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Introdution

A (left) prelie algebra, or equivalently a left Vinberg algebra, or a left-symmetri algebra [1, 2, 13℄

is a ouple (V, ⋆), where V is a vetor spae and ⋆ a bilinear produt on V suh that for all

x, y, z ∈ V :
(x ⋆ y) ⋆ z − x ⋆ (y ⋆ z) = (y ⋆ x) ⋆ z − y ⋆ (x ⋆ z).

This axiom implies that the braket de�ned by [x, y] = x ⋆ y− y ⋆ x satis�es the Jaobi identity,

so V is a Lie algebra; moreover, (V, ⋆) is a left module on V . The free prelie algebra is desribed
in [1℄ in terms of rooted trees, making a link with the Connes-Kreimer Hopf algebra of Renor-

malization [3, 6℄.

The aim of this text is to give examples of Lie algebras whih are not prelie, namely the

simple omplex Lie algebras of �nite dimension. For this, we use the onstrution of [11℄ of the

extension of the prelie produt of a prelie algebra (g, ⋆) whih gives to the symmetri oalgebra

S(g) an assoiative produt ∗, making it isomorphi to U(g). This onstrution is also used in

[9℄ to lassify right-sided oommutative graded and onneted Hopf algebras. A remarkable

orollary of this onstrution is that S(g)≥2 =
⊕

n≥2 S
n(g) is a left ideal of (S(g), ∗). As a

onsequene, there exists a left ideal I of U(g), suh that the augmentation ideal U(g)+ of U(g)
an be deomposed as U(g)+ = g⊕ I. We prove here the onverse result: more preisely, given

any Lie algebra g, we prove in theorem 11 that there exists a bijetion into these two sets:

• PL(g) = {⋆ | ⋆ is a prelie produt on g induing the braket of g}.

• LI(g) = {I left ideal of U(g) | U+(g) = g⊕ I}.

Let then a prelie algebra g, and I the ideal orresponding to the prelie produt of g. The

g-module U(g)/I ontains a submodule of odimension 1, isomorphi to (g, ⋆), and the speial

element 1 + I. This leads to the de�nition of good pointed modules (de�nition 13). The sets

PL(g) and LI(g) are in bijetion with the set GM(g) of isolasses of good pointed modules, as

proved in theorem 14.

If g is semisimple, then any good pointed module is isomorphi to K ⊕ (g, ⋆) as a g-module.

This leads to the de�nition of very good pointed module, and we prove that if g is a semisimple

Lie algebra, then it is prelie if, and only if g has a very good pointed module. If g is a simple

omplex lie algebra, with the possible exeption of f4, we prove that it has no very good pointed

module, so g is not prelie. The proof is separated into three ases: �rst, the generi ases, then

so2n+1, and �nally sl6 and g2, whih are proved by diret omputations using the omputer al-

gebra system MuPAD pro 4. We onjeture that this is also true for f4 (the omputations would

be similar, though very longer).

We also give in this text a non oommutative version of theorem 11, replaing enveloping

algebras (whih are symmetri oalgebras, as the base �eld is of harateristi zero) by ofree

oalgebras, and prelie algebras by dendriform algebras [8, 10℄. If A is a ofree oalgebra, we

prove in theorem 32 that there is a bijetion between these two sets:

• DD(A) = {(≺,≻) | (A,≺,≻,∆) is a dendriform Hopf algebra}.

• LI(A) =

{

(∗, I) |
(A, ∗,∆) is a Hopf algebra and

I is a left ideal of A suh that A+ = Prim(A)⊕ I

}

.

The text is organized as follows: the �rst setion deals with the general results on prelie

algebras: after preliminaries on symmetri oalgebras, theorem 11 is proved and good pointed

modules are introdued. The seond setion is devoted to the study of good pointed modules

over simple omplex Lie algebras. The results on dendriform algebras are exposed in the third

setion and the MuPAD proedures used in this text are written in the last setion.
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Notations.

1. K is a ommutative �eld of harateristi zero. Any algebra, oalgebra, bialgebra, et, of

this text will be taken over K.

2. Let g be a Lie algebra. We denote by U(g) its enveloping algebra and by U+(g) the

augmentation ideal of U(g).

1 Prelie produts on a Lie algebra

1.1 Preliminaries and realls on symmetri oalgebras

Let V be a vetor spae. The algebra S(V ) is given a oprodut ∆, de�ned as the unique algebra

morphism from S(V ) to S(V )⊗S(V ), suh that ∆(v) = v⊗ 1+1⊗ v for all v ∈ V . Let us reall
the following fats:

• Let us �x a basis (vi)i∈Λ of V . We de�ne SΛ as the set of sequenes a = (ai)i∈Λ of elements

of N, with a �nite support. For an element a ∈ SΛ, we put l(a) =
∑

i∈Λ

ai. For all a ∈ SΛ,

we put:

va =
∏

i∈Λ

vaii
ai!

.

Then (va)a∈SΛ is a basis of S(V ), and the oprodut is given by:

∆(va) =
∑

b+c=a

vb ⊗ vc.

• Let S+(V ) be the augmentation ideal of S(V ). It is given a oassoiative, non ounitary

oprodut ∆̃ de�ned by ∆̃(x) = ∆(x) − x⊗ 1 − 1 ⊗ x for all x ∈ S+(V ). In other terms,

putting S+Λ = SΛ− {(0)}, (va)a∈S+Λ is a basis of S+(V ) and:

∆̃(va) =
∑

b+c=a
b,c∈S+Λ

vb ⊗ vc.

• Let ∆̃(n) : S+(V ) −→ S+(V )⊗(n+1)
be the n-th iterated oprodut of S+(V ). Then:

Ker
(

∆̃(n)
)

=

n⊕

k=1

Sk(V ).

In partiular, Prim(S(V )) = V .

• (Sn(V ))n∈N is a gradation of the oalgebra S(V ).

Lemma 1 In S+(V )⊗ S+(V ), Ker(∆̃⊗ Id− Id⊗ ∆̃) = Im(∆̃) + V ⊗ V .

Proof. ⊇. Indeed, if y = ∆̃(x) + v1 ⊗ v2 ∈ Im(∆̃) + V ⊗ V , as ∆̃ is oassoiative:

(∆̃⊗ Id)(y) − (Id⊗ ∆̃)(y) = (∆̃⊗ Id) ◦ ∆̃(x)− (Id⊗ ∆̃) ◦ ∆̃(x)

+∆̃(v1)⊗ v2 − v1 ⊗ ∆̃(v2)

= 0.

⊆. Let X ∈ Ker(∆̃⊗ Id− Id⊗ ∆̃). Choosing a basis (vi)i∈Λ of V , we put:

X =
∑

a,b∈S+Λ

xa,bva ⊗ vb.
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By homogeneity, we an suppose that X is homogeneous of a ertain degree n ≥ 2 in S+(V ) ⊗
S+(V ). If n = 2, then X ∈ V ⊗ V . Let us assume that n ≥ 3. Then:

(∆̃⊗ Id) ◦ ∆̃(X) =
∑

a,b,c∈S+Λ

xa+b,cva ⊗ vb ⊗ vc = (Id⊗ ∆̃) ◦ ∆̃(X) =
∑

a,b,c∈S+Λ

xa,b+cva ⊗ vb ⊗ vc.

So, for all a, c ∈ S+Λ, b ∈ SΛ, xa+b,c = xa,b+c.

Let a, b, a′, b′ ∈ S+Λ, suh that a+ b = a′ + b′. Let us show that xa,b = xa′,b′ .

First ase. Let us assume that the support of a and a′ are not disjoint. For all i ∈ Λ, we put:

ci =

{
a′i − ai if a′i − ai > 0,

0 if a′i − ai ≤ 0,

c′i =

{
ai − a′i if ai − a′i > 0,

0 if ai − a′i ≤ 0.

Then c and c′ belong to SΛ. Moreover, for all i ∈ Λ, ai + ci = a′i + c′i, so a + c = a′ + c′, or
a′ = a+ c− c′. As a+ b = a′ + b′, b′ = b− c+ c′.

For all i ∈ Λ:

ai − c′i =

{
a′i if ai − a′i > 0,
ai if ai − a′i ≤ 0.

So a− c′ ∈ SΛ. Moreover, if a− c′ = 0, then if ai > a′i, a
′
i = 0, so the support of a′ is inluded

in {i / ai ≤ a′i}. If ai ≤ a′i, then ai = 0, so the support of a is inluded in {i / ai > a′i}. As a

onsequene, the supports of a and a′ are disjoint: this is a ontradition. So a− c′ ∈ S+Λ. As
a− c′ and b′ ∈ S+Λ:

xa′,b′ = xa−c′+c,b′ = xa−c′,b′+c = xa−c′,b+c′ .

As a− c′ and b ∈ S+Λ:

xa−c′,b+c′ = xa,b.

The proof is similar if the support of b and b′ are not disjoint, permuting the roles of (a, a′) and
(b, b′).

Seond ase. Let us assume that the supports of a and a′, and the supports of b and b′ are
disjoint. We then denote, up to a permutation of the index set Λ:

a = (a1, . . . , ak, 0, . . . , 0, . . .),

a′ = (0, . . . , 0, a′k+1, . . . , a
′
k+l, 0, . . .),

where the ai's and the a′j 's are non-zero. As a+ b = a′ + b′, neessarily bk+1 6= 0.

First subase. l(a) or l(a′) > 1. We an suppose that l(a) > 1. Then a and (a1 −
1, a2, . . . , ak, 0, . . .) are elements of S+Λ beause l(a) > 1 and their support are non disjoint.

By the �rst ase:

xa,b = x(a1−1,a2,...,ak,0,...),b+(1,0,...).

Moreover, the supports of (a1−1, a2, . . . , ak, 0, . . .) and (a1−1, a2, . . . , ak, 1, 0, . . .) are not disjoint.
As bk+1 > 0, b+ (1, 0, . . .)− (0, . . . , 0, 1, 0, . . .) belongs to S+Λ. By the �rst ase:

x(a1−1,a2,...,ak,0,...),b+(1,0,...) = x(a1−1,a2,...,ak,1,0,...),b+(1,0,...,0,−1,0,...).

Finally, the support of (a1 − 1, a2, . . . , ak, 1, 0, . . .) and a′ are not disjoint, so:

x(a1−1,a2,...,ak,1,0,...),b+(1,0,...,0,−1,0,...) = xa′,b′ .
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If l(b) or l(b′) > 1, the proof is similar, permuting the roles of (a, a′) and (b, b′).

Seond subase. l(a) = l(a′) = l(b) = l(b′) = 1. Then va ⊗ vb, va′ ⊗ vb′ ∈ V ⊗ V . By the

homogeneity ondition, xa,b = xa′,b′ = 0.

Hene, we put xa+b = xa,b for all a, b ∈ S+Λ: this does not depend of the hoie of a and b.
So:

X =
∑

c∈S+Λ

xc
∑

a+b=c
a,b∈S+Λ

va ⊗ vb =
∑

c∈S+Λ

xc∆̃(vc),

so X ∈ Im(∆̃). ✷

Lemma 2 In S(V ), Im(∆̃) ∩ (V ⊗ V ) = S2(V ).

Proof. ⊆. By oommutativity of ∆̃. ⊇. If v,w ∈ V , then v ⊗ w + w ⊗ v = ∆̃(vw). ✷

Lemma 3 Let W be a subspae of S+(V ), suh that S+(V ) = V ⊕W . There exists a unique

oalgebra endomorphism φ of S(V ), suh that φ|V = IdV and φ




⊕

n≥2

Sn(V )



 = W . Moreover,

φ is an automorphism.

We shall denote from now:

S≥2(V ) =

∞⊕

n=2

Sn(V ).

Proof. Existene. We denote by πW the projetion on W in the diret sum S(V ) = (1)⊕V ⊕
W . We de�ne indutively φ|Sn(V ). If n = 0, it is de�ned by φ(1) = 1. If n = 1, it is de�ned by

φ|V = IdV . Let is assume that φ is de�ned on the suboalgebra Cn−1 = K ⊕ V ⊕ . . .⊕ Sn−1(V )

with n ≥ 2 and let us de�ne φ on Sn(V ). Let va ∈ Sn(V ). Then ∆̃(va) ∈ Cn−1 ⊗ Cn−1, so

(φ⊗ φ) ◦ ∆̃(va) is already de�ned. Moreover:

(∆̃⊗ Id) ◦ (φ⊗ φ) ◦ ∆̃(va) = (φ⊗ φ⊗ φ) ◦ (∆̃⊗ Id) ◦ ∆̃(va)

= (φ⊗ φ⊗ φ) ◦ (Id⊗ ∆̃) ◦ ∆̃(va)

= (Id⊗ ∆̃) ◦ (φ⊗ φ) ◦ ∆̃(va).

By lemma 1, (φ⊗φ) ◦ ∆̃(va) ∈ Im(∆̃)+V ⊗V . Moreover, as ∆̃ is oommutative, using lemma

2:

(φ⊗ φ) ◦ ∆̃(va) ∈ (Im(∆̃) + V ⊗ V ) ∩ S2(S(V ))

∈ Im(∆̃) + (V ⊗ V ) ∩ S2(S(V ))

∈ Im(∆̃) + S2(V )

∈ Im(∆̃).

Let wa ∈ S+(V ), suh that (φ ⊗ φ) ◦ ∆̃(va) = ∆̃(wa). We put then φ(va) = πW (wa). So

φ(va) ∈ W . Moreover, wa − πW (wa) ∈ V ⊆ Ker(∆̃), so:

(φ⊗ φ) ◦∆(va) = φ(va)⊗ φ(1) + φ(1)⊗ φ(va) + (φ⊗ φ) ◦ ∆̃(va)

= φ(va)⊗ 1 + 1⊗ φ(va) + ∆̃(wa)

= φ(va)⊗ 1 + 1⊗ φ(va) + ∆̃(πW (wa))

= ∆(φ(va)).

So φ|Cn
is a oalgebra morphism.
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Uniity. Let φ̃ be another oalgebra endomorphism satisfying the required properties. Let

us show that φ(va) = φ̃(va) by indution on n = l(a). If n = 0 or 1, this is immediate. Let us

assume the result at all rank < n, n ≥ 2. Then:

∆̃(φ(va)− φ̃(va)) = (φ⊗ φ− φ̃⊗ φ̃)




∑

b+c=a∈S+Λ

vb ⊗ vc



 = 0,

by the indution hypothesis. So φ(va) − φ̃(va) ∈ Prim(S(V )) = V . Moreover, it belongs to

φ(S≥2(V )) + φ̃(S≥2(V )) ⊆ W . As V ∩W = (0), φ(v1 . . . vn) = φ̃(v1 . . . vn).

We have de�ned in this way an endomorphism φ, suh that φ|V = IdV and φ(Sn(V )) ⊆ W
for all n ≥ 2. We now show that φ is an automorphism. Let us suppose that Ker(φ) 6= (0). As φ
is a oalgebra morphism, Ker(φ) is a non-zero oideal, so it ontains primitive elements, that is

to say elements of V : impossible, as φ|V is moni. So φ is moni. Let us prove that va ∈ Im(φ)
by indution on l(a). If l(a) = 0 or 1, then φ(va) = va. We an suppose that va = λv1 . . . vk,
where λ is a non-zero salar. Then:

∆̃k−1(va) = λ
∑

σ∈Sk

vσ(1) ⊗ . . .⊗ vσ(k) = λ
∑

σ∈Sk

φ(vσ(1))⊗ . . .⊗ φ(vσ(k)) = ∆̃k−1(φ(va)).

So va − φ(va) ∈ Ker(∆̃k−1) = K ⊕ V ⊕ . . .⊕ Sk−1(V ) ⊆ Im(φ) by the indution hypothesis. So

va ∈ Im(φ) and φ is epi. As a onsequene, φ(S≥2(V )) = W . ✷

1.2 Extension of a prelie produt

De�nition 4 A (left) prelie algebra is a vetor spae g, with a produt ⋆ satisfying the

following property: for all x, y, z ∈ g,

(x ⋆ y) ⋆ z − x ⋆ (y ⋆ z) = (y ⋆ x) ⋆ z − y ⋆ (x ⋆ z).

Remark. A prelie algebra g is also a Lie algebra, with the braket given by:

[x, y] = x ⋆ y − y ⋆ x.

This braket will be alled the Lie braket indued by the prelie produt.

Let (g, ⋆) be a prelie algebra. By [5℄ and [11℄, permuting left and right, the prelie produt ⋆
an be extended to the oalgebra S(g) in the following way: for all x, y ∈ g, P,Q,R ∈ S(g),







1 ⋆ P = P,
(xP ) ⋆ y = x ⋆ (P ⋆ y)− (x ⋆ P ) ⋆ y,

P ⋆ (QR) =
∑(

P (1) ⋆ Q
) (

P (2) ⋆ R
)
.

Then S(g) is given an assoiative produt ∗ de�ned by P ∗ Q =
∑

P (1)
(
P (2) ⋆ Q

)
. Moreover,

(S(g), ∗,∆) is isomorphi, as a Hopf algebra, to U(g). There exists a unique isomorphism ξ⋆ of

Hopf algebras:

ξ⋆ :

{
U(g) −→ (S(g), ∗,∆)
x ∈ g −→ x ∈ g.

Lemma 5 For all n ≥ 1, g ⋆ Sn(g) ⊆ Sn(g).

Proof. By indution on n. This is immediate for n = 1. Let us assume the result at rank

n− 1. Let P = yQ ∈ Sn(g), with y ∈ g and Q ∈ Sn−1(g). For all x ∈ g, as x is primitive:

x ⋆ P = (x ⋆ y)Q+ y(x ⋆ Q).

Note that x ⋆ y ∈ g and x ⋆ Q ∈ Sn−1(g) by the indution hypothesis. So x ⋆ P ∈ Sn(g). ✷
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Proposition 6 Let g be a prelie algebra. We denote S≥2(g) =
⊕

n≥2

Sn(g). Then:

1. S≥2(g) is a left ideal for ∗.

2. S≥2(g) is a bilateral ideal for ∗ if, and only if, ⋆ is assoiative on g.

Proof. 1. Let x ∈ g and Q ∈ Sn(g), with n ≥ 2. Then, by lemma 5:

x ∗Q = xQ+ x ⋆ Q ∈ Sn+1(V ) + Sn(V ).

As a onsequene, S≥2(g) is stable by left multipliation by an element of g. As g generates

(S(g), ∗) (beause it is isomorphi to U(g)), S≥2(g) is a left ideal.

2, ⇐=. Let us �rst show that Sn(g) ⋆ g ⊆ S≥2(g) for all n ≥ 2 by indution on n. For

n = 2, take x, y, z ∈ g. Then (xy) ⋆ z = x ⋆ (y ⋆ z) − (x ⋆ y) ⋆ z = 0, as ⋆ is assoiative

on g. Let us assume the result at rank n − 1 (n ≥ 3). Let x ∈ g, P ∈ Sn−1(V ), y ∈ g.

Then (xP ) ⋆ z = x ⋆ (P ⋆ z) − (x ⋆ P ) ⋆ z. By the indution hypothesis, P ⋆ z ∈ S≥2(g). By

lemma 5, x ⋆ (P ⋆ z) ∈ S≥2(g). By lemma 5, x ⋆ P ∈ Sn−1(g). By the indution hypothesis,

(x ⋆ P ) ⋆ z ∈ S≥2(g). So Sn(g) ⋆ g ⊆ S≥2(g) for all n ≥ 2.

Let us now prove that S≥2(g) ∗ g ⊆ S≥2(g). Let P ∈ S≥2(g) and y ∈ g. We put ∆(P ) =
P ⊗ 1 + 1⊗ P +

∑
P ′ ⊗ P ′′

. Then:

P ∗ y = Py + P ⋆ y +
∑

P ′(P ′′ ⋆ y).

Note that Py and

∑
P ′(p′′ ⋆ y) belong to S≥2(g). We already proved P ⋆ y ∈ S≥2(g). As g

generates (S(g), ∗), S≥2(g) is a right ideal. By the �rst point, it is a bilateral ideal.

2, =⇒. Let us assume that ⋆ is not assoiative on g. There exists x, y, z ∈ g, suh that

x ⋆ (y ⋆ z)− (x ⋆ y) ⋆ z 6= 0. Then:

(xy) ∗ z = xyz + x(y ⋆ z) + y(x ⋆ z) + (xy) ⋆ z

= xyz + x(y ⋆ z) + y(x ⋆ z)
︸ ︷︷ ︸

∈S≥2(g)

+x ⋆ (y ⋆ z)− (x ⋆ y) ⋆ z
︸ ︷︷ ︸

∈V−{0}

,

so (xy) ∗ z /∈ S≥2(g), whih is not a right ideal. ✷

De�nition 7 Let g be a Lie algebra. We de�ne:

1. PL(g) = {⋆ | ⋆ is a prelie produt on g induing the braket of g}.

2. LI(g) = {I left ideal of U(g) | U+(g) = g⊕ I}.

Proposition 8 There exists an appliation:

Φg :

{
PL(g) −→ LI(g)

⋆ −→ ξ−1
⋆ (S≥2(g))

Proof. Φg(⋆) is indeed an element of LI(g), as S≥2(g) is a left ideal of (S(g), ∗) and ξ⋆ is an
isomorphism of algebras. ✷
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1.3 Prelie produt assoiated to a left ideal

Proposition 9 Let I ∈ LI(g). We denote by ̟g the projetion on g in the diret sum

U(g) = (1)⊕ g⊕ I. Then the produt ⋆ de�ned by x ⋆ y = ̟g(xy) is an element of PL(g). This
de�nes an appliation Ψg : LI(g) −→ PL(g).

Proof. Let x, y ∈ g. In U(g), xy − yx = [x, y] ∈ g, so:

x ⋆ y − y ⋆ x = ̟g(xy − yx) = ̟g([x, y]) = [x, y],

so ⋆ indues the Lie braket of g. It remains to prove that it is prelie. Let us �x a basis (vi)i∈Λ
of g. By the Poinaré-Birkho�-Witt theorem, U(g) is isomorphi to S(g) as a oalgebra. Using

lemma 3, there exists an isomorphism of oalgebras:

φI :

{
S(g) −→ U(g)
v ∈ g −→ g,

suh that φI(S≥2(g)) = I. We denote by (va)a∈SΛ the basis of U(g), image of the basis (va)a∈SΛ
of S(g). As a onsequene:

• A basis of I is given by (va)a∈SΛ, l(a)≥2.

• For all a ∈ SΛ, ∆(va) =
∑

b+c=a

vb ⊗ vc.

We put δj = (δi,j)i∈I for all j ∈ I (so vi = vδi for all i ∈ I) and, for all a, b ∈ SΛ:

vavb =
∑

c∈SΛ

xca,bv
c.

By de�nition, for all i, j ∈ I:

vi ⋆ vj =
∑

k∈I

xδkδi,δjvk.

Let us prove the prelie relation for vi, vj , vk. It is obvious if i = j: let us assume that i 6= j.
Then, in U(g):

∆
(

vivj − vδi+δj
)

=
(

vivj − vδi+δj
)

⊗ 1 + 1⊗
(

vivj − vδi+δj
)

+vi ⊗ vj + vj ⊗ vi − vδi ⊗ vδj − vδj ⊗ vδi

=
(

vivj − vδi+δj
)

⊗ 1 + 1⊗
(

vivj − vδi+δj
)

.

So vivj − vδi+δj ∈ Prim(S(g)) = g. So:

vivj = vδi+δj +
∑

k∈I

vδkδi,δjv
δk = vδi+δj + vi ⋆ vj.

Hene:

̟g(vi(vjvk)) = ̟g

(
∑

c∈SΛ

ccδj ,δkviv
c

)

= ̟g







∑

c∈SΛ
l(c)≥2

ccδj ,δk viv
c

︸︷︷︸

∈I, left ideal







+̟g(vi(vj ⋆ vk))

= 0 + vi ⋆ (vj ⋆ vk)

= ̟g((vivj)vk)

= ̟g(v
δi+δjvk) +̟g((vi ⋆ vj)vk)

= ̟g(v
δi+δjvk) + (vi ⋆ vj) ⋆ vk.
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So:

vi ⋆ (vj ⋆ vk)− (vi ⋆ vj) ⋆ vk = ̟g(v
δi+δjvk) = vj ⋆ (vi ⋆ vk)− (vj ⋆ vi) ⋆ vk.

Hene, the produt ⋆ is prelie. ✷

1.4 Prelie produts on a Lie algebra

Proposition 10 The appliations Φg and Ψg are inverse bijetions.

Proof. Let ⋆ ∈ PL(g). We put I = Φg(⋆) and • = Ψg(I). Let πg be the anonial surjetion
on g in S(g). Then, as ξ⋆(I) = S≥2(g), ξ⋆ ◦̟g = πg ◦ ξ⋆. So, for all x, y ∈ g:

ξ⋆(x • y) = ξ⋆ ◦̟g(xy) = πg ◦ ξ⋆(xy) = πg(x ∗ y) = πg(xy + x ⋆ y) = x ⋆ y = ξ⋆(x ⋆ y).

As ξ⋆ is moni, x • y = x ⋆ x, so Ψg ◦ Φg(⋆) = ⋆.
Let I ∈ LI(g). We put ⋆ = Ψg(I). We have to prove that ξ−1

⋆ (S≥2(g)) = I, that is to say

ξ⋆(I) = S≥2(g). Beause they are both omplements of (1)⊕g and ξ⋆ is bijetive, it is enough to

prove ξ⋆(I) ⊆ S≥2(g). With the preeding notations, let va ∈ I, l(a) ≥ 2, and let us prove that

ξ⋆(v
a) ∈ S≥2(g). If l(a) = 2, we put a = δi + δj . Then we saw that va = vivj − vi ⋆ vj if i 6= j. If

i = j, in the same way, 2va = vivj − vi ⋆ vj . So, up to a non-zero mutipliative onstant λ:

ξ⋆(v
a) = λ(vi ∗ vj − vi ⋆ vj) = λ(vivj + vi ⋆ vj − vi ⋆ vj) = λvivj ∈ S≥2(g).

If l(a) ≥ 3, we put a = a′+δi for a well-hosen i, with l(a′) ≥ 2. Then, there exists a non-zero
onstant λ suh that, in U(g), ∆̃(va) = λ(viv

a′). So, as I is a left ideal, va−λviv
a′ ∈ g∩ I = (0),

so va = λviv
a′
. Then ξ⋆(v

a) = vi ∗φ(v
a′). By the indution hypothesis, φ(va

′

) belongs to S≥2(g),
left ideal for ∗, so va belongs to S≥2(g). ✷

As a onlusion:

Theorem 11 Let g be a Lie algebra. There exists a prelie produt on g induing its Lie

braket, if, and only if, there exists a left ideal I of U(g) suh that U+(g) = g⊕I. More preisely,

there exists a bijetion between the sets:

• PL(g) = {⋆ | ⋆ is a prelie produt on g induing the braket of g}.

• LI(g) = {I left ideal of U(g) | U+(g) = g⊕ I}.

It is given by Ψg : LI(g) −→ PL(g), assoiating to a left ideal I the prelie produt de�ned by

x ⋆ y = ̟g(xy), where ̟g is the anonial projetion on g in the diret sum U+(g) = g⊕ I. The
inverse bijetion is given by Φg : PL(g) −→ LI(g), assoiating to a prelie produt ⋆ the left ideal

U(g)V ect(xy − x ⋆ y, x, y ∈ g).

Proof. It only remains to prove that Φg(⋆) is generated by the elements xy− x ⋆ y, x, y ∈ g.

Using the isomorphism ξ⋆, it is equivalent to prove that the left ideal S≥2(V ) of (S(V ), ∗) is

generated by the elements x ∗ y − x ⋆ y, x, y ∈ g. By de�nition of ∗, for all x, y ∈ g:

x ∗ y − x ⋆ y = xy + x ⋆ y − x ⋆ y = xy,

so it is equivalent to prove that the left ideal S≥2(V ) is generated by S2(V ). Let us denote by
J the left ideal generated by S2(V ). As S≥2(V ) is a left ideal, J ⊆ S≥2(V ). Let v1, . . . , vn ∈ g,

with n ≥ 2. Let us prove that v1 . . . vn ∈ J by indution on n. This is obvious if n = 2. If n ≥ 3:

v1 ∗ (v2 . . . vn) = v1 . . . vn + v1 ⋆ (v2 . . . vn).

By lemma 5, v1 ⋆ (v2 . . . vn) ∈ Sn−1(V ). By the indution hypothesis, as n ≥ 3, v1 ∗ (v2 . . . vn)
and v1 ⋆ (v2 . . . vn) belong to J , so v1 . . . vn ∈ J . As a onlusion, S≥2(V ) = J . ✷
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Corollary 12 Let g be a Lie algebra. There exists an assoiative produt on g induing its

Lie braket, if, and only if, there exists a bilateral ideal I of U(g) suh that U+(g) = g⊕ I. More

preisely, there exists a bijetion between the sets:

1. AS(g) = {⋆ | ⋆ is an assoiative produt on g induing the braket of g}.

2. BI(g) = {I bilateral ideal of U(g) / U+(g) = g⊕ I}.

It is given by Ψg : LI(g) −→ PL(g), assoiating to a left ideal I the assoiative produt de�ned

by x ⋆ y = ̟g(xy), where ̟g is the anonial projetion on g in the diret sum U+(g) = g⊕ I.

Proof. It is enough to verify that Ψg(BI(g)) ⊆ AS(g) and Φg(AS(g)) ⊆ BI(g). Let

⋆ ∈ AS(g). By proposition 6, S≥2(g) is a bilateral ideal, so is Φg(⋆) = ξ−1
⋆ (S≥2(g)). Let

I ∈ ASgr(g)). Then g ≈ U+(g)/I inherits an assoiative produt, whih is ⋆ = Ψg(I). ✷

1.5 Good and very good pointed modules

De�nition 13 Let g be a Lie algebra.

1. A pointed g-module is a ouple (M,m), where M is a g-module and m ∈ M .

2. Let (M,m) be a pointed g-module. The appliation Υm is de�ned by:

Υm :

{
g −→ M
x −→ x.m.

3. A pointed g-module (M,m) is good if the following assertions hold:

• Υm is injetive.

• Im(Υm) is a submodule of M whih does not ontains m.

• M/Im(Υm) ≈ K (trivial g-module) as a g-module.

4. A pointed g-module (M,m) is very good if Υm is bijetive.

Note that all good pointed g-modules have the same dimension, so we an onsider the set

GM(g) of isomorphism lasses of good pointed g-modules. Similarly, we an onsider the set

VGM(g) of very good pointed g-modules.

Remark. If (M,m) is good, then it is yli, generated by m. Moreover, M/Im(Υm) is
one-dimensional, trivial, generated by m = m+ Im(Υm).

Theorem 14 Let g be a Lie algebra. The following appliation is a bijetion:

Θ :

{
LI(g) −→ GM(g)

I −→ (U(g)/I, 1).

Proof. Let us �rst proove that Θ is well-de�ned. As I ∈ LI(g), as a vetor spae

U(g)/I = (1) ⊕ g. For all x, y ∈ g, xy ∈ U+(g), so x.y ∈ U+(g)/I = g in U(g)/I, as

I ⊆ U+(g). As a onlusion, the subspae g of U(g)/I is a submodule. Moreover, Υ1(x) = x for

all x ∈ g. So Υ1 is injetive, and its image is the submodule g, so does not ontain 1. Finally,
(U(g)/I)/Im(Υ1) ≈ U(g)/U+(g) ≈ K as a g-module. So (U(g)/I, 1) is a good pointed g-module.

Let us onsider:

Θ′ :

{
GM(g) −→ LI(g)
(M,m) −→ Ann(m) = {x ∈ U(g) | x.m = 0}.
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Let us prove that Θ′
is well-de�ned. Let (M,m) be a good pointed g-module. Then Ann(m)

is a left-ideal of U(g). Let x ∈ Ann(m). Then x.m = 0, so x.m = 0 in M/Im(Υm), so
x.m = ε(x)m = 0. As a onlusion, ε(x) = 0, so Ann(m) ⊆ U+(g). Let us now show that

U+(g) = g ⊕ Ann(m). First, if x ∈ g ∩ Ann(m), then Υm(x) = x.m = 0. As Υm is moni,

x = 0. If y ∈ U+(g), then y.m = ε(y)m = 0 in M/Im(Υm), so y.m ∈ Im(Υm): there exists

x ∈ g, suh that y.m = x.m. Hene, y−x ∈ Ann(m), so y = x+(y−x) ∈ g+Ann(m). Finally,
Ann(m) ∈ LI(g).

Moreover, if (M,m) and (M ′,m′) are isomorphi (that is to say there is an isomorphism of

g-modules from M to M ′
sending m to m′

), then Ann(m) = Ann(m′). So Θ′
is well-de�ned.

Let (M,m) be a good pointed g-module. Then Θ◦Θ′(M,m) = (U(g)/Ann(m), 1) ≈ (M,m),
as M is yli, generated by m. Let now I ∈ LI(g). Then Θ′ ◦ Θ(I) is the annihilator of 1 in

U(g)/I, so is equal to I. As a onlusion, Θ and Θ′
are inverse bijetions. ✷

De�nition 15 The set GM′(g) is the set of isomorphism lasses of ouple ((M,m), V ),
where:

• (M,m) is a good pointed g-module.

• V is a submodule of M suh that M = V ⊕ Im(Υm).

Proposition 16 For any Lie algebra g, GM′(g) is in bijetion with VGM(g).

Proof. Let ((M,m), V ) be an element of GM′(g). As M/Im(Υm) ≈ K, the omplement V
of Im(Υm) is trivial and one-dimensional. As m /∈ Im(Υm), V admits a unique element m′ =
m+x.m, where x ∈ g. Let us show that (Im(Υm),−x.m) is very good. Letm′′ ∈ Im(Υm). There
exists y ∈ g, suh that y.m = m′′

. Then y.m′ = ε(y)m′ = 0 = y.m + y.(x.m) = m′′ + y.(x.m),
so m′′ = y.(−x.m) = Υ−x.m(y). Hene, Υ−x.m is epi.

Let us assume that Υ−x.m(y) = 0. Then y.m′ = ε(y)m′ = 0 = y.m+y.(x.m) = y.m = Υm(x).
As Υm is moni, y = 0, so Υ−x.m is also moni.

Moreover, if ((M,m), V ) ≈ ((M ′,m′), V ′), then (Im(Υm),−x.m) and (Im(Υm′ ,−x′.m′) are
isomorphi, so the following appliation is well-de�ned:

Λ :

{
GM′(g) −→ VGM(g)

((M,m), V ) −→ (Im(Υm),−x.m).

Let now (M,m) be a very good pointed g-module. Let us prove that ((K ⊕M, 1 +m),K)
is an element of GM′(g). First, for all x ∈ g, Υ1+m(x) = ε(x)1 + x + m = 0 + Υm(x), so
Υ1+m = Υm. As a onsequene, Im(Υ1+m) = M is a submodule whih does not ontains 1+m,

Υ1+m is moni, and K is a omplement of Im(Υ1+m). Hene, ((K ⊕M, 1 +m),K) ∈ GM′(g).
Moreover, if (M,m) ≈ (M ′,m′), then ((K ⊕ M, 1 + m),K) ≈ ((K ⊕ M ′, 1 + m′),K), so the

following appliation is well-de�ned:

Λ′ :

{
VGM(g) −→ GM′(g)
(M,m) −→ ((K ⊕M, 1 +m),K).

Let (M,m) ∈ VGM(g). Then Λ ◦ Λ′((M,m)) = (M,m). Let ((M,m), V ) ∈ GM′(g). Then
the following appliation is an isomorphism of pointed g-modules and sends K to V :

{
(K ⊕ Im(Υm), 1 − x.m) −→ M

λ+m′′ −→ λm′ +m′′.

So Λ and Λ′
are inverse bijetions. ✷
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2 Are the omplex simple Lie algebras prelie?

The aim of this setion is to prove that the omplex �nite-dimensional simple Lie algebras are

not prelie. In this setion, the base �eld is the �eld of omplex C. We shall use the notations

of [4℄ in the whole setion. In partiular, if g is a simple omplex �nite-dimensional Lie algebra,

Γ(a1,...,an) is the simple g-module of hightest weight (a1, . . . , an).

2.1 General results

Proposition 17 Let g be a �nite-dimensional semi-simple Lie algebra. Then there exists a

prelie produt on g induing its braket if, and only if, there exists a very good pointed g-module.

Proof. As the ategory of �nite-dimensional modules over g is semi-simple, for any good

pointed g-module (M,m), there exists a V suh that ((M,m), V ) ∈ GM(g). Using the bijetions
of the preeding setion, PL(g) is non-empty if, and only if, LI(g) is non-empty, if, and only

if, the set GM(g) is non-empty, if, and only if, the set GM′(g) is non-empty, if, and only if,

VGM(g) is non-empty. ✷

Let g be a �nite-dimensional omplex simple Lie algebra. In order to prove that g is not

prelie, we have to prove that g has no very good pointed modules.

Lemma 18 Let (M,m) be a very good g-module and let M ′
be a submodule of M . There

exists m′ ∈ M , suh that the following appliation is epi:

Υm′ :

{
M ′ −→ M ′

x −→ x.m′.

Proof. As g is semi-simple, let M ′′
be a omplement of M ′

in M and let m = m′ +m′′
the

deomposition of m in M = M ′ ⊕M ′′
. Let u ∈ M ′

. As Υm is bijetive, there exists a (unique)

x ∈ g, suh that Υm(x) = u. So u+ 0 = x.m′ + xm′′
in the diret sum M = M ′ ⊕M ′′

. Hene,

Υm′(x) = u and Υm′
is epi. ✷

Corollary 19 Let (M,m) be a very good g-module. Then M is not isomorphi to (g, ad)
and its trivial omponent is (0).

Proof. First, note that for all x ∈ g, ((g, ad), x) is not very good: it is obvious if x = 0 and

if x 6= 0, Υx(x) = [x, x] = 0, so Υx is not moni.

If (M,m) is very good, let us onsider its trivial omponent M ′
. By the preeding lemma,

there exists m′ ∈ M ′
, suh that Υm′ : M ′ −→ M ′

is epi. As M ′
is trivial, Υm′ = 0, and �nally

M ′ = (0). ✷

2.2 Representations of small dimension

We �rst give the representations of g with dimension smaller than the dimension of g. We shall

say that a g-module M is small if:

• M is simple.

• The dimension of M is smaller than the dimension of g.

• M is not trivial and not isomorphi to (g, ad).

Remark. By orollary 19, any very good module is the diret sum of small modules.

Let n be the rank of g and let Γ(a1,...,an) be the simple g-module of highest weight (a1, . . . , an).
The dimension of Γ(a1,...,an) is given in [4℄ in hapter 15 for sln+1, (formula 15.17), in hapter 24
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for sp2n, so2n and so2n+1 (exerises 24.20, 24.30 and 24.42). It turns out from these formulas

that if b1 ≤ a1, . . . bn ≤ an, then dim(Γ(b1,...,bn)) ≤ dim(Γ(a1,...,an)), with equality if, and only

if, (b1, . . . , bn) = (a1, . . . , an). Diret omputations of dim(Γ(0,...,0,3,0,...,0)) then shows that it is

enough to ompute the dimensions of Γ(a1,...,an) with all a1 ≤ 2. With the help of a omputer,

we obtain:

g dim(g) small modules V dim(V )

sln, n ≥ 9 n2 − 1 Γ(1,0,...,0), Γ(0,...,0,1) n

Γ(0,1,0,...,0), Γ(0,...,0,1,0) n(n− 1)/2

Γ(2,0,...,0), Γ(0,...,0,2) (n+ 1)/2

sln, 3 ≤ n ≤ 8 n2 − 1 Γ(0,...,0,1,...,0), the 1 in position i
(
n
i

)

Γ(2,0,...,0), Γ(0,...,0,2) (n+ 1)/2

sl2 3 Γ1 2

sp2n, n = 2 or n ≥ 4 n(2n+ 1) Γ(1,0,...,0) 2n

Γ(0,1,0,...,0) (2n+ 1)(n − 1)

sp6 21 Γ(1,0,0) 6

Γ(0,1,0), Γ(0,0,1) 14

so2n, n ≥ 8 n(2n− 1) Γ(1,0,...,0) 2n

so2n, 4 ≤ n ≤ 7 n(2n− 1) Γ(1,0,...,0) 2n

Γ(0,0,1,0,...,0), Γ(0,...,0,1) 2n−1

so6 15 Γ(1,0,0) 6

Γ(0,1,0), Γ(0,0,1) 4

Γ(0,2,0), Γ(0,0,2) 10

so2n+1, n ≥ 7 n(2n+ 1) Γ(1,0,...,0) 2n+ 1

so2n+1, 2 ≤ n ≤ 6 n(2n+ 1) Γ(1,0,...,0) 2n+ 1

Γ(0,...,0,1) 2n

e6 78 Γ(1,0,0,0,0,0) 27

e7 133 Γ(1,0,0,0,0,0,0) 56

e8 78 × ×
f4 52 Γ(1,0,0,0) 26

g2 14 Γ(1,0) 7

2.3 Proof in the generi ases

Proposition 20 Let g be sln, with n 6= 6, or so2n, with n ≥ 2, or sp2n, with n ≥ 2, or en,

with 6 ≤ n ≤ 8. Then g is not prelie.

Proof. Let g be a simple �nite-dimensional Lie algebra, with a prelie produt induing its

Lie braket. From the preeding results, g has a very good pointed g-module (M,m), and the

submodules appearing in the deomposition of M into simples modules are all small. Let us

show that it is not possible in these di�erent ases.

First ase. If g = sln, with n ≥ 9, then the deomposition of a very good pointed g-module

into simples would have a submodules of dimension n, b submodules of dimensions n(n − 1)/2
and c submodules of dimension n(n+ 1)/2. So:

n2 − 1 = an+ b
n(n− 1)

2
+ c

n(n+ 1)

2
.

Let us assume that n has a prime fator p 6= 2. Then p | n, p | n(n ± 1) and 2 | n(n ± 1), so

p | n(n±1)
2 . As a onsequene, p | n2 − 1, so p | 1: this is absurd. So n = 2k for a ertain k ≥ 4,

as n ≥ 9. Then:
a2k + b2k−1(2k − 1) + c2k−1(2k + 1) = 22k − 1,
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so 2k−1 | 22k − 1 and k = 1: ontradition.

Seond ase. Similarly, if g = sp2n with n 6= 3, we would have a, b ∈ N suh that a2n +
b2n+ 1(n − 1) = n2n+ 1. If b ≥ 2, then n2n+ 1 ≥ 22n+ 1(n − 1), so 2n+ 1(n − 2) ≤ 0 and

n ≤ 2: ontradition. So b = 0 or 1. If b = 0, then a = n+ 1
2 : absurd. If b = 1, then a = 1+ 1

2n :

absurd.

Third ase. If g = so2n, with n ≥ 8, then we would have 2n | n(2n−1), so n− 1
2 ∈ N: absurd.

Other ases. Let us sum up the possible dimensions of the small modules in an array:

g dimensions of the small modules dim(g)

sl2 2 3

sl3 3, 6 8

sl4 4, 6, 10 15

sl5 5, 10, 15 24

sl7 7, 21, 28, 35 48

sl8 8, 28, 36, 56 63

so6 4, 6, 10 15

so8 8 28

so10 10, 16 45

so12 12, 32 66

so14 14, 64 91

sp6 6, 14 21

e6 27 78

e7 56 133

e8 × 248

In all ases exept so6, (there is a prime integer whih divides all the dimensions of the small

submodules but not the dimension of g), or (there is a unique dimension of small modules and it

does not divide the dimension of g), or (there is no small modules). So g is not prelie. For so12,

it omes from the fat that 4 divides 12 and 32 but divides not 66.

So none of these Lie algebras is prelie. ✷

2.4 Case of so2n+1

We assume that n ≥ 2. Let us reall that:

so2n+1 =











A B −tF
C −tA −tE
E F 0



 | B,C skew symmetri






,

where A,B,C are n× n matries, E,F are 1× n matries.

Lemma 21 Let (M,m) be a very good pointed module over g = so2n+1. Then M is isomor-

phi to M2n+1,n(C) as a g-module, with the ation of g given by the (left) matriial produt.

Proof. Let us �rst assume that n ≥ 7. Then g has a unique small module of dimension 2n+1,
whih is the standard representation C

2n+1
. So if M is a diret sum of opies of this module;

omparing the dimension, there are neessarily n opies of this module, so M ≈ M2n+1,n(C).
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If n ≤ 6, let us sum up the possible dimensions of the small modules in an array:

g dimensions of the small modules dim(g)

so5 5, 4 10

so7 7, 8 21

so9 9, 16 36

so11 11, 32 55

so13 13, 64 78

In all these ases, the only possible deomposition ofM is n opies of the standard representation

of dimension 2n+ 1, so the onlusion also holds. ✷

The elements of M2n+1,n(C) will be written as

(
X
Y
z

)

, where X,Y ∈ Mn(C) and z ∈ M1,n(C).

Proposition 22 For any m =
(
X
Y
z

)

∈ M2n+1,n(C), (M2n+1,n(C),m) is not very good.

Proof. Let us denote:

M = {A ∈ M2n+1,n((C) | (M2n+1,n(C), A) is very good}.

Let us reall that:

SO2n+1 =






B ∈ M2n+1,2n+1(C) | tB





0 I 0
I 0 0
0 0 I



B =





0 I 0
I 0 0
0 0 I










.

It is well-known that if B ∈ SO2n+1 and A ∈ so2n+1, then BAB−1 ∈ so2n+1.

First step. Let us prove that m ∈ M if, and only if, Bm ∈ M for all B ∈ SO2n+1. Let us

assume that m ∈ M and let B ∈ SO2n+1. Let us take A ∈ Ker(ΥBm). Then ABm = 0, so
B−1ABm = 0 and B−1AB ∈ Ker(Υm). As m ∈ M, Υm is bijetive, so A = 0: ΥBm is moni.

As M and so2n+1 have the same dimension, ΥBm is bijetive.

Seond step. Let us prove that m ∈ M if, and only if, mP ∈ M for all P ∈ GL(n). Indeed,
m −→ mP is an isomorphism of g-modules for all P ∈ GL(n).

Third step. Let us prove that

(
X
Y
z

)

∈ M if, and only if,

(
QXP

tQ−1Y P
zP

)

∈ M for all P,Q ∈ GL(n).

Indeed, if

(
X
Y
z

)

∈ M and if P,Q ∈ GL(n), by the �rst and seond steps:





Q 0 0
0 tQ−1 0
0 0 1









X
Y
z



P ∈ M,

as the left-multiplying matrix is an element of SO2n+1.

Fourth step. Let

(
X
Y
z

)

∈ M, let us prove that X is invertible. If X is not invertible, for a

good hoie of P and Q, QXP has its �rst row and �rst olumn equal to 0. By the third step,

m′ =

(
QXP

tQ−1Y P
zP

)

∈ M, but Υm′(En+1,2 − En+2,1) = 0, where Ei,j is the elementary matrix with

only a 1 in position (i, j): this is a ontradition. So X is invertible.

Last step. Let us assume that M is not empty and let m =
(
X
Y
z

)

∈ M. Then X is invertible.

For a good hoie of P and Q, we obtain an element m′ =
(
In
Y ′

z′

)

∈ M. Let us then hoose a
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non-zero skew-symmetri matrix B ∈ Mn(C) (this exists as n ≥ 2), then the following element

is in so2n+1:

A =





−BY B 0
tY BY −tY B 0

0 0 0



 ∈ so2n+1.

An easy omputation shows that A.m′ = 0, so A ∈ Ker(Υm′): ontradition, m′ /∈ M. So M is

empty. ✷

Corollary 23 For all n ≥ 2, so2n+1 is not prelie.

2.5 Proof for sl6 and g2

The Lie algebra sl6 has dimension 35, and the possible dimensions of its small modules are 6, 15,
20. So if (M,m) is a very good pointed module, M is the diret sum of a simple of dimension 15
and a simple of dimension 20. As there is only one simple of dimension 20, that is to say Λ3(V )
where V is the standard representation, M ontains Λ3(V ). By lemma 18, in order to prove that

sl6 is not prelie, it is enough to prove that for any m ∈ Λ3(V ), Υm is not epi. This essentially

onsists to show that the rank of a ertain 20× 35 matrix is not 20 and this an be done diretly

using MuPAD pro 4, see setion 4.2.

The proof for g2 is similar: if (M,m) is a very good module, then M ≈ V ⊕ V , where V is

the only small module of g, that is to say its standard representation. So M ≈ M7,2(C) as a
g-module. It remains to show that for any m, (M7,2(C),m) is not very good. This essentially

onsists to show that a ertain 14 × 14 matrix is not invertible and this an be done diretly

using MuPAD pro 4, see setion 4.3.

The proof for f4 would be similar: if (M,m) is a very good module, then M ≈ V ⊕ V , where
V is the only small module of g, that is to say its standard representation. So M ≈ M26,2(C)
as a f4-module. It would remain to show that for any m, (M26,2(C),m) is not very good. This

would onsist to show that a ertain 52× 52 matrix is not invertible.

We �nally prove:

Theorem 24 Let g be a simple, �nite-dimensional omplex Lie algebra. If it is not isomor-

phi to f4, it is not prelie.

We onjeture:

Theorem 25 Let g be a simple, �nite-dimensional omplex Lie algebra. Then it is not prelie.

Remark. As a orollary, we obtain that g is not assoiative. This result is also proved

in a di�erent way in [7℄, with the help of ompatible produts. Indeed, we have the following

equivalenes:

the prelie produt ⋆ is ompatible

⇐⇒ ∀x, y, z ∈ g, [x, y ⋆ z] = [x, y] ⋆ z + y ⋆ [x, z]
⇐⇒ ∀x, y, z ∈ g, x ⋆ (y ⋆ z)− (y ⋆ z) ⋆ x− (x ⋆ y) ⋆ z + (y ⋆ x) ⋆ z − y ⋆ (x ⋆ z) + y ⋆ (z ⋆ x)
⇐⇒ ∀x, y, z ∈ g, −(y ⋆ z) ⋆ x−+y ⋆ (z ⋆ x) = 0
⇐⇒ ⋆ is assoiative.

As from [7℄, the only admissible assoiative produt on g is 0, g is not assoiative.

16



3 Dendriform produts on ofree oalgebra

3.1 Preliminaries and results on tensor oalgebras

Let V be a vetor spae. The tensor algebra T (V ) has a oassoiative oprodut, given for all

v1, . . . , vn ∈ V by:

∆(v1 . . . vn) =

n∑

i=0

v1 . . . vi ⊗ vi+1 . . . vn.

Let us reall the following fats:

1. Let us �x a basis (vi)i∈I of V . We de�ne T I as the set of words w in letters the elements

of I. For an element w = i1 . . . ik ∈ SΛ, we put l(w) = k, and:

vw =
∏

i∈I

vi1 . . . vik .

Then (vw)w∈T I is a basis of T (V ), and the oprodut is given by:

∆(vw) =
∑

w1w2=w

vw1
⊗ vw2

.

2. Let T+(V ) be the augmentation ideal of T (V ). It is given a oassoiative, non ounitary

oprodut ∆̃ de�ned by ∆̃(x) = ∆(x) − x ⊗ 1 − 1 ⊗ x for all x ∈ T+(V ). In other terms,

putting T+I = T I − {∅}, (vw)w∈T+I is a basis of T+(V ) and:

∆̃(vw) =
∑

w1w2=w
w1,w2∈T+I

vw1
⊗ vw2

.

3. Let ∆̃(n) : T+(V ) −→ T+(V )⊗(n+1)
be the n-th iterated oprodut of T+(V ). Then:

Ker
(

∆̃(n)
)

=

n⊕

k=1

T k(V ).

In partiular, Prim(T (V )) = V .

4. (T n(V ))n∈N is a gradation of the oalgebra T (V ).

Lemma 26 In T+(V )⊗ T+(V ), Ker(∆̃⊗ Id− Id⊗ ∆̃) = Im(∆̃).

Proof. ⊇ omes from the oassoiativity of ∆̃.

⊆: let us onsider X =
∑

w1,w2∈T+I

xw1,w2
vw1

⊗ vw2
∈ Ker(∆̃⊗ Id− Id⊗ ∆̃) = Im(∆̃). Then:

(∆̃ ⊗ Id) ◦ ∆̃(X) =
∑

w1,w2,w3∈T+I

xw1w2,w3
vw1

⊗ vw2
⊗ vw3

= (Id⊗ ∆̃) ◦ ∆̃(X) =
∑

w1,w2,w3∈T+I

xw1,w2w3
vw1

⊗ vw2
⊗ vw3

.

So, for all w1, w3 ∈ T+I, w2 ∈ T I, xw1w2,w3
= xw1,w2w3

. In partiular, xi1...ik,j1...jk = xi1,i2...ikj1...jl
for all i1, . . . , ik, j1, . . . , jl ∈ I. We denote by xi1...ikj1...jl this ommon value. Then:

∆(X) =
∑

w∈T+I

xw
∑

w1w2=w
w1,w2∈SΛ+

vw1
⊗ vw2

=
∑

w∈T+I

xw∆̃(xw).

So X ∈ Im(∆̃). ✷
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Lemma 27 Let W be a subspae of T+(V ), suh that T (V ) = (1) ⊕ V ⊕W . There exists a

oalgebra endomorphism φ of T (V ), suh that φ|V = IdV and φ




⊕

n≥2

T n(V )



 = W . Moreover,

φ is an automorphism.

Proof. Similar to the proof of lemma 3. ✷

Corollary 28 Let C be a ofree oalgebra and let W ⊂ C+, suh that C = (1)⊕Prim(C)⊕W .

There exists a unique oalgebra isomorphism φ : T (Prim(C)) −→ C suh that φ|Prim(C) =
IdPrim(C) and φ(T≥2(Prim(C)) = W .

3.2 Left ideal assoiated to a dendriform Hopf algebra

Let A be a dendriform Hopf algebra [8, 10℄, that is to say the produt (denoted by ∗) of A an

be split on A+ as ∗ =≺ + ≻, with:

1. For all x, y, z ∈ A+:

(x ≺ y) ≺ z = x ≺ (y ∗ z), (1)

(x ≻ y) ≺ z = x ≻ (y ≺ z), (2)

(x ∗ y) ≻ z = (x ≻ y) ≻ z. (3)

2. For all a, b ∈ A+:

∆̃(a ≺ b) = a′ ∗ b′ ⊗ a′′ ≺ b′′ + a′ ∗ b⊗ a′′ + b′ ⊗ a ≺ b′′ + a′ ⊗ a′′ ≺ b+ b⊗ a, (4)

∆̃(a ≻ b) = a′ ∗ b′ ⊗ a′′ ≻ b′′ + a ∗ b′ ⊗ b′′ + b′ ⊗ a ≻ b′′ + a′ ⊗ a′′ ≻ b+ a⊗ b. (5)

We used the following notations: A+ is the augmentation ideal of A and ∆̃ : A+ −→
A+ ⊗ A+ is the oassoiative oprodut de�ned by ∆̃(a) = ∆(a) − a ⊗ 1 − 1 ⊗ a for all

a ∈ A+.

Proposition 29 Let A be a dendriform Hopf algebra. Then the following appliation is a

monomorphism of oalgebras:

ΘA :

{
T (Prim(A)) −→ A

v1 . . . vn −→ vn ≺ (vn−1 ≺ (. . . ≺ (v2 ≺ v1) . . .)

Moreover, if A is onneted as a oalgebra, then ΘA is an isomorphism, so A is a ofree oalgebra.

Proof. For all v1, . . . , vn ∈ Prim(A), we put:

ω(v1, . . . , vn) = vn ≺ (vn−1 ≺ (. . . ≺ (v2 ≺ v1) . . .).

An easy indution using (4) proves that:

∆(ω(v1, . . . , vn)) =

n∑

i=0

ω(v1, . . . , vi)⊗ ω(vi+1, . . . , vn).

So ΘA is a morphism of oalgebras. Let us prove that this morphism is injetive. If not, its kernel

would ontain primitive elements of T (Prim(A)), that is to say elements of Prim(A): absurd.
If A is onneted, this morphism is surjetive: let us take x ∈ A, let us prove that x ∈ Im(Θ).
As A is onneted, for all x ∈ A, there exists n ≥ 1 suh that ∆̃(n)(x) = 0. Let us proeed by

indution on n. If n = 1, then x ∈ g ⊆ Im(Θ). If n ≥ 2, then ∆̃(n−1)(x) ∈ g⊗n
. Let us put:

∆̃(n−1)(x) =
∑

i1,...,in∈I

ai1...invi1 ⊗ . . .⊗ vin .
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Then:

∆̃(n−1)(x) = ∆̃(n−1)




∑

i1,...,in∈I

ai1...invi1...in



 .

By the indution hypothesis, x−
∑

i1,...,in∈I

ai1...invi1...in ∈ Im(Θ), so x ∈ Im(Θ). As a onlusion,

Θ is an isomorphism, so (vw)w∈T I is a basis of A. ✷

Proposition 30 Let A be a dendriform Hopf algebra, onneted as a oalgebra. Let us put

A≺2 = Prim(A) ≺ A+. Then:

1. A+ = Prim(A)⊕A≺2
.

2. A≺2 = A+ ≺ A+.

3. A≺2
is a left ideal of A.

Proof.

1. Using ΘA:

ΘA(Prim(A)) = Prim(A), ΘA




⊕

n≥2

Prim(A)⊗n



 = A≺2, ΘA




⊕

n≥1

Prim(A)⊗n



 = A+.

As ΘA is an isomorphism, we obtain the result.

2. ⊆. As Prim(A) ⊆ A+, A
≺2 ⊆ A+ ≺ A+.

⊇. Note that A+ = V ect (ω(v1, . . . , vn) | n ≥ 1, v1, . . . , vn ∈ Prim(A)). Let x = ω(v1, . . . , vm)
and y = ω(w1, . . . , wn) ∈ A+. We put x′ = ω(v1, . . . , vm−1). Then, by (1):

x ≺ y = (vm ≺ x′) ≺ y = vm ≺ (x′ ∗ y).

As x′ ∗ y ∈ A+, x ≺ y ∈ A≺2
.

3. It is enough to prove that A+ ∗ A≺2 ⊆ A≺2
. Let x, y, z ∈ A+.

x ∗ (y ≺ z) = x ≺ (y ≺ z) + (x ≻ y) ≺ z ∈ A+ ≺ A+ = A≺2.

So A≺2
is a left ideal of A.

✷

3.3 Dendriform produts on a tensorial oalgebra

Let us now onsider an assoiative produt ∗ on the oalgebra T (V ), suh that:

1. (T (V ), ∗,∆) is a Hopf algebra.

2. T (V )≥2 =
⊕

n≥2

T n(V ) is a left ideal of (T (V ), ∗).

Proposition 31 We de�ne a produt ≺ on T+(V ) in the following way: for all v, v1, . . . , vn ∈
V , w ∈ T+(V ),

{
v ≺ w = wv,

(v1 . . . vn) ≺ w = ((v1 . . . vn−1) ∗ w)vn.

We also put ≻= ∗− ≺. Then (T (V ),≺,≻, ∆̃) is a dendriform Hopf algebra.

19



Proof. Let us �rst prove (1). Let u1, . . . , uk, v1, . . . , vl, w1, . . . , wm ∈ V .

(u1 . . . uk ≺ v1 . . . vl) ≺ w1 . . . wm = ((u1 . . . uk−1 ∗ v1 . . . vl)uk) ≺ w1 . . . wm

= (u1 . . . uk−1 ∗ v1 . . . vl ∗ w1 . . . wm)uk

= u1 . . . uk ≺ (v1 . . . vl ∗ w1 . . . wm).

Let us now prove (4). We take a = u1 . . . uk, b = v1 . . . vl ∈ T+(V ). We denote ã = u1 . . . uk−1.

∆̃(a ≺ b) = ∆̃((ã ∗ b)uk)

= ã ∗ b⊗ uk + ∆̃(ã ∗ b)(1 ⊗ uk)

= ã ∗ b⊗ uk + ã⊗ buk + b⊗ ãuk + ã′ ∗ b⊗ ã′′uk

+ã′ ⊗ (ã′′ ∗ b)uk + ã ∗ b′ ⊗ b′′uk + b′ ⊗ (ã ∗ b′′)uk + ã′ ∗ b′ ⊗ (ã′′ ∗ b′′)uk.

Moreover, using (1):

a′ ∗ b′ ⊗ a′′ ≺ b′′ = ã ∗ b′ ⊗ b′′uk + ã′ ∗ b′ ⊗ (ã′′ ∗ b′′)uk,

a′ ∗ b⊗ a′′ = ã ∗ b⊗ uk + ã′ ∗ b⊗ ã′′uk,

b′ ⊗ a ≺ b′′ = b′ ⊗ (ã ∗ b′′)uk,

a′ ⊗ a′′ ≺ b = ã⊗ buk + ã′ ⊗ (ã′′ ∗ b)uk,

b⊗ a = b⊗ ãuk.

So (4) is satis�ed. As T (V ) is a Hopf algebra, (4)+(5) is satis�ed, so (5) also is.

Let us prove (2). For all x, y, z ∈ T+(V ), we put φ(x, y, z) = (x ≻ y) ≺ z − x ≻ (y ≺ z). A
diret omputation using (4) and (5) shows that:

∆̃(φ(x, y, z)) = x′y′z′ ⊗ Φ(x′′, y′′, z′′) + y′z′ ⊗ Φ(x, y′′, z′′) + x′z′ ⊗ Φ(x′′, y, z′′)

+x′y′ ⊗ Φ(x′′, y′′, z) + z′ ⊗ Φ(x, y, z′′) + y′ ⊗ Φ(x, y′′, z) + x′ ⊗ Φ(x′′, y, z).

Moreover:

φ(x, y, z) = (x ≻ y) ≺ z − x ∗ (y ≺ z) + x ≺ (y ≺ z).

By de�nition of ≺, (x ≻ y) ≺ z and x ≺ (y ≺ z) ∈ T≥2(V ). In the same way, y ≺ z ∈ T≥2(V ),
left ideal of T (V ), so x ∗ (y ≺ z) ∈ T≥2(V ). �nally, φ(x, y, z) ∈ T≥2(V ).

Let us now prove that φ(x, y, z) = 0 by indution on n = l(x) + l(y) + l(z). If n = 3,
then x, y, z ∈ V , so are primitive. So ∆̃(φ(x, y, z)) = 0, and φ(x, y, z) ∈ V . By the preed-

ing point, φ(x, y, z) ∈ V ∩ T≥2(V ) = (0), so φ(x, y, z) = 0. Let us assume the result at all

rank < n. By the indution hypothesis applied to x′, y′, z′ and others, ∆̃(φ(x, y, z)) = 0, so
φ(x, y, z) ∈ V ∩ T≥2(V ) = (0). Hene, (2) is satis�ed. As ∗ is assoiative, (1)+(2)+(3) is satis-

�ed, so (3) also is. ✷

Remark. In the dendriform Hopf algebra T (V ), T (V )≺2 = T (V )≥2.

By the dendriform Cartier-Quillen-Milnor-Moore theorem, T (V ) is now the dendriform en-

veloping algebra of the brae algebra V = Prim(T (V )). By [12℄, the brae struture on V
indued by the dendriform struture of A is given, for all a1, . . . , an ∈ V , by:

〈a1, . . . , an〉

=

n−1∑

i=0

(−1)n−1−i(a1 ≺ (a2 ≺ (. . . ≺ ai) . . .) ≻ an ≺ (. . . (ai+1 ≻ ai+2) ≻ . . .) ≻ an−1)

=

n−1∑

i=0

(−1)n−1−i(a1 . . . ai) ≻ an ≺ (. . . (ai+1 ≻ ai+2) ≻ . . .) ≻ an−1)

= πV

(
n−1∑

i=0

(−1)n−1−i(a1 . . . ai) ≻ an ≺ (. . . (ai+1 ≻ ai+2) ≻ . . .) ≻ an−1)

)

,
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where we denote by πV the anonial projetion on V in T (V ). We obtain,as T (V )≺2 = Ker(πV ):

〈a1, . . . , an〉 = πV ((a1 . . . an−1) ≻ an)

= πV ((a1 . . . an−1) ∗ an)− πV ((a1 . . . an−1) ≺ an)

= πV ((a1 . . . an−1) ∗ an).

In other terms, identifying V and T+(V )/T (V )≥2, V beomes a left (T (V ), ∗)-module, and the

brae struture of V is given by this module struture.

3.4 Dendriform strutures on a ofree oalgebra

Theorem 32 Let A be a ofree oalgebra. We de�ne:

1. DD(A) = {(≺,≻) | (A,≺,≻,∆) is a dendriform Hopf algebra}.

2. LI(A) =

{

(∗, I) |
(A, ∗,∆) is a Hopf algebra and

I is a left ideal of A suh that A+ = Prim(A)⊕ I

}

.

There is a bijetion between these two sets, given by:

ΦA :

{
DD(A) −→ LI(A)
(≺,≻) −→ (≺ + ≻, A+ ≺ A+).

Proof. By proposition 30, ΦA is well-de�ned. We now de�ne the inverse bijetion ΨA. Let

(∗, I) ∈ LI(A). In order to lighten the notation, we put V = Prim(A). By orollary 28, there

exists a isomorphism of oalgebras φI : T (V ) −→ A, suh that φI(v) = v for all v ∈ V and

φI(T (V )≥2) = I. Let ∗̃ be the produt on T (V ), making φI an isomorphism of Hopf algebras.

Then T (V )≥2 is a left ideal of T (V ). By proposition 31, there exists a dendriform struture

(T (V ), ≺̃, ≻̃) on T (V ). Let (A,≺,≻) be the dendriform Hopf algebra struture on A, making

φI an isomorphism of dendriform Hopf algebras. We then put ΨA(∗, I) = (≺,≻). Note that

≺ + ≻= ∗, as ≺̃+ ≻̃ = ∗̃.

Let us show that ΦA ◦ ΨA = IdLI(A). Let (∗, I) ∈ LI(A). We put ΦA ◦ ΨA(∗, I) = (∗′, I ′).
Then, as ΦI : (T (V ), ≺̃, ≻̃) −→ (T (V ),≺,≻) is an isomorphism of dendriform algebras:

I = ΦI(T (V )≥2
) = φI(T (V )≺̃2) = A≺2.

By de�nition of ΦA, I
′ = A≺2 = I. Moreover, ∗′ =≺ + ≻= ∗.

Let us show that ΨA◦ΦA = IdDD(A). Let (≺,≻) ∈ DD(A). We put ΨA◦ΦA(≺,≻) = (≺′,≻′),
and ΦA(≺,≻) = (∗, I). As φI : (T (V ), ≺̃, ≻̃) −→ (A,≺′,≻′) is an isomorphism of dendriform

algebras, we have to prove that φI : (T (V ), ≺̃, ≻̃) −→ (A,≺,≻) is an isomorphism of dendriform

algebras. Let a = u1 . . . uk, b = v1 . . . vl ∈ T+(V ). First:

φI(a≺̃b)− φI(a) ≺ φI(b) ∈ φI(T≥2(V )) +A+ ≺ A+ = I + I = I.

Let us prove that φI(a≺̃b) = φI(a) ≺ φI(b) by indution on k. For k = 1, let us proeed by

indution on l. For l = 1, φI(a≺̃b) = φI(v1u1). Moreover, in A:

∆̃(φI(u1) ≺ φI(v1)) = ∆̃(u1 ≺ v1)

= v1 ⊗ u1,

∆̃(φI(u1≺̃v1)) = (φI ⊗ φI) ◦ ∆̃(u1 ≺ v1)

= φI(v1)⊗ φI(u1)

= v1 ⊗ u1.
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So φI(u1≺̃v1) − φI(u1) ≺ φI(v1) ∈ Prim(A) ∩ I = (0). Let us suppose the result for all l′ < l.
Then, by the indution hypothesis applied to b′′:

∆̃(φI(u1≺̃b)) = ∆̃(φI(bu1))

= (φI ⊗ φI)(b⊗ u1 + b′ ⊗ u1≺̃b′′)

= φI(b)⊗ φI(u1) + φI(b)
′ ⊗ φI(u1)φ̃I(b

′′)

= ∆̃(φI(u1) ≺ φI(b)).

So φI(u1≺̃b)) − φI(u1) ≺ φI(b) ∈ Prim(A) ∩ I = (0). This prove the result for k = 1. Let us

assume the result at all rank k′ < k. We put u1 . . . uk−1 = ã. Then, using the �rst step:

φI(a≺̃b) = φI(uk≺̃(ã∗̃b))

= φI(uk) ≺ (φI(ã) ∗ φI(b̃))

= (φI(uk) ≺ φI(ã)) ≺ φI(b̃)

= (φI(uk ≺ ã)) ≺ φI(b̃)

= φI(a) ≺ φI(b̃).

So ΨA ◦ ΦA = IdDD(A). ✷

4 MuPAD omputations

We here give the di�erent MuPAD proedures we used in this text.

4.1 Dimensions of simple modules

The following proedures ompute the dimension of the simple module Γ(a1,...,an) for sln, sp2n,

so2n and so2n+1.

dimsl:=pro(a)

loal n,res;

begin

n:=nops(a)+1;

res:=produt(produt((sum(a[k℄,k=i..j-1)+j-i)/(j-i),j=i+1..n),i=1..n-1);

return(res);

end_pro;

dimsp:=pro(a)

loal n,k,s,l,res;

begin

n:=nops(a);l:=[℄;

for k from 1 to n do l:=l.[sum(a[x℄,x=k..n)+n-k℄; end_for;

res:=produt(produt((l[i℄-l[j℄)*(l[i℄+l[j℄+2),j=i+1..n),i=1..n-1);

res:=res*produt(l[j℄+1,j=1..n)/produt((2*n-2*j-1)!,j=0..n-1);

return(res);

end_pro;

dimsoodd:=pro(a)

loal n,k,l,res;

begin

n:=nops(a); l:=[℄;

for k from 1 to n do l:=l.[sum(a[x℄,x=k..n)-a[n℄/2+n-k℄; end_for;
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res:=produt(produt((l[i℄-l[j℄)*(l[i℄+l[j℄+1),j=i+1..n),i=1..n-1);

res:=res*produt(2*l[j℄+1,j=1..n)/produt((2*n-2*j-1)!,j=0..n-1);

return(res);

end_pro;

dimsoeven:=pro(a)

loal n,k,l,res;

begin

n:=nops(a); l:=[℄;

for k from 1 to n-2 do l:=l.[sum(a[x℄,x=k..n-2)+a[n-1℄/2+a[n℄/2+n-k℄;end_for;

l:=l.[a[n-1℄/2+a[n℄/2+1,-a[n-1℄/2+a[n℄/2℄;

res:=produt(produt((l[i℄-l[j℄)*(l[i℄+l[j℄),j=i+1..n),i=1..n-1);

res:=res/produt((2*n-2*j)!,j=1..n-1)*2^(n-1);

return(res);

end_pro;

The following proedures give the representations of dimension smaller than dim(g) for g =
sln, sp2n, so2n and so2n+1.

smallsl:=pro(n)

loal ens,prod,i,d,dg;

begin

dg:=n^2-1;

print(Unquoted,"dimension of g: ".expr2text(dg));

ens:=[℄;

for i from 1 to n-1 do ens:=ens.[{0,1,2}℄; end_for;

prod:=ombinat::artesianProdut::list(ens[x℄$x=1..n-1);

for i from 1 to 3^(n-1) do

d:=dimsl(prod[i℄);

if d<=dg then print(Unquoted,"heighest weight ".expr2text(prod[i℄).

" of dimension ".expr2text(d));

end_if;

end_for;

end_pro;

smallsp:=pro(n)

loal ens,prod,i,d,dg;

begin

dg:=n*(2*n+1);

print(Unquoted,"dimension of g: ".expr2text(dg));

ens:=[℄;

for i from 1 to n do ens:=ens.[{0,1,2}℄; end_for;

prod:=ombinat::artesianProdut::list(ens[x℄$x=1..n);

for i from 1 to 3^n do

d:=dimsp(prod[i℄);

if d<=dg then print(Unquoted,"heighest weight ".expr2text(prod[i℄).

" of dimension ".expr2text(d));

end_if;

end_for;

end_pro;

smallsoodd:=pro(n)

loal ens,prod,i,d,dg;
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begin

dg:=n*(2*n+1);

print(Unquoted,"dimension of g: ".expr2text(dg));

ens:=[℄;

for i from 1 to n do ens:=ens.[{0,1,2}℄; end_for;

prod:=ombinat::artesianProdut::list(ens[x℄$x=1..n);

for i from 1 to 3^n do

d:=dimsoodd(prod[i℄);

if d<=dg then print(Unquoted,"heighest weight ".expr2text(prod[i℄).

" of dimension ".expr2text(d));

end_if;

end_for;

end_pro;

smallsoeven:=pro(n)

loal ens,prod,i,d,dg;

begin

dg:=n*(2*n-1);

print(Unquoted,"dimension of g: ".expr2text(dg));

ens:=[℄;

for i from 1 to n do ens:=ens.[{0,1,2}℄; end_for;

prod:=ombinat::artesianProdut::list(ens[x℄$x=1..n);

for i from 1 to 3^n do

d:=dimsoeven(prod[i℄);

if d<=dg then print(Unquoted,"heighest weight ".expr2text(prod[i℄).

" of dimension ".expr2text(d));

end_if;

end_for;

end_pro;

4.2 Computations for sl6

The proedure testsl6 produes the matrix used in setion 2.4, orresponding to the ation of

sl6 over Λ
3(V ), where V is the standard representation of sl6.

basis:=[[1,2,3℄,[1,2,4℄,[1,2,5℄,[1,2,6℄,[1,3,4℄,[1,3,5℄,[1,3,6℄,[1,4,5℄,[1,4,6℄,

[1,5,6℄,[2,3,4℄,[2,3,5℄,[2,3,6℄,[2,4,5℄,[2,4,6℄,[2,5,6℄,

[3,4,5℄,[3,4,6℄,[3,5,6℄,[4,5,6℄℄:

indexbasis:=pro(B)

loal i;

begin

for i from 1 to 20 do if B=basis[i℄ then return(i); end_if; end_for;

end_pro:

ationbasis:=pro(A,B)

loal ve,ve1,liste,liste2,oef,numero,i,j,k,n;

begin

liste:=[℄; i:=B[1℄; j:=B[2℄; k:=B[3℄;

ve:=matrix(6,1); ve[i℄:=1; ve:=A*ve;

for n from 1 to 6 do liste:=liste.[[ve[n℄,[n,j,k℄℄℄; end_for;

ve:=matrix(6,1); ve[j℄:=1; ve:=A*ve;

for n from 1 to 6 do liste:=liste.[[ve[n℄,[i,n,k℄℄℄; end_for;
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ve:=matrix(6,1); ve[k℄:=1; ve:=A*ve;

for n from 1 to 6 do liste:=liste.[[ve[n℄,[i,j,n℄℄℄; end_for;

liste2:=[℄;

for n from 1 to nops(liste) do

oef:=(liste[n℄)[1℄;

i:=((liste[n℄)[2℄)[1℄; j:=((liste[n℄)[2℄)[2℄; k:=((liste[n℄)[2℄)[3℄;

if (oef<>0) then

if (i<j) and (j<k) then liste2:=liste2.[[oef,[i,j,k℄℄℄; end_if;

if (i<k) and (k<j) then liste2:=liste2.[[-oef,[i,k,j℄℄℄; end_if;

if (j<i) and (i<k) then liste2:=liste2.[[-oef,[j,i,k℄℄℄; end_if;

if (j<k) and (k<i) then liste2:=liste2.[[oef,[j,k,i℄℄℄; end_if;

if (k<i) and (i<j) then liste2:=liste2.[[oef,[k,i,j℄℄℄; end_if;

if (k<j) and (j<i) then liste2:=liste2.[[-oef,[k,i,j℄℄℄; end_if;

end_if;

end_for;

ve:=matrix(20,1);

for n from 1 to nops(liste2) do

oef:=(liste2[n℄)[1℄;

numero:=indexbasis((liste2[n℄)[2℄);

ve1:=matrix(20,1); ve1[numero℄:=oef; ve:=ve+ve1;

end_for;

return(ve);

end_pro:

ationvetor:=pro(A,ve)

loal i,res;

begin

res:=matrix(20,1);

for i from 1 to 20 do res:=res+ve[i℄*ationbasis(A,basis[i℄); end_for;

return(res);

end_pro:

testsl6:=pro()

loal ve,res,i,j,mat;

begin

res:=[℄; ve:=[℄;

for i from 1 to 20 do ve:=ve.[a[i℄℄; end_for;

for i from 1 to 5 do

mat:=matrix(6,6); mat[i,i℄:=1; mat[i+1,i+1℄:=-1;

res:=res.ationvetor(mat,ve);

end_for;

for i from 1 to 5 do

for j from i+1 to 6 do

mat:=matrix(6,6); mat[i,j℄:=1;

res:=res.ationvetor(mat,ve);

mat:=matrix(6,6); mat[j,i℄:=1;

res:=res.ationvetor(mat,ve);

end_for;

end_for;

return(res);

end_pro;
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4.3 Computations for g2

The proedure testg2 produes the matrix used in setion 2.4, orresponding to the ation of

g2 on M7,2(C).

H1:=matrix([[1,0,0,0,0,0,0℄,[0,-1,0,0,0,0,0℄,[0,0,2,0,0,0,0℄,[0,0,0,0,0,0,0℄,

[0,0,0,0,-2,0,0℄,[0,0,0,0,0,1,0℄,[0,0,0,0,0,0,-1℄℄):

H2:=matrix([[0,0,0,0,0,0,0℄,[0,1,0,0,0,0,0℄,[0,0,-1,0,0,0,0℄,[0,0,0,0,0,0,0℄,

[0,0,0,0,1,0,0℄,[0,0,0,0,0,-1,0℄,[0,0,0,0,0,0,0℄℄):

Y1:=matrix([[0,0,0,0,0,0,0℄,[1,0,0,0,0,0,0℄,[0,0,0,0,0,0,0℄,[0,0,1,0,0,0,0℄,

[0,0,0,2,0,0,0℄,[0,0,0,0,0,0,0℄,[0,0,0,0,0,-1,0℄℄):

Y2:=matrix([[0,0,0,0,0,0,0℄,[0,0,0,0,0,0,0℄,[0,-1,0,0,0,0,0℄,[0,0,0,0,0,0,0℄,

[0,0,0,0,0,0,0℄,[0,0,0,0,1,0,0℄,[0,0,0,0,0,0,0℄℄):

Y3:=-Y1*Y2+Y2*Y1: Y4:=-1/2*(Y1*Y3-Y3*Y1):

Y5:=1/3*(Y1*Y4-Y4*Y1): Y6:=Y2*Y5-Y5*Y2:

X1:=matrix([[0,1,0,0,0,0,0℄,[0,0,0,0,0,0,0℄,[0,0,0,2,0,0,0℄,[0,0,0,0,1,0,0℄,

[0,0,0,0,0,0,0℄,[0,0,0,0,0,0,-1℄,[0,0,0,0,0,0,0℄℄):

X2:=matrix([[0,0,0,0,0,0,0℄,[0,0,-1,0,0,0,0℄,[0,0,0,0,0,0,0℄,[0,0,0,0,0,0,0℄,

[0,0,0,0,0,1,0℄,[0,0,0,0,0,0,0℄,[0,0,0,0,0,0,0℄℄):

X3:=X1*X2-X2*X1: X4:=1/2*(X1*X3-X3*X1):

X5:=-1/3*(X1*X4-X4*X1): X6:=-(X2*X5-X5*X2):

g2:=[H1,H2,X1,X2,X3,X4,X5,X6,Y1,Y2,Y3,Y4,Y5,Y6℄:

testg2:=pro()

loal i,j,res,A,M;

begin

A:=matrix(7,2);

for i from 1 to 7 do for j from 1 to 2 do A[i,j℄:=a[i,j℄; end_for; end_for;

res:=[℄;

for i from 1 to 14 do

M:=g2[i℄*A;

res:=res.linalg::stakMatrix(M[1..7,1℄,M[1..7,2℄);

end_for;

return(res);

end_pro;
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