γ “ αÑ pβ Ð γq, (2)
pαÑ βq Ñ γ “ pαÐ βq Ñ γ “ αÑ pβ Ñ γq. (3)

Example 1. 1. If pΩ, ‹q is an associative semigroup, then pΩ, ‹, ‹q is a diassociative semigroup.

2. Let Ω be a set. We put:

@α, β P Ω, αÐ β “ α, αÑ β “ β.

Then pΩ,Ð,Ñq is a diassociative semigroup, denoted by DSpΩq.

3. Let Ω “ pΩ,Ð,Ñq be a diassociative semigroup. We define two new operations on Ω by:

@α, β P Ω, αÐop β “ β Ñ α, αÑop β “ β Ð α.

This defines a new diassociative semigroup Ωop “ pΩ,Ðop,Ñopq. We shall say that Ω is
commutative if Ω “ Ωop, that is to say:

@α, β P Ω, αÑ β “ β Ð α.

In other words, a commutative diassociative semigroup is a pair pΩ,Ðq such that, for any
α, β, γ P Ω:

pαÐ βq Ð γ “ αÐ pβ Ð γq “ pαÐ γq Ð β.
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1.2 Extended diassociative semigroups

Definition 2. An extended diassociative semigroup (briefly, EDS) is a family pΩ,Ð,Ñ,Ÿ,Źq,
where Ω is a set and Ð,Ñ,Ÿ,Ź : Ωˆ Ω ÝÑ Ω are maps such that:

1. pΩ,Ð,Ñq is a diassociative semigroup.

2. For any α, β, γ P Ω:

αŹ pβ Ð γq “ αŹ β, (4)
pαÑ βq Ÿ γ “ β Ÿ γ, (5)

pαŸ βq Ð ppαÐ βq Ÿ γq “ αŸ pβ Ð γq, (6)
pαŸ βq Ÿ ppαÐ βq Ÿ γq “ β Ÿ γ, (7)
pαŸ βq Ñ ppαÐ βq Ÿ γq “ αŸ pβ Ñ γq, (8)
pαŸ βq Ź ppαÐ βq Ÿ γq “ β Ź γ, (9)

pαŹ pβ Ñ γqq Ð pβ Ź γq “ pαÐ βq Ź γ, (10)
pαŹ pβ Ñ γqq Ÿ pβ Ź γq “ αŸ β, (11)
pαŹ pβ Ñ γqq Ñ pβ Ź γq “ pαÑ βq Ź γ, (12)
pαŹ pβ Ñ γqq Ź pβ Ź γq “ αŹ β. (13)

Example 2. 1. Let Ω “ pΩ,Ð,Ñq be a diassociative semigroup. We define two products on
Ω by:

@α, β P Ω, αŸ β “ β, αŹ β “ α.

Then pΩ,Ð,Ñ,Ÿ,Źq is an EDS, denoted by EDSpΩ,Ð,Ñq. When pΩ,Ð,Ñq “ DSpΩq,
we shall simply write EDSpΩq.

2. Let Ω “ pΩ, ‹q be an associative semigroup. If Ÿ and Ź are products on Ω, then
pΩ, ‹, ‹,Ÿ,Źq is an EDS if, and only if, for any α, β, γ P Ω:

αŹ pβ ‹ γq “ αŹ β, (14)
pα ‹ βq Ÿ γ “ β Ÿ γ, (15)

pαŸ βq ‹ pβ Ÿ γq “ αŸ pβ ‹ γq, (16)
pαŸ βq Ÿ pβ Ÿ γq “ β Ÿ γ, (17)
pαŸ βq Ź pβ Ÿ γq “ β Ź γ, (18)

pαŹ βq ‹ pβ Ź γq “ pα ‹ βq Ź γ, (19)
pαŹ βq Ÿ pβ Ź γq “ αŸ β, (20)
pαŹ βq Ź pβ Ź γq “ αŹ β. (21)

3. Let Ω be a set and let DSpΩq be the diassociative semigroup attached to Ω. If Ÿ and Ź
are products on Ω, then pΩ,Ð,Ñ,Ÿ,Źq is an EDS if, and only if, for any α, β, γ P Ω:

pαŸ βq Ÿ pαŸ γq “ β Ÿ γ, (22)
pαŸ βq Ź pαŸ γq “ β Ź γ, (23)
pαŹ γq Ÿ pβ Ź γq “ αŸ β, (24)
pαŹ γq Ź pβ Ź γq “ αŹ β. (25)
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This holds for example if pΩ, ‹q is a group, with, for any α, β P Ω:

αŸ β “ α‹´1 ‹ β, αŹ β “ β‹´1 ‹ α.

4. Let Ω “ pΩ,Ð,Ñq be a diassociative semigroup, and let φŸ, φŹ : Ω ÝÑ Ω be two maps.
We define two products on Ω by:

@α, β P Ω, αŸ β “ φŸpβq, αŹ β “ φŹpαq.

Then pΩ,Ð,Ñ,Ÿ,Źq is an EDS if, and only if:

φŸ “ φŸ ˝ φŸ “ φŸ ˝ φŹ, (26)
φŹ “ φŹ ˝ φŸ “ φŹ ˝ φŹ, (27)

and, for any α, β P Ω:

φŸpαÐ βq “ φŸpαq Ð φŸpβq, (28)
φŸpαÑ βq “ φŸpαq Ñ φŸpβq, (29)
φŹpαÐ βq “ φŹpαq Ð φŹpβq, (30)
φŹpαÑ βq “ φŹpαq Ñ φŹpβq, (31)

that is to say φŸ and φŹ are diassociative semigroup morphisms. If so, the obtained EDS
is denoted by EDSpΩ,Ð,Ñ, φŸ, φŹq. In particular,

EDSpΩ,Ð,Ñ, IdΩ, IdΩq “ EDSpΩ,Ð,Ñq.

5. Let pΩ,Ð,Ñ,Ÿ,Źq be an EDS. We define four new products on Ω by:

@α, β P Ω, αÐop β “ β Ñ α, αÑop β “ β Ð α,

αŸop β “ β Ź α, αŹop β “ β Ÿ α.

This defines a new diassociative semigroup Ωop “ pΩ,Ðop,Ñop,Ÿop,Źopq. We shall say
that Ω is commutative if Ω “ Ωop, that is to say, for any α, β, γ P Ω:

αÑ β “ β Ð α, αŹ β “ β Ÿ α.

In the case of groups, we find semidirect products:

Proposition 3. Let pΩ, ‹, ‹,Ÿ,Źq be an EDS, such that pΩ, ‹q is a group. There exist three
subgroups H, KŸ and KŹ of Ω such that

Ω “ K ¸HŸ “ K ¸HŹ. (32)

Moreover, for any α, β P Ω, α Ÿ β is the canonical projection of β on HŸ and α Ź β is the
canonical projection of α on HŹ.

Proof. Let α, β, β1 P Ω. As Ω is a group, there exists γ P Ω such that β ‹ γ “ β1. By (14),
αŹ β1 “ αŹ β. Hence, there exists a map φŹ : Ω ÝÑ Ω such that:

@α, β P Ω, φŹpαq “ αŹ β.

Similarly, we deduce from (15) the existence of a map φŸ : Ω ÝÑ Ω such that

@α, β P Ω, φŸpβq “ αŸ β.
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By (28)-(31), φŸ and φŹ are group morphisms. Let us denote by KŸ and KŹ their respective
kernels, and by HŸ and HŹ their respective images. By (26) and (27), φ2

Ÿ “ φŸ and φ2
Ź “ φŹ,

so:

G “ KŸ ¸HŸ “ KŹ ¸HŹ.

Moreover, φŸ and φŹ are the canonical projection on, respectively, HŸ and HŹ.

Let α P KŸ. Then φŸpαq “ eG, and, by (27):

φŹpαq “ φŹ ˝ φŸpαq “ φŹpeGq “ eG,

so α P KŹ. By symmetry, KŸ “ KŹ “ K.

Remark 1. Conversely, if (32) is satisfied, the canonical projections φŸ and φŹ satisfy (26)-(31),
so we obtain an EDS.

1.3 Nondegenerate extended diassociative semigroups

Definition 4. Let Ω “ pΩ,Ð,Ñ,Ÿ,Źq be an EDS. We define the following maps:

ϕÐ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pαÐ β, αŸ βq,
ϕÑ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pαÑ β, αŹ βq.
(33)

We shall say that Ω is nondegenerate if ϕÐ and ϕÑ are bijective.

The axioms of EDS can be entirely given with the help of the maps ϕÐ and ϕÑ:

Lemma 5. Let Ω “ pΩ,Ð,Ñ,Ÿ,Źq be a set with four products. We define ϕÐ and ϕÑ by (33),
and we put:

τ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pβ, αq.

Then Ω is an EDS if, and only if:

pτ b Idq ˝ pIdb ϕÐq ˝ pτ b Idq ˝ pϕÑ b Idq “ pϕÑ b Idq ˝ pIdb ϕÐq, (34)

pIdb ϕÐq ˝ pτ b Idq ˝ pIdb ϕÐq ˝ pτ b Idq ˝ pϕÐ b Idq “ pϕÐ b Idq ˝ pIdb ϕÐq, (35)
pIdb ϕÑq ˝ pτ b Idq ˝ pIdb ϕÐq ˝ pτ b Idq ˝ pϕÐ b Idq “ pϕÐ b Idq ˝ pIdb ϕÑq, (36)

pIdb ϕÐq ˝ pϕÑ b Idq ˝ pIdb ϕÑq “ pϕÑ b Idq ˝ pIdb τq ˝ pϕÐ b Idq, (37)
pIdb ϕÑq ˝ pϕÑ b Idq ˝ pIdb ϕÑq “ pϕÑ b Idq ˝ pIdb τq ˝ pϕÑ b Idq. (38)

Proof. Direct computations prove that (34) is equivalent to (2), (4) and (5); (35) to one of the
equalities of (1), (6) and (7); (36) to the other equality of (1), (8) and (9); (37) to one of the
equalities of (3), (10) and (11); (38) to the other equality of (3), (12) and (13).

Proposition 6. Let Ω “ pΩ,Ð,Ñ,Ÿ,Źq be a nondegenerate EDS. We define four products ð,
ñ, đ and § on Ω by:

@α, β P Ω, ϕ´1
Ð pα, βq “ pα ð β, α đ βq, ϕ´1

Ñ pα, βq “ pβ § α, β ñ αq.
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Then, for any α, β, γ P Ω:

pα ñ βq ð γ “ α ñ pβ ð γq,

α đ pβ đ γq “ pα đ βq đ γ, pα § βq § γ “ α § pβ § γq,

α § pβ ð γq “ α § β, pα ñ βq đ γ “ β đ γ,

pα ð pβ đ γqq ð pβ ð γq “ α ð β, pα ñ βq ñ ppα § βq ñ γq “ β ñ γ,

pα ð pβ đ γqq đ pβ ð γq “ pα đ βq ð γ, pα ñ βq § ppα § βq ñ γq “ α ñ pβ § γq,

pα ð pβ ñ γqq ð pβ § γq “ α ð γ, pα đ βq ñ ppα ð βq ñ γq “ α ñ γ,

pα ð pβ ñ γqq đ pβ § γq “ β § pα đ γq, pα đ βq § ppα ð βq ñ γq “ pα § γq đ β,

pα ð βq § γ “ pα § γq ð β, β ñ pα đ γq “ α đ pβ ñ γq.

In particular, đ and § are associative.

Proof. By (34):

pϕ´1
Ð b Idq ˝ pτ b Idq ˝ pIdb ϕ´1

Ð q ˝ pτ b Idq “ pIdb ϕ
´1
Ð q ˝ pϕ

´1
Ñ b Idq.

When applied to pβ, α, γq, we obtain:

pα § pβ ð γq, pα ñ βq ð γ, pα ñ βq đ γq “ pα § γ, α ñ pβ ð γq, β đ γq.

The other identities are proved in the same way, from (35)-(38).

We now explore two families of nondegenerate EDS.

Lemma 7. Let pΩ, ‹q be an associative semigroup. The following conditions are equivalent:

1. EDSpΩ, ‹, ‹q is nondegenerate.

2. For EDSpΩ, ‹, ‹q, ϕÐ and ϕÑ are surjective.

3. pΩ, ‹q is a group.

If this holds, for any α, β P Ω:

α ð β “ α ‹ β´1, α ñ β “ α´1 ‹ β,

α đ β “ β, α § β “ α.

Proof. Obviously, 1. ùñ 2.

2. ùñ 3. For any α, β P Ω, ϕÐpα, βq “ pα ‹ β, βq and ϕÑpα, βq “ pα ‹ β, αq. Hence, for any
β, γ P Ω, there exist α, α1 P Ω, such that α ‹ β “ β ‹ α1 “ γ.

Let us fix β0 P Ω, and let us consider elements e and e1 such that e ‹ β0 “ β0 ‹ e
1 “ β0. Let

γ P Ω; there exists α P Ω, such that α ‹ β0 “ γ. Hence,

γ ‹ e1 “ α ‹ β0 ‹ e
1 “ α ‹ β0 “ γ.

Similarly, e ‹ γ “ γ for any γ. In particular e ‹ e1 “ e “ e1 is a unit of Ω. For any β P Ω, there
exist β1, β2 P Ω, such that

β1 ‹ β “ β ‹ β2 “ e.

Moreover, β1 ‹β ‹β2 “ β1 ‹ e “ β1 “ e ‹β2 “ β2, so β1 “ β2 is an inverse of β in Ω: Ω is a group.

3. ùñ 1. The inverse bijections of ϕÐ and ϕÑ are given by

ϕ´1
Ð pα, βq “ pα ‹ β

´1, βq, ϕ´1
Ñ pα, βq “ pβ, β

´1 ‹ αq.

So Ω is nondegenerate.
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Proposition 8. Let Ω “ pΩ, ‹, ‹,Ÿ,Źq be an associative semigroup. We assume that, either Ω
is finite, or either pΩ, ‹q is cancellative: for any α, β, γ P Ω,

pα ‹ β “ α ‹ γq ùñ pβ “ γq, pα ‹ γ “ β ‹ γq ùñ pα “ βq.

Then Ω is nondegenerate if, and only if, the two following conditions hold:

1. pΩ, ‹q is a group.

2. Ω “ EDSpΩ, ‹, ‹q.

Proof. 1. ùñ 2. Let us assume that Ω is nondegenerate. We consider the map:

ψ :

"

Ω3 ÝÑ Ω3

pα, β, γq ÝÑ pαŹ β, β Ź γ, α ‹ β ‹ γq.

Let us prove that ψ is injective. We denote by ψÑ “ pψ1
Ñ, ψ

2
Ñq the inverse of the bijection ϕÑ.

We put:

ψ1 :

"

Ω3 ÝÑ Ω3

pα, β, γq ÝÑ pψ1
Ñpψ

1
Ñpγ, α ‹ βq, αq, ψ

2
Ñpψ

1
Ñpγ, α ‹ βq, αq, ψ

1
Ñpγ, α ‹ βqq.

Let α, β, γ P Ω. We put ψ1 ˝ ψpα, β, γq “ pα1, β1, γ1q with:

α1 “ ψ1
Ñpψ

1
Ñpα ‹ β ‹ γ, pαŹ βq ‹ pβ Ź γqq, αŹ βq,

β1 “ ψ2
Ñpψ

1
Ñpα ‹ β ‹ γ, pαŹ βq ‹ pβ Ź γqq, αŹ βq,

γ1 “ ψ2
Ñpα ‹ β ‹ γ, pαŹ βq ‹ pβ Ź γqq.

By (19):

ϕÑpα ‹ β, γq “ pα ‹ β ‹ γ, pαŹ βq ‹ pβ Ź γqq,

Therefore:

α1 “ ψ1
Ñpα ‹ β, αŹ βq “ α, β1 “ ψ2

Ñpα ‹ β, αŹ βq “ β, γ1 “ γ.

So ψ is injective. If Ω is finite, ψ is bijective. If Ω is cancellative, let us put ψ1pα, β, γq “
pα1, β1, γ1q. By definition of ψ, the first component of ψpα1, β1, γ1q is α and the third one is γ.
Let us denote its second component by β2 “ β1 Ź γ1. By definition of ψ1:

α1 ‹ β1 ‹ γ1 “ γ, pα1 ‹ β1q Ź γ1 “ α ‹ β, α1 Ź β1 “ α.

Moreover, by (19):

α ‹ β “ pα1 ‹ β1q Ź γ1 “ pα1 Ź β1q ‹ pβ1 Ź γ1q “ α ‹ pβ1 Ź γ1q “ α ‹ β2.

As Ω is cancellative, β2 “ β, so ψ ˝ ψ1 “ IdΩ and ψ is surjective.

Consequently, if α1, β1 P Ω, there exist α, β, γ P Ω, such that α1 “ αŸ β and β1 “ β Ÿ γ. By
(21):

α1 Ź β1 “ α1.

We prove similarly that α1 Ÿ β1 “ β1, using (17). By Lemma 7, pΩ, ‹q is a group.

2. ùñ 1. The inverse implication comes from Lemma 7.
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Proposition 9. Let pH, ‹q be a group, K be a nonempty set and θ : K ÝÑ H be a map. We
define four products on H ˆK in the following way:

@pα, α1q, pβ, β1q P H ˆK, pα, α1q Ð pβ, β1q “ pα, α1q,

pα, α1q Ñ pβ, β1q “ pβ, β1q,

pα, α1q Ÿ pβ, β1q “ pα´1 ‹ β, β1q,

pα, α1q Ź pβ, β1q “ pθpβ1q ‹ β´1 ‹ α, α1q.

This defines a nondegenerate EDS denoted by EDS˚pH, ‹,K, θq. It is commutative if, and only
if, for any α1 P K, θpα1q is the unit of H. For any pα, α1q, pβ, β1q P H ˆK:

pα, α1q ð pβ, β1q “ pα, α1q, pα, α1q đ pβ, β1q “ pα ‹ β, β1q,

pα, α1q ñ pβ, β1q “ pβ, β1q, pα, α1q § pβ, β1q “ pβ ‹ θpβ1q ‹ α, α1q.

Proof. Note that pH ˆK,Ð,Ñq “ DSpH ˆKq. Direct computations prove that (22)-(25) are
satisfied. Moreover, ϕÐ and ϕÑ are bijections, which inverses are given by:

ϕ´1
Ð ppα, α

1q, pβ, β1qq “ ppα, α1q, pα ‹ β, β1qq, ϕ´1
Ñ ppα, α

1q, pβ, β1qq “ pα ‹ θpα1q ‹ β, β1q, pα, α1qq.

So this EDS is nondegenerate.

Example 3. 1. If K is reduced to a single element, let us denote by ω the image of this element
by θ. As a set, EDS˚pH, ‹,Ω, θq is identified with H, given the products:

αÐ β “ α, αÑ β “ β,

αŸ β “ α´1 ‹ β, αŹ β “ ω ‹ β´1 ‹ α.

This diassociative semigroup will be denoted by EDS˚pH, ‹, ωq. It is commutative if, and
only if, ω is the unit of H. In this case, we shall simply denote it by EDS˚pH, ‹q.

2. If H is a null group, we identify H ˆK and K. We obtain EDSpKq.

Proposition 10. Let pΩ,Ð,Ñ,Ÿ,Źq be a finite nondegenerate EDS, such that pΩ,Ð,Ñq “
DSpΩq. There exist a group pH, ‹q, a nonempty set K and a map θ : K ÝÑ H such that Ω is
isomorphic to EDS˚pH, ‹,K, θq.

Proof. First step. For any α, β P Ω, ϕÐpα, βq “ pα, αŸβq and ϕÑpα, βq “ pβ, αŹβq. With the
notations of Proposition 6, for any α, β P Ω:

α ð β “ α, α ñ β “ β.

Moreover, for any α, β, γ P Ω:

αŸ β “ γ ðñ β “ α đ γ, αŹ β “ γ ðñ α “ γ § β.

The relations of Proposition 6 simplify: for any α, β, γ P Ω,

α đ pβ đ γq “ pα đ βq đ γ, α § pβ § γq “ pα § βq § γ, (39)
pα đ βq § γ “ pα § γq đ β, α đ pβ § γq “ β § pα đ γq. (40)

Second step. Let us study the semigroup pΩ, đq. For any α P Ω, we consider the map

fα :

"

Ω ÝÑ Ω
β ÝÑ α đ β.

This is an element of the symmetric group SpΩq. By (39), for any α, β P Ω:

fα ˝ fβ “ fαđβ.
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Hence, if H 1 “ tfα, α P Ωu, H 1 is a sub-semigroup of SpΩq. As Ω is finite, this is a subgroup of
SpΩq. Consequently, the following set is nonempty:

K “ tα P Ω, fα “ IdΩu “ tα P Ω, @β P Ω, α đ β “ βu.

Let us choose e P K. We consider the map

ψ :

"

H 1 ÝÑ Ω
f ÝÑ fpeq.

For any α, β P Ω, as e đ β “ β:

ψpfα ˝ fβq “ α đ β đ e “ α đ e đ β đ e “ fαpeq đ fβpeq.

So ψ is a semigroup morphism. Let us assume that ψpfαq “ ψpfβq. For any γ P Ω:

fαpγq “ α đ γ “ α đ e đ γ “ ψpfαq đ γ “ ψpfβq đ γ “ fβpγq,

so fα “ fβ : ψ is injective. Let us denote by H its image; then H is a sub-semigroup of pΩ, đq
and is a group, of unit e. For any β “ fαpeq P Ω, for any γ P Ω:

fβpγq “ fαpeq đ γ “ α đ e đ γ “ α đ γ “ fαpγq,

so fβ “ fα. Hence, the inverse of ψ is:

ψ´1 :

"

H ÝÑ H 1

β ÝÑ fβ.

We denote by ‹ the product of H: for any α, β P H, α ‹ β “ α đ β. We define a product on
H ˆK by:

pα, α1q đ pβ, β1q “ pα ‹ β, β1q.

Let us consider the map

Θ :

"

H ˆK ÝÑ Ω
pα, α1q ÝÑ α đ α1.

For any pα, α1q, pβ, β1q P H ˆK, as α1 P K:

Θppα, α1q đ pβ, β1qq “ Θpα ‹ β, β1q “ α đ β đ β1 “ α đ α1 đ β đ β1 “ Θpα, α1q đ Θpβ, β1q.

So Θ is a semigroup morphism.
Let pα, α1q, pβ, β1q P H ˆK, such that Θpα, α1q “ Θpβ, β1q. Hence, α đα1 “ β đβ1. Therefore,

as α1, β1 P K:
fα “ fα ˝ fα1 “ fαđα1 “ fβđβ1 “ fβ ˝ fβ1 “ fβ.

As ψ´1 is injective, α “ β. Consequently:

α1 “ αŸ pα đ α1q “ β Ÿ pβ đ β1q “ β1.

So Θ is injective.
Let γ P Ω. There exists a unique α P H, such that fα “ fγ . Let α´1 be the inverse of α in

the group H and α1 “ α´1 đ γ. Then:

α đ α “ α đ α´1 đ γ “ fαđα´1pγq “ IdΩpγq “ γ.

Moreover, for any β P Ω:

fα1 “ fα´1 ˝ fγ “ f´1
α ˝ fγ “ f´1

γ ˝ fγ “ IdΩ,
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so α1 P K and γ “ Θpα, α1q: Θ is surjective.

From now, we assume, up to an isomorphism, that pΩ, đq “ pH ˆK, đq. By definition of đ,
for any pα, α1q, pβ, β1q P H ˆK,

pα, α1q Ÿ pβ, β1q “ pα´1 ‹ β, β1q.

Last step. Let us now study the product §. Recall that e is the unit of H and let us choose
α P K. We put, for any pγ, γ1q P H ˆK:

pe, aq § pγ, γ1q “ pιpγ, γ1q, ι1pγ, γ1qq.

By (40), for any pα, α1q, pβ, β1q P H ˆK:

pβ, β1q § pγ, γ1q “ ppe, αq đ pβ, β1qq § pγ, γ1q “ ppe, αq § pγ, γ1qq đ pβ, β1q “ pιpγ, γ1q ‹ β, β1q.

Still by (40):

pα, α1q đ ppβ, βq1 § pγ, γ1qq “ pα ‹ ιpγ, γ1q ‹ β, β1q

“ pβ, β1q § ppα, α1q đ pγ, γ1q

“ pιpα ‹ γ, γ1q ‹ β, β1q.

Hence, ιpα ‹ γ, γ1q “ α ‹ ιpγ, γ1q. We put θpα1q “ ιpe, α1q´1. For any α, α1 P K, taking γ “ e:

ιpα, α1q “ α ‹ ιpe, α1q “ α ‹ θpα1q´1.

Finally, for any pα, α1q, pβ, β1q P H ˆK:

pα, α1q § pβ, β1q “ pβ ‹ θpβ1q´1 ‹ α, α1q.

By definition of §, pα, α1q Ź pβ, β1q “ pθpβ1q ‹ β´1 ‹ α, α1q. So Ω “ EDS˚pH, ‹,K, θq.

1.4 Extended diassociative semigroups of cardinality two

Let Ω “ ta, bu be a set of cardinality two. There are 16 maps from Ω2 to Ω. Testing all
possibilities with a computer, we find 13 structures of diassociative semigroups on Ω, which
restrict to 8 up to isomorphism, and 45 structures of EDS on Ω, which restrict to 24 up to
isomorphism. In order to describe them, we shall use the maps φa, φb : Ω ÝÑ Ω, such that for
any α P Ω:

φapαq “ a, φbpαq “ b.

We shall meet six possible products for Ÿ and Ź, denoted by:

ma a b

a a a

b a a

mb a b

a b b

b b b

ŸEDS a b

a a b

b a b

ŹEDS a b

a a a

b b b

m1 a b

a a b

b b a

m2 a b

a b a

b a b

A.

ÐA“ÑA a b

a a a

b a a

This is the diassociative semigroup attached to the semigroup such that:

@α, β P Ω, α ‹A β “ a.
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A1. pta, bu, ‹A, ‹A,ma,maq. This is EDSpta, bu, ‹A, ‹A, φa, φaq.
It is commutative.

A2. pta, bu, ‹A, ‹A,ŸEDS,ŹEDSq. This is EDSpta, bu, ‹A, ‹Aq.
It is commutative.

B.

ÐB a b

a a a

b a a

ÑB a b

a a b

b a b

B1. pta, bu,ÐB,ÑB,ma,maq. This is EDSpta, bu,ÐB,ÑB, φa, φaq.
It is the opposite of D1.

B2. pta, bu,ÐB,ÑB,ŸEDS,ŹEDSq. This is EDSpta, bu,ÐB,ÑBq.
It is the opposite of D2.

C.

ÐC“ÑC a b

a a a

b a b

This is the diassociative semigroup pZ{2Z,ˆ,ˆq, with a “ 0 and b “ 1.

C1. pta, bu,ÐC ,ÑC ,ma,maq. This is EDSpZ{2Z,ˆ,ˆ, φa, φaq.
It is commutative.

C2. pta, bu,ÐC ,ÑC ,ma,mbq. This is EDSpZ{2Z,ˆ,ˆ, φa, φbq.
It is the opposite of C4.

C3. pta, bu,ÐC ,ÑC ,ŸEDS,ŹEDSq. This is EDSpZ{2Z,ˆ,ˆq.
It is commutative.

C4. pta, bu,ÐC ,ÑC ,mb,maq. This is EDSpZ{2Z,ˆ,ˆ, φb, φaq.
It is the opposite of C2.

C5. pta, bu,ÐC ,ÑC ,mb,mbq. This is EDSpZ{2Z,ˆ,ˆ, φb, φbq.
It is commutative.

D.

ÐD a b

a a a

b b b

ÑD a b

a a a

b a a

D1. pta, bu,ÐD,ÑD,ma,maq. This is EDSpta, bu,ÐD,ÑD, φa, φaq.
It is the opposite of B1.

D2. pta, bu,ÐD,ÑD,ŸEDS,ŹEDSq. This is EDSpta, bu,ÐD,ÑDq.
It is the opposite of B2.

E.

ÐE“ÑE a b

a a a

b b b

This is the diassociative semigroup attached to the semigroup such that:

@α, β P Ω, α ‹E β “ α.

14



E1. pta, bu, ‹E , ‹E ,ma,maq. This is EDSpta, bu, ‹E , ‹E , φa, φaq.
It is the opposite of G1.

E2. pta, bu, ‹E , ‹E ,ma,mbq. This is EDSpta, bu, ‹E , ‹E , φa, φbq.
It is the opposite of G2.

E3. pta, bu, ‹E , ‹E ,ÑD,ŸEDS,ŹEDSq. This is EDSpta, bu, ‹E , ‹Eq.
It is the opposite of G3.

F.

ÐF a b

a a a

b b b

ÑF a b

a a b

b a b

This is DSpta, buq.

F1. pta, bu,ÐF ,ÑF ,ma,maq. This is EDSpta, bu,ÐF ,ÑF , φa, φaq.
It is commutative.

F2. pta, bu,ÐF ,ÑF ,ma,mbq. This is EDSpta, bu,ÐF ,ÑF , φa, φbq.
It is not commutative, but is isomorphic to its opposite via the map permuting a and
b.

F3. pta, bu,ÐF ,ÑF ,ŸEDS,ŹEDSq. This is EDSpta, buq.
It is commutative.

F4. pta, bu,ÐF ,ÑF ,m1,m1q. This is EDS˚pZ{2Z,`q, with a “ 0 and b “ 1.
It is commutative.

F5. pta, bu,ÐF ,ÑF ,m1,m2q. This is EDS˚pZ{2Z,`, 1q, with a “ 0 and b “ 1.
It is not commutative, but is isomorphic to its opposite via the map permuting a and
b.

G.

ÐG“ÑG a b

a a b

b a b

This is the diassociative semigroup attached to the semigroup such that:

@α, β P Ω, α ‹G β “ β.

G1. pta, bu, ‹G, ‹G,ma,maq. This is EDSpta, bu, ‹G, ‹G, φa, φaq.
It is the opposite of E1.

G2. pta, bu, ‹G, ‹G,ma,mbq. This is EDSpta, bu, ‹G, ‹G, φa, φbq.
It is the opposite of E2.

G3. pta, bu, ‹G, ‹G,ÑD,ŸEDS,ŹEDSq. This is EDSpta, bu, ‹G, ‹Gq.
It is the opposite of E3.

H.

ÐH“ÑH a b

a a b

b b a

This is the diassociative semigroup attached to the group pZ{2Z,`q, with a “ 0 and b “ 1.

H1. pta, bu, ‹H , ‹H ,ma,maq. This is EDSpZ{2Z,`,`, φa, φaq.
It is commutative.
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H2. pta, bu, ‹H , ‹H ,ÑD,ŸEDS,ŹEDSq. This is EDSpZ{2Z,`,`q.
It is commutative.

Only four of these EDS are nondegenerate: F3, F4, F5, H2.
Remark 2. Similar computations can be done for EDS of cardinality 3. Up to isomorphism, there
are four nondegenerate EDS of cardinality 3:

EDSpta, b, cuq, EDSpZ{3Z,`,`q, EDS˚pZ{3Z,`q, EDS˚pZ{3Z,`, 1q.

2 Ω-dendriform algebras

2.1 Definition and example

Definition 11. Let Ω be a set with four products Ð,Ñ,Ÿ,Ź. An Ω-dendriform algebra is a
family pA, păαqαPΩ, pąαqαPΩq where A is a vector space and ăα,ąα: AbA ÝÑ A, such that for
any x, y, z P A, for any α, β P Ω:

px ăα yq ăβ z “ x ăαÐβ py ăαŸβ zq ` x ăαÑβ py ąαŹβ zq, (41)
x ąα py ăβ zq “ px ąα yq ăβ z, (42)
x ąα py ąβ zq “ px ąαŹβ yq ąαÑβ z ` px ăαŸβ yq ąαÐβ z. (43)

Example 4. 1. If pΩ, ‹q is a semigroup, we recover the definition of dendriform family algebra
[16], see also [1, (4.2a)–(4.2c)] when we consider EDSpΩ, ‹, ‹q:

αÐ β “ αÑ β “ α ‹ β, αŸ β “ β, αŹ β “ α.

Note that in this case, pΩ,Ð,Ñq is an EDS. A special example is given by pΩ, ‹q “
pt1, . . . , γu, ‹q with, for any 1 ď a, b ď γ,

a ‹ b “ minpa, bq.

The axioms become, if a, a1, b P t1, . . . , γu, with a ă b:

px ăb yq ăa z “ x ăa py ăa zq ` x ăa py ąb zq,

px ăa yq ăb z “ x ăa py ăb zq ` x ăa py ąa zq,

px ăa yq ăa z “ x ăa py ăa zq ` x ăa py ąa zq,

px ąa yq ăa1 z “ x ąa py ăa1 zq,

px ąa yq ąb z “ px ąa yq ąa z ` px ăb yq ąa z,

px ąb yq ąa z “ px ąb yq ąa z ` px ăa yq ąa z,

px ąa yq ąa z “ px ąa yq ąa z ` px ăa yq ąa z.

These are the axioms of γ-pluridendriform algebras are presented in Theorem 2.1.4 of [8].

2. For any set Ω, considering EDSpΩq, we recover the definition of matching dendriform
algebras [15].

Remark 3. Let A be an Ω-dendriform algebra. For any a, b P A, for any α P Ω, we put:

a ăop
α b “ b ąα a, a ąop

α b “ b ăα a.

Then pA, păop
α qαPΩ, pą

op
α qαPΩq is an Ωop-dendriform algebra, where the products of Ωop are defined

by:

@α, β P Ω, αÐop β “ β Ñ α, αÑop β “ β Ð α,

αŸop β “ β Ź α, αŹop β “ β Ÿ α.

This gives the notion of commutative Ω-dendriform algebra:
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Definition 12. Let Ω be a set with four products Ð,Ñ,Ÿ,Ź such that, for any α, β P Ω:

αÐ β “ β Ñ α, αŸ β “ β Ź α.

Let A be an Ω-dendriform algebra. We shall say that A is commutative if for any α, β P Ω, for
any a, b P A:

a ăα b “ b ąα a.

2.2 Structures on typed binary trees

Definition 13. Let Ω be a set.

1. An Ω-typed binary tree is a pair pT, τq, where T is a plane binary tree and τ is a map from
the set on internal edges of T to Ω. For any internal edge e of T , τpeq is called the type of
e.

2. The set of Ω-typed binary trees is denoted by TΩ. We denote by T `Ω the set of Ω-types
binary trees different from the trivial tree .

3. For any n ě 0, the set of Ω-typed binary trees with n internal vertices (and n ` 1 leaves)
is denoted by TΩpnq.

Consequently:

TΩ “
ğ

ně0

TΩpnq, T `Ω “
ğ

ně1

TΩpnq.

Example 5. Here are plane binary trees with n ď 3 leaves:

, , , , , , , , .

For any T “ pT, τq P TΩ, we shall give indices to internal edges and indicate their types in this
way:

1
pαq, 1

pαq, 1
2

pα, βq, 1
2

pα, βq, 1
2

pα, βq, 1
2

pα, βq, 1 2
pα, βq.

In all cases, the type of the internal edge 1 is α and the type of the internal edge 2 is β.

Definition 14. Let T1, T2 P TΩ, and α, β P Ω. We denote by T1

ł

α,β

T2 the tree T P TΩ obtained

by grafting T1 on the left and T2 and the right on a common root. If T1 ‰ , the type of the
internal edge between the root of T and the root of T1 is α. If T2 ‰ , the type of internal edge
between the root of T and the root of T2 is β.

Example 6. For example, for any α, β, γ P Ω:

1
2

pα, βq “ 1
pβq

ł

α,γ

, 1
2

pα, βq “ 1
pβq

ł

α,γ

,

1
2

pα, βq “
ł

γ,α

1
pβq, 1

2

pα, βq “
ł

γ,α

1
pβq,

1 2
pα, βq “

ł

α,β

.
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Remark 4. Note that any element T P TΩpnq, with n ě 1, can be written under the form

T “ T1

ł

α,β

T2,

with T1, T2 P TΩ, α, β P Ω. This writing is unique except if T1 “| or T2 “|: in this case, one can
change arbitrarily α or β. In order to solve this notational problem, we add an element denoted
by H to Ω and we shall always assume that if T1 “|, then α “ H; if T2 “|, then β “ H.

Proposition 15. Let Ω be a set with four products Ð,Ñ,Ÿ,Ź. We define products ăα and
ąα on KT `Ω , for α P Ω, by the following recursive formulas: for any T, T1, T2 P T `Ω , for any
α, β, γ P Ω,

ăα T “
ł

H,α

T,

pT1

ł

α,H

q ăβ T “ T1

ł

α,β

T,

¨

˝T1

ł

α,β

T2

˛

‚ăγ T “ T1

ł

α,βÐγ

pT2 ăβŸγ T q ` T1

ł

α,βÑγ

pT2 ąβŹγ T q,

T ąα “ T
ł

α,H

,

T ąα p
ł

H,β

T2q “ T
ł

α,β

T2,

T ąα

¨

˝T1

ł

β,γ

T2

˛

‚“ pT ąαŹβ T1q
ł

αÑβ,γ

T2 ` pT ăαŸβ T1q
ł

αÐβ,γ

T2.

The following conditions are equivalent:

1. With these products, KT `Ω is the free Ω-dendriform freely generated by .

2. With these products, KT `Ω is Ω-dendriform.

3. pΩ,Ð,Ñ,Ÿ,Źq is an EDS.

Proof. We extend the products ăα and ąα to the space KT `Ω bKTΩ `KTΩ bKT `Ω by putting:

@x P KT `Ω , x ăα “ ąα x “ x, ăα x “ x ąα “ 0.

By convention, we consider the added element H as a unit for the four products of Ω. The
definition of the products ăα and ąα can be rewritten in the following way: for any T P T `Ω , for
any T1, T2 P TΩ, for any α, β, γ P Ω,

T ăα “ ąα T “ T,

ăα T “ T ąα “ 0,
¨

˝T1

ł

α,β

T2

˛

‚ăγ T “ T1

ł

α,βÐγ

pT2 ăβŸγ T q ` T1

ł

α,βÑγ

pT2 ąβŹγ T q,

T ąα

¨

˝T1

ł

β,γ

T2

˛

‚“ pT ąαŹβ T1q
ł

αÑβ,γ

T2 ` pT ăαŸβ T1q
ł

αÐβ,γ

T2.
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Obviously, 1. ùñ 2. Let us prove that 2. ùñ 3. Let α, β, γ P Ω. For x “ y “ and

z “ 1
pγq:

x ąα py ąβ zq “
1

2
3

pαÑ pβ Ñ γq, pαŹ pβ Ñ γqq Ñ pβ Ź γq, pαŹ pβ Ñ γqq Ź pβ Ź γqq

`
1

2
3

pαÑ pβ Ñ γq, pαŹ pβ Ñ γqq Ð pβ Ź γq, pαŹ pβ Ñ γqq Ÿ pβ Ź γqq

`
1

2
3

pαÐ pβ Ñ γq, αŸ pβ Ñ γq, β Ÿ γq

`
1

2 3

pαÑ pβ Ð γq, αŹ pβ Ð γq, β Ÿ γq

`
1

2
3

pαÐ pβ Ð γq, αŸ pβ Ð γq, β Ÿ γq,

px ąαŹβ yq ąαÑβ z “
1

2
3

ppαÑ βq Ñ γ, pαÑ βq Ź γ, αŹ βq

`
1

2 3

ppαÑ βq Ð γ, αŹ β, pαÑ βq Ÿ γq,

px ăαŸβ yq ąαÐβ z “
1

2
3

ppαÐ βq Ñ γ, pαÐ βq Ÿ γ, αŸ βq

`
1

2
3

ppαÐ βq Ð γ, pαŸ βq Ð ppαÐ βq Ÿ γq, pαŸ βq Ÿ ppαÐ βq Ÿ γqq

`
1

2
3

ppαÐ βq Ð γ, pαŸ βq Ñ ppαÐ βq Ÿ γq, pαŸ βq Ź ppαÐ βq Ÿ γqq.

Identifying the decorations of the trees in these expressions, we obtain relations (1)-(13).

3. ùñ 1. Let us first prove that KT `Ω is an Ω-dendriform algebra. Let us first prove relations
(41)-(43) for x, y, z P TΩ by induction on the total number N of leaves of x, y and z. Firstly,
observe that (41) is obviously satisfied if x “|; (42) is obviously satisfied if y “|; (43) is obviously
satisfied if z “|; hence, there is nothing to prove if N ď 3. Let us assume the result at all ranks
ă N . Let us first prove (42) for x, y, z. We can assume that y “ T1

ł

γ,δ

T2, where T1, T2 P TΩ

and γ, δ P Ω\ tHu (γ “ H if T1 “ ; δ “ H if δ “ ). Then:

px ąα yq ăβ z “ px ąαŹγ T1q
ł

αÑγ,δÑβ

pT2 ąδŹβ T1q ` px ąαŹγ T1q
ł

αÑγ,δÐβ

pT2 ăδŸβ zq

` px ăαŸγ T1q
ł

αÐγ,δÑβ

pT2 ąδŹβ T1q ` px ăαŸγ T1q
ł

αÐγ,δÐβ

pT2 ăδŸβ zq

“ x ąα py ăβ zq.
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Let us now prove (43) for x, y, z. We can assume that z “ T1

ł

γ,δ

T2. Then:

x ąα py ąβ zq “ px ąαŹpβÑγq py ąβŹγ T1qq
ł

αÑpβÑγq,δ

T2

` px ăαŸpβÑγq py ąβŹγ T1qq
ł

αÐpβÑγq,δ

T2

` px ąαŹpβÐγq py ăβŸγ T1qq
ł

αÑpβÐγq,δ

T2

` px ăαŸpβÐγq py ăβŸγ T1qq
ł

αÐpβÐγq,δ

T2,

px ąαŹβ yq ąαÑβ z “ ppx ąαŹβ yq ąpαÑβqŹγ T1q
ł

pαÑβqÑγ,δ

T2

` ppx ąαŹβ yq ăpαÑβqŸγ T1q
ł

pαÑβqÐγ,δ

T2,

px ăαŸβ yq ąαÐβ z “ ppx ăαŸβ yq ąpαÐβqŹγ T1q
ł

pαÐβqÑγ,δ

T2

` ppx ăαŸβ yq ăpαÐβqŸγ T1q
ł

pαÐβqÐγ,δ

T2.

Using the induction hypothesis and relations (1)-(13), putting α1 “ αŹpβ Ñ γq and β1 “ βŹ γ:

ppx ąαŹβ yq ąpαÑβqŹγ T1q
ł

pαÑβqÑγ,δ

T2 ` ppx ăαŸβ yq ąpαÐβqŹγ T1q
ł

pαÐβqÑγ,δ

T2

“ px ąα1 py ąβ1 T2qq
ł

αÑpβÑγq,δ

T2

“ py ąβŹγ T1qq
ł

αÑpβÑγq,δ

T2.

Similarly:

ppx ąαŹβ yq ăpαÑβqŸγ T1q
ł

pαÑβqÐγ,δ

T2 “ px ąαŹpβÐγq py ăβŸγ T1qq
ł

αÑpβÐγq,δ

T2,

and

px ăαŸpβÑγq py ąβŹγ T1qq
ł

αÐpβÑγq,δ

T2 ` px ăαŸpβÐγq py ăβŸγ T1qq
ł

αÐpβÐγq,δ

T2

“ ppx ăαŸβ yq ăpαÐβqŸγ T1q
ł

pαÐβqÐγ,δ

T2.

So (43) is satisfied for x, y, z. Relation (41) is proved similarly. We obtain that KT `Ω is Ω-
dendriform.

Let us now prove its freeness. Let A be an Ω-dendriform algebra and let a P A. Let us prove
the existence and uniqueness of an Ω-dendriform algebra morphism Φ from KT `Ω to A such that
Φp q “ a.

We first extend the products of A to KbA`AbK`AbA by putting, for any b P A:

b ąα 1 “ 1 ăα b “ 0, 1 ąα b “ b ăα 1 “ b.
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We then define ΦpT q for any tree T P TΩ by induction on its number of leaves:

Φp q “ 1,

Φ

¨

˝T1

ł

α,β

T2

˛

‚“ ΦpT1q ąα a ăβ ΦpT2q.

Let us prove that Φ is an Ω-dendriform algebra morphism. Let x, y P TΩ and let us prove that

Φpx ąα yq “ Φpxq ąα Φpyq, Φpx ăα yq “ Φpxq ăα Φpyq

by induction on the total number N of leaves of x and y. If y “ , then:

Φpx ąα q “ 0 “ Φpxq ąα 1, Φpx ăα q “ Φpxq “ Φpxq ąα 1.

The proof is similar if x “ . Let us now assume that x, y ‰ . Let us put y “ T1

ł

β,γ

T2. By the

induction hypothesis applied to T1:

Φpx ąα yq “ Φ

¨

˝px ąαŹβ T1q
ł

αÑβ,γ

T2

˛

‚` Φ

¨

˝px ăαŸβ T1q
ł

αÐβ,γ

T2

˛

‚

“ pΦpxq ąαŹβ ΦpT1qq ąαÑβ a ăγ ΦpT2q

` pΦpxq ăαŸβ ΦpT1qq ąαÐβ a ăγ ΦpT2q

“ pΦpxq ąα pΦpT1q ąβ aqq ăγ ΦpT2q

“ Φpxq ąα ppΦpT1q ąβ a ăγ ΦpT2qq

“ Φpxq ąα Φpyq.

Similarly, Φpx ăα yq “ Φpxq ăα Φpyq.

Let us now prove the unicity of Φ. Let Ψ be another morphism from KT `Ω to A such that
Ψp q “ a. For any tree T ‰ , putting T “ T1

ł

α,β

T2:

ΨpT q “ ΨpT1 ąα ăβ T2q “ ΨpT1q ąα a ăβ ΨpT2q,

so Ψ “ Φ.

Example 7. Let α, β P Ω.

ăβ “
1
pβq,

ąα “
1
pαq,

ąα
1
pβq “ 1

2

pαÑ β, αŹ βq ` 1
2

pαÐ β, αŸ βq,

ąα
1
pβq “ 1 2

pα, βq,

1
pαq ąβ “

1
2

pβ, αq,

1
pαq ąβ “

1
2

pβ, αq.
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Remark 5. 1. An easy induction proves that the Ω-dendriform algebra KT `Ω is graded:

@α P Ω, @k, l ě 1, KTΩpkq ăα KTΩplq `KTΩpkq ąα KTΩplq Ď KTΩpk ` lq.

2. Similar results can be proved for Ω-typed D-decorated plane binary trees, that is to say
Ω-typed plane binary trees given a map from the set of internal vertices to D. We obtain
in this way the free Ω-dendriform generated by D.

2.3 Structure on typed words

Definition 16. Let Ω be a set and let V be a vector space. The space of Ω-typed words in V is

Sh`ΩpV q “
à

ně1

pKΩqbpn´1q b V bn.

Tensors of Sh`ΩpV q will be written in the form

α2 . . . αn b v1 . . . vn,

where n ě 1, α2, . . . , αn P Ω and v1, . . . , vn P V . Such a tensor will be called an Ω-typed word in
V ; its length is the integer n. We also put ShΩpV q “ K‘ Sh`ΩpV q.

Proposition 17. Let Ω be a set with four operations Ð,Ñ,Ÿ,Ź. For any vector space V , we
give ShΩpV q products ăα, ąα, where α P Ω, inductively defined in the following way:

1 ăα α2 . . . αm b v1 . . . vm “ α2 . . . αm b v1 . . . vm ąα 1 “ 0,

α2 . . . αm b v1 . . . vm ăα 1 “ 1 ąα α2 . . . αn b v1 . . . vm “ α2 . . . αm b v1 . . . vm,

and

α2 . . . αm b v1 . . . vm ăα β2 . . . βn b w1 . . . wn

“ ppα2 Ñ αq b v1q ¨ pα3 . . . αm b v2 . . . vm ăα2Ÿα β2 . . . βn b w1 . . . wnq

` ppα2 Ð αq b v1q ¨ pα3 . . . αm b v2 . . . vm ąα2Źα β2 . . . βn b w1 . . . wnq,

α2 . . . αm b v1 . . . vm ąα β2 . . . βn b w1 . . . wn

“ ppαÑ β2q b w1q ¨ pα2 . . . αm b v1 . . . vm ăαŸβ2 β3 . . . βn b w2 . . . wnq

` ppαÐ β2q b w1q ¨ pα2 . . . αm b v1 . . . vm ąαŹβ2 β3 . . . βn b w2 . . . wnq,

where ¨ is the concatenation product:

¨

"

pKΩb V q b ShΩpV q ÝÑ Sh`ΩpV q
pαb vq b pα2 . . . αn b v1 . . . vnq ÝÑ αα2 . . . αn b vv1 . . . vn.

The following conditions are equivalent:

1. With these products, Sh`ΩpV q is an Ω-dendriform algebra for any vector space V .

2. Ω is an EDS.

If this holds and if Ω is commutative, then Sh`ΩpV q is the free commutative Ω-dendriform algebra
generated by V .

Proof. Note that these products ăα, ąα are defined on

pShΩpV q b ShΩpV qq
` “ ShΩpV q b Sh`ΩpV q ` Sh`ΩpV q b ShΩpV q.
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1. ùñ 2. Let V be a vector space of dimension 4 and pv1, v2, v3, v4q be a basis of V . Let
α, β, γ P Ω.

v1 ąα pv2 ąβ γ b v3v4q

“ αÑ pβ Ñ γq ¨ pαŹ pβ Ñ γqq Ñ pβ Ź γq ¨ pαŹ pβ Ñ γqq Ź pβ Ź γq b v3v4v2v1

` αÑ pβ Ñ γq ¨ pαŹ pβ Ñ γqq Ð pβ Ź γq ¨ pαŹ pβ Ñ γqq Ÿ pβ Ź γq b v3v4v1v2

` αÐ pβ Ñ γq ¨ αŸ pβ Ñ γq ¨ β Ÿ γ b v3v1v4v2

` αÑ pβ Ð γq ¨ pαŹ pβ Ð γqq Ñ pβ Ÿ γq ¨ pαŹ pβ Ð γqq Ź pβ Ÿ γq b v3v2v4v1

` αÑ pβ Ð γq ¨ pαŹ pβ Ð γqq Ð pβ Ÿ γq ¨ pαŹ pβ Ð γqq Ÿ pβ Ÿ γq b v3v2v1v4

` αÐ pβ Ð γq ¨ αŸ pβ Ð γq ¨ β Ÿ γ b v3v1v2v4,

pv1 ąαŹβ v2q ąαÑβ γ b v3v4

“ pαÑ βq Ñ γ ¨ pαÑ βq Ź γ ¨ αŹ β b v3v4v2v1

` pαÑ βq Ð γ ¨ pαŹ βq Ð ppαÑ βq Ÿ γq ¨ pαŹ βq Ÿ ppαÑ βq Ÿ γq b v3v2v1v4

` pαÑ βq Ð γ ¨ pαŹ βq Ñ ppαÑ βq Ÿ γq ¨ pαŹ βq Ź ppαÑ βq Ÿ γq b v3v2v4v1,

pv1 ăαŸβ v2q ąαÐβ γ b v3v4

“ pαÐ βq Ñ γ ¨ pαÐ βq Ź γ ¨ αŹ β b v3v4v1v2

` pαÐ βq Ñ γ ¨ pαŸ βq Ð ppαÐ βq Ÿ γq ¨ pαŸ βq Ÿ ppαÐ βq Ÿ γq b v3v1v2v4

` pαÐ βq Ñ γ ¨ pαŸ βq Ñ ppαÐ βq Ÿ γq ¨ pαŸ βq Ź ppαÐ βq Ÿ γq b v3v1v4v2.

As the family pvσp1qvσp2qvσp3qvσp4qqσPS4 is linearly independent, identifying in (43), we obtain
(1)-(13).

2. ùñ 1. Let us prove (41)-(43) for x, y, z typed words by induction on the total length N
of x, y and z. If x “ 1, then (41) is trivially satisfied; If y “ 1, then (42) is trivially satisfied;
if z “ 1, then (43) is trivially satisfied. This proves the result if N ď 2. We now suppose that
x, y, z ‰ 1 and let us assume the result at all ranks ă N . Let us put z “ γ b v ¨ z1. Using the
induction hypothesis:

x ąα py ąβ zq “ αÑ pβ Ñ γq b v ¨ px ąαŹpβÑγq py ąβŹγ z
1qq

` αÐ pβ Ñ γq b v ¨ px ăαŸpβÑγq py ąβŹγ z
1qq

` αÑ pβ Ð γq b v ¨ px ąαŹpβÐγq py ăβŸγ z
1qq

` αÐ pβ Ð γq b v ¨ px ăαŸpβÐγq py ăβŸγ z
1qq

“ αÑ pβ Ñ γq b v ¨ px ąpαŹpβÑγqqŹpβŸγq yq ąpαŹpβÑγqqÑpβŸγq z
1

` αÑ pβ Ñ γq b v ¨ px ăpαŹpβÑγqqŸpβŸγq yq ąpαŹpβÑγqqÐpβŸγq z
1

` αÑ pβ Ð γq b v ¨ px ąαŹpβÐγq yq ăβÐγ z
1

` αÐ pβ Ð γq b v ¨ x ăαŸpβÐγq py ăβŸγ z
1q

` αÐ pβ Ñ γq b v ¨ x ăαŸpβÑγq py ąβŹγ z
1q.
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Moreover:

px ąαŹβ yq ąαÑβ z “ pαÑ βq Ñ γ b v ¨ px ąαŹβ yq ąpαÑβqŹγ z
1

` pαÑ βq Ð γ b v ¨ px ąαŹβ yq ăpαÑβqŸγ z
1;

px ăαŸβ yq ąαÐβ z “ pαÐ βq Ñ γ b v ¨ px ăαŸβ yq ąpαÐβqŹγ z
1

` pαÐ βq Ð γ b v ¨ px ăαŸβ yq ăpαÐβqŸγ z
1

“ pαÐ βq Ñ γ b v ¨ px ăαŸβ yq ąpαÐβqŹγ z
1

` pαÐ βq Ð γ b v ¨ x ăpαŸβqÐppαÐβqŸγq py ăpαŸβqŸppαÐβqŸγq z
1q

` pαÐ βq Ð γ b v ¨ x ăpαŸβqÑppαÐβqŸγq py ąpαŸβqŹppαÐβqŸγq z
1q.

With (1)-(13), we conclude that (43) is satisfied for x, y, z. Relations (41) and (42) are proved
in the same way.

Observe that:

1 ăop
α α2 . . . αm b v1 . . . vm “ α2 . . . αm b v1 . . . vm ąop

α 1 “ 0,

α2 . . . αm b v1 . . . vm ăop
α 1 “ 1 ąop

α α2 . . . αn b v1 . . . vm “ α2 . . . αm b v1 . . . vm,

and

α2 . . . αm b v1 . . . vm ăop
α β2 . . . βn b w1 . . . wn

“ ppαÐ α2q b v1q ¨ pα3 . . . αm b v2 . . . vm ăop
α2Ÿα β2 . . . βn b w1 . . . wnq

` ppαÑ α2q b v1q ¨ pα3 . . . αm b v2 . . . vm ąop
α2Źα β2 . . . βn b w1 . . . wnq

“ ppα2 Ñ
op αq b v1q ¨ pα3 . . . αm b v2 . . . vm ăop

α2Ÿα β2 . . . βn b w1 . . . wnq

` ppα2 Ð
op αq b v1q ¨ pα3 . . . αm b v2 . . . vm ąop

α2Źα β2 . . . βn b w1 . . . wnq,

α2 . . . αm b v1 . . . vm ąop
α β2 . . . βn b w1 . . . wn

“ ppβ2 Ð αq b w1q ¨ pα2 . . . αm b v1 . . . vm ă
op
αŸβ2

β3 . . . βn b w2 . . . wnq

` ppβ2 Ñ αq b w1q ¨ pα2 . . . αm b v1 . . . vm ą
op
αŹβ2

β3 . . . βn b w2 . . . wnq

“ ppαÑop β2q b w1q ¨ pα2 . . . αm b v1 . . . vm ă
op
αŸβ2

β3 . . . βn b w2 . . . wnq

` ppαÐop β2q b w1q ¨ pα2 . . . αm b v1 . . . vm ą
op
αŹβ2

β3 . . . βn b w2 . . . wnq,

so
Sh`ΩpV q

op “ Sh`ΩoppV q.

In particular, if Ω is commutative, the Ω-dendriform algebra Sh`ΩpV q is commutative.

Let us assume that Ω is commutative. Let A be a commutative Ω-dendriform algebra and let
φ : V ÝÑ A be any linear map. Let us prove that there exists a unique map Φ : Sh`ΩpV q ÝÑ A
of Ω-dendriform algebras such that Φ|V “ φ.

Existence. We inductively define Φ by:

Φpvq “ φpvq,

Φpα2 . . . αn b v1 . . . vnq “ φpv1q ăα2 Φpα3 . . . αn b v2 . . . vnq if n ě 2.

Let us prove that Φpx ăα yq “ Φpxq ăα Φpyq for any typed words x and y by induction on the
total length N of x and y. If the length of x is 1:

Φpx ăα yq “ Φpαb x ¨ yq “ φpxq ăα Φpyq “ Φpxq ăα Φpyq.
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This proves the result if N “ 2. Let us assume the result at all ranks ă N . We can restrict
ourselves to the case where the length of x is not 1. We put x “ pβ b vq ¨ x1, with v P V and x1

is a typed word. Then:

Φpx ăα yq “ Φpβ Ð αb v ¨ x1 ăαŸβ yq ` Φpβ Ñ αb v ¨ x1 ąαŹβ yq

“ φpvq ăβÐα Φpx1 ăαŸβ yq ` φpvq ăβÑα Φpx1 ąαŹβ yq

“ φpvq ăβÐα Φpx1 ăαŸβ yq ` φpvq ăβÑα Φpy ăαŹβ x
1q

“ φpvq ăβÐα pΦpx
1q ăαŸβ Φpyqq ` φpvq ăβÑα pΦpyq ăαŹβ Φpx1qq

“ φpvq ăβÐα pΦpx
1q ăαŸβ Φpyqq ` φpvq ăβÑα pΦpx

1q ąαŹβ Φpyqq

“ pφpvq ăβ Φpx1qq ăα Φpyq

“ Φpxq ăα Φpyq.

So Φ is compatible with ăα. As A and Sh`ΩpV q are commutative, for any x, y P Sh`ΩpV q,

Φpx ąα yq “ Φpy ăα xq “ Φpyq ăα Φpxq “ Φpxq ąα Φpyq.

So Φ is a morphism of Ω-dendriform algebras.

Unicity. Let Ψ be such a morphism. Then for any typed word x “ pαb vq ¨ x1 of length ě 2:

Ψpxq “ Ψpv ăα x
1q “ φpvq ăα Ψpx1q.

Hence, Ψ “ Φ.

2.4 From Ω-dendrifrom algebras to dendriform algebras

Proposition 18. Let Ω be an EDS and let A be a vector space equipped with bilinear products
ăα and ąα. We equip KΩbA with two bilinear products ă,ą defined in the following way:

@α, β P Ω, @x, y P A, αb x ă β b y “ αÐ β b x ăαŸβ y,

αb x ą β b y “ αÑ β b x ąαŹβ y.

1. If pA, păαqαPΩ, pąαqαPΩq is Ω-dendriform, then pKΩbA,ă,ąq is dendriform.

2. If ϕÐ and ϕÑ are surjective, then the converse implication is true.

Proof. Let α, β, γ P Ω and x, y, z P A.

pαb x ă β b yq ă γ b z “ pαÑ βq Ñ γ b px ăαŸβ yq ăpαÐβqŸγ z,

αb x ă pβ b y ă γ b z ` β b y ą γ b zq “ αÐ pβ Ð γq b x ăαŸpβÐγq py ăβŸγ zq

` αÐ pβ Ñ γq b x ăαŸpβÑγq py ąβŹγ zq.

As pΩ,Ð,Ñq is diassociative,

pαÑ βq Ñ γ “ αÐ pβ Ð γq “ αÐ pβ Ñ γq.

1. Let us assume that A is Ω-dendriform. Then, as Ω is an EDS:

px ăαŸβ yq ăpαÐβqŸγ z “ x ăpαŸβqÐppαÐβqŸγq py ăpαŸβqŸppαÐβqŸγq zq

` x ăpαŸβqÑppαÐβqŸγq py ąpαŸβqŹpppαÐβqŸγq zq

“ x ăαŸpβÐγq py ăβŸγ zq ` x ăαŸpβÑγq py ąβŹγ zq.

So the first dendriform relation is satisfied. The second and third ones are proved in the same
way.
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2. Let us assume that KΩ b A is dendriform and that ϕÐ and ϕÑ are surjective. For any
x, y, z P A, for any α, β, γ P Ω:

px ăαŸβ yq ăpαÐβqŸγ z “ x ăαŸpβÐγq py ăβŸγ zq ` x ăαŸpβÑγq py ąβŹγ zq.

By hypothesis, the following map is surjective:

ϕ1Ð :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pαŸ, αÐ βq.

By composition, the following map is surjective:

pIdb ϕ1Ðq ˝ pϕ
1
Ð b Idq :

"

Ω3 ÝÑ Ω3

pα, β, γq ÝÑ pαŸ β, pαÐ βq Ÿ γ, αÐ β Ð γq.

Let pα1, β1, γ1q P Ω3 and let pα, β, γq P Ω3 such that:

α1 “ αŸ β, β1 “ pαÑ βq Ÿ γ, γ1 “ αÐ β Ð γ.

Then, by (6)-(9):

px ăα1 yq ăβ1 z “ x ăαŸpβÐγq py ăβŸγ zq ` x ăαŸpβÑγq py ąβŹγ zq

“ x ăα1Ðβ1 py ăα1Ÿβ1 zq ` x ăα1Ñβ1 py ąα1Źβ1 zq

So the first Ω-dendriform relation is satisfied. The two other ones are similarly proved.

Let us now study the dendriform algebras KΩbKT `Ω and KΩb Sh`ΩpV q.

Proposition 19. Let Ω be an EDS.

1. The following assertions are equivalent:

(a) The dendriform algebra KΩbKT `Ω is generated by the elements αb , α P Ω.

(b) ϕÐ and ϕÑ are surjective.

2. The following assertions are equivalent:

(a) The dendriform subalgebra of KΩbKT `Ω generated by the elements αb , α P Ω, is
free.

(b) ϕÐ and ϕÑ are injective.

Proof. Firstly, observe that the dendriform algebra KΩb T `Ω is graded, with for any n ě 1,

pKΩb T `Ω qpnq “ KΩb TΩpnq.

1. paq ùñ pbq. Let α, β P Ω. As KΩbT `Ω is graded, there exists families of scalars pλa,bqa,bPΩ
and pµa,bqa,bPΩ such that:

αb 1
pβq “

ÿ

a,bPΩ

λa,bab ă bb `
ÿ

a,bPΩ

µa,bab ą bb

“
ÿ

a,bPΩ

λa,baÐ bb 1
paŸ bq `

ÿ

a,bPΩ

µa,baÑ bb 1
paŹ bq.

Hence, there exists pa, bq P Ω2, such that aÑ b “ α and aŹ b “ β: ϕÑ is surjective. Similarly,
ϕÐ is surjective.
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1. pbq ùñ paq. Let us denote by A the dendriform subalgebra of KΩ b KT `Ω generated by
the elements α b . Let us prove that for any α P Ω, T P TΩ, α b T P A by induction on
the number N of leaves of T . If N “ 2, then T “ and it is obvious. Otherwise, let us put
T “ T1

Ž

β,γ T2. By the induction hypothesis, for i “ 1 or 2, Ti “ or Ti P A. If T1 ‰ , let
pα1, β1q P Ω such that ϕÑpα1, β1q “ pα, βq. Then

α1 b T1 ą β1 b
ł

H,γ

T2 “ α1 Ñ β1 b T1 ąα1Źβ1

ł

H,γ

T2

“ αb T1 ąβ

ł

H,γ

T2

“ αb T1

ł

β,γ

T2.

So αb T P A. Similarly, if T2 ‰ , then αb T P A.

2. paq ùñ pbq. Because of the graduation, A is freely generated by the elements αb , with
α P Ω. Let pα, βq, pα1, β1q P Ω2, such that ϕÐpα, βq “ ϕÐpα

1, β1q. Then:

αb ă β b “ αÐ β b 1
pαŸ βqα1 Ð β1 b 1

pα1 Ÿ β1q “ α1 b ă β1 b .

By freeness of KΩbKT `Ω , pα, βq “ pα1, β1q, so ϕÐ is injective. The proof is similar for ϕÑ.

2. pbq ùñ paq. Let DendpΩq be the free dendriform algebra generated by Ω. As a vector
space, it is generated by plane binary trees which internal vertices are decorated by Ω. Let
Θ : DendpΩq ÝÑ KΩ b KT `Ω be the unique dendriform algebra morphism sending α P Ω to
αb . Then, for any tree T P DendpΩq, writing it as T “ T1

Ž

α T2, α being the decoration of
the root of T , let us denote

ΘpT1q “
ÿ

i

αiT
piq
1 , ΘpT2q “

ÿ

j

βjT
pjq
2 .

Then:
ΘpT q “

ÿ

i,j

αi Ñ αÐ βj b T
piq
1

ł

αiŹα,pαiÑαqŸβj

T
pjq
2 .

We conclude that ΘpT q is a typed tree of the same form as T , with types of edges obtained from
the decorations of the vertices of T by the application of compositions of maps Idbpi´1q bϕÐ b
Idbpn´iq and Idbpi´1q b ϕÑ b Id

bpn´iq. As ϕÐ and ϕÑ are injective, Θ is injective.

Proposition 20. Let Ω be a commutative EDS and V be a nonzero vector space.

1. The following assertions are equivalent:

(a) The dendriform algebra KΩ b Sh`ΩpV q is generated by the elements α b v, α P Ω,
v P V .

(b) ϕÐ is surjective.

2. The following assertions are equivalent:

(a) The commutative dendriform subalgebra of KΩ b Sh`ΩpV q generated by the elements
αb v, α P Ω, v P V , is free.

(b) ϕÐ is injective.
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Proof. 1. paq ùñ pbq. Let α, β P Ω. Let us choose a nonzero element of V . Then α b pβ b vq
belongs to the dendriform subalgebra of KΩb Sh`ΩpV q. As it is graded, it can be written under
the form:

αb pβ b vvq “
ÿ

i

αi b vi ă βi b wi “
ÿ

i

αi Ð βi b pαi Ÿ βi b viwiq.

where vi, wi P V and αi, βi P Ω for any i. Hence, there exists i, such that ϕÐpαi, βiq “ pα, βq.

1. pbq ùñ paq. Let us assume that ϕÐ is surjective. Let us denote by A the dendriform
subalgebra of KΩb Sh`ΩpV q generated by the elements αb v. Let us prove that any typed word
α2 . . . αk b v1 . . . vk, for any α1 P Ω, α1 b pα2 . . . αk b v1 . . . vkq belongs to A by induction on n.
It is obvious if n “ 1. Otherwise, let pβ1, β2q P Ω2, such that ϕpβ1, β2q “ pα1, α2q. Then:

β1 b v1 ă β2 b pα3 . . . αk b v2 . . . vkq “ β1 Ð β2 b pv1 ăβ1Ÿβ2 α3 . . . αk b v2 . . . vkq

“ α1 b pv1 ăα2 α3 . . . αk b v2 . . . vkq

“ α1 b pα2 . . . αk b v1 . . . vkq.

By the induction hypothesis, this belongs to A.

2. paq ùñ pbq. Let α, β, α1, β1 P Ω such that ϕÐpα, βq “ ϕÐpα
1, β1q. Let v P V , nonzero.

Then:

αb v ă β b v “ αÐ β b pαŸ β b vvq “ α1 Ð β1 b pα1 Ÿ β1 b vvq “ α1 b v ă β1 b v.

By freeness of KΩb Sh`ΩpV q, pα, βq “ pα
1, β1q.

3. pbq ùñ paq. Recall that the free commutative dendriform algebra generated by KΩ b V
is the shuffle algebra Sh`pKΩ b V q, with the usual half-shuffle product. Hence, there exists a
dendriform algebra morphism Φ : Sh`pKΩb V q ÝÑ KΩb Sh`ΩpV q, sending αb v to itself. For
any α1, . . . , αn P Ω, v1, . . . , vn P V , in Sh`pV q:

pα1 b v1q . . . pαn b vnq “ pα1 b v1q ă ppα2 b v2q . . . pαn b vnqq .

Hence, an easy induction allows to prove that

Ψppα1 b v1q . . . pαn b vnqq “ pϕÐ b Id
bpn´2qq ˝ . . . ˝ pIdbpn´2q b ϕÐqpα1 . . . αnq b v1 . . . vn.

As ϕÐ is injective, Ψ is injective.

3 Operad of Ω-dendriform algebras

We fix in this section an EDS pΩ,Ð,Ñ,Ÿ,Źq.

3.1 Combinatorial description of the operad

Let us denote by PΩ the (nonsymmetric) operad of Ω-dendriform algebras. It is generated by
elements ăα, ąαP Pp2q, with α P Ω, and the relations:

@α, β P Ω, ăβ ˝păα, Iq “ăαÐβ ˝pI,ăαŸβq` ăαÑβ ˝pI,ąαŹβq,

ąα ˝pI,ăβq “ăβ ˝pąα, Iq,

ąα ˝pI,ąβq “ąαÑβ ˝pąαŹβ, Iq` ąαÐβ ˝păαŸβ, Iq.
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As we know from Proposition 15 a combinatorial description of the free Ω-dendriform algebra
on one generator, we obtain a combinatorial description of this operad:

@n ě 1, PΩpnq “ KTΩpnq.

The composition is given by the actions of the products of KT `Ω . In particular:

I “ , ăα “ ăα “
1
pαq, ąα “ ąα “

1
pαq.

The operadic composition can be inductively computed with the help of the following formula:

T1

ł

α,β

T2 ˝ pT
1
1, . . . , T

1
kq “ T1 ˝ pT

1
1, . . . , T

1
i q ąα T

1
i`1 ăβ T2 ˝ pT

1
i`2, . . . , T

1
kq,

where T1 is a tree with i internal vertices, T2 is a tree with k ´ i ´ 1 internal vertices, and
T 11, . . . , T

1
k are trees.

Example 8. Here are examples of operadic compositions:

ăα ˝păβ, Iq “
1
pβq ăα “

1
2

pβ Ð α, β Ÿ αq ` 1
2

pβ Ñ α, β Ź αq,

ăα ˝pI,ăβq “ ăα
1
pβq “ 1

2

pα, βq,

ąα ˝păβ, Iq “
1
pβq ąα “

1
2

pα, βq,

ąα ˝pI,ăβq “ ąα
1
pβq “ 1 2

pα, βq,

ăα ˝pąβ, Iq “
1
pβq ăα “

1 2
pβ, αq,

ăα ˝pI,ąβq “ ăα
1
pβq “ 1

2

pα, βq,

ąα ˝pąβ, Iq “
1
pβq ąα “

1
2

pα, βq,

ąα ˝pI,ąβq “ ąα
1
pβq “ 1

2

pαÐ β, αŸ βq ` 1
2

pαÑ β, αŹ βq.

3.2 Associative products

Proposition 21. Let m P PΩp2q, written under the form

m “
ÿ

αPΩ

aα ăα `
ÿ

αPΩ

bα ąα .

Then m ˝ pI,mq “ m ˝ pm, Iq if, and only if, for any α, β P Ω:

bαbβ “
ÿ

ϕÑpα1,β1q“pα,βq

bα1bβ1 , aαaβ “
ÿ

ϕÐpα1,β1q“pα,βq

aα1aβ1 , (44)

bαaβ “
ÿ

ϕÐpα1,β1q“pα,βq

bα1bβ1 , aαbβ “
ÿ

ϕÑpα1,β1q“pα,βq

aα1aβ1 .
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Proof. Indeed:

m ˝ pI,mq “
ÿ

α,βPΩ

aαaβ
1

2

pα, βq `
ÿ

α,βPΩ

aαbβ
1

2

pα, βq

`
ÿ

α,βPΩ

bαbβ

¨

˝

1
2

pαÑ β, αŹ βq ` 1
2

pαÐ β, αŸ βq

˛

‚`
ÿ

α,βPΩ

bαaβ
1 2

pα, βq,

m ˝ pm, Iq “
ÿ

α,βPΩ

aαaβ

¨

˝

1
2

pαÑ β, αŹ βq ` 1
2

pαÐ β, αŸ βq

˛

‚`
ÿ

α,βPΩ

aαbβ
1 2

pβ, αq

`
ÿ

α,βPΩ

bαaβ
1

2

pα, βq `
ÿ

α,βPΩ

bαbβ
1

2

pα, βq.

Identifying, we obtain the announced equations.

Corollary 22. If Ω is nondegenerate, then m ˝ pI,mq “ m ˝ pm, Iq if, and only if, for any
α, β P Ω:

bαÑβbαŹβ “ bαbβ, aαÐβaαŸβ “ aαaβ, (45)
bαÐβaαŸβ “ bαbβ, aαÑβbαŹβ “ aαaβ.

In particular cases of EDS:

Proposition 23. 1. Let pΩ, ‹q be a group. In PEDSpΩ,‹,‹q, the nonzero associative products
are of the form

λ
ÿ

αPG

ăα ` ąα,

where λ is a nonzero scalar and G is a subgroup of pΩ, ‹q.

2. Let pH, ‹q be a group, K be a nonempty set and θ : K ÝÑ H be a map. In PEDS˚pH,‹,K,θq,
the nonzero associative products are of the form

ÿ

α1PK

λα1

˜

ÿ

αPG

ăpα,α1q ` ąpθpα1q‹α,α1q

¸

,

where pλα1qα1PK is a nonzero family of scalars with finite support and G is a subgroup of
pH, ‹q.

Proof. 1. In this case, (45) becomes:

bα‹βbα “ bαbβ, aα‹βaβ “ aαaβ,

bα‹βbβ “ bαaβ, aα‹βaα “ aαbβ.

We put Ga “ tα P Ω, aα ‰ 0u and Gb “ tα P Ω, bα ‰ 0u. At least one of them is not empty: let
us assume for example that Gb ‰ H. Let α P Gb. If β “ e is the unit of Ω:

bα‹ebα “ b2α “ bαbe,

so be “ bα ‰ 0: e P Gb and for any α P Gb, bα “ be. If α, β P Gb, then:

bα‹βbα “ bαbβ ‰ 0,

so α ‹ β P Gb. For any α P Gb, if β “ α´1:

bebα “ bαbα´1 ‰ 0,
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so α´1 P Gb: we proved that Gb is a subgroup of Ω. If β P Ga, then

aebβ “ ae‹βaβ “ a2
β ‰ 0,

so β P Gb: Ga Ď Gb. Conversely, if β P Gb,

beaβ “ be‹βbβ “ b2β ‰ 0,

so aβ ‰ 0: Gb Ď Ga. Moreover, as be “ bβ for any β P Ω, we obtain that aβ “ be. Putting
λ “ bβ and G “ Ga “ Gb, we obtain that

m “ λ
ÿ

αPG

ăα ` ąα .

Conversely, for such a m, (45) is satisfied, so m is associative.

2. In this case, (45) becomes:

bpβ,β1qbpθpβ1q‹β´1‹α,α1q “ bpα,α1qbpβ,β1q,

apα,α1qapα´1‹β,β1q “ apα,α1qapβ,β1q,

bpα,α1qapα´1‹β,β1q “ bpα,α1qbpβ,β1q,

apβ,β1qbpθpβ1q‹β´1‹α,α1q “ apα,α1qapβ,β1q.

For any α1 P K, we put:

Gapα
1q “ tα P H, apα,α1q ‰ 0u, Gbpα

1q “ tα P H, bpθpα1q‹α,α1q ‰ 0u.

Let α1 P K, such that Gapα1q ‰ H. For any α, β P Gapα1q:

apα,α1qapβ,α1q “ apα,α1qapα´1‹β,α1q, apβ,α1q “ apα´1‹β,α1q.

So α´1 ‹ β P Gapα
1q. Hence, Gapα1q is a subgroup of H. Moreover, there exists a nonzero scalar

aα1 such that for any α P Gapα1q, apα,α1q “ aα1 .
Let α1 P K, such that Gbpα1q ‰ H. For any α, β P Gbpα1q:

bpθpα1q‹α,α1qbpθpα1q‹β,α1q “ bpθpα1q‹β´1‹θpα1q´1‹θpα1q‹α,α1qbpθpα1q‹β,α1q,

bpθpα1q‹α,α1q “ bpθpα1q‹β´1‹α,α1q.

So β´1 ‹ α P Gbpα
1q. Hence, Gbpα1q is a subgroup of H. Moreover, there exists a nonzero scalar

bα1 such that for any α P Gbpα1q, bpθpα1q‹α,α1q “ bα1 .

Let α P Gapα1q. Then Gapα1q ‰ H, so is a subgroup of H, and the unit e of H belongs to
Gapα

1q. Then:
0 ‰ apα,α1qape,α1q “ ape,α1qbpθpα1q‹α,α1q.

Therefore, α P Gbpα1q: we obtain that Gapα1q Ď Gbpα
1q.

Let β P Gbpα1q. Then Gbpα1q ‰ H is a subgroup of H, and e P Gbpα1q. Hence:

0 ‰ bpθpα1q,α1qbpθpα1q‹β,α1q “ bpθpα1q,α1qapθpα1q´1‹θpα1q‹β,α1 .

We obtain that β P Gapα1q. Finally, for any α1 P K, Gapα1q “ Gbpα
1q. We denote this set by

Gpα1q.

If Gpα1q ‰ H, we obtain, for α “ β “ e:

aα1bα1 “ aα1aα1 .
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Consequently, bα1 “ aα1 . We denote by λα1 this scalar.

As m ‰ 0, at least one of the Gpα1q is nonempty. We consider

K 1 “ tα1 P K, Gpα1q ‰ Hu.

Let α1, β1 P K 1. For any α P Gpα1q, for β “ e:

λα1apα´1,β1q “ λα1λβ1 ‰ 0.

Hence, α´1 P Gpβ1q. As this is a subgroup, α P Gpβ1q, and Gpα1q Ď Gpβ1q. By symmetry,
Gpα1q “ Gpβ1q. We denote by G this subset. Then:

m “
ÿ

α1PK1

λα1
ÿ

αPG

ăpα,α1q ` ąpθpα1q‹α,α1q“
ÿ

α1PK

λα1
ÿ

αPG

ăpα,α1q ` ąpθpα1q‹α,α1q,

where we put λα1 “ 0 if α1 R K. Conversely, for such am, (45) is satisfied, som is associative.

Example 9. 1. If H is a null group, we obtain the case of EDSpΩq. The associative products
are of the form

ÿ

αPΩ

λαpăα ` ąαq,

where pλαqαPΩ is family of scalars with finite support.

2. If K is reduced to a single element, we obtain the case of EDS˚pΩ, ‹, ωq. The associative
products are of the form

λ
ÿ

αPH

ăα ` ąω‹α,

where λ is a scalar and H is a subgroup of pΩ, ‹q.

Proposition 24. Let Ω be an EDS. We suppose that there exist α0, β0 P Ω such that:

@α, β P Ω, αŸ β “ β0, αŹ β “ α0.

The associative products of PΩ are of the form

λpăβ0 ` ąα0q,

where λ is a scalar.

Proof. Let m be an associative product. In this case, (44) becomes:

bαbβ “

$

&

%

ÿ

α1Ñβ1“α

bα1bβ1 if β “ α0,

0 otherwise;
aαaβ “

$

&

%

ÿ

α1Ðβ1“α

aα1aβ1 if β “ β0,

0 otherwise;

bαaβ “

$

&

%

ÿ

α1Ðβ1“α

bα1bβ1 if β “ β0,

0 otherwise;
aαbβ “

$

&

%

ÿ

α1Ñβ1“α

aα1aβ1 if β “ α0,

0 otherwise.

In particular, if α “ β ‰ α0, b2α “ 0, so bα “ 0. Similarly, if β ‰ β0, aβ “ 0. By (6), (8), (10)
and (12):

α0 Ð α0 “ α0 Ñ α0 “ α0, β0 Ð β0 “ β0 Ñ β0 “ β0.

Hence, bα0aβ0 “ b2α0
, so bα0 “ 0 or bα0 “ aβ0 ; aβ0bα0 “ a2

β0
, so aβ0 “ 0 or bα0 “ aβ0 . Finally,

aβ0 “ bα0 “ λ and m “ λpăβ0 ` ąα0q. The converse is trivial.
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Example 10. Let us give the associative products in the 24 four cases of cardinality 2. Here, λ,
µ and ν are scalars.

A1 λpăa ` ąaq A2 λpăa ` ąaq

B1 λpăa ` ąaq B2 λpăa ` ąaq, µpąa ´ ąbq

C1 λpăa ` ąaq C2 λpăa ` ąbq

C3 λpăa ` ąaq, µpăb ` ąbq C4 λpăb ` ąaq

C5 λpăb ` ąbq D1 λpăa ` ąaq

D2 λpăa ` ąaq, µpăa ´ ăbq E1 λpăa ` ąaq

E2 λpăa ` ąbq E3 λpăa ` ąaq, µpăb ` ąbq, νpăa ´ ăbq

F1 λpăa ` ąaq F2 λpăa ` ąbq

F3 λpăa ` ąaq ` µpăb ` ąbq F4 λpăa ` ąaq, µpăa ` ăb ` ąa ` ąbq

F5 λpăa ` ąbq, νpăa ` ăb ` ąa ` ąbq G1 λpăa ` ąaq

G2 λpăa ` ąbq G3 λpăa ` ąaq, µpăb ` ąbq, νpąa ´ ąbq

H1 λpăa ` ąaq H2 λpăa ` ąaq, µpăa ` ăb ` ąa ` ąbq

3.3 Dendriform products

Proposition 25. Let ă,ąP Pp2q, written under the form

ă “
ÿ

αPΩ

aα ăα `
ÿ

αPΩ

bα ąα, ą “
ÿ

αPΩ

cα ăα `
ÿ

αPΩ

dα ąα,

Then pă,ąq satisfies the dendriform relations

ă ˝pă, Iq “ă ˝pI,ă ` ąq, ă ˝pą, Iq “ą ˝pI,ăq, ą ˝pI,ąq “ą ˝pă ` ą, Iq

if, and only if, for any α, β P Ω:

bαbβ “
ÿ

ϕÑpα1,β1q“pα,βq

bα1pbβ1 ` dβ1q, aαpaβ ` cβq “
ÿ

ϕÐpα1,β1q“pα,βq

aα1aβ1 , (46)

bαaβ “
ÿ

ϕÐpα1,β1q“pα,βq

bα1pbβ1 ` dβ1q, aαpbβ ` dβq “
ÿ

ϕÑpα1,β1q“pα,βq

aα1aβ1 ,

bαcβ “ 0,

0 “
ÿ

ϕÐpα1,β1q“pα,βq

dα1bβ1 , bαdβ “
ÿ

ϕÑpα1,β1q“pα,βq

dα1bβ1 ,

0 “
ÿ

ϕÑpα1,β1q“pα,βq

cα1aβ1 , cαaβ “
ÿ

ϕÐpα1,β1q“pα,βq

cα1aβ1 ,

cαcβ “
ÿ

ϕÐpα1,β1q“pα,βq

paα1 ` cα1qcβ1 , dαpbβ ` dβq “
ÿ

ϕÑpα1,β1q“pα,βq

dα1dβ1 ,

cαdβ “
ÿ

ϕÑpα1,β1q“pα,βq

paα1 ` cα1qcβ1 , dαpaβ ` cβq “
ÿ

ϕÐpα1,β1q“pα,βq

dα1dβ1 .

Proof. By direct computations in the operad PΩ, as for Proposition 21.

Note that if pă,ąq satisfies the dendriform relations, then � “ă ` ą is associative:

� ˝ p�, Iq “ � ˝ pI,�q.

In the nondegenerate case, the knowledge of the associative products of PΩ induces the knowledge
of all dendriform products:
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Corollary 26. Let Ω be a nondegenerate EDS. For any associative product

m “
ÿ

αPΩ

aα ăα `
ÿ

αPΩ

dα ąαP Pp2q,

the only pairs of dendriform products pă,ąq such that ă ` ą“ m are the following:

pm, 0q, p0,mq,

˜

ÿ

αPΩ

aα ăα,
ÿ

αPΩ

dα ąα

¸

.

Proof. Let pă,ąq be a pair of dendriform products andm “ă ` ą. As ϕÐ and ϕÑ are bijective,
(46) gives (third, fourth fifth and eighth rows, first column) that:

@α, β P Ω, bαcβ “ 0, dαbβ “ 0, cαaβ “ 0, cαbβ “ 0.

If one of the bβ is nonzero, then for any α P Ω, cα “ dα “ 0, so ą“ 0 and ă“ m. Similarly, if
one of the cβ is nonzero, then for ă“ 0 and ą“ m. If for any β P Ω, bβ “ cβ “ 0, then:

ă “
ÿ

αPΩ

aα ăα, ą “
ÿ

αPΩ

dα ąα . (47)

Conversely, if m is an associative product, written under the form:

m “
ÿ

αPΩ

aα ăα `dα ąα,

then obviously, p0,mq and pm, 0q are pairs of dendriform products. If we define pă,ąq by (47),
that is to say bα “ cα “ 0 for any α P Ω, then (44) implies (46), so pă,ąq is dendriform.

3.4 Koszul dual

When Ω is finite, the operad PΩ is a quadratic algebra, finitely generated. By direct computa-
tions, we obtain the Koszul dual of PΩ:

Proposition 27. Let Ω be a finite EDS. The Koszul dual P !
Ω of PΩ is generated by the elements

%α, $α, α P Ω, with the relations:

@α, β P Ω, %β ˝p%α, Iq “%αÐβ ˝pI,%αŸβq “%αÑβ ˝pI,$αŹβq,

$β ˝pI,%αq “%α ˝p$β, Iq,

$α ˝pI $βq “$αÑβ ˝p$αŹβ, Iq “$αÐβ ˝p%αŸβ, Iq.

Definition 28. Let pΩ,Ð,Ñ,Ÿ,Źq be an EDS. We consider the following linear map:

ϕ :

"

KΩ2 ÝÑ KΩ2 ˆKΩ2

pα, βq ÝÑ pϕÐpα, βq, ϕÑpα, βqq.

The dimension of the kernel of ϕ is called the corank of Ω and denoted by coRkpΩq. We shall
say that Ω is weakly nondegenerate if coRkpΩq “ 0.

Example 11. 1. If ϕÐ or ϕÑ is injective (which happens if Ω is nondegenerate), then Ω is
weaky nondegenerate.

2. If pΩ,Ð,Ñq is a diassociative semigroup, then EDSpΩ,Ð,Ñq is weakly nondegenerate.
Indeed, in this case,

ϕpα, βq “ ppαÐ β, βq, pαÑ β, βqq,

so ϕ is injective.
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3. Here are the coranks of the 24 EDS of cardinality 2.

A1 3 A2 1 B1 2 B2 0

C1 2 C2 2 C3 0 C4 2

C5 2 D1 2 D2 0 E1 2

E2 2 E3 0 F1 1 F2 1

F3 0 F4 0 F5 0 G1 2

G2 2 G3 0 H1 2 H2 0

Proposition 29. Let pΩ,Ð,Ñ,Ÿ,Źq be a finite EDS. Then:

dimKpP !
Ωp3qq “ 3|Ω|2 ` 2coRkpΩq.

Proof. For any mp1q,mp2q P t%,$u, we shall consider the following subspaces of the free operad
generated by $α, %α, with α P Ω:

Lpm1,m2q “ V ect
´

mp1qα ˝ pm
p2q
β , Iq, α, β P Ω

¯

,

Rpm1,m2q “ V ect
´

mp1qα ˝ pI,m
p2q
β q, α, β P Ω

¯

.

According to the form of the relations defining P !
Ω:

P !
Ωp3q “ Rp$,%q ‘

Lp$,$q ‘ Lp$,%q

E1
‘
Rp%,%q ‘Rp%,$q

E2
,

with:

E1 “ V ectp$αÐβ ˝p%αŸβ, Iq´ $αÑβ ˝p$αŹβ, Iq, pα, βq P Ω2q,

E2 “ V ectp%αÐβ ˝pI,%αŸβq´ %αÑβ ˝pI,$αŹβq, pα, βq P Ω2q.

Hence:
dimKpP !

Ωp3qq “ 5|Ω|2 ´ dimKpE1q ´ dimKpE2q.

By definition of ϕ, dimKpE1q “ dimKpE2q “ dimKpImpϕqq “ |Ω|
2 ´ coRkpΩq, which gives the

result.

Theorem 30. Let Ω be a finite EDS.

1. If PΩ is Koszul, then Ω is weaky nondegenerate.

2. If Ω is nondegenerate, then PΩ is Koszul.

Proof. We put ω “ |Ω|.
1. Let us assume that PΩ is Koszul. The Poincaré-Hilbert formal series of PΩ is:

F “
8
ÿ

k“1

dimKpPΩpnqqX
n “ X ` 2ωX2 ` 5ω2X3 ` . . . “

1´
?

1´ 4ωX

2ω2X
´

1

ω
.

We denote by G the Poincaré-Hilbert formal series of P !
Ω. As PΩ is Koszul:

F p´Gp´Xqq “ X,

so:

G “
X

p1´ ωXq2
“

8
ÿ

n“1

nωn´1Xn,

so dimKpP !
Ωp3qq “ 3ω2. Therefore, coRkpΩq “ 0.
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2. We use the rewriting method of [3] to prove that P !
Ω is Koszul. The rewriting rules are

the following:

%β ˝p%α, Iq

))SSS
SSSS

SSSS
SSS

%αÑβ ˝pI,$αŹβq

%αÐβ ˝pI,%αŸβq

55kkkkkkkkkkkkkk

$αÑβ ˝p$αŹβ, Iq

((RR
RRR

RRR
RRR

RR

$α ˝pI,$βq

$αÐβ ˝p%αŸβ, Iq

66lllllllllllll

%β ˝p$α, Iq // $α ˝pI,%βq

There are 14 critical trees, giving 14 diagrams which turn out to be all confluent. Let us describe
two of them.

%γ ˝p%β ˝p%α, Iqq //

��

%γ ˝p%αÐβ ˝pI,%αŸβqq

��
%βÐγ ˝p%α,%βŸγq

��

%pαÐβqÐγ ˝pI,%pαÐβqŸγ ˝p%αŸβ, Iqq

��
%α1 ˝pI,%β1 ˝pI,%γ1qq

?
%α2 ˝pI,%β2 ˝pI,%γ2qq

with:

α1 “ αÐ pβ Ð γq, α2 “ pαÐ βq Ð γ,

β1 “ αŸ pβ Ð γq, β2 “ pαŸ βq Ð ppαÐ βq Ÿ γq,

γ1 “ β Ÿ γ, γ2 “ pαŸ βq Ÿ ppαÐ βq Ÿ γq.

By (1), (6) and (7), pα1, β1, γ1q “ pα2, β2, γ2q.

We denote the inverse of ϕÐ by ψÐ “ pψ1
Ð, ψ

2
Ðq.

$γ ˝p%β ˝p%α, Iqq //

��

$γ ˝p%αÐβ ˝pI,%αŸβqq

��
$ψ1

Ðpγ,βq
˝p%α,$ψ2

Ðpγ,βq
q

��

$ψ1
Ðpγ,αÐβq

˝pI,$ψ2
Ðpγ,αÐβq

˝p%αŸβ, Iqq

��
$α1 ˝pI,$β1 ˝pI,$γ1qq

?
$α2 ˝pI,$β2 ˝pI,$γ2qq

with:

α1 “ ψ1
Ðpψ

1
Ðpγ, βq, αq, α2 “ ψ1

Ðpγ, αÐ βq,

β1 “ ψ1
Ðpψ

1
Ðpγ, βq, αq, β2 “ ψ1

Ðpψ
2
Ðpγ, αÐ βq, αŸ βq,

γ1 “ ψ2
Ðpγ, βq, γ2 “ ψ1

Ðpψ
2
Ðpγ, αÐ βq, αŸ βq.

By definition:
pϕÐ b Idq ˝ pIdb ϕÐqpα2, β2, γ2q “ pγ, αÐ β, αŸ βq.

Let us compute
pϕÐ b Idq ˝ pIdb ϕÐqpα1, β1, γ1q “ pα

1
1, β

1
1, γ

1
1q.
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We obtain, by (1):

α11 “ α1 Ð pβ1 Ð γ1q “ pα1 Ð β1q Ð γ1 “ ψ1pγ, βq Ð ψ2pγ, βq “ γ.

Moreover, by (6):

β11 “ α1 Ÿ pβ1 Ð γ1q “ pα1 Ÿ β1q Ð ppα1 Ð β1q Ÿ γ1q “ αÐ pψ1
Ðpγ, βq Ÿ ψ

2
Ðpγ, βqq “ αÐ β.

By (7):

γ11 “ β1 Ÿ γ1 “ pα1 Ÿ β1q Ÿ ppα1 Ð β1q Ÿ γ1 “ αŸ pψ1
Ðpγ, βq Ÿ ψ

2
Ðpγ, βqq “ αŸ β.

So:
pϕÐ b Idq ˝ pIdb ϕÐqpα1, β1, γ1q “ pϕÐ b Idq ˝ pIdb ϕÐqpα2, β2, γ2q.

As ϕÐ is injective, pα1, β1, γ1q “ pα2, β2, γ2q.

Example 12. The first point implies that the operads associated to the EDS A1, A2, B1, C1, C2,
C4, C5, D1, E1, E2, G1, G2 and H1 are not Koszul. The second point implies that the operads
associated to the EDS F2, F3, F4, F5, H2 are Koszul. We do not know if the operads associated
to B2, C3, D2, E3 and G3 are Koszul or not.

4 Combinatorial description of the products

4.1 On typed trees

Definition 31. Let k ě 0, α2, . . . , αk P Ω, β1, . . . , βk P Ω \ tHu and T1, . . . , Tk P Ω, with the
convention that βi “ H if and only if Ti “ . We put:

Rpα2,...,αkqpβ1 b T1, . . . , βk b Tkq “

$

&

%

if k “ 0,

T1

ł

α1,α2

Rpα3,...,αkqpβ2 b T2, . . . , βk b Tkq if k ě 2;

Lpα2,...,αkqpβ1 b T1, . . . , βk b Tkq “

$

&

%

if k “ 0,

Lpα3,...,αkqpβ2 b T2, . . . , βk b Tkq
ł

α2,α1

T1 if ě 2.

Let us denote by Lk the ladder of length k:

Lk “

?>=<89:;k

...

?>=<89:;2

?>=<89:;1
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Roughly speaking, Rpα2,...,αkqpβ1bT1, . . . , βkbTkq, (respectively Lpα2,...,αkqpβ1bT1, . . . , βkbTkq)
is obtained by grafting Ti on the vertex i of Lk for any i on the left (respectively on the right).
The type of the edge from i to the root of Ti is βi; the type of the root between the vertex i´ 1
and the vertex i is αi for any i ě 2.

Note that any tree T in TΩ can uniquely written under the form

T “ Rpα2,...,αkqpβ1 b T1, . . . , βk b Tkq.

This is the right comb decomposition of T . It can also be uniquely written under the form

T “ Lpα12,...,α1lqpβ
1
1 b T

1
1, . . . , β

1
l b T

1
l q.

This is the left comb decomposition of T .

Definition 32. Let k, l ě 0. A pk, lq-shuffle is a permutation σ P Sk`l such that

σp1q ă . . . ă σpkq, σpk ` 1q ă . . . ă σpk ` lq.

The set of pk, lq-shuffle will be denoted by shpk, lq. If σ P shpk, lq, then σ´1p1q P t1, k ` 1u: we
put

shăpk, lq “ tσ P shpk, lq, σ
´1p1q “ 1u, shąpk, lq “ tσ P shpk, lq, σ

´1p1q “ k ` 1u.

Notations 2. Let k, l ě 0, σ P shpk, lq, α2, . . . , αk`l P Ω, β1, . . . , βk`l P Ω\tHu and T1, . . . , Tk`l P
Ω, with the convention that βi “ H if and only if Ti “ . Let

T
pα2,...,αk`lq
σ pβ1 b T1, . . . , βk b Tk;βk`1 b Tk`1, . . . , βk`l b Tk`lq

be the typed tree obtained in the following process: starting form the ladder Lk`l,

• For any 1 ď i ď k ` l, graft Tσ´1piq on the vertex i, on the left if σ´1piq ď k, and on right
otherwise.

• The type of the edge between the vertex i and the root of Tσ´1piq is βσ´1piq.

• The type of the edge between the vertex i´ 1 and i is αi for any i ě 2.

Notations 3. Let k, l ě 0,with k ` l ě 1, and σ P shpk, lq. We define a map Dk,l
σ : Ωk`l´1 ÝÑ

Ωk`l´1:

• If k “ 0 or l “ 0, then σ “ Idk`l.We put Dk,l
σ “ IdΩk`l´1 .

• Otherwise:

– If σ P shăp1, lq, then σ “ Idl`1, and

D1,l
σ pα2, . . . , αk`1q “ pα2, . . . , αk`1q.

– If σ P shăpk, lq, with k ě 2, let σ1 be the following permutation:

σ1 “ pσp2q ´ 1, . . . , σpk ` lq ´ 1q P shpk ´ 1, lq.

If σ1 P shăpk ´ 1, lq, for any pα2, . . . , αk`lq P Ωk`l´1:

Dk,l
σ pα2, . . . , αk`lq “

´

α2 Ð αk`1, D
k´1,l
σ1 pα3, . . . , αk, α2 Ÿ αk`1, . . . , αk`lq

¯

.

If σ1 P shąpk ´ 1, lq, for any pα2, . . . , αk`lq P Ωk`l´1:

Dk,l
σ pα2, . . . , αk`lq “

´

α2 Ñ αk`1, D
k´1,l
σ1 pα3, . . . , αk, α2 Ź αk`1, . . . , αk`lq

¯

.
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– If σ P shąpk, 1q, then σ “ p2, 3 . . . , k ` 1, 1q and

Dk,1
σ pα2, . . . , αk`1q “ pαk`1, α2, . . . , αkq.

– If σ P shąpk, lq, with l ě 2, let σ1 be the following permutation:

σ1 “ pσp1q ´ 1, . . . , σpkq ´ 1, σpk ` 2q ´ 1, σpk ` lq ´ 1q P shpk, l ´ 1q.

If σ1 P shăpk, l ´ 1q, for any pα2, . . . , αk`lq P Ωk`l´1:

Dk,l
σ pα2, . . . , αk`lq “

´

αk`1 Ð αk`2, D
k´1,l
σ1 pα2, . . . , αk, αk`1 Ÿ αk`2, . . . , αk`lq

¯

.

If σ1 P shąpk, l ´ 1q, for any pα2, . . . , αk`lq P Ωk`l´1:

Dk,l
σ pα2, . . . , αk`lq “

´

αk`1 Ñ αk`2, D
k´1,l
σ1 pα2, . . . , αk, αk`1 Ź αk`2, . . . , αk`lq

¯

.

Example 13.

D2,1
p123qpα2, α3q “ pα2 Ð α3, α2 Ÿ α3q, D1,2

p213qpα2, α3q “ pα2 Ð α3, α2 Ÿ α3q,

D2,1
p132qpα2, α3q “ pα2 Ñ α3, α2 Ź α3q, D1,2

p312qpα2, α3q “ pα2 Ñ α3, α2 Ź α3q,

D2,1
p231qpα2, α3q “ pα3, α2q, D1,2

p123qpα2, α3q “ pα2, α3q.

Proposition 33. Let us consider two elements of TΩ:

T “ Rpα2,...,αkqpβ1 b T1, . . . , βk b Tkq,

T 1 “ Lpαk`2,...,αk`lqpβk`1 b Tk`1, . . . , βk`l b Tk`lq

Let αk`1 P Ω. Then:

T ăαk`1
T 1 “

ÿ

σPshăpk,lq

T
Dk,lσ pα2,...,αk`lq
σ pβ1 b T1, . . . , βk b Tk;βk`1 b Tk`1, . . . , βk`l b Tk`lq,

T ąαk`1
T 1 “

ÿ

σPshąpk,lq

T
Dk,lσ pα2,...,αk`lq
σ pβ1 b T1, . . . , βk b Tk;βk`1 b Tk`1, . . . , βk`l b Tk`lq.

Proof. If k “ 0, observe that:

shăp0, lq “ H, shąp0, lq “ tIdlu,

ăα1 T
1 “ 0, ąα1 T

1 “ T 1.

So the result is immediate if k “ 0. It is proved in the same way if l “ 0. We now assume that
k, l ě 1, and we proceed by induction on k ` l. There is nothing more to prove if k ` l ď 1.
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Otherwise, by the induction hypothesis, putting S “ Rpα3,...,αkqpβ2 b T2, . . . , βk b Tkq,:

T ăαk`1
T 1 “ T1

ł

β1,α2

S ăαk`1
T 1

“ T1

ł

β1,α2Ðαk`1

pS ăα2Ÿαk`1
T 1q ` T1

ł

β1,α2Ñαk`1

pS ąα2Źαk`1
T 1q

“
ÿ

σPshăpk´1,lq

T1

ł

β1,α2Ðαk`1

T
Dk´1,l
σ pα3,...,α2Ÿαk`1,...αk`lq

σ pβ2 b T2, . . . , βk`l b Tk`lq

`
ÿ

σPshąpk´1,lq

T1

ł

β1,α2Ñαk`1

T
Dk´1,l
σ pα3,...,α2Źαk`1,...αk`lq

σ pβ2 b T2, . . . , βk`l b Tk`lq

“
ÿ

σPshăpk´1,lq

T
Dk,lσ pα2,...,αk`lq
σ pβ1 b T1, . . . , βk`l b Tk`lq

`
ÿ

σPshąpk´1,lq

T
Dk,lσ pα2,...,αk`lq
σ pβ1 b T1, . . . , βk`l b Tk`lq

“
ÿ

σPShpk,lq

T
Dk,lσ pα2,...,αk`lq
σ pβ1 b T1, . . . , βk`l b Tk`lq,

where σ “ p1, σp1q ` 1, . . . , σpk ` l ´ 1q ` 1q. The formula for T ąαk`1
T 1 is proved in the same

way.

The formulas for Dk,l
σ can be simplified when Ÿ and Ź are trivial:

Proposition 34. Let pΩ,Ð,Ñq be a diassociative semigroup. We work with the EDS EDSpΩq.
Let k, l ě 0, σ P shpk, lq, and α2, . . . , αk`l P Ω. We put:

1. For any 2 ď i ď k ` l:

Lσpiq “

$

’

&

’

%

αk`1 if i ď σp1q,

αp if σpp´ 1q ă i ď σppq, with 2 ď p ď k,

H if i ą σpkq;

Rσpiq “

$

’

&

’

%

αk`1 if i ď σpk ` 1q,

αp if σpp´ 1q ă i ď σppq, with k ` 2 ď p ď k ` l,

H if i ą σpk ` lq.

2. For any 2 ď i ď k ` l,

Dσpiq “

#

Lσpiq Ð Rσpiq if σ´1piq ď k,

Lσpiq Ñ Rσpiq if σ´1piq ą k,

with the convention αÐH “ HÑ α “ α for any α P Ω.

Then:
Dk,l
σ pα2, . . . , αk`lq “ pDσp2q, . . . , Dσpk ` lqq.

Proof. Induction on k ` l.

Remark 6. Working with Ω reduced to a single element, we obtain the dual description of the
coproduct of the Hopf algebra YSym described in [2].

Corollary 35. Let Ω be a set. We work in EDSpΩq. For any k, l ě 0, for any σ P shpk, lq:

Dk,l
σ pα2, . . . , αk`lq “ pασ´1p2q, . . . , ασ´1pk`lqq,

with the convention α1 “ αk`1.

Proof. Let 2 ď i ď k ` l. If σ´1piq ď k, then Dσpiq “ Lσpiq “ ασ´1piq. If σ´1piq ą k, then
Dσpiq “ Rσpiq “ ασ´1piq.
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4.2 On typed words

Remark that:

KΩb Sh`ΩpV q “
8
à

n“1

pKΩqbn b V bn.

Proposition 36. Let Ω be an EDS, and V be a vector space. For any α2, . . . , αk`l P Ω, for any
v1, . . . , vk`l P V :

α2 . . . αk b v1 . . . vk ăαk`1
αk`2 . . . αk`l b vk`1 . . . vk`l

“
ÿ

σPshăpk,lq

Dk,l
σ pα2, . . . , αk`lq b vσ´1p1q . . . vσ´1pk`lq,

α2 . . . αk b v1 . . . vk ąαk`1
αk`2 . . . αk`l b vk`1 . . . vk`l

“
ÿ

σPshąpk,lq

Dk,l
σ pα2, . . . , αk`lq b vσ´1p1q . . . vσ´1pk`lq.

Proof. Similar as the proof of Proposition 33.

5 Hopf algebraic structures

5.1 Existence of dendriform bialgebraic structures

Let us recall the notion of dendriform bialgebra introduced by Loday and Ronco [9, 10, 11, 12]:

Definition 37. A dendriform bialgebra is a family pA,ă,ą,∆q, where pA,ă,ąq is a dendriform
algebra, pA,∆q a coassociative coalgebra (not necessarily counitary) such that, for any x, y P A:

∆px ă yq “ xb y ` x1 ă y b x2 ` x1 b x2 ¨ y ` x ă y1 b y2 ` x1 ă y1 b x2 ¨ y2,

∆px ą yq “ y b x` x1 ą y b x2 ` y1 b x ¨ y2 ` x ą y1 b y2 ` x1 ą y1 b x2 ¨ y2,

where ¨ “ă ` ą is the associative product associated to pA,ă,ąq. We use Sweedler’s notations
∆paq “ a1 b a2 for any a P A.

Proposition 38. Let Ω be an extended disasociative semigroup. If there exists a nonzero graded
Ω-dendriform algebra A, with A0 “ p0q, with a homogeneous coproduct ∆ making KΩ b A a
dendriform bialgebra, then ϕÐ and ϕÑ are injective.

Proof. Let a be a nonzero element of A of minimal degree n. As n ě 0, necessarily, for any
α P Ω,

∆pαb aq “ 0.

Let α, β, α1, β1 P Ω, such that ϕÐpα, βq “ ϕÐpα
1, β1q. Then, in KΩbA:

αb a ă β b a “ αÐ β b a ăαŸβ a “ α1 Ð β1 b a ăα1Ÿβ1 a “ α1 b a ă β1 b a.

Hence, by the compatibility between ∆ and ă:

∆pαb a ă β b aq “ pαb aq b pβ b aq “ ∆pα1 b a ă β1 b aq “ pα1 b aq b pβ1 b aq.

As a ‰ 0, pα, βq “ pα1, β1q. Using the compatibility between ∆ and ą, we obtain that ϕÑ is
injective.

Proposition 39. If Ω is a nondegenerate EDS, there exists a unique coproduct ∆ on KΩbKT `Ω ,
making it a dendriform bialgebra, such that:

@α P Ω, ∆pαb q “ 0.

Moreover, this dendriform bialgebra is graded by the number of internal vertices.
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Proof. If Ω is nondegenerate, by Proposition 19, KΩbKT `Ω is freely generated, as a dendriform
algebra, by the elements αb . From [11, 9, 10, 12, 2], such a ∆ exists and is unique.

Proposition 40. Let Ω be a nondegenerate EDS and let V be a nonzero vector space. The
following conditions are equivalent:

1. There exists a unique coproduct on KΩb Sh`ΩpV q, making it a dendrifrom bialgebra, such
that for any v P V , for any α P Ω, ∆pαb vq “ 0.

2. Ω is commutative.

Proof. 1. ùñ 2. Let pα, βq P Ω2. As Ω is nondegenerate, there exists a unique pα1, β1q P Ω2, such
that ϕÐpα, βq “ ϕÑpα

1, β1q. Let v be a nonzero element of V . By construction of pα1, β1q:

αb v ă β b v “ αÐ β b pαŸ β b vvq “ α1 Ñ β1 b pα1 Ź β1 b vvq “ α1 b v ą β1 b v.

Hence:

∆pαb v ă β b vq “ pαb vq b pβ b vq “ ∆pα1 b v ą β1 b vq “ pβ1 b vq b pα1 b vq.

As v ‰ 0, pα1, β1q “ pβ, αq, so, by definition of pα1, β1q:

β Ñ α “ αÐ β, β Ź α “ αŸ β.

Therefore, Ω is commutative.

2. ùñ 1. By Proposition 20, KΩb Sh`ΩpV q is freely generated, as a commutative dendriform
algebra, by KΩb V . From [2, 11, 5], such a ∆ exists and is unique.

5.2 Combinatorial description of the coproducts on typed trees

Let us generalize the combinatorial description of the coproduct given in [14]. We work with
KΩb T `Ω where Ω is a nondegenerate EDS. We shall use the notations of Proposition 6.

Notations 4. 1. For any α P Ω, let ϕđ
α and ϕ§

α : Ω ÝÑ Ω defined by:

ϕđ
αpβq “ β đ α, ϕ§

αpβq “ α § β.

2. Let T P T `Ω and let α0 P Ω. Let us choose an internal edge e of T .

(a) We denote by Te the typed plane binary subtree of T formed by all the vertices of T
which are born from e.

(b) Let e1, . . . , ek be the internal edges on the unique path in T from its root to the
extremity of e; in particular, ek “ e. For any i, let αi be the type of ei, and:

• �i “ đ if ei is a right edge;
• �i “ § if ei is a left edge.

We then put:
Tepα0q “ ϕ�k

αk
˝ . . . ˝ ϕ�1

α1
pα0q b Te P KΩbKT `Ω .

Definition 41. Let T P T `Ω .

1. A cut of T is a nonempty subset c of the set of internal edges of T .

2. A cut of T is admissible if any path in the tree meets at most one element of c. The set
of admissible cuts of T is denoted by AdmpT q. Note that if c is an admissible cut of T , its
elements are naturally ordered from left to right, and we shall write c “ te1 ă . . . ă eku.

42



3. Let c be an admissible cut of T . The typed plane binary subtree obtained from T by deleting
Te for any e P c is denoted by RcpT q.

Proposition 42. Let Ω be a nondegenerate EDS, and let T P T `Ω and α P Ω. Then:

∆pαb T q “
ÿ

c“te1ă...ăekuPAdmpT q

pαbRcpT qq b pTe1pαq ¨ . . . ¨ Tekpαqq,

where ¨ “ă ` ą.

Proof. First step. Let us first prove that, for any admissible cut c P AdmpT q, there exists a tree
ιcpα b RcpT qq obtained from α b RcpT q by an action on the types of the internal edges and on
α, such that:

∆pαb T q “
ÿ

c“te1ă...ăekuPAdmpT q

ιcpαbR
cpT qq b pTe1pαq ¨ . . . ¨ Tekpαqq.

For any trees T1, T2, for any α, β P Ω:

αb
ł

H,γ

T2 “ β ð γ b ă β đ γ b T2,

αb T1

ł

β,H

“ β § αb T1 ą β ñ αb ,

αb T1

ł

β,γ

T2 “ β § αb T1 ą pβ ñ αq ð γ b ă α đ γ b T2.

Remark that if T “ T1
Ž

α,β T2, then any admissible cut c of T is of the form c1\ c2, where ci is
either an admissible cut, or the empty cut, or the total cut (which means that RcpT q “ H), of
ci; at least c1 or c2 is not empty. Then ιcpαbRcpT qq is inductively defined by:

• If c is total, then ιcpαbRcpT qq “ Hb .

• If c is empty, then ιcpαbRcpT qq “ αb T .

• If c “ c1 \ c2, then:

ιcpαbR
cpT qq “ ιc1pβ § αb T1q ą pβ ñ αq ð γ b ă ιc2pα đ γ b T2q.

Using the compatibilities between the dendriform products and the coproducts, we obtain the
result by induction on the number of internal vertices of T .

Second step. Let us prove that ιcpαbRcpT qq “ αbRcpT q by induction on the number n of
internal vertices of T . It is obvious if n “ 1. Otherwise, we put T “ T1

ł

β,γ

T2, and c “ c1 \ c2.

Then, using the induction hypothesis on T1 and T2:

ιcpαbR
cpT qq “ ιc1pβ § αbRc1pT1qq ą pβ ñ αq ð γ b ă ιc2pα đ γ bRc2pT2qq

“ β § αbRc1pT1q ą pβ ñ αq ð γ b ă α đ γ bRc2pT2q

“ pβ § αq Ñ ppβ ñ αq ð γq bRc1pT1q ąpβ§αqŹppβñαqðγq ă α đ γ bRc2pT2q.

By (34):

pϕÑ b Idq ˝ pIdb ϕ
´1
Ð q “ pτ b Idq ˝ pIdb ϕ

´1
Ð q ˝ pτ b Idq ˝ pϕÐ b Idq,

so, for any α1, β1, γ1 P Ω:

pα1 Ñ pβ1 ð γ1q, α1 Ź pβ1 ð γ1q, β1 đ γ1q “ ppα1 Ñ β1q ð γ1, α1 Ź β1, pα1 Ñ β1q đ γ1q.
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For α1 “ β § α, β1 “ β ñ α and γ1 “ γ, we obtain:

pβ § αq Ñ ppβ ñ αq ð γq “ ppβ § αq Ñ pβ ñ αqq ð γ “ α ð γ,

pβ § αq Ź ppβ ñ αq ð γq “ pβ § αq Ź pβ ñ αq “ β.

Hence:

ιcpαbR
cpT qq “ α ð γ bRc1pT1q ąβ ă α đ γ bRc2pT2q

“ α ð γ bRc1pT1q
ł

β,H

ă α đ γ bRc2pT2q

“ pα ð γq Ð pα đ γq bRc1pT1q
ł

β,H

ăpαðγqŸpαđγq R
c2pT2q

“ αbRc1pT1q
ł

β,H

ăγ R
c2pT2q

“ αbRc1pT1q
ł

β,γ

Rc2pT2q

“ αbRcpT q.

Hence, ιcpαbRcpT qq “ αbRcpT q for any admissible cut of any tree T .

Remark 7. Working with Ω reduced to a single element, we obtain the dual description of the
product of the Hopf algebra YSym described in [2].

Example 14. 1. Let pΩ,Ð,Ñq be a diassociative monoid. We assume that EDSpΩ,Ð,Ñq is
nondegenerate. In this case, for any α, β P Ω, ϕŸα pβq “ ϕŹα pβq “ α. Hence, for any edge e
of a given tree T , of type αe, for any α0 P Ω:

Tepα0q “ αe b Te.

2. Let pΩ, ‹q be a group. In EDS˚pΩ, ‹q, for any α, β P Ω, ϕŸα pβq “ ϕŹα pβq “ β ‹ α. Hence,
for any edge e of a given tree T , of type αe, for any α0 P Ω:

Tepα0q “ α0 ‹ . . . ‹ αk b Te.

5.3 Combinatorial description of the coproducts on typed words

Proposition 43. Let Ω be a nondegenerate commutative EDS. We use the notations of Proposi-
tion 6. In the dendriform bialgebra KΩbSh`ΩpV q, for any α1, . . . , αn P Ω, for any v1, . . . , vn P V :

∆pα1 . . . αn b v1 . . . vnq

“

n´1
ÿ

i“1

pα1 . . . αi b v1 . . . viq b ppα1 đ . . . đ αi`1qαi`2 . . . αn b vi`1 . . . vnq .

Proof. We work with the Ω-dendriform algebra A of Ω-typed plane binary trees which internal
vertices are decorated by V . All the results presented for nondecorated trees can be extended to
this context. For any v P V , we denote by pvq the plane binary tree which unique internal
vertex is decorated by v. By freeness, there exists a unique Ω-dendriform algebra morphism Φ
from A to Sh`ΩpV q, sending pvq to v for any v P V . It naturally induces a dendriform algebra
morphism from KΩbA to KΩbSh`ΩpV q, also denoted by Φ. For any v P V , any α P Ω, αb pvq
is primitive in KΩbA, and αbv is primitive in KΩbSh`ΩpV q: this implies that Φ is a dendriform
bialgebra morphism.
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Let us introduce some notations. For any n ě 1 and α2, . . . , αn P Ω, Rnpα2 . . . αnq is
inductively defined by:

R1 “ , Rnpα2 . . . αnq “
ł

H,α2

Rn´1pα3 . . . αnq if n ě 2.

Note that the underlying plane binary tree of Rnpα2 . . . αnq is a right comb. For example:

R2pα2q “
1
pα2q, R3pα2α3q “

1
2

pα2, α3q.

For v1, . . . , vn P V we denote by Rnpα2 . . . αn; v1 . . . vnq the Ω-typed plane binary tree by giving
the n internal vertices of Rnpα2 . . . αnq, naturally ordered starting from the root, the decorations
v1, . . . , vn.

By definition of the products on trees:

pα ð βq b pvq ă pα đ βq bRnpα2 . . . αn; v1 . . . vnq

“ pα ð βq Ð pα đ βq b pvq ăpαðβqŸpαđβq Rnpα2 . . . αn; v1 . . . vnq

“ αb pvq ăβ Rnpα2 . . . αn; v1 . . . vnq

“ αb
ł

H,β

Rnpα2 . . . αn; v1 . . . vnq

“ αbRn`1pβα2 . . . αn; vv1 . . . vnq.

An easy induction proves that:

Φpα1 bRnpα2 . . . αn; v1 . . . vnqq “ α1 . . . αn b v1 . . . vn.

The admissible cuts of Rn are the cuts of a single internal edge: hence, by Proposition 42,

∆pα1 bRnpα2 . . . αn; v1 . . . vnqq

“

n´1
ÿ

i“1

pα1 bRipα2 . . . αi; v1 . . . viqq b pϕ
đ
αi`1

˝ . . . ˝ ϕđ
α2
pα1q bRn´ipαi`2 . . . αn; vi`1 . . . vnqq

“

n´1
ÿ

i“1

pα1 bRipα2 . . . αi; v1 . . . viqq b pα1 đ . . . đ αi`1 bRn´ipαi`2 . . . αn; vi`1 . . . vnqq.

The result is obtained by application of Φ.
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