Examples of Com-PreLie Hopf algebras

Loïc Foissy
Fédération de Recherche Mathématique du Nord Pas de Calais FR 2956 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du Littoral Côte dOpale-Centre Universitaire de la Mi-Voix 50, rue Ferdinand Buisson, CS 80699, 62228 Calais Cedex, France
email: foissy@lmpa.univ-littoral.fr

Abstract

We gives examples of Com-PreLie bialgebras, that is to say bialgebras with a preLie product satisfying certain compatibilities. Three families are defined on shuffle algebras: one associated to linear endomorphisms, one associated to linear form, one associated to preLie algebras. We also give all graded preLie product on $\mathbb{K}[X]$, making this bialgebra a Com-PreLie bialgebra, and classify all connected cocommutative Com-PreLie bialgebras.

KEYWORDS. Com-PreLie bialgebras; PreLie algebras; connected cocommutative bialgebras.
AMS CLASSIFICATION. 17D25

Contents

1 Com-PreLie and Zinbiel-PreLie algebras 4
1.1 Definitions 4
1.2 Linear endomorphism on primitive elements 5
2 Examples on shuffle algebras 6
2.1 Com-PreLie algebra attached to a linear endomorphism 7
2.2 Com-PreLie algebra attached to a linear form 8
2.3 Com-PreLie algebra associated to a preLie algebra 14
3 Examples on $\mathbb{K}[X]$ 16
3.1 Graded preLie products on $\mathbb{K}[X]$ 18
3.2 Classification of graded preLie products on $\mathbb{K}[X]$ 20
4 Cocommutative Com-PreLie bialgebras 22
4.1 First case 23
4.2 Second case 28

Introduction

The composition of Fliess operators [6] gives a group structure on set of noncommutative formal series $\mathbb{K}\left\langle\left\langle x_{0}, x_{1}\right\rangle\right\rangle$ in two variables x_{0} and x_{1}. For example, let us consider the following formal
series:

$$
\begin{aligned}
& A=a_{\emptyset}+a_{0} x_{0}+a_{1} x_{1}+a_{00} x_{0}^{2}+a_{01} x_{0} x_{1}+a_{10} x_{1} x_{0}+a_{11} x_{1}^{2}+\ldots, \\
& B=b_{\emptyset}+b_{0} x_{0}+b_{1} x_{1}+b_{00} x_{0}^{2}+b_{01} x_{0} x_{1}+b_{10} x_{1} x_{0}+b_{11} x_{1}^{2}+\ldots, \\
& B=c_{\emptyset}+c_{0} x_{0}+c_{1} x_{1}+c_{00} x_{0}^{2}+c_{01} x_{0} x_{1}+c_{10} x_{1} x_{0}+c_{11} x_{1}^{2}+\ldots ;
\end{aligned}
$$

if $C=A \cdot B$, then:

$$
\begin{aligned}
c_{\emptyset} & =a_{\emptyset}+b_{\emptyset}, \\
c_{0} & =a_{0}+b_{0}+a_{1} b_{\emptyset}, \\
c_{00} & =a_{00}+b_{00}+a_{01} b_{\emptyset}+a_{10} b_{\emptyset}+a_{11} b_{\emptyset}^{2}+a_{1} b_{0}, \\
c_{01} & =a_{01}+b_{01}+a_{11} b_{\emptyset}+a_{1} b_{1}, \\
c_{10} & =a_{10}+b_{10}+a_{11} b_{\emptyset}, \\
c_{11} & =a_{11}+b_{11} .
\end{aligned}
$$

This quite complicated structure can be more easily described with the help of the Hopf algebra of coordinates of this group; this leads to a Lie algebra structure on the algebra $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ of noncommutative polynomials in two variables, which is in a certain sense the infinitesimal structure associated to the group of Fliess operators. As explained in [3], this Lie bracket comes from a nonassociative, preLie product \bullet. For example:

$$
\begin{array}{ll}
x_{0} x_{0} \bullet x_{0}=0, & x_{0} x_{0} \bullet x_{1}=0, \\
x_{0} x_{1} \bullet x_{0}=x_{0} x_{0} x_{0}, & x_{0} x_{1} \bullet x_{1}=x_{0} x_{0} x_{1}, \\
x_{1} x_{0} \bullet x_{0}=2 x_{0} x_{0} x_{0}, & x_{1} x_{0} \bullet x_{1}=x_{0} x_{0} x_{1}+x_{0} x_{1} x_{0}, \\
x_{1} x_{1} \bullet x_{0}=x_{1} x_{0} x_{0}+x_{0} x_{1} x_{0}+x_{0} x_{0} x_{1}, & x_{1} x_{1} \bullet x_{1}=x_{1} x_{0} x_{1}+2 x_{0} x_{1} x_{1} .
\end{array}
$$

Moreover, $\mathbb{K}\left\langle x_{0}, x_{1}\right\rangle$ is naturally a Hopf algebra with the shuffle product $\boldsymbol{\omega}$ and the deconcatenation coproduct Δ, and it turns out that there exists compatibilities between this Hopf-algebraic structure and the preLie product

- For all $a, b, c \in A,(a \amalg b) \bullet c=(a \bullet c) ш b+a \amalg(b \bullet c)$.
- For all $a, b \in A, \Delta(a \bullet b)=a^{(1)} \otimes a^{(2)} \bullet b+a^{(1)} \bullet b^{(1)} \otimes a^{(2)} ш b^{(2)}$, with Sweedler's notation. this is a Com-PreLie bialgebra (definition (1). Moreover, the shuffle bracket can be induced by the half-shuffle product \prec, and there is also a compatibility between \prec and \bullet :
- For all $a, b, c \in A,(a \prec b) \bullet c=(a \bullet c) \prec b+a \prec(b \bullet c)$.
we obtain a Zinbiel-PreLie bialgebra.
Our aim in the present text is to give examples of other Com-PreLie algebras or bialgebras. We first introduce three families, all based on the shuffle Hopf algebra $T(V)$ associated to a vector space V.

1. The first family $T(V, f)$, introduced in [4, is parametrized by linear endomorphism of V. For example, if $x_{1}, x_{2}, x_{3} \in V, w \in T(V)$:

$$
\begin{aligned}
x_{1} \bullet w & =f\left(x_{1}\right) w, \\
x_{1} x_{2} \bullet w & =x_{1} f\left(x_{2}\right) w+f\left(x_{1}\right)\left(x_{2} Ш w\right), \\
x_{1} x_{2} x_{3} \bullet w & =x_{1} x_{2} f\left(x_{3}\right) w+x_{1} f\left(x_{2}\right)\left(x_{3} Ш w\right)+f\left(x_{1}\right)\left(x_{2} x_{3} Ш w\right) .
\end{aligned}
$$

In particular, if $V=\operatorname{Vect}\left(x_{0}, x_{1}\right), f\left(x_{0}\right)=0$ and $f\left(x_{1}\right)=x_{0}$, we recover in this way the Com-PreLie bialgebra of Fliess operators.
2. The second family $T(V, f, \lambda)$ is indexed by pairs (f, λ), where f is a linear form on V and λ is a scalar. For example, if $x, y_{1}, y_{2}, y_{3} \in V$ and $w \in T(V)$:

$$
\begin{aligned}
x w \bullet y_{1} & =f(x) w Ш y_{1}, \\
x w \bullet y_{1} y_{2} & =f(x)\left(w Ш y_{1} y_{2}+\lambda f\left(y_{1}\right) w Ш y_{2}\right), \\
x w \bullet y_{1} y_{2} y_{3} & =f(x)\left(w Ш y_{1} y_{2} y_{3}+\lambda f\left(y_{1}\right) w Ш y_{2} y_{3}+\lambda^{2} f\left(y_{1}\right) f\left(y_{2}\right) w Ш y_{3}\right) .
\end{aligned}
$$

We obtain a Com-PreLie algebra, but generally not a Com-PreLie bialgebra. Nevertheless, the subalgebra $\operatorname{coS}(V)$ generated by V is a Com-PreLie bialgebra. Up to an isomorphism, the symmetric algebra becomes a Com-PreLie bialgebra, denoted by $S(V, f, \lambda)$.
3. If \star is a preLie product on V, then it can be extended in a product on $T(V)$, making it a Com-PreLie bialgebra denoted by $T(V, \star)$. For example, if $x_{1}, x_{2}, x_{3}, y \in V, w \in T(V)$.

$$
\begin{aligned}
x_{1} \bullet y w & =\left(x_{1} \star y\right) w, \\
x_{1} x_{2} \bullet y w & =\left(x_{1} \star y\right)\left(x_{2} Ш w\right)+x_{1}\left(x_{2} \star y\right) w, \\
x_{1} x_{2} x_{3} \bullet y w & =\left(x_{1} \star y\right)\left(x_{2} x_{3} Ш w\right)+x_{1}\left(x_{2} \star y\right)\left(x_{3} Ш w\right)+x_{1} x_{2}\left(x_{3} \star y\right) w .
\end{aligned}
$$

These examples answer some questions on Com-PreLie bialgebras. According to proposition 4 if A is a Com-PreLie bialgebra, the map f_{A} defined by $f_{A}(x)=x \bullet 1_{A}$ is an endomorphism of $\operatorname{Prim}(A)$; if $f_{A}=0$, then $\operatorname{Prim}(A)$ is a PreLie subalgebra of A. Then:

- If $A=T(V, f)$, then $f_{A}=f$, which proves that any linear endomorphim can be obtained in this way.
- If $A=T(V, \star)$, then $f_{A}=0$ and the preLie product on $\operatorname{Prim}(A)$ is \star, which proves that any preLie product can be obtained in this way.

The next section is devoted to the algebra $\mathbb{K}[X]$. We first classify preLie products making it a graded Com-PreLie algebra: this gives four families of Com-PreLie algebras described in theorem 18, including certain cases of $T(V, f)$. Only a few of them are compatible with the coproduct of $\mathbb{K}[X]$ (proposition [23). The last paragraph gives a classification of all connected, cocommutative Com-PreLie bialgebras (theorem [24): up to an isomorphism these are the $S(V, f, \lambda)$ and examples on $\mathbb{K}[X]$.

Aknowledgment. The research leading these results was partially supported by the French National Research Agency under the reference ANR-12-BS01-0017.

Notations.

$1 . \mathbb{K}$ is a commutative field of characteristic zero. All the objects (vector spaces, algebras, coalgebras, preLie algebras...) in this text will be taken over \mathbb{K}.
2. Let A be a bialgebra.
(a) We shall use Swwedler's notation $\Delta(a)=a^{(1)} \otimes a^{(2)}$ for all $a \in A$.
(b) We denote by A_{+}the augmentation ideal of A, and by $\tilde{\Delta}$ the coassociative coproduct defined by:

$$
\tilde{\Delta}:\left\{\begin{array}{rll}
A_{+} & \longrightarrow A_{+} \otimes A_{+} \\
a & \longrightarrow \Delta(a)-a \otimes 1_{A}-1_{A} \otimes a .
\end{array}\right.
$$

We shall use Sweedler's notation $\tilde{\Delta}(a)=a^{\prime} \otimes a^{\prime \prime}$ for all $a \in A_{+}$.

1 Com-PreLie and Zinbiel-PreLie algebras

1.1 Definitions

Definition 1 1. A Com-PreLie algebra [8] is a family $A=(A, Ш, \bullet)$, where A is a vector space and \amalg and • are bilinear products on A, such that:
(a) $(A, Ш)$ is an associative, commutative algebra.
(b) (A, \bullet) is a (right) preLie algebra, that is to say, for all $a, b, c \in A$:

$$
(a \bullet b) \bullet c-a \bullet(b \bullet c)=(a \bullet c) \bullet b-a \bullet(c \bullet b) .
$$

(c) For all $a, b, c \in A,(a \amalg b) \bullet c=(a \bullet c) Ш b+a \amalg(b \bullet c)$.
2. A Com-PreLie bialgebra is a family $(A, \amalg, \bullet, \Delta)$, such that:
(a) (A, \amalg, \bullet) is a unitary Com-PreLie algebra.
(b) $(A, Ш, \Delta)$ is a bialgebra.
(c) For all $a, b \in A, \Delta(a \bullet b)=a^{(1)} \otimes a^{(2)} \bullet b+a^{(1)} \bullet b^{(1)} \otimes a^{(2)} \amalg b^{(2)}$.

We shall say that A is unitary if the associative algebra $(A, Ш)$ has a unit.
3. A Zinbiel-PreLie algebra is a family $A=(A, \prec, \bullet)$, where A is a vector space and \prec and \bullet are bilinear products on A, such that:
(a) (A, \prec) is a Zinbiel algebra (or shuffle algebra, [9, 7, 5]) that is to say, for all $a, b, c \in A$:

$$
(a \prec b) \prec c=a \prec(b \prec c+c \prec b) .
$$

(b) (A, \bullet) is a preLie algebra.
(c) For all $a, b, c \in A,(a \prec b) \bullet c=(a \bullet c) \prec b+a \prec(b \bullet c)$.
4. A Zinbiel-PreLie bialgebra is a family $(A, Ш, \prec, \bullet, \Delta)$ such that:
(a) $(A, Ш, \bullet, \Delta)$ is a Com-PreLie bialgebra.
(b) $\left(A_{+}, \prec, \bullet\right)$ is a Zinbiel-PreLie algebra, and for all $x, y \in A_{+}, x \prec y+y \prec x=x Ш y$.
(c) For all $a, b \in A_{+}$:

$$
\tilde{\Delta}(a \prec b)=a^{\prime} \prec b^{\prime} \otimes a^{\prime \prime} Ш b^{\prime \prime}+a^{\prime} \prec b \otimes a^{\prime \prime}+a^{\prime} \otimes a^{\prime \prime} Ш b+a \prec b^{\prime} \otimes b^{\prime \prime}+a \otimes b .
$$

Remarks.

1. If $(A, Ш, \bullet, \Delta)$ is a Com-PreLie bialgebra, then for any $\lambda \in \mathbb{K},(A, Ш, \lambda \bullet, \Delta)$ also is.
2. If A is a Zinbiel-preLie algebra, then the product $Ш$ defined by $a Ш b=a \prec b+b \prec a$ is associative and commutative, and $(A, Ш, \bullet)$ is a Com-PreLie algebra. Moreover, if A is a Zinbiel-PreLie bialgebra, it is also a Com-PreLie bialgebra.
3. If A is a Zinbiel-PreLie bialgebra, the product \amalg is entirely determined by \prec : we can omit Ш in the description of a Zinbiel-PreLie bialgebra.
4. If A is a Zinbiel-PreLie bialgebra, we extend \prec by $a \prec 1_{A}=a$ and $1_{A} \prec a=0$ for all $a \in A_{+}$. Note that $1_{A} \prec 1_{A}$ is not defined.
5. If A is a Com-Prelie bialgebra, if $a, b \in A_{+}$:

$$
\begin{aligned}
\tilde{\Delta}\left(a \bullet 1_{A}\right) & =a^{\prime} \otimes a^{\prime \prime} \bullet 1_{A}+a^{\prime} \bullet 1_{A} \otimes a^{\prime \prime}, \\
\tilde{\Delta}(a \bullet b) & =a^{\prime} \otimes a^{\prime \prime} \bullet b+a \bullet 1_{A} \otimes b+a \bullet b^{\prime} \otimes b^{\prime \prime} \\
& +a^{\prime} \bullet 1_{A} \otimes a^{\prime \prime} Ш b+a^{\prime} \bullet b \otimes a^{\prime \prime}+a^{\prime} \bullet b^{\prime} \otimes a^{\prime \prime} Ш b^{\prime \prime},
\end{aligned}
$$

as we shall prove later (lemma 3) that $1_{A} \bullet c=0$ for all $c \in A$.
Associative algebras are preLie. However, Com-PreLie algebras are rarely associative:
Proposition 2 Let $A=(A, 山, \bullet)$ be a Com-PreLie algebra, such that for all $x \in A, x 山 x=0$ if, and only if, $x=0$. If \bullet is associative, then it is zero.

Proof. Let $x, y \in A$.

$$
\begin{aligned}
((x \amalg x) \bullet y) \bullet y & =2((x \bullet y) Ш x) \bullet y \\
& =2((x \bullet y) \bullet y) Ш x+2(x \bullet y) Ш(x \bullet y) \\
& =2(x \bullet(y \bullet y)) Ш x+2(x \bullet y) Ш(x \bullet y) \\
& =(x Ш x) \bullet(y \bullet y)+2(x \bullet y) Ш(x \bullet y) .
\end{aligned}
$$

Hence, $(x \bullet y) \boldsymbol{\omega}(x \bullet y)=0$. As A is a domain, $x \bullet y=0$.
Hence, in our examples below, which are integral domains (shuffle algebras or symmetric algebras), the preLie product is associative if, and only if, it is zero. Here is another example, where \bullet is associative. We take $A=\operatorname{Vect}(1, x)$, with the products defined by:

Ш	1	x
1	1	x
x	x	0

\bullet	1	x
1	0	0
x	0	x

If the characteristic of the base field \mathbb{K} is 2 , this is a Com-PreLie bialgebra, with the coproduct defined by $\Delta(x)=x \otimes 1+1 \otimes x$.

1.2 Linear endomorphism on primitive elements

Lemma 3 1. Let A be a Com-PreLie algebra. For all $a \in A, 1_{A} \bullet a=0$.
2. Let A be a Com-PreLie bialgebra, with counit ε. For all $a, b \in A, \varepsilon(a \bullet b)=0$.

Proof. 1. Indeed, $1_{A} \bullet a=\left(1_{A} \cdot 1_{A}\right) \bullet a=\left(1_{A} \bullet a\right) \cdot 1_{A}+1_{A} \cdot\left(1_{A} \bullet a\right)=2\left(1_{A} \bullet a\right)$, so $1_{A} \bullet a=0$.
2. For all $a, b \in A$:

$$
\begin{aligned}
\varepsilon(a \bullet b) & =(\varepsilon \otimes \varepsilon) \circ \Delta(a \bullet b) \\
& =\varepsilon\left(a^{(1)}\right) \varepsilon\left(a^{(2)} \bullet b\right)+\varepsilon\left(a^{(1)} \bullet b^{(1)}\right) \varepsilon\left(a^{(2)} Ш b^{(2)}\right) \\
& =\varepsilon\left(a^{(1)}\right) \varepsilon\left(a^{(2)} \bullet b\right)+\varepsilon\left(a^{(1)} \bullet b^{(1)}\right) \varepsilon\left(a^{(2)}\right) \varepsilon\left(b^{(2)}\right) \\
& =\varepsilon(a \bullet b)+\varepsilon(a \bullet b),
\end{aligned}
$$

so $\varepsilon(a \bullet b)=0$.
Remark. Consequently, if a is primitive:

$$
\Delta(a \bullet b)=1_{A} \otimes a \bullet b+a \bullet b^{(1)} \otimes b^{(2)} .
$$

So the map $b \longrightarrow a \bullet b$ is a 1-cocycle for the Cartier-Quillen cohomology [1].
If A is a Com-PreLie bialgebra, we denote by $\operatorname{Prim}(A)$ the space of its primitive elements:

$$
\operatorname{Prim}(A)=\{a \in A \mid \Delta(a)=a \otimes 1+1 \otimes a\}
$$

We define an endomorphism of $\operatorname{Prim}(A)$ in the following way:
Proposition 4 Let A be a Com-PreLie bialgebra.

1. If $x \in \operatorname{Prim}(A)$, then $x \bullet 1_{A} \in \operatorname{Prim}(A)$. We denote by f_{A} the map:

$$
f_{A}:\left\{\begin{aligned}
\operatorname{Prim}(A) & \longrightarrow \operatorname{Prim}(A) \\
a & \longrightarrow a \bullet 1_{A} .
\end{aligned}\right.
$$

2. If $f_{A}=0$, then $\operatorname{Prim}(A)$ is a preLie subalgebra of A.

Proof. 1. Indeed, if a is primitive:

$$
\begin{aligned}
\Delta\left(a \bullet 1_{A}\right) & =a \otimes 1_{A} \bullet 1_{A}+1_{A} \otimes a \bullet 1_{A}+a \bullet 1_{A} \otimes 1_{A} Ш 1_{A}+1_{A} \bullet 1_{A} \otimes a Ш 1_{A} \\
& =0+1_{A} \otimes 1_{A} \bullet a+a \bullet 1_{A} \otimes 1_{A}+0
\end{aligned}
$$

so $a \bullet 1_{A}$ is primitive.
2. Let $a, b \in \operatorname{Prim}(A)$.

$$
\begin{aligned}
\Delta(a \bullet b) & =a \otimes 1_{A} \bullet b+1_{A} \otimes a \bullet b+1_{A} \bullet 1_{A} \otimes a Ш b+a \bullet 1_{A} \otimes b+1_{A} \bullet b \otimes a+a \bullet b \otimes 1_{A} \\
& =1_{A} \otimes a \bullet b+a \bullet b \otimes 1_{A} .
\end{aligned}
$$

So $a \bullet b \in \operatorname{Prim}(A)$.

2 Examples on shuffle algebras

Let V be a vector space and let $f: V \longrightarrow V$ be any linear map. The tensor algebra $T(V)$ is given the shuffle product \amalg, the half-shuffle \prec and the deconcatenation coproduct Δ, making it a bialgebra. Recall that these products can be inductively defined in the following way: if $x, y \in V, u, v \in T(V)$:

$$
\left\{\begin{array} { r l }
{ 1 \prec y v } & { = 0 , } \\
{ x u \prec v } & { = x (u \prec v + v \prec u) , }
\end{array} \quad \left\{\begin{array}{rl}
1 Ш v & =0, \\
x u Ш y v & =x(u Ш y v)+y(x u Ш v) .
\end{array}\right.\right.
$$

For any $x_{1}, \ldots, x_{n} \in V$:

$$
\Delta\left(x_{1} \ldots x_{n}\right)=\sum_{i=0}^{n} x_{1} \ldots x_{i} \otimes x_{i+1} \ldots x_{n}
$$

For all linear map $F: V \longrightarrow W$, we define the map:

$$
T(F):\left\{\begin{aligned}
T(V) & \longrightarrow T(W) \\
x_{1} \ldots x_{n} & \longrightarrow F\left(x_{1}\right) \ldots F\left(x_{n}\right) .
\end{aligned}\right.
$$

This a Hopf algebra morphism from $T(V)$ to $T(W)$.

The subalgebra of $(T(V), Ш)$ generated by V is denoted by $\operatorname{coS}(V)$. It is the largest cocommutative Hopf subalgebra of $(T(V), Ш, \Delta)$; it is generated by the symmetric tensors of elements of V.

2.1 Com-PreLie algebra attached to a linear endomorphism

We described in 4 a first family of Zinbiel-PreLie bialgebras; coming from a problem of composition of Fliess operators in Control Theory. Let f be an endomorphism of a vector space V. We define a bilinear product - on $T(V)$ inductively on the length of words in the following way: if $x \in V, v, w \in T(V)$,

$$
1 \bullet w=0, \quad x v \bullet w=x(v \bullet w)+f(x)(v Ш w) .
$$

Then $(T(V), \prec, \bullet, \Delta)$ is a Zinbiel-PreLie bialgebra, denoted by $T(V, f)$. Moreover, $f_{T(V, f)}=f$.
Examples. If $x_{1}, x_{2}, x_{3} \in V, w \in T(V)$:

$$
\begin{aligned}
x_{1} \bullet w & =f\left(x_{1}\right) w, \\
x_{1} x_{2} \bullet w & =x_{1} f\left(x_{2}\right) w+f\left(x_{1}\right)\left(x_{2} Ш w\right), \\
x_{1} x_{2} x_{3} \bullet w & =x_{1} x_{2} f\left(x_{3}\right) w+x_{1} f\left(x_{2}\right)\left(x_{3} Ш w\right)+f\left(x_{1}\right)\left(x_{2} x_{3} Ш w\right) .
\end{aligned}
$$

More generally, if $x_{1}, \ldots, x_{n} \in V$ and $w \in T(V)$:

$$
x_{1} \ldots x_{n} \bullet w=\sum_{i=1}^{n} x_{1} \ldots x_{i-1} f\left(x_{i}\right)\left(x_{i+1} \ldots x_{n} Ш w\right) .
$$

This construction is functorial: let V and W be two vector spaces, f an endomorphism of V and g an endomorphism of W; let $F: V \longrightarrow W$, such that $g \circ F=F \circ f$. Then $T(F)$ is a morphism of Zinbiel-PreLie bialgebras from $T(V, f)$ to $T(W, g)$.

Proposition 5 Let be a preLie product on $(T(V), \boldsymbol{,}, \Delta)$, making it a Com-PreLie bialgebra, such that for all $k, l \in \mathbb{N}, V^{\otimes k}$ blacklozenge $V^{\otimes l} \subseteq V^{\otimes(k+l)}$. There exists a $f \in \operatorname{End}(V)$, such that $(T(V), \boldsymbol{\downarrow}, \Delta)=T(V, f)$.

Proof. Let $f=f_{T(V)}$. We denote by \bullet the preLie product of $T(V, f)$. Let us prove that for any $x=x_{1} \ldots x_{k}, y=y_{1} \ldots y_{l} \in T(V), x \bullet y=x$. If $k=0$, we obtain $1 \bullet y=1 \bullet y=0$. We now treat the case $l=0$. We proceed by induction on k. It is already done for $k=0$. If $k=1$, then $x \in V$ and $x \bullet 1=f(x)=x$. Let us assume the result at all ranks $<k$, with $k \geq 2$. Then, as the length of x^{\prime} and $x^{\prime \prime}$ is $<k$:

$$
\begin{aligned}
\Delta(x \bullet 1) & =x^{(1)} \otimes x^{(2)} \bullet 1+x^{(1)} \bullet 1 \otimes x^{(2)} \\
& =1 \otimes x \bullet 1+x^{\prime} \bullet 1 \otimes 1+x^{\prime} \otimes x^{\prime \prime} \bullet 1+x \otimes 1 \otimes 1 \\
& =1 \otimes x \bullet 1+x^{\prime} \bullet 1 \otimes 1+x^{\prime} \otimes x^{\prime \prime} 1+x \otimes 1 \otimes 1 \\
& =\Delta(x \bullet 1)+(x \bullet y-x \bullet y) \otimes 1+1 \otimes(x \bullet y-x \bullet y)
\end{aligned}
$$

We deduce that $x \bullet 1-x \downarrow 1$ is primitive, so belongs to V. As it is homogeneous of length $k \geq 2$, it is zero, and $x \bullet 1=x \downarrow 1$.

We can now assume that $k, l \geq 1$. We proceed by induction on $k+l$. There is nothing left to do for $k+l=0$ or 1 . Let us assume that the result is true at all rank $<k+l$, with $k+l \geq 2$. Then, using the induction hypothesis, as x^{\prime} and $x^{\prime \prime}$ have lengths $<k$ and y^{\prime} has a length $<l$:

$$
\begin{aligned}
\Delta(x \bullet y) & =1 \otimes x \bullet y+x^{\prime} \otimes x^{\prime \prime} \bullet y+x \otimes 1 \bullet y+x \bullet 1 \otimes y+x^{\prime} \bullet 1 \otimes x^{\prime \prime} Ш y+1 \bullet 1 \otimes x \text { Шy } \\
& +x \bullet y \otimes 1+x^{\prime} \bullet y \otimes x^{\prime \prime}+1 \bullet y \otimes x+x \bullet y^{\prime} \otimes y^{\prime \prime}+x^{\prime} \bullet y^{\prime} \otimes x^{\prime \prime} Ш y^{\prime \prime}+1 \bullet y^{\prime} \otimes x Ш y^{\prime \prime} \\
& =1 \otimes x \bullet y+x^{\prime} \otimes x^{\prime \prime} y+x \otimes 1 \bullet y+x \bullet 1 \otimes y+x^{\prime} 1 \otimes x^{\prime \prime} Ш y+1 \bullet 1 \otimes x Ш y \\
& +x \bullet y \otimes 1+x^{\prime} \cdot y \otimes x^{\prime \prime}+1 \bullet y \otimes x+x \bullet y^{\prime} \otimes y^{\prime \prime}+x^{\prime} \bullet y^{\prime} \otimes x^{\prime \prime} Ш y^{\prime \prime}+1 \bullet y^{\prime} \otimes x Ш y^{\prime \prime} \\
& =\Delta(x \bullet y)+(x \bullet y-x \bullet y) \otimes+1 \otimes(x \bullet y-x \bullet y) .
\end{aligned}
$$

We deduce that $x \bullet y-x y$ is primitive, hence belongs to V. As it belongs to $V^{\otimes(k+l)}$ and $k+l \geq 2$, it is zero. Finally, $x \bullet y=x$.

Proposition 6 The Com-PreLie bialgebras $T(V, f)$ and $T(W, g)$ are isomorphic if, and only if, there exists a linear isomorphism $F: V \longrightarrow W$, such that $g \circ F=F \circ f$.

Proof. If such an F exists, by functoriality $T(F)$ is an isomorphism from $T(V, f)$ to $T(W, g)$. Let us assume that $\phi: T(V, f) \longrightarrow T(V, g)$ is an isomorphism of Com-PreLie bialgebras. Then $\phi(1)=1$, and ϕ induces an isomorphism from $V=\operatorname{Prim}(T(V))$ to $W=\operatorname{Prim}(T(W))$, denoted by F. For all $x \in V$:

$$
\phi(x \bullet 1)=\phi(f(x))=F \circ f(x)=F(x) \bullet 1=g \circ F(x) .
$$

So such an F exists.

2.2 Com-PreLie algebra attached to a linear form

Let V be a a vector space, $f: V \longrightarrow \mathbb{K}$ be a linear form, and $\lambda \in \mathbb{K}$.
Theorem 7 Let \bullet be the product on $T(V)$ such that for all $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in V$:

$$
x_{1} \ldots x_{m} \bullet y_{1} \ldots y_{n}=\sum_{i=0}^{n-1} \lambda^{i} f\left(x_{1}\right) f\left(y_{1}\right) \ldots f\left(y_{i}\right) x_{2} \ldots x_{m} \amalg y_{i+1} \ldots y_{n}
$$

Then $(T(V), Ш, \bullet)$ is a Com-PreLie algebra. It is denoted by $T(V, f, \lambda)$.
Examples. If $x_{1}, x_{2}, x_{3} \in V, w \in T(V)$:

$$
\begin{aligned}
x_{1} \bullet w & =f\left(x_{1}\right) w, \\
x_{1} x_{2} \bullet w & =x_{1} f\left(x_{2}\right) w+f\left(x_{1}\right)\left(x_{2} Ш w\right), \\
x_{1} x_{2} x_{3} \bullet w & =x_{1} x_{2} f\left(x_{3}\right) w+x_{1} f\left(x_{2}\right)\left(x_{3} Ш w\right)+f\left(x_{1}\right)\left(x_{2} x_{3} Ш w\right) .
\end{aligned}
$$

In particular if $x_{1}=\ldots=x_{n}=y_{1}=\ldots=y_{n}=x$:
Lemma 8 Let $x \in V$. We put $f(x)=\nu$ and $\mu=\lambda f(x)$. Then, for all $m, n \geq 0$, in $T(V, f, \lambda)$:

$$
x^{m} \bullet x^{n}=\nu \sum_{j=m}^{m+n-1} \mu^{m+n-j-1}\binom{j}{m-1} x^{j}
$$

The proof of theorem 7 will use definition 9 and lemma 10
Definition 9 Let ∂ and ϕ be the linear maps defined by:

$$
\partial:\left\{\begin{array}{rl}
T(V) & \longrightarrow T(V) \\
1 & \longrightarrow 0, \\
x_{1} \ldots x_{n} & \longrightarrow f\left(x_{1}\right) x_{2} \ldots x_{n},
\end{array} \quad \phi:\left\{\begin{aligned}
T(V) & \longrightarrow T(V) \\
1 & \longrightarrow 0 \\
x_{1} \ldots x_{n} & \longrightarrow \sum_{i=0}^{n-1} \lambda^{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) x_{i+1} \ldots x_{n}
\end{aligned}\right.\right.
$$

Lemma 10 1. For all $u, v \in T(V)$:
(a) $\partial(u Ш v)=\partial(u) Ш v+u Ш \partial(v)$.
(b) $\partial \circ \phi(u) Ш \phi(v)-\phi(\partial(u) Ш \phi(v))=\partial \circ \phi(v) Ш \phi(u)-\phi(\partial(v) Ш \phi(u))$.
2. For all $u \in T(V, f, \lambda)$:

$$
\Delta \circ \partial(u)=(\partial \otimes I d) \circ \Delta(u), \quad \Delta \circ \phi(u)=(\phi \otimes I d) \circ \Delta(u)+1 \otimes \phi(u)
$$

Proof. 1. (a) This is obvious if $u=1$ or $v=1$, as $\partial(1)=0$. Let us assume that u, v are nonempty words. We put $v=x u^{\prime}, v=y v^{\prime}$, with $x, y \in V$. Then:

$$
\begin{aligned}
\partial(u Ш v) & =\partial\left(x\left(u^{\prime} Ш v\right)+y\left(u Ш v^{\prime}\right)\right) \\
& =f(x) u^{\prime} Ш v+f(y) u Ш v^{\prime} \\
& =\left(f(x) u^{\prime}\right) Ш v+u Ш\left(f(y) v^{\prime}\right) \\
& =\partial(u) Ш v+u Ш \partial(v) .
\end{aligned}
$$

1. (b) Let us take $u=x_{1} \ldots x_{m}$ and $y=y_{1} \ldots y_{n}$ be two words of $T(V)$ of respective lengths m and n. First, observe that $\phi(\partial u Ш \phi(v))$ is a linear span of terms:

$$
\lambda^{i+j-1} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{m}
$$

with $1 \leq i \leq m, 0 \leq j \leq n,(i, j) \neq(0,0)$. Let us compute the coefficient of such a term:

- If $j<n$, it is $\sum_{p=0}^{j}\binom{i-1+j-p}{i-1}=\sum_{p=i-1}^{i+j-1}\binom{p}{i-1}=\binom{i+j}{i}$.
- If $j=n$, its is $\sum_{p=0}^{n-1}\binom{i-1+j-p}{i-1}=\sum_{p=i}^{i+j-1}\binom{p}{i-1}=\sum_{p=i-1}^{i+j-1}\binom{p}{i-1}-1=\binom{i+j}{i}-1$.

We obtain:

$$
\begin{aligned}
\phi(\partial u Ш \phi(v)) & =\sum_{i=1}^{m} \sum_{j=0}^{n} \lambda^{i+j-1}\binom{i+j}{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{n} \\
& -\sum_{i=1}^{m-1} \lambda^{i+n-1} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{n}\right) x_{i+1} \ldots x_{m} \\
& -\lambda^{m+n-1}\binom{m+n}{m} f\left(x_{1}\right) \ldots f\left(x_{m}\right) f\left(y_{1}\right) \ldots f\left(y_{n}\right) \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda^{i+j-1}\binom{i+j}{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{n} \\
& +\sum_{i=1}^{m} \lambda^{i-1} f\left(x_{1}\right) \ldots f\left(x_{i}\right) x_{i+1} \ldots x_{m} Ш y_{1} \ldots y_{n} \\
& -\sum_{i=1}^{m-1} \lambda^{i+n-1} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{n}\right) x_{i+1} \ldots x_{m} \\
& -\lambda^{m+n-1}\binom{m+n}{m} f\left(x_{1}\right) \ldots f\left(x_{m}\right) f\left(y_{1}\right) \ldots f\left(y_{n}\right)
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
\partial \circ \phi(u) Ш \phi(v) & =\sum_{i=1}^{m} \sum_{j=0}^{n-1} \lambda^{i+j-1}\binom{i+j}{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{n} \\
& =\sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \lambda^{i+j-1}\binom{i+j}{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{n} \\
& +\sum_{j=1}^{n-1} \lambda^{j+m-1} f\left(x_{1}\right) \ldots f\left(x_{m}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) y_{j+1} \ldots y_{n} \\
& +\sum_{i=1}^{m} \lambda^{i-1} f\left(x_{1}\right) \ldots f\left(x_{i}\right) x_{i+1} \ldots x_{m} Ш y_{1} \ldots y_{n}
\end{aligned}
$$

Hence:

$$
\begin{aligned}
& \partial \circ \phi(u) Ш \phi(v)-\phi(\partial u Ш \phi(v)) \\
& =\sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \lambda^{i+j-1}\binom{i+j}{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{n} \\
& -\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda^{i+j-1}\binom{i+j}{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) x_{i+1} \ldots x_{m} Ш y_{j+1} \ldots y_{n} \\
& +\lambda^{m+n-1}\binom{m+n}{m} f\left(x_{1}\right) \ldots f\left(x_{m}\right) f\left(y_{1}\right) \ldots f\left(y_{n}\right) \\
& +\sum_{j=1}^{n-1} \lambda^{j+m-1} f\left(x_{1}\right) \ldots f\left(x_{m}\right) f\left(y_{1}\right) \ldots f\left(y_{j}\right) y_{j+1} \ldots y_{n} \\
& +\sum_{i=1}^{m-1} \lambda^{i+n-1} f\left(x_{1}\right) \ldots f\left(x_{i}\right) f\left(y_{1}\right) \ldots f\left(y_{n}\right) x_{i+1} \ldots x_{m} .
\end{aligned}
$$

The three first rows are symmetric in u and v, whereas the sum of the fourth and fifth rows is symmetric in u and v. So $\partial \circ \phi(u) ш \phi(v)-\phi(\partial u \amalg \phi(v))$ is symmetric in u and v.
2. Let us take $u=x_{1} \ldots x_{n}$, with $x_{1}, \ldots, x_{n} \in V$. Then:

$$
\begin{aligned}
\Delta \circ \partial(u) & =f\left(x_{1}\right) \sum_{i=1}^{n} x_{2} \ldots x_{i} \otimes x_{i+1} \ldots x_{n} \\
& =\sum_{i=1}^{n} \partial\left(x_{1} \ldots x_{i}\right) \otimes x_{i+1} \ldots x_{n}+\partial(1) \otimes x_{1} \ldots x_{n} \\
& =\sum_{i=0}^{n} \partial\left(x_{1} \ldots x_{i}\right) \otimes x_{i+1} \ldots x_{n} \\
& =(\partial \otimes I d) \circ \Delta(u) .
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
\Delta \circ \phi(u) & =\sum_{i=0}^{n-1} \lambda^{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) \Delta\left(x_{i+1} \ldots x_{n}\right) \\
& =\sum_{i=0}^{n-1} \sum_{j=i}^{n} \lambda^{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) x_{i+1} \ldots x_{j} \otimes x_{j+1} \ldots x_{n} \\
& =\sum_{j=0}^{n} \sum_{i=0}^{j} \lambda^{i} f\left(x_{1}\right) \ldots f\left(x_{i}\right) x_{i+1} \ldots x_{j} \otimes x_{j+1} \ldots x_{n}-\lambda^{n} f\left(x_{1}\right) \ldots f\left(x_{n}\right) \otimes 1 \\
& =\sum_{j=0}^{n} \phi\left(x_{1} \ldots x_{j}\right) \otimes x_{j+1} \ldots x_{n}+\sum_{j=0}^{n-1} \lambda^{j} f\left(x_{1}\right) \ldots f\left(x_{j}\right) \otimes x_{j+1} \ldots x_{n} \\
& =\sum_{j=0}^{n} \phi\left(x_{1} \ldots x_{j}\right) \otimes x_{j+1} \ldots x_{n}+1 \otimes\left(\sum_{j=0}^{n-1} \lambda^{j} f\left(x_{1}\right) \ldots f\left(x_{j}\right) x_{j+1} \ldots x_{n}\right) \\
& =(\phi \otimes I d) \circ \Delta(u)+1 \otimes \phi(u) .
\end{aligned}
$$

Proof. (Theorem [7). By definition, for all $u, v \in T(V)$:

$$
u \bullet v=\partial(u) Ш \phi(v) .
$$

Let $u, v, w \in T(V)$. By lemma 10-1:

$$
\begin{aligned}
(u Ш v) \bullet w & =\partial(u Ш v) Ш \phi(w) \\
& =\partial(u) Ш v Ш \phi(w)+u Ш \partial(v) Ш \phi(w) \\
& =\partial(u) Ш \phi(w) Ш v+u Ш \partial(v) Ш \phi(w) \\
& =(u \bullet w) Ш v+u Ш(v \bullet w) .
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
(u \bullet v) \bullet w-u \bullet(v \bullet w) & =(\partial(u) Ш \phi(v)) \bullet w-u \bullet(\partial(v) Ш \phi(w)) \\
& =\partial(\partial(u) Ш \phi(v)) Ш \phi(w)-\partial(u) Ш \phi(\partial(v) Ш \phi(w)) \\
& =\partial^{2}(u) 山 \phi(v) Ш \phi(w)+\partial(u) Ш(\partial \circ \phi(v) Ш \phi(w)-\phi(\partial(v) Ш \phi(w))) .
\end{aligned}
$$

By lemma 10-2, this is symmetric in v and w. Consequently, $T(V, f, \lambda)$ is Com-PreLie.

This construction is functorial. Let (V, f) and (W, g) be two spaces equipped with a linear form and let $F: V \longrightarrow W$ be a map such that $g \circ F=f$. Then $T(F)$ is a Com-PreLie algebra morphism from $T(V, f, \lambda)$ to $T(W, g, \lambda)$.

Proposition $11(\operatorname{coS}(V), \amalg, \bullet, \Delta)$ is a Com-PreLie bialgebra, denoted by $\operatorname{coS}(V, f, \lambda)$.
Proof. Let us first prove that $\operatorname{coS}(V)$ is stable under •. It is enough to prove that it is stable under ∂ and ϕ. Let us first consider ∂. As it is a derivation for \amalg, it is enough to prove that $\partial(V) \subseteq \operatorname{coS}(V)$, which is obvious as $\partial(V) \subset \mathbb{K}$. Let us now consider ϕ. Let $x_{1}, \ldots, x_{k} \in V$.

$$
\begin{aligned}
\phi\left(x_{1} Ш \ldots Ш x_{k}\right) & =\sum_{\sigma \in \mathfrak{S}_{k}} \phi\left(x_{\sigma(1)} \ldots x_{\sigma(k)}\right) \\
& =\sum_{i=0}^{k-1} \sum_{\sigma \in \mathfrak{S}_{k}} \mu^{i} f\left(x_{\sigma(1)}\right) \ldots f\left(x_{\sigma(i)}\right) x_{\sigma(i+1)} \ldots x_{\sigma(k)} \\
& =\sum_{i=0}^{k-1} \sum_{1 \leq k_{1}<\ldots<k_{i} \leq k} i!\mu^{i} \prod_{j=1}^{i} f\left(x_{k_{i}}\right) x_{1} Ш \widehat{x_{1}} Ш \ldots Ш \widehat{x_{k_{i}}} Ш \ldots Ш x_{k} .
\end{aligned}
$$

This is an element of $\operatorname{coS}(V)$, so $\operatorname{coS}(V)$ is stable under \bullet.
Let us prove now the compatibility between • and the coproduct of $\cos (V)$. As $\operatorname{coS}(V)$ is cocommutative, lemma 10 implies that for all $u \in \operatorname{coS}(V)$:

$$
\Delta \circ \partial(u)=\partial\left(u^{(1)}\right) \otimes u^{(2)}=\partial\left(u^{(2)}\right) \otimes u^{(1)}=u^{(1)} \otimes \partial\left(u^{(2)}\right)
$$

Let us consider $u, v \in \cos (V)$. Then, by lemma 10 ,

$$
\begin{aligned}
\Delta(u \bullet v) & =\Delta(\partial(u) Ш \phi(v)) \\
& =(\Delta \circ \partial(u)) Ш \Delta \circ \phi(v) \\
& =(\Delta \circ \partial u) Ш\left(\Phi\left(v^{(1)}\right) \otimes v^{(2)}+1 \otimes \phi(v)\right) \\
& =\partial\left(u^{(1)}\right) Ш \Phi\left(v^{(1)}\right) \otimes u^{(2)} Ш v^{(2)}+u^{(1)} Ш 1 \otimes \partial\left(u^{(2)}\right) Ш \phi(v) \\
& =u^{(1)} \bullet v^{(1)} \otimes u^{(2)} Ш v^{(2)}+u^{(1)} \otimes u^{(2)} \bullet v .
\end{aligned}
$$

So $\cos (V)$ is a Com-PreLie bialgebra.

Note that $f_{\operatorname{coS}(V, f, \lambda)}=0$. The preLie product induced on $\operatorname{Prim}(\operatorname{coS}(V))=V$ is given by $x \star y=f(x) y$.

Corollary 12 Let V be a vector space, $f \in V^{*}, \lambda \in \mathbb{K}$. We give $S(V)$ its usual product m and coproduct $\boldsymbol{\Delta}$, defined by $\boldsymbol{\Delta}(v)=v \otimes 1+1 \otimes v$ for all $v \in V$, and the product \bullet defined by:

1. $1 \bullet x=0$ for any $x \in S(V)$.
2. $x \bullet x_{1} \ldots x_{k}=\sum_{I \subsetneq\{1, \ldots, k\}}|I|!\lambda^{|I|} f(x) \prod_{i \in I} f\left(x_{i}\right) \prod_{i \notin I} x_{i}$, for all $x, x_{1}, \ldots, x_{k} \in V$.
3. $x_{1} \ldots x_{k} \bullet x=\sum_{i=1}^{k} x_{1} \ldots\left(x_{i} \bullet x\right) \ldots x_{k}$ for any $x_{1}, \ldots, x_{k} \in V, x \in S(V)$.

Then $(S(V), m, \bullet, \boldsymbol{\Delta})$ is a Com-PreLie bialgebra, denoted by $S(V, f, \lambda)$.

Proof. There is a Hopf algebra isomorphism:

$$
\theta:\left\{\begin{aligned}
(S(V), m, \boldsymbol{\Delta}) & \longrightarrow \\
v \in V & \longrightarrow \\
& \longrightarrow
\end{aligned}\right.
$$

Let $v, x_{1}, \ldots, x_{k} \in V$.

$$
\begin{aligned}
\theta(v) \bullet \theta\left(x_{1} \ldots x_{k}\right) & =v \bullet x_{1} Ш \ldots Ш x_{k} \\
& =f(v) Ш \phi\left(x_{1} Ш \ldots Ш x_{k}\right) \\
& =f(v) \sum_{i=0}^{k-1} \sum_{1 \leq k_{1}<\ldots<k_{i} \leq k} i!\mu^{i} \prod_{j=1}^{i} f\left(x_{k_{i}}\right) x_{1} Ш \widehat{x_{k_{1}}} Ш \ldots Ш \widehat{x_{k_{i}}} Ш \ldots \amalg x_{k} \\
& =\theta\left(\sum_{I \subsetneq\{1, \ldots, k\}}|I|!\mu^{i} \prod_{i \in I} f\left(x_{i}\right) \prod_{i \notin I} x_{i}\right) .
\end{aligned}
$$

Therefore, as $\operatorname{coS}(V)$ is a Com-PreLie algebra, $S(V)$ is also a Com-PreLie bialgebra.

Proposition 13 Let us assume that $f \neq 0$. Then:

1. $(T(V), \prec, \bullet)$ is a Zinbiel-PreLie algebra if, and only $i f$, $\operatorname{dim}(V)=1$.
2. $(T(V), Ш, \bullet, \Delta)$ is a Com-PreLie bialgebra if, and only if, $\operatorname{dim}(V)=1$.

Proof. 1. \Longrightarrow. Let $y \in V$, such that $f(y)=1$. Note that $y \neq 0$. Let $x \in V$, such that $f(x)=0$. Then:

$$
\begin{aligned}
& (x \prec y) \bullet y=x y \bullet y=f(x) y Ш y=0, \\
& (x \bullet y) \prec y+x \prec(y \bullet y)=f(x) y \prec y+x \prec f(y) y=0+f(y) x \prec y=x y .
\end{aligned}
$$

As $T(V, f, \lambda)$ is Zinbiel-PreLie, $x y=0$. As $y \neq 0, x=0$; we obtain that f is injective, so $\operatorname{dim}(V)=1$.

1. \Longrightarrow. We use the notations of lemma 8. It is enough to prove that for all $k, l, m \geq 0$, $\left(x^{k} \prec x^{l}\right) \bullet x^{m}=\left(x^{k} \bullet x^{m}\right) \prec x^{l}+x^{k} \prec\left(x^{l} \bullet x^{m}\right)$.

$$
\left(x^{k} \prec x^{l}\right) \bullet x^{m}=\lambda \sum_{j=k+l}^{k+l+m-1} \mu^{k+l+m-j-1}\binom{j}{k+l-1}\binom{k+l-1}{k-1} x^{j},
$$

and:

$$
\begin{aligned}
& \left(x^{k} \bullet x^{m}\right) \prec x^{l}+x^{k} \prec\left(x^{l} \bullet x^{m}\right) \\
& =\lambda \sum_{j=k}^{k+m-1} \mu^{k+m-j-1}\binom{j}{k-1} x^{j} \prec x^{l}+\lambda \sum_{j=l}^{l+m-1} \mu^{l+m-1-j}\binom{j}{k-1} x^{k} \prec x^{j} \\
& =\lambda \sum_{j=k}^{k+m-1} \mu^{k+m-j-1}\binom{j}{k-1}\binom{j+l-1}{j-1} x^{l+j}+\lambda \sum_{j=l}^{l+m-1} \mu^{l+m-1-j}\binom{j}{k-1}\binom{k+j-1}{k-1} x^{k+j} \\
& =\lambda \sum_{j=k+l}^{k+l+m-1} \mu^{k+l+m-j-1}\binom{j-l}{k-1}\binom{j-1}{j-l-1} x^{j}+\lambda \sum_{j=k+l}^{k+l+m-1} \mu^{k+l+m-j-1}\binom{j-k}{l-1}\binom{j-1}{k-1} x^{j} .
\end{aligned}
$$

Moreover, a simple computation proves that:

$$
\binom{j-l}{k-1}\binom{j-1}{j-l-1}+\binom{j-k}{l-1}\binom{j-1}{k-1}=\binom{j}{k+l-1}\binom{k+l-1}{k-1}
$$

So $T(V, f, \lambda)$ is Zinbiel-PreLie.
$2 . \Longrightarrow$. Let us choose $z \in V$, nonzero, and $x \in V$ such that $f(x)=1$. Then:

$$
\Delta(x y \bullet z)=\Delta(f(x) y Ш z)=x y \bullet z \otimes 1+1 \otimes x y \bullet z+y \otimes z+z \otimes y
$$

whereas:

$$
\begin{aligned}
& (x y)^{(1)} \otimes(x y)^{(2)} \bullet z+(x y)^{(1)} \bullet z^{(1)} \otimes(x y)^{(2)} Ш z^{(2)} \\
& =x y \otimes 1 \bullet z+x \otimes y \bullet z+1 \otimes x y \bullet z \\
& +x y \bullet z \otimes 1+x y \bullet 1 \otimes z+x \bullet z \otimes y+x \bullet 1 \otimes y Ш z+1 \bullet z \otimes x y+1 \bullet 1 \otimes x y Ш z \\
& =x y \bullet z \otimes 1+1 \otimes x y \bullet z+f(y) x \otimes z+z \otimes y
\end{aligned}
$$

So, for all $y \in V, f(y) x \otimes z=y \otimes z$. As $z \neq 0, f(y) x=y: V=V e c t(x)$ is one-dimensional.
\Longrightarrow. In this case, $T(V)=\operatorname{coS}(V)$, so is a Com-PreLie bialgebra.
Proposition 14 The Com-PreLie bialgebras $\operatorname{coS}(V, f, \lambda)$ and $\operatorname{coS}(W, g, \mu)$ are isomorphic if, and only if, one of the following assertion holds:

1. $\operatorname{dim}(V)=\operatorname{dim}(W)$, and f and g are both zero.
2. $\operatorname{dim}(V)=\operatorname{dim}(W), \lambda=\mu$ and f and g are both nonzero.

Proof. If $\operatorname{dim}(V)=\operatorname{dim}(W)$, and f and g are both zero, then $\bullet=0$ in both these CompreLie bialgebras. Take any linear isomorphism F from V to W, then the restriction of $T(F)$ as an algebra morphism from $\operatorname{coS}(V)$ to $\operatorname{coS}(W)$ is an isomorphism of Com-PreLie bialgebras.

If $\operatorname{dim}(V)=\operatorname{dim}(W), \lambda=\mu$ and f and g are both nonzero, there exists an isomorphism $F: V \longrightarrow W$ such that $g \circ F=f$. By functoriality, $T(V, f, \lambda)$ and $T(W, g, \lambda)$ are isomorphic via $T(F)$. The restriction of $T(F)$ induces an isomorphism from $\operatorname{coS}(V, f, \lambda)$ to $\operatorname{coS}(W, g, \lambda)$.

Let us assume that $\phi: \operatorname{coS}(V, f, \lambda) \longrightarrow \operatorname{coS}(W, g, \mu)$ is an isomorphism of Com-PreLie bialgebras. It induces an isomorphism from $\operatorname{Prim}(\operatorname{coS}(V))=V$ to $\operatorname{Prim}(\operatorname{coS}(W))=W$, denoted by F : consequently, $\operatorname{dim}(V)=\operatorname{dim}(W)$. Let us choose $y \in V$, nonzero. For all $x \in V$:

$$
\phi(x \bullet y)=\phi(f(x) y)=f(x) F(y)=\phi(x) \bullet \phi(y)=F(x) \bullet F(y)=g \circ F(x) F(y)
$$

As F is an isomorphism, for all $x \in V, f(x)=g \circ F(x)$. So f and g are both zero or are both nonzero. Let us assume that they are nonzero. We choose $x \in V$, such that $f(x)=1$. Then:

$$
\phi\left(x^{2}\right)=\phi\left(\frac{x Ш x}{2}\right)=\frac{\phi(x) Ш \phi(x)}{2}=F(x)^{2} .
$$

Hence:

$$
\begin{aligned}
\phi(x) \bullet \phi\left(x^{2}\right) & =F(x) \bullet F(x)^{2} & \phi\left(x \bullet x^{2}\right) & =\phi\left(f(x) x^{2}+\lambda f(x)^{2} x\right) \\
& =g \circ F(x) F(x)^{2}+\mu g \circ F(x)^{2} F(x) & & =F(x)^{2}+\lambda F(x) \\
& =F(x)^{2}+\mu F(x) . & &
\end{aligned}
$$

As $x \neq 0, F(x) \neq 0$, so $\lambda=\mu$.

2.3 Com-PreLie algebra associated to a preLie algebra

Theorem 15 Let (V, \star) be a preLie algebra. We define a product on $T(V)$ by:

$$
x_{1} \ldots x_{k} \bullet y_{1} \ldots y_{l}=\sum_{i=1}^{k} x_{1} \ldots x_{i-1}\left(x_{i} \star y_{1}\right)\left(x_{i+1} \ldots x_{l} Ш y_{2} \ldots y_{l}\right)
$$

for all $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l} \in V$; by convention, this is equal to 0 if $k=0$ or $l=0$. Then $(T(V), \prec, \bullet, \Delta)$ is a Zinbiel-PreLie bialgebra, denoted by $T(V, \star)$.

Examples. Let $x_{1}, x_{2}, x_{3}, y \in V, w \in T(V)$.

$$
\begin{aligned}
x_{1} \bullet y w & =\left(x_{1} \star y\right) w, \\
x_{1} x_{2} \bullet y w & =\left(x_{1} \star y\right)\left(x_{2} Ш w\right)+x_{1}\left(x_{2} \star y\right) w, \\
x_{1} x_{2} x_{3} \bullet y w & =\left(x_{1} \star y\right)\left(x_{2} x_{3} Ш w\right)+x_{1}\left(x_{2} \star y\right)\left(x_{3} Ш w\right)+x_{1} x_{2}\left(x_{3} \star y\right) w .
\end{aligned}
$$

Proof. First, remark that for all $x, y \in V$, for all $u, v \in T(V)$:

$$
x u \bullet y v=(x \star y) u Ш v+x(u \bullet y v)
$$

Let us prove that for all $a, b, c \in T(V),(a \prec b) \bullet c=(a \bullet c) \prec b+a \prec(b \bullet c)$. This is obvious if one of a, b, c is equal to 1 , as $1 \bullet d=d \bullet 1=0$ for all d. We now assume that a, b, c are nonempty words of respective lengths k, l and m, and we proceed by induction on $k+l+m$. There is nothing to do if $k+l+m \leq 2$. Let us assume the result at rank $k+l+m-1$. We put $a=x u$, $b=v, c=z w$, avec $x, z \in V$.

$$
\begin{aligned}
(x u \prec v) \bullet z w & =(x(u Ш v)) \bullet z w \\
& =x \star z(u Ш v Ш w)+x((u Ш v) \bullet z w) \\
& =x \star z(u Ш v Ш w)+x((u \bullet z w) Ш v+u Ш(v \bullet z w)) \\
& =(x \star z(u Ш w)) \prec v+x(u \bullet z w) \prec v+x u \prec(v \bullet z w) \\
& =(x u \bullet v) \prec z w+x u \prec(v \bullet z w) .
\end{aligned}
$$

Let us now prove that for all $a, b, c \in T(V), a \bullet(b \bullet c)-(a \bullet b) \bullet c=a \bullet(c \bullet b)-(a \bullet c) \bullet b$. If one of a, b, c is equal to 1 , this is obvious. We now assume that a, b, c are nonempty words of respective lengths k, l and m, and we proceed by induction on $k+l+m$. There is nothing to do if $k+l+m \leq 2$. Let us assume the result at rank $k+l+m-1$. We put $a=x u, b=y v$, $c=z w$, avec $x, y, z \in V$.

$$
\begin{aligned}
(x u \bullet y v) \bullet z w & =(x \star y(u Ш v)) \bullet z w+(x(u \bullet y v)) \bullet z w \\
& =(x \star y) \star z(u Ш v Ш w)+x \star y((u Ш v) \bullet z w) \\
& +x \star z((u \bullet y v) Ш w)+x((u \bullet y v) \bullet z w) ; \\
x u \bullet(y v \bullet z w) & =x u \bullet(y \star z(v Ш w)+y(v \bullet z w)) \\
& =x \star(y \star z) u Ш v Ш w+x u \bullet(y \star z(v Ш w)) \\
& +x \star y(u Ш(v \bullet z w))+x(u \bullet y(v \bullet z w)) .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
(x u \bullet y v) \bullet z w-x u \bullet(y v \bullet z w) & =((x \star y) \star z-x \star(y \star z))(u Ш v Ш w) \\
& +x \star y((u Ш v) \bullet z w)+x \star z((u \bullet y v) Ш w) \\
& +x((u \bullet y v) \bullet z w-u \bullet(y v \bullet z w)) .
\end{aligned}
$$

As \star is preLie and $Ш$ is commutative, the first row is symmetric in $y v$ and $z w$. The second row is obviously symmetric in $y v$ and $z w$, and by the induction hypothesis, the last row also is. So the preLie relation is satisfied for $x u, y v$ and $z w$.

Let us prove the compatibility with the coproduct. Let $a, b \in T(V)$. Let us prove that:

$$
\Delta(a \bullet b)=a^{(1)} \otimes a^{(2)} \bullet b+a^{(1)} \bullet b^{(1)} \otimes a^{(2)} 山 b^{(2)}
$$

This is immediate if a or b is equal to 1 . We now assume that a and b are nonempty words of respective lengths k and l, and we proceed by induction on $k+l$. There is nothing to do if $k+l \leq 1$. Let us assume the result at rank $k+l-1$. We put $a=x u$ and $b=y v, x, y \in V$.

$$
\begin{aligned}
\Delta(x u \bullet y v) & =\Delta(x \star y(u Ш v)+x(u \bullet y v)) \\
& =(x \star y) u^{(1)} Ш v^{(1)} \otimes u^{(2)} Ш v^{(2)}+1 \otimes x \star y(u Ш v) \\
& +x u^{(1)} \otimes u^{(2)} \bullet y v+x\left(u^{(1)} \bullet y v^{(1)}\right) \otimes u^{(2)} Ш v^{(2)} \\
& +x u^{(1)} \bullet 1 \otimes u^{(2)} Ш y v+1 \otimes x(u \bullet y v) \\
& =x u^{(1)} \otimes u^{(2)} \bullet y v+1 \otimes x u \bullet y v \\
& +(x \star y) u^{(1)} Ш v^{(1)} \otimes u^{(2)} Ш v^{(2)} \\
& =(x u)^{(1)} \otimes(x u)^{(2)} \bullet y v \\
& +(x u)^{(1)} \bullet(y v)^{(1)} \otimes(x u)^{(2)} Ш(y v)^{(2)} .
\end{aligned}
$$

So $T(V, \star)$ is indeed a Zinbiel-PreLie bialgebra.

This is also a functorial construction. If $F:(V, \star) \longrightarrow(W, \star)$ is a preLie algebra morphism, then $T(F)$ is a Zinbiel-PreLie algebra morphism.

Note that $f_{T(V, \star)}=0$. The preLie product induced on $\operatorname{Prim}(T(V))=V$ is given by \star.
Proposition 16 Let be a product on $T(V)$, such that $(T(V), Ш, \bullet, \Delta)$ is a Zinbiel-PreLie bialgebra, with $V^{\otimes k} V^{\otimes l} \subseteq V^{\otimes(k+l-1)}$ for all $k, l \in \mathbb{N}$. There exists a preLie product \star on V, such that $(T(V), \prec$, blacklozenge,$\Delta)=T(V, \star)$.

Proof. By hypothesis, $V \diamond V \subseteq V: V$ is a preLie subalgebra of $T(V)$. We denote its preLie product by \star, and by \bullet the preLie product of $T(V, \star)$. Let us prove that for any $x=x_{1} \ldots x_{k}, y=$ $y_{1} \ldots y_{l} \in T(V), x \bullet y=x$. If $k=0$, we obtain $1 \bullet y=1^{\prime} \bullet y=0$. We now treat the case $l=0$: let us prove that $x=0$ by induction on k. It is already done for $k=0$. If $k=1$, then $x \in V$, so $x \backslash 1 \in \mathbb{K}$ by homogeneity. Moreover, $\varepsilon(x 1)=0$, so $x 1=0$. Let us assume the result at rank $k-1$, with $k \geq 2$. We put $u=x_{2} \ldots x_{k}$. Then:

$$
x \downarrow 1=\left(x_{1} \prec u\right) 1=\left(x_{1} \downarrow 1\right) \prec u+x_{1} \prec(u \prec 1)=0+0=0 .
$$

We can now assume that $k, l \geq 1$. We proceed by induction on $k+l$. There is nothing to do for $k+l=0$ or 1 . If $k+l=2$, then $k=l=1$, and $x \bullet y=x \star y=x$. Let us assume that the
result is true at all rank $<k+l$, with $k+l \geq 3$. Then, using the induction hypothesis, as x^{\prime} and $x^{\prime \prime}$ have lengths $<k$ and y^{\prime} has a length $<l$:

$$
\begin{aligned}
\Delta(x \bullet y) & =1 \otimes x \bullet y+x^{\prime} \otimes x^{\prime \prime} \bullet y+x \otimes 1 \bullet y+x \bullet 1 \otimes y+x^{\prime} \bullet 1 \otimes x^{\prime \prime} \amalg y+1 \bullet 1 \otimes x Ш y \\
& +x \bullet y \otimes 1+x^{\prime} \bullet y \otimes x^{\prime \prime}+1 \bullet y \otimes x+x \bullet y^{\prime} \otimes y^{\prime \prime}+x^{\prime} \bullet y^{\prime} \otimes x^{\prime \prime} Ш y^{\prime \prime}+1 \bullet y^{\prime} \otimes x Ш y^{\prime \prime} \\
& =1 \otimes x \bullet y+x^{\prime} \otimes x^{\prime \prime} y+x \otimes 1 \bullet y+x \bullet 1 \otimes y+x^{\prime} 1 \otimes x^{\prime \prime} Ш y+1 \bullet 1 \otimes x Ш y \\
& +x \bullet y \otimes 1+x^{\prime} \cdot y \otimes x^{\prime \prime}+1 \bullet y \otimes x+x \bullet y^{\prime} \otimes y^{\prime \prime}+x^{\prime} \bullet y^{\prime} \otimes x^{\prime \prime} Ш y^{\prime \prime}+1 \bullet y^{\prime} \otimes x Ш y^{\prime \prime} \\
& =\Delta(x \bullet y)+(x \bullet y-x \bullet y) \otimes+1 \otimes(x \bullet y-x \bullet y) .
\end{aligned}
$$

We deduce that $x \bullet y-x$ is primitive, so belongs to V. As it belongs to $V^{\otimes(k+l-1)}$ and $k+l-1 \geq 2$, it is zero. So $x \bullet y=x$.

Proposition 17 1. Let (V, \star) and $\left(V^{\prime}, \star^{\prime}\right)$ be two preLie algebras. The Com-PreLie bialgebras $T(V, \star)$ and $T\left(V^{\prime}, \star^{\prime}\right)$ are isomorphic if, and only if, the preLie algebras (V, \star) and $\left(V^{\prime}, \star^{\prime}\right)$ are isomorphic.
2. Let (V, \star) be a preLie algebra and $g: W \longrightarrow W$ be an endomorphism. The Com-PreLie bialgebras $T(V, \star)$ and $T(W, g)$ are isomorphic if, and only if, $\operatorname{dim}(V)=\operatorname{dim}(W), \star=0$ and $f=0$.

Proof. 1. If $F: V \longrightarrow V^{\prime}$ is a preLie algebra isomorphism, by functoriality, $T(F)$ is an isomorphism from $T(V, \star)$ to $T\left(V^{\prime}, \star^{\prime}\right)$. Let us assume that $\phi: T(V, \star) \longrightarrow T\left(V^{\prime}, \star^{\prime}\right)$ is an isomorphism. It induces by restriction an isomorphism F from $\operatorname{Prim}(T(V))=V$ to $\operatorname{Prim}\left(T\left(V^{\prime}\right)\right)=V^{\prime}$. Moreover, for all $x, y \in V$:

$$
\phi(x \bullet y)=\phi(x \star y)=F(x \star y)=\phi(x) \bullet \phi(y)=F(x) \bullet F(y)=F(x) \star^{\prime} F(y)
$$

So (V, \star) and $\left(V^{\prime}, \star^{\prime}\right)$ are isomorphic.
2. If $\operatorname{dim}(V)=\operatorname{dim}(W), \star=0$ and $f=0$, then both preLie product of $T(V, \star)$ and $T(W, g)$ are zero. Let $F: V \longrightarrow W$ be an isomorphism. Then $T(F)$ is an isomorphism from $T(V, \star)$ to $T(W, g)$. Conversely, if $\phi: T(V, \star) \rightarrow T(W, g)$ is an isomorphism, it induces an isomorphism F from $\operatorname{Prim}(T(V))=V$ to $\operatorname{Prim}(T(W))=W$. As $\phi(1)=1$, for all $x \in V$:

$$
\phi(x \bullet 1)=0=\phi(x) \bullet \phi(1)=F(x) \bullet 1=g \circ F(x)
$$

As F is an isomorphism, $g=0$, so the preLie product of $T(W, g)$ is zero. By isomorphism, the preLie product \star of $T(V, \star)$ is zero.

3 Examples on $\mathbb{K}[X]$

Our aim in this section is to give all preLie products on $\mathbb{K}[X]$, making it a graded Com-PreLie algebra. We shall prove the following result:

Theorem 18 1. The following objects are Zinbiel-PreLie algebras:
(a) Let $N \geq 1, \lambda, a, b \in \mathbb{K}, a \neq 0, b \notin \mathbb{Z}_{-}$. We put $\mathfrak{g}^{(1)}(N, \lambda, a, b)=(\mathbb{K}[X], m, \bullet)$, with:

$$
X^{i} \bullet X^{j}=\left\{\begin{array}{l}
i \lambda X^{i} \text { if } j=0 \\
a \frac{i}{\frac{j}{N}+b} X^{i+j} \text { if } j \neq 0 \text { and } N \mid j \\
0 \text { otherwise. }
\end{array}\right.
$$

(b) Let $N \geq 1, \lambda, \mu \in \mathbb{K}, \mu \neq 0$. We put $\mathfrak{g}^{(2)}(N, \lambda, \mu)=(\mathbb{K}[X], m, \bullet)$, with:

$$
X^{i} \bullet X^{j}=\left\{\begin{array}{l}
i \lambda X^{i} \text { if } j=0 \\
i \mu X^{i+N} \text { if } j=N, \\
0 \text { otherwise. }
\end{array}\right.
$$

(c) Let $N \geq 1, \lambda, \mu \in \mathbb{K}, \mu \neq 0$. We put $\mathfrak{g}^{(3)}(N, \lambda, \mu)=(\mathbb{K}[X], m, \bullet)$, with:

$$
X^{i} \bullet X^{j}=\left\{\begin{array}{l}
i \lambda X^{i} \quad \text { if } j=0 \\
i \mu X^{i+j} \text { if } j \neq 0 \text { and } N \mid j, \\
0 \text { otherwise. }
\end{array}\right.
$$

(d) Let $\lambda \in \mathbb{K}$. We put $\mathfrak{g}^{(4)}(\lambda)=(\mathbb{K}[X], m, \bullet)$, with:

$$
X^{i} \bullet X^{j}=\left\{\begin{array}{l}
i \lambda X^{i} \text { if } j=0 \\
0 \text { otherwise }
\end{array}\right.
$$

In particular, the preLie product of $\mathfrak{g}^{(4)}(0)$ is zero.
2. Moreover, if \bullet is a product on $\mathbb{K}[X]$, such that $\mathfrak{g}=(\mathbb{K}[X], m, \bullet)$ is a graded Com-PreLie algebra, Then \mathfrak{g} is one of the preceding examples.

Remark. If $\lambda=\frac{a}{b}$, in $\mathfrak{g}^{(1)}(N, \lambda, a, b)$, for all $i, j \in \mathbb{N}$:

$$
X^{i} \bullet X^{j}=\left\{\begin{array}{l}
\frac{a i}{\frac{a}{N}+b} \text { if } N \mid j, \\
0 \text { otherwise } .
\end{array}\right.
$$

We put $\mathfrak{g}^{(1)}(N, a, b)=\mathfrak{g}^{(1)}\left(N, \frac{a}{b}, a, b\right)$.
It is possible to prove that all these Com-PreLie algebras are not isomorphic. However, they can be isomorphic as Lie algebras. Let us first recall some notations on the Faà di Bruno Hopf algebra [2]:

- $\mathfrak{g}_{F d B}$ has a basis $\left(e_{i}\right)_{i \geq 1}$, and for all $i, j \geq 1,\left[e_{i}, e_{j}\right]=(i-j) e_{i+j}$.
- Let $\alpha \in \mathbb{K}$. The right $\mathfrak{g}_{F d B}$-module has a basis $V_{\alpha}=\operatorname{Vect}\left(f_{i}\right)_{i \geq 1}$, and the right action of $\mathfrak{g}_{F d B}$ is defined by $f_{i} \cdot e_{j}=(i+\alpha) e_{i+j}$.

Proposition 19 Let $N \geq 1, \lambda, \lambda^{\prime}, \mu, a, b \in \mathbb{K}, \mu, a \neq 0, b \notin \mathbb{Z}_{-}$. Then, as Lie algebras:

$$
\mathfrak{g}^{(1)}(N, \lambda, a, b)_{+} \approx \mathfrak{g}^{(3)}(N, \lambda, \mu)_{+} \approx\left(V_{-\frac{1}{N}} \oplus \ldots \oplus V_{-\frac{N-1}{N}}\right) \rtimes \mathfrak{g}_{F d B}
$$

Proof. We first work in $\mathfrak{g}^{(1)}(N, \lambda, a, b)$. For all $i \geq 1$, for all $1 \leq r \leq N-1$, we put $E_{i}=\frac{i+b}{N a} X^{N i}$ and $F_{i}^{(r)}=X^{N(i-1)+r}$. Then $\left(E_{i}\right)_{i \geq 1} \cup \bigcup_{r=1}^{N-1}\left(F_{i}^{(r)}\right)_{i \geq 1}$ is a basis of $\mathfrak{g}^{(1)}(N, \lambda, a, b)_{+}$, and, for all $i, j \geq 1$, for all $1 \leq r, s \leq N-1$:

$$
\left[E_{i}, E_{j}\right]=(i-j) E_{i+j}, \quad\left[F_{i}^{(r)}, F_{j}^{(s)}\right]=0, \quad\left[F_{i}^{(r)}, E_{j}\right]=\left(i+\frac{r-N}{N}\right) F_{i+j}^{(r)}
$$

Hence, this Lie algebra is isomorphic to $\left(V_{-\frac{N-1}{N}} \oplus \ldots \oplus V_{-\frac{1}{N}}\right) \rtimes \mathfrak{g}_{F d B}$. The proof is similar for $\mathfrak{g}^{(3)}\left(N, \lambda^{\prime}, \mu\right)$, with $E_{i}=\frac{1}{N \mu} X^{N i}$ and $F_{i}^{(r)}=X^{N(i-1)+r}$.

Consequently, we can describe the group corresponding to these Lie algebras.

1. $G_{F d B}$ is the group of formal diffeomorphisms of \mathbb{K} tangent to the identity:

$$
G_{F d B}=\left(\left\{X+a_{1} X^{2}+a_{2} X^{3}+\ldots \mid a_{2}, a_{2}, \ldots \in \mathbb{K}\right\}, \circ\right)
$$

2. For all $\alpha \in \mathbb{K}$, we define a right $G_{F d B}$-module \mathbb{V}_{α} : as a vector space, this is $\mathbb{K}[[X]]_{+}$. The action is given by $P . Q=\left(\frac{Q(X)}{X}\right)^{\alpha} P \circ Q(X)$ for all $P \in \mathbb{V}_{\alpha}$ and $Q \in G_{F d B}$.
Then the group corresponding to our Lie algebras $\mathfrak{g}^{(1)}(N, \lambda, a, b)_{+}$and $\mathfrak{g}^{(3)}(N, \lambda, \mu)_{+}$is:

$$
\left(\mathbb{V}_{-\frac{1}{N}} \oplus \ldots \oplus \mathbb{V}_{-\frac{N-1}{N}}\right) \rtimes G_{F d B}
$$

Let us conclude this paragraph with the description of the Lie algebra associated to $\mathfrak{g}^{(2)}(N, \lambda, \mu)$.
Proposition 20 The Lie algebra $\mathfrak{g}^{(2)}(N, \lambda, \mu)_{+}$admits a decomposition $\mathfrak{g}^{(2)}(N, \lambda, \mu)_{+} \approx$ $V^{\oplus N} \rtimes \mathfrak{g}_{0}$, where:

- \mathfrak{g}_{0} is an abelian, one-dimensional, Lie algebra, generated by an element z.
- V is a right \mathfrak{g}_{0}-module, with a basis $\left(f_{i}\right)_{i \geq 0}$, and the right action defined by $f_{i} . z=f_{i+1}$.

Proof. The Lie bracket of $\mathfrak{g}^{(2)}(N, \lambda, \mu)_{+}$is given by:

$$
\left[X^{i}, X^{j}\right]=\left\{0 \text { if } i, j \neq N, \mu i X^{i+N} \text { if } i \neq N, j=N\right.
$$

We put $\mathfrak{g}_{0}=V \operatorname{ect}\left(X^{N}\right)$. The N-copies of V are given by:

- For $1 \leq r<N, V^{(r)}=V e c t\left(\mu^{i} \prod_{j=1}^{i-1}(r+j N) X^{r+i N} \mid i \geq 0\right)$.
- $V^{(N)}=\operatorname{Vect}\left(\mu^{i} N^{i}(i+1)!X^{(i+2) N} \mid i \geq 0\right)$.

3.1 Graded preLie products on $\mathbb{K}[X]$

We now look for all preLie products on $\mathbb{K}[X]$, making it a graded Com-PreLie algebra. Let • be a such a product. By homogeneity, for all $i, j \geq 0$, there exists a scalar $\lambda_{i, j}$ such that:

$$
X^{i} \bullet X^{j}=\lambda_{i, j} X^{i+j}
$$

Moreover, for all $i, j, k \geq 0$:

$$
\begin{aligned}
X^{i+j} \bullet X^{k} & =\lambda_{i+j, k} X^{i+j+k} \\
& =\left(X^{i} X^{j}\right) \bullet X^{k} \\
& =\left(X^{i} \bullet X^{k}\right) X^{j}+X^{i}\left(X^{j} \bullet X^{k}\right) \\
& =\left(\lambda_{i, k}+\lambda_{j, k}\right) X^{i+j+k}
\end{aligned}
$$

Hence, $\lambda_{i+j, k}=\lambda_{i, k}+\lambda_{j, k}$. Putting $\lambda_{k}=\lambda_{1, k}$ for all $k \geq 0$, we obtain:

$$
X^{i} \bullet X^{j}=i \lambda_{j} X^{i+j}
$$

Lemma 21 For all $k \geq 0$, let $\lambda_{k} \in \mathbb{K}$. We define a product \bullet on $\mathbb{K}[X]$ by:

$$
X^{i} \bullet X^{j}=i \lambda_{j} X^{i+j}
$$

Then $(\mathbb{K}[X], m, \bullet)$ is Com-PreLie if, and only if, for all $j, k \geq 1$:

$$
\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k}=(j-k) \lambda_{j} \lambda_{k}
$$

Proof. Let $i, j, k \geq 0$. Then:

$$
X^{i} \bullet\left(X^{j} \bullet X^{k}\right)-\left(X^{i} \bullet X^{j}\right) \bullet X^{k}=\left(i j \lambda_{k} \lambda_{j+k}-i(i+j) \lambda_{j} \lambda_{k}\right) X^{i+j+k} .
$$

Hence:

- is preLie $\Longleftrightarrow \forall i, j, k \geq 0, i j \lambda_{k} \lambda_{j+k}-i(i+j) \lambda_{j} \lambda_{k}=i k \lambda_{j} \lambda_{j+k}-i(i+k) \lambda_{j} \lambda_{k}$

$$
\begin{aligned}
& \Longleftrightarrow \forall j, k \geq 0,\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k}=(j-k) \lambda_{j} \lambda_{k} \\
& \Longleftrightarrow \forall j, k \geq 1,\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k}=(j-k) \lambda_{j} \lambda_{k},
\end{aligned}
$$

as this relation is trivially satisfied if $j=0$ or $k=0$.
Lemma 22 Let \bullet be a product on $\mathbb{K}[X]$, making it a graded Com-PreLie algebra. Then $(\mathbb{K}[X], \prec, \bullet)$ is a Zinbiel-PreLie algebra.

Proof. Let us take $i, k, k \geq 0,(i, j) \neq(0,0)$. Then:

$$
\begin{aligned}
\left(X^{i} \bullet X^{k}\right) \prec X^{j}+X^{i} \prec\left(X^{j} \bullet X^{k}\right) & =\lambda_{k}\left(i X^{i+k} \prec X^{j}+j X^{i} \prec X^{j+k}\right) \\
& =\lambda_{k}\left(\frac{i(i+k)}{i+j+k}+\frac{i j}{i+j+k}\right) X^{i+j+k} \\
& =i \lambda_{k} X^{i+j+k} \\
& =(i+j) \lambda_{k} \frac{i}{i+j} X^{i+j+k}, \\
\left(X^{i} \prec X^{j}\right) \bullet X^{k} & =\frac{i}{i+j} X^{i+j} \bullet X^{k} \\
& =\frac{i}{i+j}(i+j) \lambda_{k} X^{i+j+k} \\
& =i \lambda_{k} X^{i+j+k} .
\end{aligned}
$$

So $\mathbb{K}[X]$ is Zinbiel-PreLie.
Proof. (Theorem 18, first part). Let us first prove that the objects defined in theorem 18 are indeed Zinbiel-PreLie algebras. By lemma [22, it is enough to prove that they are Com-PreLie algebras. We shall use lemma 21 in all cases.

1. For all $j \geq 1, \lambda_{j}=a \frac{1}{\frac{1}{N}+b}$ if $N \mid j$ and 0 otherwise. If j or k is not a multiple of N, then:

$$
\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k}=(j-k) \lambda_{j} \lambda_{k}=0 .
$$

If $j=N j^{\prime}$ and $k=N k^{\prime}$, with j^{\prime}, k^{\prime} integers, then:

$$
\begin{aligned}
\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k} & =N a^{2}\left(\frac{j^{\prime}}{k^{\prime}+b}-\frac{k^{\prime}}{j^{\prime}+b}\right) \frac{1}{j^{\prime}+k^{\prime}+b} \\
& =N a^{2} \frac{j^{\prime 2}-k^{\prime 2}+b\left(j^{\prime}-k^{\prime}\right)}{\left(j^{\prime}+b\right)\left(k^{\prime}+b\right)\left(j^{\prime}+k^{\prime}+b\right)} \\
& =N a^{2}\left(j^{\prime}-k^{\prime}\right) \frac{j^{\prime}+k^{\prime}+b}{\left(j^{\prime}+b\right)\left(k^{\prime}+b\right)\left(j^{\prime}+k^{\prime}+b\right)} \\
& a^{2}(j-k) \frac{1}{\left(j^{\prime}+b\right)\left(k^{\prime}+b\right)} \\
& =(j-k) \lambda_{j} \lambda_{k} .
\end{aligned}
$$

2. In this case, $\lambda_{j}=\mu$ if $j=N$ and 0 otherwise. Hence, for all $j, k \geq 1$:

$$
\begin{aligned}
\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k} & =\mu^{2}\left(j \delta_{k, N}-k \delta_{j, N}\right) \delta_{j+k, N}=0, \\
(j-k) \lambda_{j} \lambda_{k} & =\mu^{2}(j-k) \delta_{j, N} \delta_{k, N}=0 .
\end{aligned}
$$

3. Here, for all $j \geq 1, \lambda_{j}=\mu$ if $N \mid j$ and 0 otherwise. Then:

$$
\left(j \lambda_{k}-k \lambda_{j}\right) \lambda_{j+k}=\left\{\begin{array}{l}
\mu^{2}(j-k) \text { if } N \mid j, k, \\
0 \text { otherwise } ;
\end{array} \quad(j-k) \lambda_{j} \lambda_{k}=\left\{\begin{array}{l}
\mu^{2}(j-k) \text { if } N \mid j, k, \\
0 \text { otherwise }
\end{array}\right.\right.
$$

4. In this case, for all $j \geq 1, \lambda_{j}=0$ and the result is trivial.

3.2 Classification of graded preLie products on $\mathbb{K}[X]$

We now prove that the preceding examples cover all the possible cases.
Proof. (Theorem 18, second part). We put $X^{i} \bullet X^{j}=i \lambda_{j} X^{i+j}$ for all $i, j \geq 0$, and we put $\lambda=\lambda_{0}$. If for all $j \geq 1, \lambda_{j}=0$, then $\mathfrak{g}=\mathfrak{g}^{(4)}(\lambda)$. If this is not the case, we put:

$$
N=\min \left\{j \geq 1 \mid \lambda_{j} \neq 0\right\} .
$$

First step. Let us prove that if i is not a multiple of N, then $\lambda_{i}=0$. We put $i=q N+r$, with $0<r<N$, and we proceed by induction on q. By definition of $N, \lambda_{1}=\ldots=\lambda_{N-1}=0$, which is the result for $q=0$. Let us assume the result at rank $q-1$, with $q>0$. We put $j=i-N$ and $k=N$. By the induction hypothesis, $\lambda_{j}=0$. Then, by lemma 21;

$$
(i-N) \lambda_{N} \lambda_{i}=0 .
$$

As $i \neq N$ and $\lambda_{N} \neq 0, \lambda_{i}=0$. It is now enough to determine $\lambda_{i N}$ for all $i \geq 1$.
Second step. Let us assume that $\lambda_{2 N}=0$. Let us prove that $\lambda_{i N}=0$ for all $i \geq 2$, by induction on i. This is obvious if $i=2$. Let us assume the result at rank $i-1$, with $i \geq 3$, and let us prove it at rank i. We put $j=(i-1) N$ and $k=N$. By the induction hypothesis, $\lambda_{j}=0$. Then, by lemma 21:

$$
(i-2) N \lambda_{N} \lambda_{i} N=0 .
$$

As $i \geq 3$ and $\lambda_{N} \neq 0, \lambda_{i N}=0$. As a conclusion, if $\lambda_{2 N}=0$, putting $\mu=\lambda_{N}, \mathfrak{g}=\mathfrak{g}^{(2)}(N, \lambda, \mu)$.
Third step. We now assume that $\lambda_{2 N} \neq 0$. We first prove that $\lambda_{i N} \neq 0$ for all $i \geq 1$. This is obvious if $i=1,2$. he result at rank $i-1$, with $i \geq 3$, and let us prove it at rank i. We put $j=(i-1) N$ and $k=N$. Then, by lemma 21,

$$
\left(j \lambda_{N}-N \lambda_{j}\right) \lambda_{i N}=(i-2) N \lambda_{j} \lambda_{N} .
$$

By the induction hypothesis, $\lambda_{j} \neq 0$. Moreover, $i>2$ and $\lambda_{N} \neq 0$, so $\lambda_{i N} \neq 0$.
For all $j \geq 1$, we put $\mu_{j}=\frac{\lambda_{k N}}{\lambda_{N}}$: this is a nonzero scalar, and $\mu_{1}=1$. Let us prove inductively that:

$$
\mu_{k}=\frac{\mu_{2}}{(k-1)-(k-2) \mu_{2}}, \quad \quad \mu_{2} \neq \frac{k-1}{k-2} \text { if } k \neq 2 .
$$

If $k=1, \mu_{1}=1=\frac{\mu_{2}}{0-(-1) \mu_{2}}$, and $\mu_{2} \neq 0$ as $\lambda_{2 N} \neq 0$; if $k=2, \mu_{2}=\frac{\mu_{2}}{1-0 \mu_{2}}$. Let us assume the result at rank $k-1$, with $k \geq 3$. By lemma 21] with $j=(k-1) N$ and $k=N$:

$$
\begin{aligned}
\left((k-1) N \lambda_{N}-\lambda_{N} \mu_{k-1}\right) \lambda_{N} \mu_{k} & =(k-2) N \mu_{k-1} \mu_{1} \lambda_{N}^{2}, \\
\mu_{k}\left(k-1-\mu_{k-1}\right) & =(k-2) \mu_{k-1} .
\end{aligned}
$$

As $\mu_{k-1} \neq 0$ and $k>2, k-1-\mu_{k-1} \neq 0$. Moreover, by the induction hypothesis:

$$
\begin{aligned}
k-1-\mu_{k-1} & =k-1-\frac{\mu_{2}}{(k-2)-(k-3) \mu_{2}} \\
& =\frac{(k-1)(k-2)-((k-1)(k-3)+1) \mu_{2}}{(k-2)-(k-3) \mu_{2}} \\
& =(k-2) \frac{(k-1)-(k-2) \mu_{2}}{(k-2)-(k-3) \mu_{2}}
\end{aligned}
$$

As this is nonzero, $\mu_{2} \neq \frac{k-1}{k-2}$. We finally obtain:

$$
\mu_{k}=(k-2) \mu_{k-1} \frac{1}{k-2} \frac{(k-2)-(k-3) \mu_{2}}{(k-1)-(k-2) \mu_{2}}=\frac{\mu_{2}}{(k-1)-(k-2) \mu_{2}}
$$

Finally, for all $k \geq 1$:

$$
\lambda_{k N}=\frac{\lambda_{N} \mu_{2}}{(k-1)-(k-2) \mu_{2}}=\frac{\lambda_{N} \mu_{2}}{\left(1-\mu_{2}\right) k+2 \mu_{2}-1} .
$$

Last step. If $\mu_{2}=1$, then for all $k \geq 1, \lambda_{k N}=\lambda_{N}$: this is $\mathfrak{g}^{(3)}\left(N, \lambda, \lambda_{N}\right)$. If $\mu_{2} \neq 1$, we put $b=\frac{2 \mu_{2}-1}{1-\mu_{2}}$.

- As $\mu_{2} \neq 0, b \neq-1 ;$
- $b \neq-2$;
- for all $k \geq 3, \mu_{2} \neq \frac{k-1}{k-2}$, so $b \neq-k$.

This gives that $b \notin \mathbb{Z}_{-}$. Moreover, for all $k \geq 1$:

$$
\lambda_{k N}=\frac{\frac{\lambda_{N} \mu_{2}}{1-\mu_{2}}}{k+b} .
$$

We take $a=\frac{\lambda_{N} \mu_{2}}{1-\mu_{2}}$, and we obtain $\mathfrak{g}^{(1)}(N, \lambda, a, b)$.
Proposition 23 Among the examples of theorem 18, the Com-PreLie bialgebras (or equivalently the Zinbiel-PreLie bialgebras) are $\mathfrak{g}^{(1)}(1, a, 1)$ for all $a \neq 0$ and $g^{(4)}(0)$.

Proof. Note that $\mathfrak{g}^{(1)}(1,0,1)=\mathfrak{g}^{(4)}(0)$. Let us first prove that $\mathfrak{g}(1, a, 1)$ is a Zinbiel-PreLie bialgebra for all $a \in \mathbb{K}$. Let us take V one-dimensional, generated by x, with $f=a I d$. We work in $T(V, f)$. Let us prove that $x^{k} \bullet x^{l}=a\binom{k+l}{k-1} x^{k+l}$ by induction on k. It is obvious if $k=0$, as $\binom{k+l}{-1}=0$. Let us assume the result at rank $k-1$.

$$
\begin{aligned}
x^{k} \bullet x^{l} & =x\left(x^{k-1} Ш x^{l}\right)+f(x) x^{k-1} Ш x^{l} \\
& =a\left(\binom{k+l-1}{k-1}+\binom{k+l-1}{k-1}\right) x^{k+l} \\
& =a\binom{k+l}{k-1} x^{k+l} .
\end{aligned}
$$

The Zinbiel product of $T(V)$ is given by:

$$
x^{k} \prec x^{l}=\binom{k+l-1}{k-1} x^{k+l},
$$

for all $k, l \geq 1$. There is an isomorphism of Hopf algebras:

$$
\Theta:\left\{\begin{array}{rll}
\mathbb{K}[X] & \longrightarrow & T(V) \\
X & \longrightarrow & x
\end{array}\right.
$$

For all $n \geq 0, \Theta\left(X^{n}\right)=x^{\boldsymbol{\omega} n}=n!x^{n}$. For all $k, l \geq 0$:

$$
\begin{aligned}
\Theta\left(X^{k}\right) \bullet \Theta\left(X^{l}\right) & =a\binom{k+l}{k-1} k!l!x^{k+l} & \Theta\left(X^{k}\right) \prec \Theta\left(X^{l}\right) & =\binom{k+l-1}{k-1} k!l!x^{k+l} \\
& =\frac{a k}{l+1} \Theta\left(X^{k+l}\right) ; & & =\frac{k}{k+l} \Theta\left(X^{k+l}\right) .
\end{aligned}
$$

Consequently, $\mathfrak{g}^{(1)}(1, a, 1)$ is isomorphic, as a Zinbiel-PreLie bialgebra to $T(V, f)$ (so is indeed a Zinbiel-PreLie bialgebra).

Let \mathfrak{g} be one of the examples of theorem 18, First:

$$
\begin{aligned}
\Delta(X \bullet X) & =X \otimes 1 \bullet X+1 \otimes X \bullet X \\
& +X \bullet X \otimes 1+X \bullet 1 \otimes X+1 \bullet X \otimes X+1 \bullet 1 \otimes X^{2} \\
\lambda_{1}\left(1 \otimes X^{2}+2 X \otimes X+X^{2} \otimes 1\right) & =\lambda_{1} 1 \otimes X^{2}+\lambda X \otimes X+\lambda_{1} X^{2} \otimes 1 .
\end{aligned}
$$

This gives $\lambda=2 \lambda_{1}$. In particular, if $\mathfrak{g}=\mathfrak{g}^{(4)}(\lambda)$, then $\lambda=2 \lambda_{1}=0$: this is $\mathfrak{g}^{(4)}(0)$. In the other cases, N exists. By definition of $N, X \bullet X^{k}=0$ if $1 \leq k \leq N-1$. We obtain:

$$
\begin{aligned}
\Delta\left(X \bullet X^{N}\right) & =1 \otimes X \bullet X^{N}+X \otimes 1 \bullet X^{N}+\sum_{k=0}^{N}\binom{N}{k}\left(X \bullet X^{k} \otimes X^{N-k}+1 \bullet X^{k} \otimes X^{n-k+1}\right) \\
\lambda_{N} \Delta\left(X^{N+1}\right) & =1 \otimes X \bullet X^{N}+\lambda X \otimes X^{N}+1 \otimes X \bullet X^{N} .
\end{aligned}
$$

If $\lambda=0$, we obtain that X^{N+1} is primitive, so $N+1=1$: absurd, $N \geq 1$. So $\lambda \neq 0$. The cocommutativity of Δ implies that $N=1$.

$$
\begin{aligned}
\Delta\left(X \bullet X^{2}\right) & =\lambda_{2}\left(X^{3} \otimes 1+3 X^{2} \otimes X+3 X \otimes X^{2}+1 \otimes X^{3}\right) \\
& =1 \otimes X \bullet X^{2}+2 \lambda_{1} X^{2} \otimes X+\lambda_{0} X \otimes X^{2}+1 \otimes X \bullet X^{2}
\end{aligned}
$$

Hence, $3 \lambda_{2}=2 \lambda_{1}$.

- If $\mathfrak{g}=\mathfrak{g}^{(3)}(1, \lambda, \mu)$, we obtain $3 \mu=2 \mu$, so $\mu=0$: this is a contradiction.
- If $\mathfrak{g}=\mathfrak{g}^{(2)}(1, \lambda, \mu)$, we obtain $0=2 \mu$, so $\mu=0$: this is a contradiction.

So $\mathfrak{g}=\mathfrak{g}^{(1)}(1, \lambda, a, b)$. We obtain:

$$
3 \frac{a}{2+b}=2 \frac{a}{1+b},
$$

so $b=1$. Then $\lambda_{0}=2 \lambda_{1}=\frac{2 a}{2}=a=\frac{a}{b}$, so $\mathfrak{g}=\mathfrak{g}^{(1)}(1, a, 1)$.

4 Cocommutative Com-PreLie bialgebras

We shall prove the following theorem:
Theorem 24 Let A be a connected, cocommutative Com-PreLie bialgebra. Then one of the following assertions holds:

1. There exists a linear form $f: V \longrightarrow \mathbb{K}$ and $\lambda \in \mathbb{K}$, such that A is isomorphic to $S(V, f, \lambda)$.
2. There exists $\lambda \in \mathbb{K}$ such that A is isomorphic to $\mathfrak{g}^{(1)}(1, \lambda, 1)$.

First, observe that if A is a cocommutative, commutative, connected Hopf algebra: by the Cartier-Quillen-Milnor-Moore theorem, it is isomorphic to the enveloping Hopf algebra of an abelian Lie algebra, so is isomorphic to $S(V)$ as a Hopf algebra, where $V=\operatorname{Prim}(A)$. If $V=(0)$, the first point holds trivially.

4.1 First case

We assume in this paragraph that V is at least 2-dimensional.
Lemma 25 Let A be a connected, cocommutative Com-PreLie algebra, such that the dimension of $\operatorname{Prim}(A)$ is at least 2 . Then $f_{A}=0$, and there exists a map $F: A \otimes A \longrightarrow A$, such that:

1. For all $x, y \in A_{+}, x \bullet y=F\left(x \otimes y^{\prime}\right) y^{\prime \prime}+F(x \otimes 1) y$.
2. For all $x_{1}, x_{2} \in A, F\left(x_{1} x_{2} \otimes y\right)=F\left(x_{1} \otimes y\right) x_{2}+x_{1} F\left(x_{2} \otimes y\right)$.
3. $F(\operatorname{Prim}(A) \otimes A) \subseteq \mathbb{K}$.

Proof. We assume that $A=S(V)$ as a bialgebra, with its usual product and coproduct $\boldsymbol{\Delta}$, and that $\operatorname{dim}(V) \geq 2$. Let $x, y \in V$. Then:

$$
\boldsymbol{\Delta}(x \bullet y)=x \bullet y \otimes 1+1 \otimes x \bullet y+f_{A}(x) \otimes y .
$$

By cocommutativity, for all $x, y \in V, f_{A}(x)$ and y are colinear. Let us choose y_{1} and $y_{2} \in V$, non colinear. Then $f_{A}(x)$ is colinear to y_{1} and y_{2}, so belongs to $\operatorname{Vect}\left(y_{1}\right) \cap \operatorname{Vect}\left(y_{2}\right)=(0)$. Finally, $f_{A}=0$.

We now construct linear maps $F_{i}: V \otimes S^{i}(V) \longrightarrow \mathbb{K}$, such that for all $k \geq 0$, putting:

$$
F^{(k)}=\bigoplus_{i=0}^{k} F_{i}: \bigoplus_{i=0}^{k} V \otimes S^{i}(V) \longrightarrow \mathbb{K}
$$

for all $x, y_{1}, \ldots, y_{k+1} \in V$:

$$
x \bullet y_{1} \ldots y_{k+1}=F^{(k)}\left(x \otimes\left(y_{1} \ldots y_{k+1}\right)^{\prime}\right) \otimes\left(y_{1} \ldots y_{k+1}\right)^{\prime \prime}+F^{(k)}(x \otimes 1) y_{1} \ldots y_{k+1} .
$$

We proceed by induction on k. Let us first construct $F^{(0)}$. Let $x, y \in V$.

$$
\boldsymbol{\Delta}\left(x \bullet y^{2}\right)=1 \otimes x \bullet y^{2}+x \bullet y^{2} \otimes 1+2 x \bullet y \otimes y .
$$

By cocommutativity, $x \bullet y$ and y are colinear, so there exists a linear map $g: V \longrightarrow \mathbb{K}$ such that $x \bullet y=g(x) y$. We the take $F^{(0)}(x \otimes 1)=g(x)$. For all $x, y \in V, x \bullet y=F(x \otimes 1) y$, so the result holds for $k=0$.

Let us assume that $F^{(0)}, \ldots, F^{(k-2)}$ are constructed for $k \geq 2$. Let $x, y_{1}, \ldots, y_{k} \in V$. For all $I \subseteq[k]=\{1, \ldots, k\}$, we put $y_{I}=\prod_{i \in I} y_{i}$. Then:

$$
\tilde{\boldsymbol{\Delta}}\left(y_{1} \ldots y_{k}\right)=\sum_{I \sqcup J=[k], I, J \neq 1} y_{I} \otimes y_{J},
$$

and:

$$
\begin{aligned}
\boldsymbol{\Delta}\left(x \bullet y_{1} \ldots y_{k}\right) & =1 \otimes x \bullet y_{1} \ldots y_{k}+x \bullet y_{1} \ldots y_{k} \otimes 1+\sum_{[k]=I \sqcup J, J \neq 1} x \bullet y_{I} \otimes y_{J} \\
& =1 \otimes x \bullet y_{1} \ldots y_{k}+x \bullet y_{1} \ldots y_{k} \otimes 1+\sum_{I \sqcup J \sqcup K=[k], J, K \neq 1} F^{(k-2)}\left(x \otimes y_{I}\right) \otimes y_{J} \otimes y_{K}
\end{aligned}
$$

We put:

$$
P\left(x, y_{1} \ldots y_{k}\right)=x \bullet y_{1} \ldots y_{k}-\sum_{I \sqcup J=[k]|J| \geq 2} F^{(k-2)}\left(x \otimes y_{I}\right) y_{J} .
$$

The preceding computation shows that $P\left(x, y_{1} \ldots, y_{k}\right)$ is primitive, so belongs to V. Let $y_{k+1} \in$ V.

$$
\begin{aligned}
& \tilde{\boldsymbol{\Delta}}\left(x \bullet y_{1} \ldots y_{k+1}\right)=\sum_{I \sqcup J \sqcup K=[k+1], K \neq 1,|J| \geq 2} \underbrace{F^{(k-2)}\left(x \otimes y_{I}\right) y_{J}}_{\in S_{\geq 2}(V)} \otimes y_{K} \\
& +P\left(x, y_{1} \ldots y_{k}\right) \otimes y_{k+1}+\sum_{i=1}^{k} P\left(x, y_{1} \ldots y_{i-1} y_{i+1} \ldots y_{k+1}\right) \otimes y_{i} .
\end{aligned}
$$

By cocommutativity, considering the projection on $V \otimes V$, we deduce that $P\left(x, y_{1} \ldots y_{k}\right) \in$ $\operatorname{Vect}\left(y_{1}, \ldots, y_{k}, y_{k+1}\right)$ for all nonzero $y_{k+1} \in V$. In particular, for $y_{1}=y_{k+1}, P\left(x \otimes y_{1} \ldots y_{k}\right) \in$ $V e c t\left(y_{1}, \ldots, y_{k}\right)$. By multilinearity, there exists $F_{1}^{\prime}, \ldots, F_{k}^{\prime} \in\left(V \otimes S_{k-1}(V)\right)^{*}$, such that for all $x, y_{1}, \ldots, y_{k} \in V$:

$$
P\left(x, y_{1} \ldots y_{k}\right)=F_{1}^{\prime}\left(x \otimes y_{2} \ldots y_{k}\right) y_{1}+\ldots+F_{k}^{\prime}\left(x \otimes y_{1} \ldots y_{k-1}\right) y_{k}
$$

By symmetry in $y_{1}, \ldots, y_{k}, F_{1}^{\prime}=\ldots=F_{k}^{\prime}=F_{k-1}$. Then:

$$
\begin{aligned}
x \bullet y_{1} \ldots y_{k} & =\sum_{I \sqcup J=[k],|J| \geq 2} F^{(k-2)}\left(x \otimes y_{I}\right) y_{J}+\sum_{I \sqcup J=[k],|J|=1} F_{k-1}\left(x \otimes y_{I}\right) y_{J} \\
& =\sum_{I \sqcup J=[k],|J| \geq 1} F^{(k-1)}\left(x \otimes y_{I}\right) y_{J} \\
& =F^{(k-1)}\left(x \otimes\left(y_{1} \ldots y_{k}\right)^{\prime}\right)\left(y_{1} \ldots y_{k}\right)^{\prime \prime}+F(x \otimes 1) y_{1} \ldots y_{k} .
\end{aligned}
$$

We defined a map $F: V \otimes S(V) \longrightarrow K$, such that for all $x \in V, b \in S_{+}(V)$,

$$
x \bullet b=F\left(x \otimes b^{\prime}\right) b^{\prime \prime}+F(x \otimes 1) b .
$$

We extend F in a map from $S(V) \otimes S(V)$ to $S(V)$ by:

- $F(1 \otimes b)=0$.
- For all $x_{1}, \ldots, x_{k} \in V, F\left(x_{1} \ldots x_{k} \otimes b\right)=\sum_{i=1}^{k} x_{1} \ldots x_{i-1} F\left(x_{1} \otimes b\right) x_{i+1} \ldots x_{k}$.

This map F satisfies points 2 and 3 . Let us consider:

$$
B=\left\{a \in A \mid \forall b \in S_{+}(V), a \bullet b=F\left(a \otimes b^{\prime}\right) b^{\prime \prime}+F(a \otimes 1) b\right\}
$$

As $1 \bullet b=0$ for all $b \in S(V), 1 \in B$. By construction of $F, V \subseteq B$. Let $a_{1}, a_{2} \in B$. For any $b \in S_{+}(V)$:

$$
\begin{aligned}
a_{1} a_{2} \bullet b & =\left(a_{1} \bullet b\right) a_{2}+a_{1}\left(a_{2} \bullet b\right) \\
& =F\left(a_{1} \otimes b^{\prime}\right) a_{2} b^{\prime \prime}+a_{1} F\left(a_{2} \bullet b^{\prime}\right) b^{\prime \prime}+F\left(a_{1} \otimes 1\right) a_{2} b+a_{1} F\left(a_{2} \otimes 1\right) b \\
& =F\left(a_{1} a_{2} \otimes b^{\prime}\right) b^{\prime \prime}+F\left(a_{1} a_{2} \otimes 1\right) b
\end{aligned}
$$

So $a_{1} a_{2} \in B$. Hence, B is a subalgebra of $S(V)$ containing V, so is equal to $S(V)$: F satisfies the first point.

Remarks.

1. In this case, for all primitive element v, the 1-cocycle of the bialgebra A defined by $L(x)=$ $a \bullet x$ is the coboundary associated to the linear form defined by $f(x)=-F(a \otimes x)$
2. In particular, the preLie product of two elements x, y of $\operatorname{Prim}(A)$ si given by:

$$
x \bullet y=F(x \otimes 1) y
$$

Lemma 26 With the preceding hypothesis, let us assume that $F(x \otimes 1)=0$ for all $x \in$ $\operatorname{Prim}(A)$. Then $\bullet=0$.

Proof. We assume that $A=S(V)$ as a bialgebra. By hypothesis, for all $a \in A, F(a \otimes 1)=0$, so $a \bullet 1=0$. This implies that for all $a, b \in S_{+}(V)$:

$$
\tilde{\boldsymbol{\Delta}}(a \bullet b)=a \bullet b^{\prime} \otimes b^{\prime \prime}+a^{\prime} \bullet b^{\prime} \otimes a^{\prime \prime} b^{\prime \prime}+a^{\prime} \bullet b \otimes a^{\prime \prime}+a^{\prime} \otimes a^{\prime \prime} \bullet b .
$$

Let us prove the following assertion by induction on N : for all $k<N$, for all $x, y_{1}, \ldots, y_{k} \in V$, $x \bullet y_{1} \ldots y_{k}=0$. By hypothesis, this is true for $N=1$. Let us assume the result at a certain rank $N \geq 2$. Let us choose $x, y_{1}, \ldots, y_{N} \in V$. Then, by the induction hypothesis:

$$
\tilde{\Delta}\left(x \bullet y_{1} \ldots y_{N}\right)=0+0+0+0=0
$$

So $x \bullet y_{1} \ldots y_{N}$ is primitive.
Up to a factorization, we can write any $x \bullet y_{1} \ldots y_{N}$ as a linear span of terms of the form $z_{1} \bullet z_{1}^{\beta_{1}} \ldots z_{n}^{\beta_{n}}$, with z_{1}, \ldots, z_{n} linearly independent, $\beta_{1}, \ldots, \beta_{n} \in \mathbb{N}$, with $\beta_{1}+\ldots+\beta_{n}=N$. If $n=1$, as $\operatorname{dim}(V) \geq 2$ we can choose any z_{2} linearly independent with z_{1} and take $\beta_{2}=0$. It is now enough to consider $z_{1} \bullet z_{1}^{\beta_{1}} \ldots z_{n}^{\beta_{n}}$, with $n \geq 2, z_{1}, \ldots, z_{n}$ linearly independent, $\beta_{1}, \ldots, \beta_{n} \in$ $\mathbb{N}, \beta_{1}+\ldots+\beta_{n}=N$. Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{N}$, such that $\alpha_{1}+\ldots+\alpha_{n}=N+1$.

$$
\begin{aligned}
\tilde{\boldsymbol{\Delta}}\left(z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}\right) & =\sum_{i=1}^{n} \alpha_{i} z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}} \otimes z_{i} \\
\tilde{\boldsymbol{\Delta}}\left(\frac{z_{1}^{2}}{2} \bullet z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}\right) & =\sum_{i=1}^{n} \alpha_{i}\left(z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}}\right) z_{1} \otimes z_{i} \\
& +\sum_{i=1}^{n} \alpha_{i} z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}} \otimes z_{1} z_{i} \\
& +z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}} \otimes z_{1}+z_{1} \otimes z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}
\end{aligned}
$$

$$
\begin{aligned}
(\tilde{\boldsymbol{\Delta}} \otimes I d) \circ \tilde{\boldsymbol{\Delta}}\left(\frac{z_{1}^{2}}{2} \bullet z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}\right) & =\sum_{i=1}^{n} \alpha_{i} z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}} \otimes z_{1} \otimes z_{i} \\
& +\sum_{i=1}^{n} \alpha_{i} z_{1} \otimes z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}} \otimes z_{i} \\
& +\sum_{i} \alpha_{i} z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}} \otimes z_{i} \otimes z_{1}
\end{aligned}
$$

The cocommutativity implies that for all $1 \leq i \leq n, \alpha_{i} z_{1} \bullet z_{1}^{\alpha_{1}} \ldots z_{i}^{\alpha_{i}-1} \ldots z_{n}^{\alpha_{n}}$ and z_{i} are colinear. We first choose $\alpha_{1}=\beta_{1}+1, \alpha_{i}=\beta_{i}$ for all $i \geq 2$, and we obtain for $i=1$ that $z_{1} \bullet z_{1}^{\beta_{1}} \ldots z_{n}^{\beta_{n}} \in$ $\operatorname{Vect}\left(z_{1}\right)$. We then choose $\alpha_{n}=\beta_{n}+1$ and $\alpha_{i}=\beta_{i}$ for all $i \leq n-1$, and we obtain for $i=n$ that $z_{1} \bullet z_{1}^{\beta_{1}} \ldots z_{n}^{\beta_{n}} \in \operatorname{Vect}\left(z_{n}\right)$. Finally, as $n \geq 2, z_{1} \bullet z_{1}^{\beta_{1}} \ldots z_{n}^{\beta_{n}} \in \operatorname{Vect}\left(z_{1}\right) \cap \operatorname{Vec}\left(z_{2}\right)=(0)$; the hypothesis is true at trank N.

We proved that for all $x \in V$, for all $b \in S(V), x \bullet b=0$. By the derivation property of \bullet, as V generates $S(V)$, for all $a, b \in S(V), a \bullet b=0$.

Lemma 27 Under the preceding hypothesis, Let us assume that $F(\operatorname{Prim}(A) \otimes \mathbb{K}) \neq(0)$. Then A is isomorphic to a certain $S(V, f, \lambda)$, with $V=\operatorname{Prim}(A)$ and $f(x)=F(x \otimes 1)$ for all $x \in V$.

Proof. We assume that $A=S(V)$ as a bialgebra. Let $a, b, c \in S_{+}(V)$. Then:

$$
\begin{aligned}
\tilde{\Delta}([a, b]) & =a^{\prime} \otimes a^{\prime \prime} \bullet b+a \bullet b^{\prime} \otimes b^{\prime \prime}+a^{\prime} \bullet b \otimes a^{\prime \prime} \\
& -b^{\prime} \otimes b^{\prime \prime} \bullet a-b \bullet a^{\prime} \otimes a^{\prime \prime}-b^{\prime} \otimes a \otimes b^{\prime \prime}+\left[a^{\prime}, b^{\prime}\right] \otimes a^{\prime \prime} b^{\prime \prime}
\end{aligned}
$$

where $[-,-]$ is the Lie bracket associated to \bullet. Hence:

$$
\begin{aligned}
(a \bullet b) \bullet c & =F(a \otimes 1) b \bullet c+F\left(a \otimes b^{\prime}\right) b^{\prime \prime} \bullet c \\
& =F(a \otimes 1) F(b \otimes 1) c+F(a \otimes 1) F\left(b \otimes c^{\prime}\right) c^{\prime \prime} \\
& +F\left(a \otimes b^{\prime}\right) F\left(b^{\prime \prime} \otimes 1\right) c+F\left(a \otimes b^{\prime}\right) F\left(b^{\prime \prime} \otimes c^{\prime}\right) c^{\prime \prime} \\
(a \bullet c) \bullet b & =F(a \otimes 1) F(c \otimes 1) b+F(a \otimes 1) F\left(c \otimes b^{\prime}\right) b^{\prime \prime} \\
& +F\left(a \otimes c^{\prime}\right) F\left(c^{\prime \prime} \otimes 1\right) b+F\left(a \otimes c^{\prime}\right) F\left(c^{\prime \prime} \otimes b^{\prime}\right) b^{\prime \prime}
\end{aligned}
$$

$$
a \bullet[b, c]=F(a \otimes 1) F(b \otimes 1) c+F(a \otimes 1) F\left(b \otimes c^{\prime}\right) c^{\prime \prime}-F(a \otimes 1) F(c \otimes 1) b
$$

$$
-F(a \otimes 1) F\left(c \otimes b^{\prime}\right) b^{\prime \prime}+F\left(a \otimes b^{\prime}\right) F\left(b^{\prime \prime} \otimes 1\right) c+F\left(a \otimes b^{\prime}\right) F\left(b^{\prime \prime} \otimes c^{\prime}\right) c^{\prime \prime}
$$

$$
-F\left(a \otimes c^{\prime}\right) F\left(c^{\prime \prime} \otimes 1\right) b-F\left(a \otimes c^{\prime}\right) F\left(c^{\prime \prime} \otimes b^{\prime}\right) b^{\prime \prime}+F\left(a \otimes F(b \otimes 1) c^{\prime}\right) c^{\prime \prime}
$$

$$
+F\left(a \otimes F\left(b \otimes c^{\prime}\right) c^{\prime \prime}\right) c^{\prime \prime \prime}-F\left(a \otimes F(c \otimes 1) b^{\prime}\right) b^{\prime \prime}-F\left(a \otimes F\left(c \otimes b^{\prime}\right) b^{\prime \prime}\right) b^{\prime \prime \prime}
$$

$$
+F\left(a \otimes F\left(b^{\prime} \otimes 1\right) c\right) b^{\prime \prime}+F\left(a \otimes F\left(b^{\prime} \otimes c^{\prime}\right) c^{\prime \prime}\right) b^{\prime \prime}-F\left(a \otimes F\left(c^{\prime} \otimes 1\right) b\right) c^{\prime \prime}
$$

$$
+F\left(a \otimes F\left(c^{\prime} \otimes b^{\prime}\right) b^{\prime \prime}\right) c^{\prime \prime}+F\left(a \otimes F\left(b^{\prime} \otimes 1\right) c^{\prime}\right) b^{\prime \prime} c^{\prime \prime}+F\left(a \otimes F\left(b^{\prime} \otimes c^{\prime}\right) c^{\prime \prime}\right) b^{\prime \prime} c^{\prime \prime \prime}
$$

$$
-F\left(a \otimes F\left(c^{\prime} \otimes 1\right) b^{\prime}\right) b^{\prime \prime} c^{\prime \prime \prime}-F\left(a \otimes F\left(c^{\prime} \otimes b^{\prime}\right) b^{\prime \prime}\right) b^{\prime \prime \prime} c^{\prime \prime}
$$

The preLie relation implies that:

$$
\begin{aligned}
0 & =F\left(a \otimes F(b \otimes 1) c^{\prime}\right) c^{\prime \prime}+F\left(a \otimes F\left(b \otimes c^{\prime}\right) c^{\prime \prime}\right) c^{\prime \prime \prime}-F\left(a \otimes F(c \otimes 1) b^{\prime}\right) b^{\prime \prime} \\
& -F\left(a \otimes F\left(c \otimes b^{\prime}\right) b^{\prime \prime}\right) b^{\prime \prime \prime}+F\left(a \otimes F\left(b^{\prime} \otimes 1\right) c\right) b^{\prime \prime}+F\left(a \otimes F\left(b^{\prime} \otimes c^{\prime}\right) c^{\prime \prime}\right) b^{\prime \prime} \\
& -F\left(a \otimes F\left(c^{\prime} \otimes 1\right) b\right) c^{\prime \prime}+F\left(a \otimes F\left(c^{\prime} \otimes b^{\prime}\right) b^{\prime \prime}\right) c^{\prime \prime}+F\left(a \otimes F\left(b^{\prime} \otimes 1\right) c^{\prime}\right) b^{\prime \prime} c^{\prime \prime} \\
& +F\left(a \otimes F\left(b^{\prime} \otimes c^{\prime}\right) c^{\prime \prime}\right) b^{\prime \prime} c^{\prime \prime \prime}-F\left(a \otimes F\left(c^{\prime} \otimes 1\right) b^{\prime}\right) b^{\prime \prime} c^{\prime \prime \prime}-F\left(a \otimes F\left(c^{\prime} \otimes b^{\prime}\right) b^{\prime \prime}\right) b^{\prime \prime \prime} c^{\prime \prime}
\end{aligned}
$$

For $a=x \in V, b=y \in V$, as $F(V \otimes S(V)) \subset \mathbb{K}$, this simplifies to:

$$
\begin{equation*}
F\left(x \otimes c^{\prime}\right) F(y \otimes 1) c^{\prime \prime}+F\left(y \otimes c^{\prime}\right) F\left(x \otimes c^{\prime \prime}\right) c^{\prime \prime \prime}=F\left(x \otimes F\left(c^{\prime} \otimes 1\right) y\right) c^{\prime \prime} \tag{1}
\end{equation*}
$$

Let $x_{1}, \ldots, x_{k} \in V$, linearly independent, $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{N}$, with $\alpha_{1}+\ldots+\alpha_{N} \geq 1$. We take $c=x_{1}^{\alpha_{1}+1} \ldots x_{k}^{\alpha_{k}}$ and $d=x_{1}^{\alpha_{1}} \ldots x_{k}^{\alpha_{k}}$. The coefficient of x_{1} in (11), seen as an equality between two polynomials in x_{1}, \ldots, x_{k}, gives:

$$
\left(\alpha_{1}+1\right)\left(F(x \otimes d) F(y \otimes 1)+F\left(y \otimes d^{\prime}\right) F\left(x \otimes d^{\prime \prime}\right)\right)=\left(\alpha_{1}+1\right) F(x \otimes F(d \otimes 1) y)
$$

Hence, for all $x, y \in V$, for all $c \in S_{+}(V)$:

$$
\begin{equation*}
F(x \otimes c) F(y \otimes 1)+F\left(y \otimes c^{\prime}\right) F\left(x \otimes c^{\prime \prime}\right)=F(x \otimes F(c \otimes 1) y) \tag{2}
\end{equation*}
$$

We put $f(x)=F(x \otimes 1)$ for all $x \in V$. If $f=0$, by lemma 26, $\bullet=0$, so A is isomorphic to $S(V, 0,0)$. Let us assume that $f \neq 0$ and let us choose $y \in V$, such that $f(y)=1$. If $z_{1}, \ldots, z_{k} \in \operatorname{Ker}(f)$, then:

$$
F\left(z_{1} \ldots z_{k} \otimes 1\right)=\sum_{i=1}^{k} z_{1} \ldots g\left(z_{i}\right) \ldots z_{k}=0
$$

Consequenlty, if $c \in S_{+}(\operatorname{Ker}(f)) \subseteq S_{+}(V)$, (2) gives:

$$
F\left(x \otimes c^{\prime}\right)+F\left(y \otimes c^{\prime}\right) F\left(x \otimes c^{\prime \prime}\right)=0 .
$$

An easy induction on the length of c proved that for all $c \in S_{+}(\operatorname{Ker}(g)), F(x \otimes c)=0$ for all $x \in V$. So there exists linear forms $g_{k} \in V^{*}$, such that for all $x, y_{1}, \ldots, y_{k} \in V$:

$$
F\left(x \otimes y_{1} \ldots y_{k}\right)=g_{k}(x) f\left(y_{1}\right) \ldots f\left(y_{k}\right) .
$$

In particular, $g_{0}=f$. The preLie product is then given by:

$$
x \bullet y_{1} \ldots y_{k}=\sum_{i=1}^{k-1} g_{i}(x) \sum_{1 \leq j_{1}<\ldots<j_{i} \leq k} y_{1} \ldots f\left(y_{j_{1}}\right) \ldots f\left(y_{j_{i}}\right) \ldots y_{k}
$$

Let $x, y, z_{1}, \ldots, z_{k} \in V$.

$$
\begin{aligned}
x \bullet\left(y \bullet z_{1} \ldots z_{k}\right) & =x \bullet \sum_{i=0}^{k-1} g_{i}(y) \sum_{j_{1}, \ldots, j_{i}} z_{i} \ldots f\left(z_{j-1}\right) \ldots f\left(z_{j_{i}}\right) \ldots z_{l} \\
& =\sum_{i=0}^{k-1} g_{l-i-1}(x) g_{i}(x)\binom{l-1}{i} \sum_{j=1}^{k} f\left(z_{1}\right) \ldots f\left(z_{j-1}\right) z_{j} f\left(z_{j+1}\right) \ldots f\left(z_{k}\right)+S_{\geq 2}(V),
\end{aligned}
$$

$(x \bullet y) \bullet z_{1} \ldots z_{k}=f(x) y \bullet z_{1} \ldots z_{k}$

$$
=f(x) g_{k-1}(y) \sum_{j=1}^{k} f\left(z_{1}\right) \ldots f\left(z_{j-1}\right) z_{j} f\left(z_{j+1}\right) \ldots f\left(z_{k}\right)+S_{\geq 2}(V),
$$

$x \bullet\left(z_{1} \ldots z_{k} \bullet y\right)=\sum_{i=1}^{k} f\left(y_{i}\right) x \bullet z_{1} \ldots z_{i-1} z_{i+1} \ldots z_{k} y$

$$
=k g_{k-1}(x) f\left(z_{1}\right) \ldots f\left(z_{k}\right) y
$$

$$
+(k-1) f(x) g_{k-1}(y) \sum_{j=1}^{k} f\left(z_{1}\right) \ldots f\left(z_{j-1}\right) z_{j} f\left(z_{j+1}\right) \ldots f\left(z_{k}\right)+S_{\geq 2}(V)
$$

$$
\left(x \bullet z_{1} \ldots z_{k}\right) \bullet y=\sum_{i=0}^{k-1} g_{i}(x) \sum_{j_{1}, \ldots, j_{i}} z_{1} \ldots f\left(z_{j_{1}}\right) \ldots f\left(z_{j_{i}}\right) \ldots z_{k} \bullet y
$$

$$
=k f(x) g_{k-1}(y) \sum_{j=1}^{k} f\left(z_{1}\right) \ldots f\left(z_{j-1}\right) z_{j} f\left(z_{j+1}\right) \ldots f\left(z_{k}\right)+S_{\geq 2}(V) .
$$

Let us choose $z_{1}=\ldots=z_{k}=z$, such that $f(z)=1$. Then:

$$
\sum_{j=1}^{k} f\left(z_{1}\right) \ldots f\left(z_{j-1}\right) z_{j} f\left(z_{j+1}\right) \ldots f\left(z_{k}\right)=k z \neq 0
$$

The preLie relation implies:

$$
f(x) g_{k-1}(y)+(k-1) g_{k-1}(x) f(y)-\sum_{i=0}^{k-1} g_{i}(y) g_{k-i-1}(x)\binom{k-1}{i}=0
$$

so, for all $l \geq 1$:

$$
\begin{equation*}
l g_{l}(x) f(y)=\sum_{i=1}^{l} g_{i}(y) g_{l_{i}}(x)\binom{l}{i} . \tag{3}
\end{equation*}
$$

Let us choose x such that $f(x)=1$. Let us consider $y \in \operatorname{Ker}(f)$, and let us prove that $g_{i}(y)=0$ for all $i \geq 0$. As $g_{0}=f$, this is obvious for $i=0$. Let us assume the result at all rank $<l$, with $l \geq 1$. Then (3) gives:

$$
0=\sum_{i=1}^{l-1} g_{i}(y) g_{l_{i}}(x)\binom{l}{i}+g_{l}(y) f(x)=g_{l}(y) .
$$

Consequently, for all $l \geq 1$, there exists a scalar λ_{l} such that $g_{l}=\lambda_{l} f$. If $f(x)=f(y)=1$, equation (3) gives, for all $l \geq 1$:

$$
l \lambda_{l}=\sum_{i=1}^{l} \lambda_{i} \lambda_{l-i}\binom{l}{i}=\sum_{i=1}^{l-1} \lambda_{i} \lambda_{l-i}\binom{l}{i}+\lambda_{l},
$$

so, for all $l \geq 2$:

$$
\lambda_{l}=\frac{1}{l-1} \sum_{i=1}^{l-1} \lambda_{i} \lambda_{l-i}\binom{l}{i} .
$$

An induction proves that $\lambda_{l}=l!\lambda_{1}^{l}$ for all $l \geq 1$. Putting $\lambda_{1}=\lambda$, for all $x, x_{1}, \ldots, x_{n} \in V$:

$$
x \bullet x_{1} \ldots x_{k}=\sum_{I \subsetneq\{1, \ldots, k\}}|I|!\lambda^{|I|} f(x) \prod_{i \in I} f\left(x_{i}\right) \prod_{i \notin I} x_{i} .
$$

This is the preLie product of $S(V, f, \lambda)$.

4.2 Second case

We now assume that V is one-dimensional. So $S(V)$ and $\mathbb{K}[X]$ are isomorphic as bialgebras. Let us describe all the preLie products on $\mathbb{K}[X]$ making it a Com-PreLie bialgebra.

Proposition 28 Let $\lambda, \mu \in \mathbb{K}$. We define:

$$
X^{k} \bullet X^{l}=\lambda k l!\sum_{i=k}^{k+l-1} \frac{\mu^{k+l-i-1}}{(i-k+1)!} X^{i}
$$

Then $(\mathbb{K}[X], m, \prec, \Delta)$ is a Zinbiel-PreLie algebra denoted by $\mathfrak{g}^{\prime}(\lambda, \mu)$.
Proof. If $\lambda=0, \bullet=0$ and the result is obvious. Let us assume that $\lambda \neq 0$. Let V onedimensional, $x \in V$, nonzero, and let $f \in V^{*}$ defined by $f(x)=\frac{\mu}{\lambda}$. In $T(V, f, \lambda)$, by lemma $\mathbb{8}$, for all $k, l \geq 0$:

$$
x^{k} \bullet x^{l}=\lambda \sum_{i=k}^{k+l-1} \mu^{k+l-i-1}\binom{i}{k-1} x^{j} .
$$

Let us consider the Hopf algebra isomorphism:

$$
\Theta:\left\{\begin{array}{rll}
\mathbb{K}[X] & \longrightarrow & T(V) \\
X & \longrightarrow & x .
\end{array}\right.
$$

For all $k, l \geq 0$:

$$
\begin{aligned}
\Theta\left(X^{k}\right) \bullet \Theta\left(X^{l}\right) & =\lambda \sum_{i=k}^{k+l-1} \mu^{k+l-i-1} \frac{i!k!l!}{(k-1)!(i-k+1)!} x^{i} \\
& =\lambda k l!\sum_{i=k}^{k+l-1} \frac{\mu^{k+l-1-i}}{(i-k+1)!} \Theta\left(X^{i}\right) .
\end{aligned}
$$

By proposition [13, $T(V, f, \lambda)$ is a Zinbiel-PreLie bialgebra, so is $\mathfrak{g}^{\prime}(\lambda, \mu)$.

Proposition 29 Let \bullet a preLie product on $\mathbb{K}[X]$ such that $(\mathbb{K}[X], m, \bullet, \Delta)$ is a Com-PreLie bialgebra. Then $(\mathbb{K}[X], m, \bullet, \Delta)=\mathfrak{g}^{(1)}(1, \lambda, 1)$ for a certain $\lambda \in \mathbb{K}$, or $\mathfrak{g}^{\prime}(\lambda, \mu)$ for a certain $(\lambda, \mu) \in \mathbb{K}^{2}$.

Proof. Let $\pi: \mathbb{K}[X] \longrightarrow \mathbb{K}[X]$ be the canonical projection on $\operatorname{Vect}(X)$:

$$
\pi:\left\{\begin{aligned}
\mathbb{K}[X] & \longrightarrow \mathbb{K}[X] \\
X^{k} & \longrightarrow \delta_{k, 1} X
\end{aligned}\right.
$$

For all $k \geq 0$, we put $\pi\left(X \bullet X^{k}\right)=\lambda_{k} X$.

We shall use the map $\varpi=m \circ(\pi \otimes I d) \circ \Delta$. For all $k \geq 0$:

$$
\varpi\left(X^{k}\right)=m \circ(\pi \otimes I d)\left(\sum_{i=0}^{k}\binom{k}{i} X^{i} \otimes X^{k-i}\right)=m\left(k X \otimes X^{k-1}\right)=k X^{k}
$$

First step. We fix $l \geq 0$. For all $P, Q \in \mathbb{K}[X], \varepsilon(P \bullet Q)=0$; hence, we can write:

$$
X \bullet X^{l}=\sum_{i=1}^{\infty} a_{i} X^{i}
$$

Then:

$$
\begin{aligned}
\varpi\left(X \bullet X^{l}\right) & =\sum_{i=1}^{\infty} i a_{i} X^{i} \\
& =m \circ(\pi \otimes I d) \circ \Delta\left(X \bullet X^{l}\right) \\
& =m \circ(\pi \otimes I d)\left(1 \otimes X \bullet X^{l}+\sum_{i=0}^{l}\binom{l}{i} X \bullet X^{i} \otimes X^{l-i}\right) \\
& =m\left(\sum_{i=0}^{l}\binom{l}{i} \lambda_{i} X \otimes X^{l-i}\right) \\
& =\sum_{i=0}^{l}\binom{l}{i} \lambda_{i} X^{l-i+1} \\
& =\sum_{j=1}^{l+1}\binom{l}{l-j+1} \lambda_{l-j+1} X^{j} .
\end{aligned}
$$

Hence:

$$
X \bullet X^{l}=\sum_{j=1}^{l+1}\binom{l}{l-j+1} \frac{\lambda_{l-j+1}}{j} X^{j}
$$

By derivation, for all $k \geq 0, X^{k} \bullet X^{l}=k X^{k-1}\left(X \bullet X^{l}\right)$, so for all $k, l \geq 0$:

$$
X^{k} \bullet X^{l}=\sum_{j=1}^{l+1} k\binom{l}{l-j+1} \frac{\lambda_{l-j+1}}{j} X^{j+k-1}
$$

Second step. In particular, for all $k \geq 0, X^{k} \bullet 1=k \lambda_{0} X^{k}$, and $X \bullet X=\frac{\lambda_{0}}{2} X^{2}+\lambda_{1} X$. Hence:

$$
\begin{aligned}
X \bullet(X \bullet 1)-(X \bullet X) \bullet 1 & =\frac{\lambda_{0}^{2}}{2} X^{2}+\lambda_{0} \lambda_{1} X-\frac{\lambda_{0}}{2} X^{2} \bullet 1-\lambda_{1} X \bullet 1 \\
& =\frac{\lambda_{0}^{2}}{2} X^{2}+\lambda_{0} \lambda_{1} X-\lambda_{0}^{2} X^{2}-\lambda_{0} \lambda_{1} X \\
& =-\frac{\lambda_{0}^{2}}{2} X^{2} \\
X \bullet(1 \bullet X)-(X \bullet 1) \bullet X & =0-\lambda_{0} X \bullet X \\
& =-\frac{\lambda_{0}^{2}}{2} X^{2}-\lambda_{0} \lambda_{1} X
\end{aligned}
$$

By the preLie relation, $\lambda_{0} \lambda_{1}=0$. We shall now study three cases:

1. $\begin{cases}\lambda_{0} & \neq 0 \\ \lambda_{1} & =0\end{cases}$
2. $\begin{cases}\lambda_{0} & =0, \\ \lambda_{1} & =0\end{cases}$
3. $\begin{cases}\lambda_{0} & =0, \\ \lambda_{1} & \neq 0\end{cases}$

Third step. First case: $\lambda_{0} \neq 0, \lambda_{1}=0$. Let us prove that $\lambda_{k}=0$ for all $k \geq 1$ by induction on k. It is obvious if $k=1$. Let us assume that $\lambda_{1}=\ldots=\lambda_{k-1}=0$. Then $X \bullet X^{k}=\frac{\lambda_{0}}{k+1} X^{k+1}+\lambda_{k} X$, and:

$$
\begin{aligned}
X \bullet\left(X^{k} \bullet 1\right)-\left(X \bullet X^{k}\right) \bullet 1 & =k \lambda_{0}\left(\frac{\lambda_{0}}{k+1} X^{k+1}+\lambda_{k} X\right)-\left(\frac{\lambda_{0}}{k+1} X^{k+1}+\lambda_{k} X\right) \bullet 1 \\
& =\frac{k}{k+1} \lambda_{0}^{2} X^{k+1}+\lambda_{0} \lambda_{k} X-\lambda_{0}^{2} X^{k+1}-\lambda_{0} \lambda_{k} X \\
& =\frac{-1}{k+1} \lambda_{0}^{2} X^{k+1} ; \\
X \bullet\left(1 \bullet X^{k}\right)-(X \bullet 1) \bullet X^{k} & =0-\lambda_{0}\left(\frac{\lambda_{0}}{k+1} X^{k+1}+\lambda_{k} X\right) \\
& =\frac{-1}{k+1} \lambda_{0}^{2} X^{k+1}-\lambda_{0} \lambda_{k} X .
\end{aligned}
$$

By the preLie relation, $\lambda_{0} \lambda_{k}=0$. As $\lambda_{0} \neq 0, \lambda_{k}=0$.
Finally, $X^{k} \bullet X^{l}=\lambda_{0} \frac{k}{l+1} X^{k+l}$ for all $k, l \geq 0$: this is the preLie product of $\mathfrak{g}^{(1)}\left(1, \lambda_{0}, 1\right)$.

Fourth step. Second case: $\lambda_{0}=\lambda_{1}=0$. Let us prove that $\lambda_{k}=0$ for all $k \geq 0$. It is obvious if $k=0,1$. Let us assume that $\lambda_{0}=\ldots=\lambda_{k-1}=0$, with $k \geq 2$. Then $X^{i} \bullet X^{j}=0$ for all $j<k$, $i \geq 0$. Hence:

$$
X \bullet\left(X^{k+1} \bullet X^{k-1}\right)=\left(X \bullet X^{k+1}\right) \bullet X^{k-1}=\left(X \bullet X^{k-1}\right) \bullet X^{k+1}=0
$$

By the preLie relation, $X \bullet\left(X^{k-1} \bullet X^{k+1}\right)=0$. Moreover:

$$
\begin{aligned}
X \bullet\left(X^{k-1} \bullet X^{k+1}\right) & =X \bullet\left(\sum_{j=1}^{k-2}\binom{k+1}{k+2-j}(k-1) \frac{\lambda_{k+2-j}}{j} X^{k+2-j}\right) \\
& =X \bullet\left((k-1) \lambda_{k+1} X^{k-1}+(k+1)(k-1) \frac{\lambda_{k}}{2} X^{k}\right) \\
& =0+\frac{(k-1)(k+1)}{2} \lambda_{k} X \bullet X^{k} \\
& =\frac{(k-1)(k+1)}{2} \lambda_{k}\left(\sum_{j=1}^{k-1}\binom{k}{k+1-j} \frac{\lambda_{k+1-j}}{j} X^{j}\right) \\
& =\frac{(k-1)(k+1)}{2} \lambda_{k}^{2} X+0 .
\end{aligned}
$$

Hence, $\lambda_{k}=0$.
We finally obtain by the first step $X^{k} \bullet X^{l}=0$ for all $k, l \geq 0$: this is the trivial preLie product of $\mathfrak{g}^{(4)}(0)$.

Fifth step. Last case: $\lambda_{0}=0, \lambda_{1} \neq 0$. Let us prove that $\lambda_{k}=\frac{k!}{2^{k-1}} \frac{\lambda_{2}^{k-1}}{\lambda_{1}^{k-2}}$ for all $k \geq 1$. It is obvious if $k=1$ or $k=2$. Let us assume the result at all rank $<k$, with $k \geq 2$.

$$
\begin{aligned}
& \pi\left((X \bullet X) \bullet X^{k}\right)=\pi\left(\lambda_{1} X \bullet X^{k}\right) \\
& =\lambda_{1} \lambda_{k} X ; \\
& \pi\left(X \bullet\left(X \bullet X^{k}\right)\right)=\pi\left(\sum_{j=1}^{k}\binom{k}{k+1-j} \frac{\lambda_{k+1-j}}{j} X \bullet X^{j}\right) \\
& =\sum_{j=1}^{k}\binom{k}{k+1-j} \frac{\lambda_{k+1-j} \lambda_{j}}{j} X \\
& =\left(\lambda_{k} \lambda_{1}+\sum_{j=2}^{k-1} \frac{1}{j}\binom{k}{k+1-j} \frac{(k+1-j)!j!}{2^{k-j+j-1}} \frac{\lambda_{2}^{k-j+j-1}}{\lambda_{1}^{k-j-1+j-2}}+\frac{k}{k} \lambda_{1} \lambda_{k}\right) X \\
& =\left(2 \lambda_{1} \lambda_{k}+\sum_{j=2}^{k-1} \frac{k!}{2^{k-1}} \frac{\lambda_{2}^{k-1}}{\lambda_{1}^{k-3}}\right) X \\
& =\left(2 \lambda_{1} \lambda_{k}+(k-2) \frac{k!}{2^{k-1}} \frac{\lambda_{2}^{k-1}}{\lambda_{1}^{k-3}}\right) X ; \\
& \pi\left(\left(X \bullet X^{k}\right) \bullet X\right)=\sum_{j=1}^{k}\binom{k}{k+1-j} \frac{\lambda_{k+1-j}}{j} \pi\left(X^{j} \bullet X\right) \\
& =\sum_{j=1}^{k}\binom{k}{k+1-j} \frac{\lambda_{k+1-j}}{j} \pi\left(j \lambda_{1} X^{j}\right) \\
& =\lambda_{1} \lambda_{k} X+0 ; \\
& \pi\left(X \bullet\left(X^{k} \bullet X\right)\right)=k \lambda_{1} \pi\left(X \bullet X^{k}\right) \\
& =k \lambda_{1} \lambda_{k} X \text {. }
\end{aligned}
$$

By the preLie relation:

$$
\lambda_{1} \lambda_{k}-2 \lambda_{1} \lambda_{k}-(k-2) \frac{k!}{2^{k-1}} \frac{\lambda_{2}^{k-1}}{\lambda_{1}^{k-3}}=\lambda_{1} \lambda_{k}-k \lambda_{1} \lambda_{k}
$$

which gives, as $\lambda_{1} \neq 0$ and $k \geq 3, \lambda_{k}=\frac{k!}{2^{k-1}} \frac{\lambda_{2}^{k-1}}{\lambda_{1}^{k-2}}$. Finally, the first step gives, for all $k, l \geq 0$, with $\lambda=\lambda_{1}$ and $\mu=\frac{\lambda_{2}}{2 \lambda_{1}}$:

$$
\begin{aligned}
X^{k} \bullet X^{l} & =\sum_{j=1}^{k+1} k\binom{l}{l+1-j} \frac{\lambda_{l+1-j}}{j} X^{j+k-1} \\
& =\sum_{j=1}^{k} k \frac{l!(l+1-j)!}{(l+1-j)!(j-1)!j 2^{l-j}} \frac{\lambda_{2}^{l-j}}{\lambda_{1}^{l-1-j}} X^{j+k-1} \\
& =\lambda k l!\sum_{j=1}^{k} \frac{\mu^{l-j}}{j!} X^{j+k-1} \\
& =\lambda k l!\sum_{i=k}^{k+l-1} \frac{\mu^{k+l-i-1}}{(i-k+1)!} X^{i}
\end{aligned}
$$

This is the preLie product of $\mathfrak{g}^{\prime}(\lambda, \mu)$.

As $\mathfrak{g}^{\prime}(\lambda, \mu)$ is a special case of $S(V, f, \lambda)$, this ends the proof of theorem 24,

References

[1] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/9808042.
[2] Loïc Foissy, Lie algebras associated to systems of Dyson-Schwinger equations, Advances in Mathematics 226 (2011), no. 6, 4702-4730, arXiv:1112.2606.
[3] \qquad , The Hopf algebra of Fliess operators and its dual pre-Lie algebra, Communications in algebra (2014), arXiv:1304.1726.
[4] __ A preLie algebra associated to a linear endomorphism and related algebraic structures, European Journal of mathematics (2015), arXiv:1309.5318.
[5] Loïc Foissy and Frédéric Patras, Natural endomorphisms of shuffle algebras, Internat. J. Algebra Comput. 23 (2013), no. 4, 989-1009, arXiv:1205.2986.
[6] W. Steven Gray and Luis A. Duffaut Espinosa, A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback, Systems Control Lett. 60 (2011), no. 7, 441-449.
[7] Jean-Louis Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995), no. 2, 189-196.
[8] Anthony Mansuy, Preordered forests, packed words and contraction algebras, Journal of Algebra 411 (2014), no. 1, 259-311, arXiv:1305.0343.
[9] Marcel P. Schützenberger, Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil. Algèbre et théorie des nombres 12 (1958), no. 1, 1-23.

