The operads of planar forests are Koszul

L. Foissy
Laboratoire de Mathématiques, Université de Reims Moulin de la Housse - BP 1039-51687 REIMS Cedex 2, France
e-mail : loic.foissy@univ-reims.fr

Abstract

We describe the Koszul dual of two quadratic operads on planar forests introduced to study the infinitesimal Hopf algebra of planar rooted trees and prove that these operads are Koszul.

KEYWORDS. Koszul quadratic operads, planar rooted trees.
AMS CLASSIFICATION. 05C05, 18D50.

Contents

1 Operads of planar forests 2
1.1 Presentation 2
1.2 Free algebras on these operads 3
2 The operad \mathbb{P}_{\backslash} is Koszul 3
2.1 Koszul dual of \mathbb{P} 3
2.2 Free $\mathbb{P}^{!}$-algebras 4
2.3 Homology of a \mathbb{P}_{\backslash}-algebra 6
2.4 Homology of free \mathbb{P}^{-}-algebras 7
3 The operad \mathbb{P}_{\nearrow} is Koszul 11
3.1 Koszul dual of \mathbb{P} / 11
3.2 Free $\mathbb{P}^{!}$-algebras 12
3.3 Homology of a \mathbb{P}_{\nearrow}-algebra 12
3.4 Homology of free \mathbb{P}_{\nearrow}-algebras 14

Introduction

The Hopf algebra of planar rooted trees, described in [4, 6], is a non-commutative version of the Hopf algebra of rooted tree introduced in [1, 7, 8, 9] in the context of Quantum Field Theories and Renormalisation. An infinitesimal version of this object is introduced in [3], and is related to two operads on planar forests in [2]. These two operads, denoted by \mathbb{P}_{\searrow} and \mathbb{P}_{\nearrow}, are presented in the following way:

1. \mathbb{P}_{\searrow} is generated by m and $\searrow \in \mathbb{P} \backslash(2)$, with relations:

$$
\left\{\begin{array}{l}
m \circ(\searrow, I)=\searrow \circ(I, m), \\
m \circ(m, I)=m \circ(I, m), \\
\searrow \circ(m, I)=\searrow \circ(I, \searrow) .
\end{array}\right.
$$

2. \mathbb{P}_{\nearrow} is generated by m and $\nearrow \in \mathbb{P}_{\nearrow}(2)$, with relations:

$$
\left\{\begin{array}{l}
m \circ(\nearrow, I)=\nearrow \circ(I, m) \\
m \circ(m, I)=m \circ(I, m) \\
\nearrow \circ(\nearrow, I)=\nearrow \circ(I, \nearrow)
\end{array}\right.
$$

The algebra of planar rooted trees is both the free \mathbb{P}_{\nearrow} - and $\mathbb{P}_{\backslash_{-}}$-algebra generated by $\boldsymbol{\bullet}$, with products \nearrow and \searrow given by certain graftings.

The operads \mathbb{P}_{\nearrow} and \mathbb{P}_{\backslash} are quadratic. Our aim in this note is to prove that they are both Koszul, in the sense of [5]. We describe their Koszul dual (it turns out that they are quotient of \mathbb{P}_{\searrow} and $\left.\mathbb{P}_{\nearrow}\right)$ and the associated homology of \mathbb{P}_{\nearrow} - or \mathbb{P}_{\searrow}-algebras. We compute these homologies for free objects and prove that they are concentrated in degree 0 . This proves that these operads are Koszul.

1 Operads of planar forests

1.1 Presentation

We work in this text with operads, whereas we worked in [2] with non- Σ-operads. In other terms, we replace the non- Σ-operads of [2] by their symmetrization [10].

Definition 1

1. \mathbb{P}_{\searrow} is generated, as an operad, by m and \searrow, with the relations:

$$
\left\{\begin{array}{l}
\searrow \circ(m, I)=\searrow \circ(I, \searrow), \\
\searrow \circ(I, m)=m \circ(\searrow, I), \\
m \circ(m, I)=m \circ(I, m) .
\end{array}\right.
$$

2. \mathbb{P}_{\nearrow} is generated, as an operad, by m and \nearrow, with the relations:

$$
\left\{\begin{aligned}
\nearrow \circ(\nearrow, I) & =\nearrow \circ(I, \nearrow), \\
\nearrow \circ(I, m) & =m \circ(\nearrow, I), \\
m \circ(m, I) & =m \circ(I, m)
\end{aligned}\right.
$$

Remarks.

1. Graphically, the relations defining \mathbb{P}_{\searrow} can be written in the following way:

2. We denote by $\tilde{\mathbb{P}}_{\backslash}$ the sub-non- Σ-operad of \mathbb{P}_{\backslash} generated by m and \searrow. Then \mathbb{P}_{\backslash} is the symmetrization of $\tilde{\mathbb{P}} \backslash$.
3. Graphically, the relations of $\mathbb{P}^{!}$can be written in the following way:

4. We denote by $\tilde{\mathbb{P}}_{\nearrow}$ the sub-non- Σ-operad of \mathbb{P}_{\nearrow} generated by m and \nearrow. Then \mathbb{P}_{\nearrow} is the symmetrization of $\tilde{\mathbb{P}}_{\nearrow}$.

Both of these non- Σ-operads admits a description in terms of planar forests [2]. In particular, the dimension of $\tilde{\mathbb{P}} \backslash(n)$ and $\tilde{\mathbb{P}} \nearrow(n)$ is given by the n-th Catalan number [11, 12]. Multiplying by a factorial, for all $n \geq 1$:

$$
\operatorname{dim} \mathbb{P}_{\searrow}(n)=\operatorname{dim} \mathbb{P}_{\nearrow}(n)=\frac{(2 n)!}{(n+1)!} .
$$

In particular, $\operatorname{dim} \mathbb{P}_{\backslash}(2)=\operatorname{dim} \mathbb{P}_{\nearrow}(2)=4$ and $\operatorname{dim} \mathbb{P}_{\backslash}(3)=\operatorname{dim} \mathbb{P}_{\nearrow}(3)=30$.

1.2 Free algebras on these operads

We described in [2] the free $\mathbb{P}_{\^{\prime}}$ - and \mathbb{P}_{\nearrow}-algebras on one generators, using planar rooted trees. We here generalise (without proof) these results. Let \mathcal{D} be any set. We denote by $\mathbf{T}^{\mathcal{D}}$ the set of planar trees decorated by \mathcal{D} and by $\mathbf{F}^{\mathcal{D}}$ the set of non-empty planar forests decorated by \mathcal{D}.
 concatenation of forests. For all $F, G \in \mathbf{F}^{\mathcal{D}}$, the product $F \searrow G$ is obtained by grafting F on the root of G, on the left.
2. The free $\mathbb{P} \nearrow$-algebra generated by \mathcal{D} has the set $\mathbf{F}^{\mathcal{D}}$ as a basis. The product m is given by concatenation of forests. For all $F, G \in \mathbf{F}^{\mathcal{D}}$, the product $F \nearrow G$ is obtained by grafting F on the left leaf of G.

In both cases, we identified $d \in \mathcal{D}$ with $\cdot{ }_{d} \in \mathbf{F}^{\mathcal{D}}$. Moreover, for all $F \in \mathbf{F}^{\mathcal{D}}, F \searrow \cdot{ }_{d}=F \nearrow \cdot{ }_{d}$ is the tree obtained by grafting the trees of F on a common root decorated by d : this tree will be denoted by $B_{d}(F)$.

2 The operad \mathbb{P}_{\backslash} is Koszul

2.1 Koszul dual of \mathbb{P}_{\backslash}

(See [5, 10] for the notion of Koszul duality for quadratic operads). We denote by \mathbb{P} ! the Koszul dual of \mathbb{P}.

Theorem 2 The operad $\mathbb{P} \backslash$ is generated by m and $\searrow \in \mathbb{P} \backslash(2)$, with the relations:

$$
\left\{\begin{array}{l}
\searrow \circ(m, I)=\searrow \circ(I, \searrow), \\
m \circ(m, I)=m \circ(I, m), \\
m \circ(\searrow, I)=\searrow \circ(I, m), \\
\searrow \circ(\searrow, I)=0, \\
m \circ(I, \searrow)=0 .
\end{array}\right.
$$

Proof. Let $\mathbb{P}(E)$ be the operad freely generated by the S_{2}-module freely generated by m and \searrow. Then \mathbb{P}_{\searrow} can be written $\mathbb{P}_{\searrow}=\mathbb{P}(E) /(R)$, where R is a sub- S_{3}-module of $\mathbb{P}(E)(3)$. As $\operatorname{dim}(\mathbb{P}(E))=48$ and $\operatorname{dim}(\mathbb{P} \backslash(3))=30, \operatorname{dim}(R)=18$. So $\operatorname{dim}\left(R^{\perp}\right)=48-18=30$. We then verify that the given relations for $\mathbb{P}^{!}$are indeed in R^{\perp}, that each of them generates a free S_{3}-module, which are in direct sum. So these relations generate entirely $\mathbb{P}(E)(3)$.

Remarks.

1. So $\mathbb{P}^{!}$is a quotient of $\left.\mathbb{P}\right\rangle$.
2. Moreover, $\mathbb{P}^{!}$is the symmetrisation of the non- Σ-operad $\tilde{\mathbb{P}}^{!}$generated by m and \searrow and the relations:

$$
\left\{\begin{aligned}
\searrow \circ(m, I) & =\searrow \circ(I, \searrow) \\
m \circ(m, I) & =m \circ(I, m) \\
m \circ(\searrow, I) & =\searrow \circ(I, m) \\
\searrow \circ(\searrow, I) & =0 \\
m \circ(I, \searrow) & =0
\end{aligned}\right.
$$

This is a general fact: the Koszul dual of the symmetrisation of a quadratic non- Σ operad is itself the symmetrisation of a certain quadratic non- Σ-operad.
3. Graphically, the relations defining $\mathbb{P}^{!}$can be written in the following way:

2.2 Free $\mathbb{P}^{!}$-algebras

Let V be finite-dimensional vector space. We put:

$$
\left\{\begin{aligned}
T_{\searrow}(V)(n) & =\bigoplus_{k=1}^{n} V^{\otimes n} \text { for all } n \geq 1 \\
T_{\searrow}(V) & =\bigoplus_{n=1}^{\infty} T \searrow(V)(n)
\end{aligned}\right.
$$

In order to distinguish the different copies of $V^{\otimes n}$, we put:

$$
T(V)(n)=\bigoplus_{k=1}^{n} \underbrace{(A \otimes \ldots \otimes A \otimes \dot{A} \otimes A \otimes \ldots \otimes A)}_{\text {the } k \text {-th copy of } A \text { is pointed. }}
$$

The elements of $A \otimes \ldots \otimes A \otimes \dot{A} \otimes A \otimes \ldots \otimes A$ will be denoted by $v_{1} \otimes \ldots \otimes v_{k-1} \otimes \dot{v}_{k} \otimes v_{k+1} \otimes \ldots \otimes v_{n}$. We define m and \searrow over $T \searrow(V)$ in the following way: for $v=v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m}$ and $w=w_{1} \otimes \ldots \otimes \dot{w}_{l} \otimes \ldots \otimes w_{n}$,

$$
\begin{aligned}
v w & =\left\{\begin{array}{l}
0 \text { if } l \neq 1, \\
v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m} \otimes w_{1} \otimes \ldots \otimes w_{n} \text { if } l=1
\end{array}\right. \\
v \searrow w & =\left\{\begin{array}{l}
0 \text { if } k \neq 1, \\
v_{1} \otimes \ldots \otimes v_{m} \otimes w_{1} \otimes \ldots \otimes \dot{w}_{l} \otimes \ldots \otimes w_{n} \text { if } k=1
\end{array}\right.
\end{aligned}
$$

Lemma $3 T_{\searrow}(V)$ is a $\mathbb{P}_{\searrow}^{!}$-algebra generated by V.
Proof. Let us first show that the relations of the $\mathbb{P}^{!}$-algebras are satisfied. Let $u=$ $u_{1} \otimes \ldots \otimes \dot{u}_{j} \otimes \ldots \otimes u_{m}, v=v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{n}$ and $w=w_{1} \otimes \ldots \otimes \dot{w}_{l} \otimes \ldots \otimes w_{p}$.

$$
\begin{aligned}
(u v) \searrow w & =0 \text { if } j \neq 1 \text { or } k \neq 1, \\
& =u_{1} \otimes \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes \dot{w}_{l} \otimes \ldots \otimes w_{p} \text { if } j=k=1, \\
u \searrow(v \searrow w) & =0 \text { if } j \neq 1 \text { or } k \neq 1,
\end{aligned}
$$

$$
\begin{aligned}
& =u_{1} \otimes \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes \dot{w}_{l} \otimes \ldots \otimes w_{p} \text { if } j=k=1, \\
& (u v) w=0 \text { if } k \neq 1 \text { or } l \neq 1 \text {, } \\
& =u_{1} \otimes \ldots \otimes \dot{u}_{j} \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{p} \text { if } k=l=1, \\
& u(v w)=0 \text { if } k \neq 1 \text { or } l \neq 1 \text {, } \\
& =u_{1} \otimes \ldots \otimes \dot{u}_{j} \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{p} \text { if } k=l=1, \\
& (u \searrow v) w=0 \text { if } j \neq 1 \text { or } l \neq 1 \text {, } \\
& =u_{1} \otimes \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes \dot{v}_{k} \ldots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{p} \text { if } j=l=1, \\
& u \searrow(v w)=0 \text { if } j \neq 1 \text { or } l \neq 1 \text {, } \\
& =u_{1} \otimes \ldots \otimes u_{m} \otimes v_{1} \otimes \ldots \otimes \dot{v}_{k} \ldots \otimes v_{n} \otimes w_{1} \otimes \ldots \otimes w_{p} \text { if } j=l=1, \\
& (u \searrow v) \searrow w=0, \\
& u(v \searrow w)=0 .
\end{aligned}
$$

So $(T \searrow(V), m, \searrow)$ is a $\mathbb{P}_{\searrow}^{!}$-algebra. Moreover, for all $v_{1}, \ldots, v_{n} \in V$:

$$
v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{n}=\left(\dot{v}_{1} \ldots \dot{v}_{k-1}\right) \searrow\left(\dot{v}_{k} \ldots \dot{v}_{n}\right)
$$

Hence, $T_{\searrow}(V)$ is generated by V.

The $\mathbb{P}^{!}$-algebra $T \searrow(V)$ is also graded by putting V in degree 1 . It is then a quotient of the free $\mathbb{P}^{!}$-algebra generated by V, which is:

$$
\bigoplus_{n=0}^{\infty} \tilde{\mathbb{P}}^{!}(n) \otimes V^{\otimes n}
$$

So, for all $n \in \mathbb{N}, \operatorname{dim}\left(\tilde{\mathbb{P}}^{!}(n) \otimes V^{\otimes n}\right) \geq \operatorname{dim}(T \searrow(V)(n))$, so $\operatorname{dim}\left(\tilde{\mathbb{P}}^{!}(n)\right) \geq n$ and $\operatorname{dim}\left(\mathbb{P}^{!}(n)\right) \geq$ $n n$!.

Lemma 4 For all $n \in \mathbb{N}$, $\operatorname{dim}\left(\mathbb{P}_{\bigvee}^{!}(n)\right) \leq n n!$.
Proof. $\mathbb{P}^{!}(n)$ is linearly generated by the binary trees with n indexed leaves, whose internal vertices are decorated by m and \searrow. By the four first relations of $\mathbb{P}_{\searrow}^{!}$, we obtain that $\mathbb{P}^{!}(n)$ is generated by the trees of the following form:

with $\sigma \in S_{n}, a_{1}, \ldots a_{n-1} \in\{m, \searrow\}$. With the last relation, we deduce that $\mathbb{P}^{!}(n)$ is generated by the trees of the following form:

where $\sigma \in S_{n}, 1 \leq i \leq n$. Hence, $\operatorname{dim}\left(\mathbb{P}_{\searrow}!(n)\right) \leq n n!$.
As a consequence:

Theorem 5 Let $n \geq 1$.

1. $\operatorname{dim}\left(\mathbb{P}^{!}(n)\right)=n n!$.
2. $\mathbb{P}^{!}(n)$ is freely generated, as a S_{n}-module, by the following trees:

where $1 \leq i \leq n$.
3. $T \searrow(V)$ is the free $\mathbb{P}_{\searrow}^{!}$-algebra generated by V.

2.3 Homology of a \mathbb{P}_{\backslash}-algebra

Let us now describe the cofree \mathbb{P}_{\searrow}-algebra cogenerated by V. By duality, it is equal to $T_{\searrow}(V)$ as a vector space, with coproducts given in the following way: for $v=v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m}$,

$$
\begin{aligned}
\Delta(v) & =\sum_{i=k}^{m-1}\left(v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{i}\right) \otimes\left(\dot{v}_{i+1} \otimes \ldots \otimes v_{m}\right), \\
\Delta_{\searrow}(v) & =\sum_{i=1}^{k-1}\left(\dot{v}_{1} \otimes \ldots \otimes v_{i}\right) \otimes\left(v_{i+1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m}\right) .
\end{aligned}
$$

Let A be a \mathbb{P}_{\searrow}-algebra. The homology complex of A is given by the shifted cofree coalgebra $T \searrow(V)[-1]$, with differential $d: T \searrow(V)(n) \longrightarrow T \searrow(V)(n-1)$, uniquely determined by the following conditions:

1. for all $a, b \in A, d(\dot{a} \otimes b)=a b$.
2. for all $a, b \in A, d(a \otimes \dot{b})=a \searrow b$.
3. Let $\theta: T \searrow(A) \longrightarrow T \searrow(A)$ be the following application:

$$
\theta:\left\{\begin{array}{rll}
T \searrow(A) & \longrightarrow T(A) \\
x & \longrightarrow(-1)^{\text {degree }(x)} x \text { for all homogeneous } x .
\end{array}\right.
$$

Then d is a θ-coderivation: for all $x \in T \searrow(A)$,

$$
\begin{aligned}
\Delta(d(x)) & =(d \otimes I d+\theta \otimes I d) \circ \Delta(x) \\
\Delta_{\searrow}(d(x)) & =(d \otimes I d+\theta \otimes I d) \circ \Delta_{\searrow}(x) .
\end{aligned}
$$

So, d is the application which sends the element $v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m}$ to:

$$
\begin{aligned}
& \sum_{i=1}^{k-2}(-1)^{i-1} v_{1} \otimes \ldots \otimes v_{i} v_{i+1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m} \\
& +(-1)^{k-2} v_{1} \otimes \ldots \otimes \overbrace{v_{k-1}} \underbrace{}_{v_{k}} \otimes \ldots \otimes v_{m} \\
& +(-1)^{k-1} v_{1} \otimes \ldots \otimes \overbrace{v_{k} v_{k+1}} \otimes \ldots \otimes v_{m} \\
& +\sum_{i=k+1}^{n-1}(-1)^{i-1} v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{i} v_{i+1} \otimes \ldots \otimes v_{m} .
\end{aligned}
$$

The homology of this complex will be denoted by $H_{*}^{\searrow}(A)$. More clearly, for all $n \in \mathbb{N}$:

$$
H_{n}^{\searrow}(A)=\frac{\operatorname{Ker}\left(d_{\mid T \searrow(A)(n+1)}\right)}{\operatorname{Im}\left(d_{\mid T \backslash(A)(n+2)}\right)}
$$

Examples. Let $v_{1}, v_{2}, v_{3} \in A$.

$$
\left\{\begin{aligned}
d\left(v_{1}\right) & =0, \\
d\left(\dot{v}_{1} \otimes v_{2}\right) & =v_{1} v_{2} \\
d\left(v_{1} \otimes \dot{v}_{2}\right) & =v_{1} \searrow v_{2} \\
d\left(\dot{v}_{1} \otimes v_{2} \otimes v_{3}\right) & =\overbrace{v_{1} v_{2}} \otimes v_{3}-\dot{v_{1}} \otimes v_{2} v_{3} \\
d\left(v_{1} \otimes \dot{\left.v_{2} \otimes v_{3}\right)}\right. & =\overbrace{v_{1} \searrow v_{2}} \otimes v_{3}-v_{1} \otimes \overbrace{v_{2} v_{3}} \\
d\left(v_{1} \otimes v_{2} \otimes \dot{v}_{3}\right) & =v_{1} v_{2} \otimes \dot{v_{3}}-v_{1} \otimes \overbrace{v_{2} \searrow v_{3}}
\end{aligned}\right.
$$

So:

$$
\left\{\begin{array}{l}
d^{2}\left(\dot{\left.v_{1} \otimes v_{2} \otimes v_{3}\right)}=\left\{\left(v_{1} v_{2}\right) v_{3}-v_{1}\left(v_{2} v_{3}\right)\right.\right. \\
d^{2}\left(v_{1} \otimes \dot{v_{2}} \otimes v_{3}\right)=\left(v_{1} \searrow v_{2}\right) v_{3}-v_{1} \searrow\left(v_{2} v_{3}\right) \\
d^{2}\left(v_{1} \otimes v_{2} \otimes \dot{v_{3}}\right)=\left(v_{1} v_{2}\right) \searrow v_{3}-v_{1} \searrow\left(v_{2} \searrow v_{3}\right)
\end{array}\right.
$$

So the nullity of d^{2} on $T \searrow(A)(3)$ is equivalent to the three relations defining \mathbb{P}_{\searrow}-algebras (this is a general fact [5]). In particular:

$$
H_{0}^{\searrow}(A)=\frac{A}{A \cdot A+A \searrow A}
$$

2.4 Homology of free \mathbb{P}_{\searrow}-algebras

The aim of this paragraph is to prove the following result:
Theorem 6 let $N \geq 1$ and let A be the free \mathbb{P}_{\searrow}-algebra generated by D elements. Then $H_{0}^{\searrow}(A)$ is D-dimensional; if $n \geq 1, H_{n}^{\searrow}(A)=(0)$.

Proof. Preliminaries. We put, for all $k, n \in \mathbb{N}^{*}$:

$$
\left\{\begin{aligned}
C_{n} & =T \searrow(A)(n) \\
C_{n}^{k} & =\underbrace{A \otimes \ldots \otimes \dot{A} \otimes \ldots \otimes A}_{A \text { in position } k} \subseteq C_{n} \text { if } k \leq n \\
C_{n}^{\leq k} & =\bigoplus_{i \leq k, n} C_{n}^{i} \subseteq C_{n}
\end{aligned}\right.
$$

For all $k \in \mathbb{N}^{*}, C_{*}^{\leq k}$ is a subcomplex of C_{*}. In particular, $C_{*}^{\leq 1}$ is isomorphic to the complex defined by $C_{n}^{\prime}=A^{\otimes n}$, with a differential defined by:

$$
d^{\prime}:\left\{\begin{aligned}
A^{\otimes n} & \longrightarrow A^{\otimes(n-1)} \\
v_{1} \otimes \ldots \otimes v_{n} & \longrightarrow \sum_{i=1}^{n-1}(-1)^{i-1} v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i} v_{i+1} \otimes v_{i+2} \otimes \ldots \otimes v_{n} .
\end{aligned}\right.
$$

The homology of C_{*}^{\prime} is then the shifted Hochschild homology of A. As A is a free (non unitary) associative algebra, this homology is concentrated in degree 1. So, $\operatorname{Ker}\left(d_{\mid C_{n}^{\leq 1}}\right) \subseteq \operatorname{Im}(d)$ if $n \geq 2$.

First step. Let us fix $n \geq 2$ and let us show that $\operatorname{Ker}\left(d_{\mid C_{n}^{\leq k}}\right) \subseteq \operatorname{Im}(d)$ for all $1 \leq k \leq n-1$ by induction on k. For $k=1$, this is already done. Let us assume that $2 \leq k<n$ and $\operatorname{Ker}\left(d_{\mid C_{n}^{\leq k-1}}\right) \subseteq \operatorname{Im}(d)$. Let $x=\sum_{i=1}^{k} x_{i} \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq k}}\right)$, with $x_{i} \in C_{n}^{i}$. If $x_{k}=0$, then $x \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq k-1}}\right)$ by the induction hypothesis. Otherwise, we put:

$$
x_{k}=\sum v_{1} \otimes \ldots \otimes v_{k} \otimes \ldots \otimes v_{n}
$$

We project $d(x)$ over C_{n-1}^{k}. we obtain:

$$
\begin{aligned}
0= & \sum_{i=1}^{k-1} \pi_{k}\left(d\left(x_{i}\right)\right)+\sum \sum_{i=1}^{k-2}(-1)^{i-1} \pi_{k}\left(v_{1} \otimes \ldots \otimes v_{i-1} \otimes v_{i} v_{i+1} \otimes v_{i+2} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{n}\right) \\
& +\sum(-1)^{k-2} \pi_{k}(v_{1} \otimes \ldots \otimes v_{k-2} \otimes \overbrace{v_{k-1}} \underbrace{}_{v_{k}} \otimes v_{k+1} \otimes \ldots \otimes v_{n}) \\
& +\sum(-1)^{k-1} \pi_{k}(v_{1} \otimes \ldots \otimes v_{k-1} \otimes \overbrace{v_{k} v_{k+1}} \otimes v_{k+2} \otimes \ldots \otimes v_{n}) \\
& +\sum \sum_{i=k+1}^{n-1}(-1)^{i-1} \pi_{k}\left(v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{i-1} \otimes v_{i} v_{i+1} \otimes v_{i+2} \otimes \ldots \otimes v_{n}\right) \\
= & 0+0+0+\sum(-1)^{k-1} v_{1} \otimes \ldots \otimes \otimes v_{k-1} \otimes \overbrace{v_{k} v_{k+1}} \otimes v_{k+2} \otimes \ldots \otimes v_{n} \\
& +\sum \sum_{i=k+1}^{n-1}(-1)^{i-1} v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{i-1} \otimes v_{i} v_{i+1} \otimes v_{i+2} \otimes \ldots \otimes v_{n} \\
= & (-1)^{k-1} \sum v_{1} \otimes \ldots \otimes v_{k-1} \otimes d^{\prime}\left(v_{k} \otimes \ldots \otimes v_{n}\right) .
\end{aligned}
$$

Hence, we can suppose that $d^{\prime}\left(v_{k} \otimes \ldots \otimes v_{n}\right)=0$. As $n-k+1 \geq 2$ and the complex C_{*}^{\prime} is exact in degree $n-k+1 \geq 2$, there exists $\sum w_{k} \otimes \ldots \otimes w_{n+1} \in A^{\otimes(n-k+2)}$, such that:

$$
d^{\prime}\left(\sum w_{k} \otimes \ldots \otimes w_{n+1}\right)=v_{k} \otimes \ldots \otimes v_{n}
$$

We put $w=\sum v_{1} \otimes \ldots \otimes v_{k-1} \otimes\left(\sum \dot{w}_{k} \otimes \ldots \otimes w_{n+1}\right)$. Then $d(w)=x_{k}+C_{n}^{k-1}$, so $x-d(w) \in C_{n}^{k-1}$. As $\operatorname{Im}(d) \subseteq \operatorname{Ker}(d), x-d(w) \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq k-1}}\right) \subseteq \operatorname{Im}(d)$ by the induction hypothesis. So, $x \in \operatorname{Im}(d)$.

Second step. Let us show that $\operatorname{Ker}\left(d_{\mid C_{n}^{\leq n}}\right) \subseteq \operatorname{Im}(d)$ if $n \geq 3$. Let $x \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq n}}\right)$. As before, we put $x=\sum_{i=1}^{n} x_{i}$, with $x_{i} \in C_{n}^{i}$ and:

$$
x_{n}=\sum_{i} v_{1}^{i} \otimes \ldots \otimes \dot{v_{k}^{i}} \otimes \ldots \otimes v_{n}^{i}
$$

We can assume that the v_{j}^{i} 's are homogeneous. Let us fix an integer N, greater than the degree of x_{n} and an integer M, smaller than $\max _{i}\left\{\right.$ weight $\left.\left(v_{n}^{i}\right)\right\}$. Let us show by decreasing induction the following property: For all $x \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq n}}\right)$ of weight $\leq N$ and such that $\max _{i}\left\{\right.$ weight $\left.\left(v_{n}^{i}\right)\right\} \geq M$, then $x \in \operatorname{Im}(d)$. If $M>N$, such an x is zero and the result is trivial. Let us assume the property at rank $M+1$ and let us prove it at rank M. Let A_{M} be the homogeneous component (for the weight of forests) of degree M of A. We project $d(x)$ over $A \otimes \ldots \otimes \dot{A_{M}}$. Then:

$$
0=\varpi_{M}(d(x))=\sum_{i, \text { weight }\left(v_{n}^{i}\right)=M} d^{\prime}\left(v_{1}^{i} \otimes \ldots \otimes v_{n-1}^{i}\right) \otimes \dot{v_{n}^{i}} .
$$

Hence, we can suppose that, for all i such that $\operatorname{weight}\left(v_{n}^{i}\right)=M, d^{\prime}\left(v_{1}^{i} \otimes \ldots \otimes v_{n-1}^{i}\right)=0$. As $n \geq 3$ and C_{*}^{\prime} is exact at $n-1 \geq 2$, there exists $\sum_{j} w_{1}^{i, j} \otimes \ldots \otimes w_{n}^{i, j} \in A^{\otimes n}$ such that:

$$
d^{\prime}\left(\sum_{j} w_{1}^{i, j} \otimes \ldots \otimes w_{n}^{i, j}\right)=v_{1}^{i} \otimes \ldots \otimes v_{n-1}^{i} .
$$

As d^{\prime} is homogeneous for the weight, the weight of this element can be supposed smallest than the weight of $v_{1}^{i} \otimes \ldots \otimes v_{n-1}^{i}$. We then put $w=\sum_{i, \operatorname{poids}\left(v_{n}^{i}\right)=M}\left(\sum_{j} w_{1}^{i, j} \otimes \ldots \otimes w_{n}^{i, j}\right) \otimes \dot{v_{n}^{i}}$. So $x-d(w)$ is in $x \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq n}}\right)$, with weight $\leq N$, and satisfies the property on the v_{n}^{i}, sfor $M+1$. By induction hypothesis, $x-d(w) \in \operatorname{Im}(d)$, so $x \in \operatorname{Im}(d)$.

Hence, if $n \geq 3, \operatorname{Ker}\left(d_{\mid C_{n}^{\leq n}}\right) \subseteq \operatorname{Im}(d)$. As $C_{n}^{\leq n}=C_{n}$, for all $n \geq 3, d\left(C_{n+1}\right) \subseteq \operatorname{Ker}\left(d_{\mid C_{n}}\right) \subseteq$ $d\left(C_{n+1}\right)$. Consequently, if $n \geq 2, H_{n}^{\searrow}(A)=(0)$.

Third step. We now compute $H_{1}^{\searrow}(A)$. We take an element $x \in C_{2}$ and show that it belongs to $\operatorname{Im}(d)$. This x can be written under the form:

$$
x=\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} a_{F, G} F \otimes \dot{G}-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} b_{F, G} \dot{F} \otimes G .
$$

So:

$$
d(x)=\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} a_{F, G} F \searrow G-\sum_{F, G \in \mathbf{F}-\{1\}} b_{F, G} F G .
$$

Hence, the following assertions are equivalent:

1. $d(x)=0$.
2. For all $H \in \mathbf{F}^{\mathcal{D}}-\{1\}, \sum_{F \backslash G=H} a_{F, G}=\sum_{F G=H} b_{F, G}$.

First case. For all $F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}, a_{F, G}=0$, that is to say $x \in \dot{A} \otimes A$. So $d(x)=d^{\prime}\left(x^{\prime}\right)$. As C_{*}^{\prime} is exact in degree 2 , there exists $v_{1} \otimes v_{2} \otimes v_{3} \in A^{\otimes 3}$ such that $d^{\prime}\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=\sum_{F, G} b_{F, G} F \otimes G$. Consequently, $d\left(\dot{v}_{1} \otimes v_{2} \otimes v_{3}\right)=\sum_{F, G} b_{F, G} \dot{F} \otimes G=x$.

Second case. $x=F_{1} \otimes \dot{F}_{2}-\dot{G}_{1} \otimes G_{2}, F_{1}, F_{2}, G_{1}, G_{2} \in \mathbf{F}^{\mathcal{D}}$, such that $F_{1} \searrow F_{2}=G_{1} G_{2}=$ H. We put $H=t_{1} \ldots t_{n}$ and $t_{1}=B_{d}\left(s_{1} \ldots s_{m}\right), t_{1}, \ldots, t_{n}, s_{1}, \ldots, s_{m} \in \mathbf{T}^{\mathcal{D}}$. There exists
$i \in\{1, \ldots, n-1\}$ such that $G_{1}=t_{1} \ldots t_{i}$ and $G_{2}=t_{i+1} \ldots t_{n}$; there exists $j \in\{1, \ldots, m-1\}$ such that $F_{1}=s_{1} \ldots s_{j}$ and $F_{2}=B_{d}\left(s_{j+1} \ldots s_{m}\right) t_{2} \ldots t_{n}$. Then:

$$
\begin{aligned}
& d(s_{1} \ldots s_{j} \otimes \overbrace{B_{d}\left(s_{j+1} \ldots s_{m}\right) t_{2} \ldots t_{i}}^{i} \otimes t_{i+1} \ldots t_{n}) \\
= & \overbrace{\left(s_{1} \ldots s_{j}\right) \searrow B_{d}\left(s_{j+1} \ldots s_{m}\right) t_{2} \ldots t_{i}} \otimes t_{i+1} \ldots t_{n} \\
& -s_{1} \ldots s_{j} \otimes \overbrace{B_{d}\left(s_{j+1} \ldots s_{m}\right) t_{2} \ldots t_{i} t_{i+1} \ldots t_{n}} \\
= & \dot{G}_{1} \otimes G_{2}-F_{1} \otimes \dot{F}_{2} .
\end{aligned}
$$

So, $x \in \operatorname{Im}(d)$.

Third case. We suppose now the following condition:

$$
\left(a_{F, G} \neq 0\right) \Longrightarrow\left(G \notin \mathbf{T}^{\mathcal{D}}\right) .
$$

So, x can be written:

$$
x=\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, t \in \mathbf{T}^{\mathcal{D}}} a_{F, t G} F \otimes \overbrace{t G}-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}} b_{F, G} \dot{F} \otimes G .
$$

By the second case, $F \otimes \overbrace{t G}^{i}-\overbrace{F \searrow t} \otimes G \in \operatorname{Im}(d) \subseteq \operatorname{Ker}(d)$. So the following element belongs to $\operatorname{Ker}(d)$:

$$
\begin{aligned}
& x-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, t \in \mathbf{T}^{\mathcal{D}}} a_{F, t G}(F \otimes \overbrace{t G}-\overbrace{F \searrow t} \otimes G) \\
= & -\sum_{F, G \in \mathbf{F}^{\mathcal{D}}} b_{F, G} \dot{F} \otimes G+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, t \in \mathbf{T}^{\mathcal{D}}} a_{F, t G} \overbrace{F \searrow t} \otimes G .
\end{aligned}
$$

By the first case, this element belongs to $\operatorname{Im}(d)$, so $x \in \operatorname{Im}(d)$.
Fourth case. We suppose now the following condition:

$$
\left(a_{F, G} \neq 0\right) \Longrightarrow\left(G \notin \mathbf{T}^{\mathcal{D}} \text { ou } G=\cdot_{d}, d \in \mathcal{D}\right)
$$

Let $H=B_{d}^{+}\left(t_{1} \ldots t_{n}\right) \in \mathbf{T}^{\mathcal{D}}$, different from a single root. Then:

$$
0=\sum_{F \backslash G=H} a_{F, G}-\sum_{F G=H} b_{F, G}=\sum_{i=1}^{n} a_{t_{1} \ldots t_{i}, B_{d}\left(t_{i+1} \ldots t_{n}\right)}-0=a_{t_{1} \ldots t_{n}, \bullet d}+0=a_{F, \bullet d}
$$

Consequently, for all $F \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}, a_{F, \cdot d}=0$. By the third case, $x \in \operatorname{Im}(d)$.
General case. The following element belongs to $\operatorname{Ker}(d)$:

$$
\begin{aligned}
& x^{\prime}=x+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} d\left(F \otimes G \otimes \cdot{ }_{d}\right) \\
& =x+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F G \otimes \cdot{ }_{d}-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F \otimes \overbrace{G \searrow \cdot d} \\
& \left.=x+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F G \otimes \cdot{ }_{d}-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F \otimes B_{d} \dot{(} G\right) \\
& =\sum_{F \in \mathbf{F}^{\mathcal{D}}, G \in \mathbf{F}^{\mathcal{D}}-\mathbf{T}^{\mathcal{D}}} a_{F, G} F \otimes \dot{G}+\sum_{F \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, G} F \otimes \cdot{ }_{d} \\
& -\sum_{F, G \in \mathbf{F}^{\mathcal{D}}} b_{F, G} \dot{F} \otimes G+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F G \otimes \dot{{ }^{d}} .
\end{aligned}
$$

So x^{\prime} satisfies the condition of the fourth case, so $x^{\prime} \in \operatorname{Im}(d)$. Hence, $x \in \operatorname{Im}(d)$. This proves finally that $\operatorname{Ker}\left(d_{\mid C_{2}}\right)=d\left(C_{3}\right)$, so $H_{1}^{\searrow}(A)=(0)$

It remains to compute $H_{0}^{\searrow}(A)$. This is equal to $A /(A \cdot A+A \searrow A)$, so a basis of $H_{0}^{\searrow}(A)$ is given by the trees of weight 1 , so $\operatorname{dim}\left(H_{0}^{\searrow}(A)\right)=D$.

As an immediate corollary:

Corollary 7 The operad \mathbb{P}_{\backslash} is Koszul.

3 The operad \mathbb{P}_{\nearrow} is Koszul

3.1 Koszul dual of \mathbb{P}_{\nearrow}

We denote by $\mathbb{P}^{!}$, the Koszul dual of \mathbb{P}_{\nearrow}.

Theorem 8 The operad $\mathbb{P}^{!}$, is generated by m and $\nearrow \in \mathbb{P}_{\nearrow}^{!}(2)$, with the relations:

$$
\left\{\begin{aligned}
\nearrow \circ(\nearrow, I) & =\nearrow \circ(I, \nearrow), \\
m \circ(m, I) & =m \circ(I, m), \\
m \circ(\nearrow, I) & =\nearrow \circ(I, m), \\
\nearrow \circ(m, I) & =0, \\
m \circ(I, \nearrow) & =0 .
\end{aligned}\right.
$$

Proof. Similar as the proof of theorem 2.

Remarks.

1. So \mathbb{P}^{\prime}, is a quotient of \mathbb{P}_{\nearrow}.
2. The operad $\mathbb{P}^{!}$, is the symmetrization of the non- Σ-operad $\tilde{\mathbb{P}}^{!}$, generated by m and \nearrow, with relations:

$$
\left\{\begin{aligned}
\nearrow \circ(\nearrow, I) & =\nearrow \circ(I, \nearrow), \\
m \circ(m, I) & =m \circ(I, m), \\
m \circ(\nearrow, I) & =\nearrow \circ(I, m), \\
\nearrow \circ(m, I) & =0, \\
m \circ(I, \nearrow) & =0 .
\end{aligned}\right.
$$

3. Graphically, the relations of $\mathbb{P}^{!}$, can be written in the following way:

3.2 Free $\mathbb{P}^{!}$-algebras

Let V be finite-dimensional vector space. We put:

$$
\left\{\begin{aligned}
T_{\nearrow}(V)(n) & =\bigoplus_{k=1}^{n} V^{\otimes n} \text { for all } n \geq 1 \\
T_{\nearrow}(V) & =\bigoplus_{n=1}^{\infty} T_{\nearrow}(V)(n)
\end{aligned}\right.
$$

In order to distinguish the different copies of $V^{\otimes n}$, we put:

$$
T(V)(n)=\bigoplus_{k=1}^{n}(\underbrace{A \notin \otimes A \otimes A \otimes A \otimes \ldots \otimes A}_{(k-1) \operatorname{signs} \not \otimes^{\prime}})
$$

The elements of $A \notin \ldots \otimes A \otimes \ldots \otimes A$ will be denoted by $v_{1} \notin \ldots \otimes v_{k} \otimes \ldots \otimes v_{n}$. We define m and \nearrow over $T_{\nearrow}(V)$ in the following way: for $v=v_{1} \notin \ldots \otimes v_{k} \otimes \ldots \otimes v_{m}$ and $w=w_{1} \otimes \ldots \otimes w_{l} \otimes \ldots \otimes w_{n}$,

$$
\begin{gathered}
v w=\left\{\begin{array}{l}
0 \text { if } l \neq 1, \\
v_{1} \not \otimes \ldots v_{k} \otimes \ldots \otimes v_{m} \otimes w_{1} \otimes \ldots \otimes w_{n} \text { if } l=1 ;
\end{array}\right. \\
v \nearrow w=\left\{\begin{array}{l}
0 \text { if } k \neq m-1, \\
v_{1} \notin \ldots \otimes v_{m} \not W_{1} \otimes \ldots \otimes w_{l} \otimes \ldots \otimes w_{n} \text { if } k=1 .
\end{array}\right.
\end{gathered}
$$

As for \mathbb{P}_{\searrow}, we can prove the following result:
Theorem 9 Let $n \geq 1$.

1. $\operatorname{dim}\left(\mathbb{P}^{!},(n)\right)=n n!$.
2. $\mathbb{P}_{\nearrow}^{\prime}(n)$ is freely generated, as a S_{n}-module, by the following trees:

where $1 \leq i \leq n$.
3. $T_{\nearrow}(V)$ is the free $\mathbb{P}^{!}$-algebra generated by V.

3.3 Homology of a \mathbb{P}_{\nearrow}-algebra

Let us now describe the cofree \mathbb{P}_{\nearrow}-algebra cogenerated by V. By duality, it is equal to $T_{\nearrow}(V)$ as a vector space, with coproducts given in the following way: for $v=v_{1} \otimes \ldots \otimes v_{k} \otimes \ldots \otimes v_{m}$,

$$
\begin{aligned}
\Delta(v) & =\sum_{i=k}^{m-1}\left(v_{1} \notin \nexists v_{k} \otimes \ldots \otimes v_{i}\right) \otimes\left(v_{i+1} \otimes \ldots \otimes v_{m}\right), \\
\Delta_{\nearrow}(v) & =\sum_{i=1}^{k-1}\left(v_{1} \notin \ldots \otimes v_{i}\right) \otimes\left(v_{i+1} \otimes \ldots \otimes v_{k} \otimes \ldots \otimes v_{m}\right) .
\end{aligned}
$$

Let A be a $\mathbb{P} \nearrow$-algebra. The homology complex of A is given by the shifted cofree coalgebra $T_{\nearrow}(V)[-1]$, with differential $d: T_{\nearrow}(V)(n) \longrightarrow T_{\nearrow}(V)(n-1)$, uniquely determined by the following conditions:

1. for all $a, b \in A, d(a \otimes b)=a b$.
2. for all $a, b \in A, d(a \notin b)=a \nearrow b$.
3. Let $\theta: T_{\nearrow}(A) \longrightarrow T_{\nearrow}(A)$ be the following application:

$$
\theta:\left\{\begin{aligned}
T_{\nearrow}(A) & \longrightarrow T_{\nearrow}(A) \\
x & \longrightarrow(-1)^{\text {degree }(x)} x \text { for all homogeneous } x .
\end{aligned}\right.
$$

Then d is a θ-coderivation: for all $x \in T_{\nearrow}(A)$,

$$
\begin{aligned}
\Delta(d(x)) & =(d \otimes I d+\theta \otimes I d) \circ \Delta(x) \\
\Delta_{\nearrow}(d(x)) & =(d \otimes I d+\theta \otimes I d) \circ \Delta \nearrow(x)
\end{aligned}
$$

So, d is the application which sends the element $v_{1} \otimes \ldots \otimes \dot{v}_{k} \otimes \ldots \otimes v_{m}$ to:

$$
\begin{aligned}
& d\left(v_{1} \notin \ldots \not v_{k} \otimes \ldots \otimes v_{n}\right) \\
= & \sum_{i=1}^{k-1}(-1)^{i-1} v_{1} \notin \ldots \otimes v_{i-1} \not \otimes v_{i} \nearrow v_{i+1} \not \otimes v_{i+2} \notin \ldots \notin v_{k} \otimes \ldots \otimes v_{n} \\
& +\sum_{i=k}^{n-1}(-1)^{i-1} v_{1} \otimes \ldots \otimes v_{k} \otimes \ldots \otimes v_{i-1} \otimes v_{i} v_{i+1} \otimes v_{i+2} \otimes \ldots \otimes v_{n}
\end{aligned}
$$

This homology will be denoted by $H_{*}^{\nearrow}(A)$. More clearly, for all $n \in \mathbb{N}$:

$$
H_{n}^{\nearrow}(A)=\frac{\operatorname{Ker}\left(d_{\mid T_{\nearrow}(A)(n+1)}\right)}{\operatorname{Im}\left(d_{\mid T_{\nearrow}(A)(n+2)}\right)}
$$

Examples. Let $v_{1}, v_{2}, v_{3} \in A$.

$$
\left\{\begin{aligned}
d\left(v_{1}\right) & =0, \\
d\left(v_{1} \otimes v_{2}\right) & =v_{1} v_{2}, \\
d\left(v_{1} \otimes v_{2}\right) & =v_{1} \nearrow v_{2}, \\
d\left(v_{1} \otimes v_{2} \otimes v_{3}\right) & =v_{1} v_{2} \otimes v_{3}-v_{1} \otimes v_{2} v_{3}, \\
d\left(v_{1} \otimes v_{2} \otimes v_{3}\right) & =v_{1} \nearrow v_{2} \otimes v_{3}-v_{1} \otimes v_{2} v_{3}, \\
d\left(v_{1} \otimes v_{2} \otimes v_{3}\right) & =v_{1} \nearrow v_{2} \otimes v_{3}-v_{1} \otimes v_{2} \nearrow v_{3} .
\end{aligned}\right.
$$

So:

$$
\left\{\begin{aligned}
d^{2}\left(v_{1} \otimes v_{2} \otimes v_{3}\right) & =\left(v_{1} v_{2}\right) v_{3}-v_{1}\left(v_{2} v_{3}\right) \\
d^{2}\left(v_{1} \otimes v_{2} \otimes v_{3}\right) & =\left(v_{1} \nearrow v_{2}\right) v_{3}-v_{1} \nearrow\left(v_{2} v_{3}\right), \\
d^{2}\left(v_{1} \otimes v_{2} \otimes v_{3}\right) & =\left(v_{1} \nearrow v_{2}\right) \nearrow v_{3}-v_{1} \nearrow\left(v_{2} \nearrow v_{3}\right)
\end{aligned}\right.
$$

So the nullity of d^{2} on $T_{\nearrow}(A)(3)$ is equivalent to the three relations defining \mathbb{P}_{\nearrow}-algebras, as for \mathbb{P}_{\searrow}. In particular:

$$
H_{0}^{\nearrow}(A)=\frac{A}{A \cdot A+A \nearrow A}
$$

3.4 Homology of free \mathbb{P}^{γ}-algebras

The aim of this paragraph is to prove the following result:
Theorem 10 let $N \geq 1$ and let A be the free \mathbb{P}-algebra generated by D elements. Then $H_{0}^{\zeta}(A)$ is D-dimensional; if $n \geq 1, H_{n}^{\zeta}(A)=(0)$.

Proof. Preliminaries. We put, for $k, n \in \mathbb{N}^{*}$:

$$
\left\{\begin{aligned}
C^{\prime}{ }_{n} & =T_{\nearrow}(A)(n), \\
C^{\prime k} & =\underbrace{A \not \otimes_{n}^{\prime} \ldots A \otimes \ldots \otimes A}_{k-1 \text { signs } \otimes} \subseteq C^{\prime}{ }_{n} \text { if } k \leq n, \\
C_{n}^{\prime \leq k} & =\oplus_{i \leq k, n} C^{\prime \prime}{ }_{n} \subseteq C^{\prime}{ }_{n} .
\end{aligned}\right.
$$

For all $k \in \mathbb{N}^{*}, C^{\prime \leq k}$ is a subcomplex of $C^{\prime}{ }_{n}$. In particular, $C_{*}^{\prime \leq 1}$ is isomorphic to the complex defined by $C^{\prime}{ }_{n}=A^{\otimes n}$, with differential given by:

$$
d^{\prime}:\left\{\begin{aligned}
A^{\otimes n} & \longrightarrow A^{\otimes(n-1)} \\
a_{1} \otimes \ldots \otimes a_{n} & \longrightarrow \sum_{i=1}^{n-1}(-1)^{i-1} a_{1} \otimes \ldots \otimes a_{i-1} \otimes a_{i} a_{i+1} \otimes a_{i+2} \otimes \ldots \otimes a_{n} .
\end{aligned}\right.
$$

Hence, the homology of $C^{\prime}{ }_{*}$ is the (shifted) Hochschild homology of A. As A is a free (non unitary) associative algebra, this homology is concentrated in degree 1 . So:

$$
\begin{equation*}
\operatorname{Ker}\left(d_{\mid C^{\prime} \leq 1}^{n}\right) \subseteq \operatorname{Im}(d) \text { if } n \geq 2 . \tag{1}
\end{equation*}
$$

Moreover, C_{*}^{\prime} admits a subcomplex defined by $C_{*}^{\prime \prime}(n)=A \not \varnothing^{\prime} \ldots A$, with differential given by:

$$
d:\left\{\begin{aligned}
C_{*}^{\prime \prime}(n) & \longrightarrow C_{*}^{\prime \prime}(n-1) \\
v_{1} \otimes \ldots \otimes v_{n} & \longrightarrow \sum_{i=1}^{n-1}(-1)^{i-1} v_{1} \notin \ldots \nexists v_{i-1} \otimes v_{i} \nearrow v_{i+1} \not \otimes v_{i+2} \notin \ldots \otimes v_{n} .
\end{aligned}\right.
$$

Hence, the homology of this subcomplex is the shifted Hochschild homology of the associative algebra (A, \nearrow).

Lemma 11 Every forest $F \in \mathbf{F}^{\mathcal{D}}-\{1\}$ can be uniquely written as $F_{1} \nearrow \ldots \nearrow F_{n}$, where the F_{i} 's are elements of $\mathbf{F}^{\mathcal{D}}$ of the form $F_{i}=\boldsymbol{\bullet}_{i} G_{i}$.

Proof. Existence. By induction on the weight of F. If $\operatorname{weight}(F)=1, F={ }_{d}$ and the result is obvious. If weight $(F) \geq 2$, we put $F=B_{d}^{+}\left(H_{1}\right) H_{2}$, with weight $\left(H_{1}\right)<$ weight (F). If $H_{1}=1$, the result is obvious. If $H_{1} \neq 1$, we apply the induction hypothesis on H_{1}, so it can be written as $H_{1}=F_{1} \nearrow \ldots \nearrow F_{n}$, with $F_{i}=\boldsymbol{\bullet}_{i} G_{i}$. We put $F_{n+1}={ }_{\cdot d} H_{2}$, so $F=F_{1} \nearrow \ldots \nearrow F_{n+1}$.

Unicity. By induction on the weight of F. If $\operatorname{weight}(F)=1$, then $F=\bullet_{d}$ and this is obvious. If $\operatorname{weight}(F) \geq 2$, we put $F=B_{d}\left(H_{1}\right) H_{2}$, with weight $\left(H_{1}\right)<\operatorname{weight}(F)$. If $F=F_{1} \nearrow \ldots \nearrow F_{n}$, then $F_{n}={ }_{\cdot d} H_{2}$ and $F_{1} \nearrow \ldots \nearrow F_{n-1}=H_{1}$. Hence, F_{n} is unique. We conclude with the induction hypothesis.

This lemma implies that (A, \nearrow) is freely generated by forests of the form $\bullet{ }_{d} G$. So:

$$
\begin{equation*}
\operatorname{Ker}\left(d_{\mid C_{n}^{\prime \prime}}\right) \subseteq \operatorname{Im}(d) \text { if } n \geq 2 . \tag{2}
\end{equation*}
$$

First step. Let us fix $n \geq 2$. We show by induction on k the following property:

$$
\operatorname{Ker}\left(d_{\mid C^{\prime} \leq k}\right) \subseteq \operatorname{Im}(d) \text { for all } 1 \leq k \leq n-1
$$

For $k=1$, this is (1). Let us suppose $2 \leq k<n$ and $\operatorname{Ker}\left(d_{\mid C^{\prime} \leq k-1}\right) \subseteq \operatorname{Im}(d)$. Let $x=\sum_{i=1}^{k} x_{i} \in$ $\operatorname{Ker}\left(d_{\mid C^{\prime} \leq k}\right)$, with $x_{i} \in C^{\prime}{ }_{n}^{i}$. If $x_{k}=0$, then $x \in \operatorname{Ker}\left(d_{\mid C^{\prime} \leq k-1}\right)$ and the induction hypothesis holds. We then suppose $x_{k} \neq 0$, and we put:

$$
x_{k}=\sum v_{1} \otimes \ldots \otimes v_{k} \otimes \ldots \otimes v_{n}
$$

Let us project $d(x)$ over C_{n-1}^{k}. We get:

$$
\begin{aligned}
& \sum_{i=1}^{k-1} \pi_{k}\left(d\left(x_{i}\right)\right)+\sum_{i=1}^{k-1}(-1)^{i-1} \sum \pi_{k}\left(v_{1} \not \varnothing^{\not} \ldots \not v_{i} \nearrow v_{i+1} \not \otimes^{\neq} v_{k} \otimes \ldots \otimes v_{n}\right) \\
& +\sum_{i=k}^{n-1}(-1)^{i-1} \sum \pi_{k}\left(v_{1} \ngtr \ldots \otimes v_{k} \otimes \ldots \otimes v_{i} v_{i+1} \otimes \ldots \otimes v_{n}\right) \\
& =0+0+(-1)^{k-1} \sum v_{1} \not \boldsymbol{A}^{\prime} \ldots v_{k-1} \not \otimes^{\prime} d^{\prime}\left(v_{k} \otimes \ldots \otimes v_{n}\right) \\
& =0 \text {. }
\end{aligned}
$$

Hence, we can suppose $d^{\prime}\left(v_{k} \otimes \ldots \otimes v_{n}\right)=0$. As $n-k+1 \geq 2$, by (1), there exists an element $\sum w_{k} \otimes \ldots \otimes w_{n+1} \in A^{\otimes(n-k+2)}$, such that:

$$
d^{\prime}\left(\sum w_{k} \otimes \ldots \otimes w_{n+1}\right)=v_{k} \otimes \ldots \otimes v_{n}
$$

We put $w=\sum v_{1} \not \otimes^{\prime} \ldots \not v_{k-1} \not \otimes^{\prime}\left(\sum w_{k} \otimes \ldots \otimes w_{n+1}\right)$. Then, $d(w)=x_{k}+C^{\prime k-1}$, so $x-d(w) \in$ $C_{n}^{\prime k-1}$. As $\operatorname{Im}(d) \subseteq \operatorname{Ker}(d), x-d(w) \in \operatorname{Ker}\left(d_{\mid C^{\prime} \leq k-1}\right) \subseteq \operatorname{Im}(d)$ by the induction hypothesis. Hence, $x \in \operatorname{Im}(d)$.

Second step. Let us show that, if $n \geq 3, \operatorname{Ker}\left(d_{\mid C^{\prime} \leq n}\right) \subseteq \operatorname{Im}(d)$. Take $x \in \operatorname{Ker}\left(d_{\mid C_{n}^{\leq n}}\right)$, written as $x=\sum_{i=1}^{n} x_{i}$, with $x_{i} \in C_{n}^{i}$ and $x_{n}=\sum_{i} v_{1}^{i} \not \otimes \ldots \notin v_{n}^{i}$. We can suppose the v_{j}^{i} 's homogeneous. Let us fix an integer N, greater than the degree of x_{n}, and an integer M, smaller than $\min _{i}\left\{\right.$ weight $\left.\left(v_{n}^{i}\right)\right\}$. Let us show by a decreasing induction on M the following property: for all $x \in \operatorname{Ker}\left(d_{\mid C^{\prime} \leq n}\right)$, of weight $\leq N$, and such that $\min _{i}\left\{w \operatorname{eight}\left(v_{n}^{i}\right)\right\} \geq M$, then $x \in \operatorname{Im}(d)$. If $M>N$, such an x is zero, and the result is obvious. Suppose the result at rank $M+1$ and let us show it at rank M. Let A_{M} be the homogeneous (for the weight) component of degree M of A and let us project $d(x)$ over $A \not \subset \ldots \nexists A \nexists A_{M}$. We get:

$$
0=\varpi_{M}(d(x))=\sum_{i, \operatorname{weight}\left(v_{n}^{i}\right)=M} d\left(v_{1}^{i} \not \otimes_{\left.\neq \nexists v_{n-1}^{i}\right) \ngtr v_{n}^{i} ~}\right.
$$

Hence, we can suppose that, for all i such that $\operatorname{weight}\left(v_{n}^{i}\right)=M, d\left(v_{1}^{i} \not \otimes \ldots \notin v_{n-1}^{i}\right)=0$. As $n \geq 3$, by (2), there exists $\sum_{j} w_{1}^{i, j} \notin \ldots \not \otimes_{n}^{i, j} \in C^{\prime}{ }_{n}$ such that:

$$
d\left(\sum_{j} w_{1}^{i, j} \nexists \ldots \nexists w_{n}^{i, j}\right)=v_{1}^{i} \not \varnothing^{\star} \ldots \otimes_{n-1}^{i}
$$

As d is homogeneous for the weight, we can suppose that the weight of this element is smaller than the weight of $v_{1}^{i} \otimes \ldots \otimes v_{n-1}^{i}$. We then put:

$$
w=\sum_{i, w e i g h t\left(v_{n}^{i}\right)=M} \sum_{j} w_{1}^{i, j} \ngtr \ldots \ngtr w_{n}^{i, j} \ngtr v_{n}^{i}
$$

So $x-d(w) \in \operatorname{Ker}\left(d_{\mid C^{\prime} \leq n}\right)$, with a weight $\leq N$, and satisfies the property on the v_{n}^{i},s for $M+1$. By the induction hypothesis, $x-d(w) \in \operatorname{Im}(d)$, so $x \in \operatorname{Im}(d)$.

So, if $n \geq 2$, as $C_{n}^{\prime \leq n}=C_{n}^{\prime}, H_{n}^{\nearrow}(A)=(0)$.

Third step. We now compute $H_{1}^{\nearrow}(A)$. We take an element $x \in C_{2}^{\prime}$ and show that it belongs to $\operatorname{Im}(d)$. This element can be written as:

$$
x=\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} a_{F, G} F \nexists G-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} b_{F, G} F \otimes G .
$$

so:

$$
d(x)=\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} a_{F, G} F \nearrow G-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}} b_{F, G} F G .
$$

As a consequence, the following assertions are equivalent:

1. $d(x)=0$.
2. for all $H \in \mathbf{F}^{\mathcal{D}}-\{1\}, \sum_{F \nearrow G=H} a_{F, G}=\sum_{F G=H} b_{F, G}$.

First case. For all $F, G \in \mathbf{F}^{\mathcal{D}}-\{1\}, a_{F, G}=0$, that is to say $x \in A \otimes A$: then the result comes directly from (1).

Second case. $x=F_{1} \otimes F_{2}-G_{1} \otimes G_{2}, F_{1}, F_{2}, G_{1}, G_{2} \in \mathbf{F}^{\mathcal{D}}$, such that $F_{1} \nearrow F_{2}=G_{1} G_{2}=H$. We put $H=t_{1} \ldots t_{n}$ et $t_{1}=H_{1} \nearrow \ldots \nearrow H_{m}, t_{1}, \ldots, t_{n} \in \mathbf{T}^{\mathcal{D}}$, the H_{i} 's of the form $\cdot d_{i} H_{i}^{\prime}$ (lemma 11). Then there exists $i \in\{1, \ldots, n-1\}$, such that $G_{1}=t_{1} \ldots t_{i}$ and $G_{2}=t_{i+1} \ldots t_{n}$; there exists $j \in\{1, \ldots, m-1\}$, such that $F_{1}=H_{1} \nearrow \ldots \nearrow H_{j}$ and $F_{2}=\left(H_{j+1} \nearrow \ldots \nearrow H_{m}\right) t_{2} \ldots t_{n}$. So:

$$
\begin{aligned}
& d\left(H_{1} \nearrow \ldots \nearrow H_{j} \nexists\left(H_{j+1} \nearrow \ldots \nearrow H_{m}\right) t_{2} \ldots t_{i} \otimes t_{i+1} \ldots t_{n}\right) \\
= & \left.\left(H_{1} \nearrow \ldots \nearrow H_{j}\right) \nearrow\left(H_{j+1} \nearrow \ldots \nearrow H_{m}\right) t_{2} \ldots t_{i} \otimes t_{i+1} \ldots t_{n}\right) \\
& \left.-H_{1} \nearrow \ldots \nearrow H_{j} \otimes\left(H_{j+1} \nearrow \ldots \nearrow H_{m}\right) t_{2} \ldots t_{i} t_{i+1} \ldots t_{n}\right) \\
= & G_{1} \otimes G_{2}-F_{1} \otimes F_{2} .
\end{aligned}
$$

Hence, $x \in \operatorname{Im}(d)$.

Third case. We suppose that the following condition holds:

$$
\left(a_{F, G} \neq 0\right) \Longrightarrow\left(G \notin \mathbf{T}^{\mathcal{D}}\right)
$$

So, x can be written as:

$$
x=\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, t \in \mathbf{T}^{\mathcal{D}}} a_{F, t G} F \otimes t G-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}} b_{F, G} F \otimes G .
$$

By the second case, $F \otimes t G-F \nearrow t \otimes G \in \operatorname{Im}(d) \subseteq \operatorname{Ker}(d)$. So, the following element belongs to $\operatorname{Ker}(d)$:

$$
\begin{aligned}
& x-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, t \in \mathbf{T}^{\mathcal{D}}} a_{F, t G}(F \otimes t G-F \nearrow t \otimes G) \\
= & -\sum_{F, G \in \mathbf{F}^{\mathcal{D}}} b_{F, G} F \otimes G+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, t \in \mathbf{T}^{\mathcal{D}}} a_{F, t G} F \nearrow t \otimes G .
\end{aligned}
$$

By the first case, this element belongs to $\operatorname{Im}(d)$, so $x \in \operatorname{Im}(d)$.
Fourth case. We suppose that the following condition holds:

$$
\left(a_{F, G} \neq 0\right) \Longrightarrow\left(G \notin \mathbf{T}^{\mathcal{D}} \text { or } G=\cdot_{d}, d \in \mathcal{D}\right)
$$

Let $H \in \mathbf{F}^{\mathcal{D}}-\{1\}$. Let us write $B_{d}^{+}(H)=H_{1} \nearrow \ldots \nearrow H_{n}$, with $H_{i}=\cdot d_{i} H_{i}^{\prime}$ for all i (lemma 11). As $B_{d}^{+}(H) \in \mathbf{T}^{\mathcal{D}}, H_{n}=\cdot d_{n}$ and $H_{1} \nearrow \ldots \nearrow H_{n-1}=H$. So:

$$
\begin{aligned}
0 & =\sum_{F \nearrow G=B_{d}(H)} a_{F, G}-\sum_{F G=B_{d}(H)} b_{F, G} \\
& =\sum_{i=1}^{n} a_{H_{1} \nearrow \ldots \nearrow H_{i}, H_{i+1} / \ldots \nearrow H_{n}}-0 \\
& =a_{H_{1} \nearrow \ldots \nearrow H_{n-1}, \bullet d}+0 \\
& =a_{H, \bullet d}
\end{aligned}
$$

(We used the condition on x for the third equality). So, for all $F \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}$, we obtain $a_{F, \cdot d}=0$. As a consequence, by the third case, $x \in \operatorname{Im}(d)$.

General case. The following element belongs to $\operatorname{Ker}(d)$:

$$
\begin{aligned}
& x^{\prime}=x+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} d\left(F \ngtr G \nexists \cdot{ }_{d}\right) \\
& =x+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F \nearrow G \not \subset \cdot{ }_{d}-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F \notin G \nearrow \cdot d \\
& =x+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F \nearrow G \not \subset \cdot d-\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F \not \otimes_{d}(G) \\
& =\sum_{F \in \mathbf{F}^{\mathcal{D}}, G \in \mathbf{F}^{\mathcal{D}}-\mathbf{T}^{\mathcal{D}}} a_{F, G} F \ngtr G+\sum_{F \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, G} F \ngtr \cdot d \\
& -\sum_{F, G \in \mathbf{F}^{\mathcal{D}}} b_{F, G} F \otimes G+\sum_{F, G \in \mathbf{F}^{\mathcal{D}}, d \in \mathcal{D}} a_{F, B_{d}(G)} F G \not \otimes_{\cdot d} .
\end{aligned}
$$

So, x^{\prime} satisfies the condition of the fourth cas, so $x^{\prime} \in \operatorname{Im}(d)$. Hence, $x \in \operatorname{Im}(d)$.
It remains to compute $H_{0}^{\nearrow}(A)$. This is equal to $A /(A \cdot A+A \nearrow A)$, so a basis of $H_{0}^{\nearrow}(A)$ is given by the trees of weight 1 , so $\operatorname{dim}\left(H_{0}^{\nearrow}(A)\right)=D$.

As an immediate corollary:

Corollary 12 The operad \mathbb{P}_{\nearrow} is Koszul.

References

[1] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv: hep-th/98 08042.
[2] Loïc Foissy, The infinitesimal Hopf algebra and the operads of planar forests, arXiv:????.????
[3] _ The infinitesimal Hopf algebra and the poset of planar forests, arXiv: 0802.0442.
[4] Loïc Foissy, Les algèbres de Hopf des arbres enracinés, I, Bull. Sci. Math. 126 (2002), 193239.
[5] Victor Ginzburg and Mikhail Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203-272.
[6] Ralf Holtkamp, Comparison of Hopf Algebras on Trees, Arch. Math. (Basel) 80 (2003), no. 4, 368-383.
[7] Dirk Kreimer, On the Hopf algebra structure of pertubative quantum field theories, Adv. Theor. Math. Phys. 2 (1998), no. 2, 303-334, arXiv: q-alg/97 07029.
[8] _ On Overlapping Divergences, Comm. Math. Phys. 204 (1999), no. 3, 669-689, arXiv: hep-th/98 10022.
[9] , Combinatorics of (pertubative) Quantum Field Theory, Phys. Rep. 4-6 (2002), 387-424, arXiv: hep-th/00 10059.
[10] Martin Markl, Steve Shnider, and Jim Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, no. 90, American Mathematical Society, Providence, RI, 2002.
[11] Richard P. Stanley, Enumerative combinatorics. Vol. 1., Cambridge Studies in Advanced Mathematics, no. 49, Cambridge University Press, Cambridge, 1997.
[12] _ Enumerative combinatorics. Vol. 2., Cambridge Studies in Advanced Mathematics, no. 62, Cambridge University Press, Cambridge, 1999.

