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We define a notion of higher order renormalization group equation and investigate when a sequence of trees satisfies
such an equation. In the strongest sense, the sequence of trees satisfies a kth order renormalization group equation when
applying any choice of Feynman rules results in a Green function satisfying a kth order renormalization group equation,
and we characterize all such sequences of trees. We also make some comments on sequences of trees which require
special choices of Feynman rules in order to satisfy a higher order renormalization group equation.

I. INTRODUCTION

The renormalization group equation is a very important equation in quantum field theory since it describes how n-point
functions of the theory change with changes in the energy scale and the coupling, see for example4,5,14, as well as standard
textbooks such as22. Such a description makes the renormalization group equation appear to be primarily in the domain of
analysis and physics. However, using the Hopf algebra structure of renormalization18, the renormalization group equation can
be seen as encoding a purely combinatorial property, from which the physics and analysis follow. This combinatorial property
is a particular kind of linear growth condition on the combinatorial objects which give the n-point functions; see Theorem 12.
From this linear growth condition, we are led to ask about polynomial growth of higher degree. Translating back to the original
renormalization group equation this yields higher order derivatives in the coupling. The resulting equations we call higher order
renormalization group equations. The first order case corresponds to the usual renormalization group equation and the zeroth
order case corresponds to the special case in quantum field theory where the β -function of the theory is identically 0 and so the
theory has a pure scaling solution.

For this paper we will work with the Connes-Kreimer Hopf algebra of rooted trees6–8. This Hopf algebra is universal among
pairs of a Hopf algebra and a Hochschild 1-cocycle8 so there is no great loss in this specialization. For the Connes-Kreimer Hopf
algebra the relevant 1-cocycle is B+, the add-a-root operator, see Definition 1. The 1-cocycle provides the link to the Feynman
rules, and hence to the renormalization group equation and the physics more generally, as we will see in Section II A.

Our goal, then, in this paper is to characterize Hopf subalgebras of the Connes-Kreimer Hopf algebra which satisfy higher
order renormalization group equations in a way which is suitably insensitive to the choice of Feynman rules. To pin down the
scaling freedom, we will work not with Hopf subalgebras themselves but rather with the sequence of their generators. This leads
to our definition of a strong kth order sequence, see Definition 15. We will characterize all strong kth order sequences, see
Section V A for zeroth order, Section V B for first order, and Section V C for higher order. In particular we find the only strong
sequences of order 2 or larger are scaled corollas. This lines up with how quantum field theory only sees the zeroth and first
order cases. The characterization of zeroth and first order solutions includes some we recognize from physics or combinatorics,
and some that appear new.

If we relax the condition that the sequence should satisfy a higher order renormalization group equation in a way which is
insensitive to the choice of Feynman rules, and allow ourselves to make convenient choices of Feynman rules, then we get the
notion of weak kth order sequences, see Definition 16. These are much wilder, so we will not give a classification, but we will
make some comments on a few examples of particular interest, see Section VI.

To this end, we will proceed by laying out the relevant background and set up in Section II, then define our notion of higher
order renormalization group equation and its combinatorial analogue in Section III. We will define our key notions of sequence
and Λ-array in Section IV as well as the notion of strong and weak kth order sequences. Then we proceed to the characterization
of strong sequences in Section V and conclude with some comments on weak sequences in Section VI.

II. BACKGROUND AND SET UP

Let K be a field of characteristic zero. All the objects of this paper are taken over K.
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(a) An admissible cut (b) A cut that is not admissible

FIG. 1: Example and non-example of an of admissible cut. Edges with a red strike-through are those being included in the cut
c. The cut in (b) is not admissible since the unique path from the root to the middle leaf is being cut twice.

A. Trees and tree Feynman rules

Let T be the set of non-empty rooted trees. Elements of T have no plane structure, so for example

= .

An admissible cut of a tree t ∈ T is a non-empty subset c of the edges of t such that c does not contain any two edges that lie
on the same path from the root of T to any leaf. See Figure 1.

We define HCK the Connes-Kreimer Hopf algebra of rooted trees as follows. As an algebra HCK = K[T ] where we view a
forest as a monomial by identifying disjoint union of trees with the multiplication of the polynomial algebra and so the empty
forest, notated 1, is the unit element of the algebra. HCK is upgraded to a Hopf algebra via the following coproduct: for any
rooted tree t ∈ T ,

∆(t) = t ⊗1+1⊗ t + ∑
c non-empty

admissible cut of t

Pc(t)⊗Rc(t),

where Rc(t) is the unique subtree containing the root of t after removing the edges of c and Pc(t) is the forest of all trees other
than Rc(t) produced by removing the edges of c. We then extend ∆ as an algebra homomorphism. The counit is η(t) = 0 for
t ∈ T , η(1) = 1 and extended as an algebra homomorphism.

HCK is graded by the number of vertices and is connected under this grading, so HCK is a Hopf algebra with the antipode given
recursively (see9). Specifically, the antipode is defined by

S(t) =−t − ∑
c non-empty

admissible cut of t

S(Pc(t))Rc(t)

on trees and extends in general as an antiautomorphism, but our multiplication is commutative, so our S is an automorphism.

We will be primarily interested in Hopf subalgebras with one generator in each degree.

Example 1. Let ℓn be the rooted tree consisting of a single path with n vertices and the root at one end, so

ℓ1 = ℓ2 = ℓ3 = .

These are known as ladder trees. We can quickly check that the polynomial algebra K[ℓ1, ℓ2, . . .] is in fact a Hopf subalgebra of

HCK by noting that ∆(ℓi) =
i

∑
k=0

ℓk ⊗ ℓi−k using the convention that ℓ0 = 1.

Example 2. Another important example of a Hopf subalgebra with one generator in each degree is the Connes-Moscovici Hopf
algebra, which for our purposes is best defined as follows. Say • is grafted on vertex s of tree t if • is made a new leaf of t with
parent s and the tree is otherwise unchanged. Let us consider the growth operator N : HCK −→ HCK defined by:

N(t) = ∑
s∈Vert(t)

Ns(t),
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where Vert(t) denotes the set of vertices of t and Ns(t) denotes the tree resulting from grafting • onto t as a new child of the
vertex s of t. For example:

N( ) = , N( ) = + , N( ) = +2 , N( ) = + + .

Then define a sequence (tn)n≥1 by t1 = , tn+1 = N(tn) if n ≥ 1. These are the generators of the Connes-Moscovici subalgebra8.
The sequence begins:

t1 =

t2 =

t3 = +

t4 = + +3 +

t5 = + +3 + +4 +4 +3 +6 +

Returning to the general situation, the add-a-root operator is very important, particularly for Dyson-Schwinger equations, and
is defined as follows.

Definition 1. The linear map B+ : HCK → HCK is defined on forest t1t2 · · · tk to be the tree B+(t1t2 · · · tk) with a new root whose
children are the roots of t1, t2, . . . , tk.

We have

∆(B+(t1t2 · · · tk)) = B+(t1t2 · · · tk)⊗1+(Id ⊗B+)◦∆(t1t2 · · · tk) (1)

and hence B+ is a Hochschild 1-cocycle8.

Example 3. Continuing Example 1, we see that the class of ladder trees can be defined by ℓ1 = , ℓn+1 = B+(ℓn) for n ≥ 1.

If C is a coalgebra with coproduct ∆ and A is an algebra with product m then we have the convolution product of two maps
f ,g : C → A given by f ∗g = m◦ ( f ⊗g)◦∆. The important application for us is in the algebraic definition of Feynman rules.

Definition 2. Feynman rules are a Hopf algebra morphism φ : HCK →K[L], where the coalgebra structure of K[L] is determined
by ∆(L) = L⊗1+1⊗L and extended linearly.

From Lie theory, every such map φ can be written as an exponentiation of an infinitesimal character. Explicitly, this gives us
two very concrete consequences on φ . First we can write φ in terms of a nice convolution property.

Lemma 3. Write φL′ for the Feynman rules φ with L′ as the variable in the target algebra in place of L. Then

φL1 ∗φL2 = φL1+L2 (2)

where ∗ is the convolution product.

This can be thought of as the renormalization group equation in algebraic form, or as an alternate definition of the Feynman
rules. See Section A.4 of17.

Second, we can give an explicit form for all Feynman rules defined on trees. First we need to define the tree factorial. Given a
tree t and a vertex v of t, let tv be the subtree rooted at t. Then the tree factorial t! = ∏v∈t |tv| where | · | is the number of vertices.
For example ladder trees give the usual factorial ℓn! = n!. The tree factorial of a forest is defined the same way and consequently
is also the product of the tree factorials of its component trees.

Lemma 4. Let σ : HCK →K be an infinitesimal character. Then

φ(F) = ∑
S⊆E(F)

(
∏

t∈(F\S)
σ(t)

)
L|F/(F\S)|

(F/(F \S))!
(3)
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defines Feynman rules φ and every choice of Feynman rules φ has this form where σ is the infinitesimal character such that
φ = exp∗(Lσ). In the sum E(F) is the edge set of F, F \S is the forest whose vertices are those of F with the edges in S removed,
and (F/(F \S)) means the forest F with the edges of F \S contracted. The symbol ∏

t∈(F\S)
means that the product is taken over

all trees of the forest F \S.

Note here that when an edge is contracted then its two incident vertices are identified, so contracting an edge of a tree results
in a tree with one vertex less, while when an edge is removed, it is deleted without any further change to its incident vertices, so
removing an edge of a tree results in a forest of two trees.

Proof. Both directions can be proved straighforwardly by induction from Lemma 3 or by explicitly writing out the exponential
form φ = exp∗(Lσ) using the series expansion of exp.

We can observe a few facts directly from the explicit form of the tree Feynman rules. First φ(t) has 0 constant term and degree
at most |t| in L. The leading term of φ(t) is (σ(•)L)|t|/t!. The linear term of φ(t) is σ(t)L. If σ(•) = 1 and σ is 0 on all other
trees then φ(t) = L|t|/t! which are known as the tree factorial Feynman rules.

The reader may find it valuable to understand the connection between these structures and quantum field theory, so we will
briefly outline this here.

Feynman diagrams in quantum field theory give expansions of amplitudes and other physical quantities of interest. The
diagrams are graphs with edges representing particles and vertices representing interactions. Each graph is associated with an
integral via rules which say how to build the integrand out of factors for the edges and the vertices. These are the Feynman
rules. The Feynman diagrams we are most interested in give divergent integrals. Renormalization is the process used to fix
this and obtain finite quantities. Part of the subtlety of renormalization is that subdiagrams of a Feynman diagram may already
diverge. One way to do renormalization involves subtracting off divergent subdiagrams in a particular way that was recognized
by Kreimer in 1997 as being given by the antipode of a Hopf algebra18.

Since what matters most here is the structure of divergent subgraphs inside larger graphs, it is a useful abstraction to only
remember this structure rather than the graphs themselves. We use the Connes-Kreimer Hopf algebra to do this. In the case
that the structure of divergent subgraphs is tree-like then the graph corresponds simply to that tree. In the case that there are
divergent subgraphs that overlap without one being entirely within the other, then the graph corresponds to a sum of trees giving
the different ways of picking a maximal tree-like set of divergent subgraphs. Renormalization is encoded by the antipode of the
Connes-Kreimer Hopf algebra8.

The B+ operator on trees corresponds to insertion of subgraphs into another graph. The Feynman rules on the Feynman
diagrams then become maps from trees to some appropriate algebra. The Feynman rules should be compatible with the Hopf
algebra, giving Definition 2. The L of the target algebra for the Feynman rules corresponds to the logarithm of the momentum
running through the Feynman diagram, or the logarithm of the energy scale.

B. Green functions and Dyson-Schwinger equations

We are interested not so much in single trees as in sequences of trees, or sequences of linear combinations of trees. Many of
the most important examples from the physics perspective are given by functional equations using B+.

Definition 5. A combinatorial Dyson-Schwinger equation in HCK is an equation of the form

X(x) = xB+( f (X(x))

where f is a formal power series with constant term equal to 1. This equation admits a unique solution X(x) ∈ HCK [x] defined
recursively. See Proposition 2 of12.

Writing the same equation without the indeterminate x, by the same argument, we get a unique solution X in the graded
completion of HCK . All x is doing is keeping track of the graded pieces and it is a matter of taste whether to include it or
not. Some authors, including one of us in other work, tends to write combinatorial Dyson-Schwinger equations in the slightly
different form

Y (x) = 1+ xB+(g(Y (x)))

but after the substitution X(x) = Y (x)− 1 and f (z) = g(z+ 1) the only difference is in whether or not the solution includes a
constant term.

A past result of one of us is a characterization of when such Dyson-Schwinger equations have solutions X(x) for which the
algebra generated by the coefficients of X(x) is a Hopf subalgebra of HCK . Specifically:
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Theorem 6 (Theorem 4 of12). Let f ∈ K[[x]] such that f (0) = 1, and let A f denote the algebra generated by the coefficients
of the unique solutions X(x) to the combinatorial Dyson-Schwinger equation X(x) = xB+( f (X(x)). Then the following are
equivalent:

1. A f is a Hopf subalgebra of HCK

2. There exists (α,β ) ∈K2 such that (1−αβx) f ′(x) = α f (x)

3. There exists (α,β ) ∈K2 such that

(a) f (x) = 1 if α = 0

(b) f (x) = eαx if β = 0

(c) f (x) = (1−αβx)−
1
β if αβ ̸= 0.

Example 4. For example, choosing f (x) = (1+x)2 in the theorem is equivalent to choosing α = 2,β =− 1
2 . Writing the formal

power series expansion of X(x) = ∑i≥0 xixi then the sequence of xis gives the sequence of binary rooted trees, namely the
sequence of linear combinations of trees where each term is a binary tree having coefficient the number of ways to assign left
and right children for every vertex. This sequence begins:

x0 = 1

x1 =

x2 = 2

x3 = 4 +

x4 = 8 +4 +2

Example 5. Another important example is f (x) = 1/(1− x), or equivalently α = β = 1. In this case, again writing X(x) =
∑i≥0 xixi we that the sequence of xi gives all rooted trees weighted by their number of plane embeddings.

x0 = 1

x1 =

x2 =

x3 = +

x4 = +2 + +

Example 6. Note that the solution with α = 1,β = −1 is combinatorially special, and is equivalent to setting f (x) = 1+ x in
Theorem 6. This case gives the ladder trees of Example 3.

We get from the combinatorial Dyson-Schwinger equation and its solution to the physical (or analytic) Dyson-Schwinger
equation by applying the Feynman rules which we notate φ . For the solution X(x) to a combinatorial Dyson-Schwinger equation
let

G(x,L) = φ(X(x))

be the corresponding Green function, or the solution to the corresponding physical Dyson-Schwinger equation. For us, the
Green function is a formal power series in x and L.

We will, as before, conclude this subsection with some additional comments on the connection to the quantum field theory,
which the uninterested reader can again skip.

Dyson-Schwinger equations in quantum field theory are the quantum analogues of the equations of motion. When expanded
in Feynman diagrams, they can be written as recurrence equations for graphs based on insertion. This diagrammatic form is
what our combinatorial Dyson-Schwinger equations on trees correspond to via the correspondence between Feynman diagrams
in terms of their insertion structure and rooted trees, as described in the previous subsection.
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The diagrammatic solution to a physically relevant Dyson-Schwinger equation should give a Hopf subalgebra since renormal-
ization should be well defined when restricted to the solution. The Dyson-Schwinger equations which come up in quantum field
theory are all of the form in Theorem 6, confirming this. This also motivates why Hopf subalgebras are physically interesting,
particularly ones with one generator in each degree. Note that the Connes-Moscovici Hopf subalgebra of Example 2 is also a
Hopf subalgebra with one generator in each degree but is not the solution to a Dyson-Schwinger equation.

As usual, the Feynman diagrams in quantum field theory are really just shorthand for their Feynman integrals. Applying the
Feynman rules to the Dyson-Schwinger equation at the level of Feynman diagrams we can use the way that B+ interacts with
the Feynman rules, see for instance section 3.9 of17, in order to replace the insertion operator with an integral operator. The
physical Dyson-Schwinger equations are, then, integral equations for the Green functions and this is how they can be found in
perturbative quantum field theory sources. The solutions are the Green functions.

Most of the time we would have not one Dyson-Schwinger equation but a coupled system of equations, one for each propagator
and vertex in the theory, and potentially for higher n-point functions as well. The system case can also be interesting for trees13,
but we will not consider it in this paper.

C. The renormalization group equation and the β -function

Even more important in quantum field theory than Dyson-Schwinger equations is the renormalization group equation. So far
we have treated our Green functions G(x,L) as formal series in x and L, however, physically x is the coupling, representing the
strength of the particle interactions, while L is the log energy. Naively one might think that x then should be a constant (and hope
it is small), but one consequence of renormalization is that x changes with the energy level. This is known as the running of the
coupling.

The message for the moment is simply that change in x and change in L are not independent. The renormalization group
equation captures how change in x and change in L affect G(x,L). Specifically(

∂

∂L
+β (x)

∂

∂x
− γ(x)

)
G(x,L) = 0 (4)

For us β (x) and γ(x) are simply formal series determined by the physics, though it can be helpful to keep in mind that β

is physically encoding the flow of the coupling depending on the energy scale. Some sources pull out a factor of x writing
xβ (x) where we write β (x). Note that if β (x) is identically 0 then the form of the renormalization group equation simplifies
substantially and it can be straightforwardly solved by G(x,L) = exp(Lγ(x)). This is known as a pure scaling solution and is
the case physically when the coupling does not run. The main message here is only that the case when β (x) is identically 0 is a
special case recognized by physics.

The goal of the present section is to re-interpret the renormalization group equation as a certain linearity condition on the
sequence of trees underlying G(x,L). This reinterpretation comes from a visit of one of the authors to Spencer Bloch and Dirk
Kreimer in Chicago in 2014 and owes a particularly large debt to an unpublished note by Bloch during that time2.

We begin with X(x) = 1+
∞

∑
n=1

xntn where each tn ∈ HCK is homogeneous of weight n. Note that we do not assume that X(x)

comes from a combinatorial Dyson-Schwinger equation, though such examples are of particular note. We only assume that the

algebra generated by the tn is a Hopf subalgebra and that G(x,L) = φ(X(x)) = 1+
∞

∑
n=1

xn
φ(tn) satisfies the renormalization group

equation (4).
To make the later indexing more convenient we will use the following notation for the expansions of β (x) and γ(x)

β (x) =
∞

∑
n=1

(−βn)xn+1
γ(x) =

∞

∑
n=0

γnxn.

We will also use the notation Qn(L) for the polynomial in L obtained by applying φ to tn.
To begin the argument, we will not even assume that G(x,L) satisfies the renormalization group equation and see how much

information we can obtain simply with the subHopf property along with the fact that the Feynman rules are a Hopf algebra
morphism.

Write

∆(tn) =
n

∑
i=0

τn,n−i ⊗ ti (5)
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observing that t0 = τn,0 = 1 and τn,n = tn and the τn,n−i are polynomials in the t j for j < n. Then Lemma 3 gives

Qn(L1 +L2) = m◦ (φL1 ⊗φL2)◦∆(tn)

=
n

∑
i=0

φ(τn,n−i)(L1)Qi(L2)

where φ(τn,n−i)(L1) means substituting L with L1 in φ(τn,n−i) ∈K[L]. Consequently

∂

∂L2
Qn(L2) =

∂

∂L2
Qn(L1 +L2)|L1=0 =

n

∑
i=0

∂

∂L1
φ(τn,n−i)(L1)|L1=0Qi(L2).

Note that
∂

∂L1
φ(τn,n−i)(L1)|L1=0 ∈K, so to emphasize that it is a constant define

cn,i :=
∂

∂L1
φ(τn,n−i)(L1)|L1=0

and substituting L for L2 and summing over n we have

∂

∂L
G(x,L) =

∞

∑
n=1

( n

∑
i=0

cn,iQi(L)
)

xn (6)

Next, from our expansion of γ(x) and β (x) and the definition of Qi(L) we calculate(
γ(x)−β (x)

∂

∂x

)
G(x,L) =

∞

∑
n=0

( n

∑
i=0

γn−iQi(L)
)

xn +
∞

∑
n=1

( n

∑
i=1

iβn−iQi(L)
)

xn (7)

Now adding the assumption that G(x,L) satisfies the renormalization group equation we see that the left hand sides of (6) and
(7) are equal, so comparing coefficients of xn on the right sides of each equation we obtain

n

∑
i=0

cn,iQi(L)) =
n

∑
i=0

γn−iQi(L)+
n

∑
i=1

iβn−iQi(L) (8)

for n ≥ 1. From Lemma 4 we see that provided σ(•) is non-zero, Qi(L) has degree i in L and so the Qi(L) are linearly
independent. Therefore

γn = cn,0 for all n ≥ 1

and for n ≥ 1 and 1 ≤ i ≤ n

cn,i = cn−i,0 + iβn−i (9)

This latter equation tells us that for any fixed value k ≥ 1 for n− i, the resulting sequence ck+i,i is an arithmetic progression,
or equivalently is linear as a function of i. So if G(x,L) satisfies a renormalization group equation then the sequences ck+i,i are
linear in i.

What about the converse? Suppose we have a G(x,L) for which the algebra generated by the ti is Hopf and define the cn,k as
above. If the sequences ck+i,i are each linear in i then (9) is satisfied for n ≥ 1 and suitable values of βn−i, except possibly for
the i = 0 terms. Hence (8) is satisfied except possibly for the i = 0 terms. Note that n = 0 implies i = 0 so any discrepancy when
n = 0 is accounted for among the i = 0 terms. The i = 0 terms give a series in x. Since the two sides of (8) are the coefficients
in the Qi of the right hand sides of (6) and (7) this implies that the left hand sides of those two equations are also equal up to
possibly a series in x. Therefore G(x,L) satisfies a generalization of the renormalization group equation of the form(

∂

∂L
+β (x)

∂

∂x
− γ(x)

)
G(x,L) = γ0(x). (10)

This discrepancy from the usual renormalization group equation comes from the fact that we discarded the constant terms in
building our recurrences thus leading to the need for γ0. We will allow γ0 in our renormalization group equations in what
follows, though the homogeneous case, when γ0 = 0 is of the most physical interest. The role of γ0 relates to the difference
between ladders and chains in quantum field theory, as we’ll discuss in the examples below. First there is one more step to obtain
the purely combinatorial linearity condition mentioned earlier.

It remains to interpret this linearity purely on the level of the trees. To this end it is handy to visualize these sequences by
writing the cn,i in a triangle.
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c1,0
c2,1 c2,0

c3,2 c3,1 c3,0
c4,3 c4,2 c4,1 c4,0

c5,4 c5,3 c5,2 c5,1 c5,0
...

where using the relationship (9) we obtain:

c1,0
β1 + c1,0 c2,0

2β1 + c1,0 β2 + c2,0 c3,0
3β1 + c1,0 2β2 + c2,0 β3 + c3,0 c4,0

4β1 + c1,0 3β2 + c2,0 2β3 + c3,0 β4 + c4,0 c5,0
...

and where cn,i = 0 for all pairs of n and i where i ≥ n. Note the linear sequences in the leftward diagonals.
The following proposition gives these coefficients combinatorial meaning.

Proposition 7. Fix arbitrary Feynman rules φ and let σ be the corresponding infinitesimal character from Lemma 4. For
i+ j = n, let λi, j denote the coefficient of t j ⊗ ti in ∆(tn). Then cn,i = λn−i,iσ(tn−i).

Proof. Using notation from the previous discussion, cn,i is defined as:

cn,i :=
∂

∂L1
φ(τn,n−i)(L1)|L1=0

Substituting in our expression for φ in terms of σ (equation (3)):

cn,i =
∂

∂L1
∑

S⊆E(τn,n−i)

(
∏

t∈(τn,n−i\S)
σ(t)

)
L|τn,n−i/(τn,n−i\S)|

1
(τn,n−i/(τn,n−i \S))!

|L1=0

Hence each cn,i is obtained from a polynomial in L1. In particular, after performing the indicated derivative and setting L1 = 0,
we are left with only the coefficient of the linear term of this polynomial. As discussed following Lemma 4, for t a tree we have
that the linear term of φ(t) is simply Lσ(t). Moreover, since φ is by definition an algebra homomorphism, the lowest degree
term of φ(F) for any forest F is the number of trees in F . In particular, φ(F) has a linear term and contributes to cn,i only if F
is a tree. Recalling that τn,n−i is a polynomial in the ti’s, we see that

τn,n−i = λn−i,itn−i +products of t j’s

for some λn−i,i ∈K. Since every term other than λn−i,itn−i is a forest the result follows.

We can rewrite the array of the cn,i, setting cn,i = λn,n−iσ(tn−i) once again for arbitrary infinitesimal character σ : HCK →K.
This leads to:

λ1,1σ(t1)
λ2,1σ(t1) λ1,2σ(t2)

λ3,1σ(t1) λ2,2σ(t2) λ1,3σ(t3)
λ4,1σ(t1) λ3,2σ(t2) λ2,3σ(t3) λ1,4σ(t4)

λ5,1σ(t1) λ4,2σ(t2) λ3,3σ(t3) λ2,4σ(t4) λ1,5σ(t5)
...

FIG. 2: An array of coefficients.

So the condition on the leftward diagonals giving linear sequences is now a statement that the λn,i give linear sequences in n or
possibly that some σ(ti) are zero. If G(x,L) satisfies the renormalization group equation for suitably generic φ , then all the λn,i
will be first order sequences.

The converse is slightly more subtle. In moving to the λn,i we have gotten rid of the outer diagonals of the triangle, where at
least one index is 0. However, this is exactly accounted for by the γ0 in our generalized renormalization group equation, and so if
all the leftward diagonal sequences are linear then the associated G(x,L) satisfies a generalized renormalization group equation
of the form in (10).
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FIG. 3: Some Feynman graphs contributing to a rainbow approximation.

Example 7. Consider again the ladders from Example 6. Their Green function, with general tree Feynman rules of Lemma 4, is

G(x,L) = ∑
n≥0

φ(ℓn)xn

= ∑
n≥0

xn
∑

S⊆E(ℓn)

(
∏

t∈(ℓn\S)
σ(t)

)
L|ℓn/(ℓn\S)|

(ℓn/(ℓn \S))!

= ∑
n≥0
k≥0

∑
λ1+···+λk=n

( k

∏
i=1

σ(ℓλi)x
λi

)
Lk

k!

= exp

(
L ∑

i≥1
σ(ℓi)xi

)
where the third equality comes from the observation that cutting a ladder tree at a subset of its edges breaks the ladder into
smaller ladders whose sizes form a composition of the size of the original ladder and this correspondence between cuts and
integer compositions is bijective.

We can see directly that this satisfies the original renormalization group equation in the special case β (x) = 0. The triangle of
coefficients λi, j for the ladders is

1
1 1

1 1 1
1 1 1 1

1 1 1 1 1
...

We will look at this example more in depth in Section V A. Physically ladders correspond to rainbow approximations in
quantum field theory. For example the graphs in Figure 3 give a rainbow approximation to the fermion propagator in Yukawa
theory. These are well known to be a β (x) = 0 case.
Example 8. Another type of approximation that appears in quantum field theory are chain approximations or renormalon
chains. For example the graphs in Figure 4 give a chain approximation to the 1PI19 fermion propagator in Yukawa theory. On
the tree side, the insertion structure gives rooted trees where all the children of the root are leaves. These rooted trees are called
corollas.

c1 =

c2 =

c3 =

c4 =

c5 =

The algebra K[c1,c2, . . .] is subHopf because ∆(cn) = cn ⊗1+1⊗ cn +∑
n−1
i=1

(n−1
i

)
ci

1 ⊗ cn−i. The triangle of coefficients λi, j for
the corollas is

1
2 0

3 0 0
4 0 0 0

5 0 0 0 0
...
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10

FIG. 4: Some Feynman graphs contributing to a chain approximation.

The leftmost diagonal sequence here is first order, so we expect a renormalization group equation. However, this is a case where
the initial conditions do not match up with the general recurrence and so we obtain a non-zero γ0(x). The appearance of a
non-zero γ0(x) indicates that chain approximations are not physically as well behaved as the ladders, see Section 7 of1.

Another interesting observation about corollas is that because of all the zeros in the triangle of coefficients, we can scale the
generators to get leftmost diagonal sequences of other orders without causing trouble with other coefficients. We will return to
this idea in subsequent sections.

III. HIGHER-ORDER RENORMALIZATION GROUP EQUATIONS

Unfortunately, not every sequence of nonzero linear combinations of trees generating a Hopf subalgebra of HCK satisfies a
renormalization group equation. This is the essence of the following lemma:

Lemma 8. Let s = (tn)n≥1 be the standard sequence of generators for the Connes-Moscovici Hopf subalgebra of HCK (see

Example 2), and let Xs be the corresponding series: Xs = 1+
∞

∑
n=1

tnxn. Then the Green function G(x,L) = φ(X) does not satisfy

a renormalization group equation for any (nonzero) choice of Feynman rules φ .

We remark that the Feynman rules φ(tn) = 0 for all n ≥ 1 always lead to a Green function which will satisfy a renormalization
group equation. As these rules are not very useful, however, we will not consider them in any future deliberations (unless
otherwise mentioned).

The key to the proof of Lemma 8 is an explicit formula for the λi, j for the Connes-Moscovici Hopf algebra. Before we prove
the formula (and from there the lemma) it is useful to gather some intuition by working out initial examples. Let us compute
the left-most diagonal of the array of λi, j for the Connes-Moscovici Hopf algebra—these will be the coefficients of ⊗ tn−1 in
∆(tn). We get that:

∆(t2) = . . .+ ⊗ + . . .

∆(t3) = . . .+3 ⊗ + . . .

∆(t4) = . . .+6 ⊗
(

+

)
+ . . .

∆(t5) = . . .+10 ⊗
(

+ +3 +

)
...

and a pattern has emerged. Indeed, it will not be hard to show that the coefficients we seek form the sequence (λi,1)i≥1 =((i+1
2

))
i≥1

, hence as a polynomial in i we have λi,1 =
1
2 i2 + 1

2 i. Note that this is a polynomial in i of order 2. More generally,

we will see that λi, j =
( i+ j

j+1

)
.

Now we proceed to the proof of Lemma 8.

Proof. In light of the discussion preceding the statement of the Lemma, we only need to check that—for fixed and arbitrary
j—λi, j ̸= ai+b for any a,b ∈K.

To do this we prove that λi, j =
( i+ j

j+1

)
by direct counting (see also Example 10). Labelling each vertex of a rooted tree by

the step in which it is added by the natural growth operator in the construction of the Connes-Moscovici Hopf algebra, we
see that we obtain trees with increasing labellings, that is labellings with consecutive integers starting at 1 where every vertex
has a label larger than its parent. Furthermore, all increasing labellings are obtained exactly once. (This justifies one of the
standard alternate formulations of the Connes-Moscovici Hopf algebra is as the Hopf algebra of increasing labellings.) From
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this perspective calculating λi, j is calculating the number of ways an increasingly labelled tree t1 of size j can be grafted onto an
increasingly labelled tree t2 of size i where the labels are shuffled together while maintaining the increasing labelling property;
that is, after the grafting we obtain an increasingly labelled tree where the labelling restricted to either t1 or t2 and normalized
gives the initial labelling of that tree.

The number of ways to do this depends on the label of the vertex onto which we graft. Suppose we graft onto vertex v of t2
which has label a. Then to obtain a labelling of the grafted tree we have the choice of any shuffle of the labels of t1 with the labels
larger than a in t2. There are

( j+i−a
j

)
ways to do this. Now summing over the vertex onto which we graft we get ∑

i
a=1
( j+i−a

j

)
which equals

( i+ j
j+1

)
by the hockey-stick identity for binomial coefficients.

Therefore, we have that (for j fixed arbitrarily) (λi, j)i≥1 =
(( i+ j

j+1

))
i≥1

, which for all j forms a sequence of i of order at least

2. Hence there is no choice of (nonzero) Feynman rules φ that will make the array of cn,i’s have linear left diagonals, and
consequently G(x,L) = φ(X) will not satisfy a renormalization group equation for any choice of Feynman rules φ .

Considering the Connes-Moscovici example further, note that by choosing Feynman rules with σ(t) = 0 for t ̸= we are left
with only the leftmost diagonal in the array of λi, j, that is with the λi,1 which give a quadratic sequence. This naturally leads us
to think about analogues of the renormalization group equation which give quadratic or higher order sequences instead of only
linear sequences.

Definition 9 (Generalized Renormalization Group Equations). For a Green function G(x,L), define a generalized renormal-
ization group equation by:

∂G
∂L

= β (x,
∂

∂x
)G+ γ0(x) (11)

where β is polynomial in its second argument and γ0(x) is a series in x. If the polynomial β is of degree n in ∂

∂x , we say that
the generalized renormalization group equation is of order n. If γ0(x) = 0 we say that the generalized renormalization group
equation is homogeneous.

We remark that the standard definition of the renormalization group equation can be seen as a generalized renormalization
group equation of order 1 and homogeneous. Indeed, we simply take β (x, ∂

∂x ) = γ(x)+β (x) ∂

∂x . We also note that this definition
is informed by quantum field theory, as the case of β ≡ 0 is already a known special case in physics as discussed above. In
the language we are introducing with Definition 9 these are 0th-order homogeneous renormalization group equations. The
homogeneous case is the most interesting from a physics perspective, but the example of the corollas (Example 8) shows that
nonhomogeneous examples do also appear in quantum field theory.

We can ask ourselves the same question about equation (11) that we did in Section II C regarding the usual renormalization
group equation: namely, what does it mean for a Green function to satisfy equation (11) after translating to combinatorics? Let
us approach the question using the same method as before; we will turn equation (11) into a statement about formal power series,
and then compare coefficients across the equals sign.

To fix notation again, let φ be our Feynman rules, (tn)n≥1 be a sequence of linear combinations of trees generating a Hopf
subalgebra of HCK , and let X = 1+∑

∞
n=1 tnxn be the corresponding series. Then G(x,L) = φ(X) as before. Now β is allowed to

be more general than β was before, so we will set up the notation in the following way:

β (x,
∂

∂x
) :=

m

∑
j=0

β
( j)(x)

∂ j

∂x j (12)

with each β (i)(x) a formal power series in x:

β
( j)(x) :=

∞

∑
k=1

β
( j)
k xk+1 (13)

with β
( j)
k ∈K.

With this setup, the usual renormalization group equation is recovered by setting β (0)(x) = γ(x), β (1)(x) = β (x), and β (k)(x)≡
0 for k ≥ 2.

Since our Green function G(x,L) looks exactly as it did before, the left-hand side of (11) is also precisely the same as shown
in (6). We write it again for convenience:

∂

∂L
G(x,L) =

∞

∑
n=1

( n

∑
i=0

cn,iQi(L))
)

xn
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So all that remains is to find what the right-hand side of equation (11) looks like in terms of formal power series. We compute:

βG =

( m

∑
j=0

β
( j)(x)

∂ j

∂x j

)(
∞

∑
n=0

Qn(L)xn
)

= β
(0)
(

∞

∑
n=0

Qn(L)xn
)
+β

(1) ∂

∂x

(
∞

∑
n=0

Qn(L)xn
)
+ . . .+β

(m) ∂ m

∂xm

(
∞

∑
n=0

Qn(L)xn
)

= β
(0)
(

∞

∑
n=0

Qn(L)xn
)
+β

(1)
(

∞

∑
n=0

nQn(L)xn−1
)

+ . . .+β
(m)

(
∞

∑
n=0

n(n−1) · · ·(n−m+1)Qn(L)xn−m
)

=
m

∑
j=0

∞

∑
n=0

β
( j)n(n−1) · · ·(n− j+1)Qn(L)xn− j

=
∞

∑
n=0

m

∑
j=0

β
( j)n(n−1) · · ·(n− j+1)Qn(L)xn− j

=
∞

∑
n=0

min(m,n−1)

∑
j=0

β
( j) n!

(n− j)!
Qn(L)xn− j

But now the β ( j) are just power series, with coefficients as defined in (13), so we may substitute these in. When we do this we
get:

βG =
∞

∑
n=0

min(m,n−1)

∑
j=0

∞

∑
k=1

β
( j)
k

n!
(n− j)!

Qn(L)xn− j+k+1

Now we want the sum to be indexed by powers of x, so we make a substitution on the indices: t = n− j+ k+1. This yields:

βG =
∞

∑
t=2

min(m,n−1)

∑
j=0

∑
n− j+k+1=t

β
( j)
k

n!
(n− j)!

Qn(L)xt

Finally we can simplify the indices of the third summation as well. If n− j + k = t, and j is already fixed by the second
summation, it follows that n and k are partitioning t + j+1 and hence we can rewrite this as:

βG =
∞

∑
t=1

m

∑
j=0

t+ j+1

∑
n=0

β
( j)
t+ j−n−1

n!
(n− j)!

Qn(L)xt

Now up to this point we have only used the assumption that the underlying sequence in question generated a Hopf subalgebra.
As in the case of the usual renormalization group equation, we can then add in the assumption that G(x,L) satisfies the gener-
alized renormalization group equation (11) to create relations among coefficients of the respective power series. Doing this, we
obtain a form of the generalized renormalization group equation expressed solely in terms of formal power series:

∞

∑
n=0

( n

∑
i=0

cn,iQi(L))
)

xn =
∞

∑
n=0

m

∑
j=0

n+ j−1

∑
i=0

β
( j)
t+ j−i−1

i!
(i− j)!

Qi(L)xn (14)

(Note that we have changed the letters of some of the indices to avoid confusion). This is the generalized version of equation
(8). By comparing the coefficients of powers of x on each side, we conclude that the following identity holds for all n ≥ 1:

n

∑
i=0

cn,iQi(L) =
m

∑
j=0

n+ j−1

∑
i=0

β
( j)
n+ j−i−1

i!
(i− j)!

Qi(L) (15)

and using as before that the Qi(L) are linearly independent, we can compare their coefficients across the equals sign as well to
get that:

cn,i =
m

∑
j=0

β
( j)
n+ j−i

i!
(i− j)!

(16)

= β
(0)
n−i + iβ (1)

n−i+1 + . . .+ i(i−1) · · ·(i−m+1)β (m)
n−i+m (17)
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13

In other words, when n is fixed we have that cn,i is a polynomial in i of degree m. Hence we have found a necessary condition
for which G(x,L) satisfy an mth-order generalized renormalization group equation, as we desired.

As before, it remains to consider the converse. Suppose we start with G(x,L) such that the corresponding sequence of ti
generate a Hopf subalgebra with the cn,i polynomial in i of degree m. Call these polynomials f j(i). For n ≥ 1, we can recover the
coefficients β

( j)
n by evaluating the polynomial f j at i = 0, . . . ,m and then changing basis for the vector space of polynomials as

in Section 4.3 of24. Hence as in the case of the usual renormalization group equation, equation (16) is satisfied except possibly
in degree i = 0. We remark that this correspondence recovering β is possible exactly because each β

( j)
i appears as the coefficient

in a unique leftward diagonal of the triangle (ci, j)i, j≥1. For generic m ≥ 3 the triangle begins:

β
(0)
1

β
(0)
1 +β

(1)
1 β

(0)
2

β
(0)
1 +2β

(1)
1 +2β

(2)
1 β

(0)
2 +β

(1)
2 β

(0)
3

β
(0)
1 +3β

(1)
1 +6β

(2)
1 +6β

(3)
1 β

(0)
2 +2β

(1)
2 +2β

(2)
2 β

(0)
3 +β

(01)
3 β

(0)
4

...

Now by thinking of each Qi(L) as a formal variable and inserting the cn,i’s we can recover equation (15) except for possible
disagreement in the i = 0 terms. However when i = 0 in equation (15), the only part of β that survives is β (0)(x). This means
that the power series expression of the generalized renormalization group equation (14) holds up to a power series in x. This is
the origin of the inhomogeneity γ0(x) as before. In conclusion, assuming only that the sequence of ti corresponding to G(x,L)
generate a Hopf subalgebra with the cn,i polynomial in i of degree m, we have that(

∂

∂L
−β (x,

∂

∂x
)

)
G = γ0(x) (18)

We can summarize the preceding discussion with the following lemma:

Lemma 10. A Green function G(x,L) satisfies an mth order non-homogeneous generalized renormalization group equation if
and only if for each n, cn,i is a polynomial of degree m in i.

IV. Λ-ARRAYS, STRONG AND WEAK SEQUENCES

As discussed in the introduction, in order to pin down the scaling freedom we will be thinking not of the Hopf subalgebras
directly, but in terms of a sequence of generators. In the previous section we saw that the array of coefficients λi, j is key to
reading off the order of renormalization group equation that the associated Green function satisfies. Now it is time to make these
two notions of sequence of generators and doubly-indexed sequences (λi, j)i, j≥1 precise and show that—suitably defined—they
are equivalent. With that equivalence in place we will be ready to define our combinatorial notions of strong and weak kth order
sequences.

A. Equivalence between sequences and Λ-arrays

Definition 11. We shall consider sequences (tn)n≥1 of elements of HCK such that:

1. For all n ≥ 1, tn is a nonzero linear combination of trees of degree n.

2. t1 = •.

3. The subalgebra A generated by the elements tn, n ≥ 1, is a Hopf subalgebra of HCK .

The set of such sequences is denoted by S eq.

Remark 1. We could also consider the set S eq′ of sequences (tn)n≥1 satisfying points 1 and 3 only. If (tn)n≥1 ∈ S eq′, there
exists a nonzero scalar α such that t1 = α . Hence, there exists a bijection:{

K\{0}×S eq −→ S eq′

(α,(tn)n≥1) −→ (αt1, t2, t3, . . .).

Consequently, it is enough to consider S eq.
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It turns out we can fully characterize exactly which (λi, j)i, j≥1 can appear from elements of S eq. This is the content of the
following:

Theorem 12. We denote by Λ the set of double sequences (λi, j)i, j≥1 such that:

1. (Pre-Lie relation). For any i, j,k ≥ 1:

λi, jλi+ j,k −λ j,kλi, j+k = λi,kλi+k, j −λk, jλi, j+k. (19)

This relation is denoted by PL(i, j,k).

2. (Non degeneracy). For any n ≥ 2, there exist i, j ≥ 1 such that i+ j = n and λi, j ̸= 0.

Then there is a bijection between S eq and Λ given by the definition of λi, j in Proposition 7.

To prove the theorem it will be handy to have the following lemma.

Lemma 13. Let (λi, j)i, j≥1 ∈ Λ. We define a pre-Lie structure on the space V =Vect(Xi, i ≥ 1) by:

Xi •X j = λi, jXi+ j.

It is graded, with Xi homogeneous of degree i for any i. Moreover, (V,•) is generated by X1.

Proof. The pre-Lie relation for (Xi,X j,Xk) is equivalent to point 1 of the theorem statement. Let us denote by V ′ the pre-Lie
subalgebra of (V,•) generated by X1 and let us prove inductively that Xk ∈ V ′. If k = 1, this is obvious. Otherwise, there exist

i, j, such that i+ j = k and λi, j ̸= 0. By the induction hypothesis, Xi,X j ∈V ′, so Xi+ j =
1

λi, j
Xi •X j ∈V ′.

Proof. (Theorem 12). We aim to define θ : S eq −→ Λ. Let the λi, j for θ(T ), T ∈ S eq be as in Proposition 7. Then we need to
show that these λi, j satisfy the conditions above and that θ is bijective.

It will be convenient to work in the graded dual. The graded dual of HCK is HGL, the Grossman-Larson Hopf algebra of rooted
trees15,16,21.

The space of primitive elements of HGL has for basis the set of rooted trees. It inherits a product • defined by:

t • t ′ = ∑
s vertex of t

grafting of t ′ on s.

This product is (right) pre-Lie, that is to say, for any x,y,z ∈ Prim(HGL):

(x• y)• z− x• (y• z) = (x• z)• y− x• (z• y).

By3, the pre-Lie algebra g= (Prim(HGL),•) is freely generated by the single vertex tree . Note that for any trees t, t ′, we have
t ∗ t ′ = tt ′+ t • t ′ with ∗ as the multiplication in HGL. Hence, for any x,y ∈ g:

x∗ x′ = xx′+ x• x′. (20)

The pairing between HCK and HGL is given by the following: if f and f ′ are two rooted forests,

⟨ f , f ′⟩= s f δ f , f ′ ,

where s f is the number of symmetries (as a rooted graph) of f .
Let (tn)n≥1 be an element of S eq. We denote by A the subalgebra of HCK generated by the elements tn, n ≥ 1. This is a graded

Hopf subalgebra of HCK , with a basis given by monomials of tn, as none of the tn is zero. Let I = A⊥ ⊆ HGL. As A is a graded
Hopf subalgebra of HCK , I is a graded biideal of HGL and the graded dual A∗ of A is identified with HGL/I. As HGL is con-
nected and cocommutative, it is the enveloping algebra of g by the Cartier-Quillen-Milnor-Moore’s theorem. Consequently, A∗

is the enveloping algebra of g/g∩ I. Furthermore, g/g∩ I is a pre-Lie ideal of g and inherits a pre-Lie product, also denoted by •.

Let us consider the basis (ek)k≥1 of g/g∩ I defined by:

⟨ek, tl⟩= δk,l .

In particular, as t1 = , e1 = + I. For any k ≥ 1, ek is homogeneous of degree k. As the pre-Lie product of g/g∩ I is
homogeneous, for any i, j ≥ 1, there exists a scalar λi, j such that:

ei • e j = λi, jei+ j,

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
28

75
2



15

and tracing through the dualities these λi, j are exactly the λi, j of the map θ . Writing the pre-Lie relation of g/g∩ I for (ei,e j,ek)
gives property 1 for (λi, j)i, j≥1. Let us now prove property 2 for this double sequence. Let us assume that there exists n ≥ 2 such
that for any i, j such that i+ j = n, λi, j = 0. Let us put g′ =Vect(ek,k ̸= n). For any i, j ≥ 1:

ei • e j = λi, jei+ j ∈

{
(0) if i+ j = n,
g′ otherwise.

Hence, g′ is a strict pre-Lie subalgebra of g/g∩ I containing e1. As g is generated by the single vertex tree , it follows that
g/g∩ I is generated by e1: this is a contradiction. So property 2 is satisfied. Therefore θ is a map from S eq to Λ.

Let us prove that θ is injective. Let us assume that θ((tn)n≥1) = θ((t ′n)n≥1) = (λi, j)i, j≥1. Let V be the pre-Lie algebra
associated to (λi, j)i, j≥1 by Lemma 13. Then, with the preceding notations, we obtain graded pre-Lie algebra isomorphisms:

φ :
{

g/g∩ I −→ V
ei −→ Xi,

φ
′ :
{

g/g∩ I′ −→ V
e′i −→ Xi.

Extending this Lie algebra morphism, we obtain graded Hopf algebra isomorphisms:

Φ :
{

HGL/I −→ U (V )
ei −→ Xi,

φ
′ :
{

HGL/I′ −→ U (V )
e′i −→ Xi.

Dually, we obtain Hopf algebra monomorphisms:

Φ
∗ :
{

U (V )∗ −→ HCK
X∗

i −→ ti,
Φ

′∗ :
{

U (V )∗ −→ HCK
Xi −→ t ′i .

As g is freely generated by , there exists a unique pre-Lie algebra morphism ψ from g to V sending to X1. Obviously,
ψ = φ ◦π = φ ′ ◦π ′, where π and π ′ are the canonical surjections on g/g∩ I and g/g∩ I′ respectively. Hence, I = I′ and φ = φ ′.
Consequently, Φ = Φ′, Φ∗ = Φ′∗ and finally (tn)n≥1 = (t ′n)n≥1. So θ is injective.

Let us prove that θ is surjective. Let (λi, j)i, j≥1 ∈ Λ and let us consider the pre-Lie algebra V of Lemma 13. As V is
generated by X1, there exists a unique pre-Lie algebra morphism φ : g −→ V , surjective, such that φ( ) = X1. This morphism
is extended as a surjective Hopf algebra morphism Φ : HGL −→ U (V ). Dually, we obtain an injective Hopf algebra morphism
Φ∗ : U (V )∗ −→ HCK . If we put tn = Φ∗(X∗

n ) for all n ≥ 1, then tn is a nonzero linear combination of trees of degree n and
Φ∗(U (V )∗) = K[tn,n ≥ 1] is a Hopf subalgebra of HCK . As φ( + I) = X1, we have t1 = . By construction, θ((tn)n≥1) =
(λi, j)i, j≥1.

It is also convenient to describe the inverse bijection explicitly. We shall use the Oudom-Guin construction of the enveloping
algebra of a pre-Lie algebra20. Let (λi, j)i, j≥1 ∈ Λ and let V be the pre-Lie algebra of Lemma 13. The pre-Lie product • is
extended to the symmetric Hopf algebra S(V ) in the following way:

1. For any x ∈ S(V ), x•1 = x.

2. For any x,y,z ∈ S(V ), with Sweedler’s notation:

xy• z =
(

x• z(1)
)(

y• z(2)
)
.

3. For any a,b1, . . . ,bk ∈ S(V ), with k ≥ 2:

a•b1 . . .bk = (a•b1 . . .bk−1)•bk −
k−1

∑
i=1

a• (b1 . . .(bi •bk) . . .bk−1).

We shall consider the element X1 •Xi1 . . .Xik of V .. By homogeneity, there exists a scalar λ (i1, . . . , ik) such that:

X1 •Xi1 . . .Xik = λ (i1, . . . , ik)X1+i1+...+ik .

These coefficients are computed by induction on k:

λ (i1, . . . , ik) =


1 if k = 0,
λ1,i1 if k = 1,

λ (i1, . . . , ik−1)λ1+i1+...+ik−1,ik −
k−1

∑
j=1

λ (i1, . . . , i j + ik, . . . , ik−1)λi j ,ik otherwise.
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By construction, λ (i1, . . . , ik) is symmetric in its arguments.
Let us denote by φ : g−→V the unique pre-Lie algebra morphism sending to X1. For any tree t, we put φ(t) = µ(t)X|t| by

homogeneity. Then, if t = B+(t1 . . . tk):

φ(t) = φ( • t1 . . . tk)
= X1 •φ(t1) . . .φ(tk)
= µ(t1) . . .µ(tk)X1 •X|t1| . . .X|tk|

= µ(t1) . . .µ(tk)λ (|t1|, . . . , |tk|)X|t|.

Therefore, µ(t) is given by:

µ(t) = ∏
s∈Vert(t)

λ

(
t(s)1 , . . . ,λ

(s)
k(s)

)
,

where k(s) is the fertility of the vertex s and t(s)1 , . . . , t(s)k(s) are the subtrees of t born from s. Denoting by Φ : HGL −→ U (g) the

extension of φ to HGL and by Φ∗ : U (g)∗ −→ HCK its transpose, then by duality, putting (tn)n≥1 = θ−1((λi, j)i, j≥1), for all n ≥ 1:

tn = Φ
∗(X∗

n ) = ∑
|t|=n

µ(t)
st

t.

Example 9. Consider sequences coming from the solution to a Dyson Schwinger equation. We already know from Theorem 6
that these sequences are in S eq, but they are also useful to look at from the Λ perspective. In fact we can check directly that
their Λ-arrays are in Λ as follows.

Let (a,b) ∈K2 such that a+b ̸= 0. For all i, we put λi, j = ai+b. For any i, j,k ≥ 1:

λi, jλi+ j,k −λ j,kλi, j+k = (ai+b)(a(i+ j)+b)− (a( j−1)+b)(ai+b)
= (ai+b)a(i+1)
= λi,kλi+k, j −λk, jλi, j+k.

So property 1 is satisfied. For any n ≥ 2, λ1,n−1 = a+ b ̸= 0, so property 2 is satisfied. An easy induction proves that for any
k ≥ 0:

λ (i1, . . . , ik) =
k

∏
j=1

(a( j− k+1)+b).

Hence, for any n ≥ 0:

tn = ∑
|t|=n

1
st

(
∏

s∈Vert(t)

k(s)

∏
j=1

(a( j− k(s)+1)+b)

)
t.

For example:

t2 = (a+b) ,

t3 = (a+b)2 +
(a+b)a

2
,

t4 = (a+b)3 +
a(a+b)2

2
+a(a+b)2 +

(a+b)a(a−b)
6

.

This is the solution of the Dyson-Schwinger equation X = B+((1+bX)
a+b

b ) if b ̸= 0 and X = B+(eaX ) if b = 0 of12; see Theorem
6. This includes as special cases the ladders of Example 7, the binary rooted trees of Example 4, and the plane rooted trees of
Example 5.

Example 10. Continuing the Connes-Moscovici example (see Example 2 and Lemma 8), for any i, j ≥ 1, put:

λi, j =

(
i+ j
i−1

)
.
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For any i, j,k ≥ 1:

λi, jλi+ j,k −λ j,kλi, j+k =
(i+ j+ k)!

(i−1)!( j+1)!(k+1)!
i( j+ k+1)

= λi,kλi+k, j −λk, jλi, j+k.

An easy induction proves that for any i1, . . . , ik ≥ 1:

λ (i1, . . . , ik) =
(i1 + . . .+ ik)!

i1! . . . ik!
.

Hence following through the bijection, on the level of trees we get:

t2 = ,

t3 = + ,

t4 = + +3 + .

Let us prove that for any tree t:

µ(t) = ∑
s leaf of t

µ(t \ s).

This is true if t = , with the convention µ(1) = 1. Let us assume that the result is true for any tree t ′ such that |t ′|< [t|. We put
t = B+(t1 . . . tk), and |ti|= ni. Then:

∑
s leaf of t

µ(t \ s) =
k

∑
i=1

∑
s leaf of ti

µ(t \ s)

=
k

∑
i=1

∑
s leaf of ti

(n1 + . . .+nk −1)!
n1! . . .(ni −1)! . . .nk!

µ(t1) . . .µ(ti \ s) . . .µ(tk)

=
k

∑
i=1

(n1 + . . .+nk −1)!
n1! . . .(ni −1)! . . .nk!

µ(t1) . . .µ(ti−1)µ(ti+1) . . .µ(tk) ∑
s leaf of ti

µ(ti \ s)

=
k

∑
i=1

(n1 + . . .+nk −1)!
n1! . . .(ni −1)! . . .nk!

µ(t1) . . .µ(ti−1)µ(ti+1) . . .µ(tk)µ(ti)

= µ(t1) . . .µ(tk)
(n1 + . . .+nk −1)!

n1! . . .nk!

k

∑
i=1

ni

= µ(t1) . . .µ(tk)
(n1 + . . .+nk)!

n1! . . .nk!
= µ(t).

B. Further examples from a pre-Lie structure

In11, a pre-Lie product • is defined on HCK by the following: if f and f ′ are forests,

f • f ′ = ∑
s∈Vert( f )

grafting of f ′ on s.

This is a pre-Lie product which the reader will note is similar in nature to the product of HGL. Moreover, for any x,y,z ∈ HCK :

(xy)• z = (x• z)y+ x(y• z),

∆(x• y) = x(1)⊗ x(2) • y+ x(1) • y(1)⊗ x(2)y(2).

Proposition 14. Let t ′1, . . . , t
′
N be a finite sequence of elements of HCK such that:
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1. t ′1 = .

2. For all i, t ′i is a nonzero linear combination of trees of degree i.

3. A =K[t ′1, . . . , t
′
N ] is a Hopf subalgebra of HCK .

Let X be a nonzero primitive element of A, homogeneous of degree N. We define a sequence (tn)n≥1 by:

tn =

{
t ′n if n ≤ N,

tn−N •X if n > N.

Then (tn)n≥1 ∈ S eq. The associated double sequence is denoted by (λi, j)i, j≥1. If k+ l > N:

λk,l = λk−N,l +λk,l−N +αkδl,N ,

with the convention λi, j = 0 if i ≤ 0 or j ≤ 0 and where α is the coefficient of tN in X.

Proof. As X is nonzero and homogeneous of degree N, an easy induction proves that tn is a nonzero linear combination of trees
of degree n for any n. We shall use the two following maps:

F :
{

HCK −→ HCK
x −→ x•X ,

D :
{

HCK −→ HCK
x −→ x•1.

Both are derivations of HCK . Moreover, for any n ≥ 1:

F(tn) = tn+N , D(tn) = ntn,

where the latter identity holds because there are n places in each tree of tn into which to graft, but grafting on 1 leaves each tree
unchanged, so we are left just counting vertices. Consequently, A is stable under F and D. Moreover, for any x ∈ HCK :

∆◦N(x) = ∆(x•X)

= x(1)⊗ x(2) •X + x(1) •X (1)⊗ x(2)X (2)

= x(1)⊗ x(2) •X + x(1) •X ⊗ x(2)+ x(1) •1⊗ x(2)X
= (F ⊗ Id + Id ⊗F)◦∆(x)+(D⊗ Id)◦∆(x)(1⊗X).

Let us prove that ∆(tn) ∈ A⊗A by induction on n. If n < N, tn = t ′n. As K[t ′1, . . . , t
′
N ] is a Hopf subalgebra of HCK , ∆(tn) ∈

K[t ′1, . . . , t
′
N ]

⊗2 ⊆ A⊗2. Otherwise, tn = F(tn−N). By the induction hypothesis, ∆(tn−N) ∈ A⊗A, so:

∆(tn) ∈ (F ⊗ Id + Id ⊗F)(A⊗A)+(D⊗ Id)(A⊗A)(1⊗X).

As X ∈ A and A is stable under F and D, ∆(tn) ∈ A⊗A. Finally, (tn)n≥1 ∈ S eq.

By definition of (λi, j)i, j≥1, for any n:

∆(tn) = tn ⊗1+1⊗ tn + ∑
i+ j=n

λi, jti ⊗ t j +nonlinear terms.

Consequently:

∆(tn+N)

= ∆◦F(tn)

= tn+N ⊗1+1⊗ tn+N + ∑
i+ j=n

λi, j(tN+i ⊗ t j + ti ⊗ tN+ j)+ntn ⊗αtN +nonlinear terms.

Hence, if k+ l = n+N, λk,l = λk−N,l +λk,l−N + kαδl,N .
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Example 11. As a subexample of the above, take t ′1 = , t ′2 = and X = 2 − . Then:

t1 = ,

t2 = ,

t3 = 2 − ,

t4 = 2 +2 − − ,

t5 = 4 +4 −2 −2 −4 +2 +4 −4 + .

The associated double sequence (λi, j)i, j≥1 can be inductively computed by:

λ1,1 = 1,
If k+ l ≥ 2, λk,l = λk−2,l +λk,l−2 +2kδl,2.

This gives:

1. If k, l ≥ 1, λ2k,2l = 4
(

k+ l
l +1

)
.

2. If k ≥ 0 and l ≥ 1, λ2k+1,2l = 2
(

k+ l +1
l +1

)
+2
(

k+ l
l +1

)
.

3. If k, l ≥ 0, λ2k+1,2l+1 =

(
k+ l

l

)
.

4. If k ≥ 1 and l ≥ 0, λ2k,2l+1 = 0.

Another example of a similar nature, but not included in the family of Proposition 14, is the following.

Example 12. Let a,b,c ∈K. We consider the double sequence (λi, j) defined by:

• If k, l ≥ 1, λ2k,2l = ak+b.

• If k ≥ 0 and l ≥ 1, λ2k+1,2l = ak+
a+b

2
.

• If k ≥ 1 and l ≥ 0, λ2k,2l+1 = 0.

• If k, l ≥ 0, λ2k+1,2l+1 = c.

This family satisfies the pre-Lie relation, and it is an element of Λ if, and only if a+b ̸= 0 and c ̸= 0. The coefficient λ (i1, . . . , ik)
only depends on (p,q), where p is the number of even i j and q is the number of odd ik: we shall denote by λ ′(p,q) their common
value. These coefficients can be inductively computed: if p,q ≥ 0,

λ
′(0,0) = 1,

λ
′(p+1,0) =

(
a+(3−2p)b

2

)
λ
′(p,0),

λ
′(p,q+1) =

{
c(λ ′(p,q)−qλ ′(p+1,q−1)) if q is odd,
−cqλ ′(p+1,q−1) if q is even.
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This gives:

t1(a,b,c) = ,

t2(a,b,c) = c ,

t3(a,b,c) =
c(a+b)

2
− c(a+b)

4
,

t4(a,b,c) =
c2(a+b)

2
+

c2(a+b)
2

− c2(a+b)
4

− c2(a+b)
4

,

t5(a,b,c) =
c2(a+b)2

4
+

c2(a+b)2

4
− c2(a+b)2

8
− c2(a+b)2

8
− c2(a+b)2

4

+
c2(a+b)2

8
+

c2(a+b)(a−b)
8

− c2(a+b)(a−b)
8

+
c2(a+b)(a−b)

32
.

An especially interesting case is a = b. If this holds, only a finite number of λ ′(p,q) are nonzero; they are listed below.

λ
′(1,0) = a, λ

′(0,1) = c, λ
′(1,1) = ac, λ

′(0,2) =−ac, λ
′(0,3) =−3ac2.

Remark 2. Let us compare Example 12 with Example 11. We find:

t1(a,b,c) = t1,
t2(a,b,c) = ct2,

t3(a,b,c) =
c(a+b)

4
t3,

t4(a,b,c) =
c2(a+b)

4
t4,

t5(a,b,c) =
c2(a+b)2

16
t5 −

c2(a+b)(a+3b)
8

( + −4 ).

Hence, t5(a,b,c) and t5 are colinear if, and only if, a+3b = 0. A similar computation proves that t6(a,b,c) and t6 are colinear
if, and only if, b = 0. Hence, as a+b ̸= 0, K[tn(a,b,c),n ≥ 1] and K[tn,n ≥ 1] are different.

C. Definition of strong and weak sequences

Suppose that s = (tn)n≥1 is in S eq. Then we can define nonzero Feynman rules φ as discussed in Section III to turn Xs into a
Green function to see if it is in fact the solution of a generalized renormalization group equation.

Definition 15. If a sequence s ∈ S eq satisfies a kth order renormalization group equation for any choice of Feynman rules and
for β

(k)
1 ̸= 0, then we say s is a strong kth order sequence.

Definition 16. If a sequence s ∈ S eq satisfies a kth order renormalization group equation but is not strong, we say that it is a
weak kth order sequence.

Sequences s ∈ S eq that lead to strong kth order sequences have a unique order by which to be classified, as the conditions
imposed on them mean that their order can be read off of the left-diagonal in the array depicted in Figure 2; this order is given by
the order of the sequence (λi,1)i≥1. Furthermore, since the leftward diagonals of Figure 2 must be sequences of order k or lower
for every nonzero choice of φ , we see that the associated Λ-array must have all of its leftward diagonals as sequences of order
k or lower and the leftmost diagonal must be order exactly k on account of the condition β

(k)
1 ̸= 0. Moreover any such Λ-array

will give a strong kth order sequence. Summarizing:

Proposition 17. A sequence s ∈ S eq is strong kth order if and only if its Λ-array θ(s) has all leftward diagonals of order at
most k and the leftmost diagonal of order exactly k.
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Remark 3. We can determine what condition on the Λ-array corresponds to the property that a strong kth order sequence’s
generalized renormalization group equations are homogeneous. To this end fix an arbitrary choice of Feynman rules and consider
the derivation of the fact that the diagonal sequences are order k beginning on p11. In this derivation, we are comparing
coefficients in ∂

∂L G and βG for positive powers of L and x. If the generalized renormalization group equation is homogeneous
then the coefficients of ∂

∂L G and βG must also match for L0 and all powers of x. Consequently for a homogeneous generalized
group equation the triangular array, extended to include c0, j and ci,0 entries, will still have all leftward diagonals of order k or
less.

Translating over to S eq and the Λ-arrays, λi, j is the coefficient of t j ⊗ ti in ∆(ti+ j) so extending the Λ-array to 0th indexed
entries corresponds to adding a t0 term to the element of S eq and the coefficients of tn ⊗ t0 and t0 ⊗ tn to the Λ-array. In the
transition from the ci, j triangular arrays to the Λ-arrays we took the convention that elements of S eq were normalized so that
t1 = 1. Because of this we cannot assume that t0 = 1, but only that t0 is some nonzero constant, write it as 1/c. Since the
coproducts of trees all have a primitive part the coefficients of tn ⊗ t0 and t0 ⊗ tn in ∆(tn+1) are all c, as is the coefficient of t0 ⊗ t0
in ∆(t0), so the entries of the new outer diagonals on the Λ-array are all c.

This tells us that given a Λ-array for a kth order strong sequence, if the generalized renormalization group equation for the
sequence is homogeneous then the Λ-array has the property that if we add new outer diagonals of a constant value c then the
leftward diagonals of this enlarged array remain kth order or less.

In the reverse direction, if we can add such an outer layer, then returning one last time to the derivation of p11, rescaling t0 to 1
and t1 to c• to match the conventions in place for that derivation, we see that the identities hold not only for positive coefficients
of L and x, but also for the coefficients involving L0 and x0, and so no γ0 term is required in the generalized renormalization
group equation. That is, the generalized renormalization group equation is homogeneous.

In summary, let s be a strong kth order sequence. The Λ-array of s can be extended to have 0 indexed entries all of value c
while maintaining the property that all leftward sequences are of order k or less if and only if the generalized renormalization
group equations satisfied by s for each choice of Feynman rules are homogeneous.

In Section V we characterize strong kth order sequences.
Weak sequences are much more difficult to work with. Note that there are two ways to be a weak kth order sequences, either

G(x,L) = φ(Xs) satisfies a kth-order renormalization group equation for some (but not all) choices of Feynman rules, and/or
G(x,L) = φ(Xs) satisfies a kth-order renormalization group equation such that β

(k)
1 = 0. In the first case we have freedom to

choose Feynman rules which get rid of problem parts of the Λ-array, and so weak kth order sequences can be much wilder. We
will comment on some nice cases and examples in Section VI.

Example 13. The corollas (see Example 8), because of all the 0s in their Λ array, can easily be scaled to generate strong
sequences of any order. Consider the sequence given by tn = (n!)kcn where the cn is the corolla on n vertices. Then the
coefficient of c1 ⊗ cn−1 in ∆(tn) is n(n!)k, so the coefficient of t1 ⊗ tn−1 in ∆(tn) is nk+1. This gives a leftmost diagonal in the
Λ-array of order k+1 and all other diagonals remain 0. Therefore the sequence of these tn is a strong (k+1)st order sequence.

V. CHARACTERIZATION OF STRONG SEQUENCES

A. Strong 0th order sequences

For each n ≥ 0, let ℓn be the ladder with n vertices as in Example 1. For any n ≥ 1, we put

pn = ln∗(ℓn)

=
n

∑
k=1

∑
j1+...+ jk=n,

j1,..., jk≥1

(−1)k+1

k
ℓ j1 . . . ℓ jk

= ∑
1i1+...+nin=n

(−1)i1+...+in+1

i1 + . . .+ in

(i1 + . . .+ in)!
i1! . . . in!

ℓi1
1 . . . ℓin

n ,

where ln∗ is the convolution log. In a completion of HCK , we put

X = ∑
k≥1

ℓk.

Then:

∑
k≥1

pk = ln∗(1+X) = ln(1+X).
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As 1+X is a group-like element, this is a primitive element, so for any n ≥ 1, its n-th homogeneous component is primitive; that
is, the pn are primitive.

Proposition 18. Let n ≥ 1 and let b be a nonzero element of K. We consider

Zn(b) := ∑
k≥1

zk = B+

(
exp

(
n−1

∑
k=1

pk +bpn

))
.

Then (zk)k≥1 belongs to S eq. The corresponding family (λi, j)i, j≥1 is given by:

λi, j =


1 if j < n,
b if j = n,
0 otherwise.

Proof. We put Y = p1 + . . .+ pn−1 +bpn and let Z denote the corresponding Zn(b). Now Y is a primitive element, so:

∆(Y ) = Y ⊗1+1⊗Y,
∆(exp(Y )) = exp(Y ⊗1+1⊗Y )

= exp(Y ⊗1)exp(1⊗Y )
= exp(Y )⊗ exp(Y ),

∆(Z) = 1⊗Z +B+(exp(Y ))⊗ exp(Y )
= 1⊗Z +Z ⊗ exp(Y ).

For any k < n, the k-th homogeneous component of Y is

yk = πk (exp(p1 + . . .+ pn−1 +bpn))

= πk

(
exp

(
∑
k≥1

pk

))
= πk (exp(ln(1+X)))

= πk(1+X)

= ℓk.

As zk+1 = B+(yk) for any k ≥ 1, for any k ≤ n, zk = ℓk. By construction, Y ∈ K[p1, . . . , pn] = K[ℓ1, . . . , ℓn] = K[z1, . . . ,zn],
which implies that Z ⊗ exp(Y ) is an element of the completion of K[z1,z2, . . .]⊗K[z1, . . . ,zn]. Hence, for any n ≥ 1, ∆(zn) ∈
K[z1, . . . ,zn]

⊗2, and (zn)n≥1 ∈ S eq.
Let us denote by ϖ the canonical projection from HCK to the space of trees. We obtain:

(ϖ ⊗ϖ)◦∆(Z) = ∑
i, j≥1

λi, jzi ⊗ z j

= (ϖ ⊗ϖ)(1⊗Z +Z ⊗ exp(Y ))
= Z ⊗ (z1 + . . .+ zn−1 +bzn).

Identifying, we obtain the formula for λi, j.

Proposition 19. Let (λi, j)i, j≥1 ∈ Λ such that for any j ≥ 1, the sequence (λi, j)i≥1 is constant. Up to a rescaling, we assume that
λ1,1 = 1. Then:

• either λi, j = 1 for any i, j ≥ 1,

• or there exists n ≥ 1 and b ∈K\{1} such that for any i, j ≥ 1:

λi, j =


1 if i < n,
b if i = n,
0 otherwise.
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1
1 1

1 1 b
1 1 b 0

1 1 b 0 0
1 1 b 0 0 0

1 1 b 0 0 0 0
1 1 b 0 0 0 0 0

t1 =

t2 =

t3 =

t4 = b − (b−1) +
1
3
(b−1)

t5 = b +
1
2

−b +
1
3
(b− 1

4
)

Z2(b) = B+(exp(P1 +P2 +bP3))

TABLE I: An example for n = 2 and arbitrary b of a Λ-array (left), its corresponding sequence (middle), and its corresponding
equation (right) from Proposition 19 and Theorem 20.

Proof. Let us consider the sequence (a j) j≥1 such that for any i, j ≥ 1, λi, j = a j. The pre-Lie relation then gives, for any i, j,k ≥ 1,

a jak −aka j+k = aka j −a ja j+k,

so a j+k(a j −ak) = 0. For k = 1, as a1 = 1, we obtain that for any j ≥ 1, either a j = 1 or a j+1 = 0.
Let us assume that there exists i ≥ 1, such that ai ̸= 1. Let us consider the minimal n such that an ≥ 1, and let us put an = b.

An easy induction proves that am = 0 for any m > n.

Theorem 20. The strong 0th order sequences are the ladders and the Zn(b) of Proposition 18

Proof. The ladders have all λi, j = 1, so Propositions 18 and 19 imply the theorem.

Note that the set of 0th order sequences consists of the ladders as noted explicitly in the proposition and elements of S eq
corresponding to the Zn(b) which interpolate between ladders and corollas. For example, the element of S eq corresponding to
Z0 is exactly the sequence of 0th-order corollas and the the sequence corresponding to Zn(b) consists of sums of trees which are
corollas whose leaves have been replaced by ladders having at most n+1 nodes. See Table I.

Note also that by Remark 3 the ladders have a homogeneous renormalization group equation for each choice of Feynman
rules, but the Zn(b) can never have this homogeneity. To see this, we take t0 = 1 for the ladders, giving a larger array of all 1s,
while for the Zn(b) from the j = 1 diagonal we must have t0 = 1 but then for j > n the diagonal sequence is 1,0,0, . . . which is
not 0th order.

B. Strong 1st order sequences

Next, we classify all strong first-order sequences with the following theorem.

Theorem 21. Let (λi, j)i, j≥1 ∈ Λ be the pre-Lie sequence corresponding to a strong first-order element of S eq, and let a1 ∈
K\{0},a2,b ∈K. Then (λi, j)i, j≥1 is one of the following:

• Case A:

λi, j =


a1i+b if j = 1
a2i+b if j = 2

a1a2i
( j−1)a1 − ( j−2)a2

+b if j ≥ 3

• Case B:

λi, j =

{
a2i−2a2 if j = 2
a1i−2a1 otherwise

• Case C:

λi, j =


a1i+2a1 if j = 1
a2i+4a2 if j = 2

a1a2(2 j+ i)
( j−1)( j)( j+1)

6 a1 − ( j−2)( j)( j+2)
3 a2

if j ≥ 3
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• Case D:

λi, j =


a1i+a1 if j = 1
a2i+2a2 if j = 2

a1a2(i+ j)
( j−1)( j)

2 a1 − ( j−2)( j)a2
if j ≥ 3

• Case E:

λi, j =

{
a1i+b if j = 1
0 otherwise

Note that the cases are not disjoint; in particular edge cases of one case may also appear in another case.
We remark in particular that this result encompasses strong first-order sequences that were already known. For example,

Case E is that of first-order corollas, while setting a2 = a1 in Case A gives the sequences coming from Dyson-Schwinger type
equations as in Example 912. Another special family arising from Case A will be discussed in Example 14.

Note also that by Remark 3, the corresponding generalized renormalization group equations are homogeneous in case A when
b ̸= 0 using t0 = 1/b and cannot be homogeneous in case A when b = 0. For cases B, C, and D, to have homogeneous generalized
renormalization group equations the constant terms in i for each value of j must be the same, but for all three cases, the equality
of the constant terms brings them to a special case of A. Specifically, B is homogeneous if a1 = a2 which is the same as A with
a1 = a2 and b =−2a2, C is homogeneous if a1 = 2a2 which is the same as A with b = 2a1 and a1 = 2a2, and D is homogeneous
if a1 = 2a2 which is the same as A with b = a1 and a1 = 2a2. Case E can never be homogeneous as the j = 1 diagonal gives
t0 = 1/b and so requires b ̸= 0 but this gives the sequence b,0,0,0, . . . for j > 1 which is not of any order.

The proof of Theorem 21 is straightforward, but requires the following technical lemma:

Lemma 22. If (λi, j)i, j≥1 is a strong first-order sequence, then λm,1 ̸= λ1,m for any m ≥ 2.

Proof. Let (λi, j)i, j≥1 be a strong first-order sequence and assume towards a contradiction that there is an integer m ≥ 2 such that
λm,1 = λ1,m. If this is the case, then for any i, j ≥ 1, PL(i, j,m) gives us that:

λi,1λi+1,m = λi,mλi+m,1

But since (λi, j)i, j≥1 is a strong first-order sequence, it follows that λi, j = a ji+ b j for some a j,b j ∈ K, and so making this
substitution we find:

(a1i+b1)(am(i+1)+bm) = (ami+bm)(a1(i+m)+b1)

Distributing terms and then grouping by powers of i we get:

(2amb1 +2a1bm)i+(a1bmm+amb1) = 0

which gives the simultaneous conditions:

amb1 +a1bm = 0 (21)

and

a1bmm+amb1 = 0 (22)

Case 1: b1 = 0. Since (λi, j)i, j≥1 is first-order strong by hypothesis, a1 ̸= 0 and so equation (21) implies immediately that bm = 0.
Hence:

λm,1 = λ1,m

=⇒ ma1 +b1 = am +b+m
=⇒ ma1 = am

However if we substitute b1 = bm = 0 and ma1 = am into PL(1,1,m), we obtain:

2ma2
1 = m(m+1)a2

1

=⇒ a2
1(1−m) = 0
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which implies a1 = 0, since m ≥ 2. This is a contradiction.
Case 2: If b1 ̸= 0, on the other hand, we can use equation (22) to solve for am:

am =
−ma1bm

b1

Substituting into equation (21) gives: (
−ma1bm

b1

)
b1 +a1bm = 0

=⇒ a1bm(m−1) = 0

And so bm = 0. Further, substituting bm = 0 into equation (21) gives that am = 0 as well. Taken together, this means that
λ1,m = 0, and so by hypothesis λm,1 = 0.

Now consider the relation PL(1,1,k−1):

λ1,1λ2,m−1 −λ1,m−1λ1,m = λ1,m−1λm,1 −λm−1,1λ1,m

Since λ1,m = λm,1 = 0, only the leftmost term does not vanish, leaving:

λ1,1λ2,m−1 = 0

Hence λ2,m−1 = 0. We then consider PL(2,1,m−2), which after substituting in all calculated values gives:

λ2,1λ3,m−2 = 0

In particular, since λi,1 is linear in i and λm,1 = 0, then λt,1 ̸= 0 for any t ̸= k. Hence λ3,m−2 = 0.
Proceeding inductively in this way, the relations PL(4,1,m−3),PL(5,1,m−4), . . . ,PL(m−2,1,2) imply that λk1,k2 = 0 for

any k1,k2 such that k1 + k2 = m+1. Hence (λi, j)i, j ̸∈ Λ after all, since (λi, j)i, j does not satisfy the non-degeneracy condition of
Theorem 12. This is a contradiction.

We can now proceed with the following proof of Theorem 21.

Proof of Theorem 21. Let (λi, j)i, j≥1 := (a ji+ b j)i, j≥1 be a strong first-order sequence and consider the relations PL(i,1,k) for
arbitrary i,k ≥ 1. These have the form:

λi,1λi+1,k −λ1,kλi,k+1 = λi,kλi+k,1 −λk,1λi,k+1

Now since λm,1 ̸= λ1,m for any m ≥ 2 by Lemma 22 we can solve for λi,k+1:

λi,k+1 =
λi,1λi+1,k −λi,kλi+k,1

λ1,k −λk,1

=⇒ ak+1i+bk+1 =
a1ak(1− k)i−a1bkk+akb1

(ak +bk)− (a1k+b1)
, k ≥ 2

Hence for k ≥ 2:

ak+1 =
a1ak(1− k)

(ak +bk)− (a1k+b1)
(23)

and

bk+1 =
−a1bkk+akb1

(ak +bk)− (a1k+b1)
(24)

We will find a system of equations that constrain these variables even further. Using equations (23) and (24) we compute:

a3 =
−a1a2

a2 +b2 −2a1 −b1

b3 =
b1a2 −2b2a1

a2 +b2 −2a1 −b1
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and corresponding explicit forms for a4,b4,a5,b5,a6,b6,a7. But these are not the only relations that exist among the variables.
Using PL(1,2,3),PL(1,2,4), and PL(1,2,5) respectively, we calculate the following three values in a second way:

a′5 =
−a2a3

2a3 +b3 −3a2 −b2

a′6 =
−2a2a4

2a4 +b4 −4a2 −b2

a′7 =
−3a2a5

2a5 +b5 −5a2 −b2

We may assume that the denominators in each of a′5,a
′
6,a

′
7 cannot be 0 for the following reason. Suppose that 2a3 +b3 −3a2 −

b2 = 0. Then the corresponding relation PL(1,2,3) would imply that −a2a3 = 0, so either a2 = 0 or a3 = 0. In either case,
substituting the values into the equation for a3 above gives a2 = a3 = 0. Applying equations (23) and (24) inductively then gives
that ak = 0,bk = 0 for all k ≥ 2, and hence the corresponding sequence is the sequence of first-order corollas (Case E). The same
reasoning can also be used to show that 2a4+b4−4a2−b2 ̸= 0 and 2a5+b5−5a2−b2 ̸= 0 unless the array belongs to the Case
E family.

Now setting a5 = a′5 , a7 = a′7, making appropriate substitutions, and rearranging gives:

−(2a2
1a2 +9a1a2b1 +a2b2

1 −6a2
1b2)(b1 −b2) = 0 (25)

and

−(172a4
1a2 +840a3

1a2b1 +365a2
1a2b2

1 +60a1a2b3
1 +3a2b4

1 −520a4
1b2 −180a3

1b1b2 −20a2
1b2

1b2)(b1−b2) = 0 (26)

The first obvious solution to this system of equations is b1 = b2. Making this substitution and applying equation (24) inductively
gives us that b1 = b2 = bk for all k ≥ 3. Setting b := b1 and applying equation (23) inductively then gives the Case A formula
from the theorem statement.

On the other hand, if b1 ̸= b2, then we may divide both equations by (b1 −b2). Moreover, our assumption that the sequence
(λi, j)i, j≥0 is first-order means in particular that a1 ̸= 0. Hence there exists some field element c ∈K such that a2 = ca1. Making
this substitution into both equations gives us the following system:

−(2a2
1c+9a1b1c+b2

1c−6a1b2)a1 = 0 (27)

and

−(172a4
1c+840a3

1b1c+365a2
1b2

1c+60a1b3
1c+3b4

1c−520a3
1b2 −180a2

1b1b2 −20a1b2
1b2)a1 = 0 (28)

After dividing by a1, it is a simple matter to use equation (27) to solve for b2:

b2 =
c

6a1
(2a2

1 +9a1b1 +b2
1)

Substituting this value into equation (28) gives us:

1
3
(4a4

1c−5a2
1b2

1c+b4
1c) = 0 (29)

and factoring:

1
3
(2a1 +b1)(2a1 −b1)(a1 +b1)(a1 −b1)c = 0 (30)

If b1 = −2a1 then we inductively compute Case B. If b1 = 2a1 then we inductively compute Case C. If b1 = a1 then we
inductively compute Case D. The solution b1 = −a1 is extraneous, as it contradicts the non-degeneracy condition of pre-lie
arrays. Finally, the solution c = 0 inductively gives Case E once again.

All that remains is to verify that each family is indeed a pre-lie array for arbitrary choices of a1,a2, and b, and that each family
is well-defined (namely that the expressions appearing in the denominators of the Case A, C, and D arrays are guaranteed to be
nonzero).

The computations to show that each family is pre-lie are straightforward, but quite long. To maintain readability we only
include high-level details of the computation here. In particular, after accounting for symmetry of pre-lie relations in the indices
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j and k there are only four cases ( j = 2,k = 1; j = 1,k ≥ 3; j = 2,k ≥ 3; j ≥ 3,k ≥ 3) for each of the families A, C, and D to
prove that arrays in these families are indeed pre-lie, while there are only two cases ( j = 2,k ̸= 2; j ̸= 2,k ̸= 2) on the indices of
arrays in family B to prove the pre-lie condition. For example when j = 2,k = 1 in the Case A family we compute:

LHS = λi, jλi+ j,k −λ j,kλi, j+k

= λi,2λi+2,1 −λ2,1λi,3

= [a2i+b] [a1(i+2)+b]− [2a1 +b]
[

a1a2i
2a1 −a2

+b
]

= a1a2i2 +2a1a2i+a1bi+2a1b+a2bi− 2a2
1a2i

2a1 −a2
−2a1b− a1a2bi

2a1 −a2

= a1a2i2 +a1bi+a2bi− a1a2bi
2a1 −a2

− 2a2
1a2i−2a1a2i(2a1 −a2)

2a1 −a2

= a1a2i2 +a1bi+a2bi− a1a2bi
2a1 −a2

− 2a1a2
2i−2a2

1a2i
2a1 −a2

= a1a2i2 +a1bi+a2bi− a1a2bi
2a1 −a2

− a1a2
2i−2a2

1a2i+a1a2
2i

2a1 −a2

= a1a2i2 +a1bi+a2bi− a1a2bi
2a1 −a2

− a1a2
2i−a1a2i(2a1 −a2)

2a1 −a2

= a1a2i2 +a1bi+a2bi− a1a2bi
2a1 −a2

− a1a2
2i

2a1 −a2
+a1a2i+a2b−a2b+b2 −b2

= a1a2i(i+1)+a1bi+a2b(i+1)+b2 − a1a2
2i

2a1 −a2
−a2b− a1a2bi

2a1 −a2
−b2

= [a1i+b] [a2(i+1)+b]− [a2 +b]
[

a1a2i
2a1 −a2

+b
]

= λi,1λi+1,2 −λ1,2λi,3

= λi,kλi+k, j −λk, jλi,k+ j

= RHS

For the other cases, it is simply a matter of substituting in the formulas for the λi, j into each term of equation (19), moving all
terms to one side of the equation, finding a common denominator, simplifying, and observing that the result is 0. These steps
can be easily performed in a computer algebra system such as Sage.

Finally, we only need to show that the arrays in each family are indeed well-defined. To maintain readability, we will only
focus on the details for Case A, which is the content of the next lemma.

Lemma 23 (Case A array is well-defined). Let Λ = (λi, j)i, j≥1 := (a ji+b j) be a strong first order pre-lie array such that b1 = b2
(which implies b j = b1 =: b for all j, and gives the Case A family inductively). Then:

( j−1)a1 − ( j−2)a2 ̸= 0 (31)

for any j ≥ 3.

Proof. Base Case: ( j = 3).
Assume towards a contradiction that 2a1 −a2 = 0. Then in particular:

a2 = 2a1 (32)

Consider PL(1,1,2):

λ1,1λ2,2 −λ1,2λ1,3 = λ1,2λ3,1 −λ2,1λ1,3

=⇒ (a1 +b)(2a2 +b)− (a2 +b)(a3 +b) = (a2 +b)(3a1 +b)− (2a1 +b)(a3 +b)
=⇒ −a1a2 +2a1a3 −a2a3 = 0

Substituting in a2 = 2a1 we obtain:

−2a2
1 = 0

=⇒ a1 = 0

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
28

75
2



28

contradicting the fact that a1 ̸= 0 by virtue of the sequence being first order.
Inductive Step: Let m > 3 be the least positive integer for which

(m−1)a1 − (m−2)a2 = 0 (33)

=⇒ (m−1)
(m−2)

a1 = a2 (34)

and consider PL(1,1,m−1):

λ1,1λ2,m−1 −λ1,m−1λ1,m = λ1,m−1λm,1 −λm−1,1λ1,m

=⇒ (a1 +b)(2am−1 +b)− (am−1 +b)(am +b) = (am−1 +b)(ma1 +b)− ((m−1)a1 +b)(am +b)
=⇒ (m−1)a1am − (m−2)a1am−1 −amam−1 = 0 (35)

Now since m is the least positive integer for which equation (33) holds, we can solve for am−1 inductively as in the formula for
the Case A array (this is our inductive hypothesis):

am−1 =
a1a2

(m−2)a1 − (m−3)a2
(36)

Substituting this into (35) we retrieve:

(m−1)a1am − (m−2)a1

[
a1a2

(m−2)a1 − (m−3)a2

]
−am

[
a1a2

(m−2)a1 − (m−3)a2

]
= 0 (37)

And finally, substituting the value of a2 from (34) we get:

(m−1)a1am − (m−2)a2
1[m−1]−ama1[m−1] = 0

=⇒ −a2
1(m−2)(m−1) = 0 (38)

=⇒ a1 = 0 (Since m > 2)

once again contradicting that the sequence is a first-order sequence.

We remark that proving Cases C and D are well-defined goes through in exactly the same way as Case A, even down to using
the same pre-lie relations. In place of equation (38) one arrives at

−a2
1
(m+1)(2m+1)(m−1)

2m−1
= 0

in the proof of Case C and

−a2
1(m+1)(m−1) = 0

in the proof of Case D.
Example 14. One special subcase of the Case A family has a nice combinatorial interpretation.

Consider rooted trees which are ladders with added leaves, that is if all leaves are removed the remaining tree is a ladder.
Weight such a tree t by λt defined by

λt =


1 if t = ,

(a+b)alea(t)−1bdepth(t)−1 if t is a ladder with added leaves, different from ,

0 otherwise,

where lea(t) is the number of leaves of t and depth(t) is the depth of t. Collecting all such trees with these weights into the sum
X = ∑ tn, then this sequence can be generated by

X = B+

(
1+bX
1−a

)
.

This can be seen by noting that the numerator inside B+ generates the ladder backbone and the 1− a denominator gives a
geometric series in a generating the additional leaves at the root; the other additional leaves being generated recursively with
the ladder backbone in the same way.

The associated Λ array for this example is

λi, j =

{
ai+b if j = 1,
b if j ≥ 2.

This can be seen by direct computation, see Lemma 5.9 of10 for details.
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C. Strong 2nd order and higher

Given the large number of examples of strong first-order sequences given in the last subsection, the results of this section may
come as a surprise. The main result of this section is the following:

Theorem 24 (Classification of Strong ℓth Order Sequences). For ℓ ≥ 2, the only family of strong ℓth order sequences is the
family of scaled corollas.

Note that by Remark 3 none of the strong ℓth order sequences for ℓ ≥ 2 can correspond to homogeneous generalized renor-
malization group equations since, by the same argument as for the corollas in the strong first order case, the j = 1 diagonal gives
t0 = 1/b and so requires b ̸= 0 but this gives the sequence b,0,0,0, . . . for j > 1 which is not of any order.

Proof. Let ℓ≥ 2 be given, and consider the pre-Lie array (λi, j)i, j≥1 given by λi, j = f j(i) where we define

f j(i) = a j,1iℓ+a j,2iℓ−1 + . . .+a j,ℓi+a j,ℓ+1

Consider an arbitrary (and fixed) k ≥ 2, and form the sequence of relations C = {PL(i,1,k) : i ∈ N}. Now we can ask ourselves
what an arbitrary member of this set looks like? We simply evaluate the pre-Lie relation of Theorem 12 (where we have moved
all terms to the left-hand side of the equation) at the appropriate indices and find that for arbitrary i:

PL(i,1,k) : f j(i) fk(i+ j)− fk( j) f j+k(i)− fk(i) f j(i+ k)+ f j(k) fk+ j(i) = 0 (39)

We remark that the collection C has infinitely many relations, but only 3(k+ 1) variables since k is fixed. Ultimately it is this
over-saturation of equations that will enable us to prove the result.

Evaluating the f j in (39) above with the indicated arguments yields:

(a1,1iℓ+a1,2iℓ−1 + . . .+a1,ℓi+a1,ℓ+1)(ak,1(i+1)ℓ+ak,2(i+1)ℓ−1 + . . .+ak,ℓ(i+1)+ak,ℓ+1)

− (ak,1 +ak,2 + . . .+ak,ℓ+ak,ℓ+1)(ak+1,1iℓ+ak+1,2iℓ−1 + . . .+ako+1,ℓi+ak+1,ℓ+1)

− (ak,1iℓ+ak,2iℓ−1 + . . .+ak,ℓi+ak,ℓ+1)(a1,1(k+ i)ℓ+a1,2(k+ i)ℓ−1 + . . .+a1,ℓ(k+ i)+ak,ℓ+1)

+(a1,1kℓ+a1,2kℓ−1 + . . .+a1,ℓk+a1,ℓ+1)(ak+1,1iℓ+ak+1,2iℓ−1 + . . .+ak+1,ℓi+ak+1,ℓ+1) = 0 (40)

Now the expression on the left hand side of (40) is a sum of products of polynomials in the variable i, and as a consequence is
also a polynomial in i. Let us examine what the highest-degree term of (40) looks like. The highest power of i appearing in (40)
will be 2ℓ, with the first term contributing a term of a1,1ak,1i2ℓ, and the third term contributing a term of −a1,1ak,1i2ℓ, so taken
together the coefficient of i2ℓ is zero; the second and fourth terms will only contribute to the highest power of the polynomial
when 2ℓ= ℓ—that is, when ℓ= 0 and (λi, j)i, j≥1 is 0th-order.

Hence we look instead at the next highest power of i, which is 2ℓ− 1. From the first term of (40), we obtain a factor of
(a1,1ak,1ℓ+a1,1ak,2 +a1,2ak,1)i2ℓ−1. From the third term of (40) we obtain a factor −(a1,1ak,1kℓ+a1,2ak,1 +a1,1ak,2)i2ℓ−1. Note
that the second and fourth term of (40) will contribute to the highest power of i only when 2ℓ−1 = ℓ—that is, when ℓ= 1 and
the sequence is consequently first order! Hence since ℓ≥ 2 we have that the coefficient of the highest power of i is equal to:

(a1,1ak,1ℓ+a1,1ak,2 +a1,2ak,1)i2ℓ−1 − (a1,1ak,1kℓ+a1,2ak,1 +a1,1ak,2)i2ℓ−1

which simplifies to:

a1,1ak,1ℓ(1− k) (41)

Now the power of this setup comes down to the fact that i is an index ranging over the positive integers. This means that—by
definition—the sequence of relations C is in fact a (2ℓ−1)th-order sequence in the variable i. But in turn, this means that taking
the (2ℓ−1)st consecutive differences of the sequence will be constant, and hence that taking the (2ℓ)th consecutive differences
of C will be equal to 0. Now taking the first difference will cause the i0 (that is, constant) terms to cancel, the second difference
will cause the i terms to cancel, and so on. Hence by taking the (2ℓ)th consecutive differences, every term up through the terms
containing i2ℓ−1 will cancel. This means that we are left with the equation:

Na1,1ak,1ℓ(1− k) = 0 (42)

for N a nonzero element of K. (More precisely, N =
ℓ

∑
j=0

(
ℓ

j

)
(i− j)ℓ. A standard combinatorial exercise can be used to show that

this is equal to ℓ!). If a1,1 = 0, it follows that the sequence (λi, j)i, j≥1 is not actually ℓth order. Moreover, we know that ℓ≥ 2 by
hypothesis, and k ̸= 1 (as otherwise the pre-Lie relations are a tautology). Hence the only solution is that ak,1 = 0 for all k ≥ 2.
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We now perform induction on the second index of the ak,m, taking as our base case the analysis above wherein m = 1. Suppose
that ak,t = 0 for all t from 1 up to m− 1, and consider the case of t = m. (We are making the assumption that m ≤ ℓ+ 1, as
otherwise ak,m = 0 already). Evaluating the f j in (39) with the correct values as we did before yields:

(a1,1iℓ+a1,2iℓ−1 + . . .+a1,ℓi+a1,ℓ+1)(ak,m(i+1)ℓ−m+1 +ak,m+1(i+1)ℓ−m + . . .+ak,ℓ(i+1)+ak,ℓ+1)

− (ak,m +ak,m+1 + . . .+ak,ℓ+ak,ℓ+1)(ak+1,miℓ−m+1 +ak+1,m+1iℓ−m + . . .+ak+1,ℓi+ak+1,ℓ+1)

− (ak,miℓ−m+1 +ak,m+1iℓ−m + . . .+ak,ℓi+ak,ℓ+1)(a1,1(k+ i)ℓ+a1,2(k+ i)ℓ−1 + . . .+a1,ℓ(k+ i)+ak,ℓ+1)

+(a1,1kℓ+a1,2kℓ−1 + . . .+a1,ℓk+a1,ℓ+1)(ak+1,miℓ−m+1 +ak+1,m+1iℓ−m + . . .+ak+1,ℓi+ak+1,ℓ+1) = 0 (43)

Now this time, the highest power of i appearing is 2ℓ−m + 1. However, we find that the first term contributes a term of
a1,1ak,mi2ℓ−m+1 and the third term contributes −a1,1ak,mi2ℓ−m+1. Exactly as before, we get that the second and fourth terms
contribute to the highest power of i only when 2ℓ−m+1 = ℓ−m+1; that is, exactly when ℓ = 0 and (λi, j)i, j≥1 is a 0th-order
array.

Hence we look at the second highest power of i, namely i2ℓ−m. From the first term of (43) we get a contribution of (a1,1ak,m(ℓ−
m+1)+a1,1ak,m+1 +a1,2ak,m)i2ℓ−m where we get (ℓ−m+1) from the binomial theorem. From the third term of (43), we get a
contribution of −(a1,1ak,mkℓ+a1,2ak,m+a1,1ak,m+1)i2ℓ−m. We note once again that the second and fourth terms of (43) contribute
only when 2ℓ−m = ℓ−m+1; that is, when ℓ= 1. Hence the i2ℓ−m term of (43) has a coefficient of

(a1,1ak,m(ℓ−m+1)+a1,1ak,m+1 +a1,2ak,m)− (a1,1ak,mkℓ+a1,2ak,m +a1,1ak,m+1)

which simplifies to:

a1,1ak,m(ℓ−m+1− kℓ)

We take the (2ℓ−m+1)th consecutive differences of the sequence C to get an equation:

Na1,1ak,m(ℓ−m+1− kℓ) = 0 (44)

for N a nonzero constant; see the footnote included in the argument for the base case above. As before, a1,1 ̸= 0, as otherwise
(λi, j)i, j≥1 is not of order ℓ. Now suppose that ℓ−m+ 1− kℓ = 0. This would mean in particular that ℓ = m− 1+ kℓ, but
since k ≥ 2, and ℓ ≥ 2, we must then have that m < 0. But this violates the inductive hypothesis. Hence we achieve that
ℓ−m+1−kℓ ̸= 0, and so the only possibility in equation (44) is that ak,m = 0. Since k ≥ 2 was chosen arbitrarily, it follows that
ak,m = 0 for all k ≥ 2.

This completes the proof.

VI. COMMENTS ON WEAK SEQUENCES

Perhaps the most interesting example of a weak sequence is the Connes-Moscovici Hopf algebra, see Examples 2 and 10. As
observed before the Connes-Moscovici generators are not a strong k-th order sequences for any k. However, the λn,1 sequence
is a second order sequence and setting σ(t) = 0 for t ̸= we can set all the other sequences to 0 and we see that the Connes-
Moscovici Hopf algebra is a weak second order sequence. Setting σ(t) = 0 for t ̸= is the same as taking the Feynman rules
φ(t) = L|t|/t!, the tree factorial Feynman rules of Section II A.

This is nice because it is an example which is in some sense naturally second order, which we do not see among the strong se-
quences. It emphasizes the difference between Connes-Moscovici and the Hopf subalgebras which come from Dyson-Schwinger
equations, all of which are strong 1st order or strong 0th order. The fact that Connes-Moscovici is second order, at least in this
weak sense, was part of the motivation for defining higher order renormalization group equations.

Unsurprisingly weak sequences are too wild for any useful characterization. As a further example let us consider one par-
ticular, but still quite intricate case. If we set all the λi,1 to 1 then we have a constant sequence in the leftmost diagonal, so
this will be weak 0th order using the tree factorial Feynman rules φ(t) = L|t|/t!. Even all such 0th order sequences are hard to
characterize. However, if we restrict the rightmost diagonal to have entries only in {0,1} then we are able to characterize the
resulting sequences as detailed below.

We now look for all sequences (λi, j)i, j≥1 of S eq such that :

1. For any i ≥ 1, λi,1 = 1.

2. For any j ≥ 1, λ1, j ∈ {0,1}.
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The set of these sequences is denoted by S eq0−1. If (λi, j)i, j≥1 is such a sequence, we put λ1, j = x j for any j ≥ 1. For any
j, x j ∈ {0,1} and x1 = 1. One of the reasons these sequences are of interest is that—by stipulating that the leftmost diagonal
(λi,1)i≥1 is all 1’s—the entire Λ-array is determined by a choice of the rightmost diagonal (λ1, j) j≥1 =: (x j) j≥1. By further
assuming that x j ∈ {0,1} for each j, we can completely classify which choices of (x j) j≥1 give rise to a valid element of Λ.
The following lemmas each prove a new structural characteristic of this sequence (x j) j≥1, culminating in the full classification,
Proposition 31.

Let us consider a sequence (λi, j)i, j≥1 ∈ S eq0−1.

Lemma 25. Let j,N ≥ 1 such that x j = . . .= x j+N−1 = 0 and x j+N = 1. For any p ∈ {0, . . . ,N},

λi, j+p = (−1)N−p
(

i−1
N − p

)
.

Proof. By the pre-Lie relation PL(i, j,1), for any i ≥ 1, λi, j −λi, j+1 = λi+1, j − x jλi, j+1, so:

λi+1, j = λi, j +(x j −1)λi, j+1. (45)

We proceed by induction on N − p. If N − p = 0, we proceed by induction on i. If i = 1, then λi, j+N = x j+N = 1. Otherwise, by
the induction hypothesis, (45) implies that:

λi, j+N = λi−1, j +0 = 1,

so the results holds for any i if p = N. If N − p ≥ 1, we obtain that for any i:

λi+1, j+p = λi, j+p − (−1)N−p−1
(

i−1
N − p−1

)
= λi, j+p +(−1)N−p

(
i−1

N − p−1

)
.

In this case as well we proceed by induction on i. If i = 1, then λ1, j+N−p = 0. Otherwise,

λi, j+p = λi−1, j+p +(−1)N−p
(

i−2
N − p−1

)
= (−1)N−p

((
i−2

N − p

)
+

(
i−2

N − p−1

))
= (−1)N−p

(
i−1

N − p

)
.

So the result hold for any i, j.

Lemma 26. Let us assume that there exists j,N ≥ 2 such that x j = . . .= x j+N−1 = 0 and x j+N = 1. Then x2 = x3 = 0.

Proof. By the pre-Lie relation PL(i, j,2), for any i:

(−1)N
(

i−1
N

)
λi+ j,2 − (−1)N−2

λ j,2

(
i−1
N −2

)
= (−1)N

λi,2

(
1+ i

N

)
− (−1)N+N−2

(
1
N

)(
i−1
N −2

)
,(

i−1
N

)
λi+ j,2 −λ j,2

(
i−1
N −2

)
=

(
1+ i

N

)
λi,2.

For i = N −1, we obtain λ j,2 =−λN−1,2. For i = N, we obtain λ j,2(N −1) = (N +1)λN,2. Finally:

λ j,2 =−N +1
N −1

λN,2.

If x2 = 1, by Lemma 25, for any i, λi,2 = 1: this is a contradiction. So x2 = 0. If x3 = 1, by Lemma 25, for any i, λi,2 = i−1 for
any i. This gives

1− j =−N +1
N −1

(1−N),

so j =−N, which is absurd. So x3 = 0.
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Lemma 27. Let us assume that x2 = x3 = 0. For any i ≥ 1, for any j ≥ 2, λi, j = 0.

Proof. We first prove that x j = 0 for any j. Let us assume that there exists N such that xN = 1. We take the smallest possible N.
By hypothesis, N ≥ 4.

Let us assume that N = 4. Then PL(1,2,3) gives 2x5 = 0, so x5 = 0. Moreover, PL(1,2,4) gives 2x6 − 6 = 0, so x6 = 3:
absurd, x3 ∈ {0,1}. So x4 = 0.

Let us assume that N = 5. Then PL(1,3,4) gives 5x7 = 0, so x7 = 0. Moreover, PL(2,2,4) gives −10 = 0, which is absurd.
So x5 = 0.

Let us assume that N = 6. Then PL(1,3,4) gives −2x7 = 0, so x7 = 0. Moreover, PL(2,3,4) gives 2x8 = 0, so x8 = 0. Finally,
PL(3,3,4) gives −2x9 +20 = 0, so x9 = 10: absurd, x9 ∈ {0,1}. So x6 = 0.

Let us assume that N ≥ 7. If N = 2k is odd, we put p = q = k+1. Then p,q ≥ 4 and:

p+q−3 = 2k−1 < N < 2k+1 = p+q−1,

If N = 2k+1 is odd, we put p = q = k+1. Then p,q ≥ 4 and:

p+q−3 = 2k−1 < N ≤ 2k+1 = p+q−1.

In both cases, p,q ≥ 4 and p+q−3 < N ≤ p+q−1. The pre-Lie relation PL(p,q,2) gives:

λp,qλp+q,2 −λq,2λp,q+2 = λp,2λp+2,q −λ2,qλp,q+2.

By Lemma 25, λp,2 = (−1)N−2
(

p−1
N −2

)
. As (N − 2)− (p− 1) > q− 4 ≥ 0, this is zero. Similarly, λq,2 = 0. Moreover,

λ2,q = (−1)N−q
(

1
N −q

)
. As N −q > p−3 ≥ 1, this is zero. We obtain:

λp,qλp+q,2 = 0.

By Lemma 25, λp,q = (−1)N−q
(

p
N −q

)
. As p−N + q ≥ 1, this is nonzero. Moreover, λp+q,2 = (−1)N−2

(
p+q−1

N −2

)
. As

(p+q−1)− (N −2) = p+q+1−N ≥ 2, this is nonzero. This is a contradiction, so for any j ≥ 2, x j = 0.

A direct induction on i using (45) proves that λi, j = 0 if j ≥ 2.

Therefore, the sequence (xi)i≥1 has the following form:

(1,1, . . . ,1,0,1, . . . ,1,0,1, . . .) or (1,1, . . . ,1,0,1, . . . ,1,0,1, . . . ,1,0,0, . . .).

We denote by J the set of the indices of the isolated 0 in the sequence (x j) j≥1 and by K the set of indices j such that for any
k ≥ j, xk = 0. By Lemma 25:

1. If j ∈ J, for any i ≥ 1, λi, j = 1− i.

2. If j ∈ K, for any i ≥ 1, λi, j = 0.

3. If j /∈ J∪K, for any i ≥ 1, λi, j = 1.

Lemma 28. 1. If j,k ∈ J and j ̸= k, then j+ k ∈ J.

2. If j ∈ J and k /∈ J∪K, then j+ k /∈ J∪K.

Proof. 1. For any i ≥ 1, by the pre-Lie relation P(i, j,k):

(1− i)(1− i− j)− (1− j)λi, j+k = (1− i)(1− i− k)− (1− k)λi, j+k.

Hence, ( j− k)λi, j+k = ( j− k)(1− i). As j ̸= k, λi, j+k = 1− i, so j+ k ∈ J.

2. For any i ≥ 1, by the pre-Lie relation P(i, j,k):

1− i−λi, j+k = 1− k− i− (1− k)λi, j+k,

so λi, j+k = 1: j+ k /∈ J∪K.
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Lemma 29. J = /0 or K = /0.

Proof. Let us assume that J and K are nonempty. Let us take j ∈ J and let k such that the smallest element of K is k+1. Then
k /∈ J∪K, and the pre-Lie relation PL(i, j,k) gives, for any i ≥ 1:

1− i = 1− i− k.

So k = 0, which is absurd. So J = /0 or K = /0.

Lemma 30. If |J| ≥ 2, then there exists m ≥ 2 such that J = mN∗.

Proof. Let m = min(J). For any m′ ∈ J, different from m, m+(m′−m) = m′ ∈ J; by Lemma 28, m′−m ∈ J. Inducing, for any
k ∈ N such that m′− km > 0, m′− km ∈ J. In particular, if the Euclidean division of m′ by m is m′ = qm+ r, then r = 0 or r ∈ J.
As r < m, if r > 0 this contradicts the definition of m, so r = 0. We proved that J ⊆ mN∗.

Let m′ ∈ J, different from m. There exists k > 1, such that m′ = km. We proved that m′− (k−2)m = 2m ∈ J. By Lemma 28,
m+2m = 3m ∈ J; an easy induction proves that lm ∈ J for any l ≥ 1. So J = mN∗.

These lemmas give the following result:

Proposition 31. The elements of S eq0−1 are the following:

• For any i, j ≥ 1, λi, j = 1.

• Case A(m): there exists m ≥ 2 such that λi, j =

{
1 if j < m,

0 otherwise.

• Case B(m): there exists m ≥ 2 such that λi, j =

{
1− i if m | j,
1 otherwise.

• Case C(m): there exists m ≥ 2 such that λi, j =

{
1− i if j = m,

1 otherwise.

In terms of the rightmost diagonal (x j) j≥1, the proposition says that (x j) j≥1 must be all 1’s, finitely many 1’s followed by an
infinite string of 0’s (case A(m)), finitely many 1’s followed by a 0 and repeated (Case B(m)), or a string of all 1’s with a single
0. See Figure 5.

Proposition 32. In the case B(m) or C(m), let us denote by an the coefficient of B+( n) in tn+1. The generating formal series of
these coefficients is:

G(X) = 1+ ∑
n≥1

anXn =
1+X

(1− (−X)m)
1
m
.

Consequently, for any n ≥ 0:

an =


Z(Sn,X1, . . . ,Xn)

∣∣∣∣∣
Xi=

(−1)i if m | i,

0 otherwise

if m | n,

an−1 if m | n+1,
0 otherwise.

where Z is the cycle index polynomial; see Section 5.2 of23.

Proof. For any i ≥ 1, j ≥ 0, we put

ai, j = λ (1, . . . ,1︸ ︷︷ ︸
j times

, i).

Then, for any i, j ≥ 1:

ai, j = a1, j−1λ j+1,i −
j

∑
k=1

ai+1, j−1λ1,i = a1, j−1λ j+1,i − jλ1,iai+1, j−1.

Hence:
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1
1 1

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

(a) The Λ-array corresponding to ladders.
1

1 1
1 1 0

1 1 0 0
1 1 0 0 0

1 1 0 0 0 0
1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

(b) A(3).
1

1 1
1 1 0

1 1 −1 1
1 1 −2 1 1

1 1 −3 1 1 0
1 1 −4 1 1 −1 1

1 1 −5 1 1 −2 1 1

(c) B(3).
1

1 1
1 1 0

1 1 −1 1
1 1 −2 1 1

1 1 −3 1 1 1
1 1 −4 1 1 1 1

1 1 −5 1 1 1 1 1

(d) C(3).

FIG. 5: The four cases of Proposition 31 when m = 3.

• If i < m, ai,0 = 1 and ai, j = a1, j−1 − jai+1, j−1 for any j ≥ 1.

• If i = m, ai,0 = 1 and ai, j =− ja1, j−1.

If i ≥ 1, we put:

Fi = ∑
j≥0

ai, j

j!
X j.

Then:

G = 1+
∞

∑
n=1

a1,n−1

n!
Xn = 1+

∫ X

0
F1(t)dt.

The preceding relations give:

• If i < m:

Fi = 1+
∞

∑
j=1

a1, j−1

j!
X j −

∞

∑
j=1

ai+1, j−1( j−1)!X j = G−XFi+1.
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• If i = m:

Fi =−
∞

∑
j=1

a1, j−1

( j−1)!
X j =−XF1.

A direct induction on i proves that for any i < m:

F1 =
1− (−X)i

1+X
G+(−X)iFi+1.

In particular, for i = m:

F1 =
1− (−X)m−1

1+X
G+(−X)mF1.

Hence, G is the unique solution of: (1− (−X)m)G′ =
1− (−X)m−1

1+X
G,

G(0) = 1.

This gives:

G =
1+X

(1− (−X)m)
1
m
.

Consequently:

ln(G) = ln(1+X)− 1
m

ln(1− (−X)m)

=
∞

∑
k=1

(−1)k+1

k
Xk +

∞

∑
k=1

(−1)mk

mk
Xmk

= ∑
k/∈mN

(−1)k+1

k
Xk.

On the other side, for any n ≥ 0:

Z(Sn,X1, . . . ,Xn) = ∑
i1+2i2+...+nin=n

1
1i1 . . .nin i1! . . . in!

X i1 . . .X in
n .

Hence:
∞

∑
n=0

Z(Sn,X) =
∞

∏
k=1

∞

∑
j=0

X j
i

i j j!

=
∞

∏
i=1

exp
(

Xi

i

)

= exp

(
∞

∑
i=1

Xi

i

)
.

Hence:

ln

(
∞

∑
n=0

Z(Sn,X)

)∣∣∣∣∣
Xi=

0 if m | i,

(−1)i+1X i otherwise

= ∑
i/∈mN

(−1)i+1

i
X i = ln(G).

Taking the exponential, we obtain that

G =
∞

∑
n=0

Z(Sn,X)

∣∣∣∣∣
Xi=

0 if m | i,

(−1)i+1X i otherwise.

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
28

75
2



36

Considering the coefficient of Xn gives:

an = Z(Sn,X1, . . . ,Xn)

∣∣∣∣∣
Xi=

0 if m | i,

(−1)i+1X i otherwise.

Moreover:

G = exp

(
∑

i/∈mN

(−1)i+1

i
X i

)

= exp

(
∑
i≥1

((−1)i+1

i
X i

)
exp

(
∑
m|i

(−1)i

i
X i

)

= (1+X) ∑
n≥0

Z(Sn,X1, . . . ,Xn)

∣∣∣∣∣
Xi=

(−1)mi if m | i,

0 otherwise.

Considering the coefficient of Xn, this gives the formula for an, with the observation that

Z(Sn,X1, . . . ,Xn)

∣∣∣∣∣
Xi=

(−1)mi if m | i,

0 otherwise

= 0 if n /∈ mN.
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