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ABSTRACT. We gives examples of Com-PreLie bialgebras, that is to say bialgebras with a
preLie product satisfying certain compatibilities. Three families are defined on shuflie algebras:
one associated to linear endomorphisms, one associated to linear form, one associated to preLie
algebras. We also give all graded prelie product on K[X], making this bialgebra a Com-PreLie
bialgebra, and classify all connected cocommutative Com-PreLie bialgebras.
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Introduction

The composition of Fliess operators [6] gives a group structure on set of noncommutative formal
series K((xp,21)) in two variables xy and z;. For example, let us consider the following formal
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series:

A= ag + apxg +ar1xry + (IOQCC% + ag1xoxr1 + a1gr1x0 + a11$% +...,
B = b(z) + boxg + b1z + booxg + borxox1 + brorixo + bnx% + ...,

B =cp+ coro +c1z1 + C()Ox% + cp1xox1 + Cclox1Z0 + 611$% + ...
if C = A.B, then:

cp = ag + by,
co = ag + by + aiby,
coo = ago + boo + ap1by + a10by + anb% + a1bg,
co1 = ap1 + bo1 + a11by + a1by,
c10 = aip + bio + aiby,
c11 = an + b1
This quite complicated structure can be more easily described with the help of the Hopf algebra
of coordinates of this group; this leads to a Lie algebra structure on the algebra K(zg,z1)
of noncommutative polynomials in two variables, which is in a certain sense the infinitesimal

structure associated to the group of Fliess operators. As explained in [3], this Lie bracket comes
from a nonassociative, preLie product e. For example:

ToTo ® Tg = 07 ToTo® X1 = 0,

ToTr1 ® Xog = TToxo, ToTL1 ® X1 = ToTOT1,

T1x0 @ T = 2T0ToXQ, T1To® L1 = TeToT1 + ToT1Xo,
T1T1 ® Lo = T1T9To + ToT1To + ToTox1, T1T1 ®T1 = T1Tox1 + 2ToT1T1.

Moreover, K(xg, z1) is naturally a Hopf algebra with the shuffle product W and the deconcatena-
tion coproduct A, and it turns out that there exists compatibilities between this Hopf-algebraic
structure and the prelie product e:

e For all a,b,c € A, (allb)ec= (aec)llb+all(bec).
e Foralla,be A, A(aeb) = a®V @a® eb+a® e b ©a@wWb?, with Sweedler’s notation.

this is a Com-PreLie bialgebra (definition [I). Moreover, the shuffle bracket can be induced by
the half-shuffle product <, and there is also a compatibility between < and e:

e Forall a,b,ce A, (a<b)ec=(aec)<b+a=<(bec).

we obtain a Zinbiel-PreLie bialgebra.

Our aim in the present text is to give examples of other Com-PreLie algebras or bialgebras.
We first introduce three families, all based on the shuffle Hopf algebra T'(V') associated to a
vector space V.

1. The first family T'(V, f), introduced in [4], is parametrized by linear endomorphism of V.
For example, if x1,z9,23 € V, w € T(V):

x1ow = f(r1)w,
r1z0 ¢ w = x1 f(x2)w + f(21) (22 Ww),

r1Tow3 @ W = T1T2 f(x3)w + x1 f(22)(z3Ww) + f(21)(wex3lw).

In particular, if V' = Vect(xg,x1), f(xg) = 0 and f(x1) = xp, we recover in this way the
Com-PrelLie bialgebra of Fliess operators.



2. The second family T'(V, f, ) is indexed by pairs (f,\), where f is a linear form on V and
A is a scalar. For example, if z,y1,y2,y3 € V and w € T(V):

zwey = f(z)wlly,
rweyys = f(x)(wlyiys + A f(y1)wWya),
zw e y1y2ys = f(2)(wlyryays + M (y1)wlWyays + A f(y1) f (y2)wllys).

We obtain a Com-PreLie algebra, but generally not a Com-PreLie bialgebra. Nevertheless,
the subalgebra coS(V') generated by V' is a Com-PreLie bialgebra. Up to an isomorphism,
the symmetric algebra becomes a Com-PreLie bialgebra, denoted by S(V, f, A).

3. If x is a preLie product on V, then it can be extended in a product on T'(V'), making it a
Com-PreLie bialgebra denoted by T'(V, ). For example, if x1,z9, 23,y € V, w € T(V).

1 e yw = (x1 * y)w,
r1x2 @ yw = (x1 * y) (2 Ww) + z1 (22 % y)w,
(

x1Tow3 @ yw = (11 * y)(xowslw) + 21 (22 x y) (x3Ww) + z129(23 * y)w.

These examples answer some questions on Com-PreLie bialgebras. According to proposition 4]
if A is a Com-PreLie bialgebra, the map f4 defined by fa(z) = = e 14 is an endomorphism of
Prim(A); if fa =0, then Prim(A) is a PreLie subalgebra of A. Then:

o If A=T(V,f), then f4 = f, which proves that any linear endomorphim can be obtained
in this way.

o If A=T(V,*), then f4 = 0 and the preLie product on Prim(A) is x, which proves that
any prelie product can be obtained in this way.

The next section is devoted to the algebra K[X]. We first classify preLie products making it a
graded Com-PrelLie algebra: this gives four families of Com-PreLie algebras described in theorem
I8 including certain cases of T'(V, f). Only a few of them are compatible with the coproduct
of K[X] (proposition 23]). The last paragraph gives a classification of all connected, cocommu-
tative Com-PreLie bialgebras (theorem 24)): up to an isomorphism these are the S(V, f,\) and
examples on K[X].

Aknowledgment. The research leading these results was partially supported by the French
National Research Agency under the reference ANR-12-BS01-0017.

Notations.

1. K is a commutative field of characteristic zero. All the objects (vector spaces, algebras,
coalgebras, prelie algebras...) in this text will be taken over K.

2. Let A be a bialgebra.

(a) We shall use Swwedler’s notation A(a) = a(V) @ o for all a € A.

(b) We denote by A, the augmentation ideal of A, and by A the coassociative coproduct
defined by:
A . A+ — A+ X A+
' a — Ala)—a®ly—14®a.

We shall use Sweedler’s notation A(a) =a’ @ a” for all a € A,.



1 Com-PreLie and Zinbiel-PreLie algebras

1.1 Definitions

Definition 1 1. A Com-PreLie algebra [§] is a family A = (A, LU, o), where A is a vector
space and W and e are bilinear products on A, such that:

(a) (A, W) is an associative, commutative algebra.

(b) (A,e) is a (right) preLie algebra, that is to say, for all a,b,c € A:
(aeb)ec—ae(bec)=(aec)eb—ae(cebd).

(c) For all a,b,c € A, (allb)ec= (aec)llb+all(bec).
2. A Com-PreLie bialgebra is a family (A, LW, e, A), such that:

a) (A, W, e) is a unitary Com-PreLie algebra.

(a) (A, W, e) Y g

(b) (A, W, A) is a bialgebra.

(c) For alla,bc A, A(aeb) =aV) @a® eb+aV) @bV @ a® wp®.

We shall say that A is unitary if the associative algebra (A, W) has a unit.

3. A Zinbiel-PreLie algebra is a family A = (A, <,e), where A is a vector space and < and e
are bilinear products on A, such that:

a , <) is a Zinbiel algebra (or shuffle algebra, [9,7,15)]) that is to say, for alla,b,c € A:
A Zinbiel algeb huffle algebra, | h foralla,b A
(a<b)<c=a<(b=<c+c=<Db).
(b) (A,e) is a preLie algebra.
(c) For all a,b,c€ A, (a <b)ec=(aec)<b+a=<(bec).
4. A Zinbiel-PreLie bialgebra is a family (A, W, <, e, A) such that:

(a) (A, W, e, A) is a Com-PreLie bialgebra.
(b) (Ay,<,e) is a Zinbiel-PreLie algebra, and for all x,y € Ay, v <y+y <x =zlWy.
(c) For all a,b e Ay :

Ala<b)=d <t @d' W' +d <b@d +d @d"Wb+a<b @b +a®b.
Remarks.
1. If (A, W, e, A) is a Com-PreLie bialgebra, then for any A € K, (A, W, Ae, A) also is.

2. If A is a Zinbiel-preLie algebra, then the product W defined by allb =a < b+ b < a is
associative and commutative, and (A, LW, e) is a Com-PreLie algebra. Moreover, if A is a
Zinbiel-PreLie bialgebra, it is also a Com-PreLie bialgebra.

3. If A is a Zinbiel-PreLie bialgebra, the product LU is entirely determined by <: we can omit
LU in the description of a Zinbiel-PreLie bialgebra.

4. If A is a Zinbiel-PreLie bialgebra, we extend < by a < 14 = ¢ and 14 < a = 0 for all
a € A;. Note that 14 < 14 is not defined.



5. If A is a Com-Prelie bialgebra, if a,b € AL :

(aely)=d ®a"ely+ad ely®ad,
Alaeb)=d ®d" eb+aels@b+ael @b
+dely®d lUb+d eb®a +d eb @d’LLUY,

as we shall prove later (lemma[3) that 14 e ¢ =0 for all ¢ € A.

Associative algebras are prelie. However, Com-PreLie algebras are rarely associative:

Proposition 2 Let A = (A, W, e) be a Com-PreLie algebra, such that for allz € A, xWz =0
if, and only if, x = 0. If e is associative, then it is zero.

Proof. Let x,y € A.

(zlz)ey) ey =2((zey)liz)ey
=2((zey)ey)lz+2(zey)l(zey)
=2(ze(yey))lz+2(zey)l(rey)

(zlz)e (yey)+2(zey)ll(zey).
Hence, (zey)ll(zey) =0. As A is a domain, x ey = 0. O

Hence, in our examples below, which are integral domains (shuffle algebras or symmetric
algebras), the prelie product is associative if, and only if, it is zero. Here is another example,
where e is associative. We take A = Vect(1,x), with the products defined by:

w1z o | 1|x
112 1{0]0
x |x|0 x| 0

If the characteristic of the base field K is 2, this is a Com-PreLie bialgebra, with the coproduct
defined by A(z) =z ® 1+ 1® .

1.2 Linear endomorphism on primitive elements

Lemma 3 1. Let A be a Com-PreLie algebra. For alla € A, 14ea=0.

2. Let A be a Com-PreLie bialgebra, with counit €. For all a,b € A, c(aeb) =0.

Proof. 1. Indeed, 140a = (14.14)0a= (140a)ls+14.(140a)=2(14ea),so1l4ea=0.
2. For all a,b € A:

e(aod)=(e® )o (aob)
€ e(a® o b) +e(a™ o bM)e(a® WP
) o b) +c(a™ o bM)e(a@)e(6@)

—~
Q
@‘\_/\_/
™
IS

soc(aeb)=0. O

Remark. Consequently, if a is primitive:

Alaeb)=14Qaeb+aeb @b?.



So the map b — a @ b is a 1-cocycle for the Cartier-Quillen cohomology [1].

If A is a Com-PreLie bialgebra, we denote by Prim(A) the space of its primitive elements:
Prim(A)={ac A|Ala) =a®1+1®a}.
We define an endomorphism of Prim(A) in the following way:
Proposition 4 Let A be a Com-PreLie bialgebra.
1. If v € Prim(A), then x e 14 € Prim(A). We denote by fa the map:
4 { Prim(A) — Prim(A)

a — aely.

2. If fa =0, then Prim(A) is a preLie subalgebra of A.
Proof. 1. Indeed, if a is primitive:

A(aolA):a®1A01A+1A®a01A+a01A®1ALI_I1A+1A01A®aLLI1A
=0+1a®1p40a+aely®1y+0,

so a ® 14 is primitive.
2. Let a,b € Prim(A).

Alaeb)=a®1yeb+14R@aeb+140lyRallb+aely@b+140bRa+aeb®1y
=1yQ@aeb+aeb®1y4.

Soaebe Prim(A). O

2 Examples on shuffle algebras

Let V be a vector space and let f : V' — V be any linear map. The tensor algebra T'(V) is
given the shuffle product W, the half-shuffle < and the deconcatenation coproduct A, making
it a bialgebra. Recall that these products can be inductively defined in the following way: if
z,y €V, yu,v e T(V):

l1<yv = 0, 1 = 0,
zu<v = z(u=<v+v=<u), zullyy = z(ullyv) + y(zullv).
For any x1,...,z, € V:

n

A(xl...xn):le...xi@)mi“...xn.
=0

For all linear map F': V — W, we define the map:

V) — T(W)

T(F) : {
This a Hopf algebra morphism from 7'(V') to T'(W).
The subalgebra of (T'(V'), W) generated by V' is denoted by coS(V). It is the largest cocom-

mutative Hopf subalgebra of (T'(V), W, A); it is generated by the symmetric tensors of elements
of V.



2.1 Com-Prelie algebra attached to a linear endomorphism

We described in [4] a first family of Zinbiel-PreLie bialgebras; coming from a problem of com-
position of Fliess operators in Control Theory. Let f be an endomorphism of a vector space V.
We define a bilinear product e on 7'(V') inductively on the length of words in the following way:
ifeeV,v,weT(V),

lew =0, zvew=z(vew)+ f(x)(vWw).
Then (T'(V),<,e,A) is a Zinbiel-PreLie bialgebra, denoted by T'(V, f). Moreover, fry. ¢ = f.

Examples. If x1,29,23 € V, w e T(V):

x1ow = f(x1)w,
r1zo e w = x1 f(x2)w + f(21) (22 WWw),
x1xow3 @ w = x1Tof (x3)w + 1 f(x2)(xsWw) + f(x1)(z2xsUw).

More generally, if z1,...,2, € V and w € T(V):
n
T1...Tp W= le v (@) (Tig -z Ww).
i=1

This construction is functorial: let V and W be two vector spaces, f an endomorphism of
V and g an endomorphism of W; let F' : V. — W, such that go F' = F o f. Then T(F) is a
morphism of Zinbiel-PreLie bialgebras from T'(V, f) to T(W, g).

Proposition 5 Let ¢ be a preLie product on (T'(V'), W, A), making it a Com-PreLie bialge-
bra, such that for all k,l € N, V®Fk
blacklozengeV® C VOE+D  There exists a f € End(V), such that (T(V), W, 4,A) = T(V, f).

Proof. Let f = fr(). We denote by e the preLie product of T(V, f). Let us prove that for
any £ =21...25,y =Yy1...51 € T(V), zey = x4y. If k =0, we obtain 1 ey = 14y = 0. We
now treat the case [ = 0. We proceed by induction on k. It is already done for £k = 0. If k =1,
then z € V and x @ 1 = f(z) = z41. Let us assume the result at all ranks < k, with k£ > 2.
Then, as the length of 2’ andz” is < k:

Azel) =z @2? 01+ 21 e1®s®
=1@zel+rel®l+ar ®r"el+2r01®1
=1l@rel+r/¢l®l+r2r"¢l+20101
=Az¢l)+ (zoey—z4y) 1+ 1R (z ey — x4y).
We deduce that = e 1 — x41 is primitive, so belongs to V. As it is homogeneous of length k£ > 2,
it is zero, and r ¢ 1 = ¢ 1.
We can now assume that &k, > 1. We proceed by induction on k + [. There is nothing left

to do for k+1 =0 or 1. Let us assume that the result is true at all rank < k41, with k41 > 2.
Then, using the induction hypothesis, as 2’ and z” have lengths < k and ¢ has a length < I:

A($°y):1®:Coy+x/®x”oy—|—x®10y—|—x01®y+x’.1@;,3”|_|_|y_|_1.1®x|_|_|y
+reylt+reyr +leyr+rey @y +2' ey @2y +1ey @ xlly”
=lQrey+r2"'¢y+214y+ 261y + /¢l "Ly + 161 ® zlly
+trey@ 1ty +10y@r+aby @y +a ¢y @ 2" Wy + 16y @ zllly”
=A(z4y) +(zoy —24y) @ +1® (v oy — x4y).

We deduce that x e y — x4y is primitive, hence belongs to V. As it belongs to V®#+) and
k+1>2 it is zero. Finally, x ¢ y = x¢y. g



Proposition 6 The Com-PreLie bialgebras T(V, f) and T(W, g) are isomorphic if, and only
if, there exists a linear isomorphism F : V. — W, such that go F' = F o f.

Proof. If such an F exists, by functoriality T'(F’) is an isomorphism from T'(V, f) to T (W, g).
Let us assume that ¢ : T(V, f) — T(V, g) is an isomorphism of Com-PreLie bialgebras. Then
¢(1) =1, and ¢ induces an isomorphism from V = Prim(T(V)) to W = Prim(T(W)), denoted
by F. For all z € V:

p(zel)=¢(f(x)) =Fof(x)=F(r)el=gokF(x)
So such an F' exists. O
2.2 Com-PreLie algebra attached to a linear form
Let V be a a vector space, f: V — K be a linear form, and A € K.

Theorem 7 Let o be the product on T(V') such that for all x1,...,Tm,Y1,---,Yn € V:

n—1
Tl T OYL .. Yp = Z)\Zf(xl)f(yl)...f(yi)xg...xmLLlyHl...yn.
1=0

Then (T'(V), W, e) is a Com-PreLie algebra. It is denoted by T(V, f, A).
Examples. If x1, 29,23 € V, w e T(V):

r1eow = f(r1)w,
r1z0 ¢ w = x1 f(22)w + f(21) (22 Ww),
r1Tow3 @ W = T1To f(x3)w + x1 f(x2) (w3 Ww) + f(21)(zexsLw).

In particular if z; = ... =z, =y1 = ... =y, =

Lemma 8 Let x € V. We put f(x) = v and p = Mf(z). Then, for all m,n > 0, in
TV, f,\):

m n _ m+n—j—1 .] xj.
est=u 3 (m_1>

The proof of theorem [7 will use definition [@ and lemma IOt

Definition 9 Let 9 and ¢ be the linear maps defined by:

V) — T(V)

V) — T(V) 1 — 0,
0: 1 — 0, o: n-1
1.y — flx1)xa. .. 2p, T1...Tp — Z)\Zf(ﬂjl)f(ﬂfz)l'l+1xn
=0

Lemma 10 1. For all u,v € T(V):

(a) O(ulv) = O(u)Wv + ulld(v).

(b) 9o p(u)(v) — H(I(u) We(v)) = 0 o ¢(v)lW(u) — H(A(v) W d(w)).
2. For allu e T(V,f,\):

Aod(u) = (0® Id) o A(u), Ao p(u) = (¢p®Id) o A(u) + 1 ® ¢(u).



Proof. 1. (a) This is obvious if u = 1 or v = 1, as d(1) = 0. Let us assume that u,v are
nonempty words. We put v = zu/,v = yv’, with x,y € V. Then:

O(ulllv) = d(z(u' Wv) + y(ulllv’))

= f(x)u' v + f(y)ullle/

= (f()) Wo + ull (£ (5)0)
= J(u) Wv + ulllo(v).

1. (b) Let us take u = 7 . and
m and n. First, observe that gb(aul_l_l (v
i)f

N (@) f(

with 1 <i<m, 0<j<n, (i,7) # (0,0). Let us compute the coefficient of such a term:

L fi-1+j-p\ & p i+
oIf]<n,1tlsZ< i1 >:Z<i—1>:<i>'

Y= . Yn be two words of T'(V') of respective lengths
)) is a hnear span of terms:
(y

1) fpzigr - em Wy . ym,

p=0 p=i—1
n—1 i+j—1 it+j—1 L
. . 14+5—- D D v+
If j = t = = —1= — 1.
o lhj=mnitsis < i—1 > Z(z’—l) Z(i—l i
p=0 p=i p=i—1
We obtain:

POulp() = 33 A~ 1(1“)fm)...f(xi)f(yl)...f<yj>xi+1...xmmyj+1...yn

i=1 j=0

m—1
— Z AN (@) @) Fn) - f(Yn)Tigr - Ty
=t (I ) ) D) )

= ZZ)\HJIC _{Z-_j>f(x1)"'f(xi)f(yl)"'f(yj)xi-i-l---xml—l—lyj-i-l---yn

i=1 j=1

+ZAZ V@) f@)Tien 2 Wy yn

— Z NF (@) o f@) f) - Fyn)Tig - o
i=1

st (I ) ) ). )

Moreover:
m n—1 . .
Do g(u)Wg(v) =D > NI~ 1( J;])f(wl)---f(ﬁﬂi)f(yl)---f(yj)ﬁvm---l‘mLijH---yn

i=1 j=0
m—1n—1 o Z+]

=Y S () ) ) S W
i=1 j=1
n—1

+ > NI (@) f@m) F) - f W)Y Yn
j=1

—i—Z)\i_lf(xl)...f(mi)xiﬂ...xmu_lyl...yn.
=1



Hence:

90 ¢(u) We(v) — p(dulllg(v))

m—1n—1

=% S () o) @S0 S Wi
i=1 j=1

S SN (T ) S ) F )01 W
i=1 j=1

n—1
Y NI (@) f @) FW) - F W)Y - Y

j=1
m—1

+ Z )\i+"_1f(x1) .. f(xl)f(yl) cee f(yn)xi-i—l <o T
i=1

The three first rows are symmetric in v and v, whereas the sum of the fourth and fifth rows is
symmetric in u and v. So 9 o ¢(u)We(v) — p(Aull@(v)) is symmetric in v and v.

2. Let us take u = x1 ... x,, with x1,...,2, € V. Then:

Ao d(u) :f(xl)ng...xZ-@le...xn
i=1

n
=1

= Za(xl .%'Z) ®1’z‘+1---xn
1=0
= (0® Id) o Alu).

Moreover:
n—1
Aop(u) = Nf(zy) ... flz)A(xigr ... xn)
=0
n—1 n ‘
= Z)\Zf(.%'l)...f(l'i)xi+1...1‘j®.%’j+1...1‘n
i=0 j=i

J
= Z )\Zf(.%'l) o f(l‘i).%'i+1 X QX1 Ty — )\nf(.%'l) R f(.%'n) ®1

=0 ¢=0
]n n—1 ‘
= (ﬁ(.%j....%'j)®1‘j+1....%'n—l-Z)\jf(.%'l)...f(l'j)®1‘j+1...xn
7=0 7=0
n n—1 '
= ¢x1...25)Qxjqp1... 0 +1® (Z N f(xr)... f(zj)zjpr. xn)
7=0 7=0
= (¢®Id) o Au) +1® d(u).

Proof. (Theorem [7)). By definition, for all u,v € T(V):
uev =0(u)llp(v).

10



Let u,v,w € T(V). By lemma [I0H:

(uldv) @ w = O(ulUv) U p(w)
O(u) WolWé(w) + ullld(v) LW p(w)
= J(u) Wo(w) v + uldo(v) W e(w)

= (uew)Wv+ ulll(vew).

Moreover:

(wev)ow—ue(vew)=((u)lp(v)) ew—ue(d(v)LUpw))
= 9(9(u) Wo(v)) Wo(w) — d(u) We(d(v) We(w))
0 (u) W (v) W (w) + O(u) Ll (9 0 d(v) Wd(w) — ¢(d(v) L (w))).

By lemma [I0F2, this is symmetric in v and w. Consequently, T'(V, f, A) is Com-PreLie. O

This construction is functorial. Let (V, f) and (W, g) be two spaces equipped with a linear
form and let F': V — W be a map such that go F' = f. Then T(F) is a Com-PreLie algebra
morphism from T'(V, f, \) to T (W, g, \).

Proposition 11 (coS(V), LW, e, A) is a Com-PreLie bialgebra, denoted by coS(V, f, \).

Proof. Let us first prove that coS(V) is stable under . It is enough to prove that it is stable
under 0 and ¢. Let us first consider 0. As it is a derivation for LU, it is enough to prove that
O(V) C coS(V'), which is obvious as (V') C K. Let us now consider ¢. Let x1,...,2, € V.

Plx W .. Way) = Z gb(:ﬂa(l) .. xa(k))

oGy

k—1
= W (@) - F@o(i)Tas1) - - - Togr)

=0 c€6y

k—1 i
=> > iy ﬁf(mki)mlLle/,;lLl_l o Wag W Way.

=0 1<k1<...<k; <k j=1

This is an element of coS(V'), so coS(V) is stable under e.

Let us prove now the compatibility between e and the coproduct of coS(V). As coS(V) is
cocommutative, lemma [I0] implies that for all u € coS(V):

Aod(u) =0uM)ou® =ou?) @ u® = u® @ o).
Let us consider u,v € coS(V). Then, by lemma

Auev) =A(0(u)¢(v))
= (Ao d(u)) WA o p(v)
= (Ao du) W (®(vM) @ v? +1® ¢(v))
= (MW (wM) @ u® Wo® + VW1 @ ow?) We(v)
— 0D e ™M @@ Wv®@ + 4D @@ oy

So coS(V) is a Com-PreLie bialgebra. O

Note that f.os(v,,n) = 0. The preLie product induced on Prim(coS(V)) = V is given by
zxy = f(z)y.
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Corollary 12 Let V' be a vector space, f € V*, X € K. We give S(V) its usual product m
and coproduct A, defined by A(v) =v®@14+1®wv for allv € V, and the product e defined by:

1. lex =0 for any x € S(V).

2. xexy...x) = Z \I\')\‘I‘f fo, Hw,,forallxxl,...,xkev.

IC{1,...k} iel igl
3 x xkox_le (x;0x)...2K for any x1,...,xp €V, x € S(V).

Then (S(V'),m, e, A) is a Com-PreLie bialgebra, denoted by S(V, f,\).

Proof. There is a Hopf algebra isomorphism:

9.{ (S(V),m,A) — (coS(V), W,A)
’ velV — .

Let v,21,...,2, € V.

O(v)eb(xy...x ) =vex ... Wxy
= fv)Wo(x W ... W)

k—1 )
v)z Z i!uin(xki)leLlf\;ﬁLLl...LLI:EEZ.LI_I...LLI:Ck

i=0 1<k1 <...<k;<k j=1

=0l > m'qumz JNES

IC{1,..k i€l il

Therefore, as coS(V') is a Com-PreLie algebra, S(V') is also a Com-PreLie bialgebra. O

Proposition 13 Let us assume that f # 0. Then:
1. (T(V),=<,e) is a Zinbiel-PreLie algebra if, and only if, dim(V) = 1.

2. (T(V),Ww,e,A) is a Com-PreLie bialgebra if, and only if, dim(V') = 1.

Proof. 1. =—. Let y € V, such that f(y) = 1. Note that y # 0. Let x € V, such that
f(z) = 0. Then:

(x<y)ey=axyey= f(x)ylly =0,
(zoy)<y+z<(yoy)=fx)ly<y+z<fyy=0+f(y)r<y=uxy.

As T(V, f,\) is Zinbiel-PreLie, zy = 0. As y # 0, x = 0; we obtain that f is injective, so
dim(V) = 1.

1. =>. We use the notations of lemma [l It is enough to prove that for all k,I,m > 0,
(2% < 2!) o 2™ = (2F @ ™) < 2! + 2F < (2! 0 2™).

k+l+m—1 .
k ! m k+l4+m—j—1 J E+1—-1\ .
=\ J J
e jzk;-l g <k‘+l—1>< k-1 )"
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and:

(2" 0 2™) < 2! + 2F < (2! @ 2™)

k+m—1 j I+m—1 ]
_ k+m—j—1 J l l+m—1—j k J
=\ Ek I <k_1>x <z + A El 1 (k_1>x <z
J= j=

k+m—1 . . l+m—1 . .
_ kmej—t( J N (IHI1N i tme1g (3 N\ (kT =1\ ke
Ajzz:cﬂ <k‘—1><j—1 A k-1)\ k=1 )"

j=l
k+i+m—1 ] I ] 1 k+l4+m—1 j L j 1
—\ k+l+m—j-1(J = B I k+l4m—j-1(J ™ o J.
j_ZkH H YAV Y L j_ZkH” 1) \k=1)"

Moreover, a simple computation proves that:

Go)GE ) (o) G2 = ) ()
k—1)\y—-1-1 I-1)\k—-1 k+1-1 k—1
So T(V, f, A) is Zinbiel-PreLie.
2. =. Let us choose z € V, nonzero, and = € V such that f(x) = 1. Then:
Alzyez) =A(f(z)yllz) =zyez2@1+1Qryez+yRz+ 2Ry,

whereas:

()M @ (1) o z + (zy) ) 0 2V @ (2)P 122
=rxyRlez+rRXyuez+1Raryez
+ryezQ@ltryelRz+rezRytrelQyllz+lezRry+lel®ayllz
=—ryezR1l+1Quyez+ f(Y)rRz+2Qy.

So, forally eV, f(y)z®@z=y®z2 As 2 #0, f(y)xr =y: V = Vect(z) is one-dimensional.
—. In this case, T(V) = coS(V), so is a Com-PreLie bialgebra. O

Proposition 14 The Com-PreLie bialgebras coS(V, f,\) and coS(W, g, ) are isomorphic
if, and only if, one of the following assertion holds:

1. dim(V) = dim(W), and f and g are both zero.

2. dim(V) = dim(W), A= p and f and g are both nonzero.

Proof. If dim(V) = dim(W), and f and g are both zero, then @ = 0 in both these Com-
preLie bialgebras. Take any linear isomorphism F from V' to W, then the restriction of T'(F') as
an algebra morphism from coS(V') to coS(W) is an isomorphism of Com-PreLie bialgebras.

If dim(V) = dim(W), A = p and f and g are both nonzero, there exists an isomorphism
F :V — W such that go F' = f. By functoriality, T'(V, f, \) and T'(W, g, \) are isomorphic via
T(F). The restriction of T'(F') induces an isomorphism from coS(V, f, A) to coS(W, g, \).

Let us assume that ¢ : coS(V, f,\) — coS(W, g, ) is an isomorphism of Com-PreLie bial-

gebras. It induces an isomorphism from Prim(coS(V)) =V to Prim(coS(W)) = W, denoted
by F: consequently, dim(V') = dim(W). Let us choose y € V', nonzero. For all x € V:

p(xoy) =o(f(x)y) = f(x)F(y) = d(z) e ¢(y) = F(x) @ F(y) = go F(x)F(y).

13



As F' is an isomorphism, for all z € V, f(x) = go F(x). So f and g are both zero or are both
nonzero. Let us assume that they are nonzero. We choose z € V', such that f(x) = 1. Then:

o) = (157 ) = 2L oy

2 2
Hence:
¢(z) o ¢(a”) = F(x) o F(x)* oz o 2”) = ¢(f(2)2” + Af(2)*z)
= go F(x)F(z)* + pg o F(z)?F(x) = F(z)? + \F ().
= F(z)* + pF(z).
Asxz #0, F(x) #0, s0o A = p. O

2.3 Com-PrelLie algebra associated to a preLie algebra

Theorem 15 Let (V,*) be a preLie algebra. We define a product on T(V') by:

k
T1...Tp®Y1...Y] :le...xi_l(xi*yl)(miﬂ...leLlyg...yl),
1=1

for all x1,...,xk,y1,...,41 € V; by convention, this is equal to 0 if k = 0 orl = 0. Then
(T(V),=<,e,A) is a Zinbiel-PreLie bialgebra, denoted by T(V,x).
Examples. Let x1, 29,23,y € V, w e T(V).
1 e yw = (x1 * y)w,
r1x2 @ yw = (x1 * y) (2 Ww) + z1 (22 * y)w,
r1x9x3 @ yw = (1 * y)(xexslw) + x1 (29 * y) (s lw) + z129(23 * Y)w.
Proof. First, remark that for all z,y € V|, for all u,v € T(V):
zueyv = (xxy)ullv + z(u e yv).
Let us prove that for all a,b,c € T(V), (a <b)ec= (aec) <b+a < (bec). This is obvious if
one of a,b,cis equal to 1, as 1ed = de1 = 0 for all d. We now assume that a,b, c are nonempty
words of respective lengths k, [ and m, and we proceed by induction on k 4+ [ + m. There is
nothing to do if k + 1+ m < 2. Let us assume the result at rank £+ 14+ m — 1. We put a = zu,
b=v,c=zw, avec x,z € V.
(zu < v) @ zw = (z(ulllv)) e zw
=z z(ullvlWw) + z((ullv) e zw)
=z * z(ullvWw) + z((u e zw) Wv 4+ ull(v @ zw))
= (xxzullw)) <v+z(uezw) < v+ zu < (vezw)
= (zuov) < zw + zu < (v e zw).
Let us now prove that for all a,b,c € T(V), ae (bec) — (aeb)ec=ae(ceb) —(aec)eb.
If one of a, b, ¢ is equal to 1, this is obvious. We now assume that a, b, ¢ are nonempty words of
respective lengths k, [ and m, and we proceed by induction on k& + [ + m. There is nothing to
do if K+ 1+ m < 2. Let us assume the result at rank £k +1+m — 1. We put a = zu, b = yv,
c = zw, avec z,y,z € V.
(zueyv) e zw = (x xy(ullv)) @ zw + (z(u @ yv)) ® zw
= (zxy)xz(ullvWw) + z *y((ullv) e zw)
+xxz(ueyv) Lw) 4+ z((u e yv) @ zw);
zue (yvezw) =zue (y*x z(vllw) + y(v e zw))
=z * (yxz)ulbvllw + zu e (yx z(vLw))
+zxy(ull(vezw)) + z(uey(vezw)).
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Hence:

(zueyv) e zw —zue (yvezw) = ((zxy)xz —x * (y * 2)) (ubvllw)
+ zxy((uldv) @ zw) + z * z((u @ yv) Ww)
+z((ueoyv) e zw —ue (yv e zw)).
As % is preLie and W is commutative, the first row is symmetric in yv and zw. The second row

is obviously symmetric in yv and zw,and by the induction hypothesis, the last row also is. So
the preLie relation is satisfied for zu, yv and zw.

Let us prove the compatibility with the coproduct. Let a,b € T'(V'). Let us prove that:
Alaeb) =aM @a® eb+a e b @ a?1Wp?.

This is immediate if a or b is equal to 1. We now assume that a and b are nonempty words
of respective lengths k and [, and we proceed by induction on k 4 [. There is nothing to do if
k+ 1 < 1. Let us assume the result at rank £k 4+ — 1. We put a = zu and b = yv, z,y € V.

Azu e yv) = Az * y(uldv) + z(u e yv))
= (2% y)uV W™ @ u@ W@ + 1@ 2+ y(ullv)
+ 20 @ u® o yv + z(u® o yoV) @ u? Wy?
+zuM 0 1@ u® Wyv +1 @ z(u e yv)
= zuM @ u? eyv+1RQzueyv
+ (zx y)uPWo® @ P W@

= (zu)M @ (2u)? o yv

@) o (o) @ ()@ W (o).

So T'(V,x) is indeed a Zinbiel-PreLie bialgebra. O

This is also a functorial construction. If F': (V,x) — (W, %) is a preLie algebra morphism,
then T'(F) is a Zinbiel-PreLie algebra morphism.

Note that fr(y,.) = 0. The preLie product induced on Prim(T(V)) =V is given by .

Proposition 16 Let 4 be a product on T(V'), such that (T'(V'), W, e, A) is a Zinbiel-PreLie
bialgebra, with VEF¢V @ C VOEH=Y for all k,1 € N. There exists a preLie product * on V,
such that (T(V), <,
blacklozenge, A) = T(V,x).

Proof. By hypothesis, V4V C V: V is a preLie subalgebra of T'(V'). We denote its preLie
product by *, and by e the preLie product of T'(V, ). Let us prove that for any z =z ... 2%,y =
y1...y €T(V), zey = x4yl. If k =0, we obtain 1ey = 1"ey = 0. We now treat the case | = 0:
let us prove that 41 = 0 by induction on k. It is already done for £k = 0. If K =1, then z € V,
so z41 € K by homogeneity. Moreover, e(z41) = 0, so x41 = 0. Let us assume the result at
rank k — 1, with £ > 2. We put u = x5...x. Then:

241 = (1 < u)4l = (z141) <u+z1 < (u4l) =040 =0.

We can now assume that k,1 > 1. We proceed by induction on k + [. There is nothing to do
fork+l=0o0rl. Ifk+1=2,thenk=[01=1, and x ey = xxy = z4y. Let us assume that the
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result is true at all rank < k + 1, with £ +1 > 3. Then, using the induction hypothesis, as 2’ and
z” have lengths < k and ¢’ has a length < I:

Alzey)=1rey+r 1" ey+tr@ley+rely+rel@s’lUy+lel®ally
troyRl+2roeyr’ +leyxrtrey @y +2 0y @2y +1ey @xlly”
—1@rey+2 @2r"¢y+z0 16y + 141 @y + /412"y + 1610 clly
trey®l+2'0y®a" + 10y z + 26y @y + '€y @ 2" Wy" + 16y @ zlWy"
= A(zdy) +(zoy —24y) @ +1® (z oy — 4y).

We deduce that z e y — x4y is primitive, so belongs to V. As it belongs to V®*+-1) and
k+1—12>2, itis zero. So x ey = T4y. 0

Proposition 17 1. Let (V,x) and (V',*") be two preLie algebras. The Com-PreLie bial-
gebras T(V, %) and T(V', ') are isomorphic if, and only if, the preLie algebras (V,*) and
(V',+") are isomorphic.

2. Let (V,%) be a preLie algebra and g : W — W be an endomorphism. The Com-PreLie
bialgebras T'(V,*) and T(W,g) are isomorphic if, and only if, dim(V) = dim(W), x = 0
and f =0.

Proof. 1. If FF: V — V' is a preLie algebra isomorphism, by functoriality, T'(F) is an
isomorphism from T'(V,x) to T(V’/,«’). Let us assume that ¢ : T(V,x) — T(V',«') is an isomor-
phism. It induces by restriction an isomorphism F from Prim(T(V)) =V to Prim(T (V")) = V".
Moreover, for all x,y € V:

Pz oy) =d(z*y)=Flrxy)=d(z) e ¢(y) = F(x) e F(y) = F(z) ¥ F(y).
So (V,x) and (V' «) are isomorphic.

2. If dim(V) =dim(W), x =0 and f = 0, then both preLie product of T'(V,x) and T(W, g)
are zero. Let F': V — W be an isomorphism. Then T'(F) is an isomorphism from T'(V,*) to
T(W,g). Conversely, if ¢ : T(V,*x) — T(W, g) is an isomorphism, it induces an isomorphism F'
from Prim(T(V)) =V to Prim(T(W)) =W. As ¢(1) =1, for all x € V:

p(zel)=0=¢(x)e¢(l) = F(z)el=goF(z)

As F' is an isomorphism, g = 0, so the prelie product of T'(W, g) is zero. By isomorphism, the
preLie product * of T'(V, %) is zero. O

3 Examples on K[X]

Our aim in this section is to give all preLie products on K[X], making it a graded Com-PreLie
algebra. We shall prove the following result:

Theorem 18 1. The following objects are Zinbiel-PreLie algebras:
(a) Let N>1, N\a,b€ K, a#0,b¢ Z_. We put gV (N, ), a,b) = (K[X],m,e), with:

iIANXTif § =0,
X'e XI = aﬁX”j if 7 #0 and N | j,
N

0 otherwise.
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(b) Let N > 1, \,p € K, n# 0. We put g@ (N, \, p) = (K[X],m, o), with:
iIAXTif j =0,
X' e X = ipu XN if j = N,
0 otherwise.
(c) Let N > 1, \,p €K, p#0. We put g® (N, \, ) = (K[X],m, o), with:
iIANXif § =0,
X' e X7 = ipX™ if 40 and N | j,

0 otherwise.

(d) Let A € K. We put g(\) = (K[X],m, o), with:

X o X9 — iIAX"if j =0,
0 otherwise.

In particular, the preLie product of 9(4) (0) is zero.

2. Moreover, if ® is a product on K[X], such that g = (K[X],m,e) is a graded Com-PreLie
algebra, Then g is one of the preceding examples.

Remark. If A = ¢, in g(N, X\, a,b), for all 4,5 € N:

.G/L' . -
Xie Xl ={ %tb N,
0 otherwise.

It is possible to prove that all these Com-PreLie algebras are not isomorphic. However, they
can be isomorphic as Lie algebras. Let us first recall some notations on the Faa di Bruno Hopf
algebra [2]:

® grdp has a basis (e;);>1, and for all 4,5 > 1, [e;, €] = (i — j)eiy;j.

e Let a € K. The right gpgp-module has a basis V, = Vect(f;)i>1, and the right action of
grap is defined by fi.e; = (i + a)e;qj.

Proposition 19 Let N > 1, \, N, pu,a,b €K, p,a #0, b ¢ Z_. Then, as Lie algebras:

g (NN a,b) ~ g®@ (N A, )4 ~ (V ®...® V,%) X GFdB-

1

N

Proof. We first work in g™ (N, X, a,b). Foralli > 1, for all 1 < r < N — 1, we put
N-1

E; = S XN and Fi(r) = XNG=D+7 Then (E;)i>1 U U <Fl-(r)>i>1 is a basis of g (N, A, a,b),

r=1 -

and, forall 7,5 > 1, forall 1 <r,s <N —1:

. . r—N
BBl == i)Bus,  EOE =0 0= (i D) R
Hence, this Lie algebra is isomorphic to <V_u ®...6V_1 > X grqp. The proof is similar for
N N
g® (N, X, ), with B; = 32XV and F) = XNG-14r 0

Consequently, we can describe the group corresponding to these Lie algebras.
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1. Gpgp is the group of formal diffeomorphisms of K tangent to the identity:
Grag = ({X —|—a1X2 + a2X3 + ... ‘ as,a9,... € K},O).

2. For all a € K, we define a right Gpgp-module V,: as a vector space, this is K[[X]]+. The
action is given by P.Q = <%> PoQ(X) forall P eV, and Q € Gpyp.

Then the group corresponding to our Lie algebras gt (N, X, a,b), and g@® (N, X, p) . is:
<V7i D ...@V_M> X GryB-
N N
Let us conclude this paragraph with the description of the Lie algebra associated to g2 (N, A, ).

Proposition 20 The Lie algebra 9(2)(N,)\,u)+ admits a decomposition 9(2)(N, Ay ~
VON w1 go, where:

® go is an abelian, one-dimensional, Lie algebra, generated by an element z.
o V is a right go-module, with a basis (f;)i>0, and the right action defined by fi.z = fiz1.

Proof. The Lie bracket of g®®) (N, \, i) is given by:
(X7, X9] = {o if 4, # N, yiX+ if i £ N, j = N.

We put go = Vect(X"). The N-copies of V are given by:

i—1
e For1<r <N, V" =Veet uiH(r+jN)Xr+iN |i>0
j=1

o VIN) — Vect (MiNi(i + 1)!X(i+2)N |i> O)'

3.1 Graded preLie products on K[X]

We now look for all preLie products on K[X], making it a graded Com-PreLie algebra. Let o be
a such a product. By homogeneity, for all 7,j > 0, there exists a scalar \; ; such that:

X' o XT =N\ ; X",

Moreover, for all i, j, k > 0:

Xt o Xk _ )‘i+j,kXi+j+k

= (X'e XM) X7 + X!(X7 0 XF)
= (Aigg + X)) XTHHE,

Hence, A\itjr = Aix + Aj k. Putting A\, = Ay, for all k£ > 0, we obtain:
X' o XJ =)\ X",

Lemma 21 For all k >0, let A\, € K. We define a product e on K[X] by:

X' o XT =)\ X"

Then (K[X], m,e) is Com-PreLie if, and only if, for all j,k > 1:

A = kX Ajpk = (5 — F)Aj Ak
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Proof. Let ¢,5,k > 0. Then:
X' o (X7 0 X") = (X" 0 X7) @ X¥ = (ijApAjn — (i + )M M) X,
Hence:

e is preLie <= Vi, j, k > 0,ijAp\jrn — i(0 + J)NjA, = ik A — i(3 4+ k)X,
=V k 21 (A = kA Ak = (= F)Aj AR,

as this relation is trivially satisfied if j =0 or &£ = 0.

Lemma 22 Let o be a product on K[X]|, making it a graded Com-PreLie algebra.

(K[X], <, ) is a Zinbiel-PreLie algebra.
Proof. Let us take i,k,k > 0, (i,7) # (0,0). Then:

(X' o XF) < X7+ XT < (X7 0 XF) = M\ (iXTHF < X7 4 j X7 < XIHF)
i(i+ k) ij ) ik
M|+ — Xt
k<z+3+k i+J7+k
:Z)\kXZ+]+k

= (i+j) AN —— X"HHE
( J) kH_]
¢ Xiti o X
147
R itj+k
= (Z—i-j))\kX

(X' < X7) e XF =

1+
_ i)\kXHHk.

So K[X] is Zinbiel-PreLie.

Then

0

Proof. (Theorem [I8] first part). Let us first prove that the objects defined in theorem [1§ are
indeed Zinbiel-PreLie algebras. By lemma 22] it is enough to prove that they are Com-PreLie

algebras. We shall use lemma 21 in all cases.

1. Forall j > 1, \; = aﬁ if N | j and 0 otherwise. If j or k is not a multiple of N, then:
N

(M = kX)X = (J — B)A\jA, = 0.

If = Nj" and k = NK', with j/, k" integers, then:

i K 1
Ao — EADN iy = Na? [ —L— —
Ak = kA))Aj 4k = Na (k:'+b j’+b>j'+k'+b

5 j/2 _ k/2 + b(j, _ k‘/)

CTERE TG R D)
j/—{—k:,—{—b

G+ 0K+ + W +b)

2 L

=N yw )

= (J = k)AjA-

= Na*(j' = ¥)
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2. In this case, \; = p if j = N and 0 otherwise. Hence, for all j,k > 1:
(A = kXA ik = 2 (G0k.N — k6jn)0j k8 = 0,
(j — k))\j)\k = MQ(j — k)(sj,N(sk,N = 0.
3. Here, for all j > 1, \j = p if N | j and 0 otherwise. Then:
. 2(j — k) if N | j,k, . 2 — k) if N | 4, k,
(0~ kA A = 10— R NS (=R = # U RIS
0 otherwise; 0 otherwise.

4. In this case, for all j > 1, A\; = 0 and the result is trivial. O

3.2 Classification of graded preLie products on K[X]
We now prove that the preceding examples cover all the possible cases.
Proof. (Theorem [I8 second part). We put X' e X7 = i)\jX”j for all 4,5 > 0, and we put
A= MXo. Ifforall j > 1, A\; =0, then g = g@(\). If this is not the case, we put:
N =min{j > 1| ); # 0}.

First step. Let us prove that if ¢ is not a multiple of N, then A\; = 0.We put ¢ = ¢/N +r, with
0 < r < N, and we proceed by induction on g. By definition of N, Ay = ... = Ay_1 = 0, which
is the result for ¢ = 0. Let us assume the result at rank ¢ — 1, with ¢ > 0. Weput j =¢— N
and k = N. By the induction hypothesis, A\; = 0. Then, by lemma 2Tt

(i— N)AnA; = 0.

Asi# N and Ay # 0, \; = 0. It is now enough to determine \;n for all ¢ > 1.

Second step. Let us assume that Aoy = 0. Let us prove that A\;y = 0 for all ¢ > 2, by
induction on ¢. This is obvious if ¢ = 2. Let us assume the result at rank i — 1, with ¢ > 3, and
let us prove it at rank . We put j = (i — 1)N and & = N. By the induction hypothesis, \; = 0.
Then, by lemma 2T}

(1 —2)NAyANN = 0.

Asi>3and Ay # 0, \jy = 0. As a conclusion, if Aoy = 0, putting g = Ay, g = g@ (N, \, p).

Third step. We now assume that Aoy # 0. We first prove that A\;y # 0 for all 4+ > 1. This
is obvious if 4 = 1,2. he result at rank 7 — 1, with 4 > 3, and let us prove it at rank i. We put
j=(i—1)N and k = N. Then, by lemma 21}

(AN — NXA)Aiy = (i — 2)NA;An.

By the induction hypothesis, A\; # 0. Moreover, i > 2 and Ay # 0, so A,y # 0.

4 A - . .
For all j > 1, we put pu; = ZkN . this is a nonzero scalar, and p; = 1. Let us prove inductively

AN
that:
M2 k-1,
= fk+#£2.

Ifk=1, m:lzo_(‘iﬁ,andug#OaS oy £ 0;if k=2, uo = lf‘OQM. Let us assume the

result at rank k — 1, with £ > 3. By lemma 2] with j = (k — 1)N and k = N:

(k= D)NAN — ANpr—1) AN pe = (k — 2)Nug_1 1Ay,
pr(k =1 —pp—1) = (k= 2)pp_1.
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_ 2
R ) R
_(k=DE=2) - (k=1D(k —=3) + Dpo
(k—2) = (k—3)p2
o k=) — (B —2)py
IR (e R T 17
As this is nonzero, uo # % We finally obtain:

As pp_1#0and k > 2, k— 1 — pgp_1 # 0. Moreover, by the induction hypothesis:

1 (k—=2)— (k-3
e = (k = 217 (k—2) = (k ~ S
Finally, for all £ > 1:

_ M2
2(k—1)— (k22

(k=1 — (k— 2y’

A
Aen = NH2

B AN 2
(k—1)—(k—2)uz

b — 2/.1,271

(1—po)k+2up — 1
1—p2 °

Last step. If jp = 1, then for all k > 1, Ay = Ay this is g® (N, X\, An). If o # 1, we put
® Aspp #0,b# —1;
o b#£ -2

o forall k >3, jp # k=1

T—2 sob ;é —k.
This gives that b ¢ Z_. Moreover, for all k¥ > 1:

AN U2
1—po
)\kN - .
k+b
We take q = 2N
17;1,2 )

and we obtain gV (N, A, a, b).

O
Proposition 23 Among the examples of theorem [18, the Com-PreLie bialgebras (or equiva-
lently the Zinbiel-PreLie bialgebras) are g™ (1,a,1) for all a # 0 and g™ (0).

in T(V, f). Let us prove that z* e 2! = af

bialgebra for all @ € K. Let us take V' one-dimensional, generated by x, with f = ald. We work

k+
(k_+11) = 0. Let us assume the result at rank & — 1.

0
Proof. Note that g™ (1,0,1) = g®(0). Let us first prove that g(1,a,1) is a Zinbiel-PreLie
1
k—1

)mkH by induction on k. It is obvious if k = 0, as
2F et = p(a* W) + flx)2F gt
B k+1-1 k+1-1 kel
(i) ()
_ (FHY ke
()

The Zinbiel product of T'(V') is given by:

k+1-1
k l k+1
x <x—< b1 )x ,

for all k,I > 1. There is an isomorphism of Hopf algebras:

KX — T(V)
o0 { K

— X.
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For all n > 0, O(X™) = 2" = nlz". For all k,1 > 0:

O(X") e (X! = a<llj +i) BTk o(x*) < O(x!) = <k ]‘:l . 1> L
ak k
_ Xk-i-l . _ Xk-i—l )
o) peiclO

Consequently, gV (1,a,1) is isomorphic, as a Zinbiel-PreLie bialgebra to T'(V, f) (so is indeed a
Zinbiel-PreLie bialgebra).

Let g be one of the examples of theorem I8 First:

AXeX)=XR1eX+1RXeX
+XoeX®I+XolRX+1leX®X+1el®X?
MAX242X @ X+ X2 1) =M1 X2+ A XX + X201
This gives A = 2X;. In particular, if g = g(¥()\), then A = 2)\; = 0: this is g¥(0). In the other
cases, N exists. By definition of N, X ¢ X¥ =0if 1 <k < N — 1. We obtain:

N
N
A(X.XN):1®X.XN+X®1.XN+Z<k>(X.Xk®XN—k+1.Xk®X"—k+1)
k=0

IWAXY T = 1o X e XV +AX @ XV +10 X e XV,

If A = 0, we obtain that X+ is primitive, so N + 1 = 1: absurd, N > 1. So A # 0. The
cocommutativity of A implies that N = 1.

AXoeXH =X 21 +3X20X +3X X% +1®X?)
— 10X e X2+ 20 X2 X + XX X2 +10 X ¢ X?

Hence, 3o = 2.
o If g =g®)(1,\, 1), we obtain 3p = 2u, so p = 0: this is a contradiction.
o If g =g@ (1, 1), we obtain 0 = 2y, so u = 0: this is a contradiction.
So g =g (1, \,a,b). We obtain:

3.4 _o @
2+b 1+
sob=1. Then)\0:2)\1:%:a:%,sog:g(l)(l,a,l) O

4 Cocommutative Com-PreLie bialgebras
We shall prove the following theorem:

Theorem 24 Let A be a connected, cocommutative Com-PreLie bialgebra. Then one of the
following assertions holds:

1. There ezists a linear form f:V — K and X € K, such that A is isomorphic to S(V, f, \).

2. There exists A € K such that A is isomorphic to g(l)(l, A L)

First, observe that if A is a cocommutative, commutative, connected Hopf algebra: by the
Cartier-Quillen-Milnor-Moore theorem, it is isomorphic to the enveloping Hopf algebra of an
abelian Lie algebra, so is isomorphic to S(V) as a Hopf algebra, where V' = Prim(A). If
V = (0), the first point holds trivially.
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4.1 First case

We assume in this paragraph that V is at least 2-dimensional.

Lemma 25 Let A be a connected, cocommutative Com-PreLie algebra, such that the dimen-
sion of Prim(A) is at least 2. Then fq = 0, and there exists a map F : A® A — A, such
that:

1. Forallz,y € Ay, zey=Flxy )y + Flz®1)y.
2. For all 1,29 € A, F(z122 ®y) = F(21 @ y)zo + 21 F (22 @ ).
3. F(Prim(A) ® A) C K.

Proof. We assume that A = S(V) as a bialgebra, with its usual product and coproduct A,
and that dim (V) > 2. Let z,y € V. Then:

Alzey)=zey1l+1@xey+ fa(zx)Ry.

By cocommutativity, for all ,y € V| fa(x) and y are colinear. Let us choose y; and y3 € V', non
colinear. Then f4(x) is colinear to y; and y2, so belongs to Vect(y;) N Vect(y2) = (0). Finally,
fa=0.

We now construct linear maps F; : V ® S%(V) — K, such that for all k > 0, putting:
k k ‘
F®O =PF:Pves()—K,
i=0 i=0

for all z,y1,...,yxr1 € V:

zoyi g1 = FP @@ g)) @ (nogen) + FPz @ Dy yenr.

We proceed by induction on k. Let us first construct F(©). Let z,y € V.
Azey ) =1@zey’ +ze >’ @1 +2r0yRy.

By cocommutativity, « e y and y are colinear, so there exists a linear map g : V' — K such that
zeoy = g(x)y. We the take FO(z®1) = g(x). For all z,y € V, z ey = F(z ® 1)y, so the result
holds for £ = 0.

Let us assume that F© ... F(=2) are constructed for k > 2. Let z,y1,...,yx € V. For all

I Clkl={1,...,k}, we put yy = l_IyZ Then:
i€l

Alyr...yn)= >, y®ys
TUT=[k].I,T#1

and:

Azoy ...yp) =1Qzey; ...y + 0y ...y 1 + Z ToYr Yy

[k]=IUJ,J#1
=1Qzrey .. yp+roy; ... 0 X1+ Z F(kfz)(x®y1)®yj®y1(.
TUJUK=[k],J,K#1
We put:
Pay...y)=zoyi...ye— > FE Do)y,
IUJ=[k],|J|>2
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The preceding computation shows that P(z,y; ..., y) is primitive, so belongs to V. Let yx41 €
V.

Alwoyr...yer1) = > FE (2 @ yr)ys @yk
TUJUK=[k-+1],K#£1,|J|>2

€S5>2(V)

k
+ P(@, 91 Yk) @ Y1 + ZP(Cﬂayl o Yin1Yi 1 - k1) @ i
i=1

By cocommutativity, considering the projection on V ® V, we deduce that P(z,y;...yx) €
Vect(yr, ..., Yk, Yk+1) for all nonzero yxq1 € V. In particular, for y; = yxy1, P(x @y1...yx) €
Vect(yi,...,yx). By multilinearity, there exists FY{,...,F} € (V ® Si_1(V))*, such that for all
T, Y1, .-, Yk €V

Plxyyr...yp) = Flz@yo...yp)yr + .+ FL(@ @Y1 Yp—1) Y-

By symmetry in y1,...,yx, F] = ... = F] = Fj_1. Then:
zoyi.yp= > FEP@oy)y+ ). Fealzoun)ys
TUT=[K],|J|>2 1UJT=[K],|J|=1
= Z FED(z @ yr)y,
IuJ=[k],|J|>1

=F* Do u)) o)+ Flx® Dy ...y
We defined a map F : V® S(V) — K, such that for all z € V, b € S (V),
reb=F(z®V)' + F(z®1)b.
We extend F' in a map from S(V) ® S(V) to S(V) by:

e F(1®b)=0.

k
e Forall z1,...,2, €V, F(xl...xk®b):le...xi,lF(xl®b)xi+1...xk.
i=1

This map F satisfies points 2 and 3. Let us consider:
B={acA|Vbe S (V),aeb=F(a@V )+ F(a®1)b}.

As1eb =0 for all b € S(V), 1 € B. By construction of F', VC B. Let aj,as € B. For any
b € S+(V)

aijas e b= (a1 ° b)a2 + al(ag ° b)
= F(a1 ® b/)QQb” + alF((zQ ° b,)b” + F(a1 ® 1)0,2() + alF(ag ® 1)b
= F(a1a2 ® b/)b” + F(a1a2 ® 1)b

So ajay € B. Hence, B is a subalgebra of S(V') containing V', so is equal to S(V): F satisfies
the first point. O

Remarks.

1. In this case, for all primitive element v, the 1-cocycle of the bialgebra A defined by L(z) =
a e x is the coboundary associated to the linear form defined by f(z) = —F(a ® x)
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2. In particular, the preLie product of two elements x,y of Prim(A) si given by:

rey=F(zx®1l)y.

Lemma 26 With the preceding hypothesis, let us assume that F(x ® 1) = 0 for all x €
Prim(A). Then e = 0.

Proof. We assume that A = S(V') as a bialgebra. By hypothesis, for alla € A, F(a®1) =0,
so a e 1 = 0. This implies that for all a,b € Sy (V):

A(aob):aob'®b"+a'ob'®a"b”+a'ob®a"+a'®a"ob.

Let us prove the following assertion by induction on N: for all £ < N, for all x,y1,...,yr € V,
zeoyy...yr = 0. By hypothesis, this is true for V = 1. Let us assume the result at a certain
rank N > 2. Let us choose z,y1,...,yny € V. Then, by the induction hypothesis:

Azey ...yn)=04+0+0+0=0.

So x ey ...ynN is primitive.

Up to a factorization, we can write any x ® y1...yn as a linear span of terms of the form
z1 ® zlﬁl . ..zﬁ", with z1,...,z, linearly independent, 51,...,08, € N, with 6y +...+ 8, = N. If
n =1, as dim(V) > 2 we can choose any zs linearly independent with z; and take B2 = 0. It is
now enough to consider z; ® zlﬁl e zﬁ”, with n > 2, z1,..., 2, linearly independent, 3,...,08, €
N, fi1+...+8,=N. Let ay,...,a, € N, such that oy +... +a, = N + 1.

n
1
A(zlozf“...zg”)zg iz ezt 2T 2 @ g,
i=1

2 n

~ z o

A(%oz?lz,?") = E ai(zr @20 20T 202 @ 2
i=1

n
a a;—1
—i—E aizr @2t 2T 2 @ 2
i=1

« (07
+z102]" 2" Q25+ 21 @202 2",

2 n
~ ~ z 1
(A®Id)oA<71ozf“...zg">:E aizr ezt LT R Rz
i=1

n
a;—1
+ g iz @z ezt 2T L2 ®

)

i=1
+ E aizloz‘f‘l...zfi_l...zg"®zi®z1.
i

The cocommutativity implies that for all 1 < i <n, a;z 27" ... ziai_l

We first choose a1 = 81 + 1, oy = §; for all i > 2, and we obtain for i = 1 that z; e 27" ... zﬁ" S
Vect(z1). We then choose oy, = 3, + 1 and «; = f3; for all i < n — 1, and we obtain for i = n
that z; e 27" ... 2" € Vect(z,). Finally, as n > 2, 2 2161 L2 € Veet(z1) N Vee(z) = (0);
the hypothesis is true at trank N.

...zg" and z; are colinear.

We proved that for all z € V', for all b € S(V), x @b = 0. By the derivation property of e, as
V generates S(V), for all a,b € S(V), aeb=0. O
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Lemma 27 Under the preceding hypothesis, Let us assume that F(Prim(A) ® K) # (0).
Then A is isomorphic to a certain S(V, f, ), with V.= Prim(A) and f(zx) = F(z ® 1) for all
rzeV.

Proof. We assume that A = S(V) as a bialgebra. Let a,b,c € S; (V). Then:

A(la,b) =d @a" eb+aeb @V +d eb®d"
—b,®b”0a—boa,®a”—b/®a®b”—}—[a,,bl]®a”b”,

where [—, —] is the Lie bracket associated to e. Hence:
(aeb)ec=Fla®1)bec+ FlaxV )t ec
=Fla® 1) Fb®1l)c+ Fla® 1)F(b® )"
+Fa@b)FV' @ 1)c+ FlaV)F' @)

(aec)eb=F(a®1)F(c®1)b+ Fla® 1)F(c® b )b’
+Flaxd)F(["@1)b+ Fla® d)F(" b))y,

aeb,c]=Fla@)Fb®1)c+ Fla® 1)Fbad) —Fla®1)F(c®1)b
~FlaD)F(c@a)W' +Flaab)FV' @1)c+ Fla®b)FO"' @ d)d”
~Flad)F(['21)b-Fla®d)F(' @b )"+ Fla® F(b®1)d)d”
+Fa®F(bed)d)d" — Fla® Fle®@ )Y — Fla® F(c® b)b")b"
+Fa@FU @1)c)b" + Fla@ F(V @ )" — Fla® F(d @ 1)b)”
+Flae F(d o)W+ Fla@ F(O'@ )W+ Flag FY @ d)d)' "
—Fla® F(d @ 1)) — Fla® F(d @V )b")b" .

The preLie relation implies that:

(a2 Fb1)d)d' + Fla® F(b® d)d")d" — Fla® F(c® 1)b' )b’
Fla® Flcab)b"W" + Fla@ F(¥ @ 1)c)b” + Fla® F(V @ )" )y’

Fla® F(d @1)b)d" + Fla® F(d @)V')d"+ Fla®@ F(t' ® 1) )b "
+ F(a ® F(b/ ® C) I/)b/lc/l/ _ F(a ® F(C/ ® 1)b/)b/l " F( ® F( ® b/)bl/)b”/cl/.

0=F

a
a

Fora=xzeV,b=yeV,as F(V®SV)) CK, this simplifies to:
Faeod)Fyeo1)d"+ Flyed)F(z®d)d" = Flz @ F(d @1)y)d". (1)

Let z1,...,z; € V, linearly independent, ay,...,ar € N, with a3 + ... + ay > 1. We take

c= wi’““ capk and d = 27" ... 27*. The coefficient of z1 in (), seen as an equality between

two polynomials in z1,...,zy, gives:
(a1 + D) (Fz@d)Fiy®1)+Fly@d)Fzx®d") = (01 + 1)F(z @ F(d® 1)y).
Hence, for all z,y € V, for all c € S (V):
Feoc)Flyo 1)+ Flyed)Fz®d)=Flrz® F(c®1)y). (2)

We put f(z) = F(zx® 1) for all x € V. If f = 0, by lemma 200 e = 0, so A is isomorphic
to S(V,0,0). Let us assume that f # 0 and let us choose y € V, such that f(y) = 1. If
21,...,2k € Ker(f), then:

F(zl...zk®1):Zzl...g(zi)...zk:O.



Consequenlty, if ¢ € S (Ker(f)) C S+ (V), @) gives:
Faeod)+Fyed)Fx®d)=0.

An easy induction on the length of ¢ proved that for all ¢ € Si(Ker(g)), F(z ® ¢) = 0 for all
x € V. So there exists linear forms g € V*, such that for all z,y1,...,yr € V:

Flx®@yr...ye) = ge(®) f(y1) - - fyw)-

In particular, go = f. The preLie product is then given by:

k-1
90'?/1---%:29@'(95) oy i) fW) ke

1<j1<...<Gi<k

Let z,y,21,...,2, € V.

xo(yozl...zk):xoli:gi(y)‘Z‘ Zioo f(zjo1) - f(25) -2
i= i
= ggzzl(ﬂﬂ)gi(m) (l B 1) Z fz1) - f(z-1)2f (zj1) - fzk) + S22(V),
(xoy)ozl...zk:}_o)yozl o ”
) gr—1( i f(z-1)7 f(zj31) - - fzk) + 522(V),
ze(z1...2,0y) Zf V)T ® 21 ... Zi 1241 - 2KY

—kgk 1(7) f(21) .. f(zk)y

+ (k= 1) (#)gr-1( Zf (1) f(2-1)2f (z501) - f2k) + S22(V),
k-1
(xozl...zk)oy:Zgi(m) Z 210 f(z5) . f(%5,) ..z ey
=0 1 seesdii
k
= kf@)ge1(0) D F(21) - F(2-1)2 F(2541) - f(2k) + Sza(V)
j=1
Let us choose z; = ... = z; = z, such that f(z) = 1. Then:
k
D) f(2)2f (250) - fla) = 2 0.

7=1
The preLie relation implies:

k—1
F@arat) + (= Dora@) 1) = S ataia) (7] ) =0,
=0

7

so, for all [ > 1:
l

@) ) =3 g, (@) <l> 3)

; 1
=1
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Let us choose x such that f(z) = 1. Let us consider y € Ker(f), and let us prove that g;(y) =0
for all > 0. As gg = f, this is obvious for ¢ = 0. Let us assume the result at all rank < [, with
[ > 1. Then (3] gives:

-1 l
0= Y ) () (}) + )1 2) = o).

Consequently, for all [ > 1, there exists a scalar A; such that g, = N\ f. If f(z) = f(y) = 1,
equation (3] gives, for all [ > 1:

1 -1
l l
=) Ndil )= D> Nidil| )+ N,
l;l<l>;l<l>+l
so, for all [ > 2:
1 & l
>‘l = m Zzl >\i)‘l—i <Z> .
An induction proves that A\; = I!\! for all [ > 1. Putting A\; = A, for all ,zy,...,2, € V:
rexy... T = Z ]I]!)\mf(x)Hf(mi)Hxi.
IC{1,...k} icl igl

This is the prelie product of S(V, f, A). O

4.2 Second case

We now assume that V' is one-dimensional. So S(V') and K[X] are isomorphic as bialgebras. Let
us describe all the preLie products on K[X]| making it a Com-PreLie bialgebra.

Proposition 28 Let A\, u € K. We define:
EHl—1  pyl—i—1

X" o X! = Mkl a—
* ; Gi—Fk+1)

Then (K[X],m,<,A) is a Zinbiel-PreLie algebra denoted by g'(\, u).

Proof. If A = 0, e« = 0 and the result is obvious. Let us assume that A # 0. Let V one-
dimensional, € V, nonzero, and let f € V* defined by f(z) = §. In T(V, f, A), by lemma [§

for all k,1 > O:
k-1 ;
I ktl—i—1 j
xox—)\zlu <k_1>x.
i=k
Let us consider the Hopf algebra isomorphism:

KX — T(V)
6'{ X —

x.
For all k,1 > O:

gl A

O(X*) e 6(X") =X 2 A Ty T

EHl-1 ptl—1—i

= kil Y MG(XZ‘).

i=k

By proposition @3] T(V, f, \) is a Zinbiel-PreLie bialgebra, so is g'(\, p). O
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Proposition 29 Let o a preLie product on K[X] such that (K[X],m,e,A) is a Com-PreLie
bialgebra. Then (K[X],m,e,A) = gM)(1,\,1) for a certain X € K, or g'(\, ) for a certain
(A 1) € K2,

Proof. Let 7 : K[X] — K[X] be the canonical projection on Vect(X):

J KX] — K[X]
”'{ Xk 5 X

For all k£ > 0, we put 7(X e X*) = \; X.

We shall use the map @w =mo (7 ® Id) o A. For all k > 0:

k

@w(X*) =mo (7 ® Id) (Z (f) X'® X’H’) =m(kX @ X* 1) = kX",

=0

First step. We fix [ > 0. For all P,@Q € K[X], (P e Q) = 0; hence, we can write:

m .
= Z CLZ'XZ.
=1
Then:

[e.e]
= E iaiXZ
i=1

:mo(7T®Id)oA(XoXl)

l
:mom®1@<uyxAW+§:<>X‘W®XF?
=0
! .
:m<;XQMX®XH>
(e
> (

I
— .
+
= o

A1 X7
l—j+1> l—j+1

<.
Il
—

Hence:

+1 I N

X o X! — E A—jtl xij
Z\1—j+1)
J=1

By derivation, for all £ > 0, X* @ X! = kX*~1(X e X!), so for all k,1 > 0:

+1
X .Xl ik ! )\l .]+1X]+k 1
l=j+1)
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Second step. In particular, for all k > 0, X*e1 = kAo X", and X ¢ X = %XQ 4+ A1 X. Hence:

2
Xo(Xol)—(XoX)olz%X2+)\0)\1X—%X201—)\1X01

2
= ﬁX2 + Ao X — A2XZ - MM X

)\0 X2

Xeoe(leX)—(Xel)e X =0—XXeX

)\2
0X2 Ao X.

By the preLie relation, A\gA; = 0. We shall now study three cases:

)\ p— =
1. 0 7£ Oa 2 >‘0 0, 3. >‘0 0’
AN =0 A =0 A #0;
Third step. First case: A9 # 0, Ay = 0. Let us prove that \y = 0 for all £ > 1 by
induction on k. It is obvious if ¥ = 1. Let us assume that Ay = ... = A\y_1 = 0. Then

X o Xk = k)‘—_lek“ + M\ X, and:

Xeo(XFel)— (XX el=k\ (iX’HMAkX) —<

XL X
k+1 M )

kE+1

= + 1>\3X’““ + Ao X — ABXFFL Ao\ X

L ex,
T k+170

X.(l.Xk)_(X.U.Xk:o_AO (i

XkJrl X
P + Mg >

=T AOX’““ Ao X.

By the preLie relation, AgAr = 0. As A\g # 0, Ay = 0.
Finally, X* & X! = )\0 E) Xk“ for all k,1 > 0: this is the preLie product of g\ )(1, Ao, 1).

Fourth step. Second case: A\g = A1 = 0. Let us prove that A, = 0 for all k¥ > 0. It is obvious
if k =0,1. Let us assume that \g = ... = A\_; =0, with £ > 2. Then X’e X7/ =0 for all j < k,
7 > 0. Hence:

Xe (Xkle okal) = (XoXkJrl) o Xh-1 — (X oinl) o XFH — .
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By the preLie relation, X e (X*~1 ¢ X*k*1) = 0. Moreover:

k—2
Xe(XFlexth=Xoe ( il > (k_1)Ak+7?—JXk+2—j
=1

=Xe <(k — DA\t X (B4 1)(k — 1)%)&)

—1 1
_gy EZDEFD) )2(k+ I X o XF
k-1
(k—1)(k+1) < k )Ak+1j ~
=T ) L X
2 k ; k+1—3j j
k—1)(k+1
_ (k= DE+1) )2( “Dyx 1o

Hence, A\, = 0.
We finally obtain by the first step X* e X! = 0 for all k,1 > 0: this is the trivial preLie
product of g (0).

k! Akl

Fifth step. Last case: A\g = 0, A1 # 0. Let us prove that Ay = o1 k2 5 forall k > 1. It is

1
obvious if k =1 or k£ = 2. Let us assume the result at all rank < k, with k& > 2.
T((X o X) @ X¥) = (A X o XF)
= M\ X

k
k Aot 1—i .
Eyy — Akt1-j j
T(Xe(XeX¥))=nr ;:1("5 1_j> ; XeX

_ Z < k ) )\kﬂfj)\jX
; k+1—j j

Jj=1

k—1

k! )\k 1
2M A + Z ok—1 k=3

(k+1— )5 A7+t
- ()‘k)‘l * Z k +1 _j> QR—IFi—T \R=i=15=2 T E)‘l)‘k X

kloAET
Al

(X ¢ X*) o X) < F ) A’“fl*jw(xj e X)

k
D (ka1
o k+ J J
k
k >\k‘+1j
= T (A XY
]Z<k‘+1—3> j M)
= M\ X +0;

(X o (X e X)) = k(X o XF)
= kM X,

31



By the prelLie relation:

k! )\k 1
MAE =200 — (b —2)— E1 )\k 3 = M\ — kAL,
which gives, as Ay # 0 and k > 3, Ay = . Finally, the first step gives, for all k,I > 0,
A ak
with A = A; and p = i;

k+1 I A ) A
Xk e x! = Zk< >ﬁXy+k—1
le I+1—3j J

L
:Z NI+1—5)! Ay’ k-1
= 1= J—l)'ﬂ”A’”

_Ak;l'z" it
7j=1

k+l—-1 plt=i=n
= \kl! — X"
2 (i —k+1)

This is the preLie product of g’(\, u). O

As g'(\, i) is a special case of S(V, f, ), this ends the proof of theorem

References

[1]

2]

3]

4]

[5]

(6]

7]

18]

19]

Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative ge-
ometry, Comm. Math. Phys 199 (1998), no. 1, 203-242, arXiv:hep-th/9808042.

Loic Foissy, Lie algebras associated to systems of Dyson-Schwinger equations, Advances in
Mathematics 226 (2011), no. 6, 4702-4730, arXiv:1112.2606.

, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, Communications
in algebra (2014), arXiv:1304.1726.

, A preLie algebra associated to a linear endomorphism and related algebraic structures,
European Journal of mathematics (2015), arXiv:1309.5318.

Loic Foissy and Frédéric Patras, Natural endomorphisms of shuffle algebras, Internat. J.
Algebra Comput. 23 (2013), no. 4, 989-1009, arXiv:1205.2986.

W. Steven Gray and Luis A. Duffaut Espinosa, A Fada di Bruno Hopf algebra for a group
of Fliess operators with applications to feedback, Systems Control Lett. 60 (2011), no. 7,
441-449.

Jean-Louis Loday, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math.
Scand. 77 (1995), no. 2, 189-196.

Anthony Mansuy, Preordered forests, packed words and contraction algebras, Journal of Al-
gebra 411 (2014), no. 1, 259-311, arXiv:1305.0343.

Marcel P. Schiitzenberger, Sur une propriété combinatoire des algébres de Lie libres pouvant
étre utilisée dans un probléme de mathématiques appliquées, Séminaire Dubreil. Algébre et
théorie des nombres 12 (1958), no. 1, 1-23.

32



	1 Com-PreLie and Zinbiel-PreLie algebras
	1.1 Definitions
	1.2 Linear endomorphism on primitive elements

	2 Examples on shuffle algebras
	2.1 Com-PreLie algebra attached to a linear endomorphism
	2.2 Com-PreLie algebra attached to a linear form
	2.3 Com-PreLie algebra associated to a preLie algebra

	3 Examples on K[X]
	3.1 Graded preLie products on K[X]
	3.2 Classification of graded preLie products on K[X]

	4 Cocommutative Com-PreLie bialgebras
	4.1 First case
	4.2 Second case


