Cofree Com-PreLie algebras

Loïc Foissy

Fédération de Recherche Mathématique du Nord Pas de Calais FR 2956
Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville
Université du Littoral Côte dOpale-Centre Universitaire de la Mi-Voix 50, rue Ferdinand Buisson, CS 80699, 62228 Calais Cedex, France
email: foissy@univ-littoral.fr

Abstract

A Com-PreLie bialgebra is a commutative bialgebra with an extra preLie product satisfying some compatibilities with the product and the coproduct. We here give examples of cofree Com-PreLie bialgebras, including all the ones such that the preLie product is homogeneous of degree ≥-1. We also give a graphical description of free unitary Com-PreLie algebras, explicit their canonical bialgebra structure and exhibit with the help of a rigidity theorem certain cofree quotients, including the Connes-Kreimer Hopf algebra of rooted trees. We finally prove that the dual of these bialgebras are also enveloping algebras of preLie algebras, combinatorially described.

AMS classification. 17D25 16T05 05C05

Contents

1 Reminders on Com-PreLie algebras 3
1.1 Definitions 3
1.2 Linear endomorphism on primitive elements 4
1.3 Extension of the pre-Lie product 5
2 Examples on shuffle algebras 6
2.1 Preliminary lemmas 6
2.2 PreLie products of positive degree 9
2.3 PreLie products of degree -1 10
3 Free Com-PreLie algebras and quotients 11
3.1 Description of free Com-PreLie algebras 11
3.2 Quotients of $\operatorname{UCP}(\mathcal{D})$ 14
3.3 PreLie structure of $U C P(\mathcal{D})$ and $C P(\mathcal{D})$ 16
4 Bialgebra structures on free Com-PreLie algebras 19
4.1 Tensor product of Com-PreLie algebras 19
4.2 Coproduct on $\operatorname{UCP}(\mathcal{D})$ 21
4.3 An application: Connes-Moscovici subalgebras 24
4.4 A rigidity theorem for Com-PreLie bialgebras 26
4.5 Dual of $U C P(\mathcal{D})$ and $C P(\mathcal{D})$ 29
4.6 Extension of the preLie product \diamond to all partitioned trees 32

Introduction

Com-PreLie bialgebras, introduced in [5, 6], are commutative bialgebras with an extra preLie product, compatible with the product and coproduct: see Definition 1 below. They appeared in Control Theory, as the Lie algebra of the group of Fliess operators [8] naturally owns a ComPreLie bialgebra structure, and its underlying bialgebra is a shuffle Hopf algebra. Free (non unitary) Com-PreLie bialgebras were also described, in terms of partionned rooted trees.

We here give examples of connected cofree Com-PreLie bialgebras. As cocommutative cofree bialgebras are, up to isomorphism, shuffle algebras $S h(V)=(T(V), \amalg, \Delta)$, where V is the space of primitive elements, we first characterize Com-PreLie bialgebras structures on $\operatorname{Sh}(V)$ in term of operators $\varpi: T(V) \otimes T(V) \longrightarrow V$, satisfying two identities, see Proposition 8. In particular, if we assume that the obtained preLie bracket is homogeneous of degree 0 for the graduation of $S h(V)$ by the length, then ϖ is reduced to a linear map $f: V \longrightarrow V$, and the obtained preLie product is given by (Proposition 9):

$$
\forall x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in V, \quad x_{1} \ldots x_{m} \bullet y_{1} \ldots y_{n}=\sum_{i=0}^{n} x_{1} \ldots x_{i-1} f\left(x_{i}\right)\left(x_{i+1} \ldots x_{m} Ш y_{1} \ldots y_{n}\right) .
$$

In particular, if $V=\operatorname{Vect}\left(x_{0}, x_{1}\right)$ and f is defined by $f\left(x_{0}\right)=0$ and $f\left(x_{1}\right)=x_{0}$, we obtain the Com-PreLie bialgebra of Fliess operators in dimension 1. If we assume that the obtained preLie bracket si homogeneous of degree -1 , then ϖ is given by two bilinear products $*$ and $\{-,-\}$ on V such that $*$ is preLie, $\{-,-\}$ is antisymmetric and for all $x, y, z \in V$:

$$
\begin{aligned}
& x *\{y, z\}=\{x * y, z\}, \\
& \{x, y\} * z=\{x * y, z\}+\{x, y * z\}+\{\{x, y\}, z\} .
\end{aligned}
$$

This includes preLie products on V when $\{-,-\}=0$ and nilpotent Lie algebras of nilpotency order 2 when $*=0$, see Proposition 11.

We then extend the construction of free Com-PreLie algebras of [5] in terms of partitioned trees (see Definition 12) to free unitary Com-PreLie algebras $\operatorname{UCP}(\mathcal{D})$, with the help of a complementary decoration by integers. We obtain free Com-PreLie algebras $C P(\mathcal{D})$ as the augmentation ideal of a quotient of $U C P(\mathcal{D})$, the right action of the unit \emptyset on the generators of $\operatorname{UCP}(\mathcal{D})$ being arbitrarily chosen (proposition 16). Recall that partitioned trees are rooted forests with an extra structure of a partition of its vertices into blocks; forgetting the blocks, we obtain the ConnesKreimer Hopf algebra $\mathcal{H}_{C K}$ of rooted trees [3, 4], which is given in this way a natural structure of Com-PreLie bialgebra (proposition 17). Using Livernet's rigidity theorem for preLie algebras, we prove that the augmentation ideals of $U C P(\mathcal{D})$ and $C P(\mathcal{D})$ are free as preLie algebras Theorem 28 is a rigidity theorem which gives a simple criterion for a connected (as a coalgebra) ComPreLie bialgebra to be cofree, in terms of the right action of the unit on its primitive elements. Applied to $C P(\mathcal{D})$ and $\mathcal{H}_{C K}$, it proves that they are isomorphic to shuffle bialgebras, which was already known for $\mathcal{H}_{C K}$. We also consider the dual Hopf algebras of $U C P(\mathcal{D})$ and $C P(\mathcal{D})$: as these Hopf algebras are right-sided combinatorial in the sense of [12], there dual are enveloping algebras of other preLie algebras, which we explicitly describe in Theorem 30, and then compare to the original Com-PreLie algebras.

This text is organized as follows: the first section contains reminders and lemmas on ComPreLie algebras, including the extension of the Guin-Oudom extension of the preLie product in the Com-PreLie case. The second section deals with the characterization of preLie products on shuffle algebras. In the next section contains the description of free unitary Com-PreLie algebras and two families of quotients, whereas the fifth and last one contains results on the bialgebraic structures of these objects: existence of the coproduct, the rigidity theorem 28 and its applications, the dual preLie algebras, and an application to a family of subalgebras, named

Notations 1. 1. Let \mathbb{K} be a commutative field of characteristic zero. All the objects (vector spaces, algebras, coalgebras, PreLie algebras. ..) in this text will be taken over \mathbb{K}.
2. For all $n \in \mathbb{N}$, we denote by $[n]$ the set $\{1, \ldots, n\}$. In particular, $[0]=\emptyset$.

1 Reminders on Com-PreLie algebras

Let V be a vector space.

- We denote by $T(V)$ the tensor algebra of V. Its unit is the empty word, which we denote by \emptyset. The element $v_{1} \otimes \ldots \otimes v_{n} \in V^{\otimes n}$, with $v_{1}, \ldots, v_{n} \in V$, will be shortly denoted by $v_{1} \ldots v_{n}$. The deconcatenation coproduct of $T(V)$ is defined by:

$$
\forall v_{1}, \ldots, v_{n} \in V, \quad \Delta\left(v_{1} \ldots v_{n}\right)=\sum_{i=0}^{n} v_{1} \ldots v_{i} \otimes v_{i+1} \ldots v_{n} .
$$

The shuffle product of $T(V)$ is denoted by $\boldsymbol{\omega}$. Recall that it can be inductively defined:

$$
\forall x, y \in V, u, v \in T(V), \quad \emptyset ш v=0, \quad x u ш y v=x(u ш y v)+y(x u ш v) .
$$

For example, if $v_{1}, v_{2}, v_{3}, v_{4} \in V$:

$$
\begin{aligned}
& v_{1} \amalg v_{2} v_{3} v_{4}=v_{1} v_{2} v_{3} v_{4}+v_{2} v_{1} v_{3} v_{4}+v_{2} v_{3} v_{1} v_{4}+v_{2} v_{3} v_{4} v_{1}, \\
& v_{1} v_{2} \amalg v_{3} v_{4}=v_{1} v_{2} v_{3} v_{4}+v_{1} v_{3} v_{2} v_{4}+v_{1} v_{3} v_{4} v_{2}+v_{3} v_{1} v_{2} v_{4}+v_{3} v_{1} v_{4} v_{2}+v_{3} v_{4} v_{1} v_{2}, \\
& v_{1} v_{2} v_{3} \amalg v_{4}=v_{1} v_{2} v_{3} v_{4}+v_{1} v_{2} v_{4} v_{3}+v_{1} v_{2} v_{4} v_{3}+v_{1} v_{4} v_{2} v_{3}+v_{4} v_{1} v_{2} v_{3} .
\end{aligned}
$$

$\operatorname{Sh}(V)=(T(V), \amalg, \Delta)$ is a Hopf algebra, known as the shuffle algebra of V.

- $S(V)$ is the symmetric algebra of V. It is a Hopf algebra, with the coproduct defined by:

$$
\forall v \in V, \quad \Delta(v)=v \otimes \emptyset+\emptyset \otimes v .
$$

- $\operatorname{coS}(V)$ is the subalgebra of $(T(V), \amalg)$ generated by V. It is the greatest cocommutative Hopf subalgebra of $(T(V), \amalg, \Delta)$, and is isomorphic to $S(V)$ via the following algebra morphism:

$$
\theta:\left\{\begin{aligned}
(S(V), m, \Delta) & \longrightarrow(\operatorname{coS}(V), ш, \Delta) \\
v_{1} \ldots v_{k} & \longrightarrow v_{1} \amalg \ldots ш v_{k} .
\end{aligned}\right.
$$

1.1 Definitions

Definition 1. 1. A Com-PreLie algebra [5, 6] is a family $A=(A, \cdot, \bullet)$, where A is a vector space, • and \bullet are bilinear products on A, such that:

$$
\begin{array}{rlrl}
\forall a, b \in A, & a \cdot b & =b \cdot a, & \\
\forall a, b, c \in A, & (a \cdot b) \cdot c & =a \cdot(b \cdot c), & \\
\forall a, b, c \in A, & (a \bullet b) \bullet c-a \bullet(b \bullet c) & =(a \bullet c) \bullet b-a \bullet(c \bullet b) & \\
\forall a, b, c \in A, & (a \cdot b) \bullet c & =(a \bullet c) \cdot b+a \cdot(b \bullet c) & \\
& \text { (Leibnie identit identity), }
\end{array}
$$

In particular, (A, \cdot) is an associative, commutative algebra and (A, \bullet) is a right preLie algebra. We shall say that A is unitary if the algebra (A, \cdot) is unitary.
2. A Com-PreLie bialgebra is a family $(A, \cdot, \bullet, \Delta)$, such that:
(a) (A, \cdot, \bullet) is a Com-PreLie algebra.
(b) (A, \cdot, Δ) is a bialgebra.
(c) For all $a, b \in A$:

$$
\Delta(a \bullet b)=a^{(1)} \otimes a^{(2)} \bullet b+a^{(1)} \bullet b^{(1)} \otimes a^{(2)} \cdot b^{(2)},
$$ with Sweedler's notation $\Delta(x)=x^{(1)} \otimes x^{(2)}$.

Remark 1. If $(A, \cdot, \bullet, \Delta)$ is a Com-PreLie bialgebra, then for any $\lambda \in \mathbb{K},(A, \cdot, \lambda \bullet, \Delta)$ also is.
Lemma 2. 1. Let (A, \cdot, \bullet) be a unitary Com-PreLie algebra. Its unit is denoted by \emptyset. For all $a \in A, \emptyset \bullet a=0$.
2. Let A be a Com-PreLie bialgebra, with counit ε. For all $a, b \in A, \varepsilon(a \bullet b)=0$.

Proof. 1. Indeed, $\emptyset \bullet a=(\emptyset \cdot \emptyset) \bullet a=(\emptyset \bullet a) \cdot \emptyset+\emptyset \cdot(\emptyset \bullet a)=2(\emptyset \bullet a)$, so $\emptyset \bullet a=0$.
2. For all $a, b \in A$:

$$
\begin{aligned}
\varepsilon(a \bullet b) & =(\varepsilon \otimes \varepsilon) \circ \Delta(a \bullet b) \\
& =\varepsilon\left(a^{(1)}\right) \varepsilon\left(a^{(2)} \bullet b\right)+\varepsilon\left(a^{(1)} \bullet b^{(1)}\right) \varepsilon\left(a^{(2)} \cdot b^{(2)}\right) \\
& =\varepsilon\left(a^{(1)}\right) \varepsilon\left(a^{(2)} \bullet b\right)+\varepsilon\left(a^{(1)} \bullet b^{(1)}\right) \varepsilon\left(a^{(2)}\right) \varepsilon\left(b^{(2)}\right) \\
& =\varepsilon(a \bullet b)+\varepsilon(a \bullet b),
\end{aligned}
$$

so $\varepsilon(a \bullet b)=0$.
Remark 2. Consequently, if a is primitive:

$$
\Delta(a \bullet b)=\emptyset \otimes a \bullet b+a \bullet b^{(1)} \otimes b^{(2)}
$$

The map $b \mapsto a \bullet b$ is a 1 -cocycle for the Cartier-Quillen cohomology [3].

1.2 Linear endomorphism on primitive elements

If A is a Com-PreLie bialgebra, we denote by $\operatorname{Prim}(A)$ the space of its primitive elements.
Proposition 3. Let A be a Com-PreLie bialgebra. Its unit is denoted by \emptyset.

1. If $x \in \operatorname{Prim}(A)$, then $x \bullet \emptyset \in \operatorname{Prim}(A)$. We denote by f_{A} the map:

$$
f_{A}:\left\{\begin{aligned}
\operatorname{Prim}(A) & \longrightarrow \operatorname{Prim}(A) \\
a & \longrightarrow a \bullet \emptyset .
\end{aligned}\right.
$$

2. $\operatorname{Prim}(A)$ is a preLie subalgebra of (A, \bullet) if, and only if, $f_{A}=0$.

Proof. 1. Indeed, if a is primitive:

$$
\Delta(a \bullet \emptyset)=a \otimes \emptyset \bullet \emptyset+\emptyset \otimes a \bullet \emptyset+a \bullet \emptyset \otimes \emptyset \cdot \emptyset+\emptyset \bullet \emptyset \otimes a \cdot \emptyset=0+\emptyset \otimes \emptyset \bullet a+a \bullet \emptyset \otimes \emptyset+0,
$$

so $a \bullet \emptyset$ is primitive.
2. and 3. Let $a, b \in \operatorname{Prim}(A)$.

$$
\begin{aligned}
\Delta(a \bullet b) & =a \otimes \emptyset \bullet b+\emptyset \otimes a \bullet b+\emptyset \bullet \emptyset \otimes a \cdot b+a \bullet \emptyset \otimes b+\emptyset \bullet b \otimes a+a \bullet b \otimes \emptyset \\
& =\emptyset \otimes a \bullet b+a \bullet b \otimes \emptyset+f_{A}(a) \otimes b
\end{aligned}
$$

Hence, $\operatorname{Prim}(A)$ is a preLie subalgebra if, and only if, for any $a, b \in A, f_{A}(a) \otimes b=0$, that is to say if, and only if, $f_{A}=0$.

1.3 Extension of the pre-Lie product

Let A be a Com-PreLie algebra. It is a Lie algebra, with the bracket defined by:

$$
\forall x, y \in A,[x, y]=x \bullet y-y \bullet x
$$

We shall use the Oudom-Guin construction of its enveloping algebra [13, 14]. In order to avoid confusions, we shall denote by \times the usual product of $S(A)$ and by 1 its unit. We extend the preLie product \bullet into a product from $S(A) \otimes S(A)$ into $S(A)$:

1. If $a_{1}, \ldots, a_{k} \in A,\left(a_{1} \times \ldots \times a_{k}\right) \bullet 1=a_{1} \times \ldots \times a_{k}$.
2. If $a, a_{1}, \ldots, a_{k} \in A$:

$$
a \bullet\left(a_{1} \times \ldots \times a_{k}\right)=\left(a \bullet\left(a_{1} \times \ldots \times a_{k-1}\right)\right) \bullet a_{k}-\sum_{i=1}^{k-1} a \bullet\left(a_{1} \times \ldots \times\left(a_{i} \bullet a_{k}\right) \times \ldots \times a_{k-1}\right)
$$

3. If $x, y, z \in S(A),(x \times y) \bullet z=\left(x \bullet z^{(1)}\right) \times\left(y \bullet z^{(2)}\right)$, where $\Delta(z)=z^{(1)} \otimes z^{(2)}$ is the usual coproduct of $S(A)$.

Notations 2. If $c_{1}, \ldots, c_{n} \in A$ and $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n]$, we put:

$$
\prod_{i \in I}^{\times} c_{i}=c_{i_{1}} \times \ldots \times c_{i_{k}}
$$

Proposition 4. 1. Let A be a Com-PreLie algebra. If $a, b, c_{1}, \ldots, c_{n} \in A$:

$$
(a \cdot b) \bullet\left(c_{1} \times \ldots \times c_{k}\right)=\sum_{I \subseteq[n]}\left(a \bullet \prod_{i \in I}^{\times} c_{i}\right) \cdot\left(b \bullet \prod_{i \notin I}^{\times} c_{i}\right)
$$

2. Let A be a Com-PreLie bialgebra. If $a, b_{1}, \ldots, b_{n} \in A$:

$$
\Delta\left(a \bullet\left(b_{1} \times \ldots \times b_{n}\right)\right)=\sum_{I \subseteq[n]} a^{(1)} \bullet\left(\prod_{i \in I}^{\times} b_{i}^{(1)}\right) \otimes\left(\prod_{i \in I} b_{i}^{(2)}\right) a^{(2)} \bullet\left(\prod_{i \notin I}^{\times} b_{i}\right)
$$

Proof. These are proved by direct, but quite long, inductions on n.
Lemma 5. Let A be a Com-PreLie bialgebra. For all $a \in \operatorname{Prim}(A), k \geq 0, b_{1}, \ldots, b_{l} \in A$:

$$
a \bullet \emptyset^{\times k} \times b_{1} \times \ldots \times b_{l}=f_{A}^{k}(a) \bullet b_{1} \times \ldots \times b_{l}
$$

Proof. This is obvious if $k=0$. Let us prove it for $k=1$ by induction on l. It is obvious if $l=0$. Let us assume the result at rank $l-1$. Then:

$$
\begin{aligned}
a \bullet \emptyset \times b_{1} \times \ldots \times b_{l} & =\left(a \bullet \emptyset \times b_{1} \times \ldots \times b_{l-1}\right) \bullet b_{l}+a \bullet\left(\emptyset \bullet b_{l}\right) \times b_{1} \times \ldots \times b_{l-1} \\
& +\sum_{i=1}^{l-1} a \bullet \emptyset \times b_{1} \times \ldots \times\left(b_{i} \bullet b_{l}\right) \times \ldots \times b_{l-1} \\
& =\left(f_{A}(a) \bullet b_{1} \times \ldots \times b_{l-1}\right) \bullet b_{l}+0+\sum_{i=1}^{l-1} f_{A}(a) \bullet b_{1} \times \ldots \times\left(b_{i} \bullet b_{l}\right) \times \ldots \times b_{l-1} \\
& =f_{A}(a) \bullet b_{1} \times \ldots \times b_{l} .
\end{aligned}
$$

The result is proved for $k \geq 2$ by an induction on k.

2 Examples on shuffle algebras

2.1 Preliminary lemmas

We shall denote by $\pi: T(V) \longrightarrow V$ the canonical projection.
Lemma 6. Let $\varpi: T(V) \otimes T(V) \longrightarrow V$ be a linear map.

1. There exists a unique map $\bullet: T(V) \otimes T(V) \longrightarrow T(V)$ such that:
(a) $\pi \circ \bullet=\varpi$.
(b) For all $u, v \in T(V)$:

$$
\begin{equation*}
\Delta(u \bullet v)=u^{(1)} \otimes u^{(2)} \bullet v+u^{(1)} \bullet v^{(1)} \otimes u^{(2)} ш v^{(2)} . \tag{1}
\end{equation*}
$$

This product • is given by:

$$
\forall u, v \in T(V), \quad u \bullet v=u^{(1)} \varpi\left(u^{(2)} \otimes v^{(1)}\right)\left(u^{(3)} ш v^{(2)}\right) .
$$

2. The following conditions are equivalent:
(a) For all $u, v, w \in T(V)$:

$$
(u ш v) \bullet w=(u \bullet w) ~ ш v+u ш(v \bullet w) .
$$

(b) For all $u, v, w \in T(V)$:

$$
\begin{equation*}
\varpi((u \amalg v) \otimes w)=\varepsilon(u) \varpi(v \otimes w)+\varepsilon(v) \varpi(u \otimes w) . \tag{2}
\end{equation*}
$$

3. Let $N \in \mathbb{Z}$. The following conditions are equivalent:
(a) - is homogeneous of degree N, that is to say:

$$
\forall k, l \geq 0, \quad V^{\otimes k} \bullet V^{\otimes l} \subseteq V^{\otimes(k+l+N)}
$$

(b) For all $k, l \geq 0$, such that $k+l+N \neq 1$, $\varpi\left(V^{\otimes k} \otimes V^{\otimes l}\right)=(0)$.

We use the convention $V^{\otimes p}=(0)$ if $p<0$.
Proof. 1. Existence. Let • be the product on $T(V)$ defined by:

$$
\forall u, v \in T(V), \quad u \bullet v=u^{(1)} \varpi\left(u^{(2)} \otimes v^{(1)}\right)\left(u^{(3)} \varpi v^{(2)}\right) .
$$

As ϖ takes its values in V, for all $u, v \in T(V)$:

$$
\begin{aligned}
\pi(u \bullet v) & =\varepsilon\left(u^{(1)}\right) \varpi\left(u^{(2)} \otimes v^{(1)}\right) \varepsilon\left(u^{(3)} ш v^{(2)}\right) \\
& =\varepsilon\left(u^{(1)}\right) \varpi\left(u^{(2)} \otimes v^{(1)}\right) \varepsilon\left(u^{(3)}\right) \varepsilon\left(v^{(2)}\right) \\
& =\varpi(u \otimes v) .
\end{aligned}
$$

We denote by m the concatenation product of $T(V)$. As $(T(V), m, \Delta)$ is an infinitesimal bialgebra [10, 11], for all $u, v \in T(V)$:

$$
\begin{aligned}
\Delta(u \bullet v) & =u^{(1)} \otimes u^{(2)} \varpi\left(u^{(3)} \otimes v^{(1)}\right)\left(u^{(4)} ш v^{(2)}\right)+u^{(1)} \varpi\left(u^{(2)} \otimes v^{(1)}\right) \otimes u^{(3)} \varpi v^{(2)} \\
& +u^{(1)} \otimes \varpi\left(u^{(2)} \otimes v^{(1)}\right)\left(u^{(3)} \varpi v^{(2)}\right)+u^{(1)} \varpi\left(u^{(2)} \otimes v^{(1)}\right)\left(u^{(3)} \varpi v^{(2)}\right) \otimes u^{(4)} \varpi v^{(3)} \\
& -u^{(1)} \varpi\left(u^{(2)} \otimes v^{(1)}\right) \otimes u^{(3)} \varpi v^{(2)}-u^{(1)} \otimes \varpi\left(u^{(2)} \otimes v^{(1)}\right)\left(u^{(3)} \otimes v^{(2)}\right) \\
& =u^{(1)} \otimes u^{(2)} \varpi\left(u^{(3)} \otimes v^{(1)}\right)\left(u^{(4)} \varpi v^{(2)}\right)+u^{(1)} \varpi\left(u^{(2)} \otimes v^{(1)}\right)\left(u^{(3)} ш v^{(2)}\right) \otimes u^{(4)} \varpi v^{(3)} \\
& =u^{(1)} \otimes u^{(2)} \bullet v+u^{(1)} \bullet v^{(1)} \otimes u^{(2)} \varpi v^{(2)} .
\end{aligned}
$$

Unicity. Let \diamond be another product satisfying the required properties. Let us denote that $u \diamond v=u \bullet v$ for any words u, v of respective lengths k and l. If $k=0$, then we can assume that $u=\emptyset$. We proceed by induction on l. If $l=0$, then we can assume that $v=\emptyset$. By (1), $\emptyset \bullet$ and $\emptyset \diamond \emptyset$ are primitive elements of $T(V)$, so belong to V. Hence:

$$
\emptyset \bullet \emptyset=\pi(\emptyset \bullet \emptyset)=\varpi(\emptyset \otimes \emptyset)=\pi(\emptyset \diamond \emptyset)=\emptyset \diamond \emptyset .
$$

If $l \geq 1$, then, by (1):

$$
\begin{aligned}
& \Delta(\emptyset \bullet v)=\emptyset \otimes \emptyset \bullet v+\emptyset \bullet v \otimes \emptyset+\emptyset \bullet \emptyset \otimes v+\emptyset \bullet v^{\prime} \otimes v^{\prime \prime} \\
& \tilde{\Delta}(\emptyset \bullet v)=\emptyset \bullet \emptyset \otimes v+\emptyset \bullet v^{\prime} \otimes v^{\prime \prime}
\end{aligned}
$$

The same computation for \diamond and the induction hypothesis on l, applied to $\left(\emptyset, v^{\prime}\right)$, imply that $\tilde{\Delta}(\emptyset \bullet v-\emptyset \diamond v)=0$, so $\emptyset \bullet v-\emptyset \diamond v \in V$. Finally:

$$
\emptyset \bullet v-\emptyset \diamond v=\pi(\emptyset \bullet v-\emptyset \diamond v)=\varpi(\emptyset \otimes v-\emptyset \otimes v)=0
$$

If $k \geq 1$, we proceed by induction on l. If $l=0$, we can assume that $v=\emptyset ;(1)$ implies that $\tilde{\Delta}(u \bullet \emptyset-u \diamond \emptyset)=0$, so $u \bullet \emptyset-u \diamond \emptyset=0$ and, applying π, finally $u \bullet \emptyset=u \diamond \emptyset$. If $l \geq 1$, by (1), the induction hypothesis on k applied to $\left(u^{\prime}, v\right)$ and the induction hypothesis on l applied to (u, \emptyset) and $\left(u, v^{\prime}\right)$:

$$
\begin{aligned}
\tilde{\Delta}(u \bullet v) & =u^{\prime} \otimes u^{\prime \prime} \bullet v+u \bullet \emptyset \otimes v+u \bullet v^{\prime} \otimes v^{\prime \prime} \\
& =u^{\prime} \otimes u^{\prime \prime} \diamond v+u \diamond \emptyset \otimes v+u \diamond v^{\prime} \otimes v^{\prime \prime}=\tilde{\Delta}(u \diamond v) .
\end{aligned}
$$

As before, $u \bullet v=u \diamond v$.
$2 . \Longrightarrow$ As ϖ takes its values in V, we have:

$$
\begin{aligned}
\varpi(u \amalg v) \otimes w) & =\varpi((u \bullet w) \amalg v+u \amalg(v \bullet w)) \\
& =\varepsilon(v) \varpi(u \otimes w)+\varepsilon(u) \varpi(v \otimes w)
\end{aligned}
$$

\Longleftarrow. For all $u, v, w \in T(V)$:

$$
\begin{aligned}
& (u \amalg v) \bullet w=\left(u^{(1)} \amalg v^{(1)}\right) \varpi\left(\left(u^{(2)} \amalg v^{(2)}\right) \otimes w^{(1)}\right)\left(u^{(3)} \amalg v^{(3)} \amalg w^{(2)}\right) \\
& =\varepsilon\left(u^{(2)}\right)\left(u^{(1)} \amalg v^{(1)}\right) \varpi\left(v^{(2)} \otimes w^{(1)}\right)\left(u^{(3)} \amalg v^{(3)} \amalg w^{(2)}\right) \\
& +\varepsilon\left(v^{(2)}\right)\left(u^{(1)} \amalg v^{(1)}\right) \varpi\left(u^{(2)} \otimes w^{(1)}\right)\left(u^{(3)} \amalg v^{(3)} \amalg w^{(2)}\right) \\
& =\left(u^{(1)} \amalg v^{(1)}\right) \varpi\left(v^{(2)} \otimes w^{(1)}\right)\left(u^{(2)} \amalg v^{(3)} \amalg w^{(2)}\right) \\
& +\left(u^{(1)} \amalg v^{(1)}\right) \varpi\left(u^{(2)} \otimes w^{(1)}\right)\left(u^{(3)} \amalg v^{(2)} \amalg w^{(2)}\right) \\
& =u \amalg\left(v^{(1)} \varpi\left(v^{(2)} \otimes w^{(1)}\right)\left(v^{(3)} \amalg w^{(2)}\right)\right) \\
& +v Ш\left(u^{(1)} \varpi\left(u^{(2)} \otimes w^{(1)}\right)\left(u^{(3)} \varpi w^{(2)}\right)\right) \\
& =u \amalg(v \bullet w)+(u \bullet w) \amalg v \text {. }
\end{aligned}
$$

So the compatibility between \amalg and \bullet is satisfied.
3. Immediate.

Remark 3. If (2) is satisfied, for $u=v=\emptyset$, we obtain:

$$
\forall w \in T(V), \quad \varpi(\emptyset \otimes w)=0
$$

Lemma 7. Let $\varpi: T(V) \otimes T(V) \longrightarrow V$, satisfying (2), and let • be the product associated to ϖ in Lemma 6. Then $(T(V), \amalg, \bullet, \Delta)$ is a Com-PreLie bialgebra if, and only if:

$$
\begin{equation*}
\forall u, v, w \in T(V), \quad \varpi(u \bullet v \otimes w)-\varpi(u \otimes v \bullet w)=\varpi(u \bullet w \otimes v)-\varpi(u \otimes w \bullet v) . \tag{3}
\end{equation*}
$$

Proof. \Longrightarrow. This is immediately obtained by applying π to the preLie identity, as $\varpi=\pi \circ$
\Longleftarrow. By lemma 6 , it remains to prove that \bullet is preLie. For any $u, v, w \in T(V)$, we put:

$$
P L(u, v, w)=(u \bullet v) \bullet w-u \bullet(v \bullet w)-(u \bullet w) \bullet v+u \bullet(w \bullet v) .
$$

By hypothesis, $\pi \circ P L(u, v, w)=0$ for any $u, v, w \in T(V)$. Let us prove that $P L(u, v, w)=0$ for any $u, v, w \in T(V)$. A direct computation using (1) shows that:

$$
\begin{equation*}
\Delta(P L(u, v, w))=u^{(1)} \otimes P L\left(u^{(2)}, v, w\right) \otimes u^{(1)}+P L\left(u^{(1)}, v^{(1)}, w^{(1)}\right) \otimes u^{(2)} ш v^{(2)} ш w^{(2)} \tag{4}
\end{equation*}
$$

Let $v \in T(V)$. Then:

$$
\emptyset \bullet v=(\emptyset ш \emptyset) \bullet v=(\emptyset \bullet v) ш \emptyset+\emptyset ш(\emptyset \bullet v)=2 \emptyset \bullet v,
$$

so $\emptyset \bullet v=0$ for any $v \in T(V)$. Hence, for any $v, w \in T(V), P L(\emptyset, v, w)=0$: by trilinearity of $P L$, we can assume that $\varepsilon(u)=0$. In this case, (4) becomes:

$$
\begin{aligned}
\Delta(P L(u, v, w)) & =\emptyset \otimes P L(u, v, w)+P L\left(u, v^{(1)}, w^{(1)}\right) \otimes v^{(2)} ш w^{(2)} \\
& +P L\left(u^{\prime}, v^{(1)}, w^{(1)}\right) \otimes u^{\prime \prime} ш v^{(2)} ш w^{(2)} .
\end{aligned}
$$

We assume that u, v, w are words of respective lengths k, l and n, with $k \geq 1$. Let us first prove that $P L(u, v, w)=0$ if $l=0$, or equivalently if $v=\emptyset$, by induction on n. If $n=0$, then we can take $w=\emptyset$ and, obviously, $P L(u, \emptyset, \emptyset)=0$. If $n \geq 1$, (4) becomes:

$$
\begin{aligned}
\Delta(P L(u, \emptyset, w)) & =\emptyset \otimes P L(u, v, w)+P L\left(u, \emptyset, w^{(1)}\right) \otimes w^{(2)} \\
& =\emptyset \otimes P L(u, v, w)+P L(u, \emptyset, w) \otimes \emptyset+P L\left(u, \emptyset, w^{\prime}\right) \otimes w^{\prime \prime}
\end{aligned}
$$

By the induction hypothesis on $n, P L\left(u, \emptyset, w^{\prime}\right)=0$, so $P L(u, \emptyset, w)$ is primitive, so belongs to V. As $\pi \circ P L=0, P L(u, \emptyset, w)=0$.

Hence, we can now assume that $l \geq 1$. By symmetry in v and w, we can also assume that $n \geq 1$. Let us now prove that $P L(u, v, w)=0$ by induction on k. If $k=0$, there is nothing more to prove. If $k \geq 1$, we proceed by induction on $l+n$. If $l+n \leq 1$, there is nothing more to prove. Otherwise, using both induction hypotheses, (4) becomes:

$$
\Delta(P L(u, v, w))=P L(u, v, w) \otimes \emptyset+\emptyset \otimes P L(u, v, w)
$$

So $P L(u, v, w) \in V$. As $\pi \circ P L=0, P L(u, v, w)=0$.
Consequently:
Proposition 8. Let $\varpi: T(V) \otimes T(V) \longrightarrow V$ be a linear map such that (2) and (3) are satisfied. The product • defined by (1) makes $(T(V), \amalg, \bullet, \Delta)$ a Com-PreLie bialgebra. We obtain in this way all the preLie products \bullet such that $(T(V), \omega, \bullet, \Delta)$ a Com-PreLie bialgebra. Moreover, for any $N \in \mathbb{Z}$, • is homogeneous of degree N if, and only if:

$$
\begin{equation*}
\forall k, l \in \mathbb{N}, \quad k+l+N \neq 1 \Longrightarrow \varpi\left(V^{\otimes k} \otimes V^{\otimes l}\right)=(0) \tag{5}
\end{equation*}
$$

Remark 4. Let $\varpi: T(V) \otimes T(V) \longrightarrow V$, satisfying (5) for a given $N \in \mathbb{Z}$. Then:

1. (2) is satisfied if, and only if, for all $k, l, n \in \mathbb{N}$ such that $k+l+n=1-N$,

$$
\forall u \in V^{\otimes k}, v \in V^{\otimes l}, w \in V^{\otimes n}, \quad \varpi((u ш v) \otimes w)=\varepsilon(u) \varpi(v \otimes w)+\varepsilon(v) \varpi(u \otimes w) .
$$

2. (3) is satisfied if, and only if, for all $k, l, n \in \mathbb{N}$ such that $k+l+n=1-2 N$,

$$
\forall u \in V^{\otimes k}, v \in V^{\otimes l}, w \in V^{\otimes n}, \quad \begin{aligned}
& \varpi(u \bullet v \otimes w)-\varpi(u \otimes v \bullet w) \\
= & \varpi(u \bullet w \otimes v)-\varpi(u \otimes w \bullet v) .
\end{aligned}
$$

Note that (2) is always satisfied if $u=\emptyset$ or $v=\emptyset$, that is to say if $k=0$ or $l=0$.
In the next paragraphs, we shall look at $N \geq 0$ and $N=-1$.

2.2 PreLie products of positive degree

Proposition 9. Let f be a linear endomorphism of V. We define a product • on $T(V)$ in the following way:

$$
\begin{equation*}
\forall x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in V, \quad x_{1} \ldots x_{m} \bullet y_{1} \ldots y_{n}=\sum_{i=0}^{n} x_{1} \ldots x_{i-1} f\left(x_{i}\right)\left(x_{i+1} \ldots x_{m} \text { Ш } y_{1} \ldots y_{n}\right) \tag{6}
\end{equation*}
$$

Then $(T(V), \amalg, \bullet, \Delta)$ is a Com-PreLie bialgebra denoted by $T(V, f)$. Conversely, if \bullet is a product on $T(V)$, homogeneous of degree $N \geq 0$, there exists a unique $f: V \longrightarrow V$ such that $(T(V), \amalg, \bullet, \Delta)=T(V, f)$.
Proof. We look for all possible ϖ, homogeneous of a certain degree $N \geq 0$, such that (2) and (3) are satisfied.

Let us consider such a ϖ. For any $k, l \in \mathbb{N}$, we denote by $\varpi_{k, l}$ the restriction of ϖ to $V^{\otimes k} \otimes V^{\otimes l}$. By (5), $\varpi_{k, l}=0$ if $k+l \neq 1$. As (2) implies that $\varpi_{0,1}=0$, the only possibly nonzero $\varpi_{k, l}$ is $\varpi_{1,0}: V \longrightarrow V$, which we denote by f. Then (1) gives (6).

Let us consider any linear endomorphism f of V and consider ϖ such that the only nonzero component of ϖ is $\varpi_{1,0}=f$. Let us prove (2) for $u \in V^{\otimes k}, v \in V^{\otimes l}, w \in V^{\otimes n}$, with $k+l+n=$ $1-N$. For all the possibilities for $(k, l, n), 0 \in\{k, l, n\}$, and the result is then obvious.

Let us prove (2) for $u \in V^{\otimes k}, v \in V^{\otimes l}, w \in V^{\otimes n}$, with $k+l+n=1-2 N$. We obtain two possibilities:

- $(k, l, n)=(0,1,0)$ or $(0,0,1)$. We can assume that $u=\emptyset$. As $\emptyset \bullet x=0$ for any $x \in T(V)$, the result is obvious.
- $(k, l, n)=(1,0,0)$. We can assume that $v=w=\emptyset$, and the result is then obvious.

Remark 5. 1. If $N \geq 1$, necessarily $f=0$, so $\bullet=0$.
2. With the notation of Proposition $3, f_{T(V, f)}=f$.

We obtain in this way the family of Com-PreLie bialgebras of [5], coming from a problem of composition of Fliess operators in Control Theory. Consequently, from [5]:
Corollary 10. Let $k, l \geq 0$. We denote by $\operatorname{Sh}(k, l)$ the set of (k, l)-shuffles, that it to say permutations $\sigma \in \mathfrak{S}_{k+l}$ such that:

$$
\sigma(1)<\ldots<\sigma(k), \quad \sigma(k+1)<\ldots<\sigma(k+l) .
$$

If $\sigma \in \operatorname{Sh}(k, l)$, we put:

$$
m_{k}(\sigma)=\max \{i \in[k] \mid \sigma(1)=1, \ldots, \sigma(i)=i\}
$$

with the convention $m_{k}(\sigma)=0$ if $\sigma(1) \neq 1$. Then, in $T(V, f)$, if $v_{1}, \ldots, v_{k+l} \in V$:

$$
\begin{equation*}
v_{1} \ldots v_{k} \bullet v_{k+1} \ldots v_{k+l}=\sum_{\sigma \in S h(k, l)} \sum_{i=1}^{m_{k}(\sigma)}\left(I d^{\otimes(i-1)} \otimes f \otimes I d^{\otimes(k+l-i)}\right)\left(v_{\sigma^{-1}(1)} \ldots v_{\sigma^{-1}(k+l)}\right) . \tag{7}
\end{equation*}
$$

2.3 PreLie products of degree -1

Proposition 11. Let $*$ and $\{-,-\}$ be two bilinear products on V such that:

$$
\forall x, y, z \in V, \quad(x * y) * z-x *(y * z)=(x * z) * y-x *(z * y), \quad \begin{align*}
\{x, y\} & =-\{y, x\}, \tag{8}\\
x *\{y, z\} & =\{x * y, z\}, \\
\{x, y\} * z & =\{x * z, y\}+\{x, y * z\}+\{\{x, y\}, z\} .
\end{align*}
$$

We define a product • on $T(V)$ in the following way: for all $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n} \in V$,

$$
\begin{align*}
x_{1} \ldots x_{m} \bullet y_{1} \ldots y_{n} & =\sum_{i=1}^{n} x_{1} \ldots x_{i-1}\left(x_{i} * y_{1}\right)\left(x_{i+1} \ldots x_{m} ш y_{2} \ldots y_{n}\right) \tag{9}\\
& +\sum_{i=1}^{k-1} x_{1} \ldots x_{i-1}\left\{x_{i}, x_{i+1}\right\}\left(x_{i+2} \ldots x_{m} ш y_{1} \ldots y_{n}\right) .
\end{align*}
$$

Then $(T(V), \amalg, \bullet, \Delta)$ is a Com-PreLie bialgebra, and we obtain in this way all the possible preLie products \bullet, homogeneous of degree -1 , such that $(T(V), \amalg, \bullet, \Delta)$ is a Com-PreLie bialgebra.

Proof. Let us consider a linear map $\varpi: T(V) \otimes T(V) \longrightarrow V$, satisfying (5) for $N=-1$. Denoting
 $(0,2)$. For all $x, y \in V$, we put:

$$
x * y=\varpi_{1,1}(x \otimes y), \quad\{x, y\}=\varpi_{2,0}(x y \otimes \emptyset) .
$$

(2) is equivalent to:

$$
\begin{array}{lr}
\forall w \in V^{\otimes 2}, & \varpi_{0,2}(\emptyset \otimes w)=0, \\
\forall x, y \in V, & \varpi_{2,0}((x y+y x) \otimes \emptyset)=0 .
\end{array}
$$

Hence, we now assume that $\varpi_{0,2}=0$, and we obtain that (2) is equivalent to (8)-2. The nullity of $\varpi_{0,2}$ and (1) give (9).

Let us now consider (3), with $u \in V^{\otimes k}, v \in V^{\otimes l}, w \in V^{\otimes n}, k+l+n=1-2 N=3$. By symmetry between v and w, and by nullity of $\varpi_{0, l}$ for all l, we have to consider two cases:

- $k=l=n=1$. We put $u=x, v=y, w=z$, with $x, y, z \in V$. Then (3) is equivalent to:

$$
(x * y) * z-x *(y * z)=(x * z) * y-x *(z * y),
$$

that is to say to (8)-1.

- $k=1, l=2, z=0$. We put $u=x, v=y z, w=\emptyset$, with $x, y, z \in V$. Then (3) is equivalent to:

$$
\{x * y, z\}-x *\{y, z\}=0,
$$

that is to say to (8)-3.

- $k=2, l=1, z=0$. We put $u=x y, v=z, w=\emptyset$, with $x, y, z \in V$. Then (3) is equivalent to:

$$
\{x * z, y\}+\{x, y * z\}+\{\{x, y\}, z\}=\{x, y\} * z,
$$

that is to say to (8)-4.

We conclude with Proposition 8.
Remark 6. 1. In particular, $*$ is a preLie product on V; for all $x, y \in V, x \bullet y=x * y$.
2. If $x_{1}, \ldots, x_{m} \in V$:

$$
x_{1} \ldots x_{m} \bullet \emptyset=\sum_{i=1}^{m-1} x_{1} \ldots x_{i-1}\left\{x_{i}, x_{i+1}\right\} x_{i+2} \ldots x_{m}
$$

Example 1. 1. If $*$ is a preLie product on V, we can take $\{-,-\}=0$, and (8) is satisfied. Using the classification of preLie algebras of dimension 2 over \mathcal{C} of [1], it is not difficult to show that if the dimension of V is 1 or 2 , then necessarily $\{-,-\}$ is zero.
2. If $*=0$, then (8) becomes:

$$
\begin{aligned}
\forall x, y \in V, & \{x, y\} & =-\{y, x\}, \\
\forall x, y, z \in V, & \{\{x, y\}, z\} & =0,
\end{aligned}
$$

that is say $(V,\{-,-\})$ is a nilpotent Lie algebra, which nilpotency order is 2 .
3. Here is a family of examples where both $*$ and $\{-,-\}$ are nonzero. Take V 3-dimensional, with basis $(x, y, z), a, b, c$ be scalars, and products given by the following arrays:

\bullet	x	y	z
x	x	y	z
y	0	0	0
z	0	0	0

$\{-,-\}$	x	y	z
x	0	$a y+b z$	$c y+(1-a) z$
y	$-a y-b z$	0	0
z	$(a-1) z-c y$	0	0

Then $(V, \bullet,\{-,-\})$ satisfies (8) if, and only if, $a^{2}-a+b c=0$, or equivalently:

$$
(2 a-1)^{2}+(b+c)^{2}-(b-c)^{2}=1
$$

This equation defines a hyperboloid of one sheet.

3 Free Com-PreLie algebras and quotients

3.1 Description of free Com-PreLie algebras

We described in [5] free Com-PreLie algebras in terms of decorated rooted partitioned trees. We now work with free unitary Com-PreLie algebras.

Definition 12. 1. A partitioned forest is a pair (F, I) such that:
(a) F is a rooted forest (the edges of F being oriented from the roots to the leaves). The set of its vertices is denoted by $V(F)$.
(b) I is a partition of the vertices of F with the following condition: if x, y are two vertices of F which are in the same part of I, then either they are both roots, or they have the same direct ascendant.

The parts of the partition are called blocks.
2. We shall say that a partitioned forest F is a partitioned tree if all the roots are in the same block. Note that in this case, one of the blocks of F is the set of roots of F. By convention, the empty forest \emptyset is considered as a partitioned tree.
3. Let \mathcal{D} be a set. A partitioned tree decorated by \mathcal{D} is a triple (T, I, d), where (T, I) is a partitioned tree and d is a map from the set of vertices of T into \mathcal{D}. For any vertex x of $T, d(x)$ is called the decoration of x.
4. The set of isoclasses of partitioned trees, included the empty tree, will be denoted by $\mathcal{P} \mathcal{T}$. For any set \mathcal{D}, the set of isoclasses of partitioned trees decorated by \mathcal{D} will be denoted by $\mathcal{P} \mathcal{T}(\mathcal{D})$; the set of isoclasses of partitioned trees decorated by $\mathbb{N} \times \mathcal{D}$ will be denoted by $\mathcal{U P} \mathcal{T}(\mathcal{D})=\mathcal{P} \mathcal{T}(\mathbb{N} \times \mathcal{D})$.

Example 2. We represent partitioned trees by the underlying rooted forest, the blocks of cardinality ≥ 2 being represented by horizontal edges of different colors. Here are the partitioned trees with ≤ 4 vertices:

$$
\begin{aligned}
& \emptyset ; \cdot ;, \ldots ; \vee, \nabla,!, \therefore=\therefore, \ldots ; \nabla, \nabla=\vee, \nabla, \forall=\dot{\vee}, \forall=\dot{\nabla}, Y, \forall, \vdots, \\
& \forall=V, 亡=\AA, \nabla=\nabla, \sharp, 1 \ldots=\perp=\ldots t, \ldots \text {. }
\end{aligned}
$$

Let us fix a set \mathcal{D}.
Definition 13. Let $T=(T, I, d)$ and $T^{\prime}=\left(T^{\prime}, J, d^{\prime}\right) \in \mathcal{U P} \mathcal{T}(\mathcal{D})$.

1. The partitioned tree $T \cdot T^{\prime}$ is defined as follows:
(a) As a rooted forest, $T \cdot T^{\prime}$ is $T T^{\prime}$.
(b) We put $I=\left\{I_{1}, \ldots, I_{k}\right\}$ and $J=\left\{J_{1}, \ldots, J_{l}\right\}$ and we assume that the block of roots of T is I_{1} and the block of roots of T^{\prime} is J_{1}. The partition of the vertices of $T \cdot T^{\prime}$ is $\left\{I_{1} \sqcup J_{1}, I_{2}, \ldots, I_{k}, J_{2}, \ldots, J_{l}\right\}$.
$(\mathcal{U P} \mathcal{T}(\mathcal{D}), \cdot)$ is a monoid, of unit \emptyset.
2. Let s be a vertex of T^{\prime}.
(a) We denote by bl(s) the set of blocks of T, children of s.
(b) Let $b \in b l(s) \sqcup\{*\}$. We denote by $T \bullet_{s, b} T^{\prime}$ the partitioned tree obtained in this way:

- Graft T^{\prime} on s, that is to say add edges from s to any root of T^{\prime}.
- If $b \in b l(s)$, join the block b and the block of roots of T^{\prime}.
(c) Let $k \in \mathbb{Z}$. The decoration of s is denoted by (i, d). The element $T[k]_{s} \in \mathcal{U P} \mathcal{T}(\mathcal{D}) \sqcup\{0\}$ is defined in this way:
- If $i+k \geq 0$, replace the decoration of s by $(i+k, d)$.
- If $i+k<0, T[k]_{s}=0$.

The product • is associative and commutative; its unit is the empty partitioned tree \emptyset.
Example 3. Let $T=\mathbf{:}, T^{\prime}=$. . We denote by r the root of T and by l the leaf of T. Then:

$$
: \bullet_{r, *}=\boldsymbol{V}, \quad: \bullet_{r,\{ \}\}} \cdot=\nabla, \quad: \bullet_{l, *} \cdot=\vdots
$$

Lemma 14. Let $A_{+}=\left(A_{+}, \cdot, \bullet\right)$ a Com-PreLie algebra, $f: A_{+} \longrightarrow A_{+}$be a linear map such that:

$$
\forall x, y \in A_{+}, \quad \begin{aligned}
f(x \cdot y) & =f(x) \cdot y+x \cdot f(y), \\
f(x \bullet y) & =f(x) \bullet y+x \bullet f(y)
\end{aligned}
$$

We put $A=A_{+} \oplus \operatorname{Vect}(\emptyset)$. Then A is given a unitary Com-PreLie algebra structure, extending the one of A_{+}, by:

$$
\begin{aligned}
& \emptyset \cdot \emptyset=\emptyset, \\
& \emptyset \bullet \emptyset=0, \\
& \forall x \in A_{+}, \quad x \cdot \emptyset=x, \\
& x \bullet \emptyset=f(x), \\
& \emptyset \cdot x=x, \\
& \emptyset \bullet x=0 \text {. }
\end{aligned}
$$

Proof. Obviously, (A, \cdot) is a commutative, unitary associative algebra. Let us prove the PreLie identity for $x, y, z \in A_{+} \sqcup\{\emptyset\}$.

- If $x=\emptyset$, then $x \bullet(y \bullet z)=(x \bullet y) \bullet z=x \bullet(z \bullet y)=(x \bullet z) \bullet y=0$. We now assume that $x \in A_{+}$.
- If $y=z=\emptyset$, then obviously the PreLie identity is statisfied.
- If $y=\emptyset$ and $z \in A_{+}$, then:

$$
\begin{array}{ll}
x \bullet(y \bullet z)=0, & (x \bullet y) \bullet z=f(x) \bullet y, \\
x \bullet(z \bullet y)=x \bullet f(z), & (x \bullet z) \bullet y=f(x \bullet z) .
\end{array}
$$

As f is a derivation for \bullet, the PreLie identity is statisfied. By symmetry, it is also true if $y \in A_{+}$and $z=\emptyset$.

Let us now prove the Leibniz identity for $x, y, z \in A_{+} \sqcup\{\emptyset\}$. It is obviously satisfied if $x=\emptyset$ or $y=\emptyset$; we assume that $x, y \in A_{+}$. If $z=\emptyset$, then:

$$
(x \cdot y) \bullet z=f(x \cdot y), \quad(x \bullet z) \cdot y=f(x) \cdot y, \quad x \cdot(y \bullet z)=x \cdot f(y)
$$

As f is a derivation for \cdot, the Leibniz identity is satisfied.
Proposition 15. Let $\operatorname{UCP}(\mathcal{D})$ be the vector space generated by $\mathcal{U P} \mathcal{T}(\mathcal{D})$. We extend . by bilinearity and the PreLie product • is defined by:

$$
\forall T, T^{\prime} \in \mathcal{U} \mathcal{P} \mathcal{T}(\mathcal{D}), \quad T \bullet T^{\prime}=\left\{\begin{array}{l}
\sum_{s \in V(t)} T \bullet \bullet_{s, *} T^{\prime} \text { if } t \neq \emptyset \\
\sum_{s \in V(t)} T[+1]_{s} \text { if } t=\emptyset
\end{array}\right.
$$

Then $\operatorname{UCP}(\mathcal{D})$ is the free unitary Com-PreLie algebra generated by the the elements ${ }_{(0, d)}, d \in D$.
Proof. We denote by $U C P_{+}(\mathcal{D})$ the subspace of $U C P(\mathcal{D})$ generated by nonempty trees. By proposition 18 in [5], this is the free Com-PreLie algebra generated by the elements $\cdot(k, d), k \in \mathbb{N}$, $d \in \mathcal{D}$. We define a map $f: U C P_{+}(\mathcal{D}) \longrightarrow U C P_{+}(\mathcal{D})$ by:

$$
\forall T \in \mathcal{U P} \mathcal{T}(\mathcal{D}) \backslash\{\emptyset\}, f(T)=\sum_{s \in V(t)} T[+1]_{s}
$$

This is a derivation for both \cdot and \bullet; by lemma $14, \operatorname{UCP}(\mathcal{D})$ is a unitary Com-PreLie algebra.

Observe that for all $d \in \mathcal{D}, k \in \mathbb{N}$:

$$
\bullet(0, d) \bullet \emptyset^{\times k}=\bullet(k, d) .
$$

Let A be a unitary Com-PreLie algebra and, for all $d \in \mathcal{D}$, let $a_{d} \in A$. By proposition 18 in [5], we define a unique Com-PreLie algebra morphism:

$$
\theta:\left\{\begin{array}{rll}
U C P_{+}(\mathcal{D}) & \longrightarrow A \\
\cdot(k, d) & \longrightarrow & a_{d} \times 1_{A}^{\times k} .
\end{array}\right.
$$

We extend it to $\operatorname{UCP}(\mathcal{D})$ by sending \emptyset to 1_{A}, and we obtain in this way a unitary Com-PreLie algebra from $U C P(\mathcal{D})$ to A, sending $\cdot(0, d)$ to a_{d} for any $d \in \mathcal{D}$. This morphism is clearly unique.

Example 4. Let $i, j, k \in \mathbb{N}$ and $d, e, f \in \mathcal{D}$.

$$
\begin{aligned}
& \cdot{ }_{(i, d)} \bullet \cdot(j, e)=\mathbf{l}_{(i, d)}^{(j, e),} \\
& \bullet(i, d) \bullet(j, e) \multimap(k, f)={ }^{(j, e)} \nabla_{(i, d)}^{(k, f)}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet(i, d) \bullet \emptyset=\bullet(i+1, d),
\end{aligned}
$$

$$
\begin{aligned}
& { }^{(j, e)} \boldsymbol{V}_{(i, d)}^{(k, f)} \bullet \emptyset={ }^{(j, e)} \boldsymbol{\gamma}_{(i+1, d)}^{(k, f)}+{ }^{(j+1, e)} \boldsymbol{V}_{(i, d)}^{(k, f)}+{ }^{(j, e)} \boldsymbol{V}_{(i, d)}^{(k+1, f)}
\end{aligned}
$$

3.2 Quotients of $U C P(\mathcal{D})$

Proposition 16. We put $V_{0}=\operatorname{Vect}(\cdot(0, d), d \in \mathcal{D})$, identified with $\operatorname{Vect}(\cdot d, d \in \mathcal{D})$. Let f : $V_{0} \longrightarrow V_{0}$ be any linear map. We consider the Com-PreLie ideal I_{f} of $U C P(\mathcal{D})$ generated by the elements $\bullet_{(1, d)}-f(\cdot(0, d)), d \in \mathcal{D}$.

1. We denote by $\mathcal{U P} \mathcal{T}^{\prime}(\mathcal{D})$ the set of trees $T \in \mathcal{U P} \mathcal{T}(\mathcal{D})$ such that for any vertex s of T, the decoration of s is of the form $(0, d)$, with $d \in \mathcal{D}$. It is trivially identified with $\mathcal{P} \mathcal{T}(\mathcal{D})$. Then the family $\left(T+I_{f}\right)_{T \in \mathcal{U P} \mathcal{T}^{\prime}(\mathcal{D})}$ is a basis of $\operatorname{UCP}(\mathcal{D}) / I_{f}$.
2. In $U C P(\mathcal{D}) / I_{f}$, for any $d \in \mathcal{D},\left(\cdot{ }_{d}+I_{f}\right) \bullet \emptyset=f\left(\cdot{ }_{d}\right)$.

Proof. First step. We fix $d \in \mathcal{D}$. Let us first prove that for all $k \geq 0$:

$$
\cdot(k, d)+I_{f}=f^{k}\left(\bullet_{(0, d)}\right)+I_{f} .
$$

It is obvious if $k=0,1$. Let us assume the result at rank $k-1$. We put $\left.f \bullet_{(0, d)}\right)=\sum a_{e} \cdot(0, e)$. Then:

$$
\begin{aligned}
\bullet(k, d)+I_{f} & =\cdot{ }_{(1, d)} \bullet \emptyset^{\times(k-1)}+I_{f} \\
& =\sum a_{e} \cdot(0, e) \bullet \not \emptyset^{\times(k-1)}+I_{f} \\
& =\sum a_{e} f^{k-1}(\cdot(0, e))+I_{f} \\
& =f^{k}(\cdot(0, d))+I_{f},
\end{aligned}
$$

so the result holds for all k.
Second step. Let $T \in U P T(\mathcal{D})$; let us prove that there exists $x \in \operatorname{Vect}\left(\mathcal{U P} \mathcal{T}^{\prime}(\mathcal{D})\right)$, such that $T+I_{f}=x+I_{f}$. We proceed by induction on $|T|$. If $|T|=0$, then $t=\emptyset$ and we can take $x=T$. If $|T|=1$, then $T=\boldsymbol{\bullet}_{(k, d)}$ and we can take, by the first step, $x=f^{k}(\cdot(0, d))$. Let us assume the result at all ranks $<|T|$. If T has several roots, we can write $T=T_{1} \cdot T_{2}$, with $\left|T_{1}\right|,\left|T_{2}\right|<|T|$. Hence, there exists $x_{i} \in \operatorname{Vect}\left(\mathcal{U P} \mathcal{T}^{\prime}(\mathcal{D})\right)$, such that $T_{i}+I_{f}=x_{i}+I_{f}$ for all $i \in[2]$, and we take $x=x_{1} \cdot x_{2}$. Otherwise, we can write:

$$
T=\cdot(k, d) \bullet T_{1} \times \ldots \times T_{k},
$$

where $T_{1}, \ldots, T_{k} \in U P T(\mathcal{D})$. By the induction hypothesis, there exists $x_{i} \in \operatorname{Vect}\left(\mathcal{U P} \mathcal{T}^{\prime}(\mathcal{D})\right)$ such that $T_{i}+I_{f}=x_{i}+I_{f}$ for all $i \in[k]$. We then take $x=f^{k}\left({ }_{(0, d)}\right) \bullet x_{1} \times \ldots \times x_{k}$.

Third step. We give $C P_{+}(\mathcal{D})=\operatorname{Vect}(\mathcal{P} \mathcal{T}(\mathcal{D}) \backslash\{\emptyset\})$ a Com-PreLie structure by:

$$
\forall T, T^{\prime} \in \mathcal{P} \mathcal{T}(\mathcal{D}) \backslash\{\emptyset\}, T \bullet T^{\prime}=\sum_{s \in V(t)} T \bullet_{s, *} T^{\prime} .
$$

We consider the map:

$$
F:\left\{\begin{aligned}
C P_{+}(\mathcal{D}) & \longrightarrow \\
T & \longrightarrow \sum_{s \in V(T)} f_{s}(T),
\end{aligned}\right.
$$

where, $f_{s}(T)$ is the linear span of decorated partitioned trees obtained by replacing the decoration d_{s} of s by $f\left(d_{s}\right)$, the trees being considered as linear in any of their decorations. This is a derivation for both • and \bullet, so by lemma $14, C P(\mathcal{D})$ inherits a unitary Com-PreLie structure such that for any $d \in \mathcal{D}$:

$$
\cdot{ }_{d} \bullet \emptyset=f(\cdot d) .
$$

By the universal property of $\operatorname{UCP}(\mathcal{D})$, there exists a unique unitary Com-PreLie algebra structure $\phi: U C P(\mathcal{D}) \longrightarrow C P(\mathcal{D})$, such that $\phi(\cdot(0, d))=\bullet_{d}$ for any $d \in \mathcal{D}$. Then $\left.\phi(\cdot(1, d))=f(\cdot d)\right)=$ $\phi\left(f(\cdot(0, d))\right.$ for any $d \in D$, so ϕ induces a morphism $\bar{\phi}: U C P(\mathcal{D}) / I_{f} \longrightarrow C P(\mathcal{D})$. It is not difficult to prove that for any $T \in \mathcal{U} \mathcal{P} \mathcal{T}^{\prime}(\mathcal{D}), \phi(T)=T$. As the family $\mathcal{P T}(\mathcal{D})$ is a basis of $C P(\mathcal{D})$, the family $\left(T+I_{f}\right)_{T \in U P T^{\prime}(\mathcal{D})}$ is linearly independent in $U C P(\mathcal{D}) / I_{f}$. By the second step, it is a basis.

Example 5. We choose $f=I d_{V_{0}}$. The product in $U C P(\mathcal{D}) / I_{I d_{V_{0}}}$ of two elements is given by the combinatorial product \cdot. If $T, T^{\prime} \in \mathcal{P} \mathcal{T}(\mathcal{D})$ and $T^{\prime} \neq \emptyset, T \bullet T^{\prime}$ is the sum of all graftings of T^{\prime} over T. Moreover:

$$
T \bullet \emptyset=|T| T .
$$

Hence, we now consider $C P(\mathcal{D})$, augmented by an unit \emptyset, as a unitary Com-PreLie algebra.
Proposition 17. Let J be the Com-PreLie ideal of $C P(\mathcal{D})$ generated by the elements $\cdot d \bullet\left(F_{1} \times\right.$ $\left.F_{2}\right)-\cdot{ }_{d} \bullet\left(F_{1} \cdot F_{2}\right)$, with $d \in \mathcal{D}$ and $F_{1}, F_{2} \in \mathcal{P} \mathcal{T}(\mathcal{D})$.

1. Let T and T^{\prime} be two elements of $\mathcal{P} \mathcal{T}(\mathcal{D})$ which are equal as decorated rooted forests. Then $T+J=T^{\prime}+J$. Consequently, if F is a decorated rooted forest, the element $T^{\prime}+I$ does not depend of the choice of $T^{\prime} \in \mathcal{U} \mathcal{P} \mathcal{T}(\mathcal{D})$ such that $T^{\prime}=F$ as a decorated rooted forest. This element is identified with F.
2. The set of decorated rooted forests is a basis of $\operatorname{UCP}(\mathcal{D}) / J$.
$C P(\mathcal{D}) / J$ is then, as an algebra, identified with the Connes-Kreimer algebra $H_{C K}^{\mathcal{D}}$ of decorated rooted trees [3, 4], which is in this way a unitary Com-PreLie algebra.

Proof. 1. First step. Let us show that for any $x_{1}, \ldots, x_{n} \in U C P(\mathcal{D}), \cdot{ }_{d} \bullet\left(x_{1} \times \ldots \times x_{n}\right)+J=$ ${ }^{\cdot} \bullet\left(x_{1} \cdot \ldots \cdot x_{n}\right)+J$ by induction on n. It is obvious if $n=1$, and it comes from the definition of J if $n=2$. Let us assume the result at rank $n-1$.

$$
\begin{aligned}
& \bullet{ }_{d} \bullet\left(x_{1} \times \ldots \times x_{n}\right)+J \\
& =\left(\cdot{ }_{d} \bullet\left(x_{1} \times \ldots \times x_{n-1}\right)\right) \bullet x_{n}-\sum_{i=1}^{n-1} \cdot{ }_{d} \bullet\left(x_{1} \times \ldots \times\left(x_{i} \bullet x_{n}\right) \times \ldots \times x_{n-1}\right)+J \\
& =\left(\cdot{ }_{d} \bullet\left(x_{1} \cdot \ldots \cdot x_{n-1}\right)\right) \bullet x_{n}-\sum_{i=1}^{n-1} \cdot{ }_{d} \bullet\left(x_{1} \cdot \ldots \cdot\left(x_{i} \bullet x_{n}\right) \cdot \ldots \cdot x_{n-1}\right)+J \\
& =\left(\cdot{ }_{d} \bullet\left(x_{1} \cdot \ldots \cdot x_{n-1}\right)\right) \bullet x_{n}-{ }_{d} \bullet\left(\left(x_{1} \cdot \ldots \cdot x_{n-1}\right) \bullet x_{n}\right)+J \\
& =\cdot_{d} \bullet\left(\left(x_{1} \cdot \ldots \cdot x_{n-1}\right) \times x_{n}\right)+J \\
& ={ }_{\cdot d} \bullet\left(x_{1} \cdot \ldots x_{n-1} \cdot x_{n}\right)+J .
\end{aligned}
$$

So the result holds for all n.

Second step. Let $F, G \in \mathcal{P} \mathcal{T}(\mathcal{D})$, such that the underlying rooted decorated forests are equal. Let us prove that $F+J=G+J$ by induction on $n=|F|=|G|$. If $n=0, F=G=1$ and it is obvious. If $n=1, F=G=\cdot{ }_{d}$ and it is obvious. Let us assume the result at all ranks $<n$.

First case. If F has $k \geq 2$ roots, we can write $F=T_{1} \cdot \ldots \cdot T_{k}$ and $G=T_{1}^{\prime} \cdot \ldots \cdot T_{k}^{\prime}$, such that, for all $i \in[k], T_{i}$ and T_{i}^{\prime} have the same underlying decorated rooted forest; By the induction hypothesis, $T_{i}+J=T_{i}^{\prime}+J$ for all i, so $F+J=G+J$.

Second case. Let us assume that F has only one root. We can write $F={ }_{\cdot d} \bullet\left(F_{1} \times \ldots \times F_{k}\right)$ and $G={ }_{\cdot d} \bullet\left(G_{1} \times \ldots \times G_{l}\right)$. Then $F_{1} \cdot \ldots \cdot F_{k}$ and $G_{1} \cdot \ldots \cdot G_{l}$ have the same underlying decorated forest; by the induction hypothesis, $F_{1} \cdot \ldots \cdot F_{k}+J=G_{1} \cdot \ldots \cdot G_{l}+J$, so • $\bullet\left(F_{1} \cdot \ldots \cdot F_{k}\right)+J=$ ${ }{ }_{d} \bullet\left(G_{1} \cdot \ldots \cdot G_{l}\right)+J$. By the first step:

$$
F+J=\bullet_{d} \bullet\left(F_{1} \cdot \ldots \cdot F_{k}\right)+J=\bullet_{d} \bullet\left(G_{1} \cdot \ldots \cdot G_{l}\right)+J=G+J
$$

2. The set $\mathcal{R} \mathcal{F}(\mathcal{D})$ of rooted forests linearly spans $C P(\mathcal{D}) / J$ by the first point. Let J^{\prime} be the subspace of $C P(\mathcal{D})$ generated by the differences of elements of $\mathcal{P} \mathcal{T}(\mathcal{D})$ with the same underlying decorated forest. It is clearly a Com-PreLie ideal, and $\mathcal{R F} \mathcal{F}(\mathcal{D})$ is a basis of $C P(\mathcal{D}) / J^{\prime}$. Moreover, for all $F_{1}, F_{2} \in \mathcal{P} \mathcal{T}(\mathcal{D}),{ }^{\bullet} \bullet\left(F_{1} \times F_{2}\right)+J^{\prime}=\cdot{ }_{s} \bullet\left(F_{1} \cdot F_{2}\right)+J^{\prime}$, as the underlying forests of $\cdot{ }_{d} \bullet\left(F_{1} \times F_{2}\right)$ and $\cdot s \bullet\left(F_{1} \cdot F_{2}\right)$ are equal. Consequently, there exists a Com-PreLie morphism from $C P(\mathcal{D}) / J$ to $C P(\mathcal{D}) / J^{\prime}$, sending any element of $\mathcal{R} \mathcal{F}(\mathcal{D})$ over itself. As the elements of $R F(\mathcal{D})$ are linearly independent in $C P(\mathcal{D}) / J^{\prime}$, they also are in $C P(\mathcal{D}) / J$.

3.3 PreLie structure of $U C P(\mathcal{D})$ and $C P(\mathcal{D})$

Let us now consider $U C P(\mathcal{D})$ and $C P(\mathcal{D})$ as PreLie algebras. Their augmentation ideals are respectively denoted by $U C P_{+}(\mathcal{D})$ and $C P_{+}(\mathcal{D})$. Note that, as a PreLie algebra, $U C P_{+}(\mathcal{D})=$ $C P_{+}(\mathbb{N} \times \mathcal{D})$.

Let \mathcal{D} be any set, and let $T \in \mathcal{P} \mathcal{T}(\mathcal{D})$. Then T can be written as:

$$
T=\left(\bullet d_{1} \bullet\left(T_{1,1} \times \ldots \times T_{i, s_{1}}\right)\right) \cdot \ldots \cdot\left(\cdot d_{k} \bullet\left(T_{k, 1} \times \ldots \times T_{k, s_{k}}\right)\right),
$$

where $d_{1}, \ldots, d_{k} \in \mathcal{D}$ and the $T_{i, j}$'s are nonempty elements of $\mathcal{P} \mathcal{T}(\mathcal{D})$. We shortly denote this as:

$$
T=B_{d_{1}, \ldots, d_{k}}\left(T_{1,1} \ldots T_{1, s_{1}} ; \ldots ; T_{k, 1} \ldots T_{k, s_{k}}\right)
$$

The set of partitioned subtrees $T_{i, j}$ of T is denoted by $\operatorname{st}(T)$.
Proposition 18. Let \mathcal{D} be any set. One defines a coproduct δ on $C P_{+}(\mathcal{D})$ by:

$$
\forall T \in \mathcal{P} \mathcal{T}(\mathcal{D}), \quad \delta(T)=\sum_{T^{\prime} \in s t(T)} T \backslash T^{\prime} \otimes T
$$

Then, as a PreLie algebra, $C P_{+}(\mathcal{D})$ is freely generated by $\operatorname{Ker}(\delta)$.
Proof. In other words, for any $T \in \mathcal{P} \mathcal{T}(\mathcal{D})$, writing

$$
T=B_{d_{1}, \ldots, d_{k}}\left(T_{1,1} \ldots T_{1, s_{1}} ; \ldots ; T_{k, 1} \ldots T_{k, s_{k}}\right)
$$

we have:

$$
\delta(T)=\sum_{i=1}^{s} \sum_{j=1}^{s_{i}} B_{d_{1}, \ldots, d_{k}}\left(T_{1,1} \ldots T_{1, s_{1}} ; \ldots ; T_{i, 1} \ldots \widehat{T_{i, j}} \ldots T_{i, s_{i}} ; \ldots ; T_{k, 1} \ldots T_{k, s_{k}}\right) \otimes T_{i, j}
$$

This immediately implies that δ is permutative [9]:

$$
(\delta \otimes I d) \circ \delta=(23) .(\delta \otimes I d) \circ \delta
$$

Moreover, for any $x, y \in \mathcal{P} \mathcal{T}_{+}(\mathcal{D})$, using Sweedler's notation $\delta(x)=x^{(1)} \otimes x^{(2)}$, we obtain:

$$
\delta(x \cdot y)=x^{(1)} \cdot y \otimes x^{(2)}+x \cdot y^{(1)} \otimes y^{(2)}
$$

For any partitioned tree $T \in \mathcal{P} \mathcal{T}(\mathcal{D})$, we denote by $r(T)$ the number of roots of T and we put $d(T)=r(T) T$. The map d is linearly extended as an endomorphism of $\mathcal{P} \mathcal{T}(\mathcal{D})$. As the product - is homogeneous for the number of roots, d is a derivation of the algebra $(C P(\mathcal{D}), \cdot)$. Let us prove that for any $x, y \in C P_{+}(\mathcal{D})$:

$$
\delta(x \bullet y)=d(x) \otimes y+x^{(1)} \bullet y \otimes x^{(2)}+x^{(1)} \otimes x^{(2)} \bullet y
$$

We denote by A the set of elements of $x \in C P_{+}(\mathcal{D})$, such that for any $y \in C P_{+}(\mathcal{D})$, the preceding equality holds. If $x_{1}, x_{2} \in A$, then for any $y \in C P_{+}(\mathcal{D})$:

$$
\begin{aligned}
\delta\left(\left(x_{1} \cdot x_{2}\right) \bullet y\right) & =\delta\left(\left(x_{1} \bullet y\right) \cdot x_{2}\right)+\delta\left(x_{1} \cdot\left(x_{2} \bullet y\right)\right) \\
& =\left(x_{1} \bullet y\right)^{(1)} \cdot x_{2} \otimes\left(x_{1} \bullet y\right)^{(2)}+\left(x_{1} \bullet y\right) \cdot x_{2}^{(1)} \otimes x_{2}^{(2)} \\
& +x_{1}^{(1)} \cdot\left(x_{2} \bullet y\right) \otimes x_{1}^{(2)}+x_{1} \cdot\left(x_{2} \bullet y\right)^{(1)} \otimes\left(x_{2} \bullet y\right)^{(2)} \\
& =d\left(x_{1}\right) \cdot x_{2} \otimes y+\left(x_{1}^{(1)} \bullet y\right) \cdot x_{2} \otimes x_{1}^{(1)}+x_{1}^{(1)} \cdot x_{2} \otimes x_{1}^{(2)} \bullet y \\
& +\left(x_{1} \bullet y\right) \cdot x_{2}^{(1)} \otimes x_{2}^{(2)}+x_{1}^{(1)} \cdot\left(x_{2} \bullet y\right) \otimes x_{1}^{(2)} \\
& +x_{1} \cdot d\left(x_{2}\right) \otimes y+x_{1} \cdot\left(x_{2}^{(1)} \bullet y\right) \otimes x_{2}^{(2)}+x_{1} \cdot x_{2}^{(1)} \otimes x_{2}^{(2)} \bullet y \\
& =d\left(x_{1} \cdot x_{2}\right) \otimes y+\left(x_{1}^{(1)} \cdot x_{2}\right) \bullet y \otimes x_{1}^{(2)}+\left(x_{1} \cdot x_{2}^{(1)}\right) \bullet y \otimes x_{2}^{(2)} \\
& +\left(x_{1} \cdot x_{2}\right)^{(1)} \otimes\left(x_{1} \cdot x_{2}\right)^{(2)} \bullet y \\
& =d\left(x_{1} \cdot x_{2}\right) \otimes y+\left(x_{1} \cdot x_{2}\right)^{(1)} \bullet y \otimes\left(x_{1} \cdot x_{2}\right)^{(2)}+\left(x_{1} \cdot x_{2}\right)^{(1)} \otimes\left(x_{1} \cdot x_{2}\right)^{(2)} \bullet y .
\end{aligned}
$$

So $x_{1} \cdot x_{2} \in A$.
Let $d \in \mathcal{D}$. Note that $\delta\left(\cdot{ }_{d}\right)=0$. Moreover, for any $y \in C P_{+}(\mathcal{D})$:

$$
\delta\left(\cdot{ }_{d} \bullet y\right)=\delta\left(B_{d}(y)\right)=\cdot{ }_{d} \otimes y
$$

so $\cdot{ }_{d} \in A$. Let $T_{1}, \ldots, T_{k} \in \mathcal{P} \mathcal{T}(\mathcal{D})$, nonempty. We consider $x=B_{d}\left(T_{1} \ldots T_{k}\right)$. For any $y \in C P_{+}(D)$:

$$
\begin{aligned}
\delta(x \bullet y) & =\delta\left(B_{d}\left(T_{1} \ldots T_{k} y\right)\right)+\sum_{j=1}^{k} \delta\left(B_{d}\left(T_{1} \ldots\left(T_{j} \bullet y\right) \ldots T_{k}\right)\right. \\
& =B_{d}\left(T_{1} \ldots T_{k}\right) \otimes y+\sum_{i=1}^{k} D_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k} y\right) \otimes T_{i} \\
& +\sum_{i=1}^{k} \sum_{j \neq i} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots\left(T_{j} \bullet y \ldots T_{k}\right) \otimes T_{i}+\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \bullet y\right. \\
& =d(x) \otimes y+\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \bullet y \otimes T_{i}+\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \bullet y \\
& =d(x) \otimes y+x^{(1)} \bullet y \otimes x^{(2)}+x^{(1)} \otimes x^{(2)} \bullet y .
\end{aligned}
$$

Hence, $x \in A$. As A is stable under • and contains any partitioned tree with one root, $A=C P_{+}(\mathcal{D})$.

For any nonempty partitioned tree $T \in \mathcal{P} \mathcal{T}(\mathcal{D})$, we put $\delta^{\prime}(T)=\frac{1}{r(T)} \delta(T)$. Then:

$$
\left(\delta^{\prime} \otimes I d\right) \circ \delta^{\prime}(T)=\frac{1}{r(T)^{2}}(\delta \otimes I d) \circ \delta(T)
$$

so δ^{\prime} is also permutative; moreover, for any $x, y \in C P_{+}(\mathcal{D})$:

$$
\delta^{\prime}(x \bullet y)=x \otimes y+x^{(1)} \bullet y \otimes x^{(2)}+x^{(1)} \otimes x^{(2)} \bullet y .
$$

By Livernet's rigidity theorem [9], the PreLie algebra $C P_{+}(\mathcal{D})$ is freely generated by $\operatorname{Ker}\left(\delta^{\prime}\right)$. For any integer n, we denote by $C P_{n}(\mathcal{D})$ the subspace of $C P(\mathcal{D})$ generated by trees T such that $r(T)=n$. Then, for all $n, \delta\left(C P_{n}(\mathcal{D})\right) \subseteq C P_{n}(\mathcal{D}) \otimes C P_{+}(\mathcal{D})$, and $\delta_{\mid C P_{n}(\mathcal{D})}=n \delta_{\mid C P_{n}(\mathcal{D})}^{\prime}$. This implies that $\operatorname{Ker}(\delta)=\operatorname{Ker}\left(\delta^{\prime}\right)$.

Lemma 19. In $C P_{+}(\mathcal{D})$ or $U C P_{+}(\mathcal{D}), \operatorname{Ker}(\delta) \bullet \emptyset \subseteq \operatorname{Ker}(\delta)$.
Proof. Let us work in $U C P_{+}(\mathcal{D})$. Let us prove that for any $x \in U C P_{+}(\mathcal{D})$:

$$
\delta(x \bullet \emptyset)=x^{(1)} \bullet \emptyset \otimes x^{(2)}+x^{(1)} \otimes x^{(2)} \bullet \emptyset .
$$

We denote by A the subspace of elements $x \in U C P_{+}(\mathcal{D})$ such that this holds. If $x_{1}, x_{2} \in A$, then:

$$
\begin{aligned}
\delta\left(\left(x_{1} \cdot x_{2}\right) \bullet \emptyset\right) & =\delta\left(\left(x_{1} \bullet \emptyset\right) \cdot x_{2}\right)+\delta\left(x_{1} \cdot\left(x_{2} \bullet \emptyset\right)\right) \\
& =\left(x_{1}^{(1)} \bullet \emptyset\right) \cdot x_{2} \otimes x^{(1)}+x_{1}^{(1)} \cdot x_{2} \otimes x_{1}^{(2)} \bullet \emptyset+\left(x_{1} \bullet \emptyset\right) \cdot x_{2}^{(1)} \otimes x_{2}^{(2)} \\
& +x_{1} \cdot\left(x_{2}^{(1)} \bullet \emptyset\right) \otimes x_{2}^{(2)}+x_{1} \cdot x_{2}^{(1)} \otimes x_{2}^{(2)} \bullet \emptyset+x_{1}^{(1)} \cdot\left(x_{2} \bullet \emptyset\right) \otimes x_{1}^{(2)} \\
& =\left(x_{1}^{(1)} \cdot x_{2}\right) \bullet \emptyset \otimes x_{1}^{(2)}+x_{1}^{(1)} \cdot x_{2} \otimes x_{1}^{(2)} \bullet \emptyset \\
& +\left(x_{1} \cdot x_{2}^{(1)}\right) \bullet \emptyset \otimes x_{2}^{(1)}+x_{1} \cdot x_{2}^{(1)} \otimes x_{2}^{(2)} \bullet \emptyset \\
& =\left(x_{1} \cdot x_{2}\right)^{(1)} \bullet \emptyset \otimes\left(x_{1} \cdot x_{2}\right)^{(2)}+\left(x_{1} \cdot x_{2}\right)^{(1)} \otimes\left(x_{1} \cdot x_{2}\right)^{(2)} \bullet \emptyset,
\end{aligned}
$$

so $x_{1} \cdot x_{2} \in A$. If $d \in D$ and $T_{1}, \ldots, T_{k} \in \mathcal{U P} \mathcal{T}(\mathcal{D})$, nonempty, if $x=B_{d}\left(T_{1} \ldots T_{k}\right)$:

$$
\begin{aligned}
\delta(x \bullet \emptyset) & =\delta\left(B_{d+1}\left(T_{1} \ldots T_{k}\right)\right)+\sum_{i=1}^{k} \delta\left(B_{d}\left(T_{1} \ldots\left(T_{i} \bullet \emptyset\right) \ldots T_{k}\right)\right. \\
& =\sum_{i=1}^{k} B_{d+1}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i}+\sum_{j=1}^{k} \sum_{i \neq j} B_{d}\left(T_{1} \ldots\left(T_{j} \bullet \emptyset\right) \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \\
& +\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \bullet \emptyset \\
& =\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \bullet \emptyset \otimes T_{i}+\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \bullet \emptyset \\
& =x^{(1)} \bullet \emptyset \otimes x^{(2)}+x^{(1)} \otimes x^{(2)} \bullet \emptyset
\end{aligned}
$$

so $x \in A$. Hence, $A=U C P_{+}(\mathcal{D})$. Consequently, if $x \in \operatorname{Ker}(\delta)$, then $x \bullet \emptyset \in \operatorname{Ker}(\delta)$. The proof is immediate for $C P_{+}(\mathcal{D})$, as for any tree $T \in \mathcal{P} \mathcal{T}(\mathcal{D}), T \bullet \emptyset=|T| T$.

We denote by ϕ the endomorphism of $\operatorname{Ker}(\delta)$ defined by $\phi(x)=x \bullet \emptyset$.
Corollary 20. The PreLie algebra $\operatorname{UCP}(\mathcal{D})$, respectively $\operatorname{CP}(\mathcal{D})$, is generated by $\operatorname{Ker}(\delta) \oplus(\emptyset)$, with the relations:

$$
\begin{array}{lll}
& \emptyset \bullet \emptyset=0, & \\
\forall x \in \operatorname{Ker}(\delta), & \emptyset \bullet x=0, & x \bullet \emptyset=\phi(x) .
\end{array}
$$

Remark 7. We give $C P(\mathcal{D})$ a graduation by putting the elements of \mathcal{D} homogeneous of degree 1. A manipulation of formal series allows to compute the dimensions of the homogeneous components of $\operatorname{Ker}(\delta)$, if $|D|=d$:

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Ker}(\delta)_{1}\right) & =d \\
\operatorname{dim}\left(\operatorname{Ker}(\delta)_{2}\right) & =\frac{d(d+1)}{2} \\
\operatorname{dim}\left(\operatorname{Ker}(\delta)_{3}\right) & =\frac{d\left(2 d^{2}+1\right)}{3} \\
\operatorname{dim}\left(\operatorname{Ker}(\delta)_{4}\right) & =\frac{d\left(11 d^{3}+2 d^{2}+d+2\right)}{8} \\
\operatorname{dim}\left(\operatorname{Ker}(\delta)_{5}\right) & =\frac{d\left(203 d^{4}+60 d^{3}-5 d^{2}-30 d+12\right)}{60} \\
\operatorname{dim}\left(\operatorname{Ker}(\delta)_{6}\right) & =\frac{d\left(220 d^{5}+89 d^{4}+16 d^{3}+3 d^{2}+4 d+4\right)}{24}
\end{aligned}
$$

4 Bialgebra structures on free Com-PreLie algebras

4.1 Tensor product of Com-PreLie algebras

Lemma 21. Let A_{1}, A_{2} be two Com-PreLie algebras and let $\varepsilon: A_{1} \longrightarrow \mathbb{K}$ such that:

$$
\forall a, b \in A_{1}, \varepsilon(a \bullet b)=\varepsilon(b \bullet a)
$$

Then $A_{1} \otimes A_{2}$ is a Com-PreLie algebra, with the products defined by:

$$
\begin{aligned}
\left(a_{1} \otimes a_{2}\right)\left(b_{1} \otimes b_{2}\right) & =a_{1} b_{1} \otimes a_{2} b_{2} \\
\left(a_{1} \otimes a_{2}\right) \bullet \varepsilon\left(b_{1} \otimes b_{2}\right) & =a_{1} \bullet b_{1} \otimes a_{2} b_{2}+\varepsilon\left(b_{1}\right) a_{1} \otimes a_{2} \bullet b_{2}
\end{aligned}
$$

Proof. $A_{1} \otimes A_{2}$ is obviously an associative and commutative algebra, with unit $1 \otimes 1$. We take $A=a_{1} \otimes a_{2}, B=b_{1} \otimes b_{2}, C=c_{1} \otimes c_{2} \in A_{1} \otimes A_{2}$. Let us prove the PreLie identity.

$$
\begin{aligned}
& (A \bullet \varepsilon B) \bullet \varepsilon-A \bullet \varepsilon(B \bullet \varepsilon C)=\left(a_{1} \bullet b_{1}\right) \bullet c_{1} \otimes a_{2} b_{2} c_{2}+\varepsilon\left(c_{1}\right) a_{1} \bullet b_{1} \otimes\left(a_{2} b_{2}\right) \bullet c_{2} \\
& +\varepsilon\left(b_{1}\right) a_{1} \bullet c_{1} \otimes\left(a_{2} \bullet b_{2}\right) c_{2}+\varepsilon\left(b_{1}\right) \varepsilon\left(c_{1}\right) a_{1} \otimes\left(a_{2} b \bullet_{2}\right) \bullet c_{2} \\
& -a_{1} \bullet\left(b_{1} \bullet c_{1}\right) \otimes a_{2} b_{2} c_{2}-\varepsilon\left(c_{1}\right) a_{1} \bullet b_{1} \otimes a_{2}\left(b_{2} \bullet c_{2}\right) \\
& -\varepsilon\left(c_{1}\right) \varepsilon\left(b_{1}\right) a_{1} \otimes a_{2} \bullet\left(b_{2} \bullet c_{2}\right)-\varepsilon\left(b_{1} \bullet c_{1}\right) a_{1} \otimes a_{2} \bullet\left(b_{2} c_{2}\right) \\
& =\left(\left(a_{1} \bullet b_{1}\right) \bullet c_{1}-a_{1} \bullet\left(b_{1} \bullet c_{1}\right)\right) \otimes a_{2} b_{2} c_{2} \\
& +\varepsilon\left(b_{1}\right) \varepsilon\left(c_{1}\right) a_{1} \otimes\left(\left(a_{2} \bullet b_{2}\right) \bullet c_{2}-a_{2} \bullet\left(b_{2} \bullet c_{2}\right)\right) \\
& +\varepsilon\left(c_{1}\right) a_{1} \bullet b_{1} \otimes\left(a_{2} \bullet c_{2}\right) b_{2}+\varepsilon\left(b_{1}\right) a_{1} \bullet c_{1} \otimes\left(a_{2} \bullet b_{2}\right) c_{2} \\
& -\varepsilon\left(b_{1} \bullet c_{1}\right) a_{1} \otimes a_{2} \bullet\left(b_{2} c_{2}\right) \text {. }
\end{aligned}
$$

As A_{1} and A_{2} are PreLie, the first and second lines of the last equality are symmetric in B and C; the third line is obviously symmetric in B and C; as m is commutative and by the hypothesis on ε, the last line also is. So $\bullet \varepsilon$ is PreLie.

$$
\begin{aligned}
(A B) \bullet C & =\left(a_{1} b_{1}\right) \bullet c_{1} \otimes a_{2} b_{2} c_{2}+\varepsilon\left(c_{1}\right) a_{1} b_{1} \otimes\left(a_{2} b_{2}\right) \bullet c_{2} \\
& =\left(\left(a_{1} \bullet c_{1}\right) b_{1}+a_{1}\left(b_{1} \bullet c_{1}\right)\right) \otimes a_{2} b_{2} c_{2}+\varepsilon\left(c_{1}\right) a_{1} b_{1} \otimes\left(\left(a_{2} \bullet c_{2}\right) b_{2}+a_{2}\left(b_{2} \bullet c_{2}\right)\right) \\
& =\left(a_{1} \bullet c_{1} \otimes a_{2} c_{2}+\varepsilon\left(c_{1}\right) a_{1} \otimes a_{2} \bullet c_{2}\right)\left(b_{1} \otimes b_{2}\right) \\
& +\left(a_{1} \otimes a_{2}\right)\left(b_{1} \bullet c_{1} \otimes b_{2} c_{2}+\varepsilon\left(c_{1}\right) b_{1} \otimes b_{2} \bullet c_{2}\right) \\
& =(A \bullet C) B+A(B \bullet C)
\end{aligned}
$$

So $A_{1} \otimes A_{2}$ is Com-PreLie.

Remark 8. Consequently, if (A, m, \bullet, Δ) is a Com-PreLie bialgebra, with counit ε, then Δ is a morphism of Com-PreLie algebras from (A, m, \bullet) to $(A \otimes A, m, \bullet \varepsilon)$. Indeed, for all $a, b \in A$, $\varepsilon(a \bullet b)=\varepsilon(b \bullet a)=0$ and $:$

$$
\begin{aligned}
\Delta(a) \bullet \varepsilon \Delta(b) & =a^{(1)} \bullet b^{(1)} \otimes a^{(2)} b^{(2)}+\varepsilon\left(b^{(1)}\right) a^{(1)} \otimes a^{(2)} \bullet b^{(2)} \\
& =a^{(1)} \bullet b^{(1)} \otimes a^{(2)} b^{(2)}+a^{(1)} \otimes a^{(2)} \bullet b \\
& =\Delta(a \bullet b) .
\end{aligned}
$$

Lemma 22. 1. Let A, B, C be three Com-PreLie algebras, $\varepsilon_{A}: A \longrightarrow \mathbb{K}$ and $\varepsilon_{B}: B \longrightarrow \mathbb{K}$ with the condition of lemma 21. Then $\varepsilon_{A} \otimes \varepsilon_{B}: A \otimes B \longrightarrow \mathbb{K}$ also satisfies the condition of lemma 21. Moreover, the Com-PreLie algebras $(A \otimes B) \otimes C$ and $A \otimes(B \otimes C)$ are equal.
2. Let A, B be two Com-PreLie algebras, and $\varepsilon: A \longrightarrow \mathbb{K}$ such that:

$$
\forall a, b \in A, \quad \varepsilon(a b)=\varepsilon(a) \varepsilon(b), \quad \varepsilon(a \bullet b)=0
$$

Then $\varepsilon \otimes I d: A \otimes B \longrightarrow B$ is morphism of Com-PreLie algebras.
3. Let $A, A^{\prime}, B, B^{\prime}$ be Com-PreLie algebras, $\varepsilon: A \longrightarrow \mathbb{K}$ and $\varepsilon^{\prime}: A^{\prime} \longrightarrow \mathbb{K}$ satisfying the condition of lemma 21. Let $f: A \longrightarrow A^{\prime}, g: B \longrightarrow B^{\prime}$ be Com-PreLie algebra morphisms such that $\varepsilon^{\prime} \circ f=\varepsilon$. Then $f \otimes g: A \otimes B \longrightarrow A^{\prime} \otimes B^{\prime}$ is a Com-PreLie algebra morphism.
Proof. 1. Indeed, if $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$:

$$
\begin{aligned}
\varepsilon_{A} \otimes \varepsilon_{B}\left(\left(a_{1} \otimes b_{1}\right) \bullet\left(a_{2} \otimes b_{2}\right)\right) & =\varepsilon_{A}\left(a_{1} \bullet a_{2}\right) \varepsilon_{B}\left(b_{1} b_{2}\right)+\varepsilon_{A}\left(a_{1}\right) \varepsilon_{A}\left(a_{2}\right) \varepsilon_{B}\left(b_{1} \bullet b_{2}\right) \\
& =\varepsilon_{A}\left(a_{2} \bullet a_{1}\right) \varepsilon_{B}\left(b_{2} b_{1}\right)+\varepsilon_{A}\left(a_{2}\right) \varepsilon_{A}\left(a_{1}\right) \varepsilon_{B}\left(b_{2} \bullet b_{1}\right) \\
& =\varepsilon_{A} \otimes \varepsilon_{B}\left(\left(a_{2} \otimes b_{2}\right) \bullet\left(a_{1} \otimes b_{1}\right)\right) .
\end{aligned}
$$

Let $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B, c_{1}, c_{2} \in C$. In $(A \otimes B) \otimes C$:

$$
\begin{aligned}
& \left(a_{1} \otimes b_{1} \otimes c_{1}\right) \bullet\left(a_{2} \otimes b_{2} \otimes c_{2}\right) \\
& =\left(\left(a_{1} \otimes b_{1}\right) \bullet\left(a_{2} \otimes b_{2}\right)\right) \otimes c_{1} c_{2}+\varepsilon_{A} \otimes \varepsilon_{B}\left(a_{2} \otimes b_{2}\right) a_{1} \otimes b_{1} \otimes c_{1} \bullet c_{2} \\
& =a_{1} \bullet a_{2} \otimes b_{1} b_{2} \otimes c_{1} c_{2}+\varepsilon_{A}\left(a_{2}\right) a_{1} \otimes b_{1} \bullet b_{2} \otimes c_{1} c_{2}+\varepsilon_{A}\left(a_{2}\right) \varepsilon_{B}\left(b_{2}\right) a_{1} \otimes b_{1} \otimes c_{1} \bullet c_{2}
\end{aligned}
$$

In $A \otimes(B \otimes C)$:

$$
\begin{aligned}
& \left(a_{1} \otimes b_{1} \otimes c_{1}\right) \bullet\left(a_{2} \otimes b_{2} \otimes c_{2}\right) \\
& =a_{1} \bullet a_{2} \otimes b_{1} b_{2} \otimes c_{1} c_{2}+\varepsilon_{A}\left(a_{2}\right) a_{1} \otimes\left(\left(b_{1} \otimes c_{1}\right) \bullet\left(b_{2} \otimes c_{2}\right)\right) \\
& =a_{1} \bullet a_{2} \otimes b_{1} b_{2} \otimes c_{1} c_{2}+\varepsilon_{A}\left(a_{2}\right) a_{1} \otimes b_{1} \bullet b_{2} \otimes c_{1} c_{2}+\varepsilon_{A}\left(a_{2}\right) \varepsilon_{B}\left(b_{2}\right) a_{1} \otimes b_{1} \otimes c_{1} \bullet c_{2}
\end{aligned}
$$

So $(A \otimes B) \otimes C=A \otimes(B \otimes C)$.
2. Let $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$.

$$
\begin{array}{ll}
\varepsilon \otimes I d\left(\left(a_{1} \otimes b_{1}\right)\left(a_{2} \otimes b_{2}\right)\right) & \varepsilon \otimes I d\left(\left(a_{1} \otimes b_{1}\right) \bullet\left(a_{2} \otimes b_{2}\right)\right) \\
=\varepsilon\left(a_{1} a_{2}\right) b_{1} b_{2} & =\varepsilon\left(a_{1} \bullet a_{2}\right) b_{1} b_{2}+\varepsilon\left(a_{1}\right) \varepsilon\left(a_{2}\right) b_{1} \bullet b_{2} \\
=\varepsilon\left(a_{1}\right) \varepsilon\left(a_{2}\right) b_{1} b_{2} & =\varepsilon\left(a_{1}\right) \varepsilon\left(a_{2}\right) b_{1} \bullet b_{2} \\
=\varepsilon \otimes I d\left(\left(a_{1} \otimes b_{1}\right) \varepsilon \otimes \operatorname{Id}\left(a_{2} \otimes b_{2}\right),\right. & =\varepsilon \otimes I d\left(\left(a_{1} \otimes b_{1}\right) \bullet \varepsilon \otimes \operatorname{Id}\left(a_{2} \otimes b_{2}\right) .\right.
\end{array}
$$

So $\varepsilon \otimes I d$ is a morphism.
3. $f \otimes g$ is obviously an algebra morphism. If $a_{1}, a_{2} \in A, b_{1}, b_{2} \in B$:

$$
\begin{aligned}
(f \otimes g)\left(\left(a_{1} \otimes b_{1}\right) \bullet\left(a_{2} \otimes b_{2}\right)\right) & =(f \otimes g)\left(a_{1} \bullet a_{2} \otimes b_{1} b_{2}+\varepsilon\left(a_{2}\right) a_{1} \otimes b_{1} \bullet b_{2}\right) \\
& =f\left(a_{1}\right) \bullet f\left(a_{2}\right) \otimes g\left(b_{1}\right) g\left(b_{2}\right)+\varepsilon\left(f\left(a_{2}\right)\right) f\left(a_{1}\right) \otimes g\left(b_{1}\right) \bullet g\left(b_{2}\right) \\
& =\left(f\left(a_{1}\right) \otimes g\left(b_{1}\right)\right) \bullet\left(f\left(a_{2}\right) \otimes g\left(b_{2}\right)\right)
\end{aligned}
$$

So $f \otimes g$ is a Com-PreLie algebra morphism.

Lemma 23. Let A be an associative commutative bialgebra, and V a subspace of A which generates A. Let \bullet be a product on A such that:

$$
\forall a, b, c \in A, \quad(a b) \bullet c=(a \bullet c) b+a(b \bullet c)
$$

Then A is a Com-PreLie bialgebra if, and only if, for all $x \in V, b, c \in A$:

$$
\begin{aligned}
(x \bullet b) \bullet c-x \bullet(b \bullet c) & =(x \bullet c) \bullet b-x \bullet(c \bullet b), \\
\Delta(x \bullet b) & =x^{(1)} \otimes x^{(2)} \bullet b+x^{(1)} \bullet b^{(1)} \otimes x^{(2)} b^{(2)}
\end{aligned}
$$

Proof. \Longrightarrow. Obvious. \Longleftarrow. We consider:

$$
B=\{a \in A \mid \forall b, c \in A,(a \bullet b) \bullet c-a \bullet(b \bullet c)=(a \bullet c) \bullet b-a \bullet(c \bullet b)\}
$$

Copying the proof of lemma 2-1, we obtain that $1 . b=0$ for all $b \in A$. This easily implies that $1 \in B$. By hypothesis, $V \subseteq B$. Let $a_{1}, a_{2} \in B$. For all $b, c \in A$:

$$
\begin{aligned}
& \left(\left(a_{1} a_{2}\right) \bullet b\right) \bullet c-\left(a_{1} a_{2}\right) \bullet(b \bullet c) \\
& =\left(\left(a_{1} \bullet b\right) \bullet c\right) a_{2}+\left(a_{1} \bullet b\right)\left(a_{2} \bullet c\right)+\left(a_{1} \bullet c\right)\left(a_{2} \bullet b\right)+a_{1}\left(\left(a_{2} \bullet b\right) \bullet c\right) \\
& -\left(a_{1} \bullet(b \bullet c)\right) a_{2}-a_{1}\left(a_{2} \bullet(b \bullet c)\right) \\
& =\left(\left(a_{1} \bullet b\right) \bullet c-a_{1} \bullet(b \bullet c)\right) a_{2}+a_{1}\left(\left(a_{2} \bullet b\right) \bullet c-a_{2} \bullet(b \bullet c)\right) \\
& +\left(a_{1} \bullet b\right)\left(a_{2} \bullet c\right)+\left(a_{1} \bullet c\right)\left(a_{2} \bullet b\right) .
\end{aligned}
$$

As $a_{1}, a_{2} \in B$, this is symmetric in b, c, so $a_{1} a_{2} \in B$. Hence, B is a unitary subalgebra of A which contains V, so is equal to A : A is Com-PreLie. Let us now consider:

$$
C=\left\{a \in A \mid \forall b \in A, \Delta(a \bullet b)=a^{(1)} \otimes a^{(2)} \bullet b+a^{(1)} \bullet b^{(1)} \otimes a^{(2)} b^{(2)}\right\}
$$

By hypothesis, $V \subseteq C$. Let $b \in B$.

$$
\emptyset \otimes \emptyset \bullet b+\emptyset \bullet b^{(1)} \otimes 1 b^{(2)}=0=\Delta(\emptyset \bullet b)
$$

so $\emptyset \in C$. Let $a_{1}, a_{2} \in C$. For all $b \in A$:

$$
\begin{aligned}
\Delta\left(\left(a_{1} a_{2}\right) \bullet b\right) & =\Delta\left(\left(a_{1} \bullet b\right) a_{2}+a_{1}\left(a_{2} \bullet b\right)\right) \\
& =a_{1}^{(1)} a_{2}^{(1)} \otimes\left(a_{1}^{(2)} \bullet b\right) a_{2}^{(2)}+\left(a_{1}^{(1)} \bullet b^{(1)}\right) a_{2}^{(1)} \otimes a_{1}^{(2)} b^{(2)} a_{2}^{(2)} \\
& a_{1}^{(1)} a_{2}^{(1)} \otimes a_{1}^{(2)}\left(a_{2}^{(2)} \bullet b\right)+a_{1}^{(1)}\left(a_{2}^{(1)} \bullet b^{(1)}\right) \otimes a_{1}^{(2)} a_{2}^{(2)} b^{(2)} \\
& =a_{1}^{(1)} a_{2}^{(1)} \otimes\left(a_{1}^{(2)} a_{2}^{(2)}\right) \bullet b+\left(a_{1}^{(1)} a_{2}^{(1)}\right) \bullet b^{(1)} \otimes a_{1}^{(2)} a_{2}^{(2)} b^{(2)} \\
& =\left(a_{1} a_{2}\right)^{(1)} \otimes\left(a_{1} a_{2}\right)^{(2)} \bullet b+\left(a_{1} a_{2}\right)^{(1)} \bullet b^{(1)} \otimes\left(a_{1} a_{2}\right)^{(2)} b^{(2)} .
\end{aligned}
$$

Hence, $a_{1} a_{2} \in C$, and C is a unitary subalgebra of A. As it contains $V, C=A$ and A is a Com-PreLie Hopf algebra.

4.2 Coproduct on $\operatorname{UCP}(\mathcal{D})$

Definition 24. 1. Let T be a partitioned tree and $I \subseteq V(T)$. We shall say that I is an ideal of T if for any vertex $v \in I$ and any vertex $w \in V(T)$ such that there exists an edge from v to w, then $w \in I$. The set of ideals of T is denoted $\mathcal{I} d(T)$.
2. Let T be partitioned forest decorated by $\mathbb{N} \times I$, and $I \in \mathcal{I} d(T)$.

- By restriction, I is a partitioned decorated forest. The product • of the trees of I is denoted by $P^{I}(F)$.
- By restriction, $T \backslash I$ is a partitioned decorated tree. For any vertex $v \in T \backslash I$, if we denote by (i, d) the decoration of v in T, we replace it by $\left(i+\iota_{I}(v), d\right)$, where $\iota_{I}(v)$ is the number of blocks C of T, included in I, such that there exists an edge from v to any vertex of C. The partitioned decorated tree obtained in this way is denoted by $R^{I}(F)$.

Theorem 25. We define a coproduct on $\operatorname{UCP}(\mathcal{D})$ in the following way:

$$
\forall T \in \mathcal{P} \mathcal{T}(\mathbb{N} \times \mathcal{D}), \quad \Delta(T)=\sum_{I \in \mathcal{I} d(T)} R^{I}(T) \otimes P^{I}(T)
$$

Then $\operatorname{UCP}(\mathcal{D})$ is a Com-PreLie bialgebra. Moreover, $C P(\mathcal{D})$ and $\mathcal{H}_{C K}^{\mathcal{D}}$ are Com-PreLie bialgebra quotients of $\operatorname{UCP}(\mathcal{D})$, and $\mathcal{H}_{C K}^{\mathcal{D}}$ is the Connes-Kreimer Hopf algebra of decorated rooted trees [3, 7].

Proof. We consider:

$$
\varepsilon:\left\{\begin{array}{rll}
U C P(\mathcal{D}) & \longrightarrow & \mathbb{K} \\
F & \longrightarrow & \delta_{F, 1}
\end{array}\right.
$$

By lemma 22-1, $\operatorname{UCP}(\mathcal{D}) \otimes_{\varepsilon} U C P(\mathcal{D})$ is a Com-PreLie algebra. It is unitary, the unit being $1 \otimes 1$. Hence, there exists a unique Com-PreLie algebra morphism $\Delta^{\prime}: U C P(\mathcal{D}) \longrightarrow$ $U C P(\mathcal{D}) \otimes_{\varepsilon} U C P(\mathcal{D})$, sending $\cdot(0, d)$ over $\cdot(0, d) \otimes 1+1 \otimes \cdot(0, d)$ for all $d \in \mathcal{D}$. By lemma 22-2, $\left(U C P(\mathcal{D}) \otimes_{\varepsilon} U C P(\mathcal{D})\right) \otimes_{\varepsilon \otimes \varepsilon} U P C(\mathcal{D})$ and $U C P(\mathcal{D}) \otimes_{\varepsilon}\left(U C P(\mathcal{D}) \otimes_{\varepsilon} U C P(\mathcal{D})\right)$ are equal, and as both $\left(I d \otimes \Delta^{\prime}\right) \circ \Delta^{\prime}$ and $\left(\Delta^{\prime} \otimes I d\right) \circ \Delta^{\prime}$ are Com-PreLie algebra morphisms sending $\cdot(0, d)$ over $\cdot(0, d) \otimes 1 \otimes 1+1 \otimes \cdot(0, d) \otimes 1+1 \otimes 1 \otimes \cdot(0, d)$ for all $d \in \mathcal{D}$, they are equal: Δ^{\prime} is coassociative. Moreover, $(I d \otimes \varepsilon) \circ \Delta^{\prime}$ and $(\varepsilon \otimes I d) \circ \Delta^{\prime}$ are Com-PreLie endomorphisms of $U C P(\mathcal{D})$ sending ${ }^{\bullet}(0, d)$ over itself for all $d \in \mathcal{D}$, so they are both equal to $I d: \varepsilon$ is the counit of Δ^{\prime}. Hence, with this coproduct $\Delta^{\prime}, U C P(\mathcal{D})$ is a Com-PreLie bialgebra.

Let us now prove that $\Delta(\mathcal{T})=\Delta^{\prime}(\mathcal{T})$ for all $T \in \mathcal{P} \mathcal{T}(\mathbb{N} \times \mathcal{D})$. We proceed by induction on the number of vertices n of T. If $n=0$ or $n=1$, it is obvious. Let us assume the result at all ranks $<n$. If T has strictly more than one root, we can write $T=T^{\prime} \cdot T^{\prime \prime}$, where T^{\prime} and $T^{\prime \prime}$ has strictly less that n vertices. It is easy to see that the ideals of T are the parts of $T^{\prime} \sqcup T^{\prime \prime}$ of the form $I^{\prime} \sqcup I^{\prime \prime}$, such that $I^{\prime} \in \mathcal{I} d\left(\mathcal{T}^{\prime}\right)$ and $I^{\prime \prime} \in \mathcal{I} d\left(\mathcal{T}^{\prime \prime}\right)$. Moreover, for such an ideal of T,

$$
R^{I^{\prime} \sqcup I^{\prime \prime}}\left(T^{\prime} \cdot T^{\prime \prime}\right)=R^{I^{\prime}}\left(T^{\prime}\right) \cdot R^{I^{\prime \prime}}\left(T^{\prime \prime}\right), \quad P^{I^{\prime} \sqcup I^{\prime \prime}}\left(T^{\prime} \cdot T^{\prime \prime}\right)=P^{I^{\prime}}\left(T^{\prime}\right) \cdot P^{I^{\prime \prime}}\left(T^{\prime \prime}\right)
$$

Hence:

$$
\begin{aligned}
\Delta(T) & =\sum_{I^{\prime} \in \mathcal{I} d\left(\mathcal{T}^{\prime}\right), I^{\prime \prime} \in \mathcal{I} d\left(\mathcal{T}^{\prime \prime}\right)} R^{I^{\prime}}\left(T^{\prime}\right) \cdot R^{I^{\prime \prime}}\left(T^{\prime \prime}\right) \otimes R^{I^{\prime}}\left(T^{\prime}\right) R^{I^{\prime \prime}}\left(T^{\prime \prime}\right) \\
& =\Delta(T) \cdot \Delta\left(T^{\prime \prime}\right) \\
& =\Delta^{\prime}\left(T^{\prime}\right) \cdot \Delta^{\prime}\left(T^{\prime \prime}\right) \\
& =\Delta^{\prime}\left(T \cdot T^{\prime \prime}\right) \\
& =\Delta(T)
\end{aligned}
$$

If T has only one root, we can write $T=\bullet_{(i, d)} \bullet\left(T_{1} \times \ldots \times T_{k}\right)$, where $T_{1}, \ldots, T_{k} \in \mathcal{P} \mathcal{T}(\mathbb{N} \times \mathcal{D})$. The induction hypothesis holds for T_{1}, \ldots, T_{N}. The ideals of T are:

- T iself: for this ideal $I, P^{I}(T)=T$ and $R^{I}(T)=\emptyset$.
- Ideals $I_{1} \sqcup \ldots \sqcup I_{k}$, where I_{j} is an ideal of T_{j} for all j. For such an ideal $I, P^{I}(T)=$ $P^{I_{1}}\left(T_{1}\right) \cdot \ldots \cdot P^{I_{k}}\left(T_{k}\right)$. Let $J=\left\{i_{1}, \ldots, i_{p}\right\}$ be the set of indices i such that $I_{i}=T_{i}$, that is
to say the number of blocks C of I such that is an edge from the root of T to any vertex of C. Then:

$$
\begin{aligned}
R^{I}(T) & =\cdot{ }_{(i+p, d)} \bullet \prod_{j \notin J}^{\times} R^{I_{j}}\left(T_{j}\right) \\
& =f_{U C P(\mathcal{D})}^{l}\left(\cdot\left({ }_{(i, d)}\right) \bullet \prod_{j \notin J}^{\times} R^{I_{j}}\left(T_{j}\right)\right. \\
& =\bullet_{(i, d)} \bullet \emptyset^{\times p} \times t \prod_{j \notin J}^{\times} R^{I_{j}}\left(T_{j}\right) \\
& =\bullet_{(i, d)} \bullet R^{I_{1}}\left(T_{1}\right) \times \ldots \times R^{I_{k}}\left(T_{k}\right) .
\end{aligned}
$$

We used lemma 5 for the third equality.
By proposition 4 , with $a=\cdot(i, d)$ and $b_{1} \times \ldots \times b_{n}=T_{1} \times \ldots \times T_{k}$:

$$
\begin{aligned}
\Delta^{\prime}(T) & =\sum_{I \subseteq[k]} \cdot(i, d) \bullet\left(\prod_{i \in I}^{\times} T_{i}^{(1)}\right) \otimes\left(\prod_{i \in I} T_{i}^{(2)}\right) \emptyset \bullet\left(\prod_{i \notin I}^{\times} T_{i}\right) \\
& +\sum_{I \subseteq[k]} \emptyset \bullet\left(\prod_{i \in I}^{\times} T_{i}^{(1)}\right) \otimes\left(\prod_{i \in I} T_{i}^{(2)}\right) \cdot(i, d) \bullet\left(\prod_{i \notin I}^{\times} T_{i}\right) \\
& =\boldsymbol{\bullet}_{(i, d)} \bullet T_{1}^{(1)} \times \ldots \times T_{k}^{(1)} \otimes T_{1}^{(2)} \cdot \ldots \cdot T_{k}^{(2)}+0 \\
& +\emptyset \otimes \bullet \cdot(i, d) \bullet T_{1} \times \ldots \times T_{k} \\
& =\sum_{I_{j} \in I d\left(T_{j}\right)} \bullet(i, d) \bullet R^{I_{1}}\left(T_{1}\right) \times \ldots \times R^{I_{k}}\left(T_{k}\right) \otimes P^{I_{1}}\left(T_{1}\right) \cdot \ldots \cdot P^{I_{k}}\left(T_{k}\right)+\emptyset \otimes T \\
& =\sum_{I \in \mathcal{I} d(T),} R^{I}(T \neq T) \otimes P^{I}(T)+\emptyset \otimes T \\
& =\sum_{I \in \mathcal{I} d(T)} R^{I}(T) \otimes P^{I}(T) \\
& =\Delta(T) .
\end{aligned}
$$

Hence, $\Delta^{\prime}=\Delta$.

For all $d \in \mathcal{D} \boldsymbol{\bullet}_{(0, d)} \boldsymbol{\bullet}_{\cdot(1, d)}$ is primitive, so $\Delta\left({ }_{(0, d)}{ }^{-}{ }_{(1, d)}\right) \in I \otimes U C P(\mathcal{D})+U C P(\mathcal{D}) \otimes I$. Consequently, I is a coideal, and the quotient $\operatorname{UCP}(\mathcal{D}) / I=C P(\mathcal{D})$ is a Com-PreLie bialgebra.

Let $x, y \in C P(\mathcal{D})$. By proposition 4, as $\cdot d$ is primitive:

$$
\Delta(\cdot d \bullet(x \times y))=\cdot{ }_{d} \bullet\left(x^{(1)} \times y^{(1)}\right) \otimes x^{(2)} \cdot y^{(2)}+1 \otimes \cdot{ }_{d} \bullet(x \times y)
$$

whereas, by the 1-cocycle property:

$$
\Delta\left(\cdot{ }_{d} \bullet(x \cdot y)\right)=\bullet_{d} \bullet\left(x^{(1)} \cdot y^{(1)}\right) \otimes x^{(2)} \cdot y^{(2)}+\otimes_{\bullet d} \bullet(x \cdot y)
$$

Hence:

$$
\begin{aligned}
\Delta\left(\bullet{ }_{d} \bullet(x \times y)-{ }_{d} \bullet(x \cdot y)\right) & =\underbrace{\left(\cdot{ }_{d} \bullet\left(x^{(1)} \times y^{(1)}\right)-{ }_{d} \bullet\left(x^{(1)} \cdot y^{(1)}\right)\right)}_{\in J} \otimes x^{(2)} \cdot y^{(2)} \\
& +1 \otimes \underbrace{\left(\cdot{ }_{d} \bullet(x \times y)-{ }_{d} \bullet(x \cdot y)\right)}_{\in J} \\
& \in J \otimes C P(\mathcal{D})+C P(\mathcal{D}) \otimes J,
\end{aligned}
$$

so J is a coideal and $C P(\mathcal{D}) / J=\mathcal{H}_{C K}^{\mathcal{D}}$ is a Com-PreLie bialgebra.
Let us consider:

$$
B_{d}:\left\{\begin{array}{rll}
\mathcal{H}_{C K}^{\mathcal{D}} & \longrightarrow \mathcal{H}_{C K}^{\mathcal{D}} \\
T_{1} \ldots T_{k} & \longrightarrow & { }_{d} \bullet T_{1} \times \ldots \times T_{k},
\end{array}\right.
$$

where T_{1}, \ldots, T_{k} are rooted trees decorated by \mathcal{D}. In other terms, $B_{d}\left(T_{1} \ldots T_{k}\right)$ is the tree obtained by grafting the forest $T_{1} \ldots T_{k}$ on a common root decorated by d. By proposition 4 and lemma 5 , for all forest $F=T_{1} \ldots T_{k} \in \mathcal{H}_{C K}^{\mathcal{D}}$:

$$
\begin{aligned}
\Delta \circ B_{d}(F) & =\cdot{ }_{d} \bullet T_{1}^{(1)} \times \ldots \times T_{k}^{(1)} \otimes T_{1}^{(2)} \ldots T_{k}^{(2)}+0+\emptyset \otimes \cdot{ }_{d} \bullet T_{1} \times \ldots \times T_{k} \\
& =B_{d}\left(F^{(1)}\right) \otimes F^{(2)}+\emptyset \otimes B_{d}(F) .
\end{aligned}
$$

We recognize the 1-cocycle property which characterizes the Connes-Kreimer coproduct of rooted trees, so $\mathcal{H}_{C K}^{\mathcal{D}}$ is indeed the Connes-Kreimer Hopf algebra.

Example 6. Let $i, j, k \in \mathbb{N}$ and $d, e, f \in \mathcal{D}$. In $U C P(\mathcal{D})$:

$$
\begin{aligned}
& \Delta \boldsymbol{\bullet}_{(i, d)}=\boldsymbol{\bullet}(i, d) \otimes \emptyset+\emptyset \otimes \boldsymbol{\bullet}_{(i, d)},
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{(j, e)} \bigvee_{(i, d)}^{(k, f)}={ }^{(j, e)} \mathcal{V}_{(i, d)}^{(k, f)} \otimes \emptyset+\emptyset \otimes^{(j, e)} \bigvee_{(i, d)}^{(k, f)}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{(j, e)} \nabla_{(i, d)}^{(k, f)}={ }^{(j, e)} \nabla_{(i, d)}^{(k, f)} \otimes \emptyset+\emptyset \otimes^{(j, e)} \nabla_{(i, d)}^{(k, f)}
\end{aligned}
$$

In $C P(\mathcal{D})$:

$$
\begin{aligned}
& \Delta \cdot{ }_{d}=\cdot{ }_{d} \otimes \emptyset+\emptyset \otimes \cdot{ }_{d}, \\
& \Delta: \mathbf{d}_{d}^{e}=: \mathbf{:}_{d}^{e} \otimes \emptyset+\emptyset \otimes \mathfrak{i}_{d}^{e}+\boldsymbol{\cdot}_{d} \otimes \cdot{ }_{e},
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{e} \nabla_{d}^{f}={ }^{e} \nabla_{d}^{f} \otimes \emptyset+\emptyset \otimes{ }^{e} \nabla_{d}{ }^{f}+\mathbf{t}_{d}^{e} \otimes \cdot{ }_{f}+\mathbf{:}_{d}^{f} \otimes \cdot e+\cdot{ }_{d} \otimes e \cdots f, \\
& \Delta \mathfrak{t}_{d}^{f}=\mathfrak{t}_{d}^{f} \otimes \emptyset+\emptyset \otimes: \mathfrak{l}_{d}^{f}+: \mathbf{:}_{d}^{e} \otimes \cdot{ }_{f}+\cdot{ }_{d} \otimes \mathbf{:}_{e}^{f} .
\end{aligned}
$$

In $\mathcal{H}_{C K}^{\mathcal{D}}$:

$$
\begin{aligned}
& \Delta \cdot{ }_{d}=\cdot{ }_{d} \otimes \emptyset+\emptyset \otimes \cdot{ }_{d}, \\
& \Delta:{ }_{d}^{e}=\mathbf{:}_{d}^{e} \otimes \emptyset+\emptyset \otimes \mathfrak{l}_{d}^{e}+\cdot{ }_{d} \otimes \cdot e, \\
& \Delta^{e} \boldsymbol{V}_{d}{ }^{f}={ }^{e} \boldsymbol{V}_{d}{ }^{f} \otimes \emptyset+\emptyset \otimes{ }^{e} \boldsymbol{V}_{d}{ }^{f}+\mathfrak{t}_{d}^{e} \otimes \cdot{ }_{f}+\mathbf{l}_{d}^{f} \otimes \cdot{ }_{e}+\cdot{ }_{d} \otimes \cdot{ }_{e} \cdot f, \\
& \Delta:_{d}^{f}=:_{{ }_{d}^{f}}^{f} \otimes \emptyset+\emptyset \otimes:_{d}^{f}+\mathbf{:}_{d}^{e} \otimes \cdot{ }_{f}+\cdot{ }_{d} \otimes \mathfrak{:}_{e}^{f} .
\end{aligned}
$$

4.3 An application: Connes-Moscovici subalgebras

Let us fix a set \mathcal{D} of decorations. For any $d \in \mathcal{D}$, we define an operator $N_{d}: \mathcal{H}_{C K}^{\mathcal{D}} \longrightarrow \mathcal{H}_{C K}^{\mathcal{D}}$ by:

$$
\forall x \in \mathcal{H}_{C K}^{\mathcal{D}}, \quad \quad N_{d}(x)=x \bullet \cdot{ }_{d}
$$

In other words, if F is a rooted forest, $N_{d}(F)$ is the sum of all forests obtained by grafting a leaf decorated by d on a vertex of F : when \mathcal{D} is reduced to a singleton, this is the growth operator N of [3].

For all $k \geq 1, i_{1}, \ldots, i_{k} \in \mathcal{D}$, we put:

$$
X_{i_{1}, \ldots, i_{k}}=N_{i_{k}} \circ \ldots \circ N_{i_{2}}\left(\cdot{ }_{i_{1}}\right) .
$$

When $|\mathcal{D}|=1$, these are the generators of the Connes-Moscovici subalgebra of [3].

Proposition 26. Let $\mathcal{H}_{C M}^{\mathcal{D}}$ be the subalgebra of $\mathcal{H}_{C K}^{\mathcal{D}}$ generated by all the elements $X_{i_{1}, \ldots, i_{k}}$. Then $\mathcal{H}_{C M}^{\mathcal{D}}$ is a Hopf subalgebra.

Proof. Note that N_{d} is a derivation; as $N_{d}\left(X_{i_{1}, \ldots, i_{k}}\right)=X_{i_{1}, \ldots, i_{k}, d}$ for all $i_{1}, \ldots, i_{k}, d \in \mathcal{D}, \mathcal{H}_{C M}^{\mathcal{D}}$ is stable under N_{d} for any $d \in \mathcal{D}$. As the $X_{i_{1}, \ldots, i_{k}}$ are homogenous of degree k :

$$
X_{i_{1}, \ldots, i_{k}} \bullet 1=k X_{i_{1}, \ldots, i_{k}}
$$

Hence, $\mathcal{H}_{C M}^{\mathcal{D}}$ is stable under the derivation $D: x \mapsto x \bullet 1$. We obtain:

$$
\begin{align*}
\Delta\left(X_{i_{1}, \ldots, i_{k}}\right) & =\Delta\left(X_{i_{1}, \ldots, i_{k-1}} \bullet \cdot i_{k}\right) \tag{10}\\
& =X_{i_{1}, \ldots, i_{k-1}}^{(1)} \otimes X_{i_{1}, \ldots, i_{k-1}}^{(2)} \bullet \boldsymbol{i}_{k} \\
& +X_{i_{1}, \ldots, i_{k-1}}^{(1)} \bullet \dot{i}_{k}
\end{align*} X_{i_{1}, \ldots, i_{k-1}}^{(2)}+X_{i_{1}, \ldots, i_{k-1}}^{(1)} \bullet \emptyset \otimes X_{i_{1}, \ldots, i_{k-1}}^{(2)} \bullet_{k} .
$$

An easy induction on k proves that $\Delta\left(X_{i_{1}, \ldots, k}\right)$ belongs to $\mathcal{H}_{C M}^{\mathcal{D}} \otimes \mathcal{H}_{C M}^{\mathcal{D}}$.
Proposition 27. We assume that \mathcal{D} is finite. Then $\mathcal{H}_{C M}^{\mathcal{D}}$ is the graded dual of the enveloping algebra of the augmentation ideal of the Com-PreLie algebra $T(V, f)$, where $V=\operatorname{Vect}(\mathcal{D})$ and $f=I d_{V}$.

Proof. We put $W=\operatorname{Vect}\left(X_{i_{1}, \ldots, i_{k}} \mid k \geq 1, i_{1}, \ldots, i_{k} \in \mathcal{D}\right)$. As this is the case for $\mathcal{H}_{C K}^{\mathcal{D}}$, for any $x \in W$:

$$
\Delta(x)-x \otimes 1+1 \otimes x \in W \otimes \mathcal{H}_{C M}^{\mathcal{D}}
$$

This implies that the graded dual of $\mathcal{H}_{C M}^{\mathcal{D}}$ is the enveloping of a graded algebra \mathfrak{g}; as a vector space, \mathfrak{g} is identified with W^{*} and its preLie product is dual of the bracket δ defined on W by $\left(\pi_{W} \otimes \pi_{W} \circ \Delta\right.$, where π_{W} is the canonical projection on W which vanishes on $(1)+\left(\mathcal{H}_{C M}^{\mathcal{D}}\right)_{+}^{2}$. By (10), using Sweedler's notation $\delta(x)=x^{\prime} \otimes x^{\prime \prime}$, we obtain:

$$
\delta\left(X_{i_{1}, \ldots, i_{k+1}}\right)=X_{i_{1}, \ldots, i_{k}}^{\prime} \otimes X_{i_{1}, \ldots, i_{k}}^{\prime \prime} \bullet X_{i_{k+1}}+X_{i_{1}, \ldots, i_{k}}^{\prime} \bullet X_{i_{k+1}} \otimes X_{i_{1}, \ldots, i_{k}}^{\prime \prime}+k X_{i_{1}, \ldots, i_{k}} \otimes X_{i_{k+1}}
$$

We shall use the following notations. If $I \subseteq[k]$, we put:

- $m(I)=\max (i \mid[i] \subseteq I)$, with the convention $m(I)=0$ if $1 \notin I$.
- $X_{i_{I}}=X_{i_{p_{1}}, \ldots i_{p_{l}}}$ if $I=\left\{p_{1}<\ldots<p_{l}\right\}$.

An easy induction then proves the following result:

$$
\forall i_{1}, \ldots, i_{k} \in \mathcal{D}
$$

$$
\delta\left(X_{i_{1}, \ldots, i_{k}}\right)=\sum_{\emptyset \subseteq I \subseteq[k]} m(I) X_{i_{I}} \otimes X_{i_{[k] \backslash I}}
$$

We identify W^{*} and $T(V)_{+}$via the pairing:

$$
\forall i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{l} \in \mathcal{D}
$$

$$
\left\langle X_{i_{1}, \ldots, i_{k}}, j_{1} \ldots j_{l}\right\rangle=\delta_{\left(i_{1}, \ldots, i_{k}\right),\left(j_{1}, \ldots, j_{l}\right)}
$$

The preLie product on $T(V)_{+}$induced by δ is then given by:

$$
i_{1} \ldots i_{k} \bullet i_{k+1} \ldots i_{k+l}=\sum_{\sigma \in S h(k, l)} m_{k}(\sigma) i_{\sigma^{-1}(1)} \ldots i_{\sigma^{-1}(k+l)}
$$

By (7), this is precisely the preLie product of $T(V, f)$.

Remark 9. The following map is a bijection:

$$
\theta_{k, l}:\left\{\begin{aligned}
S h(k, l) & \longrightarrow S h(l, k) \\
\sigma & \longrightarrow(k+l k+l-1 \ldots 1) \circ \sigma \circ(k+l k+l-1 \ldots 1) .
\end{aligned}\right.
$$

Moreover, for any $\sigma \in S h(k, l)$:

$$
m_{l}\left(\theta_{k, l}(\sigma)\right)=\min \{i \in l \in\{k+1, \ldots, k+l\} \mid \sigma(i)=i, \ldots, \sigma(k+l)=\sigma(k+l)\}=m_{l}^{\prime}(\sigma)
$$

with the convention $m_{l}^{\prime}(\sigma)=0$ if $\sigma(k+l) \neq k+l$. Then the Lie bracket associated to \bullet is given by:

$$
\forall i_{1}, \ldots, i_{k+l} \in \mathcal{D}, \quad\left[i_{1} \ldots i_{k}, i_{k+1} \ldots i_{k+l}\right]=\sum_{\sigma \in S h(k, l)}\left(m_{k}(\sigma)-m_{l}^{\prime}(\sigma)\right) i_{\sigma^{-1}(1)} \ldots i_{\sigma^{-1}(k+l)}
$$

4.4 A rigidity theorem for Com-PreLie bialgebras

Theorem 28. Let (A, m, \bullet, Δ) be a connected Com-PreLie bialgebra. If f_{A} (defined in Proposition 3) is surjective, then (A, m, Δ) and $(T(\operatorname{Prim}(A)), \amalg, \Delta)$ are isomorphic Hopf algebras.

Proof. We put $V=\operatorname{Prim}(A)$.
First step. As f_{A} is surjective, there exists $g: V \longrightarrow V$ such that $f_{A} \circ g=I d_{V}$. For all $x \in V$, we put:

$$
L_{x}:\left\{\begin{array}{rll}
A & \longrightarrow & A \\
y & \longrightarrow & g(x) \bullet y .
\end{array}\right.
$$

For all $y \in A$:

$$
\Delta \circ L_{x}(y)=\emptyset \otimes g(x) \bullet y+g(x) \bullet y^{(1)} \otimes y^{(2)}=\emptyset \otimes L_{x}(y)+\left(I d \otimes L_{x}\right) \circ \Delta(y)
$$

Hence, L_{x} is a 1-cocycle of A. Moreover, $L_{x}(1)=g(x) \bullet 1=f_{A} \circ g(x)=x$. For all $x_{1}, \ldots, x_{n} \in V$, we define $\omega\left(x_{1}, \ldots, x_{n}\right)$ inductively on n by:

$$
\omega\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{array}{l}
\emptyset \text { if } n=0 \\
L_{x_{1}}\left(\omega\left(x_{2}, \ldots, x_{n-1}\right)\right) \text { if } n \geq 1
\end{array}\right.
$$

In particular, $\omega(v)=v$ for all $v \in V$. An easy induction proves that:

$$
\Delta\left(\omega\left(x_{1}, \ldots, x_{n}\right)\right)=\sum_{i=0}^{n} \omega\left(x_{1}, \ldots, x_{i}\right) \otimes \omega\left(x_{i+1}, \ldots, x_{n}\right)
$$

Hence, the following map is a coalgebra morphism:

$$
\omega:\left\{\begin{aligned}
T(V) & \longrightarrow A \\
x_{1} \ldots x_{n} & \longrightarrow \omega\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}\right.
$$

It is injective: if $\operatorname{Ker}(\omega)$ is nonzero, then it is a nonzero coideal of $T(V)$, so it contains nonzero primitive elements of $T(V)$, that is to say nonzero elements of V. For all $v \in V$, $\omega(v)=L_{v}(1)=v$: contradiction. Let us prove that ω is surjective. As A is connected, for any $x \in A_{+}$, there exists $n \geq 1$ such that $\tilde{\Delta}^{(n)}(x)=0$. Let us prove that $x \in \operatorname{Im}(\omega)$ by induction on n. If $n=1$, then $x \in V$, so $x=\omega(x)$. Let us assume the result at all ranks $<n$. By coassociativity of $\tilde{\Delta}, \tilde{\Delta}^{(n-1)}(x) \in V^{\otimes n}$. We put $\tilde{\Delta}^{(n-1)}(x)=x_{1} \otimes \ldots \otimes x_{n} \in V^{\otimes n}$. Then $\tilde{\Delta}^{(n-1)}(x)=\tilde{\Delta}^{(n-1)}\left(\omega\left(x_{1}, \ldots, x_{n}\right)\right)$. By the induction hypothesis, $x-\omega\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Im}(\omega)$, so $x \in \operatorname{Im}(\omega)$.

We proved that the coalgebras A and $T(V)$ are isomorphic. We now assume that $A=T(V)$ as a coalgebra.

Second step. We denote by π the canonical projection on V in $T(V)$. Let $\varpi: T_{+}(V) \longrightarrow V$ be any linear map. We define:

$$
F_{\varpi}:\left\{\begin{aligned}
T(V) & \longrightarrow T(V) \\
x_{1} \ldots x_{n} & \longrightarrow \sum_{k=1}^{n} \sum_{i_{1}+\ldots+i_{k}=n} \varpi\left(x_{1} \ldots x_{i_{1}}\right) \ldots \varpi\left(x_{i_{1}+\ldots+i_{k-1}+1} \ldots x_{n}\right) .
\end{aligned}\right.
$$

Let us prove that F_{ϖ} is the unique coalgebra endomorphism such that $\pi \circ F_{\varpi}=\varpi$. First:

$$
\begin{aligned}
\Delta\left(F_{\varpi}\left(x_{1} \ldots x_{n}\right)\right) & =\sum_{i_{1}+\ldots+i_{k}=n} \Delta\left(\varpi\left(x_{1} \ldots x_{i_{1}}\right) \ldots \varpi\left(x_{i_{1}+\ldots+i_{k-1}+1} \ldots x_{n}\right)\right) \\
& =\sum_{i_{1}+\ldots+i_{k}=n} \sum_{j=0}^{k} \varpi\left(x_{1} \ldots x_{i_{1}}\right) \ldots \varpi\left(x_{i_{1}+\ldots+i_{j-1}+1} \ldots x_{i_{1}+\ldots+i_{j}}\right) \\
& \left.\otimes \varpi\left(x_{i_{1}+\ldots+i_{j}+1} \ldots x_{i_{1}+\ldots i_{j+1}}\right) \ldots \varpi\left(x_{i_{1}+\ldots+i_{k-1}+1} \ldots x_{n}\right)\right) \\
& =\sum_{i=0}^{n} F_{\varpi}\left(x_{1} \ldots x_{i}\right) \otimes F_{\varpi}\left(x_{i+1} \ldots x_{n}\right) \\
& =\left(F_{\varpi} \otimes F_{\varpi}\right) \circ \Delta\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

Moreover:

$$
\begin{aligned}
\pi \circ F_{\varpi}\left(x_{1} \ldots x_{n}\right) & =\sum_{k=1}^{n} \sum_{i_{1}+\ldots+i_{k}=n} \pi\left(\varpi\left(x_{1} \ldots x_{i_{1}}\right) \ldots \varpi\left(x_{i_{1}+\ldots+i_{k-1}+1} \ldots x_{n}\right)\right) \\
& =\pi \circ \varpi\left(x_{1} \ldots x_{n}\right)+0 \\
& =\varpi\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

Let us now prove the unicity. Let F, G be two coalgebra endomorphisms such that $\pi \circ F=$ $\pi \circ G=\varpi$. If $F \neq G$, let $x_{1} \ldots x_{n}$ be a word of $T(V)$, such that $F\left(x_{1} \ldots x_{n}\right)-G\left(x_{1} \ldots x_{n}\right) \neq 0$, of minimal length. By minimality of n :

$$
\tilde{\Delta}\left(F\left(x_{1} \ldots x_{n}\right)\right)=(F \otimes F) \circ \tilde{\Delta}\left(x_{1} \ldots x_{n}\right)=(G \otimes G) \circ \tilde{\Delta}\left(x_{1} \ldots x_{n}\right)=\tilde{\Delta}\left(G\left(x_{1} \ldots x_{n}\right)\right)
$$

Hence, $F\left(x_{1} \ldots x_{n}\right)-G\left(x_{1} \ldots x_{n}\right) \in \operatorname{Prim}(T(V))=V$, so:

$$
F\left(x_{1} \ldots x_{n}\right)-G\left(x_{1} \ldots x_{n}\right)=\pi\left(F\left(x_{1} \ldots x_{n}\right)-G\left(x_{1} \ldots x_{n}\right)\right)=\varpi\left(x_{1} \ldots x_{n}\right)-\varpi\left(x_{1} \ldots x_{n}\right)=0
$$

This is a contradiction, so $F=G$.

Third step. Let $\varpi_{1}, \varpi_{2}: T_{+}(V) \longrightarrow V$ and let $F_{1}=F_{\varpi_{1}}, F_{2}=F_{\varpi_{2}}$ be the associated coalgebra morphisms. Then:

$$
\left.\pi \circ F_{2} \circ F_{1}\left(x_{1} \ldots x_{n}\right)=\sum_{i_{1}+\ldots+i_{k}=n} \varpi_{2}\left(\varpi_{1}\left(x_{1} \ldots x_{i_{1}}\right) \ldots \varpi_{1}\left(x_{i_{1}+\ldots+i_{k-1}+1}\right) \ldots x_{n}\right)\right)
$$

We denote this map by $\varpi_{2} \diamond \varpi_{1}$. By the unicity in the second step, $F_{2} \circ F_{1}=F_{\varpi_{2} \diamond \varpi_{1}}$. It is not difficult to prove that for any $\varpi: T_{+}(V) \longrightarrow V$, there exists $\varpi^{\prime}: T_{+}(V) \longrightarrow V$, such that $\varpi^{\prime} \diamond \varpi=\varpi \diamond \varpi^{\prime}=\pi$ if, and only if, $\varpi_{\mid V}$ is invertible. If this holds, then $F_{\varpi} \circ F_{\varpi^{\prime}}=F_{\varpi^{\prime}} \circ F_{\varpi}=$ $F_{\pi}=I d$, by the unicity in the second step. So, if $\varpi_{\mid V}$ is invertible, then F_{ϖ} is invertible.

Fourth step. We denote by $*$ the product of $T(V)$. Let us choose $\varpi: T_{+}(V) \longrightarrow V$ such that $\varpi\left(T_{+}(V) * T_{+}(V)\right)=(0)$. Let $F=F_{\varpi}$ the associated coalgebra morphism. As \emptyset is the unique group-like element of $T(V)$, the unit of $*$ is \emptyset. Let us prove that for all $x, y \in T(V)$, $F(x * y)=F(x) \cdot F(y)$. We proceed by induction on length $(x)+\operatorname{length}(y)=n$. As \emptyset is the unit for both $*$ and \cdot and $F(\emptyset)=\emptyset$, it is obvious if x or y is equal to \emptyset : this observation covers the case $n=0$. Let us assume the result at all rank $<n$. By the preceding observation on the unit, we can assume that $x, y \in T_{+}(V)$. We put $G=F \circ *$ and $H=\cdot \circ(F \otimes F)$. They are both coalgebra morphisms from $T(V) \otimes T(V)$ to $T(V)$. Moreover:

$$
\pi \circ G(x \otimes y)=\pi \circ F(x * y)=\varpi(x * y)=0
$$

As the shuffle product is graded for the length, $\pi \circ H(x \otimes y)=0$. By the induction hypothesis:

$$
\tilde{\Delta} \circ G(x \otimes y)=(G \otimes G) \circ \tilde{\Delta}(x \otimes y)=(F \otimes F) \circ \tilde{\Delta}(x \otimes y)=\tilde{\Delta} \circ F(x \otimes y)
$$

Hence, $G(x \otimes y)-F(x \otimes y)$ is primitive, so belongs to V. This implies:

$$
G(x \otimes y)-F(x \otimes y)=\pi(G(x \otimes y)-F(x \otimes y))=0-0=0
$$

So $F(x * y)=G(x \otimes y)=F(x \otimes y)=F(x) Ш F(y)$. Hence, F is a bialgebra morphism from $(T(V), *, \Delta)$ to $(T(V), \amalg, \Delta)$.

By the third and fourth steps, in order to prove that $(T(V), *, \Delta)$ and $(T(V), \amalg, \Delta)$ are isomorphic, it is enough to find $\varpi: T_{+}(V) \longrightarrow V$, such that $\varpi_{\mid V}$ is invertible and $\varpi\left(T_{+}(V) *\right.$ $\left.T_{+}(V)\right)=(0)$; hence, it is enough to prove that $V \cap\left(A_{+} * A_{+}\right)=(0)$.

Last step. We define $\Delta: \operatorname{End}(A) \longrightarrow \operatorname{End}(A \otimes A, A)$ by $\Delta(f)(x \otimes y)=f(x * y)$. We denote by \star the convolution product of $\operatorname{End}(A)$ induced by the bialgebra $(A, *, \Delta)$. Let $f, g \in \operatorname{End}(A)$. We assume that we can write $\Delta(f)=f^{(1)} \otimes f^{(2)}$ and $\Delta(g)=g^{(1)} \otimes g^{(2)}$, that is to say, for all $x, y \in A$:

$$
f(x y)=f^{(1)}(x) * f^{(2)}(y), g(x y)=g^{(1)}(x) * g^{(2)}(y)
$$

Then, as $*$ is commutative:

$$
\begin{aligned}
f \star g(x * y) & =f\left(x^{(1)} * y^{(1)}\right) * g\left(x^{(2)} * y^{(2)}\right) \\
& =f^{(1)}\left(x^{(1)}\right) * f^{(2)}\left(y^{(1)}\right) * g^{(1)}\left(x^{(2)}\right) * g^{(2)}\left(y^{(2)}\right) \\
& =f^{(1)}\left(x^{(1)}\right) * g^{(1)}\left(x^{(2)}\right) * f^{(2)}\left(y^{(1)}\right) * g^{(2)}\left(y^{(2)}\right) \\
& =f^{(1)} \star g^{(1)}(x) * f^{(1)} \star g^{(2)}(y) .
\end{aligned}
$$

Hence, $\Delta(f \star g)=\Delta(f) \star \Delta(g)$.
Let ρ be the canonical projection on A_{+}and 1 be the unit of the convolution algebra $\operatorname{End}(V)$. Then $1+\rho=I d$. As $\Delta(I d)=I d \otimes I d$ and $\Delta(1)=1 \otimes 1$, this gives:

$$
\Delta(\rho)=\rho \otimes 1+1 \otimes \rho+\rho \otimes \rho
$$

We consider:

$$
\psi=\ln (1+\rho)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \rho^{\star n}
$$

As A is connected, for all $x \in A, \rho^{\star n}(x)=0$ if n is great enough, so ψ exists. Moreover, as Δ is compatible with the convolution product:

$$
\begin{aligned}
\Delta(\psi) & =\ln (1 \otimes 1+\rho \otimes 1+1 \otimes \rho+\rho \otimes \rho) \\
& =\ln ((1+\rho) \otimes(1+\rho)) \\
& =\ln (1+\rho) \otimes 1)+\ln (1 \otimes(1+\rho)) \\
& =\ln (1+\rho) \otimes 1+1 \otimes \ln (1+\rho) \\
& =\psi \otimes 1+1 \otimes \psi .
\end{aligned}
$$

We used $((1+\rho) \otimes 1) \star(1 \otimes(1+\rho))=(1 \otimes(1+\rho)) \star((1+\rho) \otimes 1)=(1+\rho) \otimes(1+\rho)$ for the third equality. Hence, for all $x, y \in A$:

$$
\psi(x * y)=\psi(x) \varepsilon(y)+\varepsilon(x) \psi(y) .
$$

In particular, if $x, y \in A_{+}, \psi(x * y)=0$. If $x \in V$, then $\rho^{1}(x)=x$ and if $n \geq 2$:

$$
\rho^{* n}(x)=\sum_{i=1}^{n} \rho(1) * \ldots * \rho(1) * \rho(x) * \rho(1) * \ldots * \rho(1)=0 .
$$

So $\psi(x)=x$. Finally, if $x \in V \cap\left(A_{+} * A_{+}\right), \psi(x)=x=0$. So $V \cap\left(A_{+} * A_{+}\right)=(0)$.
The following result is proved for $\mathcal{H}_{C K}^{\mathcal{D}}$ in [2] and in [7]:
Corollary 29. $C P(\mathcal{D})$ and $\mathcal{H}_{C K}^{\mathcal{D}}$ are, as Hopf algebras, isomorphic to shuffle algebras.
Proof. $C P(\mathcal{D})$ is a connected Com-PreLie bialgebra. Moreover, if $x \in C P(\mathcal{D})$, homogeneous of degree $n, x \bullet \emptyset=n x$. Hence, as the homogeneous component of degree 0 of $\operatorname{Prim}(C P(\mathcal{D}))$ is zero, $f_{C P(\mathcal{D})}$ is invertible. By the rigidity theorem, $f_{C P(\mathcal{D})}$ is, as a Hopf algebra, isomorphic to a shuffle algebra. The proof is similar for $\mathcal{H}_{C K}^{\mathcal{D}}$.

Remark 10. 1. This is not the case for $\operatorname{UCP}(\mathcal{D})$. For example, if d, e are two distinct elements of \mathcal{D}, it is not difficult to prove that there is no element $x \in \operatorname{UCK}(\mathcal{D})$ such that:

$$
\Delta(x)=x \otimes 1+1 \otimes x+\boldsymbol{\bullet}_{(0, d)} \otimes \boldsymbol{\bullet}_{(0, e)} .
$$

So $\operatorname{UCP}(\mathcal{D})$ is not cofree.
2. $C P(\mathcal{D})$ and $\mathcal{H}_{C K}^{\mathcal{D}}$ are not isomorphic, as Com-PreLie bialgebras, to any $T(V, f)$. Indeed, in $T(V, f)$, for any $x \in V$ such that $f(x)=x, x 山 x=2 x \bullet x=2 x x$. In $f_{C P(\mathcal{D})}$ or $\mathcal{H}_{C K}^{\mathcal{D}}$, for any $d \in \mathcal{D}$, with $x=\cdot{ }_{\cdot d}, f(x)=x$ but $x \cdot x \neq 2 x \bullet x$.

4.5 Dual of $U C P(\mathcal{D})$ and $C P(\mathcal{D})$

We identify $\operatorname{UCP}(\mathcal{D})$ and its graded dual by considering the basis of partitioned trees as orthonormal; similarly, we identify $C P(\mathcal{D})$ and $\mathcal{H}_{C K}^{D}$ with their graded dual.

Let us consider the Hopf algebra $(\operatorname{UCP}(\mathcal{D}), \cdot, \Delta)$. As a commutative algebra, it is freely generated by the set $\mathcal{U P} \mathcal{T}_{1}(\mathcal{D})$ of partitioned trees decorated by $\mathbb{N} \times \mathcal{D}$ with one root. Moreover, if $T \in \mathcal{U P} \mathcal{T}_{1}(\mathcal{D})$:

$$
\Delta(T)-1 \otimes T \in \operatorname{Vect}\left(\mathcal{U P}^{1} \mathcal{T}_{1}(\mathcal{D})\right) \otimes U C P(\mathcal{D}) .
$$

Consequently, this is a right-sided combinatorial bialgebra in the sense of [12], and its graded dual is the enveloping algebra of a PreLie algebra $\mathfrak{g}_{U C P}(\mathcal{D})$. Direct computations prove the following result:

Theorem 30. The PreLie algebra $\mathfrak{g}_{U C P}(\mathcal{D})$ is the linear span of $\mathcal{U P} \mathcal{T}_{1}(\mathcal{D})$. For any $T, T^{\prime} \in$ $\mathcal{U P} \mathcal{T}_{1}(\mathcal{D})$, the PreLie product is given by:

$$
T \diamond T^{\prime}=\sum_{\substack{s \in V(T), b \in b l(s) \cup\{*\}}}\left(T \bullet_{s, b} T^{\prime}\right)[-1]_{s} .
$$

Example 7. If $\mathcal{D}=\{1\}$, forgetting the second decoration of the vertices, in $\mathfrak{g}_{U C P}(\mathcal{D})$:

$$
\begin{aligned}
& \boldsymbol{\bullet}_{i} \diamond \cdot_{j}=\left(1-\delta_{i, 0}\right) \mathbf{:}_{i-1}^{j}, \\
& \mathbf{d}_{i}^{j} \diamond \cdot{ }_{k}=\left(1-\delta_{j, 0}\right): \mathbf{:}_{i}^{k}-1+\left(1-\delta_{i, 0}\right)\left({ }^{j} \boldsymbol{V}_{i-1}^{k}+{ }^{k} \nabla_{i-1}^{k}\right) .
\end{aligned}
$$

Similarly, the Hopf algebra $(C P(\mathcal{D}), \cdot, \Delta)$ is, as a commutative algebra, freely generated by the set $\mathcal{P} \mathcal{T}_{1}(\mathcal{D})$ of partitioned trees decorated by \mathcal{D} with one root. Moreover, if $T \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D})$,

$$
\Delta(T)-1 \otimes T \in V \operatorname{ect}\left(\mathcal{P} \mathcal{T}_{1}(\mathcal{D})\right) \otimes C P(\mathcal{D})
$$

Consequently, its graded dual is the enveloping algebra of a PreLie algebra $\mathfrak{g}_{C P}(\mathcal{D})$, described by the following theorem:

Theorem 31. The PreLie algebra $\mathfrak{g}_{C P}(\mathcal{D})$ is the linear span of $\mathcal{P} \mathcal{T}_{1}(\mathcal{D})$. For any $T, T^{\prime} \in$ $\mathcal{P} \mathcal{T}_{1}(\mathcal{D})$, the PreLie product is given by:

$$
T \diamond T^{\prime}=\sum_{\substack{s \in V(T), b \in b l(s) \sqcup\{*\}}} T \bullet_{s, b} T^{\prime}
$$

Example 8. If $\mathcal{D}=\{1\}$, forgetting the decorations, in $\mathfrak{g}_{C P}(\mathcal{D})$:

$$
\cdot \diamond \cdot=:, \quad: \diamond \cdot=\vdots+V+\nabla
$$

Notations 3. Let $T \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D})$. We can write $T=\cdot{ }_{d} \bullet\left(T_{1} \times \ldots \times T_{k}\right)=B_{d}\left(T_{1} \ldots T_{k}\right)$, where $T_{1}, \ldots, T_{k} \in \mathcal{P} \mathcal{T}(\mathcal{D})$. Up to a change of indexation, we will always assume that $T_{1}, \ldots, T_{p} \in$ $\mathcal{P} \mathcal{T}_{1}(\mathcal{D})$ and $T_{p+1}, \ldots, T_{k} \notin \mathcal{P} \mathcal{T}_{1}(\mathcal{D})$. The integer p is denoted by $\varsigma(T)$.

Proposition 32. As a PreLie algebra, $\mathfrak{g}_{C P}(\mathcal{D})$ is freely generated by the set of trees $T \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D})$ such that $\varsigma(T)=0$.

Proof. We define a coproduct on $\mathfrak{g}_{C P}(\mathcal{D})$ in the following way:

$$
\forall T=B_{d}\left(T_{1} \ldots T_{k}\right) \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D}), \quad \delta(T)=\sum_{i=1}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i}
$$

This coproduct is permutative: indeed,

$$
(\delta \otimes I d) \circ \delta(T)=\sum_{1 \leq i \neq j \leq \varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots \widehat{T}_{j} \ldots T_{k}\right) \otimes T_{i} \otimes T_{j}
$$

so $(\delta \otimes I d) \circ \delta=(23) .(\delta \otimes I d) \circ \delta$. Let $T=B_{d}\left(T_{1} \ldots T_{k}\right), T^{\prime} \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D})$. Then:

$$
T \diamond T^{\prime}=B_{d}\left(T^{\prime} T_{1} \ldots T_{k}\right)+\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots\left(T_{i} \diamond T^{\prime}\right) \ldots T_{k}\right)+\sum_{i=1}^{k} B_{d}\left(T_{1} \ldots\left(T_{i} ш T^{\prime}\right) \ldots T_{k}\right)
$$

Hence:

$$
\begin{aligned}
\delta\left(T \otimes T^{\prime}\right)= & B_{d}\left(T_{1} \ldots T_{k}\right) \otimes T^{\prime}+\sum_{i=1}^{\varsigma(T)} B_{d}\left(T^{\prime} T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \\
& +\sum_{i=1}^{k} \sum_{\substack{j=1 \\
j \neq i}}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{j} \ldots\left(T_{i} \diamond T^{\prime}\right) \ldots T_{k}\right) \otimes T_{j}+\sum_{i=1}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \diamond T^{\prime} \\
& +\sum_{i=1}^{k} \sum_{\substack{\zeta=1 \\
j \neq i}}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{j} \ldots\left(T_{i} ш T^{\prime}\right) \ldots T_{k}\right) \otimes T_{j} \\
= & \sum_{j=1}^{\varsigma(T)}\left(B_{d}\left(T^{\prime} T_{1} \ldots \widehat{T}_{j} \ldots T_{k}\right)+\sum_{\substack{i=1 \\
i \neq j}}^{k} B_{d}\left(T_{1} \ldots \widehat{T}_{j} \ldots\left(T_{i} \diamond T^{\prime}+T_{i} ш T^{\prime}\right) \ldots T_{k}\right)\right) \otimes T_{j} \\
& +\sum_{i=1}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \diamond T^{\prime}+T \otimes T^{\prime} \\
= & \sum_{j=1}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{j} \ldots T_{k}\right) \bullet T^{\prime} \otimes T_{j}+\sum_{i=1}^{\varsigma(T)} B_{d}\left(T_{1} \ldots \widehat{T}_{i} \ldots T_{k}\right) \otimes T_{i} \diamond T^{\prime}+T \otimes T^{\prime} \\
= & T^{(1)} \diamond T^{\prime} \otimes T^{(2)}+T^{(1)} \otimes T^{(2)} \diamond T^{\prime}+T \otimes T^{\prime} .
\end{aligned}
$$

By Livernets's rigidity theorem, $\mathfrak{g}_{C P}(\mathcal{D})$ si freely generated, as a PreLie algebra, by $\operatorname{Ker}(\delta)$.
We define:

$$
\Upsilon:\left\{\begin{array}{rll}
\mathfrak{g}_{C P}(\mathcal{D}) \otimes \mathfrak{g}_{C P}(\mathcal{D}) & \longrightarrow \mathfrak{g}_{C P}(\mathcal{D}) \\
T \otimes T^{\prime} & \longrightarrow T \bullet_{r(T), *} T^{\prime},
\end{array}\right.
$$

where $r(T)$ is the root of T. In other words, $\Upsilon\left(B_{d}\left(T_{1} \ldots T_{k}\right) \otimes T^{\prime}\right)=B_{d}\left(T^{\prime} T_{1} \ldots T_{k}\right)$; this implies that for any $T \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D}), \Upsilon \circ \delta(T)=\varsigma(T) T$. Hence, if $x=\sum a_{T} T \in \operatorname{Ker}(\delta), \Upsilon \circ \delta(x)=$ $\sum a_{T} \varsigma(T) T=0$, so x is a linear span of trees T such that $\varsigma(T)=0$. The converse is trivial.

We denote by $P T_{1}^{(0)}(\mathcal{D})$ the set of partitioned trees $T \in \mathcal{P} \mathcal{T}_{1}(\mathcal{D})$ with $\varsigma(T)=0$. The preceding proposition implies that the Hopf algebras $(C P(\mathcal{D}), \cdot, \Delta)$ and $\left(\mathcal{H}_{C K}^{\mathcal{P T}^{(0)}(\mathcal{D})}, m, \Delta\right)$ are isomorphic. We obtain an explicit isomorphism between them:

Definition 33. Let $T \in \mathcal{P} \mathcal{T}(\mathcal{D})$ and $\pi=\left\{P_{1}, \ldots, P_{k}\right\}$ be a partition of $V(T)$. We shall write $\pi \triangleleft T$ if the following condition holds:

- For all $i \in[k]$, the partitioned rooted forest $T_{\mid P_{i}}$, denoted by T_{i}, belongs to $\mathcal{P} \mathcal{T}_{1}^{(0)}(\mathcal{D})$.

If $\pi \triangleleft T$, the contracted graph T / π is a rooted forest (one forgets about the blocks of T). The vertex of T / π corresponding to P_{i} is decorated by T_{i}, making T / π an element of $\mathcal{T}\left(\mathcal{P} \mathcal{T}_{1}^{(0)}(\mathcal{D})\right)$.
Corollary 34. The following map is a Hopf algebra isomorphism:

$$
\Theta:\left\{\begin{aligned}
(C P(\mathcal{D}), \cdot, \Delta) & \longrightarrow\left(\mathcal{H}_{C K}^{\mathcal{T}_{1}^{(0)}(\mathcal{D})}, \cdot, \Delta\right) \\
T \in \mathcal{P} \mathcal{T}(\mathcal{D}) & \longrightarrow \sum_{\pi \triangleleft T} T / \pi .
\end{aligned}\right.
$$

Example 9. If $\mathcal{D}=\{1\}$, forgetting the decorations, with $a=$. and $b=\nabla$:

$$
\Theta(\cdot)=\cdot_{a}, \quad \Theta(:)=\mathbf{1}_{a}^{a}, \quad \Theta(\mathcal{V})={ }^{a}, \quad \boldsymbol{V}_{a}{ }^{a}, \quad \Theta(\nabla)={ }^{a} \boldsymbol{V}_{a}{ }^{a}+\cdot{ }_{b} .
$$

4.6 Extension of the preLie product \diamond to all partitioned trees

We now extend the preLie product \diamond to the whole $C P(\mathcal{D})$:
Proposition 35. We define a product on $\operatorname{CP}(\mathcal{D})$ in the following way:

$$
\forall T, T^{\prime} \in \mathcal{P} \mathcal{T}(\mathcal{D}), \quad T \diamond T^{\prime}=\sum_{\substack{s \in V(T), b \in b l(s) \sqcup\{*\}}} T \bullet_{s, b} T^{\prime}
$$

Then $(C P(\mathcal{D}), \diamond, \cdot)$ is a Com-PreLie algebra.
Proof. Obviously, for any $x, y, z \in \mathcal{P} \mathcal{T}(\mathcal{D}),(x \cdot y) \diamond z=(x \diamond z) \cdot x+x \cdot(y \diamond z)$. Let $T_{1}, T_{2}, T_{3} \in \mathcal{P} \mathcal{T}(\mathcal{D})$. Then:

$$
\begin{aligned}
& \left(T_{1} \diamond T_{2}\right) \diamond T_{3}=\sum_{\substack{s_{1} \in V\left(T_{1}\right), b_{1} \in b l\left(s_{1}\right) \sqcup\{*\}}} \sum_{\substack{s_{2} \in V\left(T_{1}\right), b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}}\left(T_{1} \bullet_{s_{1}, b_{1}} T_{2}\right) \bullet_{s_{2}, b_{2}} T_{3} \\
& +\sum_{\substack{s_{1} \in V\left(T_{1}\right), b_{1} \in b l\left(s_{1}\right) \sqcup\{*\}}} \sum_{\substack{s_{2} \in V\left(T_{2}\right), b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}}\left(T_{1} \bullet_{s_{1}, b_{1}} T_{2}\right) \bullet_{s_{2}, b_{2}} T_{3} \\
& =\sum_{\substack{s_{1} \in V\left(T_{1}\right), b_{1} \in b l\left(s_{1}\right) \sqcup\{*\}}} \sum_{\substack{s_{2} \in V\left(T_{1}\right), b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}}\left(T_{1} \bullet_{s_{1}, b_{1}} T_{2}\right) \bullet_{s_{2}, b_{2}} T_{3} \\
& +\sum_{\substack{s_{1} \in V\left(T_{1}\right), b_{1} \in b l\left(s_{1}\right) \cup\{*\}}} \sum_{\substack{s_{2} \in V\left(T_{2}\right), b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}} T_{1} \bullet_{s_{1}, b_{1}}\left(T_{2} \bullet_{s_{2}, b_{2}} T_{3}\right) \\
& =\sum_{\substack{s_{1} \in V\left(T_{1}\right), b_{1} \in b l\left(s_{1}\right) \cup\{*\}}} \sum_{\substack{s_{2} \in V\left(T_{1}\right), b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}}\left(T_{1} \bullet_{s_{1}, b_{1}} T_{2}\right) \bullet_{s_{2}, b_{2}} T_{3}+T_{1} \diamond\left(T_{2} \diamond T_{3}\right) .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\left(T_{1} \diamond T_{2}\right) \diamond T_{3}-T_{1} \diamond\left(T_{2} \diamond T_{3}\right)= & \sum_{\substack{s_{1} \in V\left(T_{1}\right), b_{1} \in b l\left(s_{1}\right) \sqcup\{*\}}} \sum_{\substack{s_{2} \in V\left(T_{1}\right), b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}}\left(T_{1} \bullet_{s_{1}, b_{1}} T_{2}\right) \bullet_{s_{2}, b_{2}} T_{3} \\
& =\sum_{\substack{s_{1} \neq s_{2} \in V\left(T_{1}\right) \\
b_{1} \in b l\left(s_{1}\right) \cup\{*\}, b_{2} \in b l\left(s_{2}\right) \sqcup\{*\}}}\left(T_{1} \bullet_{s_{1}, b_{1}} T_{2}\right) \bullet_{s_{2}, b_{2}} T_{3} \\
& +\sum_{\substack{s \in V\left(T_{1}\right), b_{1} \neq b_{2} \in b l(s) \sqcup\{*\}}}\left(T_{1} \bullet_{s, b_{1}} T_{2}\right) \bullet_{s, b_{2}} T_{3}+\sum_{\substack{s \in V\left(T_{1}\right), b \in b l(s) \sqcup\{*\}}}\left(T_{1} \bullet_{s, b} T_{2}\right) \bullet s, b T_{3} .
\end{aligned}
$$

The three terms of this sum are symmetric in T_{2}, T_{3}, so:

$$
\left(T_{1} \diamond T_{2}\right) \diamond T_{3}-T_{1} \diamond\left(T_{2} \diamond T_{3}\right)=\left(T_{1} \diamond T_{3}\right) \diamond T_{2}-T_{1} \diamond\left(T_{3} \diamond T_{2}\right)
$$

Finally, $(C P(\mathcal{D}), \diamond, \cdot)$ is Com-PreLie.
Definition 36. Let $T=(t, I, d)$ and $T^{\prime}=\left(t, I^{\prime}, d\right)$ be two elements of $\mathcal{P} \mathcal{T}(\mathcal{D})$ with the same underlying decorated rooted trees. We shall say that $T \leqslant T^{\prime}$ is I^{\prime} is a refinement of I. This defines a partial order on $\mathcal{P} \mathcal{T}(\mathcal{D})$.

Theorem 37. The following map is an isomorphism of Com-PreLie algebras:

$$
\Psi:\left\{\begin{array}{rll}
(C P(\mathcal{D}), \circ, \cdot) & \longrightarrow & (C P(\mathcal{D}), \diamond, \cdot) \\
T \in \mathcal{P T}(\mathcal{D}) & \longrightarrow & \sum_{T^{\prime} \leqslant T} T^{\prime}
\end{array}\right.
$$

Proof. As \leqslant is a partial order, Ψ is bijective. Let $T_{1}, T_{2} \in \mathcal{P} \mathcal{T}(\mathcal{D})$.

1. If $T^{\prime} \leqslant T_{1} \cdot T_{2}$, let us put $T_{1}^{\prime}=T_{1} \cap T^{\prime}$ and $T_{2}^{\prime}=T_{2} \cap T^{\prime}$. Then, obviously, $T_{1}^{\prime} \leqslant T_{1}$ and $T_{2}^{\prime} \leqslant T_{2}$. Moreover, $T^{\prime}=T_{1}^{\prime} \leqslant T_{2}^{\prime}$. Conversely, if $T_{1}^{\prime} \leqslant T_{1}$ and $T_{2}^{\prime} \leqslant T_{2}$, then $T_{1}^{\prime} \cdot T_{2}^{\prime} \leqslant T_{1} \cdot T_{2}$. Hence:

$$
\Psi\left(T_{1} \cdot T_{2}\right)=\sum_{T^{\prime} \leqslant T_{1} \cdot T_{2}} T^{\prime}=\sum_{T_{1}^{\prime} \leqslant T_{1}, T_{2}^{\prime} \leqslant T_{2}} T_{1}^{\prime} \cdot T_{2}^{\prime}=\Psi\left(T_{1}\right) \cdot \Psi\left(T_{2}\right)
$$

2. Let $s \in V\left(T_{1}\right)$ and $T^{\prime} \leqslant T_{1} \bullet_{s, *} T_{2}$. We put $T_{1}^{\prime}=T^{\prime} \cap T_{1}$ and $T_{2}^{\prime}=T^{\prime} \cap T_{2}$. Then, obviously, $T_{1}^{\prime} \leqslant T_{1}$ and $T_{2}^{\prime} \leqslant T_{2}$. If the block of roots of T_{2} is also a block of T^{\prime}, then $T^{\prime}=T_{1}^{\prime} \bullet_{s, *} T_{2}^{\prime}$. Otherwise, there exists a unique $b \in b l(s)$ such that $T^{\prime}=T_{1}^{\prime} \bullet_{s, b} T_{2}^{\prime}$. Conversely, if $T_{1}^{\prime} \leqslant T_{1}$, $T_{2}^{\prime} \leqslant T_{2}, s \in V\left(T_{1}^{\prime}\right)$ and $b \in b l(s) \sqcup\{*\}$, then $T_{1}^{\prime} \bullet_{s, b} T_{2}^{\prime} \leqslant T_{1} \bullet_{s, *} T_{2}$. Hence:

$$
\begin{aligned}
\Psi\left(T_{1} \circ T_{2}\right) & =\sum_{s \in V\left(T_{1}\right)} \sum_{T^{\prime} \leqslant T_{1} \bullet s, *} T^{\prime} \\
& =\sum_{T_{1}^{\prime} \leqslant T_{1}, T_{2}^{\prime} \leqslant T_{2}} \sum_{s \in V\left(T_{1}^{\prime}\right), b \in b l(s) \sqcup\{*\}} T_{1}^{\prime} \bullet s, b T_{2}^{\prime} \\
& =\Psi\left(T_{1}\right) \diamond \psi\left(T_{2}\right)
\end{aligned}
$$

So Ψ is a Com-PreLie algebra isomorphism.
Example 11. In the nondecorated case:

$$
\begin{aligned}
& \Psi(\cdot)=., \\
& \Psi(\vdots)=\vdots, \\
& \Psi(!)=:, \\
& \Psi(\boldsymbol{V})=\boldsymbol{V}+3 \boldsymbol{V}+\boldsymbol{\nabla}, \\
& \Psi(V)=V+\nabla, \\
& \Psi(\mathbb{V})=\boldsymbol{V}+\boldsymbol{V}, \\
& \Psi(\nabla)=\nabla, \\
& \Psi(\nabla)=\nabla \text {. }
\end{aligned}
$$

References

[1] Thomas Benes and Dietrich Burde, Degenerations of pre-Lie algebras, J. Math. Phys. 50 (2009), no. 11, 112102, 9.
[2] D. J. Broadhurst and D. Kreimer, Towards cohomology of renormalization: bigrading the combinatorial Hopf algebra of rooted trees, Comm. Math. Phys. 215 (2000), no. 1, 217-236, arXiv:hep-th/0001202.
[3] Alain Connes and Dirk Kreimer, Hopf algebras, Renormalization and Noncommutative geometry, Comm. Math. Phys 199 (1998), no. 1, 203-242.
[4] , Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), no. 1, 203-242.
[5] Loï c Foissy, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, Comm. Algebra 43 (2015), no. 10, 4528-4552.
[6] \qquad , A pre-Lie algebra associated to a linear endomorphism and related algebraic structures, Eur. J. Math. 1 (2015), no. 1, 78-121.
[7] Loïc Foissy, Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra 255 (2002), no. 1, 85-120.
[8] W. Steven Gray and Luis A. Duffaut Espinosa, A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback, Systems Control Lett. 60 (2011), no. 7, 441-449.
[9] Muriel Livernet, A rigidity theorem for pre-Lie algebras, J. Pure Appl. Algebra 207 (2006), no. 1, 1-18.
[10] Jean-Louis Loday, Scindement d'associativité et algèbres de Hopf, Actes des Journées Mathématiques à la Mémoire de Jean Leray, Sémin. Congr., vol. 9, Soc. Math. France, Paris, 2004, pp. 155-172.
[11] Jean-Louis Loday and Marí a Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math. 592 (2006), 123-155.
[12] Jean-Louis Loday and María Ronco, Combinatorial Hopf algebras, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 347-383.
[13] J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, J. K-Theory 2 (2008), no. 1, 147-167.
[14] Jean-Michel Oudom and Daniel Guin, Sur l'algèbre enveloppante d'une algèbre pré-Lie, C. R. Math. Acad. Sci. Paris 340 (2005), no. 5, 331-336.

