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Abstract

We study twisted bialgebras and double twisted bialgebras, that is to say bialgebras in
the category of linear species, or in the category of species in the category of coalgebras. We
define the notion of cofree twisted coalgebra and generalize Hoffman’s quasi-shuffle product,
obtaining in particular a twisted bialgebra of set compositions Comp. Given a special char-
acter, this twisted bialgebra satisfies a terminal property, generalizing the one of the Hopf
algebra of quasisymmetric functions proved by Aguiar, Bergeron and Sottile.

We give Comp a second coproduct, making it a double twisted bialgebra, and prove that
it is a terminal object in the category of double twisted bialgebras. Actions of characters
on morphisms allow to obtain every twisted bialgebra morphisms from a connected double
twisted bialgebra to Comp.

These results are applied to examples based on graphs and on finite topologies, obtaining
species versions of the chromatic symmetric series and chromatic polynomials, or of the
Ehrhart polynomials. Moreover, through actions of monoids of characters, we obtain a
twisted bialgebraic interpretation of the duality principle.
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Introduction

Species, introduced by Joyal [20] in the 80’s, are functors from the category of finite sets with
bijective maps to the category of vector spaces. They form a monoidal category and a natural
idea is to define and construct algebras, coalgebras and bialgebras in this category: this is for
example explored by Aguiar and Mahajan in [2, 3|. In the present paper, following [28], these
objects will be qualified of {wisted. A bunch of functors from species to vector spaces send twisted
algebras, coalgebras or bialgebras to algebras, coalgebras or bialgebras: we shall use here the full
Fock functor K and the bosonic Fock functor K, in the terminology of [2]. Our aim in this paper
is to mimic several known results on bialgebras involving cofreeness, shuffles and (co)interactions
in the frame of twisted bialgebras.

We shall start in the first section with reminder on species, and examples of twisted algebras,
coalgebras and bialgebras, that is to say algebras, coalgebras and bialgebras in the category of
species. A simple example is given by the species Com: for any finite set A, Com[A] = K the
product and the coproduct of Com are given by:

mA’B(l ®1) =1le COIn[A L B],
Aap(l) = 1®1 € Com[A] ® Com[B].

Two more complex examples will be particularly studied in the sequel: firstly, the twisted bialge-
bra of graphs Gr’., which product is given by the disjoint union of graphs, and which coproduct



by extraction of subgraphs. For example, if A, B and C are finite sets:

C C

Aupoc(i) =101, Apucalt®) =15®.4
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Apacc(d) = 5@ . ac, Avc () = ac®.n
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Acas(th) = .c® 18, Apcl®) =12®@.c

This twisted bialgebra is commutative and cocommutative. Secondly, the twisted bialgebra of
finite topologies, or, by Alexandroff’s theorem [4], of quasi-posets, which product is given by
the disjoint union of finite topologies, and which coproduct is given by the extraction of open
subsets. For example, if A, B and C are nonempty finite sets:

ABUC,A(E
AAuC,B(E

AAuB,Cd

~—
Il
hS
wQ
~—
Il
=

AA,BuC(E

AB,AuC(E

PIQ BIA 2O
—
|
o

PIQ BIA 2O
S~—
|
o

S—
|

o
|

S
Q

)

We here represent finite topologies or quasi-posets by their Hasse graphs. This twisted bialgebra
is commutative and not cocommutative.

AC,AuB(E

We deal with the cofree twisted coalgebra coT (P) (co)generated by a species P (Definition
2.1) in the second section. It satisfies a universal property, justifying the adjective "cofree" (The-
orem 2.2). Two particular examples will be used: the first one, Comp, based on set compositions,
is generated by the augmentation ideal of Com; the second one, Ord, based on total orders,
is generated by a species concentrated in degree 1. The universal property is used to extend
Hoffman’s quasi-shuffle product to the twisted case: if P is a twisted algebra, then the cofree
twisted coalgebra coT (Py) of its augmentation ideal P, inherits a product w1 making it a twisted
bialgebra; when the product of P, is trivial, one obtains the simpler shuffle product L. This is
applied to Comp and to Ord. For example, in Comp, if A, B, C and D are nonempty finite sets:

(A) e (B) = (A, B) + (B, A) + (A1 B),
(A,B)w (C)=(A,B,C)+(A,C,B)+ (C,A,B) + (AuB,C)+ (A, Bu (),
(A,B)w (C,D)=(A,B,C,D)+ (A,C,B,D)+ (C,A,B,D)
+(A,C,D,B)+ (C,A,D,B) + (C,D, A, B)
+ (A, BuC,D)+(AuC,B,D)+ (AuC,D,B)
+(A,C,BuD)+(C,A,BuD)+(C,Au D,B)
+(AuC,Bu D),

whereas:

(A) W (B) = (A,B) + (B, A),
(A,B) w(C) = (A,B,C)+ (A,C,B) + (C, A, B),
(A,B)w(C,D) =(A,B,C,D)+ (A,C,B,D) + (C, A, B, D)
+(A,C,D,B)+ (C,A,D,B)+ (C,D, A, B).

These shuffle bialgebras are, in some sense, universal for commutative cofree twisted coalgebras,
see Theorem 3.7.

We extend in the third section the notion of characters to twisted bialgebras (Definition 3.3).
As in the classical case, the characters form a monoid Char(P) for the convolution product =



associated to A. If P is a connected twisted bialgebra, that is to say if P[(J] is one-dimensional,
this monoid has a richer structure: for any ¢ € K, there is a map A — A? such that:

Vq,¢ € K, VA € Char(P), A s 2\ = NI+ (A9)4 = N7

Taking ¢ = —1, one obtains an inverse of A: in this case, Char(P) is a group. Moreover, the
twisted bialgebra Comp inherits a special character ¢/ making it a terminal object in a suitable
category of connected twisted bialgebras with a character (Theorem 3.6): this is the twisted
version of Aguiar, Bergeron and Sottile’s theorem on combinatorial Hopf algebras [1].

All these constructions are based on the Cauchy tensor product of species. We turn to the
Hadamard tensor product of species in the fourth section. This allows to define a second kind of
bialgebras in the category of species (Definition 4.1). We shall be especially interested in species
with both sort of structures and with a nice cointeraction between them, mimicking the notion
of bialgebras in cointeraction we now recall.

A pair of bialgebras in cointeraction is a pair (4,m4,A) and (B, mp,d) of bialgebras with a
(right) coaction p: A — A® B of B on A such that the product, coproduct, counit and unit
of A are morphisms of right comodules. In other words:

e p(ly) =14 ®1p and for any a,b € A, p(ab) = p(a)p(b): p is an algebra morphism.
e (A®Id)op=myz210(p®p)oA, where
S { ARBR®A®B — ARARD
" a1 ®b®ar®bs — a1 ®a1 ®b1bs.
e Forany a€ A, (e ®1Id) o p(a) = e4(a)lp.
For example, the polynomial algebra K[X] is given two multiplicative coproducts by:
AX)=X®1+1®X, (X)) =X®X.

Then (K[X], m,A) and (K[X],m,d) are in cointeraction with the coaction p = §. In numerous
examples, (4, m) = (B,m) and p = ¢; see [8, 12, 13, 24| for combinatorial examples based on
families of graphs, oriented graphs or posets, and applications of the cointeraction.

This notion is extended to species, obtaining double twisted bialgebras (Definition 4.3). For
example, the species Com is a double twisted bialgebra: it has a second coproduct §, such that
for any finite set A:

{ Com[A] — Com[A] ® Com[A]
0a:
1 — 1®1.

The set of characters of a double twisted bialgebra P holds a second convolution product *
associated to §, making it a monoid. Moreover:

VA, p, v € Char(P), Asp)y*xv=(A*v)x* (uxv).

In other words, (Char(P), ) acts on (Char(P),*) by monoid endomorphisms. For any twisted
bialgebra Q, this monoid also acts on the set Morg(P, Q) of twisted bialgebra morphisms from
P to Q (Proposition 4.8), giving a right action:

{MorB(P, Q) x Char(P) — Morp(P)
((Z)7 )\) — P« A

In particular, we obtain an injective morphism of monoids:

_{ (Char(P),*) — (Morg(P,P),0)
XP A — Idp < A
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We prove that if P is a commutative double twisted bialgebra, then the twisted cofree coalgebra
coT (P+) is a double twisted bialgebra, with the quasi-shuffle product w, the deconcatenation
coproduct A and another coproduct ¢ defined by a extraction-contraction process (Proposition
4.5). This is directly applied to Comp in Corollary 4.6. For example, if A, B and C are nonempty
finite subsets:

6(4) = (4) ®(4),

6(A,B) = (4, B)®((4) = (B)) + (AuB)® (4, B),

6(4,B,C) =(A,B,C)@((4) w1 (B)w (C) + (A, BuC)®@((4) w (B,C))
+(AuB,C)®((A,B)w (C)) + (AL BLC)® (A, B,C).

We then prove a universal property for this twisted double bialgebra in Theorem 4.11: if P is a
twisted double bialgebra satisfying a condition of connectivity, then there exists a unique mor-
phism ¢ of twisted double bialgebra from P to Comp. Moreover, all the morphisms of twisted
bialgebras from P to Comp can be deduced from ¢ by Theorem 3.6, using the action « of the
monoid Char(P).

Graphs and finite topologies are given a structure of double twisted bialgebras in the next
two sections. For example, in Gr', If A, B, C' are nonempty finite sets:

5(.,4) = oA®oA,
0(13) =18® a5+ .48 @14,

SV = "V ® v aeme+ 150 @15c+ 1500 ®1Ses+cavnue @7V
In Top:
0(ea) = ea®ea,
0(1%)=18®.an+ .40 ® 15,
SOV =V @ amet+ 1508 @1+ 1800 @158+ aunue ® VY,
)

C C
@ eaemot 1S @1+ 189C @415+ aunue ®14

The unique double twisted bialgebra morphism ¢.p,. : Gr' — Comp is related to the noncom-
mutative chromatic formal series of [16] (Proposition 5.3). For example:

(bchr('A) = (A)7
qbchr(Ig) (A B) (B7A)7
e (18) = (A, B,C) + (A,C, B) + (B, A,C) + (B,C, A) + (C, A, B) + (C, B, A)

+(AuC,B)+ (B, AuC).

The unique double twisted bialgebra morphism ¢cp,, : Gr' —> Comp is related to linear extensions
and to the Ehrhart quasisymmetric function (Theorem 6.9). For example:

Penr(+4) = (4),
(rzseh'l‘(I ) ( )

¢ehr( VAC) (A B C) (Av C? B) + (A7B U C)a
denr(t) = (4, B,C).

We also prove in this section that 7T op is a cofree twisted coalgebra, so is isomorphic to a quasi-
shuffle twisted bialgebra (Theorem 6.10).



The seventh section is devoted to the study of homogeneity. We consider now graded twisted
bialgebras, that is to say twisted bialgebra P admitting a decomposition

P =@ P,

n=0

compatible with the product and coproduct of P (Definition 7.1). For example, Gr' admits a
graduation, given by the number of vertices of the graphs, and 7T op admits a graduation, given
by the number of classes of the quasi-posets, or equivalently the number of vertices of the Hasse
graphs. If P is graded, it admits a family (¢4)qex of bialgebra endomorphisms, such that for any
q, ¢ € K:
lg O Ly = lgg'-
Conversely, we define in Proposition 7.2 such a family (6,)4ex of endomorphisms of Comp, given
by:
0y = Idcomp < €.

These morphisms imply a graduation of Comp. For example:
Compi[A] = Vect((4)),

1
Come[A] = Vect ((Al, Az) + §(A1 Ll AQ), (Al, Ag) € Cornp[A]) ,

=

Comps| A] = Vect ( (A1, Az, A3) + 5(A1 U A, As) + §(A1, Ay U A3) +

(A1 L A2 L Ag), )
(Al, AQ, Ag) € Comp[A]) '

For any graded connected twisted bialgebra P, we prove that the set of homogeneous morphisms
from P to Comp is in one-to-one correspondence with the set of morphisms from P; to Com
(Corollary 7.4). As applications, and we describe all homogeneous twisted bialgebra morphisms
from Gr' or from T op to Comp (Proposition 7.5 and 7.13). For graphs, we shall especially consider
a one-parameter family of them, denoted by (¢g)4ex. For example:

Pq(+ 1) = q(A),
¢q(158) = ¢*(A, B) + ¢*(B, A) + ¢*(Au B)
¢g("Vi) = (A, B,C) + ¢*(A,C,B) + ¢*(B, A,C) + ¢*(B,C, A) + ¢*(C, A, B) + ¢*(C, B, A)
+¢@(AUB,C)+¢@(ALC,B)+¢(BuC,A)
+ (A, BuC)+¢(B,AuC)+¢*(C,AuB)+@P(AuBuC).
Playing with the graduation, we deform the morphism ¢, putting:
Vg e K, ¢chrq = 0;1 O Gehrr © lq-

We prove the existence of a character Ac,, such that:
¢chrq =¢1 < )‘chrq-

This rather complicated character is invertible for the * product, and for any graph G, )\ghqu (G) is

a power of ¢ (Corollary 7.10). We finally obtain in Corollary 7.10 a diagram of twisted bialgebras

morphisms
r

g,r/ gr/

¢ck\ Al

Comp

where I' is a twisted bialgebra automorphism related to a character defined by acyclic orienta-
tions of graphs. Similar results are obtained for finite topologies.



We apply the Fock functors to these constructions in the eighth section. Both of them
send twisted bialgebras to bialgebras, and the bosonic one sends double twisted bialgebras to
bialgebras in cointeraction (Theorem 8.2). Note that this second point generally does not work
for the full Fock functor by a lack of commutativity. We obtain:

e For Com: both Fock functors give K[X], with its usual product and coproducts.

e For Ord: the full Fock functor gives Malvenuto and Reutenauer’s Hopf algebra FQSym of
permutations [9, 23|, whereas the bosonic Fock functor gives again the polynomial algebra
K[X].

e For Comp: the full Fock functor gives the Hopf algebra of packed words (or of set composi-
tions) WQSym [26, 27, 25| with its internal coproduct; the bosonic Fock functor give the
Hopf algebra of quasi-symmetric functions QSym.

e For the species of graphs Gr’, we obtain the Hopf algebras Hg,» and Hg,s described in [12].
The induced morphism ¢ is Stanley’s chromatic symmetric function [30].

e For the species of finite topologies Top, we obtain the Hopf algebras Hr,, and Hry,
described in [13]. The induced morphism ¢ is the (strict) Ehrhart quasisymmetric function.

We also prove in Theorem 8.8 that the image of a a cofree twisted bialgebra by the full Fock
functor is free and cofree (getting back a known result on FQSym and WQSym).

The last section is devoted to applications of these results on graphs and finite topologies.
We also prove that there exists a unique morphism H : QSym — K|X] of double bialgebra,
which we use to recover the chromatic polynomial P, and the (strict) Ehrhart polynomial Pep,..
We finally obtain the following morphims of bialgebra morphisms:

WQSym WQSym
IC(¢C}LT‘,1) / K(¢ehr_1) /
K(¢ch7‘1) ]C(¢ehrl)
ng’ K(IT) ng’ HTop K(T) HTop
| | |
o () e k() e,
Pchr,1 Pehr,l ,€(¢eh7‘1)
Pchrl Pehrl
KIX] K[X]

\ \ \
A\-_// QSym Xﬁ/ QSym
K(¢chr71) I’(\:(Qse}Lr,l)

Notations 0.1. e Let K be a commutative field of characteristic zero. All the objects of this
text (vector spaces, algebras, coalgebras, bialgebras. ..) will be taken over K.

e For any n € N, we denote by n the set {1,...,n}. In particular, 0 = .
e For any n € N, we denote by &,, the n-th symmetric group.

e If A is a finite set, we denote by #A its cardinality.



1 Bialgebras in the category of species

1.1 Reminders and examples

We refer to [6, 20| for a more complete exposition of species. We denote by Set the category of
finite sets with bijections and by Vect the category of vector spaces over K with linear maps. A
linear species is a functor from Set to Vect. In other words, a species P is given by:

e For any finite set A, a vector space P[A].
e For any bijection 0 : A — B between two finite sets, a linear map P[o] : P[A] — P|[B].
The following properties are satisfied:
e For any finite set A, P[Id4]| = Idp[4]-
e For any finite sets, A, B, C and any bijections 0: A — Band 7: B — C,
Plroo] = Plr] o Plol.

If P and Q are two species, a morphism of species f : P — @ is a natural transformation from
P to Q, that is, for any finite set A, f[A] is a linear map from P[A] to Q[A], such that for any
bijection o : A — B between two finite sets, the following diagram commutes:

prA] 2L pB

Example 1.1. 1. We define a species Com by the following:
e For any finite set A, Com[A] = K.
e For any bijection o : A — B, Com|o]| = Idk.

2. For any finite set A, let us denote by Comp|A] the set of set compositions of A, that is to
say finite sequences (A1, ..., Ax) of nonempty subsets of A, such that Ay u...u Ay = A.
Let Comp[A] be the space generated by Comp|[A]. If 0 : A — B is a bijection:

' Comp|A] —> Comp|B]
Comp[a]'{ (A1,...,Ap) € Comp[A] —> (0(A1),...,0(A)) € Comp[B].

For example, if a, b are two different elements of a set A:

Comp|J| = Vect(),
Compl{a}| = Vect({a}),

Comp[{a, b}] = Vect(({a}, {b}), ({b}, {a}), ({a,b}))

3. We define the species of graphs Gr by the following:

e For any finite set A, Gr[A] is the vector space generated by graphs G which vertex
set V(G) is equal to A.

e For any bijection 0 : A — B, Gr|o| sends the graph G = (A, E(G)), where E(G) is
the set of edges of A, to the graph Gr[c](G) = G' = (B, E(G')), with:

E(G') = {{o(a),a(0)}. {a,b} € E(G)}.
For example, if a, b are two different elements of a set A:

Gr[] = Vect(), gr[{a}] = Vect(..), Gr[{a,b}] = Vect(eqaus, 15).



4. We define the species of posets Pos by the following:

e For any finite set A, Pos[A] is the vector space generated by posets P which vertex
set is A, that is to say pairs P = (A, <p), such that <p is a partial order on A.

e For any bijection o : A — B, Pos[o]| sends the poset P = (A, <p), to the poset
Pos[c](P) = (B, <p), with:

Va,b € B, a<pbe= o7 (a) <p o (b).

Posets will be represented by their Hasse graphs. For example, if a,b are two different
elements of a set A:

Pos| ]| = Vect(),
Pos|{a}] = Vect(..),
Pos|{a,b}] = Vect(vaws, 1%, 15).

Notations 1.1. If P and Q are species, we define the composition of the species P and Q by:
Pocll- @ rine(@el).
I partition of A Xel

We shall especially consider the case where @ = Com:

P oCom|[A] = P PlI].

I partition of A

Ezample 1.2. 1. We put Gr' = Gr o Com. For any finite set A, Gr'[A] is the vector space
generated by graphs which set of vertices is a partition of A. For example, if A = {a, b}:

Gr'[A] = Vect (. e oy, L2, « (0 1)-

If 0 : A —> B is a bijection, the map Gr'[o] : Gr'[A] — Gr'[ B] is given by the action of
o on the elements of A.

2. The species T op of finite topologies is given by the following:

e For any finite set A, Top[A] is the vector space generated by the set of topologies on
A, that is to say subsets T of the set of subsets of A with the following properties:

(a) & and A belong to T.
(b) If X,Y € T,then X UY e Tand X nY € T.

e Ifo: A— B and T is a topology on A, then:
Toplo|(T) = {o(X), X €T}

A quasi-poset is a pair (A, <p), where A is a set and <p a quasi-order on A, that is to say
a transitive and reflexive relation on A. By Alexandroff’s theorem [4, 31], for any finite
set A, there is a bijection between topologies on A and quasi-posets P = (A, <p). This
bijection associates to a quasi-order < on A the set Top(<) of its open sets: X € A is
<-open if:

VYa,be A, a<bandae X = be X.

In the sequel, we shall identify in this way finite topologies and quasi-posets. If T' = (A, <7)
is a quasi-poset, one defines an equivalence on A by:

a~pbifa<rband b <t a.



The quotient space A/ ~p is given a partial order <p by:
X<rY ifVae X, VbeY, a <pb.

Therefore, (A/ ~p,<r) is a poset. This implies that the species Top and Pos o Com are
isomorphic. For example, if A = {a, b}, we represent finite topologies on A by the Hasse
graph of <7, the vertices being decorated by the corresponding equivalence class of ~7:

TOp[A] = VeCt(‘ {a}e {b}, If%v Igg?? '{a,b})'

The open sets of these topologies are given in the following table:

| {a} | {b} | {a,b}
caperny | X | x| X X
| x X X
ey | x| x X
e {a,b} X X

Notations 1.2. 1. If G is a graph, the number of its vertices is denoted by deg(G), and the
number of its connected components is denoted by cc(G).

2. If T is a finite topology on a set A, we denote by CL(T') the quotient space A/ ~p and
by cl(T') its cardinal (which is also the number of vertices of the Hasse graph of T'), and
we denote by cc(T) then number of its connected components (which is also the number
of connected components of the Hasse graph of T').

1.2 Algebras in the category of species
Let P, Q be two species. The Cauchy tensor product of species P ® Q is defined as this:

e For any finite set A:
P® Q[A] = @D P[] ® Q[A\]].

IcA

e For any bijection 0 : A —> B between two finite sets:

PRQO[A] — P®Q[A]
P@Qo]:{ *@yePUI®AAI] — Ployl(x) ® Qoaulw).

eP[o(D]®R[o(AD)]

For any species P, Qand R, PR (Q®R) = (P® Q) ® R. The unit is the species Z:
Kif A=
74— {8 A=D,
(0) otherwise.
For any species P, PQL =ZQP =P.

If f:P— P and g: Q — Q' are morphisms of species, then f®g: PR Q — P' ® O
is a morphism of species:

PRQ[A] — P Q4]
f®glA]: 1 v®@yeP®@QA] — [lI](z) ®g[A\](y) .
eP’ [I](gQ’ [A\T]

For any species P, Q, we define a species isomorphism cp o : P® Q — Q® P by:

P®Q[A] — Q®P[A]
C’P7Q[A] : x®yEP[I]®Q[A\I] — Yy .
eQ[A\I|®P[I]
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Definition 1.1. An algebra in the category of species, or twisted algebra, is a pair (P,m) where
P is a species and m : P QP —> P is a morphism of species such that the following diagram
commutes:

7)@3"@;’73(@2

Idp®ml lm

73®2 T>P

Moreover, there exists a morphism of species v : T — P such that the following diagram com-

mutes:

wRIdp 2 Idp&e

I®P Pe PRI
P

We shall say that (P, m) is commutative if mocpp = m.

In other words, a twisted algebra P is given, for any finite sets A and B, a map ma g :
P[A] ® P[B] — P[A u B] such that:

1. For any bijections o : A —> A’ and 7 : B — B’ between finite sets, then:

ma g o (Plo]®P[r]) = Plo u ] omap : P[A]®P[B] — P[A" u B'].
2. For any finite sets A, B, C":

maLp,c ©(map ®@ldpicy) = ma,puc o (Idppg ®@mp o).
3. There exists an element 1p € P[] such that for any finite set A, and x € P[A]:
mep A(la®@z) =maglr®14) = .
Moreover, P is commutative if, and only if, for any finite set A, B, in P[A u B]:
vz € P[A], Vy € P[B], ma(x®y) =mpa(y ).

Example 1.3. The following examples can be found in [3]:

1. The product of K induces an algebra structure on Com: for any finite sets A and B, for
any A € K = Com[A4], p € K= Com][B],

map(A®@u) = Ape K= Com[A L BJ.
The unit of Com is the unit 1 of K = Com|[{]].
2. The species Comp is an algebra, with the concatenation product:
map((Ar,...,Ay) ® (B1,...,B))) = (A1,..., Ay, B1,..., By).
Its unit is the empty composition .

3. The species of graphs Gr’ is an algebra with the product given by disjoint union of graphs.
The unit is the empty graph. For example, if A, B, C, D and F are finite sets, then:

mAuBuC,DuE(BVAC® Ig) = BVACIg.
4. The species Top is a twisted algebra with the disjoint union product.
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Notations 1.3. Let P be a twisted algebra. If (Ay,..., Ax) € Comp[A], we inductively define
ma,...a, from P[A1]®...® P[Ax] into P[A] by:
my = Idpay,
MA .. A, = MA LAY As,.. Ay, © (May A, ®dpa,) @ ... @ Idppa,)-

By associativity, if (A1, ..., Ax) € Compl[A]:

TAL GG AR Ag 10 AR © (MAy Ay @Ay A,) = May Ay,

1.3 Coalgebras and bialgebras in the category of species

Definition 1.2. A coalgebra in the category of species, or twisted coalgebra, is a pair (P,A)
where P is a species and A : P —> P ® P is a morphism of species such that the following
diagram commutes:

’p$.7)®2

Al lldp@A

X2 3
P ARIdp P

Moreover, there exists a morphism of species € : P — T such that the following diagram com-
mutes:

ITePr 4 .p-. 1 pe7

N
eRldp Idp®e

P2

We shall say that (P,A) is cocommutative if cpp o A = A. We shall say that the coalgebra
(P,A) is connected if P[] is one-dimensional.

In other words, a twisted coalgebra P is given, for any finite sets A and B, a map Ay p :
P[A L B] — P[A] ® P[B] such that:

1. For any bijections 0 : A —> A’ and 7 : B — B’ between finite sets, then:
(Plo]®@P[r]) o Aap = Aa p oPlout]: P[Au Bl — P[A| @ P[B'].
2. For any finite sets A, B, C"
(Aap ®ldp[cy) 0 Auup,c = (Idpa) ® Apc) 0 Aa Buc
3. There exists a linear map ep : P[J]| — K such that for any finite set A:
(ep @ Idppa)) 0 Agra = (Idppa) @ ep) 0 Apg = Idppa).

Ezample 1.4. 1. The species Com is given a coalgebra structure by the following: for any
finite sets A, B,

VA e K = Com|A u Bj, Axp(A) =A1®1).
The counit is the identity of K.
2. The species Comp is given a coalgebra structure by:

(A1,...,Ap) ® (Ap+1, ..., Ar) if there exists a p (necessarily unique)
App(Ar,..., Ax) = such that A; ... 1A, = A4,

0 otherwise.

The counit is given by e[] = 1.
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Remark 1.1. 1. If (P,mp) and (Q,mg) are two algebras in the category of species, then
P ® Q is too. Tts product is given by:

mpgo = (mp ®mg) o (Idp ® cp o ®Idg).
Its unit is 1p ® 1.

2. Dually, if (P, Ap) and (Q,Ag) are two coalgebras in the category of species, then P ® Q
is too. Its coproduct is given by:

Apgo = (Idp @ cp,o ®1Idg) o (Ar @ Ag).
Its counit is ep @ €.

Lemma 1.3. Let us assume that the twisted coalgebra (P, A) is connected. There exists a unique
1p € P[] such that e(1p) = 1. Moreover, for any finite set A, for any x € P[A]:

AA,@(x) =z lp, A@,A(a:) =1lpQRu.

Proof. For any finite set A, (e @ Id) o Ag 4 = Idppa}, s0 € # 0. As P[] is one dimensional,
e : P[F] — K is bijective. Let 1p be the unique element of P[(F] such that e(1p) = 1. For
any x € P[A], there exists y € P[A] such that Ag s(x) = 1p ® y. Then:

(e®@Id) o Agalz) =z =y,
s0 Ag a(z) = 1p @ x. Similarly, Ay z(z) = 2 ® 1p. O

Notations 1.4. Let P be a twisted coalgebra. If Aju-- 1A, = A, we inductively define Ay, . 4,
by:

Aa = ldppay,
AA1,--~7A1€+1 = (AAL--.,A;@ ®Id77[z4k+1]) © AAI\—‘n-l—‘Ak»Ak+1 if k> 1.

By coassociativity, for any finite sets Ay, ..., Apiy:

(AAlm-wAk ®AA1@+17~~,A1@+1) © AA1uu~uAk7Ak+1umuAk+l = AA17~~~,Ak+l'
As for "classical" bialgebras:

Definition 1.4. Let P be a species, both a twisted algebra (P,mp) and a twisted coalgebra
(P,Ap). The following conditions are equivalent:

1. ep:P— T and Ap : P — P QP are algebra morphisms.
2.0:T—Pandm:PQP —> P are coalgebra morphisms.

If this holds, we shall say that (P,mp, Ap) is a bialgebra in the category of species or a twisted
bialgebra [2, 28].

The compatibility between the product and coproduct can also be written in this way: if A
isafinitesetand A=TuJ=I'uJ,
Apgomyry =(mparyar @mragyag) o (dpiran @ cpirngprran @ Idpyag)
© (AI’mI,I’mJ ®AJ’mI,J’mJ)-

Example 1.5. The species Com, with the product and coproduct defined below, is a twisted
bialgebra.

Remark 1.2. If P is a connected twisted bialgebra, that is to say if it is connected as a coalgebra,
the elements 1p defined in Lemma 1.3 is necessarily the unit of the algebra P.

13



2 Cofreeness

2.1 Cofree coalgebras

Definition 2.1. Let P be a species such that P[] = (0). The cofree coalgebra (co)generated by
P is the species:

e}
coT(P) = P P®",
n=0
that is to say, for any finite set A:

coT (P)[A] = P PlA1] ®... @ P[Ak].
(A1,...,Ax)eComp|[A]

For any x; € P[A;], i € k, we denote by x1 ...z the tensor product of the elements x1, ..., xx
in P[A1]®... @ P[Ak] € coT (P)[A1 u ... 1 Ag]. This species is given a coproduct making it a
twisted coalgebra: for any finite sets A, B, (C4,...,Cy) € Comp|A u B], z; € P[A;],

1. QTiq1...xk if there exists an i (necessarily unique)
Agp(zy...xp) = such that Ay u...uA; = A,

0 otherwise.

We denote by 7 : coT (P) — P the canonical projection vanishing on P®F if k # 1.

More generally, we shall say that a twisted coalgebra is cofree if it is isomorphic to a coalgebra

coT (P).

Theorem 2.2. Let P be a species such that P[] = (0) and let C be a connected twisted
coalgebra. For any species morphism ¢ : C —> P, there exists a unique coalgebra morphism
O : C —> coT (P) such that the following diagram commutes:

P

¢ —2coT(P)
S
P
Moreover, for any finite set A:
o[A] = > (G[A] ®... ®d[Ar]) 0 Au, . ay. (1)

(At,...,A),)eComp][A]

Proof. FEuxistence. Let ® be the species morphism defined by (1). For any finite set A:
m[A] o ®[A] = ¢[A] 0 Ax = $[A],

so mo® = ¢. Let A and B be two finite sets. Let us prove that:

Ay po®[Au B] = (P[A]®@P[B]) o A B.
If A= B = ¢, it is enough to apply this two maps on 1¢:

Aggo®(@ud)(le) =1@1= ([ @ 2[D]) © Ag,gz(le).

If A= and B # J, for any x € C(A):

Ag.p o ®[B](x) = 1© ¢[B](x) = (2[] @ ¢[B]) 0 Ag ().
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A similar computation works if B = ¢ and A # . Let us assume now that A, B # {J.

Appo®AuB]=Apo Z ¢®koAA17m,Ak
(A1,...,Ax)eComp[ALB]

+
=AyBo Z PP+ o Ay, AyBi,.., By

(Aq,...,Ap)eComp|[A],
(B1,...,Bq)eComp|B]

- > ¢%P 0 Auy 4, ®®T 0 Ap, g,

(Ay,...,Ap)eComp|A],
(B1,...,Bq)eComp[B]

= (P[A]® @[B]) o Aa,B.

So @ is a coalgebra morphism.
Unicity. By definition of A, for any nonempty set A, in coT (P)[A]:

(| ker(Ary) =PlA]
(I,J)eCompl[A]

Let ® and @’ be two coalgebra morphisms satisfying the required conditions. Let us prove that
®[A] = ®'[A] by induction on fA. If A = (¥, as 1 is the unique nonzero element of coT (P)[ ]
such that Ag (1) =1® 1:

[Z](1c) = '[P](1c) = 1.

As C|] = Kle, @[] = @'[F]. Let us assume the result at all ranks < §A. For any (I,J) €
Comp[A]:

Apjo®[A]l = (PL]@P[J]) 0o Asy = (P'[I]QD'[J]) o Ar,y = Apyo P'[A].
Hence, ®[A] — ®'[ A] takes its values in P[A], so:
B[A] — '[A] = n[A] o ®[A] — 7[A] 0 D'[A] = ¢[A] — #[A] = 0.
Therefore, ® = @' O
Example 2.1. Let us consider the species P defined by:

Kif fA =1,
play= S

(0) otherwise.
The cofree coalgebra coT (P) is denoted by Ord. For any finite set A, noticing that compositions
of A which parts have cardinality 1 are in bijection with bijections from A to §A:

Ord(A) = @ KA
frA—HA,
bijection

Hence, Ord(A) has a basis indexed by bijections from A to §A, or equivalently a basis indexed
by total orders on A. If A =1 1 J and < is a total order on A:

Sp®<y ifforanyzel,ye, x <y,

Ar (<) = {

0 otherwise.
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2.2 Quasishuffle products

Notations 2.1. 1. Let nq,...,ng be integers. Let us denote by QSh(nq,...,ny) the set of
(n1,...,ng)-quasi-shuffles, that is to say surjective map o : n; +...+np —> max(o),
such that for all i € k, 0|(n,4...4n;_1 +1,....n1 +...4n;} 15 non decreasing. Bijective quasi-shuffles
are called shuffles; the set of (nq,...,ng)-shuffles is denoted by Sh(ni,...,ng).

2. Let P be a species. We consider the species Py defined by:

foita=g,
Peldl= {P[A] if A+ .

Note that if P is a twisted algebra, then P, is stable under the product of P.

3. Let P be a twisted algebra. Let (A1,...,Ar) € Comp[A], where A is a finite set, and let
o : k —> max(o) be a surjection. For any x; € P[A;], i € k, we put:

m m

g —>T1...T = H o7 I H ZT; |,
i,0(i)=1 i,0(i)=max(0)
where each product is taken in P. This is an element of P®™max(?)[A].
The construction of quasi-shuffle products [19, 11| extends to the category of species:

Theorem 2.3. Let P be a twisted algebra. The cofree coalgebra coT (Py.) is given an associative
product w: if, for any i € k + 1, x; € P[A;], then

Xy oo T B Xy ] - Ty = Z o= (x1...Tp1).
oeQSh(k,l)

Then (coT (P+),w, A) is a twisted bialgebra. Moreover, w is commutative if, and only if, m is
commautative.

Proof. Let C be the coalgebra coT (Py) ® coT (P+). Then C[] = K1 ® 1: C is connected. We
shall identify the unit 1 of K (also unit of co7(P;+)) and the unit of P. We consider the species
morphism ¢ : C — P, defined by:

m if (k,1) € {(0,1),(1,0),(1,1)},

0 otherwise.

P pergper = {

There exists a unique coalgebra w : C —> coT (P4) such that m o w = ¢. Let us prove that
w is associative. Let us consider the coalgebra morphisms w o (1 ® Id) and = o (Id ® w) from
coT (P1)®3 to coT (Py). For any k,l,p > 0:

mo (m®Id) if k,l,p <1 and (k,1,p) # (0,0,0),
0 otherwise;
mo (Id®@m) if k,l,p <1 and (k,l,p) # (0,0,0),

0 otherwise.

TO O (Iil ®Id)‘p®k®p®l®7D®P = {

mowo (Id® Iil)‘p@k@p@l@P@P = {

As m is associative, mow o (w1 ®Id) = mow o (Id®w). By unicity in Theorem 2.2, wo (w®Id) =
w o (Id®@w). So (coT (P+), =, A) is a twisted bialgebra.
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Let z; € P[A;] for all i. We put A = Ay u...u Agyy. By Theorem 2.2:

1 (xlack ®xk+1---$k+l)

B 2 ¢®nOAA17...7An(.’IZ'1....I‘k®:Bk+1 ...I’k+1)
(Bi,...,Bn)eCompl[4]

= 2 ¢ (w1 Ty @Tpy1 - -wkﬂ‘l) e (iﬂz‘p,1+1 C Ly @ Xty +1 - -karjp)
1:i0§i1<...<ip:k,
l=jo<i<...<Jp=

= Z gb(xl...xil ®-Tk:+1-~~$k+j1)~~¢(xip_1+l~-~xip®l‘k+jp,1+1-~~xk+jp)
1=ip<i1 <...<ip=Fk,
1=jo<n<...<jp=l,
Vs, is41—1s<1,
Vt, je41—ie <1

= Z U—)(.’I,'l...karl).

o€QSh(k,l)

Let us assume that w is commutative. For any finite set A and B:

HB,A © CeoT (P+)[A],coT(P+)[B] = HAB,
T[Au Bl owpaocprayps) = (T[4 u Bl o wa B)iplajgr(s),
MB,A© Cp[A],P[B] = TA,B-

So m is commutative.

Let us assume that m is commutative. Then w and woc are both coalgebra morphisms from
coT (P4)®? to coT (P, ) and, as m is commutative, Towoc = mom = ¢. By unicity in Theorem
2.2, 1 = woc. [

Ezrample 2.2. 1. Let us consider the bialgebra Com. The cofree coalgebra coT (Com_) is a
twisted bialgebra. For any finite set A:

coT (Com, )[A] = P Com|[A4]®...® Com[Ag].
(A1,...,Ap)eComp|A]

The element 1®...®1 of Com[A4]®...® Com|A| will be identified with (A;,..., Ax) €
Compl[A]: this defines a species isomorphism between co7 (Com. ) and Comp. The prod-
uct w induced on Comp is given by:

(Ar,...,Ap)w (By,...,By) = )] U 4 U 4
ceQSh(k,l) \ieo—1(1) i€o—1(max(o))

The coproduct is given by:

(A1,...,Ap) ® (Ap+1,...,Ar) if there exists p (necessarily unique)
App(Ar,..., Ag) = such that A; u...u A, = A,
0 otherwise.
The counit is given by ecomp[] = 1. For example, if A, B, C, D are nonempty finite sets:
(A)w (B) =(A,B)+ (B, A) + (Au B),
(A,B)w (C)=(A,B,C)+ (A,C,B)+ (C,A,B)+ (AuB,C)+ (A, Bu (),
(A,B)w (C,D)=(A,B,C,D)+ (A,C,B,D)+ (C,A,B, D)
A,C,D,B)+ (C,A,D,B)+ (C,D, A, B)
A BuC,D)+(AuC,B,D)+ (AuC,D,B)
A,C;,BuD)+ (C,A,BuD)+ (C,AuD,B)
AuC,BuD).

—~~

n
+ +
+ +
n

NN N S
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2. Let P be any species such that P[] = (0). We give it a trivial product m = 0. If for all
i€k+1,x; € P[A;] and o € QSh(k,1), then o0 — (z1...x4;) = 0if o is not bijective, that
is to say if o is not a shuffle. Hence, the product induced by m on coT (P) is the shuffle
product:

LLI(l‘l...:I)k®JJk+1...[Ek+l)= 2 O’—>($1...ij+l).
oeSh(k,l)

We obtain the shuffle product of [3]. In particular, this holds for Ord. If A and B are
finite sets and <4, <p are total orders on respectively A and B, for any o € QSh(§4, tB),
o — (<4<p) is nonzero if, and only if, o is a bijective, that is to say if, and only if, o is a
shuffle. Consequently:

<4 w <p= > <.
< total order on A u B,
S|ATSA, S|p=SB

Proposition 2.4. Let (P,m) be a twisted algebra. The map &' : coT (Py) — P defined by
e[F](1) = 1p and e'[A] = n[A] if A # & is an algebra morphism.

Proof. As 1 is the unit of w, it is enough to prove that:
e'[AuBlowap =mapo (e[A]®E[B]),

for any nonempty sets A and B. Let (Aj,...,A;) € Compl|A4], (Bi,...,B;) € Comp|B],
x; € P[Ai], ki € P[B;]. By construction of w:

m(x; Qo) if k=1=1,

E/[AI_IB]O|i|A7B(:1}1...$k®xk+1...xk+l): .
0 otherwise;

=MAB© (EI[A] ®€/[B])($1 Tk ®l’k+1 e ka).
So €’ is a twisted algebra morphism. O

As Comp is isomorphic to coT (Comy ):
Corollary 2.5. The following map is an algebra morphism from (Comp, w) to (Com,m):

. { Comp|A] — Com]|A4]
' (Al,...,Ak) I 5k,1'

Theorem 2.6. Let P be a twisted algebra and let B be a connected twisted bialgebra. For any
species morphism ¢ 1 B —> P, there exists a unique twisted coalgebra morphism @ from B to

(coT(Py),w, A) such that &' o ® = ¢. For any finite set A:

P[A] = Z ¢ o Ay, A,
(A1,...,Ax)eComp[ 4]

Moreover, ® is a twisted bialgebra morphism if, and only if, ¢ is twisted algebra morphism.

Proof. Let ¢’ defined by:

OlA] if A # .

For any coalgebra morphism ® : B — coT (P), ®(15) = 1. As B[] = Kl¢g, e’ o ® = ¢ if, and
only if, m o ® = ¢'. By Theorem 2.2, such a morphism exists and is unique.

it A=
#14] = {0 9
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Let us assume that ® is a bialgebra morphism. By composition, ¢ = ¢’ o ® is an algebra mor-
phism. Let us assume that ¢ is an algebra morphism. Let us consider the coalgebra morphisms
® om and w o (¢ ® ®), both from B® B to coT (Py).

godom=¢om,
gomo(PRP)=mpo (e @)oo (PR )
=mpo(¢Q¢)

=¢om.
Consequently, € o®om =&’ omo (PRP), so roPom = towo (PRP). By unicity in Theorem
22, dom =wo (PRP), so ® is a bialgebra morphism. O
2.3 A criterion of cofreeness
Let us give here a twisted version of Loday and Ronco’s rigidity theorem for bialgebras [21].

Theorem 2.7. Let (P, A) be a connected twisted coalgebra. We denote by 1 the unique nonzero
element of P|| such that Ag (1) = 1® 1. The following propositions are equivalent:

1. (P, A) is isomorphic to a cofree coalgebra coT (Q).

2. There exists a structure of twisted algebra (P,m) on P, of unit 1, such that for any finite
sets I, J, I' and J' such that T wJ =1"uJ', for any x € P[I'], y € P[J]:

(mpn @A) (z@Apnp s (v) f I' € 1,
Apgomp yp(z@y) =< Id@mp ) (A py(z) ®y) if J' S J,

0 otherwise.

Proof. 1 = 2. Up to an isomorphism, we assume that the coalgebras (P,A) and coT (Q) are
equal. Let us denote by m the concatenation product of P. Let us consider z; € Q[A;] for all
i€k+1l PuttingI'=A1u...uAgand J = Apqu...uAgy, f T J=1u0J"

Argomp (21 ... Tk @ Thy1 - - Thoti)

= A7 g(r1... 284)

T @@y .. xpy if there exists j such that Ay u... 0 Aj =1,
0 otherwise.

Three cases are possible.

e Such a j exists and j < k. Then J' € J and:

ALJ o] m[’,J’(xl .. .:L‘k®l‘]€+1 .. .:Ek_H)
=21... L ®Tjy1 . Thlhy1 -+ Thtl
= (Id@mJ\J/7J/)(A[’J\J/(JZ1 .. {L‘k) ®$k+1 .. .$k+l).

e Such a j exists and j > k. Then I’ € I and:

Argomp (1. Tk @ Tt ... Thyt)
= xl...xk.ka...xl®xj+1...a:k+l
= (mp g @Id) (21 ... 2 @ App, 7 (Tps1 -+ Thyt))

e No such j exists. Then I’ ¢ I, J' & J and:

AI’J Om[',J’(xl X @ Thy1 .- Tyy) = 0.

19



2 = 1. Let Q be the subspecies of P defined by:
Q|A] = {z € P|A],V({,J) e Comp(A),Ar j(x) = 0}.
We shall consider the following morphism:

@.{ wT(Q) — P
' xlxkeQ[Al]@)Q[Ak] —> Mma,

Let us first prove that ® is a coalgebra morphism. Let z1...2, € Q[A1]® ... Q[ Ax].

A, (11 Q... Q).

-----

o If I =A, ... A, for a certain ¢:

Arjo®(zy...xp) =Ar (... )
=Arg((xr- @) (@ig1 oo wy)
= (Mg ®Id)(z1- ... - 2 ® Ag j(Tix1 - ... - 7))
= (mig®Id)(z1-... 2, @1 ®Tiy1-... Tp)
Ty e TiQQTjp1 - Tk
(P®P)oAf j(x1...28).

e Otherwise, let 7 be the greatest integer such that A; u...u A; € 1. Then A; 1 n 1 # .

Apjo®(zy...z) = Ar gy -... - xx)

= @1 T ®1) - Apayuoa, g (@i s T).

If 1€ Ay u... Ay, this is zero. Otherwise, I n A;11 # . Then:

AI,J @) (I)(.’El . :L‘k) = A[’J(Il teel fL‘k)
= (901 T @ 1) : AI\Alu...uAi,J(xiJrl teelt Ik)
=@ 2 ®1) - Ay A AT(Tir1) - (1@ xiq2 - ... - 1),

By definition of Q, A4, ~1,4,,1~J(%iy1) = 0. Finally:

Arjod®(z1...25) =0=(P®P) o Ay y(x1...21).
Hence, ® is a coalgebra morphism.

Let us now prove that ® is injective. Let x € coT (Q)[A], nonzero, such that ®[A](x) = 0.
We assume that $A4 is minimal. If A =T u J, with [ # ¢ and J # &:

((I)[I] ®q)[.]]) o ALJ(ZE) =Arjo CD[A](:L‘) = 0.

By hypothesis on A, ®[I] and ®[J] are injective, so A j(z) = 0, and =z € Q[A|. Then
O[A](x) = = # 0: this is a contradiction. Therefore, ® is injective.

Let us finally prove that ® is surjective. As P[] = K1, P[] = ©[T](coT (P)[F]). Let A
be a nonempty set. For any x € P[A], we put:

k(z) = max{l,3(I1,...,I;) € Comp(A), Ay, .1 (z) # 0}.

)
Obviously, k(z) exists and k(x) < fA. Let us prove that x € ®[A](coT (Q)[A]) by induction
on k(z). If k(z) = 1, then x € Q[A] and =z = ®[A](x). If £ = k(z) > 2, we put, for any
I =(L,...,Iy) e Comp(A):

77777
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By maximality of k, :L'EI) € Q for any I, i. We consider:

Yy = Z :cgl)-...-:vg).
I=(Iy,...,];)eComp(A)

Then, if | > k and (I1,...,1;) € Comp(A), Ar, ., (y) =0. If I = (I1,...,1;) € Comp(A),

A =2"®.. @z = Ay, 1 (x). Hence, k(z —y) < k, so z —y € B[A](coT(Q)[A])-
As y € ®[A](coT (Q)[A]), = € P[A](coT (Q)[A]). O

3 Convolution and characters
3.1 Convolution
As for "usual" algebras and coalgebras:

Proposition 3.1. Let (A, m4) be an algebra and (C, A¢) be a coalgebra, both in the category of
species. The space End(C, A) of species morphisms from C to A is a monoid for the convolution
product *:

Vf,g € End(C, A), frg=mao(f®g)oAc.
The unit is the morphism u = 14 o e¢.

Lemma 3.2. Let A be a commulative twisted algebra and B be a twisted bialgebra. We denote
by Char(B, A) the set of algebra morphisms from B to A.

1. Char(B, A) is a submonoid of (End(B,.A), *).
2. Let f € Char(B,.A), with an inverse g € End(B,.A). Then g € Char(B,.A).

Proof. 1. For any f, g € Char(B, A):

fxg9(1) = f(1p)g(1p) = 1ala = 1a.

Moreover:

mao(fxg®fxg)=mao(ma®@ma)o(f®g®f®g)o(As®Ap),
frxgomg=myo(f®g)o(Agompg)
=muyo(f®g)o(mp@mg)o (ldg® cpp®Idp) o (Ap® Ap)
=mao(ma®@ma)o(f®F®g®g) o (Ildg®cpp®Idp) o (Ap® Ap)
=myo(ma®@ma)o(Idsa®@caa®@Ida)o (fRIDf®g)o (AsQAp).

As A is commutative, mg o (f *g® f*g) = f*gomp. So f xge€ Char(B, A).

2. As Bis a bialgebra, B®B is a bialgebra. Let us consider the maps F' = fomp = m0o(f®f),
G=gompand H=my4o(g®g), all three in End(B® B, A).

FxG=myo(f®g)o(ms®mp)o(Ilds®cpp®Ilds) o (Ap® Ap)
=myo(f®g)oAgomp
=fxgomg
=140€50MpB
=140mzo(eg®ep)

=LA CEBRB-
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So G is a right inverse of F.

H+F=myo(ma®@mu)o(fQfR®g®g)o(Idg®cpp®Idg) o (Ap®Ap)
=mao(ma@ma)o(Ilda®@caa®lda)o (f®9R f®g)o(Ap®Ap)
=mao(ma@ma)o(f@®g®f®yg)o(Ag®Ap)
=mao(f*xg® f=*g)
=myo(ta®ra)o(es®ep)
=ta0mzo(ep®ep)
= LA 0 EBRB-

So H is aleft inverse of F'. Therefore, H = H=(FxG) = (H+F)*xG = G, so gomg = m_40(g®g).
Finally:

f#g(1g) =14 = f(18)9(18) = g(18),
Hence, g(15) = 14. O

3.2 Characters

By Lemma 3.2:

Definition 3.3. Let P be a twisted algebra. A character on P is an algebra morphism from P
to Com. The set of characters on P is denoted by Char(P) instead of Char(P,Com). Then
Char(P) is given a monoid structure in the following way:

Ya, 3 € Char(P), a* 8=mcom° (a®f)oA.

The unit of this monoid is the counit € : P — I — Com, where the second arrow 1is the
canonical injection from T into Com.

Remark 3.1. We proved in Corollary 2.5 that €’ is a character of Comp.

Let P be a twisted bialgebra and let A : P — Com be a morphism such that A[¢f] = 0.
Then, for any k e N,
MF[A] = > AR o Ap ().
(I1,....I )¢eCompl[A]
If K > A, this is zero: A is locally nilpotent for the convolution product *. We obtain an algebra
morphism:

oO]K[[X]] — End(P,Cogmp)
FX) =D anX™ — f(N) =D anh™.

n=0 n=0
If P is connected, then for any character A € Char(P), (A —¢)[&F] = 0, so f(A—¢) exists for any
feK[[X]]. In particular, for any g € K, we put:

M= (1+A=e)?= > Halg)(A—2)*",
n=0

where for any n > 0, H, is the n-th Hilbert polynomial:
XX-1)...(X—n+1)

H,(X) = = :
For any ¢,¢ € K, (1 + X)9(1 + X)? = (1 + X)9*7 | so:
A9 N = NI

Moreover, if f; = (1 4+ X)? =1, (1 + f,(X))? = (1 + X)%, so:
(A9 = N7
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Proposition 3.4. Let P be a connected twisted bialgebra and let A € Char(P). For any q € K,
A € Char(P).

Proof. We define a species morphism:

L(P,Com) — L(P®P,Com)
M
A —> dom.

Let A\, u € L(P,Com). For any = € P[A], y € P[B]:
M)« M)z ®y) = M) @ M(p) (e @y @22 ©4y?)
= MzWyMW) (2P y?)

— A play)
= M\ s )z ®y).

So M is an algebra morphism. Moreover, if AChar(P), then M(\) = A® A, so:

MIn(l+(A—¢)) =In(1+A®@\—e®¢)
=Inl+A—¢)®e+e@In(l + X —¢),
M) =exp(gln(l + A —e)®c+e®qIn(l + X —¢))
=exp(¢gIn(l + X —¢) ®exp(gIn(l + X —¢)
=N ®MN.
Hence, if z € P[A], y € P[B], X(zy) = A(z)\(y), so A\? € Char(P). O
Corollary 3.5. Let (P,m) be a connected twisted bialgebra. Then (Char(P), *) is a group.

Proof. For any A € Char(P), A"+ XA = A+ A~ = \g = £, so A~ is indeed an inverse of \ for the
convolution. O

Let us now give a species version of Aguiar, Bergeron and Sottile’s Theorem on the Hopf
algebra of quasisymmetric functions [1]:

Theorem 3.6. Let B be a connected twisted bialgebra. Let o : B — Com be a species morphism.

There exists a unique coalgebra morphism ¢ : B —> Comp such that e'o¢p = . For any x € B[A],
with A #

o(x) = 2 a® 0 Ay, a, (@) (A, A,
(A1,...,A)eCompl[A]

Moreover, ¢ is a bialgebra morphism if, and only if, ¢ is a character.

Proof. Immediate corollary of Theorem 2.6, as Comp = coT (Com..). O

3.3 Subalgebras of shuffle twisted bialgebras

Theorem 3.7. Let P be a twisted, connected and commutative bialgebra.

1. There exists a species Q and an injective morphism of twisted bialgebras from P to the
shuffle bialgebra (coT(Q), s, A).

2. There exists a species Q and an isomorphim of twisted bialgebras from P to the shuffie
bialgebra (coT(Q), W, A) if, and only if, P is cofree.

Proof. First step. Let P and Q be species. Then the set of linear morphisms from P to Q is a
species, defined by:

23



L(P, Q)[A] is the space of linear maps from P[A] to Q[A].
2. If 0 : A — B is a bijection and f € L(P, Q)[A], L(P, Q)[c](f) = Q[o] o f o P[o 1]

If P is a unitary twisted bialgebra, m : P ® P — P is a surjective map of species. Let us
denote by m : (P ® P)/ker(m) — P the canonically associated isomorphism of species. If P is
commutative, then m is a twisted algebra morphism: indeed, if x € P[A], y € P[B], 2’ € P[A'],
y' € P|B']:
masapup (2 @y) @ (' ®Y)) =22’y = zya’y’ = map(@ @ y)ma p (@' @Y.

Therefore, (P ® P)/ker(m) becomes an algebra and m is an algebra isomorphism.

If now P is a commutative twisted bialgebra, we shall consider the morphism of species
defined by:

e { L(P,P) — L(P®P,(P®P)/ker(m))

f — mlofom.
In other terms, for any f: P[A] — P[A],if A=1u J:
fomL]:m[’JOM[A](f).

As PP is a twisted coalgebra and (PQP)/ ker(m) is a twisted algebra, the species L(PQP, (P®
P)/ker(m)) is given a convolution product =. Let f,g € L(P,P)[A]. We put F = M[A](f) and
G = M[A](g). Then,if A=1uJ, x€P[I],yeP[J]]:

(frglomri(x@y) =momo(f@g)o(m@m)e(Ild®@c®ld)c (A®A)(z®y)
=mo(MAM)o(FRG)o(Id®c®Id) o (A®A)(z®vy).
Let us denote by 7 the canonical projection from P ® P onto (P ® P)/ker(m). We shall write:
F=mno() F@F)), G=mo() GLOGL).

where Fj, F, G}, Gy are linear endomorphisms of certain P[B], with B < A. Then, with
Sweedler’s notation:

(fxg)omrs(z®y) = fzWyW)g(zPy?)
= ZF’ (1 F]// y( ) (.Z' )GII( ))
= Y B @M G ) () G®)
= 2. Fj* Gi@)E] « GL(y)
= F = G(ay).
Hence, M(f+g) = M(f)*M(g): M is compatible with *. Moreover, for any x € P[A], y € P[B]:
Idom(z®y) =zy=mon(z®y).

Hence, M(Id) = 7

Second step. Let us denote by p the canonical projection from P to P;. As P is connected,
Id = v + p, where v is the unit of the convolution product of L(P,P). For any finite set A, by
connectivity of P:

p*[A] = > MAL Ay © DAy Ay
(Aq,...,Ar)eComp(A)
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In particular, if & > A, p**[A] = 0. We can then consider the morphism defined by:

«© (_1)k+1
f=, " =I(l+p) =In(1d).
k=1

As M is compatible with x:
M(f) =In(1+ M(p)) =In(l + (7 —v)) = In(7) = 7o In(Id ® Id).
Moreover, Id®1d = (Id® v) * (v ®Id), by property of the In formal series:
M(f) =70 (n(Id®v) + In(r®Id) = 7o (In(Id) @ v + v @In(Id)) = 10 (f @1 + 1 f).
In other words, if z € P[A], y € P|B], with A, B # &:
f(zy) = f(2)e(y) +e(2) f(y) = 0.

Let Q be the subspecies of P defined by:

Q|A] = {z € PIA], V(I,J) € Comp|A], Ar s(z) = 0}.

If x € Q[A]:

(_1)k+1
f(z) = Z AL A © App,a(z) =2 +0.
(A1, A4 )eComp(A)

As a consequence, for any finite set A:
Q[A] nm(P+ ® P4)[A] = (0).

Third step. For any n > 1, m(P+ ® P4 )[n] is a &,-submodule of P[n]. By semisimplicity,
there exits a &,-submodule R,, of P[n] such that:

Pln] = Q[n] @ Ry, m(Py ®Py)[n] € Rn.

For any finite set A, of cardinality n, let o be a bijection from n to A. We put R[A] =
Plo](Ry,). This does not depend on the choice of o: indeed, if 7 is another bijection, then
7 loo e &, s0 P[r] Lo Plo](Ry) = Pt~ o0o](Vy) = V,, and finally P[r](R,) = Plo](R,).
We define in this way a subspecies R of P such that:

P=Q@R, m(P+ ®P1) S R.

Let w : P — Q be the canonical projection. By universal property, there exists a unique
coalgebra morphism ® : P — coT (Q), such that 7 o ¢ = w, where 7 : coT(Q) — Q is the
canonical projection.

Let us assume that @ is not injective. Let x € P[A], nonzero, such that ®[A](z) = 0. We
assume that the cardinality of A is minimal. If (I, J) € Comp(A):

(B[I] @ B[J]) 0 Ars(x) = Apy o B[A](z) = 0.

By minimality of 44, ®[I] and ®[J] are injective, so Ay j(z) = 0. Hence, z € Q, so ®[A](z) =
7o ®[A](x) = w(x) = x: this is a contradiction. Therefore, ® is injective.
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Let us consider ®; = Wo (P®®P) and Py = ® om. Both are coalgebra morphims from P QP
to coT (Q). Moreover, if x € P[A], y € Q[B]:
mo®[Au Bl(z®y) = 7[A u B|(®[A](z) W 2[B](y))

S(2)7 0 B[B(y) if A = @,

=1 e(y)mo®[B](x) if B=(,
0 otherwise,
e(z)w[B](y) if A=,

= { e(y)w[B](=) if B =,
0 otherwise.

)
)

On the other hand, as @ o m(Py @ P4)) = (0):
ToP[AuBl(z®y) =wom(z®vy)

e(x)w[B](y) if A =,
= { c(y)=[Bl@) it B = &,
0 otherwise.

So mo®1 = 7o Py: by unicity in the universal property, ®; = ®5, so ® is a bialgebra morphism.

Last step. Let us assume that P is cofree, and let us prove that ® is surjective. Let k = 0,
x; € Q[A;] for all i and A = Ay 1 ... 1 Ag. Let us prove that x = z1...2; € ®[A](P[A]) by
induction on k. This is obvious if £ < 1. If kK > 2, as P is cofree, there exists an element y € P
such that:
Apo A W) =210 ... Q.

Then:
Ag,..oa, 0 PlAl(y) = [Ai](21) ® ... @ P[Ak|(zk) =21 ® ... @ zk.

Hence, the induction hypothesis can be applied to z — ®[A](y), so x € P[A](P[A]). O

4 The Hadamard product of species

4.1 Double twisted bialgebras
Definition 4.1 (Hadamard product of species). 1. Let P and Q be two species.

e For any finite set A, we put P[x1Q[A] = P[A] ® Q[A].
e For any bijection 0 : A — B, we put P[] Qo] = Plo] ® Qlo].

Then P [XI Q is a species.

2. Let Py, Pa, Q1, Qo be species, and ¢1 : P —> Q1, ¢o : P —> Qo be species morphisms.
We define a morphism ¢1 X ¢o of species from Py [x1 Q1 to Po[x] Qo by:

¢1 < pa[A] = ¢1[A] ® o[ A] : P1L K P2[A] — Q1 X Qo[ A

3. Let P and Q be two species. The following defines a morphism of species from P [x] Q to
QX P:

| PROQ[A] — QXP[A]
Q- r®y — yRx.

The species Com is the identity for this tensor product: for any species P,

PxCom = Com[XxP ="P.
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Definition 4.2. A twisted bialgebra of the second kind is a family (P, m,d) where (P,m) is a
twisted algebra and § : P —> PXIP s a morphism of species such that:

1. The following diagram commutes:

P2 P2

él lldpd

X2 ___ 3
oXIdp

2. There exists a morphism of species € : P —> Com such that the following diagram
commutes:

Com x| P 1d P 1d P x Com

1
e/Xldp \L IdpXe’

P2

3. 4§ is an algebra morphism from P to P XI'P, that is to say, for any finite sets A, B:
daupomap = (map®map)o (ldpa) ® ca s ®Idpp)) 0 (64 ®dp),

and 6@(173) = 17) ® 173.

In other words, for any finite set A, there exists a coproduct d4 : P[A] — P[A] ® P[A4],
making P[A] a coalgebra of counit /4. If 0 : A — B is a bijection, P[o]| is a coalgebra
isomorphism from (P[A],d4) to (P[B],05). In other terms, these objects are algebras in the
category of species in the category of coalgebras, that is to say the category of functors from the
category of finite sets with bijections to the category of coalgebras.

Notations 4.1. If P is a twisted bialgebra of the second kind, we adopt Sweedler’s notation for
its coproduct: if A in a finite set and x € P[A],

Sa(z) =" ®2",
((SA ®Idp[A]) o 5A($) = (Idp[A] ®5A) o (5A(l') = w' ®$”®(L‘”’.

Definition 4.3. A double twisted bialgebra is a family (P, m,A,d) such that:
1. (P,m,A) is a twisted bialgebra. Its counit is denoted by e.
2. (P,m,0) is a twisted bialgebra of the second kind. Its counit is denoted by &'
3. A is a right comodule morphism, that s, for any finite sets A, B:
(Aa,p®ldpra,p)) ©6aus = M13240 (04 ®dp) o Aap,

where:

- { P[A]@P[A]®@P[B]®P[B] — P[A]®P[B]® P[A L B]
18,24 Yzt — r®z@map(y®t).

4. The counit € : P —> T is a right comodule morphism, that is, for any x € P[J]:
(e®Id) o dg(x) = e(x)lp ® 1p.
FExample 4.1. The species Com is a double bialgebra with the coproduct defined on Com[A] = K
by:
54(1) =1®1.
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Remark 4.1. Let (A, m, A, d) be double twisted bialgebra. For any finite sets A, B, P[A]®P[B]
is a right (P[A u B],d4.p5)-comodule with the coaction:

pas = (1d¥ @ma p) o (Idppa) @ 74,8 @ ldp(p)) o(64 ® Op).

~

~
=mi, 3,24

More generally, if Ay, ..., Aj are finite sets, then P[A4]®...@P[A] is a right P[A1u... 0 Ag]-
comodule, with the coaction defined by:

PAL,. Ay =M13, 2n—124.2n 0 (04, ®...®4,).

For any finite sets Aq,..., Ax, ma,, .4, : PlA1]® ... ® P|Ax] — P[A1 u ... 1 Ag] and
A, P[AT L ... uAg] — P[AI] ® ... ® P[Ak] are right comodule morphisms.

7777

Proposition 4.4. Let (P,m,A,d) be a connected twisted double bialgebra. Then m is commu-
tative.

Proof. Let A and B be finite sets, x € P[A], y € P[B]. As P[] = Klp:
Aga(z) =1pQu, Apg(y) =y®1p.
By the compatibility between the product m and the coproduct A:
Ap a(ry) = (mp,e®@ma a) o (Id® cpip)pra ®1d)(Ag a(r) A (y) =y @z,

Then:

mi1,3240(0p®04) 0 Ap a(zy) =miz210 (6 ®04)(y D x)
— y/ ®xl ®y//x1/'
Applying £'[ Bl ® ¢'[ A] ® Id:
(EI[B] X 6’[14] X Id) ©1M1,3,24 © (53 X 6A) o AB,A(«'BZ/) = yx.

Moreover:

mi1324°(0p®d4) o Ap a(zy) = (Apa®Id)oda, p(zy)
= Apa((zy)) ® (zy)"
_ AB,A(xly,) ® x//y//
— y/ ®x/ ®xl/y/l‘
Applying ¢'[ Bl ® ¢'[A] ® 1d:
(€I[B] ® 8/[A] @ Id) O m173,24 O (63 @ 6A) O AByA(fL’y) =x2y.
Hence, xy = yx: m is commutative. O

Proposition 4.5. Let (P,-,dp) be a connected commutative twisted bialgebra of the second kind.
For any k > 0, we consider the set conty of pairs (o,7), where:

1. 0 : k —> max(0) is a non decreasing surjection.

2. 7:k —> max(7) is a surjection.
3. Foranyi,jek,ifi <j and o(i) = o(j), then (i) < 7(j).

There exists a unique coproduct § : coT (Py+) —> coT (P1) ® coT (P4) such that:
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1. (coT (P+),w, A, d) is a double twisted bialgebra.
2. dip = op.
3. For any (Ai,...,Ar) € Compl[A], z; € P[Ai]:
(€ @Id)od(zy...ax) =& (2 -+ - ah)a -+ - 2.
Moreover, for any (A, ..., Ar) € Compl|A], z; € P[A;]:

da(xy...op) = Z A I A S A (2)
(o,7)Econty,

o = ep if k=1,
L 0if k> 2.

The counit is given by:

Moreover, £ : (coT(P+),m,d) —> (P,mp,op) is a morphism of bialgebras of the second kind.
Proof. Existence. Let us consider the coproduct defined by (2). If x € P[A], as cont; =
{(1d, 1)}

dalz) =2’ ®@2" = op(x).
We denote by 1; : E — 1 the constant map. For any (A1,...,Ax) € Comp|A4], x; € P[A;]:

(€ ®Id)oda(zy...2%) = Z ep(ly > oy ... )T > o] 2
(1g,7)econty,

/ / " " "
=ep(lp > xy ... ap)zy ... 2y

=ep(z)) ... (a))2] ... 2
=T1...Tk.

Similarly, (Id ® €') 0 64 = Idco7(py[a], S0 € is a counit for 4.

For any k,l > 0, we denote by contz,’l the set of pairs («, ) such that:
1. a: k+1—> mis a surjection, non decreasing on k and on k + [\k.
2. B:k+1—> nis asurjection.
3. For any i,j € k +1,if i < j and «a(i) = a(j), then (i) < B(j).

Let a =ay...a; € coT (P)[A] and b = by ...b; € coT (P)[B]. We put:

d®@d =d...a,®d.. . af, Vv =b)...0,@b]...b.
daupomap(a®b) = Z (coa)— (@V)®(1oa)— (a"b)
a€QSh(k,l),

(o,7)€cont yax(a)

= 2 a— (@)@ (@)

(ov,8)Econt]

i3z © (04 ®0p)(a &) = 2 (a0 (o' ®0") = (@H) ® (B o (' ® ") - (")

(o/,7")econty,
(0", 7")Econt,
a€QSh(max(o’),max(c")),

BeQSh(max(7"),max(7"))

Z o — (a'b’) ®8 — (a”b”).

(v, B)econt)
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So ¢ is multiplicative.

Let us prove that A is a right (coT (P4 ), m,d)-comodule. For any k > p > 0, let us denote
by cont” ».i the set of triples (a, 3,7) such that:

1. a:p—>land 3:k\p —> m are non decreasing bijections.
2. v :k — n is a surjection.

3. For any i,j € p, if i < j and (i) = a(j), then v(i) < v(j).
4. For any i,j € k\p, if i < j and B(i) = 5(j), then v(i) < v(j).

Let a = z1...2 € coT (P+)[A u B]. If there exists a (unique) p < k such that z;...2; €
coT (P1)[A], we put o' ®a" @ a" =2 ... 2, @) 1 ... 2 @] ... 7). Then:

Asp®Id)oda,pla) = o, —d @ojp, = d T —ad”
(Ag, Ip K\p

(o,7)econty, a a

o(p)<o(p+1)

_ Z a_)a/®5_)a//®,y_)a///;
(e,8,7)econt] |
m1,3,240 (04 ®p)oAapla) = Z o 5d®d" > d" Qo (1) - a
(¢’,7")econt,,

(o”, T”)Gcontk —p>
a€QSh(max(r"),max(7"))

_ Z a—>a'®ﬁ—>a”®’y—>a"’.

(e B,7)cont”,

"

Otherwise, both are equal to 0. So A is a right comodule morphism.

Let us prove that § is coassociative. We work on co7 (P+)[A] and proceed by induction on
tA. If A = (J, then:

Let us assume the result at all ranks < $A. Let (I,J) € Comp[A]. For any x € coT (P+)[A4],
putting Ay j(z) = 27 @z

(AIJ@Id@Id)O(5A®Id)05A( )

= (M1324®1d) 0 (6; ® 0, ®1d) o (Ar; ®Id) 0 da(x)
=(m1324®Id) 0 (67 ® Iy ®@Id) omyg240 (6 ®0s)0 A s(z)
= (1) ® () ® (z1)"(z5)" ® (x1)" (x5)",

O

Ar;RId®Id) o (Id®da) 0 da(x)
=(Id®Id®da)omiz2a0 (0 ®6bs) 0 Ar j(x)
= (1)’ ® (z5) ®da((x1)"(2s)")
= (z1) ® (x7) ® ()" (x1)" @ (x1)" (x.1)".

Hence, (04 ®1d) 0 d4(x) — (Id® d4) o da(x) belongs to:

N ker(A7.7) ® coT (Py)[A] = PlA] ® coT (P1)[A].
(I,J)eComplA]
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If z € PEF(A):

(r®Id®Id)o (04 ®Id) 0 da(x) = Z 7o —>2"@r— 2"

(o,7)econty,
=(Id®da) o (m®Id) 0 da(x)
— (r@IA®I) o (Id®d4) 0 da(x).

Consequently, 6 4 is coassociative.

Unicity. Let ¢’ be another coproduct with the same properties. Let us show that d4 = 6’
by induction on $A4. This is obvious if A = ¢J. Otherwise, if (I,.J) € Comp][A]:

(A7y®Id)oda =mi3240(61®dy)0Ary

=mi3210 (07 ®8)) oAy
= (ALJ ®1Id) o (514

Hence, 64 — &', takes its values in P[A]|®@coT (P+)[4]. As (¢ ®@Id)ods = (€' ®Id)0dy, 4 = 4.

We already proved that ¢’ is an algebra morphism. Let x € P,[A]®*, with k > 1. Then:

0if k=2,
Saoc(@) =1 """

dp(x) if k=1;
e(ly — ') ®e(1y — 2”) if (1k, 1) € cont!,
0 otherwise

(€®e)odalx) = {

_foifk =2,
~ \dp(x) if k=1

Therefore, 64 o0&’ = (' ®&’) 0 da. O

Example 4.2. We denote by - the product of P and we use Sweedler’s notation for the coproduct
of P. If z € P[A], y € P[B], z € P[C]:

6(x) =2’ @a",
S(ay) =2y @2"wy" +2" -y @a"y"

n_n /i

:xly/®(wllyll+yx+xl/'yll)+x/.yl®xy’
6($yz) — xlylzl®wll I yl/ I+ Z” + $I(yl . Zl) ®$II 4 yl/zll
+ (m/ . y/)zl®xllyll " Z” + l'/ . yl . Z/®$”y”2’”.
Corollary 4.6. The bialgebra (Comp, s, A) is made a double bialgebra with the coproduct given
by the following: if (A1,..., Ax) € Comp[A4],
0a(Ar, ..., Ag)

= Z o— (A,...,Ap) ®T — (A1, ..., Ar)

(o,7)ECconty,

= Z (A1u...uAil,...,Aip+1u...uAk)®(A1,...,Ai1)Iil...lil(Aierl,...,Ak).

1<iy <. <ip<k
The counit is given by €' (A1, ..., Ax) = Op.1.

Proof. This comes from Comp = coT (Com ). Note that in this case, &' = €. O
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Example 4.3. In Comp, if A, B and C' are finite sets:

6(4) = (4) ®(4),

6(A,B) = (A, B)®((4) = (B)) + (AL B)® (4, B),

8(A,B,C) = (A, B,0)® (A) w (B) & (O)) + (A4, B L C) ® ((4) & (B, C))
+(ALB,0)®((A,B)w (C) + (AL BLC)® (A, B,C).

4.2 Characters of a double bialgebra

Proposition 4.7. Let P = (P,m,A,d) be a double twisted bialgebra. The set of characters
Char(P) has a second convolution product *, making it a monoid:

Vf,g € Char(P), frg=mcomo(f®g)od.
Its unit is €'. For any f,g,h € Char(P):
(fxg)xh=(fxh)x(g=h)
We denote by Mp the monoid (Char(P),*).

Proof. As 0 is an algebra morphism, if f, g € Char(P), then f x g € Char(P).

(fxg)*h=(f@g®h)o(A®Idp)os
=(f®g®h)omiza0(d®3)cA
=(f®h®g®h)o(0®J)oA
= (f*h)*(g*h).

The associativity of = comes from the coassociativity of d. O

Proposition 4.8. Let P = (P,m,A,0) be a double twisted bialgebra. Then Mp acts on the
space Mor(P, Q) od species morphisms from P to Q by:

{Mor(P,Q)XMP —  Mor(P, Q)
(9. f) — o= f=(®f)od

Moreover:

1. Let Q be a twisted algebra. We denote by Mor 4o(P, Q) the set of algebra morphisms from
P to Q. Then Mora(P, Q) is a Mp-submodule of Mor(P, Q).

2. Let Q be a twisted coalgebra. We denote by Morc(P, Q) the set of coalgebra morphisms
from P to Q. Then Morc(P, Q) is a Mp-submodule of Mor(P, Q).

3. Let Q be a twisted bialgebra. We denote by Morg(P, Q) the set of bialgebra morphisms
from P to Q. Then Morg(P, Q) is a Mp-submodule of Mor(P, Q).

Proof. Let ¢ € Mor(P, Q), f,g€ Mp.

(@ =f)eg=(0®f®g)o(6@Idp)od=(¢®f®g)o(ldp®F)cd = ¢« (fxg).

So « is indeed an action.

1. Let ¢ € Mory(P,Q) and f € Mp. As ¢, f and 6 are algebra morphisms, ¢ « f is an
algebra morphism, so belong to Mor4(P, Q).
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2. Let ¢ € Mor¢(P, Q) and f € Mp.

Ao(p— f)=Ac(p®f)0d
=(0®¢®@f)o(A®Idp)od

(
= (¢®¢)®f)om1,37240(5®5)oA
=R f®P®f)o(®J) oA
=(p—f®p—[f)oA

So ¢ « f € Morc(P, Q). The fact that « is an action is proved as in the first point.

3. This comes from Morg(P, Q) = Mor4(P, Q) n Morc(P, Q). O

Lemma 4.9. Let P be a double twisted bialgebra, Q and R be twisted bialgebras. For any species
morphisms ¢ : P —> Q and ¥ : Q@ — R, for any f € Mp:

(o)« f=1o(p« [)
Proof. For any finite set A, for any z € P[A]:
(o)« flx)=Woo®f)od(x)
=1 o ¢(z') f(2")
= (o(2") f(2"))
=U(¢ < f(2))
= 1o (¢« f)z),
where we put 04(z) = 2/ ® 2”. O

Proposition 4.10. Let P be a double twisted bialgebra. The following map is an injective mor-
phism of monoids:

X { (Mp,*) - (MOI‘B(P,P),O)
P fo— Idp < f.

Proof. Let f,g € Mp. By Lemma 4.9:
(Idp < f) o (Idp « g) = ((Idp « f)oldp) « g = (Idp « f) < g=1d « (f x g).
So xp(f) o xp(g) = xp(f * g). Let us consider the map:

/. MOI‘B(P7 7)) — M/P
Xp: d) N EI o (Z)

For any f e Mp:
X' oxp(f)=e o(ldp®f)od=(®@f)cd=¢xf=,

so Xp o Xp = Idn,. Consequently, xp is injective (and X’ is surjective). O

4.3 The terminal property of Comp

Theorem 4.11. Let P = (P,m,A,d) be a connected double twisted bialgebra. There exists a
unique morphism ¢ of double bialgebras from P to Comp. Moreover, the following maps are
bijections, inverse one from the other:

.. { Char(P) — Morg(P,Comp)
' f— o</
o {MorB(P ,Comp) —> Char(P)
¢ — oo
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Proof. Unicity of ¢. If ¢ is such a morphism, then €’ o ¢ = ¢/,. By Theorem 3.6, ¢ is unique.

Ezistence of ¢. Let ¢ be the unique morphism from (P, m,A) to (Comp,m,A), such that
e’ o ¢ = €. Let us prove that it is compatible with 0. Let A be a finite set and « € P[A]. We
proceed by induction on §A. If A = ¢, we can assume that £ = 1p. Then:

5@ © ¢(1P) = 5@(1Comp) = 1Comp ® 1Comp = (¢® ¢) © 6(177)'

Let us now assume that A # &J. Let @ € I € A and J = A\I. Then:

(A7,7 ®Tdeomp(a)) 004 0 ¢(x) =m13240 (67 ® ) 0 Ar o ¢(x)
=mi13240 (07 ®075)0(d @) 0 Ap s(x)
=m1324° (PP P®P) 0 (01 ®6y) 0 (¢ @) o Ap ()
= (0®P®@)omigaao(0r®dy) o Ar(x)
= (0 ®d® ) o (A1, ®Idppay) 0 da(x)
= (A7,7 ®Ideomp(a)) © (¢ ® @) 0 da(x).

We put y = (¢ ® ¢) 0 da(x) — 04 0 ¢(x). Then:

yE ﬂ ker(A7 ) ® Comp[A] = (A) ® Comp[A].
(I,J)eComp(A)

We put y = (4) ® z. Then:

z = (' @ Ideomp(a)) (¥)
= (£'0¢®¢) 0 da(x) = (¢ ®Tdgomp(a)) © 54 © B(x)
(Ido¢)o (¢ ®1d) o da(z) — ¢(x)
¢(z) — ¢(z)
0.

Therefore, y = 0, s0 (p ® ¢) 0 da(x) = d4 0 d(x).
Bijectivity of < and ¢'. Let f € Char(P).

eo(pefl=co(¢p®@f)od=(0¢)®f0d=(cp®f)od =

Hence, Yo T = Idcpar(p)- By Theorem 2.6, Y’ is bijective, so its inverse is Y, which is bijective
too. O

5 The example of graphs

5.1 Double twisted bialgebra of graphs

Let us now give the species Gr' a structure of double bialgebra.
Notations 5.1. Let G be a graph in Gr'[A].

1. The relation ~¢ is the equivalence whose classes are the vertices of G.

2. Let I = A. We assume that I is a union of vertices of A. The graph G|; € Gr'[I] is defined
by:

« V(G)) = {zeV(G), z I},
* E(G|I) = {{l’,y} € E(G),xuy = I}'
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3. Let ~ be an equivalence on A. We shall write ~ <G if the following hold:
e For any z,y € A, if x ~¢ y, then x ~ y.
e For any class I of ~, G| is a connected graph.

If so, we define two graphs G |~ and G/ ~:

(a) If C1,...,Cy are the classes of ~, then G| ~= G|, ... G|c, .
(b) V(G/ ~) is the set of classes of ~.

(c¢) Two classes C and C” of ~ are related by an edge in G/ ~ if there exist vertices z, 2’
of G, related by an edge in G, such that z € C and 2/ < C’.

Proposition 5.1. The species Gr' is a double twisted bialgebra, with the following coproducts:
1. If G is a graph in Gr'[T u J]:

0 otherwise.

G ®G,; if I is a union of vertices of G,
AI,J@:{ 1®G; if f f

2. If G is a graph in Gr'[A]:

5A(G) = ). G/ ~®G| ~.
~<aG

The counit of 6 is given by:

0 otherwise.

1ifGh d
S,A(G):{ if as no edge,

Proof. Let G € Gr'[I u J u K|. Then:

(AI,J ® Idgr’(K)) © AIUJJ{(G)
_ {Gl ® Gy ®G|k if I, J, K are union of vertices of G,

0 otherwise.
e (Idgr/[[] ® AJ,K) © AI,JUK(G)

Hence, A is coassocative.
Let G, H be graphs in respectively Gr'[A] and Gr'[B]. If AL B =1 u J, then:

(GH);; ® (GH),; if I is a union of vertices of G and H,

0 otherwise

A7 j(GH) :{

B {GAMHBM ® Ga~sH B~y it I is a union of vertices of G and H,

0 otherwise
= Aan1,4n7(G)AsnsBAI(H).

Hence, (Gr',m,A) is a twisted bialgebra.

Let A be a graph in Gr'[ A]. We consider the set X of pairs (~, ~') of equivalences on A such
that:

1. For any z,y € A, if z ~g vy, then x ~ y; if z ~ y, then x ~' y.

2. The equivalence classes of ~ and ~’ are connected graphs.
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Then:

(64 ®@Idgppay) 0 0a(G) = >, (G/ ~)/ ~ ®(G/ ~)| ~' ®G| ~
~<a@G,

~ <G~

D1 (G~ ~ @G ~)] ~ 8] ~
(~~")eX
= 3 G/~ @G~ ®(G ) ~
(v )X

S G/~ BG]~) ~ B(G] ~)| ~

~'<@,
~<|G|~/

(Idgr’[A] &® 5A) o 5A(G)

So 0 is coassociative. Let ~(, be the equivalence whose classes are the connected classes of G.
Then ~¢, ~ <G and:

(€' ®1dgyia)) 0 64(G) = £'(G/ ~5)G| ~g +0 = G,
(Idgr/[A] ®6/) o 5A(G) EI(G| '\/G)G/ ~q +0 =G.

So ¢’ is indeed the counit of 4.

Let G, H be graphs in respectively Gr'[A] and Gr'[B]. As the connected components of GH
are the connected components of G and the connected components of H, for any equivalence ~
on Au B, ~<GH, if, and only if, ~=~" 1 ~" with ~' <G and ~” <H. Consequently:

6A|_|B(GH) — Z (GH)/ ~ L N ®(GH)| N L N

~'<a@,
~laH

= Y (G/~)H] ~") @ (G ~)(H| ~")
~'<@,
~<H

= 5AuB(G)5AuB(H)-
Let G be a graph in Gr'[A 1 B]. Iff A is not a union of vertices of G, then:

(A, ®Idgya)) 0 64uB(G) =mi3210 (04 ®B) 0 Aap(G) = 0.

Otherwise:
(AaB®ldgr(a)) 0 0auB(G) = Z (G ~)a®(G/ ~) @G/ ~
A and B are u;f)f’of classes of ~
= ) (G~ ®(Gp)/ ~" &Ga) ~ (Gip)| ~"
~,<G‘A7
~I<]G|B
=m13240 (04 ®dB) oA p(G).
Consequently, Gr’ is a double twisted bialgebra. O
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Example 5.1. If A, B, C are nonempty finite sets:

Ala) = a®1+1®. 4

A(I) =101+ 4R .5+ .50 .4+ 1R 15,

ACV) =" V@1 + 1E®.c+15@ 5+ e 5c®ea
+.o@ 4 @1+ a® . po+ 107V

5(-,4) 0A®°A;
0(13) = 18®@.as+ .48 @14,
5(BVAC) BVAC®-AoB-c+ 190 @M+ 150 @195+ caubuc ®BVAC-

5.2 Morphism to Comp

We now look for the unique morphism ¢ : Gr’ — Comp of Theorem 4.11.

Definition 5.2. Let G be a graph in Gr'[A]. A wvalid packed coloration of G is a surjective map
¢: A —> |max(c)|, such that:

1. For any z,y € A, if x ~q y, then c(z) = c(y).

2. For any z,y € A, if there is an edge in G between the ~g-equivalence classes of © and vy,
then c(x) # c(y).

The set of valid colorations of G is denoted by VC(G).

Proposition 5.3. The unique morphism of double bialgebras from Gr' to Comp of Theorem 3.6
s given on any graph G by:

(G) = > (c'(1),...,c  (max(c))). (3)

ceVC(G)

Proof. By Theorem 3.6:
$(G) = Z e® o Apy . (G) (A, .., Ay)
(A1,..,A)
= > (G4 d(Ga) (AL, Ar).

(A1,...,Ak)

By definition of ¢/, €'(G|a,) ... €'(G|4,) = 1 if the map c sending any a € A; to i for any i is a
valid coloration of G, and 0 otherwise, which implies (3). O

Ezample 5.2. If A, B and C are finite sets:

o(.4) = (4),

¢(15) = (4, B) + (B, A),

o(°NV) = (A4, B,C) + (A,C,B) + (B,A,C) + (B,C, A) + (C, A, B) + (C, B, A)
+(A,BuC)+(BucC,A).

A
A

6 The example of finite topologies

6.1 Double twisted bialgebra of finite topologies
Definition 6.1. Let T = (A, <) be a finite topology and let ~ be an equivalence on A.

37



1. We define a second quasi-order <. on A by the relation:
Va,y € A, r<p.yif (x<yandz ~y).
2. We define a third quasi-order <7/ on A as the transitive closure of the relation R defined
by:
Vo,y€ A, xRy if (x <y orxz ~vy).
In other words, x <. y if there exist x1,y1,...,Tn,Yn € A, such that:

T=T1~Y1 €7 ... ST T~ Y = Y.

3. We shall say that ~ is T-compatible and we shall write ~ <T' if the two following conditions
are satisfied:

o The restriction of T to any equivalence class of ~ is connected.

o The equivalences ~r/. and ~ are equal. In other words:
Y,y € A, (z <7/a Y and y <7/~ T) =T ~y;
note that the converse assertion trivially holds.
The set of T-compatible equivalences is denoted by CE(T).
Lemma 6.2. Let T be a finite topology on a set A and let ~ be an equivalence on A.
1. The open sets of T/ ~ are the ~-saturated open sets of T
2. The open sets of T| ~ are the sets of the form
O1nX1)u...u (0, X,),

where O1,...,0, are open sets of T and X1, ..., X, are equivalence classes of ~.

3. ~e CE(T) if, and only if, the following hold:

a) For any equivalence class X of ~, Tx s connected.
Y eq » 41X

(b) For any equivalence class X of ~, there exist an ~-saturated open set O and a ~-
saturated closed set C' such that X = O n C.

Proof. 1. Let O be an open set of T/ ~. If x € O and y € A, such that z <p y or x ~ y, then
T <7/~ Y, 80 y € O: O is an ~-saturated open set of 7. Conversely, let O be a ~-saturated open
set of T Let z € O and = <7/ y. There exist x1,y1,...,%n,yn € A, such that:

T=T1~Y1 ST ... ST T ~ Y =Y.

As O is open and saturated, for any i, x;,y; € O, so y € O: O is an open set of T/ ~.

2. Let O be an open set of T'| ~. For any equivalence class X of ~, we put:
Ox ={ye A,z e On X,z <7 y}.

Then Ox is obviously an open set of T containing O n X. If y € Ox n X, there exists x € Oy,
such that x <7 y. As O is open, y € O, so y € O n X. We finally obtain that Ox n X = O n X,

and:
o= |J (OxnXx).

X class of ~
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Conversely, let us assume that O has the form
0= (OlﬂXl)U...U(OnﬁXn).

Let z € O and z <7|. y. Then z <7 y and = ~ y. There exists i such that z € O; N X;. As O;
is open, y € O;. As X; is an equivalence class of ~, y€ X;, soy e O; n X; € O.

3. For any X € A, we put:
O(X)={ye Az e X,z <r/. y}, C(X)={ye Az e X,y <p/. 7}.

Then O(X) is an open set of T/ ~, so is a ~-saturated open set of T'; C(X) is a closed set of
T/ ~, so is a ~-saturated closed set of T'. Moreover, X € O(X) n C(X).

<. Let us assume that ~e CE(T) and let X be an equivalence class of ~. By hypothesis,
Tjx is connected. Let y € O(X) n C(X). There exists z,2’ € X, such that v <7/ y <p/. 2"
Asz ~a' x ~p/ @' 80 x ~p/0 y ~r/ @'. Moreover, ~¢ CE(T), so z ~y ~ 2/, and y € X. We
proved that X = O(X) n C(X).

=. Let O’ be a ~-saturated open set and C’ be a ~-saturated open set such that X =
O'n (" Let y € O(X). There exists v € X, such that x <7/. y. As O’ is a open set of T/ ~ by
the first point, y € O, so O(X) < O’. Similarly, C(X) c C’. Hence:

XcOX)nC(X)nO' nC'=X.

We proved that X = O(X) n C(X).
Let z,y € A, such that x ~p/. y. Let us denote by X the equivalence class of . Asz <7/, v,
yeO(X);asy <pyo 7, y€ C(X). Soye X and z ~ y. O

Lemma 6.3. Let T be a finite topology on a set A and ~,~' be equivalences on A such that:
Vr,y e A, r~y=1x~"y.
Then:
(T| ~)] ~=T| ~, (T)~)/ ~' =T/~
If moreover ~'e CE(T), then:
(T] ~)) ~=(T/ ~)|~".
Proof. Let x,y € A.

T L)~ Y = T S yand T~y
—r<ryandz~yandz~y
—z<ryandx ~y

=z <T\~ Y.

So (T~ ~=T| ~.
By definition, <(7/.)/~ is the transitive closure of the relation given by:

xéTyor:z~yorx~'y,

or equivalently:
r<ryoraxz~y.
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Therefore, (T'/ ~)/ ~'=T/ ~'.
Let z,y € A. If z <)1)/~ v, there exist 1,y1,..., 2k, yp € A such that:

T =121~ Y1 ST|~r B2 ~ Y2 S|t -2 STt Tl ~ Yk = Y-

Consequently:

T=21~Y1 ST L2~ Y2 ST ... ST Tk ~ Yp = Y,
so & <7/~ y. Moreover,

=z~ gy~~~ g =y,

sox ~"yand x (/)| y. Let us assume that ~'e€ CE(T). If © <7/~ ¥, then x <7/ y and
x ~'y. There exist x1,y1,...,Tk, yr € A, such that:

T=21~Y1 ST L2~ Y2 ST ... ST T ~ Y = Y.
Consequently:

T =21 ST/ Y1 ST/ o+ STyt Th STY Yo ST/~ Y STYn T

so all the elements of A appearing here are ~p/.-equivalent. As ~'e CE(T), they are ~'-
equivalent. Hence:

r =1 ~ yl gT‘N/ €Trg ~ y2 §T|~I e §T|~’ {Ek ~ Z/k = y
So x <(T\~')/~ y. Finally, (T| ~')/ ~= (T/ ~)| ~. O
Proposition 6.4. Let T' be a finite topology on a set A and ~€ CE(T).

1. The Hasse graph of T| ~ is obtained from the Hasse graph of T by deleting the edges of the
graph of T between non ~-equivalent vertices.

2. The Hasse graph of T'/ ~ is obtained from the Hasse graph of T by:

e Contracting any equivalence class of ~ to a single vertex.

e Deleting the superfluous edges created in this process.

Proof. First, if x ~r y, then x ~p/_ y, so x ~ y as ~¢ CE(T). Hence, the sentence describing
the construction of the Hasse graph of T'| ~ makes sense.

L. Obviously, ~pj.=~7, so the vertices of the Hasse graph of T'| ~ are the vertices of the
Hasse graph of T', that is to say the classes of ~p. For any =z € A, we denote by clp(z) its
equivalence class for ~7p.

Let us prove that the edges of the Hasse graph of T'| ~ are of the form (clr(x), clr(y)), with
T ~ y. Firstly, if (clr(x),clr(y)) is an edge of the Hasse graph of T'| ~, then = <p|. v, so
r<ryandx ~y. lfz<rz<ry, then o <p/0 2 <p/e Y Sy @, 50 T ~ppc 2~y Y. As
~€ CE(T), * ~ z ~ y, s0 @ <p|~ 2 <7~ y. Consequently, z ~7 2z or y ~7 2. Secondly, if
(clr(z), clr(y)) is an edge of the Hasse graph of T" and = ~ y, then = <7 y. If © <7. 2 <ppe v,
then z <pz<py,sox ~pyory~rpz.

2. As ~e CE(T), the vertices of the Hasse graph of 7'/ ~ are the classes of ~. Let us prove
that for any edge (cl-(x),cl(y)) of the Hasse graph of T/ ~, there exist 2’ ~ 2 and y’ ~ y such
that (clp(2), clr(y')) is an edge of the Hasse graph of T this will prove the second point. As
x <y, there exist x1,y1,..., Tk, yp € A such that:

T=x1~Y ST ... ST T~ Y =Y.

Consequently:
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As (cl-(x),cl(y)) is an edge, there exists i such that:
T=T1~Y1~ . ~Y ST Tigl ~ -~ T ~ Y =Y.
We consider the set:
X={d"eA 2 ~z,3eAy ~yand 2’ <rv}.
We proved that X is nonempty: let 2’ € X, maximal for <7. We now consider:
Y={yeAy ~yand 2’ <7y}

By definition of z’, this is nonempty: let y € Y/, minimal for <p. Then 2’/ <7 1/, ' ~ z and
y' ~y. Let us assume that 2’ <7 2z <7 y. Then o' <p/o 2 <y y, 50 2’ ~ zor 2~y

e If 2/ ~ 2z, by maximality of 2/, 2/ ~7 z.

e If 2 ~ ¢/, by minimality of v/, z ~7 v/.
So (clr(x'),clr(y')) is an edge of the Hasse graph of T. O

Corollary 6.5. Let T be a finite topology on a set A and let ~e CE(T).
1. Let X € A, ~-saturated. Then T)x is connected if, and only if, (T/ ~)|x is connected.

2. Let X € A, included in a class of ~. Then T|x is connected if, and only if, (T| ~)x is
connected.

Proof. 1. <. Let x, y € X. There exists a path from cly(x) to clp(y) in the Hasse graph of T,
with all its vertices in X. By construction of the Hasse graph of T/ ~, there exists a path from
cl(z) to cl.(y) in the Hasse graph of T'/ ~, with all its vertices in X. So X is T/ ~-connected.

—. Let z, y € X. There exists a path from cl.(z) to cl.(y) in the Hasse graph of T'/ ~,
with all its internal vertices x = xg,21,...,Tr = y be classes of elements of x. By construc-
tion of the Hasse graph of T/ ~, for any ¢ there exist 2}, 2! with an edge between clp(x}) and
clr(z}) in the Hasse graph of T, z} ~ x; and z! ~ z;11. As the classes of ~ are connected,
there exists a path in the Hasse graph of T between clp(z}) and clp(x;), with all its vertices
being equivalent to z. As X is ~-saturated, all these vertices belong to X. Similarly, there
exists a path in the Hasse graph of T between clp(z) and clp(xiy1), with all its vertices in X.
We finally obtain a path in the Hasse graph of T' between cly(x) and clp(y), so X is T-connected.

2. <. There exists a path from clp(z) to clp(y) in the Hasse graph of T', with all its vertices
in X. As X is included in a single class of ~, all the edges between them belong to the Hasse
graph of T'| ~, so X is T'| ~-connected.

=. Immediate, as the Hasse graph of (T'| ~)|x is a subgraph of the Hasse graph of T|x. [
Theorem 6.6. The species Top is a double algebra with the following coproducts:
1. For any quasi-poset T € Top|A u B],

TA®T g 1f B is an open set of T',

0 otherwise.

App(T) = {

2. For any quasi-poset T € Top|A],

SaT)= > T/~QT|~.
~eCE(T)

The counit €' of § is given by:
, 1 if <7 is an equivalence,

E =
() {O otherwise.
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Proof. Let T be a quasi-poset on a set F, andlet E = A B uC.

(Aap®Id) o Appc(T)
B {TIA ®Tip®Tjc it C'is an open set of T' and B is an open set of Tj4,,p,

0 otherwise,

_JTa®Tip®Tj¢ it B L C and C are open sets of T,
o otherwise,

_ JTa®Tip®Tjc it B L is an open set of T' and C'is an open set of T|g ¢,
0 otherwise,

= (1d®Ap,c) o Aapuo(T).

So A is coassociative.
Let T and T’ be a finite topology on A and A’, respectively. Let B and B’ be finite sets such
that Au A’ = Bu B'.

Ap p(TT) = (TT")5 @ (TT') | if B’ is an open set of TT",

7 0 otherwise,
) TanBT i ®Tianp |y if A B" and A" B’ are open sets of T' and 1",
0 otherwise,

= Aunpane (T)Awnpa~p (T).

So (Top,m,A) is a twisted bialgebra.

Let T € Top[A] and T' € Top[A']. If ~e CE(TT"), as its classes are connected, ~ can be
uniquely written as ~=~' 11 ~” with ~'e CE(T) and ~"e CE(T"). Conversely, if ~'e CE(T)
and ~"e CE(T"), then ~=~' 1y ~"e CE(T'T"). Hence:

daua(TT) = 2, (TT)/(~ b ~") @ (TT)|(~ 1 ~")
~'eCE(T), ~"eCE(T")
= > (T/ ~) T/ ~") @ (T] ~')(T'] ~)
~'eCE(T), ~"eCE(T")
5A(T)(5A/(TI).

Let T' € Top|A]. Let ~g=~7 and ~; be the equivalence which classes are the connected
components of T. Then both belong to CE(T'). For any ~e CE(T):

<7/~ 18 an equivalence <=~=n~q,

<7/~ is an equivalence <=~=~q .
Consequently:
(€ ®Id) 0 5(A) =T| ~y +0 =T, (1d®¢') 0 64(T) = T/ ~o=T.
So €’ is the counit of 4.

Let T € Top[A].

(6a®Id) o o(T) = > (T/ ~)) ~" T/ ~)| ~' &T| ~,
~€CE(T),~'€CE(T/~)
(Id®da) 0 0a(T) = > T/~ T ~)) ~&T| ~)] ~.

~€CE(T),~eCE(T|~")
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We consider the two sets:
X ={(~,~),~e CE(T),~'e CE(T/ ~)}, Y ={(~,~"),~'e CE(T), ~e CE(T| ~")}.

Let (~~) e X. Ifz ~y, x ~p/u y and @ ~p/yr y. As ~'e CE(T/ ~), © ~" y. Let
(~,~)e Y. If x ~ y, then z and y are in the same connected component of T| ~' as the classes
of ~ are T'| ~'-connected. Hence, 2z ~' y. By Lemma 6.3:

@a®Id)od(T)= > T/~ T/~)~ &~
(~,~ex
(Id®da)06a(T) = > T/~ T/ ~)| ~ QT| ~.
(~ ey
In order to prove the coassociativity of J, it is enough to prove that X = ).

Let (~,~') € X. Let X’ be an equivalence class of ~'. Then it is ~'-saturated, so also
~-saturated. By Corollary 6.5, as X' is T'/ ~-connected, it is also T-connected. Let X be an
equivalence class of ~. Then it is included in a single class of ~’. By Corollary 6.5, as X is
T-connected, it is also T'| ~'-connected.

By Lemma 6.3, ~p/u=~p/.)~=~" as ~'€ CE(T/ ~). So ~'e CE(T). Consequently,
(T~ ~ = (T )|~ For any r,y € A, as ~€ CE(T):

T~ (T Y T ~"y and x ~T/N Y
o~ yandz~y

= x~y.

We obtain that ~e CE(T| ~'). Therefore, X < ).

Let (~,~") € Y. Let X be a class of ~. Then X is T'| ~'-connected. By Corollary 6.5, it is
T-connected. Let X’ be a class of ~'. Then it is ~-saturated and T-connected. By Corollary
6.5, it is T'/ ~-connected.

By Lemma 6.3, ~(p/oy/m=~p/v=~"as ~'€ CE(T), so ~'e CE(T/ ~). Let z,y € A. If
x ~p/. y, as ~€ CE(T| ~'), x and y are in the same connected component of T| ~', that is to
say in the same class of ~" as ~'e CE(T'), so x ~" y. Consequently, & ~ /)|~ ¥, S0 T ~(7|~ry/n Y
and x ~ y, as ~€ CE(T| ~'). Hence, ~e CE(T). We proved that J) € X.

Let T € Top[A] and A =11 J.

(Ars®@1d)oda(T) = 3 (T/~)r® T/ ~),@T| ~
~€eCE(T),
JeO(T/~)

= > T/~ ® T/ ~); ®T| ~
~€eCE(T),
JeO(T), ~-saturated

> M)/~ @My ~" QT|(~' u~")if Je O(T),
NIECE(:FH)7
~"eCE(T},)

| 0 otherwise,
(Y @)/~ Ty ~" M) ~ ()] ~" if J e O(T),

NIECE(TU)v
~ECE(T])

Il
A

0 otherwise,
=m13240 (01 ®67) 0 Ay s(T).
So T is indeed a double twisted bialgebra. O
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Example 6.1. If A, B, C are finite sets:

Alca)) =ea®@1+1® .4,
A1) =15@1+..0.5+1® 15,
By pO\ _ BasC B c By C
APV =" VER1+18@ .0+ 15Q@ e+ a®epo+ 1@ VY,
c c c
AGD =1 @1+18@.c+.4@15 + 1014,
0(ea) = ea®.a,
(1) =18®@. s+ .28 @14,
5(BVAC) ="V @ amet+ 1908 @15c+ 1800 @S+ avnue @V,
c c ¢
5(£E) = £E®°A-B-C+ 190 @R c+ 18" ®alS+.aubuc ®}§-

6.2 Morphism to Comp
Let us describe the unique morphism ¢ : Top — Comp of double twisted bialgebra.
Definition 6.7. Let T = (A, <) be a quasi-poset.
1. We denote by L'(T) the set of surjections f : A —> max(f) such that:
e Foranya,be A, if a <r b, then f(a) < f(b).
2. We denote by L(T) the set of surjections f: A —> max(f) such that:

e Foranya,be A, if a <p b, then f(a) < f(b).
e Foranya,be A, if a <p b and f(a) = f(b), then a ~7 b.

Proposition 6.8. Let A € Char(Top). The unique twisted bialgebra morphism v : Top —
Comp such that &’ o) = X (Theorem 8.6) is given by the following: for any quasi-poset T =
(A7 <T)J

B(T) = D MTp-11)) - AT =1 max(r) D), -, £ (max(f).
)

feL (T
Proof. We denote by S(T') the set of sequences (Ay, ..., Ai) of subsets of A such that:
1. For any i € k, A; is nonempty and A; u... 1 A = A.
2. Foranyiek, A; u...u A is an open set of T

By Theorem 3.6:

W(T) = > NTa, - Ta) (A1, .., Ap).
(Ax,...,Ap)eS(T)

The following map is a bijection:

{ L’(T}

which implies the result. O

In order to obtain the morphism ¢ of Theorem 4.11, we consider A = &’. Firstly, observe that
L(T) < L'(T). Moreover, for any f € L'(T), the following assertions are equivalent:

1. fe L(T).
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2. Vi € max(f), ST,

is an equivalence.
3. Vi e max(f), ' (Tip1q)) = 1.
4. Yi e max(f), '(Tiy1¢)) # 0.

We obtain:

Theorem 6.9. The unique double bialgebra morphism from Top to Comp of Theorem 4.11 is
given by the following: for any quasi-poset T,

feL(T)

Ezample 6.2. If A, B and C are finite sets:

6.3 Structure of Top

Theorem 6.10. The bialgebra Top is isomorphic to a shuffle twisted bialgebra.

Proof. By theorem 3.7, it is enough to prove that Top is cofree. We shall apply Theorem 2.7.
Let us consider the product ® (joint product) defined on Top by the following: if T = (A, <r)
and S = (B, <g) are quasi-posets, then, for any z,y € A u B,

z <ger y if (z,y) € A% and z <g y
or (z,y) e Band z <7 y
or (z,y) € A x B.

The open sets of S ® T are:
e The open sets of T,
e The sets O 1 B, where O is an open set of S.
Hence, if Au B=A"u B
1. If B’ is an open set of T, then B’ € B and:
App(Se@T)=S®Tpp®@Tp =(S®1)® App p(T).
2. If A’ is a closed set of S, then A’ € A and:
Apnp(S®T) =S40 QSjanw®T =480 0405 ®(0QT).

3. Otherwise, AAQB’(S ® T) = 0, if A’ - A, AA’7A\A(S) = O, if B - B, AB\B’,B’(T) = 0.

Therefore, the product ® satisfies the properties of Theorem 2.7. O
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7 Graduation and homogeneous morphisms

7.1 Definition

Definition 7.1. Let P be a twisted bialgebra. We shall say that P is graded if there exists a
family of subspecies (Pn)n=0 such that

n=0
with:
Vk,l €N, m(Pr ® P1) € Pri,
vn €N, A(Pn) = @ Pr @ P
k+l=n
We also assume that for any finite set A:
PlA] if A=,

PolA] = {

(0) otherwise.

If P and Q are two graded twisted bialgebras and if ¢ : P — Q is a morphism, we shall say that
¢ is homogeneous if for any n =0, ¢(Pn) € Qp.

Example 7.1. 1. Gr' is graded: for any n € N, for any finite set A, Gr! [A] is the vector space
of graphs in Gr'[A] with n vertices. For example, if A is a finite set:

Gri[A] = Vect(. 4),
Gri[A] = P Vect(1G, « . o).
(B,C)eComp[A]

2. Top is graded: for any n € N, for any finite set A, Top,[A] is the vector space of finite
topologies on A with n equivalence classes. For example, if A is a finite set:

Top1[A] = Vect(. 4),

Topa|A] = P Vect (15,18, .5.c).
(B,C)eCompl[A4]

3. Let P be a species with P[] = (0). The shuffle twisted bialgebra (coT(P), 1w, A) is graded
by the length: for any n € N, coT(P),, = P®".

If P is graded, for any ¢q € K, we obtain a twisted bialgebra endomorphism:
) P — P
T zePu4] — "z

Remark 7.1. For any ¢,¢' € K, 10ty = 14, and t; = Idp. Moreover, if ¢ : P — Q is
a morphism between two graded twisted bialgebra, it is homogeneous if, and only if, for any
ge K, 1g0¢ = ¢ o, Conversely, if P is a twisted bialgebra and (¢4)qek is a family of twisted
bialgebra endomorphims such that:

e Forany ¢,q' €K, g0ty = tgq.
e 11 =Idp.
For any n € N, any finite set A, we put:
PnlA]l = {z € A, Vg e K, t4(x) = ¢"x}.

Then the direct sum P’ of the subspecies P, is a graded twisted bialgebra.
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7.2 Graduation of quasi-shuffles bialgebras

Proposition 7.2. Let Q be a commutative twisted bialgebra of the second type and let P =
(coT(Q), w, A, d) be the associated double twisted bialgebra. We denote by ¢ : P — Com the

counit of 9.
1. For any q € K, we put \y = €. Then:

- P — Com
Tl wcon — Hp(Q)e (z1) ... € (zn).

2. For any q € K, we put 0, = Idp < X\;. Then 0, is a twisted bialgebra endomorphism and,
for any q,q' €K, 6500y = 04y

3. For any n € N, for any finite set A, we put:
Pu[A] = {z € P[A], Vg e K, 0,(x) = ¢"z}.

This gives (P,w,A) a graduation.

Proof. First, note that for any ¢,¢' € K, Ay * Ay = Agig and Ay x Ay = Mgy

[e¢]
N1 2) = ZHk(q) Z O (ry .y ® . @ Ty Ty)

k=1 I <. <ip<n
= Hn(q)e@”(ml ®...Qx,) +0
= H,(q)é (z1) ... € ().

2. For any ¢q,¢ € K:
0,00, = (Id « Ag) o (Id — Ag) = Id  (Ag # Ag) = Id Ay = Agy-

3. For any x1 ...x, € P[A]:

Op(wy...xp) =2 . @ w .. wal) + aspan of tensors of length < n

ST
=z} ...xp A (x]) . .. )\q(x;'l) + a span of tensors of length < n
=12} ...2)qd(2]) ... qe'(2)) + a span of tensors of length < n

=q"x1... 2, + aspan of tensors of length < n.

Hence, for any ¢ € K, 6,[A] is diagonalisable and its eigenvalues are powers of ¢. For any integer

n, we put:

PnlA] = {z € P[A], 02(z) = 2"x}.

P=@P,.

neN

Then:

Moreover, for any n, the restriction of the canonical projection m, on P®" to P, is a bijection
n i Pp—> PO For any q € K, 0,060 = 03 00, = 0y, so for any n, 0,(P,) S Py,. Moreover,

if z € PL[A],
@n 0 0g(z) = ¢"wn (@) = wn(q"2).

As w, is a bijection, 0,(z) = ¢"x. We obtain:

PulA] = {z € P[A], Vg e K, 0,(x) = ¢"z}.
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If x € P[A] and y € P| B]:
ba(z w ) = O2(x) w 02(y) = (2°2) & (2'y) = 2" (@ w y),
50 wW(Pr ®Py) S Py If x € Py[A] and A = Ay L Ay
(02 ®62) 0o Ap, a,(z) = Aay 4, 002(x) =2"A 4, a,(2),

S0:
AA1,A2(37) € @ Pk[Al]@Pl[AQ].
k+l=n
Hence, P is a graded twisted bialgebra. O
Ezxample 7.2. We obtain:
aq(wl) = (4,
0y(z122) = Prize + a q2— (z1 - x2),
2
—1
O4(z12023) = Crizers + q%)(xl - T)x3
2(g—1 —1)(qg—2
L4 (q2 )xl(x2 z5) + q(q é(q )(QE1 29 73),
0y(r1207324) = g rizoxsra
2 -1 2 -1
+ (]((]2)(381 - T9)x3T4 + q(q2)ac1(:v2 - T3)xy
2 -1 2 -1 2
+ q(q2)x1x2($3 . x4) + q(q4)($1 . xQ)(x'g . .%'4)
2(q— 1)(q — 2 *(g=1)(qg -2
LTl 6)(61 )(x1 iy wg)g + (g 6)(61 )xl(@ 23+ 24)
-1 -2 -3
Ll )(q24 )(q )(x1 32 T3 ).

We shall give in Proposition 7.3 another description of the graduation of P.

7.3 Homogeneous morphisms to quasi-shuffle bialgebras

Proposition 7.3. Let Q be a commutative twisted bialgebra of the second type and let P =
coT(Q). Let o: (P,,A) — (P, w,A) defined by:

1

" 1<i1<Z<ik<n i1 (ia —i1)! ... (n —ig)! “ it n
This is a homogeneous twisted bialgebra morphism.
Proof. Let A : P — Q, defined by

r1-...° &

This is a twisted algebra morphism from (P, L) to (Q,-): for any x1 ...xg and xg,1 ... Tk € P,
as Q is commutative:

1
)\(1'1 T W Ty .:lj‘k+l) = 2 mngwl) Tt To—1(k D)

oeSh(k,l)
2 L1 e T+l

1
oeSh(k,l)

(k +1)!
1

= )\(.1‘1 .o ..I‘k))\(karl ce 5Uk+l)'
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Moreover, g is the unique twisted bialgebra morphism such that ¢ o ¢ = X of Theorem 2.6.

Let z1...x, € Q. For any q € K:

WogoLq(:cl...xn):ﬁxl-...-xn.

Moreover, if g € N:

mobgop(zy...xy)

= Z L — ol ((x1-... xiy) .. (Tipg1 .- Tn))

1<i1<..<ip<n ill(ig — Zl)' . (n — Zk)'

1
- ¥ — Hy1 (@)1 @

1<iy<..<ip<n ill(ig - Zl)' . (n — Zk)'

N 1

- 2 2 ﬁHl(Q)xl'...--(pn
l=1a1+...+a;=n ai:...ajp:

Ly (al‘*‘--.—i—ak)! q

EZ Z (ll!...&k! k T1*..." Ty

‘k=lai+...+tap=n

min(n,q)
1
:ﬁ Z HfQ—)Q? |f(ﬂ)|:]€}|x1xn
k=1
1
:gfﬂl'...--xn

=mopog(xr...xpn).

As ,0p and poy, are both coalgebra morphisms, by unicity in the universal property of coT (P),
040 p = poy for any g € N. Hence, for any n > 2, for any finite set A, we have:

coT(P)n[A] = {z € P[A], O2(x) = 2"},
PE[A] = {z € P[A], 2(x) = 2"},

we obtain that p(P®") € coT(P),. So p is homogeneous. O
Consequently, in the particular case of Comp, for any n € N, for any finite set A:
Compy|A] = Vect(o((A1,...,4)), (A1,...,4A,) € Comp|A]).
For example:
Compi[A] = Vect((4)),
Compa[A] = Vect ((Al, Ag) + %(Al L Az), (A1, Az) € ComP[A]> ;

Compg[A] _ Vect ( (Al,AQ,Ag) + %(Al L AQ,A3) + %(Al,AQ ] Ag) + %(Al L Ay L Ag), )

(Al, AQ, Ad) € COII’Ip[A])

Corollary 7.4. Let P be a graded, connected twisted bialgebra. We denote by MorOB(P,Comp)
the set of homogeneous twisted bialgebra morphisms from P to Comp and by L(P1, Com) the set
of species morphisms from P1 to Com. The following map is a bijection:

{Mor%(P,Comp) — L(P;,Com)
o —> 5'o¢|p1.
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Proof. Injectivity. and let ¢, ¢’ : P —> Comp be two homogeneous twisted bialgebra morphism,
such that €' o ¢jp, =€’ o qﬁipl. We put A =’ o¢ and N =&’ o ¢'. Let us prove that ¢ = ¢'. By
Theorem 4.11, it is enough to prove that A = \": let us prove that A\jp, = )‘\,Pn by induction on
n. This is obvious if n = 0 or 1. If n > 2, then for any ¢ € K, if =z € P,[A], by the induction
hypothesis:

¢"NMzx) = Ao y(z)
= X0(a)

Q0

= Hi(@)\(x) + ) > A —e)® 0 Au, 4, (@)
k=2 (A1,...,Ar)eComp|[A]

Hence, by the induction hypothesis:

0

(@ - PA@) = Y Y (-9 oA, @)

k=2 (A1,...,Ay,)eComp[A]

Choosing ¢ = 2, as n > 2, we obtain \(x) = N (x).

Surjectivity. Let A1 : Py — Com be a species morphism. We define Ay : Py — Com by
Ao(1lp) = 1. Let us define A, : P,, — Com for n > 2 by induction on n. If z € P,,[A], we put:

1
An(2) = o 5 Z 2 Hi(2)(Mga, ® ... @ Ma, ) 0 Auy 4, ()
k=2 (A1,...,Ar)eComp|[A]

1
= Z ()\ﬂAl ® )‘ﬁAz) SRAVI (z),

2" =2 (4, As)eComp[A]

which we shortly write as:

1
n —2

An(z) = Mz (z?).

We define in this way a map X\ : P —> Comp, such that A> = X\ o t5. Let us prove that X is a
character: let x € Py[A], y € Pi[B], and let us prove that A(zy) = A(z)A(y) by induction on
k+l=n.If k=0o0r! =0, we can assume that x = 1p or y = 1p and the result is obvious. We
now assume that k,1 > 1. There is nothing to prove if n = 0 or 1. Otherwise, by the induction
hypothesis:

1 2A(@)A(Y) + MaWy)A(z?)

AMzy) = PYSWREEPN AN @@ y) + AMayD)A(y@)
TN )M Ey?) + A0y )

! ( 2A(2)A(y) +
)

2k+l _ 9

= M(ZH(?’“?) +2(2' - 2) + (28 - 2)(2' - 2))

= A@)AW)-

So A is a character, A\jp, = A1 and A2 = Mo Let ¢ : P — Comp be the unique twisted
bialgebra morphism such that &’ o ¢ = \.
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Let g € K. For any x € P[A]:

Agod(x) = > AR o Ay, 4, ()N (AL, ..., Ag)
k=0 (Ay,...,Ar)eComp[A]

= > Hi(9) ) Ao Auy 4y (@)

k=0 (A1,...,Ap)eComp|A]
= 3 H(@O -2 (@)

k=0
— \(2)

So Ay 0 ¢ = X9, For any finite set A:

Compyn[A] = {x € Comp[A], O2(z) = 2"x},
PulA] = {x € Pp[A], t2(x) = 2"x}.

As the characters Aoty = &' 0 poip and A2 = Ag 0 ¢ = ¢/ 063 0 ¢ are equal, by Theorem 4.11
¢ o1g = 030 ¢. Consequently, if = € P,[A]:

020 ¢(x) = ¢ 0 1a(x) = 2"¢(x),

so ¢(z) € Compp[A]: ¢ is homogeneous. Moreover, ' o ¢jp, = A1. O

7.4 The example of graphs

Proposition 7.5. 1. Let u = (ug)g=1 be a sequence of scalars. The following map is a
homogeneous morphism of twisted bialgebras:

Ggr' — Comp

[EA]

iy gegra] — | [ wi] [] O

IeV (@) IeV(G)
All homogeneous morphisms from Gr' to Comp are obtained in this way.

2. Let A\ : Gr' — Comp be defined by \o(G) = 1 for any graph G. Then \g is a character
of Gr' and for any q € K:
(@) = ¢ Dq.

Proof. For any finite set A, Gri[A] is one-dimensional, generated by ... Hence, the species
morphisms from Gr} to Com are given by:

(s 4) = uga,

where u is a sequence of scalars. By Corollary 7.4, there exists a unique homogeneous morphism
of twisted bialgebra ¢, : Gr' — Comp such that (&' o (b“)\g"'l = [y Let us consider the map:

gr' — gr
bu G — H ugr G.
IeV (@)

This is obviously a homogeneous endomorphism of twisted bialgebras, and for any sequences u,
v, then ¢, o1, is a homogeneous morphism and for any finite set A of cardinal n:

e'o ¢u o Lv(°A) = UnpUn,
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0, putting uv = (UpVn)n>1, Puv = Gu © Ly It is now enough to describe ¢q, with 1,, = 1 for any
n. Let us put A\g = €’ o ¢1, and let us prove that \o(G) = 1 for any graph G. We proceed by
induction on deg(G) = n. If n = 1, then G = . 4 and A\g(G) = 1,, = 1. Otherwise, as A3 = \goa:

1
M(G) = 57— 2 MGG )
(A,B)eComp[V(G)]
1
= 2

2 (A,B)eComp|V(G)]
52 ()
2n —2 fo] k
= 1.
So A\o(G) = 1 for any G. As ¢y is homogeneous, A} = Ag o ¢4 for any g € K. O
Ezample 7.3. If A, B and C are finite sets:

(4),

= (A) w (B)
= (A4,B) + (B, A) + (Au B),
$1(°Vi) = (4) w (B) & (O)

— (A, B,C) + (A,C,B) + (B, A,C) + (B,C, A) + (C, A, B) + (C, B, A)
+(AuB,C)+(AuC,B)+(BuC,A)
+(A,BulC)+(B,AuC)+(C,AuB)+(AuBu(l).

7.5 Application: acyclic orientations

Let ¢ € K. We shall consider the homogeneous morphism defined in Proposition 7.5, with u,, = ¢

for any n:

gr' — Comp
14

%y Gegr[A] — =D [T ().
IeV(G)
Then:
¢q = ¢ « )\qa

where A\, = €’ 0 ¢, is the character given by:

If ¢ # 0, we put:
behry = 0410 B0 1.
This is a twisted bialgebra morphism from Gr’ to Comp. In particular, ¢pepr, = .
Example 7.4. If A, B and C are finite sets:

Qschrq (‘ A)
¢chrq ( ! E)

(4),
(A
ey ("VA) = (
+(
+(

,B) +(B,4) +(1-¢q)(Au B),
B,C)+ (A,C,B) + (B,A,C) + (B,C,A) + (C, A, B) + (C, B, A)
YWALB,O) + (1 —q)(ALC,B) + (B LC,A)

A,
1—
1-¢)(C,AuB)+(1—q)(B,AuC)+ (A, Bu(C)+2(1—-¢)(AuBu(l).

q
q
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Lemma 7.6. Let A € Char(Gr'). Then X is invertible for * if, and only if, for any finite set A,
/\(.A) # 0.

Proof. =>. Let p be the inverse of \. For any finite set A, A * pu(.4) = A(ca)pu(c2) = (ea) =1,
50 A(ea) # 0.

<. We define inductively scalars u1(G) and p2(G) for any graph G by induction on the
number k of edges of G. If £ =0, then G = .4, ....4,, and we put:

1
Aeay) o A(ea,)

1 (G) = p2(G) =

Otherwise, let C1,...,C; be the connected components of G, and let A4, ..., A be the decora-
tions of its vertices. Then:

0(G)=G®.eay-civaytecs - e, @G +sum of terms G' ® G”, with §E(G"), $E(G") < {E(G).

We then put:
1
G) =— cay e a)AMG) + p (GHNGT)),
11(0) = 5y g (e - a)ME) + i (@AE)
1
G)=— MG cop ey ) F NG G").
12(G) = 5y MOes ) + M@ ()
By construction, p; * A = A x uo = €’. Hence, X is invertible, and its inverse is 1 = uo. 0

Consequently, if ¢ # 0, A\ is invertible. We denote by A, the inverse of A\; and for any
q#0, Achrq = Achr * (5, o ¢chrq)- Then:

¢chrq = ¢« (51 © ¢chrq) = (¢1 «— )\chr) <« (5, © ¢chrq) = ¢1 — Achr-
In particular, Acpr, = Acpr- Consequently:

Corollary 7.7. For any graph G € Gr'[A]:

Setry(G) = D Aetry (G [~)CD ... L),
~<1G

where CO) ..., CCH™) gre the equivalence classes of ~.

Proposition 7.8 (Extraction-contraction principle). Let G be a graph and e be an edge of G.
We denote by G\e the graph obtained in deleting the edge e and by G/e the graph obtained in
contracting the edge e, the two extremities of e being identified with their union. Then, for any
graph G, for any edge e of G:

Gehr (G) = Genr, (G\€) — enr, (G/e).
For any q # 0:
Gehry (G) = Genry (G\€) — q@enr, (G/e).
In particular, Moo(G) = €' © ¢epr_, (G) is the number of acyclic orientations of G.

Proof. We denote by X and Y the set of valid colorations of G\e is the set of colorations ¢
of G such that the conditions for ¢ to be valid is satisfied, except maybe for pairs of elements
(x,y) € X x Y. The set of valid colorations of G/e is the set of colorations ¢ of G such that the
conditions for ¢ to be valid is satisfied, except for any pair of elements (z,y) € X x Y. Hence,
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VC(G\e) = VC(G) uVC(G/e), which gives ¢enr, (G\€) = behri (G) — Genr, (G/e).
Ifg#0:

betry (G) = ¢*% D01 0 G, (G)
= qdeg(G)eq—1 (¢chr1 (G\e) - ¢chr1 (G/e))
_ Qq—l (qdeg(CJ\e)¢6th (G\e) o qdeg(G/e)Jrng)chT1 (G/e))
= ¢ch7‘q (G\e) - Q¢chrq (G/e)

We denote by A\;o(G) the number of acyclic orientations of G and we put u(G) = €’opep,_, (G).
Let us show that u(G) = A\4o(G) by induction on the number k of edges of G. If k = 0, then
#(G) =1 and the result is obvious. If k£ > 1, let e be an edge of G. Let O be an orientation of G
and let O’ be the orientation of G obtained by changing the orientation of e in G. Both O and
O’ give the same orientation of G\e, which is acyclic if, and only if, O or O’ is acyclic. Both O

and O’ induce an orientation of G/e, which is acyclic if, and only if, both O and O" are acyclic.
Comnsequently, Ago(G) = Ao (G\e) + Aao(G/e) = u(G\e) + u(G/e) = u(G). O

Corollary 7.9. Let ¢ # 0. Moreover for any graph G:
)\chrq (G) = qdeg(G)iCC(G))\chrl (G)

Moreover, the character Acpy, ts invertible and for any graph G, P (G) = qaes(G)—cc(G),

chrqg

Proof. As ¢cpry, = &1 < Achry = 0g-1 0 Genry © Lg:

@bchrl Olg = eq o (¢1 «— Achrq)
= (911 © d)l) «— )\chrqv
€IOLq = 5lo¢ch'r1 O Lg
= (EI o 9q @) ¢1) * )\chrq-
For any graph G, if V(G) = {A1,..., Ay}

e'00,0¢1(G) =€ 00,((Ar1) w ... w(Ag))
= o 0,((A1) € 0 Oy ((Ay))

Therefore:

' 01,(@Q) = 2D (@)

= Z qdeg(G/~))\cth (G |~)
~<aG

= Z qCC(G|~))‘chrq(G |N)
~<aG

So:
£'(G) = 2 qCC(G‘”)*deg(G‘”))\chrq(G |~).
~<aG

Hence, the inverse of the character defined by A(G) = 1 for any graph G is given by:

A1 (G) _ qCC(G)_deg(G))\chrq (G)
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If g =1, * YG) = Aenry (G) and, if ¢ # 0:
)\chrq (G) = qdeg(G)fcc(G) Achrl (G)
Moreover:

SI(G) _ Z qcc(G|~)—deg(G|“’))\chrq (G |~)
~<aG
_ qCC(G)*deg(G) 2 qdeg(G/N)icc(G/N)Achrq(G |~)
~<a@G

If €'(G) # 0, then cc(G) = deg(G),s0:

2 qdeg(G/’V)*CC(G/N))\chrq(G |~) = €'(G).
~<aG

Therefore, \*, 1 (G) = ¢lea(@)—cc(G), X

chrq

Corollary 7.10. 1. The character \go is invertible and, for any graph G:

)\Zgl(G) _ (_1)deg(G’)+cc(G)>\ao(G).

2. The following maps are twisted bialgebra automorphisms, inverse one from the other:

gr' — gr
i Gegr'[A] — )] MaolG ~)G/ ~,
~<aG
gr — gr
[0 Gegr[a] — D (~1)dI+e@) (G ~)G/ ~ .
~<aG

Moreover, ¢chr_1 = ¢chr1 ol' and ¢chr1 = ¢chr_1 oI

Proof. 1. By definition of Ay:
Aao = e'o chh’r,l =¢'o (le <~ )‘chr71) = )‘Z}:rll * )‘chrfl-

So N>l = A1 % Ay, and for any graph G-

chr_1

N1 (@) = 3 (1), (G|
~<aG
_ (_1)deg(G)+cc(G) Z (_1)deg(G\~)+CC(G\~))\chr1 (G |~)
~<aG

_ (_1)deg(G)+cc(G) 2 Achr_l (G |~)
~<aG

_ (—1)deg(G>+CC(G))‘Zf;}1 * /\chr_l(G)
_ (_1)deg(G)+cc(G))\ao(G)‘

2. We obtain:
¢chr1 ol = ¢chr1 o (Id — )\ao) = (Z)chrl — Ao = qbch’rl — ()\Z}::l * )\chr_l) = ¢1 — )\chr‘_l = ¢chr_1-

Note that I' = Id « Ay, and I” = Id « A*>1, so they are indeed twisted bialgebra morphisms,

ao 7
inverse one from each other. O
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To summarize, we obtain twisted bialgebra morphisms ¢, and ¢cp,, from Gr' to Comp, such
that the following diagrams are commutative:

gr/ tq gT,/ grl tq grl
¢ch7‘q/ l J/(t)c}wqq’ ¢ql l l(ﬁq/
Comp — Comp Comp — Comp
q q

We also have a twisted bialgebra automorphism I" of Gr/ making the following diagram commut-
ing:
r

gr! Gr'
(bck Al
Comp
They are related to several characters of Gr':
¢chrq = @1 « )\chrqa I' =1d « Agpo.

For any graph G:

)\chrq (G) _ qdeg(G)fcc(G)/\Chm(Gv)7 )\*71 (G) _ qdeg(G)fcc(G)7 )\Zgl(G) _ (_1)deg(G)+cc(G))\(w(G).

chrq

Remark 7.2. Taking the limit when g goes to 0, one gives a meaning to ¢cpy, and to Acpy,. For
any graph G:

1if deg(G) = cc(G),

0 otherwise

)‘C}”’o (G) = {
=(G).

So (z)chro = ¢1 — )\chro = ¢1 —¢e = ¢1~

7.6 The example of finite topologies

Definition 7.11. For any quasi-poset T' = (A, <r), we denote by HO(T) the set of heap-orders
on T, that is to say surjections f: A —> max(f) such that:

1. For any a,be A, if a <7 b, then f(a) < f(b).
2. For any a,be A, f(a) = f(b) if, and only if, a ~7 b.
Note that for any f € HO(T), max(f) = cl(T). We denote by ho(T) the cardinality of HO(T).

Lemma 7.12. Let T be a finite topology on a finite set A. Then:

2, cl(TOC)I!E:IT()T! aontetdiaololTio) = (2 — 2)ho(T).

O non trivial
open set of T

Proof. We consider the two following sets:
1. X is the set of pairs (h, k), where h € HO(T') and 1 < k < cl(T).

2. Y is the set of triples (O,h',h"), where O is a non trivial open set of 7', b’ € HO(T|40)
and 1" e HO(T)p).

For any (h, k) in X, we put:
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e O=h'({k+1,...,cl(T)}). As h e HO(T), this is an open set of T, and as 1 < k < cl(T),
it is non trivial.

e ' =ha0and b = hjo—k. As he HO(T), (O,h',h") € B.
We define in this way a map 9 : X — Y.

If (O,h,1)) €Y, we put:

1. k= cl(A\O) = max(h').

2. h: A—> cl(T) defined by:

W) = B (x)if x ¢ O,
N W (@) + kitzeo.

It is not difficult to show that h € HO(T).

We define in this way a map 9 : Y — X, and it is immediate that Y01’ = Idy and ¥/ 09 = Idx.
So ¥ and ¥ are bijections. We obtain:

cl(T)!
ho(7) 4\0)ho(T)0)
o oy AT )

open set of T'

_ cl(T)!
) oy NTjo)'el(T40)!

(O,h’,h”)
>
(h,k)EX kl(n — k)!
Z nZl n'
heHO(T) k=1 kl(n — k)!
= 3 @)
heHO(T)

= (2" = 2)ho(T),
where n = cl(T). O

Proposition 7.13. 1. Let u = (ur)k>1 be a sequence of scalars. The following map is a
homogeneous morphism of twisted bialgebras:

Top —> Comp
P TeTopld] — | T wr |6 MolD).
[eCL(T)

All homogeneous morphisms from Top to Comp are obtained in this way.

2. We put:

ho(T)

Aho(T) = CI(T)! :

Then Ano 1s a character of Top. Moreover, for any q € K, A\pp0 14 = )\;Iw.
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Proof. For any finite set A, Topi[A] is one-dimensional, generated by .. Hence, the species
morphisms from 7 op; to Com are given by:

/j’u('A) = uﬁA?

where u is a sequence of scalars. Corollary 7.4 implies that there exists a unique homogeneous
morphism of twisted bialgebra ¢, : Top —> Comp such that (¢ o ¢u) g, = Hu-
Let us consider the map:

Top —> Top
fu T — [T wrT
1eCL(T)

This is obviously a homogeneous endomorphism of twisted bialgebras, and for any sequences u,
v, then ¢, o1, is a homogeneous morphism and for any finite set A of cardinal n:

g 0 py 0 Ly(sa) = UpUL.

It is now enough to describe ¢, with 1, = 1 for any n. Let us put Ay, = € o ¢1, and let us
prove that for any finite topology T on a finite set A:

Aho(,r) = illo((Tj;? :

We proceed by induction on cl(T) = n. If n =1, then T' = .4 and A\po(T) = 1,, = 1. Otherwise,
as )\%O = Apo © L2, by the preceding Lemma:

1
Mol T) = 50— > Ao(Tjv (o) Mno(Ti0)
O non trivial open set of T'

1 c(T)!

= o ho(Tjo)ho(7} 4\0)

2n -2 O non trivia%pen set of T' CI(T|O)!C1(T|A\O)!
~ ho(T)
ool
As ¢1 is homogeneous, A} = Apo 0 14 for any g € K. O

FErample 7.5. If A, B and C are finite sets:

$1(.4) = (4),

1
$1 (") = (A,B,C) + (A,C,B) + (A, Bu C)
1 1 1
+ §(A|_|B,C') + §(A|_|C',B) + g(AI_IBI_IC),
% 1 1 1

o (1) = (4,B,0) + SABLO) + J(AUB,O) + ((ALBUC).

7.7 Application: duality principle

Lemma 7.14. Let )\ be a character on Top. It is inversible for x if, and only if, for any finite
set A, M.a) # 0.

Proof. Similar to the proof of Lemma 7.6. O
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Let ¢ € K. We denote by ¢, the homogeneous morphism associated to the sequence defined
by u, = ¢ for any n in Proposition 7.13:

s { Top —> Comp
"\ TeTop[d] — @D — Apo(T).

The associated character A, = £’ o ¢ is defined by:

__aryho(T)
AalT) = l(T)cl(T)!'

If ¢ # 0, for any finite set A, A\;(.4) = ¢ # 0, so A, is invertible.

For any ¢ € K, nonzero, we put ¢epr, = 0410 ¢ o1y : Top —> Comp. These are twisted
bialgebra morphisms, and ¢.pn,, = ¢. We put:

Aehrq = Aiil * (51 o ¢ehrq)7

which implies that for any ¢ € K:
¢ehrq =¢1 < Aehrq'

Example 7.6. If A, B and C are finite sets:

Penry(« 4) = (A),
Genn (18 = (A, B) 4+~ (A0 B),
Genr,("NA) = (A,B,C) + (A,C,B) + (A, B L C)
12 (AuBC)JrlT(A C,B) + (1_(])6(2_Q)(A|_|B|_|C),
¢>€hrq(i§):(A,B,0)+1;Q(A,Bu0)+1;(1(Au3,0)+(1_(1)(5(2_(1)(AuBu0).

Proposition 7.15. For any finite topology T, €’ © ¢epr_,(T) =1 and:

Getr_(T) = D7 (WFH D), 4 (max(f))).

feLl(T)
Proof. For any finite topology T"

o Qbehrfl (T) = (_1)C1(T)5/ of j0 Gehry (T)
_ Z (_1)C1(T)+max(f).
feL(T)

Let us prove that this is equal to 1 for any quasi-poset 7. We proceed by induction on n = cl(7).
This is obvious if n = 0. If n > 1, let us denote by min(7’) the set of minimal classes (for <)
of T. For any linear extension f of T, f~(T) is a subset of min(T); we obtain a bijection:

|| L@vaeyn) — L)
G ICmin(T)
V(T) — N

feLTvary) — f: . lifzel,
f(z) + 1 otherwise.
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Hence, using the induction hypothesis on the quasi-posets Tjy ()

Z (—1)clT)+max(f) _ Z Z (=) HelTly )+ 1+max(f)

feL(T) Felcmin(T) feL(Tiv (rn1)

- Y

FCICmin(T)

=— > )¥+1

IC€min(T)
=1

Hence, &’ o ¢epr_, (T') = 1 for any T'. The formula for ¢ep,_, (T') comes from Proposition 6.8.

Proposition 7.16. For any quasi-poset T, for any q € K, nonzero:

—cc *— c _cc ho(T
Aehry (T) = g7 A1 (T), a@@%w””<ﬂm%?

Proof. As ¢ehrq = ¢1 — Aehrq = eq*1 © ¢ehr1 oL

0‘1 © ¢6hrq = ¢ehr1 O lq e o lg = ¢ o (behrl O Lg
= (0g0 ¢1) < Aehrq)s =£o 040 Behry
= (¢ 00,9 61) * Aehry-

Let T be a finite topology. Then:

N Tho(T
q o
Elogqoqbl(T) :(:1(11)?)
Hence:
cl(~ )h T
CI(T) I Z q 0 / ))\ehrq (T |~)’
~<aT
b hO(T/ ) co(T[~)—cl(T]~) )
= Z Mo(T/ ~ )qeeTIM=elTI~)y LT |~).
~<aT

Hence, the inverse of the character A\, is given by:

Mg (T = gD\, (T).
Consequently, for ¢ = 1, )\Zgl = Aenr, and, for any ¢ # 0:

Aetry (T) = gD\, (T).
Moreover:

EI(T) _ q 2 )\ho T/ cl (T/~) CC(T/~)>\ hr (T |~)
~<aT

If &/(T) # 0, then <7 is an equivalence and cl(T") = cc(T), so:

= 2 Ano(T/ N)qcl(T/~)fCC(T/~)>\ehrq(T |~).
~<T

Hence, the inverse of Acy,, is given by )\;;qu (T) = M D)—ec(T) ), (T).
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Corollary 7.17. The following maps are twisted bialgebra automorphisms, inverse one from
each other:

Top —> Top
I T — > T/~

~<aT
Top — Top

PI . T 2 (_1)c1(~)+cl(T)T/ ~ .
~<T

Moreover, ¢eh7“_1 = ¢ehr1 ol and ¢ehr1 = ¢ehr_1 ol

Proof. Let X be the character defined by A\(T") = 1 for any finite topology 7T'. It is an invertible
character and, as I' = Id « A, I is a twisted bialgebra automorphism. By Proposition 7.15,
A =¢€"oepr_,, 80

A= 51 © (¢1 — /\ehrfl) = 81 © ((Z)ehrl <« (/\;}:7«11 * )\ehr,l)) = )\2];11 * )\ehr,l-

Hence:
¢ehr1 ol'= ¢ehr1 — A= ¢1 — ()\ehrl * )‘) = ¢1 — ()\ehr_l) = (Z)ehr_y

Moreover, '™t = Id « A*~!. Tt remains to compute \* ! = /\;};171 * Aenr,- Let T be a finite
topology:

)\*—1 % )\ehm (T) _ Z (_1)C1(T/N)+CC(T/~))\;};}1 (T/ "’))\ehm (T |~)

ehr_q
~<aT
_ Z (_1)cc(T\~)+cc(T))\;};11 (T/ ~)Netry (T |~)
~<aT
_ (_l)cl(T)-i-cc(T) Z (_1)CC(T|~)+CI(T|~)A;;T11 (T/ N)Aehrl (T |~)
~<aT
_ (_1)CI(T)+CC(T) 2 )\2};11 (T/ ~)Aetr_ (T |~)
~<aT
_ (_1)C1(T)+CC(T)>\;‘]:T11 . )\ehr,l(T)
_ (_l)cl(T)Jrcc(T)/\(T)
_ (_1)C1(T)+CC(T).
AsTV =Id < X1, IV =T"L O

To summarize, we obtain twisted bialgebra morphisms ¢, and ¢ep,, from Top to Comp, such
that the following diagrams are commutative:

Top e Top Top e Top
¢ehrq, l i(z)e}”‘%’ ¢q/ i \L(ﬁql
Comp 0 Comp Comp — Comp

q q

We also have a twisted bialgebra automorphism I' of 7Top making the following diagram com-
muting:

Top r Top

Comp
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They are related to several characters of Top:
¢ehrq = ¢1 « )‘ehrqv ['=1Id < A

For any finite toplogy 1"

C —cc *— c —cc hO T
Aery (G) = ¢q UT)=ee(T) ), (T, )\ehrlq (T) = (T)=ee(T) Cl((T ))!,
AT) =1, YT = (_1)01(T)+CC(T).

Remark 7.3. Taking the limit when ¢ goes to 0, one gives a meaning to ¢epy, and to Agpy,. For
any finite topology T"

0 otherwise

Ny (T) = {1 if cl(T) = ce(T),

=e'(T).

SO Gehry = P1  Aehrg = ¢1 — €' = ¢1.

8 Fock functors

8.1 Definition
Let us now use the Fock functors of [2].

Notations 8.1. Let V be a left &,,-module. The space of coinvariants of V' is:

v
- Vect(z —ox,xeV,0e,)

Coinv(V)

In particular, if P is a species, for any n = 0, P[n] is a left &,,-module.

Definition 8.1. 1. (Full Fock functor). Let P be a species. We put:

If ¢ : P —> Q is a species morphism, we put:

_ K(P) — K(Q)
KoL o e e ol

This defines a functor from the category of species to the category of graded vector spaces.

2. (Bosonic Fock functor). Let P be a species. We put:
~ e}
K(P) = @ Coinv(P[n]).
n=0
If ¢ : P —> Q is a morphism of species, we put:

- KP) —
K(9) : { 7 € Coinv(P[n|) —

~

S

(Q)

¢[nl(x) € Coinv(Q[n]).

This defines a functor from the category of species to the category of graded vector spaces.
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Remark 8.1. 1. I/C\(gb) is well-defined: if x € P[n| and o € &,,, K(¢)(x — 0.z) = K(¢)(x) —
0.K(¢)(z). We have a commutative diagram:

K(¢)

)

(P

i

) K(Q)
(P)

_
[

K(Q)

oY)

(
K(#)
where the vertical arrows are the canonical surjections.

2. For all n > 0, the n-th homogeneous component of I(P) inherits a structure of left &,,-
module. This induces a trivial left action of &,, on the n-th homogeneous component of
K(P).

8.2 Fock functors applied to twisted (double) bialgebras

Notations 8.2. Let m,n € N. We denote by o0y, , : m 1un —> m + n the bijection defined by:

Vi e m, Omn (i) =1,

Vj €n, Um,n(j) =Jj+m.
For any I € n, we denote by o7 the unique increasing bijection from I to §1.

Theorem 8.2. 1. Let P be a twisted algebra. Then KK(P) is a graded algebra, with the product
defined by:

Va € Plm], Yy € P[n], z-y=Plomn] omp(z®y).
The unit is 1p € P[J].

2. Let P be a twisted coalgebra. Then IC(P) is a graded coalgebra, with the coproduct defined
by:

Vo € Pln], Ax) = Y (Plo] @ Plow]) o A ().

Icn

We shall put AU2\D = (g; ®opg) 0o Arpr for any I S n.
3. If P is a twisted bialgebra, then KC(P) is a graded bialgebra.
4. If P is a double twisted bialgebra, then K(P) inherits a second coproduct 6, defined by:

Vz € Pln], I(z) = dp(x).
The triple (IC(P), m,d) is a bialgebra. Moreover, for any I < n:
(AT @ TIdpp,) 06 = (Id®Id ® Play]) 0 migas o (§®8) o AL,
where a; p\1 s an element of &,,.

Proof. 1. Let x € P[m], y € P[n] and z € P[p]. We consider the bijection oy pnp : munup —
m + n + p defined by:

1 if i € m,
Ommp(i) = i+mifi€en,

i—i—m—l—nifz’eQ.
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Then:

[om+npl © (Plomn] ®@Id) omo (m®1d)(z @y ® 2)

[omnplomo(m@Id)(z @y ® 2)

[omnplomo(Id@m)(z @y ® 2)

[omntp] © (Id @ Plopp]) omo (Id@m)(z @y ® 2)
(y - 2).

(-y) 2

Il
8 9999

2. Let z € P[n].
(A®Id) o A(x)

= > (Plos]®@Plos]®Id) o (A1, @1d) o Id®Plok]) 0 ArLyk ()
ITuJuK=n

= > (Plo/]®@Plos]®Plok]) o Ar k()
ITuJuK=n

= > Wd®Plo]®Plox]) o 1d®A, K)o (Plo]®1d) o Ar juk()
IuJuK=n

= (Id®A) o A(x).
3. Let x € P|m| and y € P|[n|.

A(z-y) = (POP)omn] o Aom(z@y)
= (P@P)omn] o (m@m) o (Id@cpp ®1d) o (A® A)(z®y)
= Z (PRP)[omm]o(m@m)o(Id®@cpp ®Id)

IuJ=m,
I'uJ'=n

o (Plor]®@Plos]@Plor] @Ploy)] o (Ars @Ap y)(z®y)

= Z (77 Q@ P)lomn] o (m@m) o (Plo;] @ Plor] ®Plos] @ Plos])
TuJ=
I’u]'

(Id ®cpp®Id) o (A1 @Ay )(z®yY)
= 2 A(LJ)(x) AT ()

ITuJ=
I’uJ’

_ AW AW
4. Let x € P|m| and y € P[n|.

5(z - y) =60 Plomn] om(z®y)
= (Plomn] ® Ploma]) o (m@m) o (Id@ cpp @1d) 0 (6 ®6)(x @)
— 6(2) - 5(y)-
IfzePlm|and m=1uwJ:

(A" @1d) 0 6(z) = (Plor] @ Ploy] ®
mizo10 (8®0) 0 AL =y 5040 (Plor] @ Plor] @ Plos] @ Plos]) o (6®@8) 0 Apy(z)
= (Plor] ®Plos] @ Ploruos]omizao (6 ®6) o Ar ()
= (Id®IA® Ploz.s]) o (AL @1d) 0 6(x),

Id om1324o((5®5)oA1J( )
P
P
with o7y = oy L oy. This permutation is nondecreasing on I and J and sends I to §I, so is the

inverse of a shuffle. O
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Corollary 8.3. Let P be a twisted algebra [respectively coalgebra, bialgebral. Then I/C\(P) s an
algebra [respectively a coalgebra, a bialgebraf, quotient of K(P). If P is a double twisted bialgebra,
then KC(P) is a bialgebra in cointeraction in the sense of [12, 15]:

(A@Id) 0 = m173,24 e} ((5@5) o A.

Proof. Let I be the subspace of K(P) generated by the elements x — P[o](z), where z € P[n],
o€ &,,n>=0. Then K(P) = K(P)/I.

If P is an algebra, let us prove that I is an ideal of K(P). For any x € P[m], 0 € G,
y € Pln]:
(z = Plo](2)) -y = Ploma] om(z @y — Plo](x) x y)
= Plomn] o m(z ®y) — Plomn] © Plldy uo]om(z®@y)
=X - P[T](X)>
with:

-1
m,n*

X =Plomn] om(z®y), T=0ompno(Idyuo)oo
So (z — Plo](z)) -y € I. Similarly, y - (x — Plo](z)) € I.

If P is a coalgebra, let us prove that I is a coideal of K(P). For any x € P[m], 7 € &,,:
A(P[7](z))
= Y (Ploxn]®Plor)) o (POP[T]) 0 Ars(x)

IuJ=m

Y7 (Plorn] ®@Plorn)) o (P@PI7]) o (Plor 1@ Plos']) o (Plor] @ Plos]) o Ari(x)

IuJ=m

Z PR Plr1,4] 0 (Plor] @ Plos]) o Ars(x),

IuJ=m

where 77 7 is the permutation defined by:
o Ifi<tl,77,(i) =0 poTo o7 (i)
o Ifi>4l, 77,(i) =0y pyoTo o).

Hence, putting k = 1, 77,7(k) = k. There exists T;,J € &, and T}’J € S,,—k such that 77 ; =
770 T 5. Hence, putting (Plo] @ Ploy]) o Apy(x) = 27 ; ® a7

Az —P|7](x)) = Z «7 ;®a ;— (Plr1 1 @ Plrr ;1) (a7, @ 27 ;)

IuJ=m
= Z (7 g = Plrr (2T ) @ a7 5 + Plry g 1(x] ;) @ (27 ; — Pl s1(27 1))
IuJ=m

EIRK(P)+K(P)®I.
So I is a coideal for A.

Let us assume that P is a double bialgebra. By the preceding points, (I%(P),m,A) is a
bialgebra. For any x € P[m|, 7 € &, putting é(z) = 2’ ® 2”:
6(z — P[r](x)) = é(x) — (P[r] ®P[7]) 0 6(x)
= (¢ = Pr](a") ® 2" + P[r](2") @ (2" — P[r](z"))
eI®@K(P)+K(P)®I.
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So I is a coideal for J, and I§(73) inherits a second coproduct §. By Theorem 8.2, as the action
of the symmetric groups of C(P) are trivial:

(A@Id) 0 = m1,3724 @) ((5@5) o A.

~

So (K(P),m,A) is a bialgebra in the category of right (K(P), m, A)-comodules. O

Remark 8.2. Let P be a double twisted bialgebra. Denoting by m the canonical projection from
KC(P) to K(P), we can define a right coaction of IC(P) on K(P) by:

p=(Id®nr)od: K(P) — K(P)®K(P).

~

Then (IC(P), m,A) is a bialgebra in the category or right (K(P), m,d)-comodules:
(A®Id)op=mi320(p®p)oA.

Ezample 8.1. Let us apply the Fock functors to Com. As the action of &,, over Com|[n] is
trivial, (Com) = K(Com). If we denote by e, the unit of K = Com|n| for all n > 0, then a
basis of K(Com) is (e, )n=0. For any k, | = 0, ex.e; = egyy, so putting X = ey, for any n > 0,
en, = X" and £(Com) = K[X]. For any n > 0:

AxM =Y (Z) Xt @ xnk, S(X™) = X" ® X"
k=0

So K(Com) is the algebra K[X] with its usual coproducts A and J, as considered in [12, 13].
Example 8.2. Let us apply the Fock functors to Ord. For any total order < on n, there exists a
unique o € &, such that:

Vi,jen, i < j e o(i) < olj).

Hence, K(Ord) has a basis indexed by permutations. For any o € &,

A) =Y oM ®o®,

i=0
where, if o is represented by the word o(1)...o(n):

)

e 0, is obtained by keeping only the letters 1,...,7, in the same order.

2)

e 0,7 is obtained by keeping only the letters ¢+1,...,n, in the same order, and by subtracting
1 to any of these letters.

If c e G and 7€ G;:
oWT= Z ao(c®T).
aeSh(k,l)

In other words, K(Ord) is the Hopf algebra of permutations FQSym of [9, 22]. Taking the
coinvariants, I(Ord) has a basis (e,)n>0, where for all n e, is the canonical projection of any
permutation o € &,. For any k,l,n = 0:

k+1
A(en): Z ei®ej, eklilel=< L )€k+l.

i+j=n
Therefore, I%(Ord) is isomorphic to the Hopf algebra K[X], through the morphism:

{/E(Ord) — K[X]

e, — nlX".
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Example 8.3. Let us apply the Fock functors to Comp.

1. The bialgebra K(Comp) has for basis the set of set compositions of n, with n > 0, or,
equivalently, the set of packed words, that is to say surjective maps from n to k, for any
k = 1. Its product is given by quasishuffles: if u, v are packed words of respective length
k and [,

Uwv = 2 o o (u uv[max(u)l),
o€QSh(k,l)

where v[max(u)] = (v1 + max(u)) ... + (v; + max(u)) if v = vy ...v;. For example:

(11) & (11) = (1122) + (2211) + (1111),
(12) w (11) = (1233) + (1322) + (2311) + (1211) + (1222).

The coproduct A is given by extractions of letters: if w is a packed word of length n,
n
k=0

where for any I € n, us is obtained by the following steps:

!/

(a) Keep only the letters of u which belong to I: one obtains a word uf ... u;,

(b) Let o : I —> k be the unique increasing bijection between I and set k, where k = |I|.
Then uy = f(u}) ... f(u,).

For example:
A((1123)) =1®(1123) + (11) ® (12) + (112) ® (1) + (1123) ® 1.
The second coproduct ¢ is given by:

o(u) = Z ToOURTOoU.

(o,7)econt yax (v)

For example:

o
—
—~

—_

—_
~—
~—

|

(11) ® (11),
(12) ® ((12) + (21) + (11)) + (11) ® (12).

o
—_
—~~

—_

S
~
~—

|

In other words, KC(Comp) is the bialgebra WQSym (26, 27, 25].

2. The bialgebra l%(Comp) has for basis the set of compositions, that is to say finite sequence
of positive integers. The product is given by quasishuffles, the coproduct A by decon-
catenation and the coproduct § by the action of the elements of cont,. For example, if
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a,b,e,d > 1

(a) @ (b) = (a,b) + (b,a) + (a + D),
(a,b) w (¢) = (a,b,c) + (a,¢,b) + (¢,a,b) + (a +b,¢) + (a,b+ ¢),
(a,b) w (c,d) = (a,b,c,d) + (a,c,b,d) + (c,a,b,d)
+ (a,c,d,b) + (c,a,d,b) + (c,d,a,b)
+ (a,b+¢,d) + (a+¢,b,d) + (a + ¢, d,b)
+ (a,¢,b+d) + (¢c,a,b+d) + (¢c,a +d,b)
+ (a+¢,b+d);

Ala,b,c,d) =1®(a,b,c,d) + (a) ® (b, c,d) + (a,b) ® (c,d)
+ (a,b,¢) ® (d) + (a,b,c,d) ® 1;

6(a) = (a) ® (a),

6(a,b) = (a,0) ® ((a) & (b)) + (a + b) ® (a,b),

6(a,b,c) = (a,b,¢c) @ ((a) @ (b) @ (c)) + (a,b+¢) ® ((a) & (b,c))
+(a+b,¢)® ((a,b) v (¢)) + (a+b+c)®(a,b,c).

i

T

This is the Hopf algebra of quasisymmetric functions QSym; see for example [17] for more
details.

8.3 The terminal property of K[.X]

We observed that K[X], with its two coproducts A and 9, is a bialgebra in cointeraction.

Proposition 8.4. Let (A, A) be a graded and connected coalgebra. We denote by 14 the unique
element of Ao such that £(14) = 1. Let A\ : A — K be any linear form such that A\(14) = 1.

1. There ezists a unique coalgebra morphism ¢ : (A, A) — (K[X], A), such that e’ o) = A,

2. Let us assume that (A,m,A) is a bialgebra. Then ¢ : (A,m,A) — (K[X],m,A) is a
bialgebra morphism if, and only if, X is a character of A.

3. Let us assume that (A,m,A,d) is a bialgebra in cointeraction. Then v : (A, m, A, d) —
(K[X],m,A,d) is a morphism of bialgebras in cointeraction if, and only if, \ is the counit
e of (A, m,9).

Proof. 1. We define ¢(a) for any a € A, by induction on n. If n = 0, it is defined by ¥(14) = 1.
Otherwise, we put A(a) =a® 14+ 14 ®1 + A(a), and by the connectivity condition:

n—1

€ Z Al ® Anfi-
i=1

By the induction hypothesis, X = (1) ® 1) o A(a) is well-defined. Moreover:
(A®IA)(X) = (Aov) @) o Aa)
= (@Y ®v) o (A@Id)oAa)
=W®YY) o
id®@ A) o Afa)

= (d®A) o (Y@ ¥)(a)
= (Id@A)(X).
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So X e ker(A®Id —Id® A). It is not difficult to prove that in K[X]:
ker(A@Id —Id® A) = Im(A).

Therefore, there exists a linear map V' : A, —> K[X] such that for any a € A,,, (1 Q1) oA(a) =
A o'(a). We then put:

P(a) = ¥'(a) — & 09 (a) X + Ma)X.
As X e ker(A), for any a € A,, (¥ ® 1) o A(a) = Aotp(a) and & o (a) = Aa).

Unicity. Let 1) and v’ be two such morphisms. Let us prove that VYa, = @ZJ" A, by induction

on n. This is obvious for n = 0, as 1 and ¢’ both sends the group-like element 14 to the unique
group-like element 1 of (K[X], A). Let us assume the result at all ranks < n. For any a € A:

Aotp(a) = (h @) o Ala) = (¥ ®1') o Ala) = Ao/ (a),

s0 1(a) — v’ (a) € ker(A) = Vect(X): let us put ¥(a) — ¢'(a) = uX, with € K. Then:

80 Y|4, = wan.

2. =. Then X\ = ¢’ 09 is an algebra morphism by composition. <=. Let us consider the
two linear maps 1,12 : AQ A —> K[X] defined by ¥4 = mo (¥ ®1) and 19 = 1pom. As m is
a coalgebra morphism, 1 and 19 are coalgebra morphisms. Moreover, for any a,b € A:

g oa(a®@b) = &' o1p(ab)
= A(ab).

As \is a character, ' o011 and &' o1)9 are equal. The coalgebra A® A being connected, by unicity
in the first point, 1)1 = 19, so ¢ is an algebra morphism.

3. =. If 1) is a morphism of bialgebras in cointeration, then &’ o4 = &’. «<=. The counit &’
is a character of A, so v is compatible with m and A. Let us prove that for any a € A, for any
k,l>=1

do(a)(k,l) = (¥ @) o 6(a)(k,1).
Note that § o ¢(a)(k,l) = 1¥(a)(kl) by definition of the coproduct ¢ of K[X]. If k = 1:

do(a)(1,1) = (£ ®Id) 0§ o 1(a)(l)

= (a)(1),
(Y ®1) 06(a)(1,1) = (' 09 @) 0 6(a)(1)
= (£'@v) o d(a)())
= p(a)(1).

Let us assume the result at rank k. As 1 is compatible with m and A, and by the induction
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hypothesis:
P(a)((k +1)1) = p(a)(kl + 11)
= Ao tp(a)(kl, 11)
=(0®0d) o Aotp(a)(k,l,1,1)
=mi3240(0®06) o Aoip(a)(k,1,1)
= (WY ®Y)omizao (§®F) o Ala)(k,1,1)
=¥ ®YRY)(A®I)od(a)(k,1,1)
= (@) od(a)k+1,1).
Hence, for any d 09 = (¢ ® ¥) 0 6. O

Let us apply this to QSym:
Proposition 8.5. There exists a unique morphism H : QSym — K| X| such that:
H : (QSym, =, A) — (K[X],m,A) is a bialgebra morphism.
H : (QSym, =, 6) — (K[X],m, ) is a bialgebra morphism.

For any composition (ai,...,a,):

X(X—1)...(X —n+1)

H(ay,...,ap) = Hy(X) = o

Proof. Let us first prove that H : (QSym, A) — (K[X], A) is a coalgebra morphism. For any
composition (ay,...,ay), for any k,1 >0

Ao H((ay,...,a,))(k,l) = H(a1,...,a,)(k+1)
n(k+1)

=H,
:(k+l>’
H;(k)H,_;(1)
()65
+l>,

so AoH =(H®H)oA. For any composition (aq,...,a,):

e oH((a1,...,an)) = Hpy(1) = 0p1 + 0o = €' ((a1,. .., an)),

so H is a morphism of bialgebras in cointeraction. O

(H® H)o A((ay,...,an))(k,1)

=
o

Il I
NIEBNNGE

Il
o

i

TN
Nl

Here is an application:
Proposition 8.6. Let g € K. The following maps are bialgebra endomorphisms:
WQSym — WQSym
K(6,) - J u 2 Hypr1)(9) - Hyp1(max() (@) f 0w,

fmax(u)—k,
surjective, non decreasing

( QSym — QSym

I/C\(@q) : % (al’ T ’a”) - 2 Hil (Q)HiQ—il (Q) oo Hn—ik (Q)
I <. <ip<n
| (@1 + ...+ Qi Qigegig1 + - Fan),
o . [ KIX] — K[X]
g P(X) — P(qX).
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Moreover, the following diagram commutes:

WQSym — QSym —1~ K[X]

K(%)l ﬁ(%)l ieq

WQSym — QSym 5 K[X]

Proof. The formulas for C(6,) and I%(Hq) are directly obtained, and it is obvious that ©, is a
Hopf algebra endomorphism. It remains to prove that H o K(0;) = ©,0 H. Let (ai,...,ay,) be
a composition.

e oHoK(b,)(ai,... ay) =< oK(0,)(ai,...,a)

= Hn(Q)a
e'0040H(ay,...,ay) =& 00,(Hy(X))
= Hn(q)7
so e’ o HoK(6,) = ¢ 0O, 0 H. By Proposition 8.4, H o K(6,) = ©, 0 H. m

Remark 8.3. 1f ¢ = —1, H(—1) = (—1)* for any k, so:

WQSym — WQSym
K(0_1) - u (=1 > fou,

fimax(u)—k,
surjective, non decreasing

R QSym — QSym
KO-1):9 (ar,...,an) — (=1D)" > (@1+ .. 4Gy, Giggipa1 + o ).

1< <. <ip<n

Ezxample 8.4. If a,b,c = 1, we put:

(1% = (1,...,1),

—.

a b
(122°3¢) = (L..,1,2,...,2,3,....3)
RS
Then:
K(04)((1%)) = ¢(1%),
KO = 2(1°2) + WD e
K(eq)((langC)) — q3(1a3b20) + q2(q2_ 1) (1a2blc) + q2(q2_ 1) (1a2b+6) + q(q — 1()3((] - 2) (1a+b+0),
K(6q)((a)) = q(a),
R(O)((@.5) = 2(a5) + + 2D a 1)

(a+b+c).



8.4 Fock functors and characters

The monoids of characters of a twisted bialgebra and of its images by the Fock functor are
related:

Proposition 8.7. Let P be a twisted bialgebra.
1. We denote by Char(K(P)) the monoid of characters of the bialgebra KC(P). The following

map is an injective map of monoids:

[ — o(f) = D fln].

n=0

{Char(P) —  Char(K(P))
p:

2. p induces a monoid isomorphism between Char(P) and the monoid of characters Char(l%(?))
of the bialgebra K(P).

Proof. 1. First step. Let 0 : A —> B be a bijection between two finite sets. As f is a species
morphism, the following diagram is commutative:

PlA]— . piB]
f[A]J/ lf[B]
Com[A]CTm[Z]Com[B]

As Com|o] = Idk, f[B] o Plo] = f[A].

Second step. Let us prove that p is well-defined. If f € Char(P), then if x € P[m] and
y € P[n], by the first step:

p(f)(zy) = f[m +n]oPlomn] ocm(z®@y)
= flmun]om(z®y)
= f[m](z) f[n](y)
= p([)(@)p(f)(y).

So p(f) is indeed a character of (P).

Let us now prove that p is a monoid morphism. Let f,g € Char(P). For any x € P[n], by
the first step:

p(f) % p(g)(x) = X (FIE] @ g[n = 41]) o (Plor] @ Plow]) © Ap ()

Icn

= 2 (T ®@gln\I]) o Ap (@)

Icn
= (f*g)[n](x)
= p(f * g)(x).

So p(f) = p(g) = p(f * g).

Let us now prove that p is injective. If p(f) = p(g), then for any n > 0, f[n] = g|n]. For any
finite set A, let us denote by n the cardinality of A and let us choose 0 : A — n be a bijection.
By the first step:

fTA] = fln] o Plo] = g[n] o Plo] = g[A].
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Hence, f = g.

2. Let f € Char(P). For any x € P[[n]], 0 € Gy:

p([)(x = Plol(z)) = flnl(x) = flnl(Plo](z))
= flnl(z) = Plo](fn](z))
= flnl(x) = fln](z)
= 0.

Hence, p(f) induces a character p(f) of K(P) defined by:
vz € Pln], p(f)(@) = p(f)(z) = fln](z).

~

This defines a monoid morphism p from Char(P) to Char(K(P)). It is injective: indeed, if
p(f) = plg), then p(f) = p(g), so f = g. Let us prove it is surjective. Let us consider
g € Char(KC(P)). Let A be a finite set. We define f[A]: P[A] — K by:

Yz € P[A], flAl(x) = g(Plo](z)),

where 0 : A — n is any bijection. This does not depend on the choice of o: if 7 is another
bijection, then, as c o 77! € &,,:

9(Pl7](z)) = g(Plo o 7= o P[7]()) = 9(Plo]()).

Hence, f[A] is well-defined. If 7: A — B is a bijection, for any = € P[A], choosing a bijection
c:A—n:

FIBI(P[r)(2)) = g(Plo o7~ '] o P[r](x))
= 9(Plol(x))
= Com|[1] o f[A](z).

So f is a species morphism. Let z € P[A], y € P[B]. Choosing bijections ¢ : A — m and
T:A—n:

Therefore, p(f) = g. O

Remark 8.4. It may happen that p is not surjective. Let us consider for example the twisted
algebra of posets Pos. We define a character g on IC(Pos) by the following: if P = (n,<p) is a
poset,

Lif Vi, jen, i <pj—i<j,
g(P) = .
0 otherwise.

Let us assume that there exists a character f € Char(Pos) such that p(f) = g. Then f[2](11) =1
and f[2](13) = 0. Moreover, by the first step of the preceding proof, for o = (12):

f121(13) = fI2] o Pos[o](1%) = f[2](17).

This is a contradiction. So p is not surjective.
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8.5 Hopf algebraic structure from the first Fock functor

Theorem 8.8. 1. Let P be a connected twisted bialgebra. We define another coproduct A on
KC(P) by the following:

vz € Pln, A(z) = ) (Plox] @ Plopl) © Ag ().
k=0

Then (IC(P), m, A) is an infinitesimal bialgebra, in the sense of Loday and Ronco [21].

2. If P is a connected twisted bialgebra, then KC(P) is freely generated as an algebra by the
space of primitive elements of A.

3. If P is a cofree twisted coalgebra, then K(P) is a cofree coalgebra.

Proof. Let x € P[n]. Then:

(A@I)oA(r)=(1d@A)oA@@) = >, (Plox] @ Plop] ® Plowyl) © A pemu(@).

0<k<i<n

So A is coassociative. Let z € P[m| and y € P[n].

A(xy) = Z (Plok] ® P[GM\E]) 0 Apmtn\k © Plomn] om(z @y)

0<k<m+n

Y1 (Plow] @ Plomimi)) © Apminik © Plomn] o m(z ®@y)

0<ksm

+ D (Plorl®@Plopsnil) © Apmim © Plomal o m(z @y)

m<k<m+n

— (Plom] ® Plomenm]) © Amminin © Plomn] o m(z @)
= Y (Plow] @ Plomani]) © (Armis()Agin(y))

0<k<sm

+ 2 (/P[O—’L-l ®,P[JLM\E])(Am7@(x)Ak7m,m+nfk kfm(y))

m<k<m+n

— (Plom]| ® Plominml) (Am,z(2) Agn(y))
= Y (Plor] @ Plomanp]) (Apmp()1 @)

0<k<m

+ Z (,P[O-IL] ® ,P[O-L-H’L\E])(‘T ® 1Ak—m,m+n—k k—m(y))

m<k<m+n

- (,P[Uﬂ-l ® P[0m+n\m])(x ® y)
=A(@)(1®Y) +(z@1)A(y) -2y

Hence, IC(P) is an infinitesimal bialgebra.
2. This is a direct consequence of the first point, by Loday and Ronco’s rigidity theorem [21].
3. We assume that P = coT (Q). We define another product = on IC(P) by:
Ve=qi.. . Qk,Y = qQr+1---q+1 € P, THY =Pl DkAiy - Gsps
where we use the following notation: if ¢; € Q[I], then ¢ = O[(omn)r](gi). This product is
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associative. Moreover, by definition of the coproduct of coT (Q):

Az *y 1...pi)®’P[G§'](pi+1...pkqf...ql+)

k
) = > Ploilp
i=0
!
+ZP[%{](Pl--mwf---ﬁ)@?’[of](q;;l...qj)
i—k
— 1 G @ ry1 - Qhyl
=Alx)*(1®y)+ (z®1)*Aly) —z®y,

where o}, o are suitable bijections. Hence, (K(P),*,A) is an infinitesimal bialgebra. By Loday
and Ronco’s rigidity theorem, (IC(P), A) is cofree. O

Remark 8.5. We obtain again the well-known result that FQSym and WQSym are both free
and cofree bialgebras.

9 Applications

9.1 Hopf algebras and bialgebras of graphs

We put Hg,» = K(Gr') and Hg, = K(Gr'). The Hopf algebra Hg, has for basis the set of
graphs whose vertices are a set composition of n, for a given n. Its product is given by shifted
concatenation, for example:

{314 7 14} {334 7 14}
Viiz - s =" Vg ¥,

Its coproduct is given by decompositions of the set of vertices into two parts with standardization,
for example:

Alg) = ®1+1@.qy,
AR =11 ®1+. @+ 1@ + 1@ 1HHY,
APV ) =V @1+ 115 @ + 1 @iy + ey @y
@yt @y 0 a® e +10 PV,

The second coproduct is given by a contraction-extraction process; for example:

(5(.,4) = .AQQ.A7
0(13) =18® a5+ .48 @14,
5(BVAC) = NVE® amc+ 1908 @150+ 1800 @S5+ caunoc ®BVAC,
where in the first computation, (A) = n; in the second one, (A, B) € Comp|n| and, in the last
one, (A, B,C) € Comp[n]. This is a variant of the noncommutative Hopf algebra of graphs of
[12].
The Hopt algebra Hg,s has for basis the set of decorated graphs, that is to say graphs

with a map from their set of vertices to the set of positive integers. The product is given by
concatenation, for example, if a, b, ¢, d and e = 1:

c\/ab . IS :b\/acI(ei.
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The first product is given by partitions of the vertices into two subsets and the second one by
an extraction-contraction process. For example, if a, b, ¢ = 1:

All) =ea®14+1Q..,
A =1 ®14+..®u +0 ®a +1® 15,
ACN)Y ="V @141 ®ec + 15 Qe + epee @ s
Fee @U@ +ea®upee 107V

5(ea) = oa @,
0(16) = 10 ®eavr T ears® 10,
SCN) ="V ®@uanpee F 160 @ e + 100 e @ 1wy +earnie @V
This is a decorated variant of the commutative Hopf algebra of graphs of [12, 18].

9.2 Morphisms from graphs to WQSym, QSym and K[.X]

The Fock functors applied to the the morphism ¢, gives a commutative diagram of morphisms
compatible with the product and both coproducts:

Hg,,J HQ’T.I

~ Pch'rq
K(d’chrq)l K:((z’chrq)l \

WQSym — QSym 5 K[X]

where Pep,, = H o I%(gbchrq). For any graph in Hg,» of degree n:
K(enr)(G) = >, c(l)...c(n),

ceVC(G)
K(benr)(G) = D) (fec 1(1),... tc '(max(c))).
ceVC(G)

For example:

K(¢Ch7'1)( 1}) = (1)7
K(¢enr,) (1)) = (121) + (212),

K(enry ) (V) = (1231) + (1321) + (2132) + (2312) + (3123) + (3213) + (1221) + (2112).
This is a colored version of the noncommutative chromatic symmetric function of [16]. The
morphism K(¢cnr ) is a colored version of Stanley’s chromatic symmetric series [30, 29|, as it is
explained in [12]. For example, if a,b,c > 1:

K(¢chr1)('a) = (a),

’C(qbchﬁ)(szl) = (a>b) + (b7 (1),

I%(qﬁchrl)(b V.%) = (a,b,¢) + (a,¢,b) + (b,a,c) + (b,c,a) + (c,a,b) + (c,b,a) + (a, b+ c) + (b +c,a).

Reformulating in terms of formal series in a infinite set {X;, Xs,...} of indeterminates, with the
help of the polynomial realization of QSym'

¢chr1 Z ’

¢chr1 Z Xa
1]
K(@ar)(NE) = 3] XPXPXG+ ) XPX]
Q] ik, i~k i#]
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Composing I%(qbchn) with H, we obtain the chromatic polynomial P, [7]. For example:
Py (va) = Hi(X) = X,
P (15) =2Ho(X) = X(X — 1)
P, O\ = 6H3(X) + 2Ho(X) = X(X —1)%
Proposition 9.1. If ¢ # 0, for any graph G € Hg,:

Pch?“q (G) (X) qdeg(G)P hry (G) (f) .

Proof. Indeed:
Puy, (G)(X) = H 0 K(0,-1) 0 K(Senry) 0 K(20)(G)(X)
= ¢%# DV H 0 £(0,-1) 0 K(¢enn ) (G)(X)
= ¢15DQ, 1 o H o (e ) (G)(X)
qdeg( )@q—l © Penry (G)(X)

X
= qdeg(G)pchm(G) (q) )

Proposition 9.2. Let q € K.
1. For any graph G € Gr'[n]:

K(¢)(G) = "D 3w,

weW (G)

where w is the set of packed words of length n such that for any ¢ € n, if i and j are in the
same vertez of G, then w(i) = w(k).

2. For any decorated graph G, denoting by dy,...,dx the decoration of its vertices:
K(#)(G) = "D (dr) ... (d).

3. For any decorated graph G:
H o R(6,)(@) = 8@ xex(©),

Proof. The two first points are immediate. If G is a decorated graph:

H o K(¢)(G) = "DV H((d) w ... w (dy))
= ¢ D H((a1)) ... H((ar))

_ qdeg(G)Xk
= des(@) xdeg(G)
O
As gbchrl = ¢1 — )‘chm:
Corollary 9.3. For any graph G € Hg,:
K(¢enr)(G) = Y Acr, (G |~) 11 (@),
~<aG C' equivalence classe of ~
Penr, (G) = Z Aehri (G |~)Xd(~)-

~<aG
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Applying the Fock functor to I':
Proposition 9.4. The following maps are Hopf algebra automorphisms:

Hg,r,/ —_—> HgT/

KAT) : G — 2 t{acyclic orientations of G |~}G/ ~,
~<1G

~ Hgyy — Hgp

K(T) : G — Z t{acyclic orientations of G |[~}G/ ~ .
~<@G

Their inverse are given by:

ng’ - ng

Kmt: G — Z (—1)3e8@+ N aeyclic orientations of G |~}G/ ~,
~<aG

~ Hgy — Hg,

K- G — Z (—1)de8(@+elN aeyelic orientations of G |~}G/ ~ .
~<aG

Moreover, the following diagram commutes:

WQSym
’C(¢chr_1 )
%’"1)

Hg,

.

KAT)

E(d’chr,l )

9.3 Hopf algebras and bialgebras on finite topologies

We put Hr,, = K(Top) and Hrop = l%(’Top). The Hopf algebra Hy), has for basis the set of
finite topologies on a set n. Its product is given by shifted concatenation. For example:

OV - 1 =L 11
Its coproduct is given by partitions of the underlying sets in an open and a closed set, for example:
@1 +1®.qy,
P PR1+ (3 Qe+ 1® Iﬁ}:”}
{2}\/{1{4;,} @1+ Q. 3 +1Hy®@ .+ .0.23@ ye +1 ®{2}\/{1{4§} )

Alewy) =
AT
AN )
(2} ,
Al =1l @14 1 @ +ena@ i + 101,
The second coproduct is given by a contraction-extraction process; for example:
0(en) = e a® . a
5(IA) == IA® Ae B+ AuB ® IA7
By C B B B c By »C
o( \2) ) = VA Qeapct s ®Ec+ 150 @Gt cannue ® VA,
)

C C C
SAB) = @ memc+ 1505 @1 e+ 147 @418+ aunue ®LF
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where in the first computation, A = n; in the second one, (A, B) € Comp|n] and, in the last
one, (A, B,C) € Comp[n]. This is the Hopf algebra of finite topologies of [10, 14, 15, 13].

The Hopf algebra Ht,, has for basis the set of finite topologies, up to homeomorphism. We
represent such objects by Hasse graphs of the underlying quasi-order, where the cardinality of
the equivalence classes of the quasi-order are represented on the graph. The product is given by
disjoint union, for example, if a, b, ¢, d and e = 1:

c\/ab' e:bv Id

The first product is given by partitions into a closed set and an open set, and the second one by
an extraction-contraction process. For example, if a, b, ¢ > 1:

Alve) =ea®1+1® ..,

ALY =1®1+..Q., +1®1%,

ACN ) ="V @I+ 1@ +15® 0 ++.. Q1L +1®"V,
A=l @1+12@.. +..01 +1®18;
I(ea) = va ®.a,

S(12) =12 ®eaes +eass® 1L,

(b\/f)zbv @ ravtee F 1608 @1ee + 104 @150y +earpse @V,

Qo

SAE) =1 @ F 1 @1 + 1 @ 1f +eurnse @D
As Top is a cofree twisted bialgebra, by Theorem 8.8:

Proposition 9.5. Hr,, is a free and cofree bialgebra.

9.4 Morphisms from finite topologies to WQSym, QSym or K|X]|

The Fock functors applied to the the morphism ¢ep, gives a commutative diagram of morphisms
compatible with the product and both coproducts:

HTop H Top
- Pehrq
IC(d)ehrq)i ’C((behrq)l \

WQSym —— QSym 5 K[X]

where Pep,, = H o l€(¢q). For any finite topology 7" in H7,, of degree n:
K($enr)(T) = > c(1)...c(n), K(benr_)(T) = Y. c(1)...c(n).
ceL(T) ceL'(T)

For example:

K(¢ehr1)('{1}) = (1)7

K(¢ehr1)(zﬁ} }) = (121)7

K(denr (V) = (1231) + (1321) + (1221),
K@) (i) = (1312);
K:((z)ehr_l)(' }) = (1)7
K(genr_,)(1ilsy) = (121) + (111),
K(berr_, ) (P NAZL) = (1231) 4 (1321) + (1221) + (1211) + (1121) + (1111),

(g )Y = (1312) + (1211) + (1221) + (1111).
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The morphism K(¢enr) is the noncommutative version of the strict quasisymmetric Ehrhart
functions [5], as it is explained in [13]|, whereas IC(¢epyr,) is the strict quasisymmetric Ehrhart
function. For example, if a,b,c > 1:

(Genry ) (ca) = (a),

(Genry)(10) = (a,b),

(Qbehrl)(b V.°) = (a,b,¢) + (a,¢,b) + (a,b + ¢),

(¢eh71)(£§) = (CL?bvc)’
K(benr 1)(+a) = (a),
K(enr,)(1h) = (a,b) + (a+b),
(denr_ )N = (a,b,¢) + (a,¢,b) + (a,b+¢) + (a+b,¢) + (a+c,b) + (a+b+c),

(<z>ehr_1)(f§) = (a,b,¢c) + (a+b,c)+ (a,b+c)+ (a+b+c).

Reformulating in terms of formal series in a infinite set {X7, X»,...} of indeterminates:

(rbehvl 2
R (Genr)(14) = Z Xex?,

1<j
K($enr) (V) = D) XeXIXE+ Y XPXSXP+ ) XeXbre,
i<j<k i<j<k 1<j
K(oenr) () = > X2XIXE.
i<j<k

Composing I’C\(qﬁehh) with H, we obtain the strict Ehrhart polynomial P.,,. For example:

Pehm(ﬂl) = Hl(X) = X,
X(X 1)
9 )
Pehn(b \/ac) = 2H3(X) + HQ(X) =
X(X = 1)(X —2)
6 .

Pehrl( ) H2<X)

X(X —1)(2X — 1)
6 )

Ponry (1) = Hy(X) =

Composing l%((ﬁeh,«_l) with H, we obtain the Ehrhart polynomial P,p,_,. For example:

Pepr (va) = Hi(X) = X,

P 1(18) = Ho(X) + () = XEHD,
P (" N°) = 2H(X) + 3H (X) + Hy(X) = TEF 1()3(2)( 1)
Pe’lr—1(}§) = H3(X) + 2Ho(X) + H1(X) = X(X + 16)(X +2)‘

Proposition 9.6 (Duality principle). For any finite topology T' € Hrop:

Pany(T)(X) = ¢ Py (T) (f) |
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Proof. Indeed:
T)(X)
X)

Pty (T)(X) = H o K(0,-1) 0 K(@enry ) © K(1g)(
= ¢ol(T )HolC(eq- ) © K{enr N(T)(
= ¢ MO -1 0 H o K(¢enr,)(T)(X)
= "M, -1 0 Pepy, (T)(X)

X
= qd(T)Pehr(T) <Q) . O]

Proposition 9.7. Let q € K. For any finite topology T':
H o K(¢)(T) = Mno(T) X7,

Proof. In order to lighten the proof, we write F, = H o I%(gbq). For any ¢’ € K, ¢g0ty = 0y 0 ¢y,
50:

q/cl(T) Fq (T)

Fy o K(1g)(T)

H o K(0y) 0 K(¢g)(T)
= Oy o H o K(¢)(T)
= Fq(T)(q,X),

so F,(T) is homogeneous of degree cl(T). We put Fy(T) = p(T)X ™). Then:
w(T) = ' (Fy(T))
= &'o H o K(¢g)(T)
=& o K(¢g)(T)

=€ O¢q( )
_qcl T))\h (T)

So Fy(T) = ¢ M\, (T). O

As ¢ehr1 = ¢1 — )\ehrl:
Corollary 9.8. For any finite topology T' € Hyop:

Pehn Z )\ehm G |~)Aho(T/ )Xd )
~<aG

Applying the Fock functor to I':

Proposition 9.9. The following maps are Hopf algebra automorphisms:

HTop I H’Top
K(T) : T — YT/~

~<aT

]/C\ G — ZT/~.

Hropy —> Hrop
() :
~<aT

Their inverse are given by:

) Hrop — Hygp
KTy T — Z( 1)c1(T)+c1 T/~
~<aT

- HTop - HTop
]C(F)fl : { T 2 (_1)cl(T)+c1 T/ ~
~<aT
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Moreover, the following diagram commutes:

WQSym
K(¢ehr_1 )

]C(¢eh7'1)

HTop K(T) HTop

.

H Top H Top

Pe T i
hr-1 ]C(¢ehr1)
Peh'rl

K[X]

”C\(qbehr,l )
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