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Abstract

We introduce the concept of TRAP (Traces and Permutations), which can roughly be
viewed as a wheeled PROP (Products and Permutations) without unit. TRAPs are equipped
with a horizontal concatenation and partial trace maps. Continuous morphisms on an infinite
dimensional topological space and smooth kernels (respectively, smoothing operators) on a
closed manifold form a TRAP but not a wheeled PROP. We build the free objects in the
category of TRAPs as TRAPs of graphs and show that a TRAP can be completed to a
unitary TRAP (or wheeled PROP). We further show that it can be equipped with a vertical
concatenation, which on the TRAP of linear homomorphisms of a vector space, amounts to
the usual composition. The vertical concatenation in the TRAP of smooth kernels gives
rise to generalised convolutions. Graphs whose vertices are decorated by smooth kernels
(respectively, smoothing operators) on a closed manifold form a TRAP. From their universal
properties we build smooth amplitudes associated with the graph.

Classification: 18M85, 46E99, 47G30, 05C25
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Contents

Mntroduction

[1 The category of TRAPsS|




[2 Fundamental examples| 11

2.1 The Hom TRAP| . . . .. . . . 11
2.2 The TRAP of continuous morphisms| . . . . . . . . ... ... ... ... ..... 14
[2.3 The TRAP K7}, of smoothing pseudo-differential operators| . . . . . ... ... .. 17
B_Free TRAPs 18
[3.1 Various families of graphs| . . . . . . .. ..o 18
8.2 TRAPsof graphs| . . . . . . . . . . 21
3.3  Morphisms of TRAPs and free TRAPs[ . . . . . .. ... ... ... ... ..... 25
3.4 Extending non-unitary TRAPs| . . . . . . .. ... o0 26
3.5 A tunctor from TRAPs to unitary TRAPs[ . . . . . . . ... ... ... ... ... 31
[4 Compositions, generalised trace and convolution| 32
4.1 Vertical concatenation in a TRAPl . . . ... ... ... .. ... .. ....... 32
4.2 The generalised traceon a TRAP|. . . . . ... ... ... ... .. ... .... 35
4.3 Amplitudes and generalised convolutions| . . . . . . .. . ... ... ... ... 36
[0 Categorical interpretation| 39
.1 'Two endofunctors in the category of © x &®’modules|. . . . . . . . .. ... ... 39
.2 Monad of graphs| . . . . . ... 41
0.3 TRAPs versus wheeled PROPS . . . . . . . .. ... ... ... ... ....... 43
[A Appendix: topologies on tensor products| 47
[B Appendix: definition of the partial trace maps on Gr%) 48
|C Appendix: Freeness of CGr®(X)| 49
[References] 53
Introduction

State of the art

PROPs (Products and Eermutations)El provide an algebraic structure that allows to deal with
operations with an arbitrary number of inputs and outputs. They generalise many other algebraic
structures such as operads, which have one output and multiple inputs. PROPs appeared in
IMLG5] and later in the book [BV73] in the context of cartesian categories. Although operads
stemmed from the study of iterated loop spaces in algebraic topology, see for example [May72],
their origin can also be traced back to the earlier work

An important asset of PROPs over operads is that they encompass algebraic structures such
as bialgebras and Hopf algebras that lie outside the realm of operads or co-operads. This very
fact is a motivation to consider PROPs in the context of renormalisation in quantum field theory
[BSO7]. We refer the reader to for the study of bialgebras in the PROPs framework
and [Mar08, YJ15, IML65] for other classical examples of PROPs. In recent years, wheeled
PROPs IMMSQ9], which allow for loops, have played an important role in the context of
deformation quantisation.

A central example of PROP is the PROP Homy of homomorphisms of a finite dimensional
vector space V' which we generalise to the PROP Homyj, of continuous homomorphisms of a
nuclear Fréchet space V. Whereas the first is a wheeled PROP (Proposition , the latter is
not unless the space V is finite dimensional (Theorem [2.2.8). It can nevertheless be interpreted

!The traditional notation is PROP, more recently prop.
?We thank B. Vallette for his enlightening comments on these historical aspects.



as a TRAP (Definition , which roughly speaking, amounts to a wheeled PROP without
unitﬂ TRAPs introduced in this paper offer natural structures to host morphisms of infinite
dimensional spaces (see Proposition and are therefore expected to play a role in the context
of renormalisation in quantum field theory.

Another class of important examples we consider are TRAPs of graphs (Proposition of
various types. In the context of deformation quantisation, the complex of oriented graphs whether
directed or wheeled, plays an important role in the construction of a free PROP generated by a
S x G°-module (see e.g [Mer04, Paragraph 2.1.3]). We will see that graphs play a similar role
in the context of TRAPs.

Our first long term goal is to use the TRAP structure of graphs decorated by distribution
(for example Green kernels) in order to build amplitudes as generalised convolutions (called P-
amplitudes, see Definition of kernels associated with the decorated graph. The expected
singularities of the resulting amplitudes are immediate obstacles in defining such generalised
convolutions. In this paper, we focus on the smooth setup, in which case the amplitudes are
smooth.

Feynman rules and TRAPs

In space-time variables, a Feynman rule is expected to assign to a graph G with k£ incoming and
[ outgoing edges, an amplitude (it is actually a distribution) K¢ in k + [ variables. Our second
long term goal is to derive the existence and the properties of the map G — K from a universal
property of the PROP structure on graphs.

By means of blow-up methods, generalised convolutions of Green functions were built on a
closed Riemannian manifold in [DZ21], with the goal of renormalising multiple loop amplitudes
for Euclidean QFT on Riemannian manifolds. We hope to be able to simplify the intricate
analytic aspects of the renormalisation procedure for multiple loop amplitudes, by adopting an
algebraic point of view on amplitudes using TRAPs. There were earlier attempts to describe
QFT theories in terms of PROPs (see for example [Ion07al Ton07h]), yet to our knowledge, none
with the focus we are putting on generalised convolutions to describe amplitudes.

We therefore expect the wheeled PROP of oriented graphs, briefly mentioned in [Ion07b], and
more specifically TRAPs, their non-unitary counterparts which naturally arise in the infinite-
dimensional set-up, to have concrete applications in the perturbative approach to quantum field
theory. To our knowledge, this is yet an unexplored aspect of the theory. Filling in this gap
is a long term goal we have in mind. A first step towards this goal is the study of the TRAP
of smoothing symbols (Theorem , which like Hom{, is not a wheeled PROP due to the

infinite dimensional spaces it involves.

TRAPs of graphs

TRAPs and unitary TRAPs entail two operations, the horizontal concatenation, and the partial
trace map. The difference between TRAPs and unitary TRAPs is the existence of a unit for
the trace in the latter. We define a TRAP structure on various families of graphs, which can be
corolla ordered (Definition or decorated (Proposition . The horizontal concatenation
of this TRAP is the natural concatenation of graphs and the partial trace map consists in gluing
together one of the inputs with one of the outputs, and therefore assigns to a graph G with k
incoming and [ outgoing edges a graph with £ — 1 incoming and [ — 1 outgoing edge. The set of
corolla ordered graphs CGr® equipped with the partial trace map builds a unitary TRAP, and we
prove that it is a free unitary TRAP (Theorem : this is the TRAP counterpart of a similar
statement for free PROPs, described in terms of graphs without loops [Mar08l, Proposition 57|
and [Val03|, Val04, [Y-JI5]. More generally, the set of corolla ordered graphs CGrP(X) decorated

3To our knowledge, wheeled PROPs without units do not appear in the literature, which is why we allow
ourselves to give them a shorter name.



by a set X on their vertices is the free unitary TRAP generated by X. These unitary TRAPs
contain free nonunitary TRAPs, which are combinatorially described by particular graphs, which
we call solafl]

From TRAPs to unitary TRAPs

If V is a finite-dimensional vector space, then the PROP Homy of homomorphisms of V' is a
unitary TRAP, with the usual trace of endomorphisms. Its unit as a TRAP is the identity map of
V. When V is not finite-dimensional, one cannot equip the whole PROP Homy with a structure
of unitary TRAP. In this case, one has to restrict to smaller classes of homomorphisms, such as
that of the homomorphisms of finite rank. This class no longer contains the identity, and we only
obtain a TRAP and not a unitary TRAP (Proposition . To circumvent this difficulty, we
construct for any TRAP P a unitary TRAP uPGr®(P) which contains P (Theorem [3.4.2). This
object is characterised by a universal property (Proposition , which amounts to applying
the left adjoint to the forgetful functor from the category of unitary TRAPs to the category of
TRAPs. The existence of this functor comes from the inclusion of corolla ordered solar graphs,
describing nonunitary free TRAPs, in the set of corolla ordered graphs, describing unitary free
TRAPs. In particular, in uPGr®(P) an identity I is added, as well as its trace, symbolised by
an abstract element O, which is no longer an element of the base field K.

The vertical concatenation

The vertical concatenation on wheeled PROPs previously considered in [Y.J15, Definition 11.33]
generalises the composition of morphisms. Indeed, for a finite-dimensional space V', the vertical
concatenation of the TRAP Homy coincides with the usual composition of linear maps f :
V® . V® and the associativity of the vertical concatenation amounts to the Fubini property
(Theorem 2.).

When applied to a general unitary TRAP, this construction yields a functor from unitary
TRAPs to PROPs (Proposition [£.1.2)).

On graphs, the composition can roughly be described as follows. If G is a graph with k
inputs and [ outputs, and G’ is a graph with [ inputs and m outputs, G’ oG is obtained by gluing
together the outgoing edges of G and the incoming edges of G’ according to their indexation,
giving a graph with k inputs and m outputs.

Extending this to the infinite dimensional setup requires the use of a completed tensor product
® in order to have an isomorphism

Hom$, (k, 1)~ (V)" &V&.,

where Homf, (k, ) stands for the algebra of continuous morphisms from V8 to Ok (see Defini-
tion and V' for the topological dual of a topological space V. This holds in the framework
of Fréchet nuclear spaces which form a monoidal category under the completed tensor product
(Lemma . On Fréchet nuclear spaces, the composition can indeed be described as a dual
pairing, so it comes as no surprise that for a Fréchet nuclear space V, the vertical concatenation
obtained from the nonunitary TRAP structure is the usual composition.

Generalised traces

A TRAP inherits a generalised trace defined on its elements with the same number of inputs and
outputs. Roughly speaking, generalised traces are obtained by grafting the outputs to the inputs
according to their indexation. These traces on TRAPs generalise the usual trace of morphisms,
and they also enjoy a cyclicity property (Proposition .

* In [YJ15] such graphs are called ordinary.



When V is a space of smooth functions on a closed Riemannian manifold M, the associativity
of the vertical concatenation amounts to the Fubini property (Theorem [£.3.4] 2.) and the gen-
eralised trace of a generalised kernel K with &k inputs and k outputs is given by the integration
of K along the small diagonal of M* (Theorem 3.).

Amplitude of a graph decorated by a TRAP

As mentioned above, our goal in the present paper is to provide an adequate algebraic and
analytic framework in which we build generalised convolution functions associated with graphs
decorated with smooth kernels. We show that these form a TRAP (Theorem, whose partial
trace maps are given by a partial convolution.

When P is a TRAP, the universal property of the TRAP of corolla ordered graphs decorated
by P gives rise to a canonical TRAP map, which associates to any such graph G an element of P
which we call the P-amplitude associated with G (Definition [4.3.1)). The P-amplitude commutes
with both horizontal and vertical concatenation of P (Proposition . When applied to
the TRAP of smooth generalised kernels, this construction generalises the usual convolution of
kernels (Remark and gives rise to smooth amplitudes (Theorem 4.).

Unitary TRAPs and wheeled PROPs

A unitary TRAP is known in the literature under the name of wheeled PROP. In order to prove
that the two notions coincide, we describe TRAPs and unitary TRAPSs as algebras over a monad
(see Definition which generalises the notion of monoid to the frame of category theory. We
state that unitary TRAPS are algebras over a monad I'© of graphs, described as an endofunctor
of a category of modules over symmetric groups sending an object X to the free unitary TRAP
of graphs soll'2(X) generated by X. When X is a unitary TRAP, TO(X) inherits a contraction
operation to X, which induces the monadic structure (Theorem . This monad I'© turns out
to be the monad used to defined wheeled PROPs in the literature [Y.J15, Corollary 11.35|, thus
relating our presentation of unitary TRAPs in terms of a family of sets with maps satisfying
a set of axioms and the categorical presentation of wheeled PROPs in terms of algebras over
a particular monad (Remark . A similar result holds for (nonunitary) TRAPs, replacing

graphs by solar graphs introduced in Definition (Theorem [5.3.1)).

Openings

To sum up, by means of a TRAP structure, we were able to build generalised convolutions
(respectively, traces) associated with graphs decorated with smooth kernels. As announced at
the beginning of the introduction, we expect this algebraic approach to enable us to tackle
non smooth kernels and thus to describe (non necessarily smooth) amplitudes as generalised
convolutions of distribution kernels associated with graphs. At this stage these are open questions
that we hope to address in future work.

There are other possible natural generalisations of the framework presented here, that are
more algebraic in naturdﬂ One could consider coloured TRAPs, whose input and output edges
are coloured, and whose partial trace maps relate inputs and outputs of the same colour. Such
structures are expected to play a role in QFTs with more than one type of particles (for example
QED and QCD). Coloured TRAPs could also be relevent in the more geometric context of maps
between different manifolds or in the context of modules over an algebra.

There are also potential generalisations of Theorem [2.3.1] which only requires that there be
enough integral-like objects to define the partial trace maps, thereby hinting to the fact that more
general spaces than the ones considered here should also carry TRAPs structures. Weakened
versions of C*-algebras such as inverse limits of C*-algebras [Phi88] and locally multiplicative
convex C*-algebras [JJ06] would be worth investigating in that context.

SWe thank Mark Johnson for pointing out the subsequent interesting questions to us.
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1 The category of TRAPs

1.1 Definition

Notation 1.1.1. For any k € Ny, we write [k] := {1,--- ,k}. In particular, [0] = &J. Let &y
denote the symmetric group on k elements. An element o € & sends i € [k] to o(i) € [k].

Definition 1.1.1. A TRAP is a family P = (P(k,l))k1=0 of sets, equipped with the following
structures:

1. P is a & x &%-module, that is to say, for any (k1) in N3, P(k,l) has a left &;— and a
right & -action given by:

{ & x P(k,l) —> P(k,1) { Pk x & — P(k,1)
(0'717) = 0-p, (paT) _ pP-T,
such that for any (k,1) in N3, for any (0,0’,7,7") € &} x &%, for any p € P(k,1),

Iy -p=p-ldp) = p,
o-(o"-p)=(0d') p, o-(p-7)=1(0-p)-T, (p-7)-7

/

=p-(r7).
2. For any (k,1,k',l") in N, there is a map
PO — Pk
' (p.p) — p=p,
called the horizontal concatenation, such that:
(a) (Associativity). For any (k,1, k', I',k" ") in NS, for any (p,p',p") in P(k,1)x P(k', ') x
P(k//7 l//)’
(p=p)xp" =px (' *p").
(b) (Unity). There exists Iy € P(0,0) such that for any (k,1) in N3, for any p in P(k,l),
Inxp=p=*Iy=np.
(¢) (Equivariance). For any (k,l,K',1') in N3, for any (p,p') in P(k,1) x P(K',l'), for any
(o,7,0",7") € S x &) x &y x &y,
(@-p-7)x(0"p7T)=(c®d) (p*p) (T®T),
where, for any (o, f) € S xSy, a® S € Sty is defined by
a(i) if i <m,

Bt —m) +m if i > m.

a® B(i) ={



(d) (Commutativity). For any (k,l,k',I') in N§, for any p in P(k,l), p' in P(K',l),
cp - (pxp') = (0 #p) - e,

where for any (m,n) in N2, cipn in Spyy is defined by:

ern(i) = {z +nifi <m, (1)

i—m if i >m.

3. For any k,l > 1, for any i € k], j € [l], there is a map

t{ P(k,l) — P(k—1,1-1)
" p = ti;ip),

called the partial trace map, such that:

(a) (Commutativity). For any k,l =2, for any i€ [k], je[l], 7 e[k —1], 7/ €[l —1],

.
tic1j—1 0ty if i <i, j <7,
TP

ot tij—1otypry if i =14, j <7,
v, O tij = DR
ti—1j oty if i <i, j =7,

ey
tijotyri 1 if i =1, 5 = J.

(b) (Equivariance). For any k,l = 1, for any i € [k], j € [l], 0 € &, T € &, for any
pe P(k1),

tijlo-p-71)=1(0) (tr@),0-15) @) 7i(T),

with the following notation: if o € &, and q € [n], then (I,(a),r4()) € &2_; are
defined by

a(s) if s < aY(q) and a(s) < q,

) a(s) —1if s < a"Y(q) and a(s) > q,
a(s+1) ifs=a (q) and a(s + 1) < g,

la(s+1) -1 if s=a 1(q) and a(s + 1) > q,

a(s) if s < q and a(s) < a(q),

a(s) — 1 if s < q and a(s) > a(q),
a(s+1)ifs=>q and a(s + 1) < alq),
s+1)—1is=qanda(s+1) > aq).

rq(a)(s) = 1

(0}

\

In other words, if we represent v by the word (1) ... a(n), then ly(«v) is represented by
the word obtained by deleting the letter q and substracting 1 to the letters > q, whereas
rq(cr) is represented by the word obtained by deleting the letter o(q) and substracting
1 to the letters > a(q). Note that r¢(a) = lyq) ().

(c) (Compatibility with the horizontal concatenation). For any k,l,K',I" = 1, for any
ielk+1],jelk +1U], for any pe P(k,l), p' € P(K',I'):

tij(p)*p ifi <k, j<l,
prtip(p) ifi >k, j>1

tigpxp') = {

7



The TRAP is unitary if moreover there exists I in P(1,1) such that for any k,l > 1, for any i
in [k+1], je[l +1], for any p in P(k,l):

tlj(f*p) (1,2, Li=1)pifj=2,
ii(lxp)=p-(1,2,...,i—1)""ifi>2,

tk+1,](p*I) (Gojg+1,..., k)Y pifj <k,

tigpilp*x D) =p-(i,i+1,...,0) ifi <1

Remark 1.1.1. By commutativity of %, for any p in P(0,0), for any (k,[) in N3, for any p’ in
P(k,1):

prp =p *p,
since ¢ = Id[ k]

Remark 1.1.2. The abuse of notation ¢;; is legitimate since a full notation such as t ] is not
necessary in practice. Indeed the indices k and [ in t; j(p) are entirely determined by the element
p to which ¢; ; is applied.

More so, if P is unitary, ¢; j(p) does not strongly depend on k and [ determined by p: indeed,
let f: P(k,l) — P(k+ 1,14 1) be the map that sends p to p = I then for i € [k] and j € [I], we
have

tijo f(p) = foti;(p),
which is the axiom 3.(c).

Remark 1.1.3. In Section [f| we will show that TRAPs can be described as algebras over a certain
monad and we will use this to prove (Theorem that the category of unitary TRAPs,
defined below, is isomorphic to the category of wheeled PROPs introduced in [Mer06]. Our
axiomatic approach is tailored to address analytic issues regarding products of singularities and
their application to Feynman graphs in QFT.

We will use in Section [2] the axiomatic approach of Definition to show that known an-
alytic and geometric spaces carry TRAP structures. However, the categorical approach seems
better suited for classification problems, for example regarding the solutions of the master equa-
tion in the BV formalism [MMS09, [Mer10].

Definition 1.1.2. We define a sub-TRAP of a TRAP P = (P(k,l))ri=0 to be a & x &%P-
submodule Q = (Q(k,1))k =0 of P which contains the unit Iy € P(0,0) and is stable under the

partial trace map of P. If the TRAP P is unitary, then the sub-trap Q is unitary if it contains
the unit I € P(1,1).

Definition 1.1.3. Let P = (P (k Dki=o and Q@ = (Q(k,1))ki=0 be two TRAPs with par-

tial trace maps (tf])zpo and ( )igj=0 respectively. A morphism of TRAPs is a family
¢ = (¢(k, 1))k =0 of morphisms ofG x &°P-modules ¢(k,l) : P(k,l) — Q(k,l) which are com-
patible with the horizontal concatenation, and the partial trace maps. More precisely, for any
(k,l,m,n) e N3:

1. For any (o,p,7) in &) x P(k,l) x &, ¢(k,1)(c-p-7)=0-0(k,)(p) T

2. ¢(0,0)(1p) = Iy.

3. ¥Y(p,q) € P(k,l) x P(n,m), ¢(k+n,l+m)(p=q)= ¢k, 1)(p) = p(n,m)(q),
4 Y(pyi,g) € Pk, 1) x [K] x [I], o(k = 1,1 =1) o tF(p) = % 0 ¢k, 1)(p).

With a slight abuse of notation, we write ¢p(p) instead of ¢(k,1)(p) for p e P(k,l). We denote by
TRAP the category of TRAPs and TRAPs morphisms.

If P and Q are unitary TRAPs with units Ip and Ig and ¢ : P — @Q is a morphism of
TRAPs, this morphism is unitary if ¢(1,1)(Ip) = Ig. We denote by uTRAP the subcategory
of TRAP whose objects are unitary TRAPs and morphisms are unitary TRAP morphisms.



In the following two Lemmas we identify conditions for a collection of & x G°P-modules and
linear maps between TRAPs to carry a TRAP structure and a be a TRAP morphism respectively.

Lemma 1.1.4. Let P = (P(k,1))i =0 be a & x &%P-module, equipped with a horizontal concate-
nation * satisfying azioms 2. (a)-(d), and with maps t; ; satisfying axioms 3. (a)-(b).

1. Assuming that for any k,l,k',I' = 1, for any p € P(k,l), p' € P(K',l'),

tia(pp) = tra(p) = p',
then Aziom 3.(c) is satisfied.

2. Let I € P(1,1). We assume for any k,l = 1, for any p € P(k,l),

t12(I % p) = p.
Then I is a unit of P.
Proof. Let p € P(k,l) and p' € P(K',l'). We take i in [k + ], j in [ + '] and define the
transpositions o = (1,j), 7 = (1,4), with the convention (1,1) = Id. We use the notation
oj:=1j(0) and 7; := r;j(7). Let us consider several cases.

e If i <k and j <, then:
tij(pxp) =tij(0® (p=p))- %)
=o0j-t11(c-(p*p')-7) 7 by equivariance of ¢; ; (Axiom 3b
of Definition ,
=0 (tin((c-p-7)=p)) -7 sincei <k, j<land by Axiom 2¢
of Definition [1.1.1
=0 (t11(c-p-7)=p')-7 by the assumption of the Lemma,
=(0j - (t11(c-p-7)-7))*p" sincei <k, j <l and by Axiom 2¢
of Definition [[.1.1]
=t; j(p) *p' by equivariance of t; ;.
e If i > kand j > I, using ¢}, = ¢um, and as before writing (cyry); = lj(cpy) and
(cp)i := ri(ck ) we have
tijpxp) =tij(cvs- (p'#p) crpr) by commutativity of * (Axiom 2d
of Definition ,
= (cry)j - tick j—1(" *p) - (ckp)i by equivariance of t; ; (Axiom 3b
of Definition ,
= cy_1y - (tick,j—1(p') * p) - cry—1 By the first point,
=p#ti_g;—(p) by commutativity of .

Thus Axiom 3.(c) is satisfied.

e Let us now take 7 > 2. In this case we have
by (T p) = 1y (2,92 (T £ )

=(2,...,5—1)-t12((2,5) - (I *p)) by equivariance of ¢; ; (Axiom 3b
of Definition ,

=(2,...,5—1)-ti2((I*(1,j—1)-p)) since j = 2 and by Axiom 2¢
of Definition [1.1.1

=(2,...,j—1)-((1,7—1)-p) Dby the assumption of the Lemma,

— @)L= 1)

—(1,....5—1)p.



The other three relations are proved in the same way. Thus [ is a unit of P. O

We can also simplify the axioms for morphisms of TRAPs.

Lemma 1.1.5. Let P= (P(k,1))r >0 and Q= (Q(k,1))k =0 be two TRAPs and ¢ = (¢(k, 1))k =0

be a family of set maps ¢(k,l) : P(k,l) — Q(k,l) satisfying Points 1-3 of Definition .
Suppose further that for any k,l1 > 1, for any p € P(k,1)

t1,10¢(p) = doti1(p).
Then ¢ is a map of TRAPs.
Proof. 1f i, j and p lies respectively in [k], [I], and P(k,l), then
¢otij(p) = ¢oti;((1,5)° p-(1,1)?)
=¢((1,7)-tia((1,4) -p-(1,7)) - (1,4)) by equivariance of ¢; ; (Axiom 3b
of Definition ,

=(1,5)-¢otia((1,5)-p-(1,7)) - (1,4) by Point 1 of Definition [I.1.3
=(1,5) - tinoo((1,75)-p-(1,4)) - (1,4) by the assumption of the Lemma,
=1t;;((1,5)-o((1,7) -p-(1,7)) - (1,4)) by equivariance of ¢; ; (Axiom 3b

of Definition ,
=t;jo¢(p) by Point 1 of Definition [[.1.3],

with the convention (1,1) = Id. It follows that ¢ is a morphism of TRAPs. O

In particular, to show that a collection of linear maps between two TRAPSs preserving the
horizontal concatenation and the actions of the symmetry group is a morphism of TRAPs, it is
enough to check the properties of Lemma [1.1.5

1.2 Quotient of TRAPs

This paragraph prepares for the construction of an embedding of a TRAP P in a unitary TRAP.

Lemma 1.2.1. Let QQ be a TRAP and let ~ be an equivalence relation on QQ which is compatible
with the TRAP-structure on Q in the following sense. For any two elements x,x’ € Q, such that
x~a':

o (Compatibility with the module-structure). For any (0,7) € Sy x &), 7-x-0 ~71 -2 0.

o (Compatibility with the horizontal concatenation). For any y € Q, vy ~ ' =y and
/
yrx ~y*x.

o (Compatibility with the partial trace maps). For any (i,7) € [k] x [1], t;j(x) ~ t; j(2).

Then the quotient Q) ~ is a TRAP with [Iy] as unit for the concatenation product. If Q is
unitary with unit I € Q(1,1) for the partial trace maps, then Q/ ~ is also unitary with [I] as
unit for the partial trace maps.

Proof. 1. By compatibility with the module structure, @/ ~ is a & x &°P-modules.

2. Using twice the compatibility with horizontal concatenation maps, we find that if x ~ 2’
and y ~ 3/, then = * y ~ 2/ % ¢/ by transitivity of ~. Thus the horizontal concatenation
[z] * [y] := [z *y] on Q/ ~ is well-defined. It fulfils properties 2.(a) to 2.(d) of Definition
by construction.

3. We defined the partial trace maps on the quotient to be t; ;([z]) := [ti;j(x)]. It is well
defined by compatibility with the partial trace maps and has properties 3.(a) to 3.(c) of Definition
[I.1.3] by construction.

Thus @/ ~ is a TRAP. Finally, if @ is unitary with unit I, then [I] endows the quotient
@/ ~ with a unit by construction and @/ ~ is then a unitary TRAP. O
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The following statement is a direct consequence.
Proposition 1.2.2. Let P and Q be TRAPs and ¢ : Q — P a TRAP-morphism. The relation
z ~ 2" == ¢(x) = ¢(2')

defines an equivalence relation compatible with the TRAP-structure on @Q and Q/ ~ defines a
TRAP.

Proof. Let x, 2’ in @, such that z ~ 2/
e For any (0,7) € &) x Gy,

$plo-x-7)=0-¢x) - T=0-0) - T=¢(c -2 -7),

where the first and last identities follow from the fact that ¢ is a morphism of & x G
-modules. Thus ~ is compatible with the module structure.

e For any y in () we have

oz xy) = ¢(x) * d(y) = dp(a') = d(y) = ¢z * y)

where we have used the fact that ¢ is a morphism for the horizontal concatenation product
(since ¢ is a morphism of TRAPs) and the fact that ¢(z) = ¢(2’). Thus z+xy ~ 2’ = y.
Similarly we show that y*x ~ y*x’ and ~ is compatible with the horizontal concatenation.

e For any (4,7)
sy in [k] x [I] we have

$(tij(2)) = tij($(2)) = ti;(6(2")) = (ti (")),

where the first and last identities follow from the fact that ¢ is a morphism of TRAPs.

Thus ~ is compatible with the partial trace maps. ]

2 Fundamental examples

2.1 The Hom TRAP

Let us give a fundamental example of unitary TRAP:
Let V be a finite dimensional vector space and V* its algebraic dual. We consider the family

Homy = (Homy (k,1)); ;50 := (Hom(V®* VE)), 1o,

where for any (k,1) € N3, Hom(V® V®) is the vector space of linear maps from V& to V&
We shall identify Homy (k, 1) and V*® @ V® through the isomorphism

Vi®F Ve Homy(k,l)
Yok _, y®l

xy1...xp — fi(z1) ... fru(ag)vr. . oo

Ok :
kil fioo fi®ui...vyp — {

where with some abuse of notation, we have set fi--- fr == fi® - ® fr € V*® and vy ---v; :=
1 ®---®u; € VO For any vector space W, the tensor power W®* is a left Gj-module with the
action defined by

g -wi... W = ’U.Jo—l(l) .o .wg—l(k).

11



Via the identification 0 := (ek,l)k 100 We can equip the family Homy = (Hom(V®k, V®Z))k7l>0
with the structure of a &; x &}”-module by putting, for an f € Hom (V® V®) for any (0,7) €
Gk X 6[2

Yoy ...vp € VO, T-feowr...vp) =71 f(0-v1...08). (3)

The horizontal concatenation is the usual tensor product of linear maps: if f € Homy (k,1) and
g € Homy (K',1"), then
V@(k-i—k’) N V®(l+l’)

V...Vt +— f(Ul NN Uk) ® g(’l}k+1 e Uk+k’)-

f®g: {
We define the following partial trace maps:

ti,j(ek,l(fl cee fk ®vy.. "Ul)) = fz‘(’Uj) ‘9143_17[_1(]01 A fi—lfi+1 . fk Ry .. SVj—1V541 - - .’Ul). (4)

Remark 2.1.1. Notice that for p e Homy (1,1), ¢1,1(p) coincides with the usual trace of a linear
map on V. Proposition 4.2.2] generalises the notion of trace to any element of Homy and to any

TRAP.

Proposition 2.1.1. For a finite dimensional K-vector space V', the above construction equips
Homy with a TRAP structure which is unitary, with unit given by the identity of V.

Remark 2.1.2. We will see later in the paper (Theorem that this implies that Homy,
is a wheeled PROP. Further details of Homy as a wheeled PROP can be found in [MMS09,
Example 2.1.1]. In [DM19] (in particular Subsection 2.1, Section 6 and Section 7) the consequence
of Homy carrying a wheeled PROP structure in the context of invariant theory are explored.
Homy also appears for example in [KV21, Example 2.2] where questions of algebraic topology
are studied.

Proof. Properties 2.(a)-(d) are trivially satisfied, with Iy = 1 € K. Property 3.(a) is direct. Let
us prove Property 3.(b).

tij(o Oki(fr - fr®@ui...v) - 7) =tijoOki(fray - fri) ®Vo101) - - Vo1(1))
= fr(i)(Vo—1))Ok—10-1(fr1) - - - fr(i—1) Fri1) - - - Frh)
® Vy=1(1) - - V=1 (j—1) V=1 (j+1) - - Vo=1(1))
=05 tri)yo1()ki(f1- fr®uvi...v) 7

Property 3.(c) is straightforward. Let us prove that Homy is unitary with the help of Lemma
1.1.4] Let us fix (e;)ier a basis of V, then (e);cr is a basis of V* and the identity map of V' is

dy = 61, <2 @e:) | 5)

iel

Then for any p = 0;(f1... fr ®v1...v;) € Homy (k,1)

tLQ(IdV * kal(fl . fk ®uv... Ul)) = ZtLQ o 0k+1,l+1(6jf1 v fk ®ejvy ... Ul)

el

= Z9k,z(f1 e ®eief(v)va. . up)

el
=0ki(f1... fr®Idy (v1)va... 1)
= Hk,l(fl . fk ®’U1 .. .’Ul).

So Homy is a unitary TRAP. O
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When V is not finite-dimensional, 6 is an injective, non surjective map. Its range is the
subpsace Hom{f of linear maps from V& to V& of finite rank. We can equip Hom{f with a
similar TRAP structure:

Proposition 2.1.2. With the & x G action defined by (@, the usual tensor product of maps
and the partial trace maps defined by , Homéf is @ TRAP. It is unitary if, and only if, V is
finite-dimensional.

Proof. We skip the proof that Hom{f can be equipped with a TRAP structure since it goes as

for Homy when V is finite dimensional. Note that when V is finite-dimensional, then Hom{f =

Homy is a unitary TRAP. We show the second part of the statement.
Let us assume that Hom{/r has a unit I. Then I has finite rank, let us fix a basis (e1, ..., eg)
of Im(I). There exist Aq,..., A\x € V* such that for any v e V,

k
I(v) = > Ni(v)es.

i=1

In other words,
k
I= 9171 <Z €; ®)\z> .

i=1
Let v € V, nonzero, and let A € V* such that A(v) = 1. We consider f = 611(v ® A). Then
f(v) = A(v)v = v. Moreover:

v = f(v) =ti2(l * f)(v)

k
=t120022 (2 eiv® AM) (v)

i=1

k
= 9171 (Z )\Z(U) €; @ )\) (’U)
i=1

)\Z(U) €;

)eia

k
D IA@)
i=1

k
Z >\z (U
i=1
so v € Vect(ey,...,ex). Hence, V < Im(/), so V is finite-dimensional. O

We end this paragraph with an example of a TRAP similar to the TRAP Homy but of a
more geometric nature.

Ezample 2.1.1 (The TRAP of tensors). Given a finite dimensional smooth manifold M and a
point x € M, we build the Hom-TRAP Homr, ) where T, M is the tangent space to M at
the point . Given a pair (p,q) € N2 we have, using the musical isomorphisms (see for example
[Lee97, Chapter 3|)

Homr, v(p, ¢)=(T; M)®P @ T, M®7,

where we have set V® = R. The partial trace maps are built by pairing cotangent and tangent
vectors. We note that if M is equipped with a Riemannian metric, thanks to the musical
isomorphisms T M 3 o —> ot € T,M and TuM 3 v —> 0" € T*M between 1M and T, M,
these dual pairings can be seen as contractions via the metric tensor.

This yields a smooth fibration Homypy, := {Homry, 7,2 € M} of TRAPs parametrised by
M. For any (p,q) € Z2, a smooth section of Homr(p, ¢) defines a smooth (p, ¢) tensor on M.
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2.2 The TRAP of continuous morphisms

We generalise the constructions of the previous paragraph, replacing the finite dimensional spaces
V® in Homy by nuclear spaces. These nuclear spaces were defined in the seminal work [Gro54].
Most of the results stated here can be found in [Gro52) [Gro54]. We also refer to the more recent
presentation [Tré67].

We recall that:

e A topological vector space is Fréchet if it is Hausdorff, has its topology induced by a
countable family of semi-norms and is complete with respect to this family of semi-norms.

e The topological dual E’ of a locally convex topological vector space E can be endowed with
various topologies, one of which is the strong topology, namely the topology of uniform
convergence on the bounded domains of E. It is generated by the family of semi-norms
of E' defined on any f € E' by ||f||p := sup,ep |f(x)| for any bounded set B of E. The
topological dual E’ endowed with this topology is called the strong dual.

e A topological vector space is called reflexive if E” = (E') = E, where E’ is the topological
dual of E endowed with the strong topology.

In the following F and F' are two topological vector spaces and Hom®(E, F') is the set of con-
tinuous linear maps from E to F.

Remark 2.2.1. e When E and F are finite dimensional, we have Hom‘(E, F)=Hom(E, F).

e As pointed out to us by Mark Johnson, a natural generalisation to consider in the context
of Fréchet spaces are o C*-algebras, defined as inverse limits of C*-algebras [Phi88], which
however lie out of the scope of the present article.

In order to build the TRAP Homyj, for nuclear spaces, we need Grothendieck’s completion
of the tensor product, a notion we recall here in the set-up of locally convex topological K-vector
spaces.

Let E and F be two vector spaces. Recall that there exists a vector space EQF', and a bilinear
map ¢ : £ x F'— E ® F such that for any vector space V and bilinear map f: E x FF — V|
there is a unique linear map f : F® F — V satisfying f = f o ¢. The space E ® F' is unique
modulo isomorphism and is called the tensor product of F and F.

Given two topological vector spaces E and F', one can a priori equip E®QF with several topolo-
gies, among which the equicontinuous topology, or e-topology (|Tré67, Definition 43.1]) and
the projective topology, or m-topology (|[Tré67, Definition 43.2]), are of considerable impor-
tance. Their constructions are recalled in Appendix We denote by E ®. F (respectively,
E ®; F) the space E® F endowed with the e-topology (respectively, the projective topology)
and by E®Q.F (respectively, EQ.F) of E ®, F (respectively, E ®, F) their completion with re-
spect to the e-topology (respectively, projective topology). These two spaces differ in general
but coincide for nuclear spaces.

Definition 2.2.1. [Gro5|] A locally convez topological vector space E is nuclear if, and only
if, for any locally convex topological vector space F,

EQ.F = EQ,F =: EQF
holds, in which case EQF is called the completed tensor product of E and F.

There are other equivalent definitions of nuclearity, see for example [GV64] [HS0S].

Remark 2.2.2. Tt was pointed out to us by Mark Johnson that such minimal and maximal tensor
products, much used in the context of C*-algebras, further extend to l.m.c. C*-algebras, where
L.m.c stands for locally multiplicative convex (see [JJO6| and references therein).

For Fréchet spaces, nuclearity is preserved under strong duality.
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Proposition 2.2.2. e [Tré6’l, Proposition 50.6] A Fréchet space is nuclear if and only if its
strong dual is nuclear.

o [Tré67, Proposition 36.5] A Fréchet nuclear space is reflexive.

Many spaces relevant to renormalisation issues are Fréchet and nuclear. We list here some
examples.

Ezample 2.2.1. Any finite dimensional vector space can be equipped with a norm and for any
of these norms, they are trivially Banach, hence Fréchet and nuclear. If E and F' are finite
dimensional vector spaces we have Hom‘(E, F) = Hom(F, F)~E* ® F, where Hom(FE, )
stands for the space of F-valued linear maps on F and where the dual E* is the algebraic dual.

Ezample 2.2.2. Let U be an open subset of R”. Take E = C*(U) =: £(U). The topological
dual is the space E' = &'(U) of distributions on U with compact support. Then E is Fréchet
([Tre67], pp. 86-89), and E’ is nuclear (|Tré67|, Corollary p. 530). By Proposition [2.2.2) F is
also nuclear.

Remark 2.2.3. Note that the dual E’ of a Fréchet space F is never a Fréchet space (for any of
the natural topologies on E’), unless E is actually a Banach space (see for example [K6t69]). In
particular, £&'(U) is generally not Fréchet.

We now sum up various results of [Tré67] of importance for later purposes.

Proposition 2.2.3. [Tré67, Equations (50.17)-(50.19)] Let E and F' be two Fréchet spaces, with
E nuclear. The following isomorphisms of topological vector spaces hold.

EF'®F=~Hom"(E, F) (6)
EQF=Hom‘(E', F) (7)
F'®F'=(EQF) =B*(E x F,K). (8)

with B(E x F,K) the set of continuous bilinear maps K : E x F — K. Here the duals are
endowed with the strong dual topology, Hom®(E, F)~E' ® F with the topology of uniform con-
vergence on the bounded subsets ofEﬁ and B¢(E x F,K) with the topology of uniform convergence
on products of bounded sets.

The stability of Fréchet nuclear spaces under completed tensor products follows from com-
bining the definition of the completed tensor product with the fact that if £ and F' are two
nuclear spaces then EQF is a nuclear space ([Tré67, Equation (50.9)]). A stronger version of
this Lemma is mentioned in [BB03, §6.f, page 182] which quotes [Gro54].

Lemma 2.2.4. The completed tensor product EQF of two Fréchet nuclear spaces is a Fréchet
nuclear space.

Proposition 2.2.5. Let V be a Fréchet nuclear space. Then
~ ! A
<V®k> ~ (V/)®k (9)
holds for any k = 1, where the duals are endowed with their strong topologies.

Proof. Let V be a Fréchet nuclear space. The case k = 1 is trivial. Then Equation @D with
k = 2 holds by Equation with F = F' = V. The cases k > 2 are proved by induction, using
E =V®~land F = V. The induction holds by Lemma . O

6 Tt is defined by a family of semi-norms pg ., of the form pg r, (f) = sup,.p 7 (f(z)) when applied to some f
in Hom®(E, F), where B runs through the sets of all bounded subsets of E and 7; runs through a countable family
of semi-norms which generate the topology of F. It gives back the strong topology on E’ if F' is the underlying
field. It also carries other names such as "topology of bounded convergence" [Bou03| page III1.14], [Sch71l, p.81]
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We denote by D'(M) the set of distributions on M and by £'(M), the set of distributions with
compact support on a finite dimensional smooth manifold M, see for example [H689, Definition
6.3.3]. It is well-known (see for example [vdBC13l Exercise 2.3.2], [BDLGRIS|, p. 4]) that (M)
is a Fréchet nuclear space. It then follows from Proposition that the space £'(M) is also
nuclear.

Remark 2.2.4. (Compare with Remark [2.2.3). Note that the space &'(M) is not Fréchet since
the dual of a Fréchet space F' is Fréchet if and only if F' is Banach (see for example [K6t69)])
which is not the case of £(M).

One further useful result is:

Proposition 2.2.6. Let M and N be two finite dimensional smooth manifolds. Then
Hom(&'(M),E(N))=EM)RE(N)=E(M x N)
holds.

Proof. The second isomorphism |Gro52, Chap. 5, p. 105] can be proved using a version of
the Schwartz kernel theorem for smoothing operators [vdBC13, Theorem 2.4.5] by means of the
identification Hom®(E'(M),E(N))=E(M x N). The result then follows from ([7)) applied to £(X)
and £(Y') which are Fréchet nuclear spaces. O

Definition 2.2.7. Let V be a Fréchet nuclear space. For any (k,l) in N2, we set
Hom§, (k,1) = Hom®(V&*, V&)= (") Shgy e,

where, as before V' stands for the strong topological dual and the superscript “c” stands for
continuous. Furthermore we set Hom{, := (Hom(, (k,1))x >0-
For any o € &,, let O, be the endomorphism of VO™ defined by

@U(Ul ® e ®Un) = va—l(l) @ . ®vo—1(n)'

It extends to a continuous linear map ©, on the closure Ve For any f € Hom{, (k,l), 0 € &,
T € &y, we set:

o-f=0650f, f-T=fo00O,.

In the above definition, the superscript “c” stands for continuous. The family Homy{, carries
a TRAP structure.

Theorem 2.2.8. Let V' be a Fréchet nuclear space. Hom§,, with the action of & x &°P described
above, is a TRAP. Its horizontal concatenation is the usual topological tensor product of maps
with Iy : K — K given by the identity map of K, its partial trace maps coincide with those of
the TRAP Homy on elements of (V')OFQV®!

tij(fi- - fr®uvi--v) = fi(vj)fi ficifivr o ®@ui--vj_1vj01-- -y

with the same notations as in Subsection[2.1] It is unitary if and only if V' is finite dimensional,
in which case Iy : V. — V is the identity map of V.

Proof. The proof of the TRAP structure of Homy{, goes as in Proposition The proof of
the unital case is the same as the proof of Proposition [2.1.2 O

Ezample 2.2.3. For a finite dimensional vector space V', the TRAP Homy{, coincides with the
TRAP Homy .

Ezample 2.2.4. Let M be a smooth finite dimensional manifold. From Proposition and
Equation (9)), it follows that the family (Kas(k,1))gis0, With Kar(k,1) = (E'(M)®F &E(M)E!
defines a TRAP.
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2.3 The TRAP KY; of smoothing pseudo-differential operators

We apply our results on TRAPs to tensor products of Fréchet spaces £(M) of smooth functions
on a given smooth finite dimensional orientable closed manifold M and p(z) a volume form on
M. From now on, we work with vector space over C. Recall from Proposition [2.2.6] that such
spaces are stable under tensor products and morphisms in Hom¢(E'(M), E(N)) are determined
by smoothing kernels in £(M x N).

We consider smooth kernels which stabilise £(M) and set, for (k,1) # (0,0):

K5 (k1) = E(M* x MY)=E(M)®F @ £(M)E!, (10)

whose elements we refer to as smooth generalised kernels. We also set 5;(0,0) =~ C® C and
K3t = (’C]O\%(kal))k,l;o-

Theorem 2.3.1. Let M be a smooth finite dimensional orientable closed manifold. The family
of topological wvector spaces (K37(k,1)), ;= can be equipped with the partial trace maps t;; :
K (k1) — K$G(k— 1,1 — 1) with t; j(K1 ® Ka) defined by

ti,j(Kl ®K2)(5L'1,"’ y Lk—1,Y1, """ )yl—l) = (11)

f Kl('xla"' y Li—15 2, Lg " " * >$k—l)K2(y17"' yYj—1,2,Y5 7yk’) du(’z)v
M

where du(z) is a volume form on M.

Together with the horizontal concatenation given by the tensor product of maps (K1 ® Ka)
(K1 ® K}) = K, ® K, with K, := K1 ® K| and K, := Ky ® K} this defines a TRAP, written
K37, which we call the TRAP of generalised smooth kernels on M.

Remark 2.3.1. Note that the partial trace amounts to what one could call a partial convolution.

Proof. The unit Iy € K;(0,0) ~ C® C of the horizontal concatenation * is the constant map
f : C — C defined by f(x) = 1. It is the unit of = by bilinearity of the tensor product. The
horizontal concatenation on the & x &”-module (K7 (k,1)) -, satisfies axioms 2. (a)-(d) of
Definition by the properties of the tensor product. We want to check that the maps ¢; ; are
well-defined and satisfy axioms 3. (a)-(c).

The existence of the integral follows from the smoothness of K7 and K» and the closedness of
M. Therefore, by definition of K%, to show that ¢; ;(K1 ® K2) € K3;(k — 1,1 — 1) and thus that
t;j is a partial trace, is enough to show that the function ¢; ; (K1 ® K3) : ML x M- — Cis
smooth. Since K7 and K3 are smooth, the map

(1, =1, Y1, 5 Yk) — Kz, zim1, 2@ xp—1) Koy, -+ Y5-1, 2,95, Uk)

is infinitely differentiable for any z € M. For & = (x1,--- ,7;) € M¥ and @ = (o, -+ ,ay) € N&
we use the short-hand notation

a0

Then, since M is compact, the partial derivatives

3§9§K1($17"‘ i1, 2, T k1) Ko (Y1, Y-, 2, Y5 5 Uk)

are bounded uniformly in z and hence
f 6§0§K1(fv1,--- VL1, 2, T Th—1) Ko (yn, o y-1, 2,45 yk) dp(2)
M
:agayéf Kl(ﬂjl, 3 Tg—1,2, T4 0 7-7:/1:—1) KQ(yl) o 7yj—17zuyj Tt 7yk) dﬂ(z)
M

=5§0§ti,j(K1 ® Ko)(z1, s Tp—1,Y1," ", Y1-1)-
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Therefore the map ¢; ;(K1 ® Ka)(x1,- -+, Zx—1,Y1, - ,Yi—1) is smooth.

Finally, to check Axiom 3.(c), by the first item of Lemma it is enough to check the
compatibility of the horizontal concatenation with the partial trace to show that ¢; 1(p = p') =
t1,1(p) = p’ for any pair (p,p’) € K5, (k, 1) x K5 (K, ') with &k, k', 1,1’ > 1. Setting p = K1 ® K3 and
P = K| ® K}, we have, by definition of the partial trace maps and the horizontal concatenation

tlyl (p * p/)($1’ e 7$k+k’717 yl? e 7yl+l171)

=JK1(Z,3?1,-“ k1)K (T, - g —1) Ko (z,y1, -+ yi—1) Ko (- 2 —1)dp(2)

= <fK1(zvx1a to axk—l)KQ(Zvyla te )yl—l)d,u(z)> K{(l‘k, T 7xk+k’fl)Ké(xl7 T 7xl+l’71)
=(t11(p) # ) (@1, Tha -1, Y1, Yir—1)- O

Remark 2.3.2. Notice that K%, is non unitary, since the map f : M x M——C which could play
the role of a vertical unity is a § distribution supported on the diagonal. The simple examples
considered here, namely K5} and the TRAP Homf, speak for the fact that non-unitary TRAPs
offer an appropriate framework to host infinite dimensional spaces. We expect non-unitary
TRAPs to host more general distributions.

3 Free TRAPs

3.1 Various families of graphs

Here, we consider oriented multigraphs endowed with extra structures, in particular indexed
input and output edges, loops, ordering and decorations. These extra structures make it difficult
to implement the usual definition of multigraphs [Har69|, where the edges form a multiset of
pairs of vertices. In the literature on PROPs [Mar08, [MMS09|, graphs are defined as a set of
half-edges (or flags), with an involution which tells us how to glue them together in order to
obtain edges, and with a partition which defines the vertices. This definition does not take loops
into account that is to say edges with no ends, yet loops enter our constructions in an essential
way. Instead we borrow a definition from the theory of quivers [CB90, [DW17|, where two maps
(called source and target, or alternatively tail and head) are given from the set of edges to the
set of vertices. Our approach allows edges without source, or without target, or with neither
source nor target. Among these are the inputs and outputs in the graph we consider, which we
then index.

Definition 3.1.1. A graph is a family G = (V(G), E(G),I(G),0(G),I0(G), L(G), s,t,a, 3),
where:

1. V(G) (set of vertices), E(G) (set of internal edges), I(G) (set of input edges), O(G) (set
of output edges), IO(G) (set of input-output edges) and L(G) (set of loops, that is to say
edges with no endpoints) are finite (possibly empty) sets.

2. s: E(G)uO(G) — V(G) is a map (source map).
3. t: E(G)uI(G) — V(G) is a map (target map).

4. a: I(G) uIO(G) — [i(Q)] is a bijection, with i(G) = |I(G)| + |[IO(G)| (indexation of
the input edges).

5. B:0(G) uIO(G) — [0(G)] is a bijection, with o(G) = |O(G)| + |IO(G)| (indexation of
the output edges).
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A corolla ordered graph is a graph G such that for any vertex v, the set of incoming edges
I(v) of v and the set of outgoing edges O(v) of v are totally ordered and we shall denote both
order relations by <,.

A graph G is solar if IO(G) = L(G) = &.

Remark 3.1.1. For a graph G = (V(G), E(G),1(G),0(G),I0(G), L(G),s,t,a, ), O(G) and
I(G) will always respectively refer to the sets of outgoing and ingoing edges of G. On the other
hand, for any v € V(G), O(v) and I(v) respectively refer to the set of outgoing and ingoing edges
of the vertex v. In other words, for any v € V(G),

O(v) :={ee€ E(G) uO(G)l|s(e) = v}, I(v) :={ee E(G) uI(G)|t(e) = v.}

We denote the cardinals of the sets O(G), I(G), O(v) and I(v) as o(G), i(G), o(v) and i(v)
respectively.

For a solar graph (that is, such that IO(G) = L(G) = ), the terminology solar refers to its
radiating aspect with rays around a central body. In [Y.J15] such graphs are called ordinary.

Example 3.1.1. Here is a graph G :

V(G> = {1’,3/}, E(G) = {a, b}’ I(G> = {C7d}7 O(G) = {e7f}’ IO(G) = {g}’ L<G) = {h,]{:},

and:
A e A PR U
S t: Y « d — 2 I3 f— 1
e — Yy c — I — ., 3 9
f — v, d — x, 9 ’ 9

This is graphically represented as follows:

%

o /‘Sb 0

/ d

1 2 3

Note that this graph contains two loops, represented by @ and @ .

Graphically, if G is a corolla ordered graph, we shall represent the orders on the incoming
and outgoing edges of a vertex by drawing box-shaped vertices, with the incoming and outgoing
edges of any vertex ordered from left to right. For example, we distinguish the following two
situations:

We note that the graph of Example [3.1.1] can be made corolla ordered in 3! x 3! = 36 ways,
corresponding to the total orderings of the three incoming edges of x and of the three outgoing
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edges of y. Here are three of them:

2
1133
Al
TTx ‘ C C
12 3
2
13
AL
><x ‘ e C
12 3
13 2

— 2
O
<

Definition 3.1.2. Let G and G’ be two graphs.

1. A morphism of graphs from G to G’ is a family of maps f = (fv, fg, f1, fo, fro, fr) with:

fv:V(G) — V(G/), fe: E(G) — E(G"), fr:1(G) — I(G/),
fo:0(G) — O(@),  fio:10(G) — IO(G"),  f1: L(G) — L(G"),
such that:
s' o fe = fv o sip@), s' o fo = fv o sio),
t'o fe = fvotpe), t'o fr = fvotie,
o o fr = aiyey, o' o fro = aro@)
8" o fo = Bo) 8" o fro = Biro)-

2. Anisomorphism of graphs from G to G' is a morphism of graphs f = (fv, fg, f1, fo, f10, fL)
from G to G’ such that all the structure maps are bijections.

In other words, a morphism of graphs is an isomorphism if all the structure maps are bijec-
tion. Furthermore, an isomorphism of corolla ordered graphs is an isomorphism of graphs that
preserves the orderings of ingoing and outgoing edges.

Definition 3.1.3. Let G and G’ be two corolla ordered graphs.

1. A morphism of corolla ordered graphs from G to G’ is an morphism of graphs f from G
to G’ which preserves the order of incoming and outgoing edges that is, for any vertex of v:
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e For any incoming edges e, ' of v, e <, € in G if, and only if, f(e) <y f(e') in G
e For any outgoing edges e, €' of v, e <, € in G if, and only if, f(e) <) f(€') in G

2. An isomorphism of corolla ordered graphs from G to G’ is a morphism of corolla ordered
graphs from G to G’ that is also an isomorphism of graphs from G to G'.

3. For any (k,1) in N2, we denote by GrO(k,l) the set of the isoclasses of graphs G such
that i(G) = k and o(G) = 1, that is GrO(k,l) is the quotient space of graphs with k input
edges and | output edges by the equivalence relation given by isomorphism. Similarly, we
denote by CGrO(k,1) the set of isoclasses of corolla ordered graphs G such that i(G) = k
and o(G) = 1.

4. The subset of GrO(k,1) formed by isoclasses of solar graphs is denoted by solGrO(k,1) and
the subset of CGrP(k,1) formed by isoclasses of solar corolla ordered graphs is denoted by
solCGrO(k,1).

In what follows, we shall write graphs for isoclasses of graphs.

Ezxample 3.1.2. The isoclass of the graph of Example [3.1.1]is represented by:
1 3 2

)
N

1 2 3

c C

We shall use later the two following special graphs:

Example 3.1.3. 1. We denote by O the graph with no vertex and with only one element in
L(G).

2. We denote by I the graph with no vertex and with only one element in IO(I).

We will later define a monad structure on graphs and corolla ordered graphs (Proposition
5.2.4]).

Throughout the paper, X = (X (k,1))x >0 is a family of sets.

Definition 3.1.4. A graph decorated by X = (X (k,1))ri>0 (or X-decorated graph, or simply
decorated graph) is a couple (G,dg) with G a graph as in Definition and dg : V(G) —
|_| X (k,1) a map, such that for any vertex v € V(G), dg(v) € X(i(v),o(v)). We denote by
k>0
GrO(X) the set of graphs decorated by X. Similarly, we define X -decorated corolla ordered
graphs which we denote by CGrO(X).

We further write GrO(X)(k, 1) (respectively, CGrP(X)(k,1), solGrO(X)(k, 1) and solCGr°(X)(k,1))
the set of graphs (respectively, of corolla ordered graphs, solar graphs, solar corolla ordered graphs)
decorated by X with k inputs (that is |I(G)| = k) and | ouputs (that is |O(G)| =1).

3.2 TRAPs of graphs

As before, X = (X (k,1))k, >0 is a family of sets. We equip the set of graphs (possibly decorated
by X) with a structure of TRAP. Let us first define an action of & x G on graphs. Let
G=V(Q),EG),IG),O0G),I0G), LG),s,t ap) e GrO(k,l), 0 € & and 7 € &;. Then:

7-G-o = (V(Q), E(G), [(Q),0(G), I0(G), L(G),s,t,0 " o a, 70 B).
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If G is corolla ordered, then 7-G - o is naturally corolla ordered; if G is X-decorated, then 7-G-o
is also X-decorated. Hence, this defines a structure of & x &°P-module on Gr®, CGr®, GrP(X)
and CGrP(X) for any X.

We now define the horizontal concatenation. If G and G’ are two graphs, we define a
graph G * G’ in the following way:

V(G+G)=V(G@)uV(G), EG=+G)=EG)u

I(G+«G)=I1G)uI(G), OG=*G)=0(G)u

The source and target maps are given by:

SlB@)Lo@) = S Sle@uo@) =
te@one = b teonoreny =t

The indexations of the input and output edges are given by:

" " . /

Y r@uio@ = % Y rGHuioG) = i(G) + o,

" " /

Bo@uroe) = P Blowyurow = o(G) + 8
with an obvious abuse of notation in the definition of the second column. Notice that this product
is not commutative in the usual sense for G * G’ and G’ * G might differ by the indexation of
their input and output edges. However, it is commutative in the sense of Axiom 2.(d) of TRAPs.

Roughly speaking, G * G’ is the disjoint union of G and G’, the input and output edges of G’
being indexed after the input and output edges of G.

X f,.j’ X l{f/f”’
Bi * ERREREN

Example 3.2.1. Here is an example of horizontal concatenation :
1 3 2 1 f 2 1 3 2 4 V 5
1 YZ 1 1 XZ 3
Moreover, if G and H are corolla ordered graphs, then G = H is naturally a corolla ordered
graph. If G and H are X-decorated graphs, then G % H is also naturally an X-decorated graph.
Let us finally define the partial trace maps. We only define the outline of their definition,
and refer the reader to Appendix [B| for a rigorous definition. Let G € GrO(k,l), 1 < i < k
and 1 < j <. We set ¢; = aél(i), fi = ﬁél(j) and define ¢; ;(G) as the graph obtained by
identifying the input of e; with the output j of f;. If e; € I(G) and f; € O(G), this creates an
edge in E(G). This case is illustrated in the figure below. Otherwise, we create an edge in I(G),
or O(G) or IO(G) or in L(G). In all these cases, we then reindex in non-decreasing order, the

inputs and the outputs of the obtained graph.
Graphically:
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—— D P,
P > —

In particular, ¢; 1([) is the graph O (see Example [3.1.3)). As before, if G is corolla ordered, or if
it is X-decorated, then t; j(G) is corolla ordered, or X-decorated.

Example 3.2.2. Let G be the following graph:

2 1
1 2 3
Then:
1 1
tLQ(G) = D t171(G) = tz,g(G) = t3,2(G) =
1 2 1 2
1
t271(G) = t371(G) = ‘
%
1 2

Note that ¢1 2 creates a loop when applied on G.

Proposition 3.2.1. With this data, Gr®, CGr®, GrP(X) and CGr°(X) are unitary TRAPs.

Proof. We provide the proof for CGr®. The proof is similar for the three other cases. Properties
1. and 2. follow directly from the symmetric group actions and the horizontal concatenation of
graphs defined above. Let us give a graphical interpretation of the proof of Property 3.(a), when
i’ <iandj <j.
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t.r

k3

One can give similar graphical representations of the proofs for the remaining cases using the
definitions given in Appendix [B]

For Property 3.(b), let us consider a graph p = G . As the input edge indexed by i in o -G - 7
is the input edge of G indexed by 7(i) and the output edge indexed by j in o - G - 7 is the output
edge of G indexed by 071(j), G1 = t; j(0c - G - T) is the graph obtained by gluing together the
input indexed by 7(j) and the output indexed by o~1(4), reindexing the input according to o;
and the output edges by 7;, so G1 = 0; - tr(5) o—1(;)(G) - 7.

Let us prove Property 3.(c). By Lemma [1.1.4] it is enough to prove it for (p,p’) = (G,G’) a
pair of graphs and (7,7) = (1,1). In this case, e; and f; are both edges of G, so t11(G * G') =
t171(G) * G/.

The graph I is defined in Example For any graph G with |O(G)| > 1,

tio(I+G)=G.
By Lemma I is a unit of Gr®, O

Corollary 3.2.2. solGr®, solCGr®, solGrP(X) and solCGrP(X) are subTRAPs of Gr®°,
CGr®, GrO(X) and CGr®(X) in the sense of Definition[1.1.9 They are non unitary.

Proof. If G and H are solar, then G * H is clearly also solar. If G € CGrP(k,1) is solar, then
for any i € [k] and j € [I], t;;(G) is solar. Indeed, as IO(G) = &, I0O(t; ;(G)) = ; as
I0(G) = L(G) = &, L(t;;(G)) = &. They are indeed non unitary, as the graph I is not solar,
IO(I) being nonempty. O

Remark 3.2.1. GrO, CGr®, GrP(X) and CGr®(X) admit other sub-TRAPs, for example with
vertices with only a prescribed number of possible vertices. These sub-TRAPs might be of
importance in the question of renormalisability of QFTs, but this question is far from the scope
of this work and we therefore do not define rigorously these other objects.
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3.3 Morphisms of TRAPs and free TRAPs

As before, X = (X (k, 1))k 0 is a family of sets. It turns out that solCGr°(X) is the free TRAP
generated by X. For any z € X (k,1), we identify  with the graph in solCGr®(k,1)(X) with
one vertex decorated by z, k incoming edges, totally ordered according to their indices, and [
outgoing edges, totally ordered according to their indices. For example, x € X (3,2) is identified
with the corolla ordered graph

123

Theorem 3.3.1. Let P be a TRAP and ¢ = (¢(k,1))k1=0 be a map from X to P that is, for any
(k,1) e N3, ¢(k,1) : X(k,1) — P(k,l) is a map. Then there exists a unique TRAP morphism
® : solCGrP(X) — P, sending = to ¢(x) for any x € X. If moreover P is unitary, this
morphism ® uniquely extends as a unitary TRAP morphism from CGrO(X) to P.

In other words, solCGrP(X) (respectively, CGrO(X)) is the free TRAP (respectively, the
free unitary TRAP, that is the free wheeled PROP) generated by X .

Remark 3.3.1. In practice we often have P = X and ¢ = Id which yields a map
® : solCGrP(X) — X (13)

from decorated corolla ordered graphs to the space X of decorations.

Example 3.3.1. Here is a trivial yet enlightening example of how & acts on graphs: for G = O,
we have G = t; 1(I) and hence ®(G) = t11(Ip).

Proof. We provide here a sketch of the proof, and refer the reader to the appendix [C] for a full
proof. Since solCGrP(X) € CGrP(X), we take G in CGrP(k,1)(X) and treat simultaneously
the case of solar graphs and the other. We define ®(G) for any graph G € CGrP(k,1)(X) by
induction on the number N of internal edges of G.

If N =0, then G can be written as

G=0"%0 - (I"*xy%...52,) T,

where (p,q,r) lies in N3, (k;,1;) lies in N2 for any i, @; in X (k;,l;) and o in Sgyp, 4. 1k, T i0
Sg+11+...41,- If G is solar, then p = ¢ = 0 and this reduces to

G=o0-(r1%...%2p) T.
We then set
O(G) =0 (¢(x1) *...%d(xx)) - T. (14)
If GG is not solar and if P is unitary, we denote by Ip the identity of P, and we put

P(G) =t11(Ip)**0- (I;;q wp(x1) % ...k p(ay)) - T

We can prove that this does not depend on the choice of the decomposition of G, with the help
of the TRAP axioms applied to P. Let us now assume that ®(G’) is defined for any graph with
N —1 internal edges, for a given N > 1. Let G be a graph with IV internal edges and let e be one
of these edges. Let G, be a graph obtained by cutting this edge in two, such that G = t; 1(Ge).
We then set:

(I’(G) = t1’1 o (I’(Ge)

We can prove that this does not depend on the choice of e. It can then be shown that ® defined
as above is compatible with the partial trace maps. O
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Since the ingoing and outgoing edges of each vertex of a corolla ordered graph are totally
ordered, each corolla ordered graph CGr® is naturally acted upon by & x &.

Definition 3.3.2. For any corolla ordered graph G € CGr® and any vertex v e V(G), there is
a natural action of &, X 6?(1;) induced by the action on the totally ordered edges in O(v) and
I(v). The corolla ordered graph obtained from G by the action of (o,T) on the vertex v is denoted
by

0 Gy T.

A similar action can be built on a corolla ordered graph G decorated by a family of sets X :
0 (Gydg) w7 := (04 G 7,dg).

Ezxample 3.3.2.

o] [

A A A A

(12)- = w(12)= X '

[ v ] [ v v

In these pictures, the labelling of the edges outgoing (respectively, ingoing to) from the vertex v
(respectively, w) are labelled from left to right.

Note that GrO(X) is obtained from CGrP(X) by forgetting the total orders on the edges,
which in fact is equivalent to the trivialisation of this action of symmetric groups on incoming
and outgoing edges of any vertex. Hence:

Corollary 3.3.3. Let P be a TRAP and ¢ = (¢(k,1))k =0 be a map from X to P. We assume
that for any x € X(k,1), for any (0,7) € 6, ® &y,

T p(x) -0 = p(x).

There exists a unique TRAP morphism ® : solGrP(X) — P, sending x to ¢(z) for any v € X.
If moreover P is unitary, this morphism ® is uniquely extended as a unitary TRAP morphism
from GrO(X) to P.

We end this paragraph with the non corolla ordered counterpart of Remark [3.3.1}
Remark 3.3.2. In practice we often have P = X and ¢ = Idp which yields a map

® : s0lGrO(X) — X (15)

from decorated graphs to the space X of decorations.

3.4 Extending non-unitary TRAPs

In this section, we embed any TRAP P in a unitary TRAP denoted by uPGr®(P). We proceed
in the following way:

e We start with the canonical TRAP morphism from the free TRAP solCGr®(P) generated
by P to P.

e By Proposition this defines an equivalence ~ on solCGr®P(P), compatible with the
TRAP structure of solCGrP(P).

e We then extend this equivalence to CGrP(P), in such a way that it is compatible with the
unitary TRAP structure of CGrP(P), as required in Lemma m
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e Consequently, the quotient CGrP(P)/ ~ is a unitary TRAP which contains P.

For this, we shall need the solar part of any corolla ordered graph G, which we now define:

Notation 3.4.1. Let G € CGrP(P)(k,1). Then there exist a unique (p, &’,1") e N3, k' <k, I' <1,
a unique solar graph G’ € solCGrP(P)(k',1'), a unique pair of permutations (o,7) € &), x &,
such that:

eo(l)<...<o(k)and o(K +1) <... < o(k) (that is to say o is a (k’, k — k')-shuffle);
e 7(1)<...<7(l')and 7(I' + 1) < ... < 7(l) (that is to say 7 is a (I',] — I')-shuffle);
¢ G=0s7r 1 (G +IFF). 0.
The graph G’ is the solar part of G and is denoted by sol(G). We also set
o = shi,(G), 7 1= show(G), p = valp(G).

Here sh stands for shuffle and val for valuation.

Remark 3.4.1. As the subsequent example will show, reindexing the ingoing and outgoing edges
is useful to write the graph as a horizontal product of a solar graph, loops and I.

Example 3.4.1. Let G be the graph:

1 3 2
Y lec
/\Q/x
3 2 1
Then:
1 2 3
G=0%%(132)"". /\}’i -(231)
2 1 3

— 0%« (132)71 - (G« I) - (231),

where G’ is the following graph, which as a result is the solar part of G:

1\@/2
//

G' =
\_/

2 1
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Moreover:
shi, (G) = (231), showt (G) = (132), valp(G) = 2.

Definition 3.4.1. Let P be a TRAP and let us consider the unique TRAP morphism ® :
solCGr®(P) — P, estending the identity of P. We define a relation ~ on CGrO(P) as
follows: for G,G' € CGrP(P),

D (sol(G)) = P(sol(G")),
Shln(G) = Shin(G/),
Shout(G) = Shout(G,)a
valp(G) = valp(G').

This is clearly an equivalence.

Roughly speaking, this equivalence identifies graphs with the same input-output edges and
loops and which coincide after contraction of their components obtained from deleting input-
output edges and loops.

Theorem 3.4.2. Let P be a TRAP and let ~ be the equivalence on CGrP(P) of Definition
3.4.1. The quotient uPGrO(P) := CGrP(P)/ ~ is a unitary TRAP, containing a sub-TRAP
isomorphic to P through.

Proof. e We first show the compatibility of the equivalence relation with the left and right
actions of the symmetric group.

Let G,G’ € CGrO(P), such that G ~ G'. If 0 € Gy, there exists a unique triple
(01,02,0") € G x &)_ps x & such that:

— shin(G) oo =0’ o (01 ® 09).
—od(l)<...<d(K)and o'(K +1) <... < (k).

Then sol(G - o) = s0l(G) - 01, shiu(G - o) = ¢’ and shyu (G - 0) = shout(G). Obviously,
valp(G - o) = valp(G’). A similar result holds for G’. We immediately obtain that:

shin(G - 0) = shin(G' - 0),  sho(G-0) = sho(G'-0), valp(G-0o)=valp(G o).
Recall that ® is given in Definition As it is a TRAP morphism:
O (s0l(G - 0)) = ®(s0l(G) - 01) = ®(s0l(G)) - 01 = P(s01(G")) - 71 = P(s0l(G’ - 7)),
SoG-0~G 0. Similarly, if Te &, 7-G ~7-G".

e Let us show the compatibility of the equivalence relation with the horizontal concatenation
# on the left and on the right.

Let H € CGrO(P). Then, by construction of the product * (Paragraph :

sol(G = H) = sol(G) = sol(H),
shin (G = H) = ship(G) = shi, (H),
Shout(G * H) - Shout( ) out(H)
valp(G = H) = valp(G) + valo(H).

A similar result holds for G’ * H. As G ~ G,

shin (G * H) = shy, (G' « H), 8how(G % H) = shouw(G' * H), valp(G* H) = valp(G' = H).
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Moreover, as ® is a TRAP morphism:
O (sol(G = H)) = ®(s0l(G) # sol(H))
D (s0l(@)) = ®(sol(H))
= @(SOI(G’)) x ®(sol(H)) = ®(sol(G' = H)).
Hence, G * H ~ G’ * H. Similarly, H * G ~ H = G'.

e We now check the compatibility of the equivalence relation with the partial trace maps.

Let i € [k] and j € [I]. We denote by e; (respectively e}) the i-th input of G (respectively
of G') and by f; (respectively f}) the j-th output of G (respectively of G'). There are five
possible cases:

1. If e; = fj € IO(G), then e; = f; € IO(G"). Moreover:
= sh ( ,](G/))v

(@)
( )) = hout( Z] G/ )7
valp(t;,;(G)) = valo(t; j(G")) = valo(G) + 1,
(@)
)

As G ~ G, ®(s0l(Q)) = ®(sol(G")), so t; ;(G) ~ t; j(G).
2. If ¢;, f; € IO(G), with e; # f;, then e}, fi € IO(G'), with e; # fj. Moreover:

shin(ti,;(G)) = shin(t Z](G/))7

shout (ti,;(G)) = shout(ti,; (G"),

Valo(tm (G)) = lo(tw( )) = valo(G),
sol(ti,;(G)) = sol(G),
sol(i,;(G")) = sol(G).

SO tiJ‘ (G) ~ t@j(G/).
3. If ;€ IO(G) and f; ¢ IO(G), then €}, € IO(G’) and f; ¢ IO(G"). Moreover:
shin (tij(Q)) = shin(ti ;(G")),
Shout(ti,j(G)) = ShOUt( 2% (G/))’
valo(ti,;(G)) = valo(ti;(G")) = valo(G),

and there exists a permutation a € &, such that

sol(t; ;(G)) = sol(G) - a, sol(t; ;(G")) = sol(G') - «
As @ is a TRAP morphism:
P(sol(t; ;(G))) = P(sol(G)) - @ = ®(s0l(G")) - @ = P(s0l(G') - ) = D(s0l(¢;,;(G"))),

SO ti,j(G> ~ tz"j (G/)
4. The case where e; ¢ IO(G) and f; € IO(G) is treated similarly.
5. If e;, fj ¢ IO(G), then e;, fj ¢ IO(G"). Moreover:

Shm(t%] (G>) ’m(tZJ (G,))’
Shout(tl ](G)) out(tl,] (G/)),
ValO(tz,](G)) (tlj( )) :Valo( )
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and there exist ¢’ € [K'], j/ € [I'], such that
sol(t;;(G)) = ti j(s0l(G)), sol(t; j(G")) =ty jr(sol(G")).
As @ is a TRAP morphism:

P (sol(t;,;(G))) = @ oty j(sol(G))

SO ti,j(G) ~ tiyj(G/).

By Lemma uPGrP(P) is a unitary TRAP.

The canonical injection ¢ : P — CGrP(P) induces a TRAP morphism ¢/ : P — uPGrO(P),
which we see as follow. If p, ¢ lie in P, then in CGrP(P), «(p) * 1(¢q) and ¢(p* q) are solar graphs,
and:

D(u(p) # 1(q)) = Poulp) # Pouq) =prg=Poup=q),

so t(p) # t(q) ~ t(p=*q). Hence, /(p) = (q) = /(p=xq). If pe P(k,l), i € [k] and j € [l], then
t;jou(p) and ¢t ot; j(p) are solar graphs in CGrP(P), and:

Potijoup) =tijoPoup) =tij(p) =Porot;;(p),

0 t;j o u(p) ~ tot;j(p), which implies that ¢;; o //(p) = ¢/ o t;;(p): the map ./ is a TRAP
morphism.
Let p,q € P, such that //(p) = /(q). Then ¢(p) ~ ¢(q). As ¢(p) and ¢(q) are solar graphs,

p=2oup) =Pouq) =g,

so ¢/ is injective. We have proved that the unitary TRAP uPGr®P(P) contains a (non unitary)
sub-TRAP isomorphic to P. O

We now identify the sub-TRAP //(P) of uPGr®(P) with P. Let us give a description of the
&) x &P-module uPGrP(P)(k,1). Its elements are obtained from the elements of CGr®(P)(k, 1)
by the contraction of their solar parts to an element of P. Moreover, the elements of CGrP(P)
are obtained from their solar parts by adding copies of the unit I, corresponding to input-output
edges, and copies of the trace O of the unit. Similarly, the elements of uPGr®(P) are obtained
by adding copies of I and O to elements of P. The action of the symmetric groups on the copies
of I and on P has to be taken in account: for any i, I* generates a &; x &?P-module isomorphic
to &;, with its canonical &; x &;7-action. Therefore, we obtain that:

min(k,l)

wPGrO(P)(k,1) = | || indl e | o imen i X PUk—il—i) | x {0, j € No},
=0

where ind is the induction of modules.
The partial trace maps can be computed with the help of the unitary TRAP axioms. For
example, if pe P(k—1,1—1), if j > 1, then:
tl,j(Id[1]>p> Ol) = (Id[0]7 (1 o ] - 1) e Ol)a
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which is graphically represented by

12 jitl+1 1 ﬂ i o> 1 4 1
t1, p o = p o' = p o'
1 2 3 k k+1 1 2k-1k 1 2k-1k
and ' ‘
tl,l(:[d[l]ap7 Ol) = (Id[0]7p7 OHI);
which is graphically represented by
1 2 3 l+1 1 27-1 1 1 2171-11
t11 p O = o0 = p O+,
1 2 3 k k+1 1 2k-1k 1 2k-1k

3.5 A functor from TRAPs to unitary TRAPs

The unitary TRAP uPGrP(P) satisfies the following universal property:

Proposition 3.5.1. Let P be a TRAP, Q a unitary TRAP and 0 : P — @Q be a TRAP
morphism. There exists a unique unitary TRAP morphism © : uPGrO(P) — Q eatending .

Proof. Uniqueness. Let 6 be such a morphism. For any G € CGrP(P), we denote by [G] its
class in uPGrP(P). Then:

G = shout(G) - (s0l(G) * I**") - shin(G),

O([G]) = shout(G) - (B(s0l(G)) * IF"") - shou(G),

which entirely determines ©.

Egzistence. Let © : CGrP(P) — @Q be the unique unitary TRAP morphism such that
O(p) = O(p) for any pe P. Let G,G" € CGrO(P), such that G ~ G’. Then:

G = shyyt(G) - (s0l(G) # I*P) - sh;, (GQ),
G = shpu(G) - (s0l(G’) % I*P) - shy, (G),
and ®(sol(G)) = ®(sol(G")) in P, so:

O(G) = shout(G) - (O(s0l(G)) * 1)) - shin(G)
= shyut(G) - (0 0 ®(s0l(Q)) * IV) - shin (G)
= shyut (G) - (6 0 ®(sol(G")) = IT) - shy (G)
= shou(G) - (O(s0l(G")) * It) - shin(G)
= 0(G").
Hence, © induces a unitary TRAP morphism © : uPGr®(P) — Q, extending 6. O
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In other words, uPGr® is a functor from the category of TRAPs to the category of unitary
TRAPS, left adjoint of the forgetful functor from the category of unitary TRAPs to the category
of TRAPs. This functor is the functor L of [YJ15, Theorem 12.1| (with the difference that in
[YJ15], one works in the coloured setup). Notice that we have a more explicit and straightforward
construction of this tensor than the one of [Y.J15].

4 Compositions, generalised trace and convolution

4.1 Vertical concatenation in a TRAP

In the same way as wheeled PROPs are PROPs and are equipped with a second associative prod-
uct [YJ15], TRAPs can be equipped with a natural operation, called the vertical concatenation.
We start with the various TRAPs of graphs we introduced.

Let G and G’ be two graphs such that o(G) = i(G’). We define a graph G” = G’ o G in the

following way:

V(G") =V(G)uV(G),

E(G") = E(G) u E(G") u{(f,e) € O(G) x I(G) : B(f) = o/(e)},
I(G") = I(G) u{(f,e) e IO(G) x I(G") : B(f) = o/ (e)},
O(G") = O(G) L {(f,e) € O(G) x IO(G") : B(f) = (e)},
I0(G") = {(f.¢) € IO(G) x IO(G') : B(f) = &/ ()},

L(G") = L(G) u L(G").

Its source and target maps are given by:
S'E(@) = SIBG)» S\B(Gn = S|B(E) slo(en = Slo()» s"((f,e)) = s(f),
) = YEG), e = S|y tic) = S|1@): s"((f,e)) =1t'(e).

The indexations of its input and output edges are given by:

V1) = A1(6); a"((f.e)) = alf),
5\0 ed) Bfo(gl)a 5”((f: e)) = ﬁ'(e).

Roughly speaking, G'o(G is obtained by gluing together the outgoing edges of G and the incoming
edges of G according to their indexation as depicted below.

.1 4T
B o Bi : Bi
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Ezample 4.1.1. Here is an example of vertical concatenation :
2 1 2 1 3 2 1
1 2 3 1 2 3 4
N
1 2 3 4

If G and G’ are corolla ordered (respectively X-decorated) graphs, then G o G’ is naturally
a corolla ordered (respectively X-decorated) graph. This operation o is clearly associative.
Moreover, denoting by I the identity graph, for any (k,l) in N2, for any graph G with k inputs
and [ outputs,

oG =GoI* =aG.

The vertical concatenation can be described in terms of the horizontal concatenation and of the
partial trace maps: If G is a graph with k inputs and [ outputs, and G’ a graph with [ inputs
and m outputs, then:

th41,10 .- O bpyi—1-1 0t (G* G') =G o &,

or, graphically:

This construction can be generalised from TRAPSs of graphs to an arbitrary TRAP:

Definition-Proposition 4.1.1. Let P be a TRAP. We define a vertical concatenatz’ovﬂ o in the
following way:

V(kz,l,m) € N37 vp € P(kvl)a Vq € P(lam)7 qop:= thrl,l ©0...0 tk+l,1’l,1 © thrl,l(p * q)

This operation is associative: for any (k,l,m,n) in N3, for any (p,q,7) in P(k,1) x P(l,m) x
P(l,n),

ro(gop)=(rog)op. (16)
If the TRAP is unitary, then for any (k,1) in N2, for any p in P(k,1), denoting by Ip the unit
of P, then

Ifop=polff=np.

7 When there is a risk of confusion, we will write op for the vertical concatenation of a given TRAP P.
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Proof. Recall that in Subsection [3.3| we identified any element p of the decorating set and the
solar graph with one vertex decorated by p (see Equation (12)). Let a : solCGr®(P) — P
be the unique TRAP morphism such that a(p) = p for any p € P whose existence follows from
Theorem and more specifically from the case detailled in Remark This is therefore
a surjective TRAP morphism. As «a respects the horizontal concatenation and the partial trace
maps, for any graphs G, G’ € solCGrP(P) such that G o G’ is well-defined, a(G) o a(G") is also
well-defined and

a(G)oa(G) =a(GoG").
Since the vertical concatenation is clearly associative in solCGrP(P), the vertical concatenation
is associative in P. If P is unitary then again by Theorem this morphism is extended as a
unitary TRAP morphism from CGrP(P) to P, which we also denote by a. For any p € P(k,1),
in CGrP(P):
I*lopzpof*kzp.

As a(I) =1Ip,in P:
a(I* op) = I op=p=a(poI*") = po I}". O

Remark 4.1.1. One could also define partial vertical concatenations, where only a subset of
the outputs are glued to the inputs with the partial trace maps, in the spirit of [YJ15, Paragraph
3.3.3]. We do not pursue this course here since such partial vertical concatenations will play no
role in the rest of the paper.

Ezample 4.1.2. Let V be a vector space and let f = O(vi... vy ® f1...fr) € Hom{/r(k:,l),

g=0(w1...wH®g1...q1) € Hom{,r(l,m). Then, denoting by e the vertical concatenation of

fr.
Homvr.

gef=g1(v1)...q(v)0(wr ... wn @ f1... f)
=0(wi... wp®g1...g1)00w1... R f1...[k)
=golf.
Hence, the vertical concatenation induced by the TRAP structure is the usual composition of

linear maps. If V' is not finite-dimensional, this composition does not have a unit, as Idy is not
of finite rank.

We end this subsection with a simple yet important proposition.

Proposition 4.1.2. For any two TRAPs P = (P(kvl))(k,l)eNg and Q, any TRAP morphism
o = (o(k, l))(k’l)eNg : P — Q) 1is compatible with the vertical concatenations of P and Q.

Proof. We need to show that for any TRAPs P and @ and any TRAP morphism ¢ : P — @
as in the statement of the proposition, for any (k,I,m) in N3, p; in P(k,l) and py in P(I,m)
we have

¢(k, m)(p2 op p1) = ¢(k,1)(p1) oq ¢(I, m)(p2).

Using the definition of the vertical concatenation in the TRAP P and the third property of the
Definition of morphisms of TRAPs we have

¢(k,m)(p2 op p1) = 75%1,1 0-::0 t&l,l[qb(k +1,m +1)(p1 * p2)]

with ¢;° ; the partial trace maps of the TRAP @. Then using the second property of Definition
[L.1.3 we obtain:

o(kym)(paop p1) = 171y 0ot [0k, D)(p1) * (1, m)(p2)] = 6(k, 1) (p1) 0 S(L,m) (p2). O
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4.2 The generalised trace on a TRAP

If G is a graph with the same number of inputs and outputs, we define its generalised trace by,
roughly speaking, grafting any of its input to the output with the same index:

In particular, in CGrO(X ), this construction applied to I gives O. This construction preserves
solar graphs, corolla ordered graphs and X-decorated graphs. Moreover, we can describe this
construction in terms of the partial trace maps: if G € solCGrP(X)(k, k), then its generalized
trace is

tlyl o... Otk7k(G) = tl,l O... OtLl(G).

These formulas have a meaning for any TRAP:

Definition 4.2.1. Let P be a TRAP. For any p in P(k, k), with k in Ny, the generalised trace
on P is defined as:

Trp(p) :=t110...otgk(p) € P(0,0).
In the case of the TRAPs solCGrP(X), we shall simply write Tr instead of Treoicaro(x)-
Proposition 4.2.2. Let P be a TRAP.
1. For any (k,1) in N3, for any (p,q) in P(k,l) x P(l,k),
Trp(pogq) = Trp(gop),
which justifies the terminology "trace.
2. For any (k1) in N2, for any (p,q) in P(k, k) x P(l,1),

Trp(p * q) = Trp(p) * Trp(q).

Proof. Let a : solCGrP(P) — P be, as before in the proof of Definition-Proposition m
the unique TRAP morphism which extends the identity map on P. Since « respects the partial
trace maps, for any graph G € solCGrP(P)(k, k),

aoTr(G) = Trp o a(G).
Let p,q € P(k,k). In solGrPO(P), Tr(q o p) and Tr(p o q) are represented respectively by the
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graphs

»
»

<
<X
<
<

which are the same. Applying «, we obtain Trp(pogq) = Trp(gop). Moreover, the graph Tr(p*q)
is represented by

which is also a graphical representation of Tr(p) * Tr(q). Applying «, we obtain Trp(p = q) =
Trp(p) » Trp(q). O

Ezample 4.2.1. Let V be a finite dimensional vector space and f = O(v1...vx ® f1...fx) €
Hom{/r(k:, k). Identifying Homy (0,0) with R, we obtain that

TrHomv (f) = fl(vl) .. fk(vk)a

which is the usual trace of linear endomorphisms of a finite-dimensional vector space. If V' is not
finite-dimensional, Try - is a direct generalisation of this trace for linear endomorphisms of
14

finite rank.

4.3 Amplitudes and generalised convolutions

By Theorem [3.3.1] applied to ¢ = Idp, we know that for any TRAP P there exists a canonical
TRAP map ®p : solCGrP(P) — P (see Remark [3.3.1)).

Definition 4.3.1. Let G be a graph decorated by a TRAP P. The P-amplitude associated to
G is the image of G under ®p.

When P = K3 is the TRAP of smooth generalised kernels over a smooth finite dimensional
closed Riemannian manifold M of (that is P(k,l) := K3;(k,l) with the r.h.s defined in
(10)), we simply write ® for ®p and call ®(G) the smooth amplitudes associated to G €
solCGrP(K%).

Remark 4.3.1. The terminology P-amplitude is justified in so far as it associates to a graph an
expression in P depending on the ingoing and outgoing edges of the graph in a similar way as
an amplitude associated to a Feynman diagram depends on the external ingoing and outgoing
momenta.
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Remark 4.3.2. If we specialise to spaces &(M )ék ®E(M )él which are symmetric in both sets of
input and output variables, then ¢ can be extended to solGrP(X) (see Corollary [3.3.3)).

The case of a path graph relates amplitudes to convolutions:

Remark 4.3.3. Let G be a path graph decorated by X = (K% (k, 1))k, >0, that is to say a graph
such that I(G) = O(G) = [1], IO(G) = L(G) = &, V(G) = {v1,--- ,vn}, E(G) = {e1, - ,en—1}
and the source and target maps defined by

SG(I) = Up, tG(l) = 1,
Vie[n—1], sg(e;) = v, ta(ei) = vit1-

Here is a graphical representation of this graph:

1 @ @ 1
Let P;,i = 1,--- ,n be smoothing pseudo-differential operator each of which is defined by the

kernel K; that decorates the vertex v;. Then the generalised convolution associated to the
graph G is the convolution Kj % --- % K, of the kernels Ki,- -, K,, which is the kernel of the
smoothing pseudo-differential operator P o --- o P,. In this sense, P-amplitudes can be seen as
a generalisation of the convolution of multiple smooth kernels.

Proposition 4.3.2. For any TRAP P, the P-amplitude associated to a horizontal concatenation
of graphs is the horizontal concatenation of their P-amplitudes: for any Gy, G € solCGrO(P),

Op(Gy * Ga) = Op(Gr) * Pp(Ga),

and the same holds for the vertical concatenation: if Gy o Go exists, then
Pp(G10G2) = 2p(Gr) op Pp(G2)

with op the vertical concatenation of P.

Proof. This follows directly from the fact that ®p is a TRAP morphism and from Proposition
4,12 O]

For any TRAP P, let ¢p : PHSOICGPO(P) be the canonical embedding of P into the TRAP
of P-decorated graphs that is, tp(p) is the solar graph with only one vertex decorated by p. We
have the following simple yet useful lemma.

Lemma 4.3.3. For any TRAP P the following diagram commutes:

P x P > s0lCGr®(P) x solCGr°(P)

op \LO

P 5 solCGrP(P)

P

with o, the vertical concatenation of the TRAP P, the top arrow given by vp x tp and the obvious
abuse of notation that vertical concatenations, if seen as maps, are not defined on the whole of
their domains.

In words, the vertical concatenation of two elements p; and po of P is the P-amplitude
associated with the graph given by the vertical concatenation of two graphs with exactly one
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vertex, each decorated by one p;. Graphically, if p € P(k,l) and g € P(l,m):

Pp = ®p(p) op Pp(q).

1k

Proof. Let P be a TRAP. Then for any p;, pe in P such that pjopps is well defined, tp(p1)oip(p2)
is well-defined since ¢p respects the gradings and we have

@p(tp(pr) otp(p2)) = @p(tp(p1)) op ®(p(p2)) by Proposition
=Pp1opp2

since for any TRAP P, ®p o 1p = Idp by definition of ®p (Equation with £ = 1 and
¢ =1dp). O

Remark 4.3.4. Note that the vertical concatenation is not the same as the P-amplitude: the
latter has a much larger domain.

Applying the above constructions to the TRAP of smooth kernels described in Theorem [2.3.1]
whose partial traces are given by integrations on the underlying manifold, easily yields the
following statement. We use the notations of Paragraph 2.3} M is a smooth, finite dimensional
orientable closed manifold and p(z) is a volume form on M.

Theorem 4.3.4. For the TRAP (K3;(k,1)),, ;5o the following statements hold:

1. The vertical concatenation of two kernels corresponds to their generalised convolution:

V(k,1,m)e N3, VK| € K (k,1), VKo € KG(1,m), ¥ (x1, -, Tpy 21, -+ 2m) € MET™,
KQOKl(xla"' sy Ly R1y "t 7Zm)

=1p41,1 0 O tppi—10—1 O by (K1 @ Ko) (w1, -+ g, 21,7 Zm)

= lKl(ajl)"' y Lk Y1, - 7yl) KQ(y17"' y YL, 21, 7Z’m)d/‘6(yl) d:u’(yl)7
M

obtained by integrating along the diagonal AL, := {(y1, - ,yi, y1, -+ ,u), i € M} = M?.
2. The associativity property Ks o (Ky o K1) = (K30 Ks) o Ky (cfr. (16)) for any Ks €

K% (m,n), amounts to the Fubini property for the corresponding multiple integrals:

[ (], @it i) ) Kot i) (17)

= | Ki(Z ) (

y Rl ) K ) ) di)

Mm

for any ¥ € M* and 7€ M™, where we use the short-hand notations dji(i;) := du(y1) - - - du(yy,)-
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3. The generalised trace of a generalised kernel K= K1 ® Ko € K (k,k) is given by the
integral along the small diagonal of M* :

Trge(K) = o K(xy, - ,xg, 21, o) du(xy) -+ - dp(zy) (18)
where we have set K(Z,9) := K1(Z)K2(y) and obeys the following cyclicity property:
Trge (K o K) = Trgs (K o K)
for K € K& (k,1) and K € K5(1, k).
4. The K3 -amplitude is compatible with the horizontal and vertical concatenations in K3;.
Proof. We prove the assertions one by one.

1. The vertical concatenation o of Definition-Proposition applied to the TRAP KY; of
smooth kernel of Theorem [2.3.1] gives the generalised convolution..

2. As proved in Definition-Proposition [£.1.1} the vertical concatenation o of any TRAP is
associative. Writing the explicit expression of each side of the equation K o (Kg o0 K3) =
(K1 o K3) o K3 for the vertical concatenation of the TRAP Kf; shows that the identity
amounts to the Fubini property for multiple integrals as given by Equation .

3. By Equation ., for any K in K3 (k, k), we can write K = K1 ® Ko with K; and K»
in €8 The generalised trace of Definition 1| for the TRAP KY; of smooth kernel of
Theorem combined with the partial traces of this TRAP given by Equation ((11))
yields Equation (18). The cyclicity property of Trgw follows from the cyclicity property
of generalised traces (Proposition m item 1).

4. This follows from Proposition applied to the generalised amplitude of Definition [4.3.]
for the TRAP Kf; of smooth kernel discussed in Theorem [2.3.1}

O

5 Categorical interpretation

We describe TRAPs and unitary TRAPs as algebras over an endofunctor of the category of
S x G°P—modules, thus extending known results of [Y.J15] on the categorial aspects of wheeled

PROPs.

5.1 Two endofunctors in the category of G x G’modules

We consider graphs decorated by a & x &°P-module X = (X (k,1))r, >0 and use the action of the
symmetric groups on the vertices of Definition to define an endofunctor I'©.

Definition 5.1.1. We define a relation on CGr®(X)(k,1) by (G,dc)Ryi (G, dg:) for (G,dg)
and (G',d¢) if there exists a vertex v of G and permutations o € So(v), T € G4y such that

0 (G dg) » T=(G,d5"")
with
27 (W) - { dotw!) ford! %1

o -dg(v) - T otherwise.

We denote by ~y.; the transitive closure of Ry, which defines an equivalence. We further define

r so O
rO(X) (k1) 1= 22 N(M)(k’l), SoITO(X) (k. 1) :— ICGN:IX)(’“’Z).

We further write TO(X) := (I°(X)(k,1)) k=0 and soll'P(X) := (sollO(X)(k,1))k1>0
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Here is the type of relations we obtain graphically:

wW—>

where z € X359 and y € Xg 9.

It is easy to show that the family of equivalences (~j )k >0 is compatible with the action of
S x G°P, the partial trace maps and the horizontal concatenation in the sense of Lemma [1.2.1
The subsequent useful statement follows from Lemma [1.2.1]

Lemma 5.1.2. Let X be a & x &%-module. TO(X) is a unitary TRAP and soll'©(X) is a
TRAP.

Proof. By Corollary 7 CGrP(X)is a TRAP, and it is easy to see that the family ("k,l)(k,l)eNg
satisfies the conditions of Lemma Hence, T'©(X) is a TRAP. The proof is similar for
soll'O(X). O

Proposition 5.1.3. Let X be G x &° module, P be a TRAP and ¢ : X — P be a morphism of
& x &°P-modules. There exists a unique extension ¢ to a TRAP morphism ® : soll'©(X) — P.
If moreover P is unitary, this morphism extends to TO(X).

Proof. We know from Theorem that solCGr®(X) is the free TRAP generated by the
set X. Hence, ¢ is extended as a TRAP morphism ® : solCGr®(X) — P. Let G, H €
solCGrP(X)(k,1), with (k,l) € N2. If GRy H, then, as ¢ is compatible with the actions of
the symmetric groups, ®(G) = ®(H). By transitive closure, if G ~; H, then ®(G) = ®(H).
Consequently, ® induces a TRAP morphism @ : soll'©(X) — P, which extends ¢. It is
obviously unique, as X generates soll'©(X). The proof is similar for I'O(X). O

In other words, soll'©(X) is the free TRAP generated by the & x &°P-module X and T'O(X)
is the free unitary TRAP generated by the & x G°-module X.

Ezample 5.1.1. If X is a trivial & x G&°-module, then I'P(X) = GrP(X) and sol[©(X) =
s0lGrO(X) as TRAPs. More generally, choosing for any graph G a corolla ordered graph G
which underlying graph is G, we can prove that for any (k,l) in N2, the sets [O(X)(k,[) and
GrO(X)(k,l) are in bijection, as well as soll'©(X)(k,l) and solGrO(X)(k,1) (but not in a
canonical way), through the map sending the equivalence class of G to G.

The correspondence P — I'O(P) defined above induces an endofunctor in the category Modg

of 6 x 6°-modules which we now introduce.

Definition 5.1.4. Let Modg denote the category of & x &°P-modules: its objects are families
X = (X(k,1))ki=0, such that for any (k,1) in N, X(k,1) is a &; x &;"-module; a morphism
¢: X — Y is a family (¢(k,1))k =0, where for any (k1) in N3, ¢(k,1) : X(k,1) — Y (k,1) is
a morphism of &; x GZp-modules.

By the functoriality of post-composition of morphisms of & x &°P-modules, we obtain:
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Definition-Proposition 5.1.5. We define two endofunctors TO and soll'© on the category
Modg as follows. Both are defined on objects as in Definition[5.1.1. For a morphism ¢ : X —
Y of & x &°P-modules, the morphisms TO(¢) : TO(X) — I'O(Y) and soll'®(¢) : soll'O(X) —>
soll'O(Y) are defined by post-composing ¢ with the decoration map of Definition . That 1s,
for (G,dg) € CGrP(X) and (H,dp) € solCGrP(X), we have:

I9(¢)(G,dg) = (G, ¢ 0 dg), soll°(¢)(H, di) = (H, ¢ o dp).

Proof. We need to prove that I'C and solI'® are indeed functors. Let X and Y be two & x G-
modules and ¢ : X —> Y a morphism of & x §°P-modules and let solCGr°(y) : solCGrP(X) —
solCGrP(Y) be its pullback, defined by

solCGrP(¢)(G,dg) := (G, podg) (19)

for any G € solCGrP(X). It is easy to check that the induced morphism soll'©(¢) : soll'O(P) —
soll'©(Q) is indeed a morphism of & x G°P-modules, turning soll'® into an endofunctor of Modsg.
The proof is similar for T'©. O

5.2 Monad of graphs

We now endow the functor I'C with a monad structure.

We first recall basic definitions of category theory. In particular, for two functors F,G :
C — D, a natural transformation 7 : ' — G between these two functors is given by maps
nx : F(X) — G(X) for each object X of C such that for any pair of objects X,Y € Obj(C) and
morphism f : X — Y € Mor(C) the following diagram commutes:

F(X) —L% P(y) (20)

nxl J{ny

G(X) W G(Y).

Let us now introduce the structure of monad, a terminology we borrow from [ML9I§|. A monad
is the categorical equivalent of monoids.

Definition 5.2.1. A monad (also called a triple) on a category C is given by an endofunctor
I' € End(C) and two natural transformations p: o' — T and v : Ide — T which form an
associative and unital monoid (I', pu,v) in the unital monoicﬁ End(C) of endofunctors of C.This
means that the multiplication p: o' — I' and the unit morphism v : Ide —> T" should satisfy
the axioms given by commutativity of the diagrams below for any object P of the category C.

ToToT(P) YT oT(P) r(P) 2 o (P) 2 1(P) (21)
. J/ l“P > i Tde
I oT(P) ——T(P) I(P)

We now recall the notion of I'-algebra (see for example [MMS09, Definition 2.1.4]).

Definition 5.2.2. Let C be a category. An algebra over a monad I' € End(C) or a I'-algebra
is an object P of C together with a structure morphism « : T'(P) — P such that the following

8The terminology monoid is used in this definition with an obvious abuse of vocabulary since I' and End(C)
are not necessarily sets.

41



diagrams commute:

I'(a)

[ o(P)——=T(P) P—ET1(P) (22)
upl la Id /

P P

Let (P,«) and (Q, B) be two algebras over a fized monad I'. A morphism of I'-algebras from P
to Q is a morphism ¢ : P — @ in the category C such that the following diagram commutes:

I'(P)-%>P (23)

|

Q

=
<
]

We now define the natural transformations v and p in the case C = Modg and I' = T'©. In
this case, for any & x &°-module P, elements of I'© o 'O(P) are graphs G whose vertices v are
decorated by graphs G,, consistently with the number of incoming and outgoing edges.

Definition 5.2.3. 1. For any & x &°-module P, let np : P —> T'O(P) be the morphism of
S x GP-modules which sends an element p € P(k,l) to the class of the graph G(k,l)(p)
with one vertex v decorated by p, k incoming edges indexed from left to right by 1,....k
and | outgoing edges indexed from left to right by 1,...,1.

2. For any & x &°P-module P, let up : IO o TO(P) — I'O(P) be the morphism & x G-
modules which sends a graph G € TO o TO(P) to the graph H € TO(P) with V(H) =
|_|v€V(G) V(Gy) and whose edges are obtained by identifying, for any vertex v, the i-th
incoming edges of v with the i-th incoming edge of G, and the j-th outgoing edge of v with
the j-th outgoing edge of G,.

In simpler words, the map np sends an element p € P to the graph with one vertex, which is
decorated by p and has the same numbers of input and output edges as p has inputs and outputs.
In picture:

Furthermore, the map pp replaces vertices decorated by graphs (G, dg) by (decorated) sub-
graphs. These subgraphs are exactly the graphs that were decorating the vertices of the original
graph. To illustrate this graphically, we give an example in which up sends the graph on the left
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to the graph on the right:

2 3 1 4
|
123

1 2 up
—>
A A
123
1 2

D]

where p € P(2,3), g€ P(2,2) and r € P(2,3).

The families of morphisms np and pp define two natural transformations and we further
obtain:

Proposition 5.2.4. The triple IO = (IO, u,v) is a monad in the category Modg. Moreover,
s0ll'® = (soll'V, psoiro, v) is a sub-monad of T'©.

Proof. The associativity of u is graphically immediate, as well as the fact that v is a unit. The
functor v takes its values in soll'® and the composition of solar graphs is a solar graph, so soll'®
is a submonad of I'C. O

5.3 TRAPs versus wheeled PROPs

We can now state the main result of this section, which relates TRAPs and various known
objects.

Theorem 5.3.1. The categories of TC-algebras and of unitary TRAPs are isomorphic. Similarly,
the categories of soll'©-algebras and of TRAPs are isomorphic.

Remark 5.3.1. Wheeled PROPs are defined (for example in [MMS09]) as I'©-algebras. Thus
Theorem precisely says that wheeled PROPs and unitary TRAPs coincide, and that TRAPs
can be viewed as non-unitary wheeled PROPs.

Proof. Let us start with the non-unitary case.

From Proposition [5.1.3] we know that soll'©(P) is the free TRAP generated by the & x &°P-
module P. If P is a TRAP, then the canonical TRAP morphism ap : sollO(P) — P of
Proposition makes it a soll'®-algebra. Furthermore, since soll'® is a functor by Definition-
Proposition for any TRAP morphism ¢ : P —> Q we have the existence of soll['O(¢) :
sol['©(P) —> soll'®(Q). Then by construction ¢ o ap = ag o soll'®(¢)|p. By unicity of the
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lift of ¢ o ap given by Theorem we obtain ¢ o ap = ag 0soll'O(¢)|p, that is that Diagram
commutes. Thus we have defined a functor from the category of TRAPs to the category of
soll"-algebras.

Conversely, if (P, a) is a soll['C-algebra:

e For any (p,p’) € P(k,l) x P(k',l"),we define p * p’ by applying « to the following graph:

1oool  I4+1...040
tt th
P [ P ]
rr
1...k k+1...k+k

e For any p € P(k,l), for any (i,7) € [k] x [I], we define t; j(p) by the application of & to the
following graph:

Let us prove some of the axioms of TRAPs for P. The others can be proved in the same way
and are left to the reader.

1. holds by the functoriality of solI'®.

2. (a): let (p,p,p") € P(k,l) x P(K',l') x P(k",1"). Then (p = p’) = p” is obtained by the
application of ap to the graph:

(For the sake of simplicity, we delete the indices of the input and output edges of this graph:
they are always indexed from left to right). Hence, (p = p’) = p” is obtained by application of
aoTO(a) to the graph:

Z

P

T T

Note that for the second connected component of this graph, this comes from:

—> > —>

—» >

oo Fo(a) o FO(VP)(]D”) =qo Fo(oz ovp)(p") =ao FO(Idp)(p”) = a(p”).
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As aoTO(a) = aopup, (p*p') *p” is obtained by applying « to the graph:

The same computation can be carried out for p # (p’ * p”), which gives the associativity of .

2. (b): the unity Iy of the concatenation product of graph is the empty graph, which is the
image of the unity of P for the horizontal concatenation under a.

2. (c) holds trivially by definition of the horizontal concatenation product on P, the & x G-
module structure of P, and the fact that solCGr®(X) is a TRAP.

3. (c): for any k,I,k’,I" > 1, for any i € [k], j € [I], for any p € P(k,1), p' € P(K',U), t; j(p=p')
is the image under ap of the graph

1 —
(24)
I i—Tl
On the other hand, ¢; ;(p) * p is the image under ap of the graph
l I+ -1
(25)

k k+k —1

with p the image under ap of the graph

jf

Tl p
T1

71—

ﬁ
I_

The images of the graphs and under ap are identical by the commutativity of the first
diagram of (22). The case I +1 < j <!+ and k+1 < i < k + k' holds by the same argument.

Let us now focus on the unitary case.

First if P is a unitary TRAP, then by Theorem (P, pup) is a I'O-algebra with exactly
the same argument as in the non unitary case.

Conversely, let (P, ap) be a [©-algebra. We then set

I:= Ozp([1)
where I7 is the graph with only one input-output edge.
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Let pe P(k,l) and 2 < j <+ 1. Then t; j(I # p) is obtained by applying v o I'(a) to the

ar

DAL

where the curved edge relate the first edge at the bottom to the j-th edge on the top. As
aol'O(a) = aoup, t1 (I p) is obtained by application of a to the graph:

where the curved edge relate the first edge on the bottom to the j-th edge on the top (note that
this edge is also the (j —1)-th outgoing the vertex decorated by p). As ais a & x G° morphism,
we obtain that this is (1,...,7 — 1) - @ ovp(p), that is to say (1,...,5—1) - p.

In this way, we define a functor from the category of soll'®-algebras to the category of
TRAPs. In the same way, we define a functor from the category of ['©-algebras to the category
of unitary TRAPs.

We obtain in this way two functors

F : TRAP — Alg(soll'©), G : Alg(soll'®) — TRAP.

Let P be a TRAP and P’ the TRAP G o F(P), with concatenation ' and trace operators t; ;.
We set F(P) := (P, ap): in other words, ap is the TRAP morphism from soll'°(P) to P which
is the identity on P. For any p,q € P:

p* q=ap(vp(p)=ve(q) =p*q

where in the middle term # is the concatenation in the TRAP sol['°(P) and where we used that
ap is a TRAP morphism by Proposition Therefore, * = «'. If pe P(k,1), (i,7) € [k] x [1],
then t;j is obtained by the application of ap to the graph:

which is ¢; ;(vp(p)), where here ¢; ; is the trace operator of soll'©(P). As ap is a TRAP mor-
phism:
ti ;(p) = apotijovp(p) = tijoapovp(p) =tij(p),
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so P = P and G o F is the identity functor of TRAP.
Let now (P, a) be a soll['C-algebra and (P’,a’) be the soll'®-algebra F o G(P). Both « and
o' are TRAP morphisms from soll'©(P) to G(P); for any p € P,

aovp(p) = ovp(p) = p.

Since soll'©(P) viewed as a TRAP is generated by the elements vp(p), a = o/, it follows that
F oG is the identity functor of Alg(soll'©).

The proof is similar in the unitary case. O

Remark gives a straightforward Corollary of Theorems [5.3.1] and thus confirming

previous statements.
Corollary 5.3.2. CGrP(X) is the free wheeled PROP generated by X .

Remark 5.3.2. The monad I'© contains an interesting sub-monad, formed by graphs without any
oriented cycle (which includes also loops). This submonad is denoted by T'T. Tt is well-known
that I'" is the monad of PROPs [Mar08]. Hence, unitary TRAPs are PROPS. In particular, a
unitary TRAP P inherits a vertical composition denoted by o, which is the one described in
Definition-Proposition in the more general frame of (non unitary) TRAPs.

A Appendix: topologies on tensor products

Tensor products ot topological spaces can be equipped with various topologies. A first possibility
is the so-called e-topology; [Tré67, Definition 43.1]. For two topological vector spaces E and F,
one can show ([Tré67, Proposition 42.4]) the isomorphism of vector spaces EQ F~B¢(E! x F. K)
where B¢(E! x F,K) denotes the space of continuous bilinear maps from E! x F to K and E/,
(respectively, F7) the topological dual of E (respectively, F') for o, the weak topology.

Recall that a bilinear map f : E x ' — K is called separately continuous if, for any pair
(x,y) € E x F, the maps z — f(z,z) and z — f(z,y) are continuous. We then clearly have
that continuous bilinear maps build a linear subspace of the space B*(E x F,K) of separately
continuous bilinear maps.

The space B*“(E x F,K) can be equipped with the topology of uniform convergence on
products of equicontinuous subsets of E! with equicontinuous subsets of F.. Recall that, for a
topological space X and a topological vector space G, a set S of maps from X to G is said to be
equicontinuous at xg € X if, for any V' < G neighbourhood of zero, there is some neighbourhood
V(zo) € X of xg, such that

VfeS, xeV(xg) = f(z)— flzo) € V.

In our case, G is K and X is E, (respectively, F,). This topology induces a topology on the
subspace B¢(E! x F!,K) and thus on F® F. We denote by E ®, F the topological vector space
obtained by endowing E ® F' with this topology.

There is another topology on E ® F called the projective topology; [Tré67, Definition
43.2|. The projective topology is defined as the strongest locally convex topology on F® F' such
that the canonical map ¢ : F x FF — E ® F' is continuous. We write £ ®, F' the topological
vector space obtained by endowing £ ® F' with this topology.

The neighbourhoods of zero of the projective topology can be simply described in terms
of neighbourhoods of zero in E and V. A convex subset S of F ® F containing zero is a
neighbourhood of zero if it exist a neighbourhood U (respectively, V) of zero in E (respectively,
F)suchthat UQV :={u®ujlueU rveV}cS.

Various topologies can be defined on the vector space E ® F for E and F two topological
vector spaces. However the projective topology and the e-topology play an important special
role since they allow to define nuclear spaces (see Definition [2.2.1)).
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B Appendix: definition of the partial trace maps on Gr®

We give a rigorous definition of the partial trace maps on the space of graphs Gr®, which were
only loosely defined in the bulk of the article.

Let G € GrO(k,1) with k,1 > 1, i € [k] and j € [[]. We put e; = a5 (i) and f; = B5'(j). We
define the graph G’ = t; ;(G) in the following way:

1. If e; € I(G) and fj € O(G), then:

V(G) =V(G), E(G') = E(G) u{(ei, fj)},
I(G") = I(G)\{ei}, O(G") = O(G)\{f;},
I0(G') = 10(G), L(G') = L(G),
_ SG(f]) if e = (eivfj)ﬂ o tG(ei) if e = (eivfj)’
so/(e) = {SG'( ) otherwise, fer(€) = {t(;(e) otherwise,
o () = {ag(e) if ag(e) <1, Ber(e) = {6g(e) if Ba(e) < 7,
ag(e) —1if ag(€> > 1, 5@(6) —1if B(;< )

2. If ;€ IO(G) and fj € O(G), then:

V(G') = V(G), E(G') = E(G),
I(G') = I(G), O(G') = O(G)\{f5} b {(eir f5)}
10(G') = 10(G)\{ei}, L(G') = L(G),

sg(e) otherwise,

ei) if e = (es, fj) and Ba(ei) < J,
G(ei) —1if e = (e, fj) and Ba(es) = 4,
e) if e # (es, f;) and fa(e) < 4,

e) —1ife# (e, f;) and Bg(e) = j.

o (e) = ag(e) if ag(e) < i,

10
sr(e) = {SGW Lol o = e

ag(e) —1if ag(e) =1,

Ba(
Bar(e) = E
Ba(

3. If e; € I(G) and f; € IO(G), then:

V(G') = V(G), E(G") = E(G),
I(G") = I(G)\{ei} v {(ei, £)}, O(G") = 0(G),
10(G') = I0(G)\{f3}, L(G") = L(G),
_ _ Jtale) if e = (ei, f;)
s6'(e) = sc(e) fer(€) = {tg(e) otherwise, ’
ag(fi) if e = (e;, f;) and ag(f;) <1,
ag(e) = ag(fi) —1if e = (e, fj) and ag(f;) =1, Bor(e) = {Bg(e) if Ba(e) < J,
ag(e) if e # (e, fj) and ag(e) <1, Ba(e) — 1if Bg(e) =
ag(e) — 1if e # (e, f;) and ag(e) > 1,
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4. If e; € IO(G), f; € IO(G) and e; # f;, then:

V(G =V(G), E(G') = E(G),
I(G") = I(G), 0(G") = 0(G),
10(G') = {(ei, f;)} v IO(G)\{es, £}, L(G") = L(G),
sar(€) = sale), tar(e) = tale),
rag(fi) if e = (e, fj) and aq(f;) <1,
o (e) = 1 ag(fi) —1if e = (e, fj) and ag(f;) =i,
ag(e) if e # (e, fj) and ag(e) < i,
[ Ba(e) —1if e # (e, f;) and ag(e) = i,
Ba(ei) if e = (ei. f;) and Ba(e:) < ji
Ber(e) = Balei) —1if e = (e, f;) and Ba(e;) = J,
Bal(e) if e # (e;, fj) and Ba(e) < j,
[ Bc(e) — Lif e # (e, f;) and Ba(e) = j.
5. If e; € IO(G), f; € IO(G) and e; = fj, then:
V(&) = V(@) (&) = E(G),
I(G") = I1(G), O(G") = O(G),
10(G") = I0(G)\{es, [}, L(G) = L(G) u {(ei, fj)},
scr(€) = sa(e), tar(e) = tale),
aor(e) = {aG<e) if ag(e) <1, Bor(e) = {ﬁc(e) if Ba(e) < J,
ag(e) —1if ag(e) =1, Ba(e) — 1if Ba(e) = j.

C Appendix: Freeness of CGr®(X)

We now give a detailed proof of Theorem We simultaneously prove the unitary and non-
unitary cases. Let P be a TRAP or a unitary TRAP and let ¢ : X — P be a map.

Let us first prove the existence of ®. We define ® : CGrP(X) — P by assigning to
any graph G € CGrP(X)(k,1), or G € solCGr®(X)(k,1) for the non-unitary case, an element
®(G) € P(k,l). We proceed by induction on the number N of internal edges of G. If N = 0,
then G can be written (non uniquely) as

G=0"s%0g - (I*""«Gy*...+G,) T, (26)

where p,q,7 in Ny are unique, (k;,l;) in N3 for any i, unique up to a permutation, o in
Sytkit.tkrr T E Sgity 441, and G; € X (k;, ;) for any 7. Note that in the non-unitary case we
necessarily have p = ¢ = 0, and we have set in this case H*® = Iy = ¢, the empty graph, for
any graph H. We then put:

O(G) = t11 (1) 0 - (I 5 Gy 1, (G1) # o % Pk, (Gr)) - T,

where as before 2*Y = I (the unit for horizontal concatenation in the image P of ®) for any
x € P; and [ is now the unit of P in the unitary case.

Let us assume now that ®(G’) is defined for any graph with N — 1 internal edges, for a given

N > 1. Let G be a graph with NN internal edges and let e be one of these edges. Let G, be a
graph obtained by cutting this edge in two:
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o V(Ge) = V(G)

Efgf) B(G)\e}, 1(G.) = I(G) i {e}, O(G.) = O(G) L {e}, 0(G.) = T0(G), L(G.) =
L .

e sg, = sg and tg, = tg.
For any ¢ € I(G.) L IO(G,), for any f' € O(G.) u IO(G,):

N 1lif e =e, N Lif f' =e,
()= {OéG’(€/> +1life #e, Jo1) = {5G(f/) +1if [ # e

Notice that if G' € solCGrP(X) (that is IO(G) = L(G) = &) then G, also lies in solCGrP(X).
Then, as before, we can treat the unitary and non-unitary cases simultaneously. In both cases
we have G = t11(G.) and G, has N — 1 internal edges. We then put:

D(G) =ty 0 B(Ge). (27)

Lemma C.1. The map ® is well-defined. Moreover, for any € solCGr°(X)(k,1) or in CGrO(X)(k,1),
with (k,1) € N3, for any o € &, for any 7 € &y,

Poc-G-17)=0-D(G)-T.

Proof. We proceed by induction on the number N of internal vertices. For N = 0, we have
to show that ®(G) does not depend on the choice of the decomposition of G. Such a
decomposition is determined modulo a permutation of the vertices and of the choice of o and 7.
Thus, we can go from one decomposition of G to any other one by means of a finite number of
steps among the following two types:

1. We consider two decompositions of G of the form
G=0"%g - (I"«Gy#...+GxGip1%...5Gy) - T,
G=0Px¢  (I""+«Gr#*...+Gi1%Gi*...xGp) -7,
with
OJ = O—(qu+l1+...+li,1 ®Cli,li+1 ®Idlz‘+2+...+lr)7
7' = (Idgsky+t by ® Chiyy ey @i, v 1k, )T
Then, by commutativity of =:
o (I % ¢(Gr) % ...x d(Gy)) - 7'
=0 (IM*¢(G1) * ... xcp 1y, (9(Giv1) * D(Gi)) - gy s * - % 9(Gr)) - T
=0 - (I"%)(Gr)#...%d(Gy) * p(Gir1) * ...« p(G,)) - 7.

2. We consider two decompositions of G of the form
G=0"%0 - (I"«Gy#%...xG,) T,
G=0"x0" - (I""+Gyx...5G,) T,

with
o =0(0p®R®0 ®...®0q,), T'=(061®7'1®...®TT)7',

with 09 € &y, 0; € 6, and 7; € &, if ¢ > 1. Using the commutativity of * and the
invariance of the xy,;, we find

o (I x g(Gr) s 9(Gr))
=0 (00 -T" -0y %01 ¢(G1) T %...%0.-P(Gy) T) - T
=0 -(I"%¢(Gr)*...x0(G))) - T.
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Notice that setting p = ¢ = 0 in these computations does not change the result.
Hence, ®(G) is well-defined. Moreover, for any 7’ € &, o’ € &, a decomposition of G of the
form

G=0"Pxg - (I""+G1%...xG,) T,

give rise to a decomposition of G’ = ¢’ - G - 7’ given by
OPsog'o (I"xGyx...xGy) 77,
and, by definition of ®(G’):

O(G") =t11(I)Px0'c - (I" % §(Gy) * ... = §(Gy)) - 77
=0 - (tia(I)Pxo- (I"%¢(G1)*...% ¢(Gy)) - 7) %7’
=0 -9(G) 7.

Here again, the computations are valid in particular in the case p = ¢ = 0, so for the non-unitary
case.

Let us assume the result at rank NV — 1 and let G be a graph with IV internal edges. Let us
prove that ®(G) defined in does not depend on the choice of e. If ¢’ is another internal edge
of G, then:

(Ge)er = (12) - (Ger)e - (12),
which implies, by definition of ®(G.) and ®(G./):

t110®(Ge) =t1,1 01,1 0 P((Ge)er
—tiiotiio((12)- @
=t110t220P((Ge)e
=ti10t110®((Ger)
=t1,10P(Go).

)
((Ge’)e) ’ (12))
)
)

So ®(G) is well-defined. Let 0 € & and 7 € &;. Then:
(-G 7)e=(1)®0)-(Ge)- (1) ®T),
S0:

Po-G-7)=t110P((c-G-7)e)
=111((1)®0) - 2(Ge) - (1) @7)
=((1)®0)1-t110P(Ge) - (1) ®T)
=0 -9(G)- T,

where, for 0 € & we use o; for the permutation in &;_; defined by
, o(j) ifj<i—1,
o) =4 OV Hisit 0
o(j—1) ifj=i.

We have therefore defined a map ® : CGrP(X) — P, or ® : solCGr®(X) — P in the
non-unitary case, compatible with the action of the symmetric groups. It remains to prove that
® is compatible with the horizontal concatenation % and with the partial trace maps.

Lemma C.2. For any graphs G, G’,

(G *G) = B(G) * B(G).
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Proof. We proceed by induction on the number N of internal edges of G * G’. If N = 0, we put:
G=0P%g - (I"«Gy%...xG,) -,
G/:(’)*p/*J/-~~(I*q/*G’l*...*G;,)-T’

As before, if we are in the non-unitary case we set p = ¢ = p’ = ¢’ = 0 and the whole discussion
still holds. We obtain:

GG = 0Pt (0 ®0")(Idg ® Cytthyg @ Idk’1+...+k;/)
. (I‘H‘q' * Gl E N G'/r’) . (qu ®cq’,l1+...+l7~ ®Idl'1+“.+l'r,)(7—®7'/),
which gives, by commutativity of =:
(G xG) = t11(1)* ) x (0 @ o) (Idg ® 1y 4. 41,0 ®Idy 4. 4rr,)
) (Iq+q, +O(G1) * ... ¢(Gr)) - (Idg ® Cq ey ...tk @ Idk’1+...+k’r,)(7 ® 1)
=t11([)P w0 (I" % $(Gr) % ... % §(Gy)) - T
sty (D) w0’ (I % ¢(GY) ... % p(GL)) - 7/
= O(G) * P(G).
In the non-unitary case, the TRAP P has no unit P and one simply removes the terms with the
identity I in the above computation and sets p = ¢ = p’ = ¢ = 0. In this case, the result is the
same as in the unitary case: ®(G * G') = ®(G) = ¢(G’).
If N = 1, let us assume that the result holds at rank N — 1 and take an internal edge e of
G = G'. If e is an internal edge of G, then (G * G')e = Ge * G', and:
P(G*G)=t110P((G=G")e)
= t171 O (I)(Ge * G/)
=t11(®(G.) * ®(G")) by the induction hypothesis
= (t1,1 0 ®(Ge)) * ®(G') by Axiom 3.(c) of Definition [I.1.1]
= ®(Q) * o(Q).

If e is an internal edge of G, we obtain similarly that ®(G’ * G) = ®(G’) * ®(G). The result
then follows from the commutativity of * (Axiom 2.(d) of Definition |1.1.1). O

We still need to prove the compatibility of ® with the partial trace maps.

Lemma C.3. Let G € CGrP(X)(k,1) or in solCGrP(k,1) with (k,1) e N2, i e [k] and j € [1].
Then:
t;jo (I)(G) =®o ti’j<G).

Proof. By Lemma, it is enough to prove that ® is compatible with t1 1. Let G € CGrP(X)(k,1),
or G € solCGr°(X)(k, 1) in the non-unitary case, e; = a~'(1), f = 8~ ( ). Weset G = t; 1(G)
and e = {ey, f1} to be the edge of G’ created in the process. Notice that if G € solCGrP(X)
then G’ € solCGrP(X). There are five different cases (but only the first cases appear if
G € solCGrP(X)):

1. If e € I(G) and f1 € O(QG), then e € E(G’) and G, = G. By construction of ®(G’):
Po t171(G) = (I)(G/) = t171 o (I)(G,e) = t171 o @(G)

2. If e € IO(G) and f; € O(G), let us put j = f(e1). Then there exists a graph H such that
(1,7) -G =1 = H, hence

t11(G) = tia((Lg) - (L« H)) = (1,...,5) - (bi(L = H)) = (1,....5) - H,
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SO:

t1,1 0 ®(G) = t11((1,7) - (I = ®(H))
=(LHA,...,5—1)-®(H)

=(1,...,5) - ®(H)
= ®((1,...,5)- H)
= Ot1717(G).

3. If ey € I(G) and f; € IO(G) the computation is similar.
4. If ey, f1 € IO(G), with e; # f; the computation is similar.

5. If e; = f1 in IO(G), then G = I = H for a certain graph G and t11(G) = O = H. Then:

P Ot171(G) = @(O) * @(H) = t171 o (I)(I) * Q)(H) = tLl(‘I)(I) * (I)(H) = t1’1 o (I)(G)

So ® is compatible with the partial trace maps, both in the unitary and non-unitary cases. [

We have proved the existence of ®. It remains to prove the unicity. In the non unitary
case, any solar graph can be obtained from graphs with only one vertex, with the help of the
horizontal concatenation and the partial trace maps, which allow to create the missing internal
edges. Hence, solCGrP(X) is generated by X as a TRAP, which implies the unicity of ®. In
the unitary graph, any graph can be obtained from graphs with only one vertex and copies of the
graph I, with the help of the horizontal concatenation and the partial trace maps, which allow
to create the missing internal edges and the copies of @ when applied to I. Hence, CGrP(X) is
generated by X as a unitary TRAP, which implies the unicity of ®.
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