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Abstract

We assign generalised convolutions (resp. traces) to graphs whose edges are decorated by
smooth kernels (resp. smoothing operators) on a closed manifold. To do so, we introduce the
concept of TraPs (Traces and Permutations), which roughly correspond to ProPs (Products
and Permutations) without vertical concatenation and equipped with families of generalised
partial traces. They can be equipped with a ProP structure in deriving vertical concatenation
from the partial traces and we relate TraPs to wheeled ProPs first introduced by Merkulov.
We further build their free object and give precise proofs of universal properties of ProPs
and TraPs.
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Introduction

State of the art

ProPs (Products and Permutations)1 provide an algebraic structure that allows to deal with an
arbitrary number of inputs and outputs. As such they generalise many other algebraic structures
such as operads, which have one output and multiple inputs. ProPs appeared in [Lan65] and
later in the book [BV73] in the context of cartesian categories. Operads stemmed from this work
in [May72], although their origin can also be traced back to the earlier work [BV68]2.

1The traditional notation for ProP is PROP or and more recently prop. We choose to use ProP as an acronym
with capital letters for the first letter of the words and use the same convention for the related concept of TraP.

2We thank B. Vallette for his enlightening comments on these historical aspects.
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An important asset of ProPs over operads is that they encompass algebraic structures such
as bialgebras and Hopf algebras that lie outside the realm of operads or co-operads. We refer
the reader to [Pir01] for the study of bialgebras in the ProPs framework and [Mar08] for other
classical examples of ProPs.

Our two central examples of ProPs are the ProP HomV of homomorphisms of a finite di-
mensional vector space V which we generalise to the ProP Homc

V of continuous homomorphisms
of the nuclear Fréchet space V , and the ProP Grœ of graphs3. In the context of deformation
quantisation, the complex of oriented graphs whether directed or wheeled, plays an important
role in the construction of a free ProP generated by a SˆSop-module (see e.g [Mer04, Paragraph
2.1.3]). However, to our knowledge, the ProP of oriented graphs, briefly mentioned in [Ion07b],
has not yet found concrete applications in the perturbative approach to quantum field theory.
Filling this gap is a long term goal we have in mind.

ProPs and oriented graphs

In space-time variables, a Feynman rule is expected to assign to a graph G with k incoming and
l outgoing edges, a correlation function (it is actually a distribution) KG in k` l variables. Our
long term goal is to interpret the correlation function associated with the composition G ˝ G1

of two graphs as a generalised convolution KG ‹ KG1 of the correlation functions KG and KG1

associated with G and G1, aiming to derive the existence and the properties of the map G ÞÑ KG

from a universal property of the ProP structure on graphs.
ProPs entail two operations, called horizontal and vertical concatenations, which are the

natural operations implemented on oriented graphs. With the goal we have in mind, ProPs are
therefore natural structures to consider. We provide a precise formulation of the well-known fact
that oriented graphs can be equipped with a ProP structure as well as a complete proof (see
Theorem 1.3.3) of this statement. We also give a similar statement for (resp. planar) vertex
decorated graphs in Theorem 4.1.2 (resp. Theorem 4.2.3). The horizontal concatenation of this
ProP is the natural concatenation of graphs and the vertical concatenation is the composition,
which to a graph G with k incoming and l outgoing edges, and a graph G1 with l incoming and
m outgoing edges, assigns a a graph G ˝ G1 with k incoming and m outgoing edges. Roughly
speaking, G ˝G1 is obtained by gluing together the outgoing edges of G and the incoming edges
of G1 according to their indexation.

In Theorem 3.2.1, we show that the ProP of oriented graphs is the free ProP generated
by what we call indecomposable graphs (see Definition 3.1.1). We provide a planar version of
this result in Theorem 3.4.3. These universal properties are generalised to decorated graphs in
Theorem 4.1.4. Such universal properties were stated without detailed proofs in previous work,
see e.g. [Mar08, Proposition 57] and [Val03, Val04].

We make use of the universal property of oriented graphs when decorating the corresponding
ProP Grœ with another ProP whose structure is compatible with that of the one on graphs (see
Subsection 4.3). In particular, we show in Theorem 4.3.1 that ΓÒpXq is the free ProP generated
by the S ˆSop-module X. The decorating set X will eventually be a ProP of smooth kernels.
Along the way, we use Theorem 4.3.1 in Corollaries 4.4.2, 4.4.3 to build algebra over ProPs;
see Definition 4.4.1. The same constructions and universal properties hold for edge-decorated
oriented graphs, i.e. Feynman graphs (see Remark 3.3.1).

We have chosen to work with the ProP Grœ which comprises loops, although the latter
play a passive role in the presentation of a ProP. Yet, they will be relevant in the presentation
of TraPs that come later in Section 5.3. Introducing them right at the beginning unifies the
presentation, since otherwise two similar constructions over two different sets of graphs would
have been necessary.

3We use Merkulov’s notations.
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Correlation functions and generalised convolutions

By means of blow-up methods, generalised convolutions of Green functions were built on a
closed Riemannian manifold in [DZ17], with the goal of renormalising multiple loop amplitudes
for Euclidean QFT on Riemannian manifolds. We hope to be able to simplify the intricate
analytic aspects of the renormalisation procedure for multiple loop amplitudes, by adopting an
algebraic point of view on correlation functions using ProPs. There were earlier attempts to
describe QFT theories in terms of ProPs (see e.g. [Ion07a, Ion07b]), yet to our knowledge, none
with the focus we are putting on generalised convolutions to describe correlation functions.

Our goal is to use the ProP (actually TraP) structure of graphs decorated by distribution
(e.g. Green) kernels to build the resulting convolutions as generalised convolutions of kernels
associated with the decorated graph. The expected singularities of the resulting correlation
functions are immediate obstacles in defining such generalised convolutions. In this paper, we
focus on the smooth setup, for which the correlation functions are smooth. Our goal in the
smooth case is to provide an adequate algebraic and analytic framework in which we carry out
this construction for correlation functions emanating from graphs decorated with smooth kernels.

A smooth kernel K on a closed manifold M gives rise to a smoothing operator

D1pMq Q u ÞÝÑ
ˆ

LKpuq : x ÞÑ

ż

M
Kpx, yqupyq dy

˙

P C8pMq,

which maps the space D1pMq of distributions on M to the space C8pMq of smooth functions
on M . So, in generalising the convolution of smooth kernels, we generalise the composition of
smoothing operators.

Graphs with oriented cycles and TraPs

One challenge present both in the smooth and non-smooth case is the treatment of oriented
cycles. A first step is the study of the sub-ProPs of (decorated and non decorated) graphs
without oriented cycles carried out in Subsection 3.3. These structures are then used in Section
4. Yet in order to tackle Feynman graphs, we need graphs that can contain oriented cycles.

TraPs (see Definition 5.1.1) provide a natural structure to take into account oriented cycles
in the graph. It indeed provides a framework to host (partial) traces on graphs that generalise
the ordinary trace TrpLKq “

ş

M Kpx, xq dx. The TraP structure, which we relate in Section 7.1
to Merkulov’s notion of wheeled ProPs (see Corollary 7.1.4), encompasses families of generalised
traces. In Definition 1.3.1, we introduce the set of Grœ of graphs which includes graphs with
oriented loops. Proposition 5.3.1 shows that Grœ can be equipped with a TraP structure and
Theorem 5.4.1 shows that this TraP is free. This result is then generalised by Theorem 5.4.2
which describes free TraP. An appendix is dedicated to the precise definition of the trace on
Grœ. Paragraph 5.4 provides a description of a free TraP generated by a given set.

We have postponed the detailed proofs of two main results Theorem 3.2.1 and Theorem 5.4.1
to the appendix, so as not to burden the bulk of the paper with technicalities. A sketch of the
proof is given straight after the statement so that the reader can nevertheless have an idea of
the proof.

Alongside the ProP of graphs, another guiding example throughout the paper is the ProP
of homomorphisms, which we investigate in the infinite dimensional setup. In Theorem 2.2.5,
we introduce the ProP Homc

V of continuous morphisms for a topological Fréchet nuclear space
V , which generalises the well-known ProP HomV (see e.g. the classical monograph [Mar08]) of
morphisms on a finite dimensional vector space (see Definition1.2.1).

In Proposition 7.2.1 we define the TraP pHomc
V pk, lqqk,lě0 corresponding to the ProP Homc

V

of continuous morphisms on an infinite dimensional Fréchet nuclear space V . In the finite di-
mensional case it reduces to the TraP pHomV pk, lqqk,lě0.
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Functorial properties: TraPs versus wheeled ProPs

Much in the same way as we build the functor (see Proposition 4.2.5)

ΓÒ : ModS ÝÑ ProP

from the category ModS (Definition 4.2.1) of SˆSop-modules to the category ProP (Definition
1.1.3) of ProPs, which to a S ˆSop-module P assigns a graph-ProP ΓÒpP q whose vertices are
decorated by P , following Merkulov’s approach, we build a functor

Γœ : ModS ÝÑ TraP

which takes S ˆ Sop-modules to TraPs (Proposition 6.1.1). Combining them with forgetful
functors from ProP or TraP to ModS, we can view ΓÒ as an endofunctor of ModS or of
ProP, and Γœ and an endofunctor of ModS or of TraP.

In Paragraph 6.2, we provide a detailed description of Merkulov’s construction of the monad
structure of Γœ on the category ModS (Proposition 6.2.2), by means of which (wheeled) ProPs
are defined. Our Definition 5.1.1 of TraPs corresponds to unital wheeled ProPs. Using the
construction of free TraPs of Section 5.4, in Corollary 7.1.4 we establish an isomorphism between
the categories of wheeled TraPs on the one hand and of TraPs on the other hand.

Our constructions have some similarity with those underlying traced monoidal categories
introduced in [JSV96], yet the framework and the axioms in the two approaches differ.

TraPs viewed as ProPs: the trace and the composition

It follows from the identification between TraPs and wheeled ProPs mentioned above, that a
TraP is a ProP. In Proposition 7.2.1, we provide a detailed description of the ProP structure on
TraPs as a result of the fact that both the trace and composition of morphisms (see Lemma 5.2.2)
can be expressed in terms of a dual pairing. Let us illustrate this fact in the finite dimensional
setup.

Given a finite dimensional vector space V over a commutative field K, both the composition
and the trace on the algebra of morphisms HompV q » V ˚ b V involve the dual pairing

V ˚ ˆ V Q pv˚, wq ÞÑ v˚pwq P K,

between the algebraic dual V ˚ and the space V .
Extending this to the infinite dimensional setup requires the use of a completed tensor product

pb in order to have an isomorphism

Homc
V pk, lq »

`

V 1
˘

pbk
pbV

pbl,

where Homc
V pk, lq stands for the algebra of continuous morphisms from V pbl to V pbk (see Defini-

tion 2.2.4) and V 1 for the topological dual of a topological space V . This holds in the framework
of Fréchet nuclear spaces which form a monoidal category under the completed tensor product
E pbF (Lemma 2.1.4). On Fréchet nuclear spaces, the composition can indeed be described as
a dual pairing (see Lemma 5.2.2) so it comes as no surprise that (see Proposition 7.2.2) for a
Fréchet nuclear space V , the ProP built from the TraP pHomc

V pk, lqqk,lě0 is isomorphic, as a
ProP, to the ProP Homc

V . In the finite dimensional setting, this induces an isomorphism of
ProPs between TraP pHomV pk, lqqk,lě0 and HomV .

In practice, the partial trace maps ti,j arising in the definition of a TraP might not be defined
on every operator. To circumvent this difficulty, in Paragraph 7.3, we introduce the notion of
quasi-TraP, which we embed in a complete TraP.
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Openings

As announced in the abstract, by means of a (quasi-) TraP structure, we were able to build
generalised convolutions (resp. traces) associated with graphs decorated with smooth kernels
(see Remark 8.1.1). We expect this algebraic approach to enable us to tackle non smooth kernels
and thus to describe correlation functions as generalised convolutions of distribution kernels
associated with graphs. At this stage these are open questions we hope to address in future
work.
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Notation

1. Any vector space in this text is taken over K, chosen to be the field R or the field C.

2. For any k P N0 “ Zě0, we denote by rks the set t1, . . . , ku. In particular, r0s “ H.

1 Two guiding examples of ProPs

We define ProPs, the first main protagonists of the paper, and two ProPs which we shall use as
a driving thread throughout the paper.

1.1 Definition

Following [Val03, Mar08], a ProP is a symmetric strict monoidal category, whose objects are
identified with pN0q

2 and such that the tensor product of two objects is identified with the sum
of integers on each copy of N0. Here is a more detailed description.

Definition 1.1.1. A ProP is a family P “ pP pk, lqqk,lPN0 of vector spaces such that:

1. P is a S ˆSop-module, that is to say, for any pk, lq P N2
0, P pk, lq is a Sl ˆSop

k -module.
In other words, there exist maps

"

Sl ˆ P pk, lq ÝÑ P pk, lq
pσ, pq ÝÑ σ ¨ p,

"

P pk, lq ˆSk ÝÑ P pk, lq
pp, τq ÝÑ p ¨ τ,

such that for any pk, lq P N2
0, for any pσ, σ1, τ, τ 1q P S2

l ˆS2
k, for any p P P pk, lq,

Idrls ¨ p “ p ¨ Idrks “ p,

σ ¨ pσ1 ¨ pq “ pσσ1q ¨ p, σ ¨ pp ¨ τq “ pσ ¨ pq ¨ τ, pp ¨ τq ¨ τ 1 “ p ¨ pττ 1q.

2. For any pk, l, k1, l1q P N4
0, there exists a product ˚ from P pk, lq bP pk1, l1q to P pk` k1, l` l1q

such that:

(a) For any pk, l, k1, l1, k2, l2q P N6
0, for any pp, p1, p2q P P pk, lq ˆ P pk1, l1q ˆ P pk2, l2q,

p ˚ pp1 ˚ p2q “ pp ˚ p1q ˚ p2.
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(b) There exists I0 P P p0, 0q, such that for any pk, lq P N2
0, for any p P P pk, lq,

p ˚ I0 “ I0 ˚ p “ p.

This product ˚ is called the horizontal concatenation.

3. For any pk, l,mq P N3
0, there exists a product ˝ from P pl,mqbP pk, lq to P pk,mq such that:

(a) For any pk, l,m, nq P N4
0, for any pp, q, rq P P pm,nq ˆ P pl,mq ˆ P pk, lq,

p ˝ pq ˝ rq “ pp ˝ qq ˝ r.

(b) There exists I1 P P p1, 1q, such that for any pk, lq P N2
0, for any p P P pk, lq,

p ˝ Ik “ Il ˝ p “ p,

where we put In “ I˚n1 for any n P N0, with the convention I˚0
1 “ I0.

This product ˝ is called the vertical concatenation.

4. The vertical and horizontal concatenations are compatible: for any pk, k1, l, l1,m,m1q P N6
0,

for any pp, p1, q, q1q P P pl,mq ˆ P pl1,m1q ˆ P pk, lq ˆ P pk1, l1q,

pp ˚ p1q ˝ pq ˚ q1q “ pp ˝ qq ˚ pp1˝q1q.

5. The vertical concatenation and the action of SˆSop are compatible: for any pk, l,mq P N3
0,

for any pp, qq P P pl,mq ˆ P pk, lq, for any pσ, τ, νq P Sm ˆSl ˆSk,

σ ¨ pp ˝ qq “ pσ ¨ pq ˝ q, pp ˝ qq ¨ ν “ p ˝ pq ¨ νq, pp ¨ τq ˝ q “ p ˝ pτ ¨ qq.

6. The horizontal concatenation and the action of SˆSop are compatible:

(a) For any pk, k1, l, l1q P N4
0, for any pp, p1q P P pk, lq ˆ P pk1, l1q, for any pσ, σ1, τ, τ 1q P

Sl ˆSl1 ˆSk ˆSk1 ,

pσ ¨ pq ˚ pσ1 ¨ p1q “ pσ b σ1q ¨ pp ˚ p1q, pp ¨ τq ˚ pp1 ¨ τ 1q “ pp ˚ p1q ¨ pτ b τ 1q,

where for any α P Sm, β P Sn, αb β P Sm`n is defined by:

αb βpiq “

#

αpiq if i ď m,

βpi´mq `m if i ą m.

(b) (Commutativity of the horizontal concatenation). For any pk, k1, l, l1q P N4
0, for any

pp, p1q P P pk, lq ˆ P pk1, l1q,

cl,l1 ¨ pp ˚ p
1q “ pp1 ˚ pq ¨ ck,k1 , (1)

where for any pm,nq P N2
0, cm,n P Sm`n is defined by:

cm,npiq “

#

i` n if i ď m,

i´m if i ą m.
(2)

Remark 1.1.1. 1. Note that ck,0 “ Idrks “ c0,k.

2. In particular, pP p0, 0q, ˚q is a unitary associative and commutative algebra, whose unit is
I0, which, consequently is unique.
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3. Similarly, pP p1, 1q, ˝q is a unitary associative non commutative algebra, whose unit is I1

which, consequently is unique.

4. For any σ P Sk, as a consequence of the compatibility between the vertical concatenation
and the action of SˆSop and the definition of Ik P P pk, kq:

Ik ¨ σ “ pIk ¨ σq ˝ Ik “ Ik ˝ pσ ¨ Ikq “ σ ¨ Ik.

Hence, Ik ¨ σ “ σ ¨ Ik.

5. By the commutativity axiom, if p P P pk, lq and p0 P P p0, 0q, by the first item of this
Remark, it follows from (1) that p ˚ p0 “ p0 ˚ p. So the elements of P p0, 0q are central
for the horizontal concatenation. If q P P pl,mq, by the compatibility between the two
concatenations:

pp ˚ p0q ˝ q “ pp ˚ p0q ˝ pq ˚ I0q

“ pp ˝ qq ˚ pp0 ˝ I0q

“ pp ˝ qq ˚ p0.

Similarly, p ˝ pq ˚ p0q “ pp ˝ qq ˚ p0.

We adapt the definition of morphisms of ProPs of [Val03] in our non categorical language.

Definition 1.1.2. Let P “ pP pk, lqqk,lě0 and Q “ pQpk, lqqk,lě0 be two ProPs. A morphism of
ProPs is a family φ “ pφk,lqk,lě0 of linear maps φk,l : P pk, lq ÞÑ Qpk, lq which form a morphism
for the horizontal concatenation, the vertical concatenation and the actions of the symmetric
groups. More precisely, for any pk, l,m, nq P N4

0:

• @pp, qq P P pl,mq ˆ P pk, lq, φk,mpp ˝ qq “ φl,mppq ˝ φk,lpqq,

• @pp, qq P P pk, lq ˆ P pn,mq, φk`n,l`mpp ˚ qq “ φk,lppq ˚ φn,mpqq,

• @pσ, pq P Sl ˆ P pk, lq, φk,lpσ.pq “ σ.φk,lppq,

• @pp, τq P P pk, lq ˆSk, φk,lpp.τq “ φk,lppq.τ .

By abuse of notation, we shall write φppq instead of φk,lppq for p P P pk, lq.

In particular, ProPs form a category.

Definition 1.1.3. Let ProP be the category with objects given by P “ pP pk, lqqpk,lqPN2
0
and the

morphisms of which are morphisms φ : P ÝÑ Q of ProPs given by families pφk,lqpk,lqPN2
0
. Here,

for any pk, lq P N2
0, φk,l : P pk, lq ÝÑ Qpk, lq is a morphism of Sl b Sop

k -modules, compatible
with the vertical and horizontal concatenations, which sends the units I0 and I1 of P to the
corresponding units of Q. More explicitly, we have that

• For any pk, l, k1, l1q P N4
0, for any pp, p1q P P pk, lq ˆ P pk1, l1q, φk`k1,l`l1pp ˚ p1q “ φk,lppq ˚

φk1,l1pp
1q.

• For any pk, l,mq P N3
0, for any pp, p1q P P pl,mq ˆ P pk, lq, φk,mpp ˝ p1q “ φl,mppq ˝ φk,lpp

1q.

• φ0,0pI0q “ J0 and φ1,1pI1q “ J1, where I0, I1 are the units of P and J0, J1 are the units of
Q.

Let P “ pP pk, lqqk,lě0 be a ProP and, for any k, l ě 0, Qpk, lq be a subspace of P pk, lq.
We shall say that Q “ pQpk, lqqk,lě0 is a sub-ProP of P if it is stable under the horizontal and
vertical compositions, under the action of the symmetric groups and if it contains the units I0

and I1. More precisely:
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• For any pk, l,mq P N3
0, Qpl,mq ˝Qpk, lq Ď Qpk,mq.

• For any pk, l, k1, l1q P N4
0, Qpk, lq ˚Qpk1, l1q Ď Qpk ` k1, l ` l1q.

• For any pk, lq P N2
0, for any pσ, τq P Sl ˆSk, σ.Qpk, lq.τ Ď Qpk, lq.

• I0 P Qp0, 0q and I1 P Qp1, 1q.

Let P be a ProP.

• If Q is a sub-ProP of P , then Q is also a ProP, and the canonical injection from P to Q is
a ProP morphism.

• If pQiqiPI is a family of sub-ProPs of P , then
č

iPI

Qi is also a sub-ProP of P .

This leads to the following

Definition-Proposition 1.1.4. Let P be a ProP. If for any k, l ě 0, Rpk, lq is a subspace of
P pk, lq, then there exists a smallest sub-ProP of P containing R “ pRpk, lqqk,lě0

xRy :“
č

Q sub-ProP
of P containing R

Q.

Remark 1.1.2. Since Q contains I1, by ˚-stability, Q contains I1 ˚ . . . ˚ I1
looooomooooon

k times

“ Ik and as a conse-

quence of stability under the action of the symmetry groups, Q further contains σ.Ik.τ .

1.2 The ProP of linear morphisms: HomV

We recall a classical example of ProP.

Definition-Proposition 1.2.1. Given a finite dimensional K-vector space V , the ProP HomV

is defined in the following way:

1. For any k, l P N0,
HomV pk, lq :“ HompV bk, V blq.

2. For any σ P Sn, let θσ be the endomorphism of V bn defined by

θσpv1 b . . .b vnq :“ vσ´1p1q b . . .b vσ´1pnq.

This defines a left action of Sn on V bn. For any pk, lq P N2
0, for any f P HomV pk, lq, for

any pσ, τq P Sl ˆSk, we set:

σ ¨ f :“ θσ ˝ f, f ¨ τ :“ f ˝ θτ .

3. The horizontal concatenation is the tensor product of maps and I0 : K ÝÑ K is the identity
map I0 :“ IdK.

4. The vertical concatenation is the usual composition of maps and I1 : V ÝÑ V is the identity
map I1 :“ IdV .

Remark 1.2.1. This ProP is mentioned in [Val03] and [Mar08], but without an explicit proof of
its ProP structure. We add such a proof here for completeness and in preparation for the infinite
dimensional case, which will be similar in spirit.

Remark 1.2.2. Following our convention for a ProP P “ pP pk, lqqk,lPN0 , where an element in
P pk, lq has “k entries and l exits”, for the ProP HomV , an element f P HomV pk, lq has “k
entries and l exits”.
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Proof. 1. The maps θσ turns HomV into a Sl ˆSop
k -module by associativity of the compo-

sition product.

2. The horizontal concatenation is associative as a result of the associativity of the tensor
product b, and we trivially have that b maps HomV pk, lq bHomV pk

1, l1q to HomV pk `
k1, l ` l1q. Furthermore, if pk, lq P N2

0 and f P HomV pk, lq, for any v P V bk, we have

pI0 b fqpvq “ pI0 b fqp1.vq :“ I0p1q b fpvq “ 1K b fpvq “ fpvq

3. The vertical concatenation is associative as the consequence of the associativity of the
composition product. We furthermore have In :“ Ibn1 “ IdbnV “ IdV bn where the last
identity follows from the definition of the tensor product of maps.

4. For any f P HomV pl,mq, f 1 P HomV pl
1,m1q, g P HomV pk, lq, g1 P HomV pk

1, l1q, v P V bk

and v1 P V bk1 we have

pf b f 1q ˝ pg b g1qpv b v1q “ pf b f 1qpgpvq b g1pv1qq

“ pf ˝ gqpvq b pf 1 ˝ g1qpv1q

“ rpf ˝ gq b pf 1 ˝ g1qspv b v1q.

Thus, the horizontal and vertical concatenation are compatible.

5. The vertical concatenation and the action of S ˆ Sop are compatible by associativity of
the composition product.

6. For any f P HomV pk, lq, f 1 P HomV pk
1, l1q, σ P Sl, σ1 P Sl1 , v P V bk, v1 P V bk

1 we have

pσ.fq b pσ1.f 1qpv b v1q “ pθσ ˝ fq b pθσ1 ˝ f
1qpv b v1q

“ θσpfpvqq b pθσ1f
1pv1q

“ pθσ b θσ1qrfpvq b f
1pv1qs

“ pσ b σ1q.pf b f 1qpv b v1q.

Similarly, we have pf.τq b pf 1.τ 1q “ pf b f 1q.pτ b τ 1q and cl,l1 ¨ pf ˚ f
1q “ pf 1 ˚ fq ¨ ck,k1 ,

therefore the horizontal action of SˆSop are compatible.

Remark 1.2.3. Let V be an n-dimensional K-vector space equipped with a basis pe1, ¨ ¨ ¨ , enq,
and let pe1, ¨ ¨ ¨ , enq be the dual basis. We write vj “

řn
kj“1 b

kj
j ekj the elements of V and v˚i “

řn
ki“1 a

i
ki
eki the elements of V ˚. Then an element f “ v˚1 b¨ ¨ ¨b v

˚
k b v1b¨ ¨ ¨b vl P HomV pk, lq

reads
f “

ÿ

~I, ~J

a
~I
~J
e
~J b e~I ,

where, for two finite sequences ~I “ pi1, ¨ ¨ ¨ , ikq, ~J “ pj1, ¨ ¨ ¨ , jlq of k and l elements of rns, we
have set

e~I :“ ei1 b ¨ ¨ ¨ b eik ; e
~J :“ ej1 b ¨ ¨ ¨ b ejl

and the a~I~J P K are coefficients built from sums of products of the coefficients aiki and b
kj
j . In

particular, an element of this ProP is completely determined by this collection of numbers a~I~J . We
can therefore view f as a map from pairs of subsets I, J of rns with k and l elements respectively
into K.

It follows that for any n-dimensional vector space V , HomV is isomorphic as a ProP to the
set of maps from pairs of finite sequences of elements of rns to K:

HomV » pta : Seqkprnsq ˆ Seqlprnsq ÝÑ Kuqk,lě0 .
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1.3 The ProP of graphs: Grœ

Definition 1.3.1. A graph is a family G “ pV pGq, EpGq, IpGq, OpGq, IOpGq, LpGq, s, t, α, βq,
where:

1. V pGq (set of vertices), EpGq (set of internal edges), IpGq (set of input edges), OpGq (set
of output edges), IOpGq (set of input-output edges) and LpGq (set of loops, that is to say
edges with no endpoints) are finite (maybe empty) sets.

2. s : EpGq \OpGq ÝÑ V pGq is a map (source map).

3. t : EpGq \ IpGq ÝÑ V pGq is a map (target map).

4. α : IpGq \ IOpGq ÝÑ ripGqs is a bijection, with ipGq “ |IpGq| ` |IOpGq| (indexation of
the input edges).

5. β : OpGq \ IOpGq ÝÑ ropGqs is a bijection, with opGq “ |OpGq| ` |IOpGq| (indexation of
the output edges).

Example 1.3.1. Here is a graph G :

V pGq “ tx, yu, EpGq “ ta, bu, IpGq “ tc, du, OpGq “ te, fu, IOpGq “ tgu, LpGq “ th, ku,

and:

s :

$

’

’

&

’

’

%

a ÞÑ y
b ÞÑ x
e ÞÑ y
f ÞÑ y,

t :

$

’

’

&

’

’

%

a ÞÑ x
b ÞÑ y
c ÞÑ x
d ÞÑ x,

α :

$

&

%

c ÞÑ 1
d ÞÑ 2
g ÞÑ 3,

β :

$

&

%

e ÞÑ 3
f ÞÑ 1
g ÞÑ 2.

This is graphically represented as follows:

1 3 2

?>=<89:;y
e

??��������f

__>>>>>>>>

a

��

h << k <<

?>=<89:;x
b

ZZ

1

c

??��������
2

d

__????????
3

g

OO

Note that this graph contains two loops, represented by h << and k << .
Remark 1.3.1. As explained in the introduction, although loops play a passive role in the pre-
sentation of a ProP, their role will be essential in the presentation of TraPs, see Section 5.3.

Definition 1.3.2. Let G and G1 be two graphs. An (resp. iso-)morphism of graphs from G
to G1 is a family of (resp. bijections) maps f “ pfV , fE , fI , fO, fIO, fLq with:

fV : V pGq ÝÑ V pG1q, fE : EpGq ÝÑ EpG1q, fI : IpGq ÝÑ IpG1q,

fO : OpGq ÝÑ OpG1q, fIO : IOpGq ÝÑ IOpG1q, fL : LpGq ÝÑ LpG1q,

such that:

s1 ˝ fE “ fV ˝ s|EpGq, s1 ˝ fO “ fV ˝ s|OpGq,

t1 ˝ fE “ fV ˝ t|EpGq, t1 ˝ fI “ fV ˝ t|IpGq,

α1 ˝ fI “ α|IpGq, α1 ˝ fIO “ α|IOpGq,

β1 ˝ fO “ β|OpGq, β1 ˝ fIO “ β|IOpGq.

11



For any k, l P N0, we denote by Grœpk, lq the space generated by the isoclasses of graphs G such
that ipGq “ k and opGq “ l, i.e. Grœpk, lq is the quotient space of graphs with k input edges and
l output edges by the equivalence relation given by isomorphism.

In what follows, we shall write graphs for isoclasses of graphs.

Example 1.3.2. The isomorphism class of the graph of Example 1.3.1 is represented by:

1 3 2

/.-,()*+

??��������

__>>>>>>>>

��

<< <<

/.-,()*+

^^

1

??��������
2

__>>>>>>>>
3

OO

We now want to equip the set Grœ of isoclasses of graphs with a ProP structure.

• We first define the horizontal concatenation. If G and G1 are two disjoint graphs, we
define a graph G ˚G1 in the following way:

V pG ˚G1q “ V pGq \ V pG1q, EpG ˚G1q “ EpGq \ EpG1q, LpG ˚G1q “ LpGq \ LpG1q,

IpG ˚G1q “ IpGq \ IpG1q, OpG ˚G1q “ OpGq \OpG1q, IOpG ˚G1q “ IOpGq \ IOpG1q.

The source and target maps are given by:

s2|EpGq\OpGq “ s, s2|EpG1q\OpG1q “ s1,

t2|EpGq\IpGq “ t, t2|EpG1q\IpG1q “ t1.

The indexations of the input and output edges are given by:

α2|IpGq\IOpGq “ α, α2|IpG1q\IOpG1q “ ipGq ` α1,

β2|OpGq\IOpGq “ β, β2|OpG1q\IOpG1q “ opGq ` β1

with an obvious abuse of notation in the definition of the second column. Notice that this
product is not commutative in the usual sense for G ˚ G1 and G1 ˚ G might differ by the
indexation of their input and output edges. However, it is commutative in the sense of
Axiom 6.(b) of ProPs. Roughly speaking, G ˚ G1 is the disjoint union of G and G1, the
input and output edges of G1 being indexed after the input and output edges of G.

G

1 k

. . .

1 l

. . .

˚
G1

1 k1

. . .

1 l1

. . .

“
G

1 k

. . .

1 l

. . .

G1

k ` 1 k ` k1

. . .

l ` 1 l ` l1

. . .
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Example 1.3.3. Here is an example of horizontal concatenation :

1 3 2

/.-,()*+

__>>>>>>>>

OO

��/.-,()*+

GG��������������

1

??��������
2

__>>>>>>>>

˚

1 2

/.-,()*+

??��������

__>>>>>>>>

1

OO “

1 3 2 4 5

/.-,()*+

__>>>>>>>>

OO

��

/.-,()*+

??��������

__>>>>>>>>

/.-,()*+

GG��������������

1

??��������
2

__>>>>>>>>
3

OO

This product of graphs induces a product ˚ : Grœpk, lqbGrœpk1, l1q ÝÑ Grœpk`k1, l` l1q.
If G, G1 and G2 are three graphs, clearly

G ˚ pG1 ˚G2q “ pG ˚G1q ˚G2.

Hence, the product ˚ is associative. Its unit I0 is the unique graph such that V pI0q “

EpI0q “ IpI0q “ OpI0q “ IOpI0q “ H.

• We now define the vertical concatenation. Let G and G1 be disjoint graphs such that
opGq “ ipG1q. We define a graph G2 “ G1 ˝G in the following way:

V pG2q “ V pGq \ V pG1q,

EpG2q “ EpGq \ EpG1q \ tpf, eq P OpGq ˆ IpG1q : βpfq “ α1pequ,

IpG2q “ IpGq \ tpf, eq P IOpGq ˆ IpG1q : βpfq “ α1pequ,

OpG2q “ OpGq \ tpf, eq P OpGq ˆ IOpG1q : βpfq “ α1pequ,

IOpG2q “ tpf, eq P IOpGq ˆ IOpG1q : βpfq “ α1pequ,

LpG2q “ LpGq \ LpG1q.

Its source and target maps are given by:

s2|EpGq “ s|EpGq, s2|EpG1q “ s1|EpG1q, s2|OpG1q “ s1|OpG1q, s2ppf, eqq “ spfq,

t2|EpGq “ t|EpGq, t2|EpG1q “ s1|EpG1q, t2|IpGq “ s|IpGq, s2ppf, eqq “ t1peq.

The indexations of its input and output edges are given by:

α2|IpGq “ α|IpGq, α2ppf, eqq “ αpfq,

β2|OpG1q “ β1|OpG1q, β2ppf, eqq “ β1peq.

Roughly speaking, G1 ˝G is obtained by gluing together the outgoing edges of G and the
incoming edges of G1 according to their indexation.
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G1

1 l

. . .

1 m

. . .

˝
G

1 k

. . .

1 l

. . .

“
G

1 k

. . .

G1

1 m

. . .

Example 1.3.4. Here is an example of vertical concatenation :

2 1

/.-,()*+

OO

/.-,()*+oo

OO

l <<

1

??��������
2

OO

3

OO ˝

2 1 3

/.-,()*+

OO

>>
/.-,()*+

OO ??��������~~

1

??��������
2

OO

3

OO

4

__>>>>>>>>

“

2 1

/.-,()*+

OO

/.-,()*+

OO

oo l <<

/.-,()*+
OO

>>
/.-,()*+

gg OO

~~

1

??��������
2

OO

3

OO

4

__>>>>>>>>

Theorem 1.3.3. The family Grœ “ pGrœ
k,lqk,lPN0, equipped with this SˆSop-action and these

horizontal and vertical concatenations, is a ProP.

Proof. • We check the associativity of ˝. Let G, G1 and G2 be three graphs with opGq “
ipG1q and opG1q “ ipG2q. The graphs pG2 ˝G1q ˝G and G2 ˝ pG1 ˝Gq may be different, but
both are isomorphic to the graph H defined by:

V pHq “ V pGq \ V pG1q \ V pG2q,

EpHq “ EpGq \ EpG1q \ EpG2q

\ tpf, eq P OpGq ˆ IpG1q : βpfq “ α1pequ \ tpf, eq P OpG1q ˆ IpG2q : β1pfq “ α2pequ

\ tpf, f 1, eq P OpGq ˆ IOpG1q ˆ IpG2q : βpfq “ α1pf 1q, β1pf 1q “ α2pequ,

IpHq “ IpGq \ tpf, eq P IOpGq ˆ IpG1q : βpfq “ α1pequ

\ tpf, f 1, eq P IOpGq ˆ IOpG1q ˆ IpG2q : βpfq “ α1pf 1q, β1pf 1q “ α2pequ,

OpHq “ OpG2q \ tpf, eq P OpG1q ˆ IOpG2q : β1pfq “ α2pequ

\ tpf, f 1, eq P OpGq ˆ IOpG1q ˆ IOpG2q : βpfq “ α1pf 1q, β1pf 1q “ α2pequ,

IOpHq “ tpf, f 1, eq P IOpGq ˆ IOpG1q ˆ IOpG2q : βpfq “ α1pf 1q, β1pf 1q “ α2pequ,

LpHq “ LpGq \ LpG1q \ LpG2q,

with immediate source, target and indexation maps. So ˝ induces an associative product
˝ : Grœpl,mq bGrœpk, lq ÝÑ Grœpk,mq.

• Let I1 be the graph such that

V pI1q “ EpI1q “ IpI1q “ OpI1q “ LpI1q “ H, IOpI1q “ r1s.

14



We show that I1 is the unit for ˝: The indexation maps are both the identity of r1s. For
any integer n P N0, I˚n1 is isomorphic to the graph In such that

V pInq “ EpInq “ IpInq “ OpInq “ LpInq “ H, IOpInq “ rns,

the indexation maps being both the identity of rns. If G is a graph and k “ ipGq, then
H “ G ˝ Ik is the graph such that:

V pHq “ V pGq, IpHq “ tpαpeq, eq : e P IpGqu,

EpHq “ EpGq, IOpHq “ tpαpeq, eq : e P IOpGqu,

OpHq “ OpGq, LpHq “ LpGq,

with immediate source, target and indexation maps. This graph H is isomorphic to G, via
the isomorphism given by:

fV “ IdV pGq, fIppαpeq, eqq “ e,

fE “ IdEpGq, fIOppαpeq, eqq “ e,

fO “ IdOpGq,

fL “ IdLpGq.

Similarly, Il ˝G and G are isomorphic. Hence, I1 is the unit of ˝ in Grœ.

• We check the compatibility of the horizontal and vertical concatenations. Let G, G1, H
and H 1 be graphs such that opGq “ ipHq and opG1q “ ipH 1q. The graphs pH ˚H 1q˝pG˚G1q
and pH ˝Gq ˚ pH 1 ˝G1q are both equal to the graph K, such that:

V pKq “ V pGq \ V pG1q \ V pHq \ V pH 1q,

EpKq “ EpGq \ EpG1q \ EpHq \ EpH 1q

\ tpf, eq P OpGq ˆ IpHq : βpfq “ α1pequ

\ tpf, eq P OpG1q ˆ IpH 1q;βpfq “ α1pequ,

IpKq “ IpGq \ IpG1q \ tpf, eq P IOpGq ˆ IpHq;βpfq “ α1pequ

\ tpf, eq P IOpG1q ˆ IpH 1q;βpfq “ α1pequ,

OpKq “ OpHq \OpH 1q \ tpf, eq P OpGq ˆ IOpHq;βpfq “ α1pequ

\ tpf, eq P OpG1q ˆ IOpH 1q;βpfq “ α1pequ,

IOpKq “ \tpf, eq P IOpGq ˆ IOpHq;βpfq “ α1pequ

\ tpf, eq P IOpG1q ˆ IOpH 1q;βpfq “ α1pequ,

LpKq “ LpGq \ LpG1q \ LpHq \ LpH 1q,

with obvious source, target and indexation maps. Hence, the vertical and the horizontal
concatenations are compatible.

• We check the module structure of Grœ over the symmetric group. Let G be a graph,
σ P SopGq and τ P SipGq. We set:

σ ¨G “ pV pGq, EpGq, IpGq, OpGq, IOpGq, LpGq, s, t, α, σ ˝ βq,

G ¨ τ “ pV pGq, EpGq, IpGq, OpGq, IOpGq, LpGq, s, t, τ´1 ˝ α, βq. (3)

This induces a structure of SˆSop-module over Grœ.

Let us prove the compatibility of this action with the vertical concatenation. Let G and
G1 be two graphs such that opGq “ ipG1q, and let σ P SopG1q, τ P SopGq, ν P SipGq. Clearly,
the graphs σ ¨ pG1 ˝Gq and pσ ¨G1q ˝G are equal; the graphs pG1 ˝Gq ¨ ν and G1 ˝ pG ¨ νq
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are equal. Let us compare the graphs H “ pG1 ¨ τq ˝G and H 1 “ G1 ˝ pτ ¨Gq. Their set of
vertices coincide. Moreover:

EpHq “ EpGq \ EpG1q \ tpf, eq P OpGq ˆ IpG1q : βpfq “ τ´1 ˝ α1pequ,

EpH 1q “ EpGq \ EpG1q \ tpf, eq P OpGq ˆ IpG1q : τ ˝ βpfq “ α1pequ,

so EpHq “ EpH 1q. Similarly, IpHq “ IpH 1q, OpHq “ OpH 1q, IOpHq “ IOpH 1q and
LpHq “ LpH 1q. Moreover, the source, target and indexation maps are the same for H and
H 1, so H “ H 1.

• We finally prove the compatibility of the SˆSop-action with the horizontal composition.
Let G and G1 be two graphs, σ P SopGq and σ1 P SopG1q. We put H “ pσ ¨Gq ˚ pσ1 ¨G1q and
H 1 “ pσbσ1q ¨ pG˚G1q. They have the same set of vertices, whether internal, input, output
and input-output edges, and the source, target and indexation of output edges maps for H
and H 1 coincide. Both indexations of the set of output edges are given by:

σ2peq “

#

σ ˝ βpeq if e P OpGq \ IOpGq,
opGq ` σ1 ˝ β1peq if e P OpG1q \ IOpG1q.

So H “ H 1.

Let G and G1 be graphs. We set H “ copGq,opG1q ¨ pG ˚ G
1q and H 1 “ pG1 ˚ Gq ¨ cipGq,ipG1q,

where cm,n P Sm`n was defined in (2). They have the same sets of vertices, internal, input,
output and input-output edges, and the same source and target maps. The indexations
maps are given by:

αHpeq “

#

αpeq ` ipG1q if e P IpGq \ IOpGq,
α1peq if e P IpG1q \ IOpG1q,

βHpeq “

#

βpeq if e P OpGq \ IOpGq,
β1peq ` opGq if e P OpG1q \ IOpG1q,

αH 1peq “

#

α1peq if e P IpG1q \ IOpG1q,
αpeq ` ipG1q if e P IpGq \ IOpGq,

βH 1peq “

#

β1peq ` opGq if e P OpG1q \ IOpG1q,
βpeq if e P OpGq \ IOpGq,

so H “ H 1.

2 The ProP of continuous morphisms: Homc
V

We now generalise the ProP HomV of Subsection 1.2 to a ProP Homc
V (the superscript "c" for

continuous) for a topological vector space V .
We work in the context of nuclear Fréchet spaces. One could relax these conditions (for

example Fréchet could be replaced by barreled) yet the nuclear setup is comfortable to work in
and general enough for our purposes. We refer the reader to [Tre67] for the more general cases.

2.1 Fréchet nuclear spaces

Nuclear spaces were defined in the seminal work [Gro54]. Most of the results stated here can be
found in [Gro52, Gro54]. We also refer to the more recent presentation [Tre67].

We recall that
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• A topological vector space is Fréchet if it is Hausdorff, has its topology induced by a
family of semi-norms and is complete with respect to this family of semi-norms.

• A topological vector space is called reflexive if E2 “ pE1q1 “ E, where E1 is the topological
dual of E.

In the following E and F are two topological vector spaces and HomcpE,F q is the set of con-
tinuous linear maps from E to F .

Remark 2.1.1. When E and F are finite dimensional, we have HomcpE,F q=HompE,F q.

In order to build the Hom ProP in the infinite dimensional case, we need Grothendieck’s
completion of the tensor product, a notion we recall here in the setup of locally convex topological
K-vector spaces.

Let E and F be two vector spaces. Recall that there exists a vector space EbF , and a bilinear
map φ : E ˆ F ÝÑ E b F such that for any vector space V and bilinear map f : E ˆ F ÝÑ V ,
there is a unique linear map f̃ : E b F Ñ V satisfying f “ f̃ ˝ φ. The space E b F is unique
modulo isomorphism and is called the tensor product of E and F .

Given two topological vector spaces, E and F one can a priori equip E b F with several
topologies, among which the ε-topology and the projective topology whose construction are
recalled in Appendix A. We denote by EbεF (resp. Ebπ F ) the space EbF endowed with the
ε-topology (resp. the projective topology) and by E pbεF (resp. E pbεF ) of Ebε F (resp. Ebε F )
their completion with respect to the ε-topology (resp. projective topology). These two spaces
differ in general but coincide for nuclear spaces.

Definition 2.1.1. [Gro54] A locally convex topological vector space E is nuclear if, and only
if, for any locally convex topological vector space F ,

E pbεF “ E pbπF “: E pbF

holds, in which case E pbF is called the completed tensor product of E and F .

There are other equivalent definitions of nuclearity, see for example [GV64, HS08].
Given a locally convex topological vector space E, its topological dual E1 can be endowed

with various topologies. An important one for our applications will be the strong topology,
generated by the family of semi-norms of E1 defined, on any f P E1: ||f ||B :“ supxPB |fpxq|
for any bounded set B of E. The topological dual E1 endowed with this topology is called the
strong dual.

For Fréchet spaces, nuclearity is preserved under strong duality.

Proposition 2.1.2. • [Tre67, Proposition 50.6] A Fréchet space is nuclear if and only if its
strong dual is nuclear.

• [Tre67, Proposition 36.5] A Fréchet nuclear space is reflexive.

Many spaces relevant to renormalisation issues are Fréchet and nuclear. We list here some
examples.

Example 2.1.1. Any finite dimensional vector space can be equipped with a norm and for any
of these norms, they are trivially Banach, hence Fréchet and nuclear. If E and F are finite
dimensional vector spaces we have HomcpE,F q “ HompE,F q » E˚ b F , where HompE,F q
stands for the space of F -valued linear maps on E and where the dual E˚ is the algebraic
dual.

Example 2.1.2. Let U be an open subset of Rn. Take E “ C8pUq “: EpUq. The topological
dual is the space E1 “ E 1pUq of distributions on U with compact support.

Then E is Fréchet ([Tre67], pp. 86-89), and E1 is nuclear ([Tre67], Corollary p. 530). By
Proposition 2.1.2, E is also nuclear.
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Remark 2.1.2. Note that the dual E1 of a Fréchet space E is never a Fréchet space (for any of
the natural topologies on E1), unless E is actually a Banach space (see for example [Köt69]). In
particular, E 1pUq is generally not Fréchet.

We now sum up various results of [Tre67] of importance for later purposes.

Theorem 2.1.3. [Tre67, Equations (50.17)–(50.19)] Let E and F be two Fréchet spaces, with
E nuclear. The following isomorphisms of topological vector spaces hold.

E1pbF » HomcpE,F q (4)

E pbF » HomcpE1, F q (5)

E1pbF 1 » pE pbF q1 » BcpE ˆ F,Kq. (6)

with BcpE ˆ F,Kq the set of continuous bilinear maps K : E ˆ F ÝÑ K. Here the duals are
endowed with the strong dual topology, HomcpE,F q with the strong topology and BcpE ˆ F,Kq
with the topology of uniform convergence on products of bounded sets.

We also need the stability of Fréchet nuclear spaces under completed tensor products, for
which we need the following lemma.

Lemma 2.1.4. The completed tensor product E pbF of two Fréchet nuclear spaces is a Fréchet
nuclear space.

Proof. If E and F are two nuclear spaces then E pbF is a nuclear space ([Tre67, Equation (50.9)]).
It is moreover complete since E pbF is obtained by completion.

Proposition 2.1.5. Let V be a Fréchet nuclear space. Then
´

V
pbk
¯1

»
`

V 1
˘

pbk (7)

holds for any k ě 1, where the duals are endowed with their strong topologies.

Proof. Let V be a Fréchet nuclear space. The case k “ 1 is trivial. Then Equation (7) with
k “ 2 holds by Equation (6) with E “ F “ V . The cases k ě 2 are proved by induction, using
E “ V pbk´1 and F “ V . The induction holds by Lemma 2.1.4.

2.2 A ProP for Fréchet nuclear spaces

We start by recalling the definition of distributions over a finite dimensional smooth manifold
X. We quote [Hö89, Definition 6.3.3].

Definition 2.2.1. To every coordinate system κ : Uk Ă X ÝÑ Vk Ă Rn we associate a distribu-
tion uk P D1pVkq such that

uk1 “ pκ ˝ κ
1´1q˚uk

in κ1pUk XUk1q; with pκ ˝ κ1´1q˚uk the pullback of uk by κ ˝ κ1´1 whose existence and uniqueness
is given by [Hö89, Theorem 6.1.2]. Then the system uk of distributions is called a distribution
on X. The set of distributions on X is written D1pXq. Similarly we define E 1pXq, the set of
distributions with compact support.

Proposition 2.2.2. EpXq is a Fréchet nuclear space.

It is a classical result of functional analysis that the space of functions over a smooth manifold
is Fréchet (see for example [vdBC13, Exercise 2.3.2]). The fact that the same space is nuclear
is a folklore result, often stated without proof nor references. A proof was recently given in
[BDLGR17, p. 4].

It then follows from Proposition 2.1.2, that the space E 1pXq is also nuclear.
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Remark 2.2.1. (Compare with Remark 2.1.2). Note that the space E 1pXq is not Fréchet since
the dual of a Fréchet space F is Fréchet if and only if F is Banach (see for example [Köt69])
which is not the case of EpXq.

One further useful result is

Proposition 2.2.3. Let X and Y be two finite dimensional smooth manifolds. Then

HomcpE 1pXq, EpY qq » EpXq pb EpY q » EpX ˆ Y q

holds.

The second isomorphism [Gro52, Chap. 5, p. 105] can be proved using a version of the
Schwartz kernel theorem for smoothing operators [vdBC13, Theorem 2.4.5] by means of the
identification HomcpE 1pXq, EpY qq » EpX ˆ Y q. The result then follows from (5) applied to
EpXq and EpY q which are Fréchet nuclear spaces.

Definition 2.2.4. Let V be a Fréchet nuclear space. For any k, l P N0, we set

Homc
V pk, lq “ HomcpV b̂k, V b̂lq » pV 1q

pbk
pbV

pbl,

where, as before V 1 stands for the strong topological dual. Furthermore we set Homc
V :“

pHomc
V pk, lqqk,lě0.

For any σ P Sn, let θσ be the endomorphism of V bn defined by

θσpv1 b . . .b vnq “ vσ´1p1q b . . .b vσ´1pnq.

It extends to a continuous linear map θσ on the closure V pbn. For any f P Homc
V pk, lq, σ P Sl,

τ P Sk, we set:

σ ¨ f “ θσ ˝ f, f ¨ τ “ f ˝ θτ .

In the above definition, the superscript “c” stands for continuous. The family Homc
V carries

a ProP structure.

Theorem 2.2.5. Let V be a Fréchet nuclear space. Homc
V , with the action of SˆSop described

above, is a ProP. Its horizontal concatenation is the usual (topological) tensor product of maps
with I0 : K ÝÑ K is the constant map I0pxq :“ 1K and its vertical concatenation is the usual
composition of maps and I1 : V ÝÑ V is the identity map.

Proof. The proof is exactly the same as the proof of Definition-Proposition 1.2.1.

Example 2.2.1. For a finite dimensional vector space V the classical ProP HomV of Proposition-
Definition 1.2.1 coincides with the the ProP Homc

V .
Example 2.2.2. Let U be an open of Rn. From Example 2.1.2 and Equation (7) the family
pKU pk, lqqk,lě0, with KU pk, lq “ pE 1pUqq

pbk
pb pEpUqqpbl defines a ProP.

Example 2.2.3. Let X be a smooth finite dimensional manifold. From Proposition 2.2.2 and
Equation (7) the family pKXpk, lqqk,lě0, with KXpk, lq “ pE 1pXqq

pbk
pb EpXqpbl defines a ProP.

3 Freeness of the ProP Grœ of graphs

The goal of this section is to build free ProPs generated by indecomposable graphs (see Defi-
nition 3.1.1 below). A free ProP was already described by Hackney and Robertson in [HR12].
Their construction is on the category of ”megagraphs", which are special types of graphs with
decorations on their vertices and edges. Their work is categorical and not very adapted for the
applications we have in mind, which require a more explicit description of the structures at hand.
This is why we carry out the proof of the freeness of the ProP introduced in subsection 1.3. The
complete proof of the main theorem (Theorem 3.2.1) is postponed to Appendix C.1.
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3.1 Indecomposable graphs

Definition 3.1.1. We call a graph G indecomposable if the five following conditions hold:

1. V pGq ‰ H.

2. IOpGq “ H.

3. LpGq “ H or G is reduced to a single loop.

4. If G1 and G2 are two graphs such that G “ G1 ˝G2, then V pG1q “ H or V pG2q “ H.

5. If G1 and G2 are two graphs and σ, τ are two permutations such that G “ σ ¨ pG1 ˚G2q ¨ τ ,
then V pG1q “ H or V pG2q “ H.

For any k, l P N0, the subspace of Grœpk, lq generated by isoclasses of indecomposable graphs G
with ipGq “ k and opGq “ l is denoted by Grœ

indpk, lq.

Remark 3.1.1. 1. The permutations in the fifth item of the definition of indecomposable
graphs play an important role: without them, one would allow for non connected graphs to
be indecomposable, which can well happen when the indexations of the inputs and outputs
of the various connected components do not match. For example, the graph
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would be indecomposable. Permuting inputs we obtain
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which is decomposable. The same requirement does not arise for the vertical concatenation
since one can write σ.pP ˝Qq.τ “ pσ.P q ˝ pQ.τq “ P 1 ˝Q1.

2. There is one special indecomposable graph O, formed by a unique loop. The other inde-
composable graphs have no loop.

Proposition 3.1.2. Let G be a graph, σ P SopGq and τ P SipGq. Then G is indecomposable if,
and only if, σ ¨G ¨ τ is indecomposable.

Proof. Let us assume that H “ σ ¨ G ¨ τ is indecomposable. Then V pGq “ V pHq ‰ H and
IOpGq “ IOpHq “ H. Let us assume that G “ G1 ˝G2. Then:

H “ σ ¨ pG1 ˝G2q ¨ τ “ pσ ¨G1q ˝ pG2 ¨ τq.

As H is indecomposable, V pG1q “ V pσ ¨ G1q “ H or V pG2q “ V pG2 ¨ τq “ H. Let us assume
that G “ σ1 ¨ pG1 ˚G2q ¨ τ 1. Then:

H “ σ ¨ pσ1 ¨ pG1 ˚G2q ¨ τ 1q ¨ τ “ ppσσ1q ¨G1q ˚ pG2 ¨ pττ 1qq.

As H is indecomposable, V pG1q “ V ppσσ1q ¨G1q “ H or V pG2q “ V pG2 ¨ pττ 1qq “ H.

Conversely, if G is indecomposable, then G “ σ´1 ¨ H ¨ τ´1 is indecomposable, so H is
indecomposable.
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Notations 3.1.1. Let G be a graph.

1. Let J Ď V pGq. We define (non uniquely due to the non uniqueness of the maps α1 and β1)
the graph G|J by:

V pG|Jq “ J,

EpG|Jq “ te P EpGq : speq P J, tpeq P Ju,

IpG|Jq “ te P IpGq : tpeq P Ju \ te P EpGq : speq R J, tpeq P Ju,

OpG|Jq “ te P OpGq : speq P Ju \ te P EpGq : speq P J, tpeq R Ju,

IOpG|Jq “ IOpGq,

LpG|Jq “ H.

The source and target maps are defined by:

@e P EpG|Jq \OpG|Jq, sG|J peq “ speq,

@e P EpG|Jq \ IpG|Jq, tG|J peq “ tpeq,

The indexation of the input edges is any indexation map α1 such that:

@e, e1 P pIpGq \ IOpGqq X
`

IpG|Jq \ IOpG|Jq
˘

, α1peq ă α1pe1q ðñ αpeq ă αpe1q.

The indexation of the output edges is any indexation map β1 such that:

@f, f 1 P pOpGq \ IOpGqq X
`

OpG|Jq \ IOpG|Jq
˘

, β1pfq ă β1pf 1q ðñ βpfq ă βpf 1q.

2. We denote by G̃ the graph defined by:

V pG̃q “ V pGq, EpG̃q “ EpGq, LpG̃q “ H,

IpG̃q “ IpGq, OpG̃q “ OpGq, IOpG̃q “ H,

s̃ “ s, t̃ “ t.

The indexation of the input edges is the unique indexation map α̃ such that:

@e, e1 P IpGq, α̃peq ă α̃pe1q ðñ αpeq ă αpe1q.

The indexation of the output edges is the unique indexation map β̃ such that:

@f, f2 P OpGq, β̃pfq ă β̃pf 1q ðñ βpfq ă βpf 1q.

Roughly speaking, G̃ is obtained from G by deletion of all the input-output edges and all
the loops.

Definition 3.1.3. Let G be a graph.

1. A path in G is a sequence p “ pe1, . . . , ekq of internal edges of G such that for any i P rk´1s,
tpeiq “ spei`1q. The source of p is spe1q and its target is tpekq, and we shall say that p
is a path from spe1q to tpekq of length k. By convention, for any x P V pGq, there exists a
unique path from x to x of length 0.

2. We shall say that a path p is a cycle if its source and its target are equal and if its length
is nonzero.

Remark 3.1.2. A cycle of length one is to be distinguished from a loop.

We consider oriented-pathwise connected components of graphs.
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Lemma 3.1.4. Let G be a graph such that V pGq ‰ H. We denote by OpGq the set of nonempty
subsets I of V pGq such that for any x P I, for any y P V pGq, if there exists a path in G from x
to y, then y P I. Then:

1. If I, J P OpGq, either I X J “ H or I X J P OpGq.

2. For any x P V pGq, there exists a unique element xxy P OpGq which contains x and is
minimal for the inclusion. Moreover:

xxy “ ty P V pGq : there exists a path in G from x to yu.

Notice that, if Gx is the connected component of G that contains x, then xxy Ď Gx, but we
do not necessarily have an equality, as the edges are oriented.

Proof. 1. If I X J ‰ H, let x P I X J and y P V pGq such that there exists a path in G from x to
y. As I, J P OpGq, y P I X J , so I X J P OpGq.

2. Note that V pGq P OpGq. Let x P V pGq; by the first item, the following element of OpGq
is the minimal (for the inclusion) element of OpGq that contains x:

xxy “
č

IPOpGq, xPI
I.

On the one hand, a set I in OpGq contains x if and only if any path emanating from x ends at
an element of I. So it contains all the ending vertices of such paths and hence the set

Ix :“ ty P V pGq : there exists a path in G from x to yu.

Thus, Ix Ď xxy. On the other hand, let y P I and z P V pGq, such that there exists a path from
y to z in G. As there exists a path from x to y in G, there exists a path from x to z, so z P Ix.
Hence, Ix lies in OpGq which in turn contains x, so xxy Ď Ix.

Proposition 3.1.5. Let G be a graph such that V pGq ‰ H. We denote by J1, . . . , Jk the minimal
elements (for the inclusion) of the set OpGq of nonempty subsets I of V pGq stable under paths
as in Lemma 3.1.4, and we set Gi “ G̃|Ji for any i P rks. Then G1, . . . , Gk are indecomposable
graphs with no loop and there exists a graph G0 with no loop, integers p, ` and a permutation γ
such that:

G « pγ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0q ˚O˚`,

where, as before O is the indecomposable graph formed by a unique loop. Such a decomposition
will be called minimal.

Proof. By definition, V pGiq “ Ji ‰ H and IOpGiq “ H for any i. Let us assume that Gi “
G1 ˝ G2. If V pG1q ‰ H, then clearly V pG1q P OpGiq and, as Ji P OpGq, we deduce that
V pG1q P OpGq. As Ji is minimal in OpGq, V pG1q “ Ji “ V pGiq, so V pG2q “ H. Similarly, if
Gi “ σ ¨ pG1 ˚G2q ¨ τ , then V pG1q “ H or V pG2q “ H: we proved that Gi is indecomposable.

Let us assume that I “ V pGiq X V pGjq ‰ H. Then I P OpGq and, by minimality of Ji and
Jj , Ji “ Jj “ I, so the Ji are disjoint.

Let us set K :“ V pGqzpJ1 Y . . . Y Jkq and G1 :“ G|K . As J1, . . . , Jk lie in OpGq, there is
no internal edge of G from a vertex of Gi to a vertex of G1, and any outgoing edge of G1 is
either glued in G to an incoming edge of Gi or is an outgoing edge of G. Hence, there exists
permutations γ, σ and τ , and three integers p :“ |IOpGq|, q :“ |te P IpGq : tpeq P J1Y . . .Y Jku|
and ` :“ |LpGq| such that:

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝ pσ ¨ pIq ˚G
1q ¨ τq ˚O˚`.

We conclude in taking G0 “ σ ¨ pIq ˚G
1q ¨ τ .
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Note that this decomposition is not unique: it depends on the indexation of the minimal
elements ofOpGq and of the choice of the indexation of their input and output edges. Importantly,
it depends only on that.

Proposition 3.1.6. Let G be a graph such that V pGq ‰ H and IOpGq “ H. The graph G is
indecomposable if, and only if, LpGq “ H and for any x, y P V pGq, there exists a path from x to
y in G.

Proof. First notice that if |V pGq| “ 1 the result trivially holds. In the following, we therefore
assume that |V pGq| ě 2.

Let G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0 ˚O˚` a minimal decomposition of G.
ùñ Note that V pG1q ‰ H. As G is indecomposable, necessarily ` “ 0, V pG0q “ H, and

there exists a permutation τ P Sp such that G0 “ Iq ¨ τ . Therefore, G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ¨ τ .
As G is indecomposable, k “ 1 and V pGq “ V pG1q “ J1. Hence, V pG1q is both a minimal and
the maximal element of OpGq, which is consequently reduced to the singleton tV pGqu. Therefore,
for any x P V pGq, xxy “ V pGq, so for any y P V pGq, there exists a path from x to y in G.
ðù Firstly, note that LpGq “ H ñ ` “ 0. If k ě 2, there is no path in G from any vertex of

G1 to any vertex of G2, so k “ 1. Thus, V pG0q “ H and there exists a permutation τ such that
G0 “ Ip ¨ τ . We obtain that

G “ γ ¨ pG1 ˚ Ipq ¨ τ.

As IOpGq “ H, we obtain that p “ 0, so G “ γ ¨G ¨ τ is indecomposable.

Remark 3.1.3. Another way to formulate the above Proposition is to say that a graph G is
indecomposable if, and only if, one (and only one) of the following conditions holds:

• G “ O.

• G has no loop, is connected and for any of its vertices x, a cycle of strictly positive length
goes through x.

3.2 Freeness of Grœ

We now state and give a sketch of the proof of one of the main results of this section, namely
the freeness of the ProP Grœ. To our knowledge, this result is new.

Theorem 3.2.1. Let P be a ProP and φ : Grœ
ind ÝÑ P be a morphism of S ˆ Sop-modules.

There exists a unique ProP morphism Φ : Grœ ÝÑ P such that Φ
|Grœ

ind
“ φ. In other words,

Grœ is the free ProP generated by Grœ
ind.

Proof. We provide here a sketch of the proof, and refer the reader to Appendix C.1 for a full
proof. We define ΦpGq for any graph G by induction on its number n of vertices. If n “ 0, there
exists a permutation σ P Sk such that G “ σ ¨ Ik. We set

ΦpGq “ σ ¨ Ik.

If n ą 0 and G is indecomposable, we set ΦpGq “ φpGq. Otherwise, let

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0 ˚O˚`

be a minimal decomposition of G. As V pG1q ‰ H, |V pG0q| ă n, we set:

ΦpGq “ γ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0q ˚ φpOq˚`.

One can prove that this does not depend on the choice of the minimal decomposition of G with
the help of the ProP axioms applied to P . Using minimal decompositions of vertical or horizontal
concatenations of graphs, one can show that Φ is compatible with both concatenations.
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3.3 Cycleless graphs

Definition 3.3.1. For any k, l P N0, we denote by GrÒpk, lq the subspace of Grœpk, lq generated
by the graphs which do not contain any cycle nor any loop. Note that GrÒ is a SˆSop-sub-module
of Grœ.

As before, we write GrÒind for the set of indecomposable cycleless and loopless graphs in GrÒ.

A simple yet important observation is the following.

Proposition 3.3.2. GrÒ is a sub-ProP of Grœ.

Proof. First, notice that I0 and I1 are in GrÒ. Let us check the stability of GrÒ under the
horizontal and vertical concatenation.

Let G1, G2 be two graphs without cycle. By construction, there is no edge e of G1 ˚G2 such
that speq P V pG1q and tpeq P V pG2q, or such that speq P V pG2q and tpeq P V pG1q. So a cycle in
G1 ˚G2 is a cycle in G1 or G2. Thus GrÒ is stable by horizontal concatenation.

Similarly, let G1, G2 be two graphs without cycle such that G1 ˝ G2 is defined. Then using
the same argument, a cycle of G1 ˝ G2 must either be a cycle of G1, a cycle of G2 (both being
contradictions) or contain an edge e such that speq P V pG1q and tpeq P V pG2q. This contradicts
the definition of ˝ for graphs.

In this particular example, we recover the description of a free ProP in terms of oriented
graphs [Val03, Val09]:

Proposition 3.3.3. For any k, l P N0, we denote by Gk,l the graph such that:

V pGk,lq “ t‹u, IpGk,lq “ rks, IOpGk,lq “ H,

EpGk,lq “ H, OpGk,lq “ rls LpGk,lq “ H.

For any i P rks, for any j P rls:

αpiq “ i, βpjq “ j,

tpiq “ ‹, spjq “ ‹.

These graphs generate a trivial S ˆ Sop-module GrÒind, and GrÒ is the free ProP generated by
GrÒind.

Graphically, Gk,l is represented as follows:
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Proof. For any permutations σ P Sl, τ P Sk, σ ¨ Gk,l ¨ τ is isomorphic to Gk,l, through the
isomorphism defined by:

fV “ Idt‹u, fI “ τ´1, fO “ σ.

so indeed these graphs generate a trivial SˆSop-module.
Since sub-graphs of a graph without cycle, are without cycle, the following is an easy conse-

quence of Proposition 3.1.5.
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Lemma 3.3.4. Let G be a graph without cycle and without loop, such that V pGq ‰ H, then a
minimal decomposition

G « γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0

yields a decomposition without cycles. Note that, as G has no loop, ` “ 0.

Let G be an indecomposable graph without cycle nor loop and let us assume that V pGq ě
2. Let x ‰ y in V pGq. As G is indecomposable, by Proposition 3.1.6, there exists a path
pe1, . . . , ekq from x to y in G and a path pf1, . . . , flq from y to x in G. Hence, there exists a cycle
pe1, . . . , ek, f1, . . . , flq in G: this is a contradiction. We obtain that V pGq is reduced to a single
element. As IOpGq “ LpGq “ H, G “ GipGq,opGq. This gives:

GrÒ XGrœ
ind “ GrÒind.

As Grœ is the free ProP generated by Grœ
ind, for any S ˆ Sop-sub-module P of Grœ

ind, the
sub-ProP of Grœ generated by P is freely generated by P . This holds in particular for GrÒind.
It remains to prove that the sub-ProP xGrÒindy generated by GrÒind is GrÒ.

Clearly, if G and G1 are graphs without cycles, then G ˚ G1 and G ˝ G1 are without cycles,
so GrÒ is a sub-ProP of Grœ, which contains GrÒind. Consequently, xGrÒindy Ď GrÒ. Conversely,
let G be a graph without cycle and let us prove that G P xGrÒindy by induction on n “ |V pGq|.
If n “ 0, then G “ σ ¨ Ik for a certain permutation σ P Sk, so G belongs to xGrÒindy. Otherwise,
let us consider a minimal decomposition of G in Grc (see Lemma 3.3.4):

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0.

Since G1, . . . , Gk are indecomposable, they lie in GrÒind. Since k ě 1 and V pGiq ‰ H we have
G0 P xGrÒindy by the induction hypothesis, so G P xGrÒindy.

Remark 3.3.1. One can also work with graphs with various types of edges: each edge e (internal,
input, output or input-output) of the graph under consideration has a type typepeq, chosen in
a fixed set of types T . The horizontal composition of two graphs G and G1 exists in any case,
whereas their vertical concatenation exists if, and only if, for any i P ropGqs, the type of the
output edge β´1piq of G and the type of the input edge α´1piq of G1 are the same. One obtains
a T -coloured ProP, and one can prove similarly a freeness result. Restricting to typed graphs
without cycles, we obtain a free T -coloured ProP generated by graphs with only one vertex (and
no input-output edge).

3.4 Planar graphs and free ProPs

We recall from Definition 1.3.1 that s : EpGq \ OpGq ÝÑ V pGq stands for the source map and
t : EpGq \ IpGq ÝÑ V pGq stands for the target map.

Definition 3.4.1. Let G be a graph and v P EpGq be a vertex of G. We put:

Ipvq “ te P IpGq \ EpGq, tpeq “ vu,

Opvq “ te P OpGq \ EpGq, speq “ vu.

We also set ipvq “ |Ipvq| and opvq “ |Opvq|.

The number ipvq (resp. opvq) counts the number of input (resp. output) edges and ingoing
(resp. outgoing) arrows at the vertex v.

Definition 3.4.2. A planar graph is a graph G such that, for any vertex v P V pGq, Ipvq and
Opvq are totally ordered. The set of planar graphs is denoted by PGrœ and the set of planar
graphs with no cycle and no loop is denoted by PGrÒ. The set of planar graphs G (resp. of
planar graphs G with no cycle and no loop) with |IpGq|` |IOpGq| “ k and rOpGq|` |IOpGq| “ l
is denoted by PGrœpk, lq (resp. by PGrÒpk, lq).
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Graphically, we shall represent the orders on the incoming and outgoing edges of a vertex
by drawing the vertices by boxes, the incoming and outgoing edges of any vertex being ordered
from left to right. For example, we distinguish the two following situations:

Remark 3.4.1. This notion of planarity is not the usual one used in graph theory, as we authorise
crossings of edges.

Since a planar graph is a graph, the horizontal and vertical concatenation of planar graphs
are defined by the concatenations of the underlying graphs, which preserve the orders around
each of the vertices. It is a simple exercise to check that PGrœ is still a S ˆSop-module and
we left it to the reader. Hence, PGrœ inherits a ProP structure from Grœ. As before, PGrÒ is
a sub-ProP of PGrœ.

We shall say that a planar graph is indecomposable if the underlying graph is indecomposable.
The set PGrœ

ind of indecomposable planar graphs forms a S ˆ Sop-module. We then obtain a
minimal decomposition of planar graphs similar to the one of Proposition 3.1.5. For any k, l P N,
we denote by PGk,l the planar graph obtained from Gk,l by ordering the sets rks and rls of
incoming and outgoing edges of the unique vertex ‹ by their usual orders. We obtain the planar
counterpart of Theorem 3.2.1.

Theorem 3.4.3. 1. Let P be a ProP and φ : PGrœ
ind ÝÑ P be a morphism of S ˆ Sop-

modules. There exists a unique ProP morphism Φ : Grœ ÝÑ P such that Φ
|PGrœ

ind
“ φ.

In other words, PGrœ is the free ProP generated by PGrœ
ind.

2. The planar graphs PGk,l generate a free S ˆ Sop-module PGrÒind, and PGrÒ is the free
ProP generated by PGrÒind.

4 Graphs decorated by ProPs and endofunctors of ProPs

This section is motivated by Feynman graphs, in which case the decorations are distribution
kernels. Since we expect to be able to equip the later with a ProP structure, we study here
graphs decorated by ProPs. The results of Section 3 then allow us to build a endofunctor ΓÒ on
the category of ProPs.

4.1 The ProP GrœpXq of decorated graphs as a free ProP

Throughout this paragraph, X “ pXk,lqk,lě0 is a family of sets.

Definition 4.1.1. A graph decorated by X (or X-decorated graph, or simply decorated graph)
is a couple pG, dGq with G a graph as in Definition 1.3.1 and dG : V pGq ÝÑ

ğ

k,lPN0

Xk,l a map,

such that for any vertex v P V pGq, dGpvq P Xipvq,opvq. We denote by GrœpXq (resp. GrÒpXq) the
set of graphs (resp. the set of cycleless graphs) decorated by X. We define similarly X-decorated
planar graphs and we denote by PGrœpXq (resp. PGrÒpXq) the set of planar graphs (resp. the
set of cycleless planar graphs) decorated by X.

Most of the results on graphs naturally generalise to X-decorated graphs. In particular, we
have the horizontal (resp. vertical) concatenation of graphs, denoted by ˚ (resp. ˝):

pG, dGq ˚ pG
1, dG1q “ pG ˚G

1, dG˚G1q, pG, dGq ˝ pG
1, dG1q “ pG ˝G

1, dG˝G1q.
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The set of vertices of G ˚ G1 and G1 ˝ G1 both being the disjoint union V pGq \ V pG1q of the
vertices of G and G1, we define dG˚G1 “ dG˝G1 on the set V pGq Y V pG1q by dG˚G1 |V pGq :“ dG,
dG˚G1 |V pG1q :“ dG1 .

Furthermore, the actions on the left and on the right of the permutation group on Grœ

extend to actions on GrœpXq since the aforementioned actions leave the set of vertices of a
graph invariant. Here are the decorated and cycleless versions of Theorem 1.3.3, which to our
knowledge is new:

Theorem 4.1.2. The families GrœpXq and PGrœpXq, equipped the above SˆSop-action and
the above horizontal and vertical concatenations, are ProPs. The family GrÒpXq is a sub-ProP
of GrœpXq and the family PGrÒpXq is a sub-ProP of PGrœpXq.

Proposition 3.1.5 generalises to the case of decorated graphs.

Proposition 4.1.3. Let pG, dGq be an X-decorated graph such that V pGq ‰ H. We denote by
J1, . . . , Jk the minimal elements (for the inclusion) of OpGq. As before, we set Gi “ G̃|Ji and
di “ dG|Ji for any i P rks. Then there exists an X-decorated graph pG0, d0q with no loop, integers
p, ` and a permutation γ such that:

pG, dGq « γ ¨ ppG1, d1q ˚ . . . ˚ pGk, dkq ˚ Ipq ˝ pG0, d0q ˚O˚`.

As in the non decorated case, we call such a decomposition minimal.

Proof. By Proposition 3.1.5, G admits a minimal decomposition

G « γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0 ˚O˚`.

We observe that we can identify the vertices of G0 with those of GzpG1 \ ¨ ¨ ¨ \ Gkq. We can
therefore set d0 :“ dG|V pGqzpV pG1q\¨¨¨\V pGkqq

. The result then follows from the definition of the
actions of the permutation group on GrœpXq using the horizontal and vertical concatenations.

As in the non decorated case, we denote by Grœ
indpXq (resp. GrÒindpXq) the indecomposable

graphs (resp. the cycleless indecomposable graphs) decorated by X. Notice that the graphs
pGi, diq; for i P rks, are indecomposable. We define PGrœ

indpXq and PGrÒindpXq similarly.
The key result of this paragraph is the decorated version of the universal property (Theorem

3.2.1).

Theorem 4.1.4. 1. Let P be a ProP and φ : Grœ
indpXq ÝÑ P be a morphism of S ˆ Sop-

modules. There exists a unique ProP morphism Φ : GrœpXq ÝÑ P such that Φ
|Grœ

indpXq
“

φ. In other words, GrœpXq is the free ProP generated by the SˆSop-module Grœ
indpXq.

Furthermore, GrÒpXq is the free ProP generated by the SˆSop-module GrÒindpXq, which
is isomorphic to the trivial SˆSop-module generated by X.

2. Let P be a ProP and φ : PGrœ
indpXq ÝÑ P be a morphism of S ˆ Sop-modules. There

exists a unique ProP morphism Φ : PGrœpXq ÝÑ P such that Φ
|PGrœ

indpXq
“ φ. In other

words, PGrœpXq is the free ProP generated by the SˆSop-module PGrœ
indpXq.

Furthermore, PGrÒpXq is the free ProP generated by the S ˆ Sop-module PGrÒindpXq
generated by X, which is isomorphic to the free SˆSop-module generated by X.

Remark 4.1.1. 1. This result generalises Theorem 3.2.1 and Proposition 3.3.3. However, it is
not a direct consequence of these previous results. Given G P Grœ, dG, d1G : V pGq ÝÑ X
two decoration maps of G, we a priori have ΦpG, dGq ‰ ΦpG, d1Gq.
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2. The S ˆ Sop-modules GrÒindpXq and PGrÒindpXq differ from one another in so far as for
any k, l P N0, GrÒindpk, lq is a trivial Sl b Sop

k -module, whereas PGrÒindpk, lq is a free
Sl bSop

k -module. They are both generated by Xk,l.

Proof. The proofs of Theorem 3.2.1 and Proposition 3.3.3 can be reproduced in extenso in the
decorated setup, simply replacing graphs by decorated graphs and using the decorated version of
the minimal decomposition and will therefore not reproduce it here. Let us however notice that

• the transformation of type A arising in the proof of Theorem 3.2.1 only concerns indexation
of edges. As such, it easily generalises to decorated graphs.

• the transformation of type B arising in the proof of Theorem 3.2.1 exchanges two sub-
graphs of G. It therefore extends to the decorated case as a transformation exchanging
two decorated graphs. The rest of the proof of Theorem 3.2.1 remains unchanged.

• the cycleless indecomposable graphs are still in the decorated case the graphs with exactly
one vertex, since the decorations play no role in the definition of indecomposable.

• the rest of the proof of 3.3.3 also generalises in a straightforward manner to the decorated
case.

4.2 An endofunctor of the category of SˆSop-modules

We now assume that the family X “ pXk,lqk,lPN0 is a S ˆ Sop-module. We define another
SˆSop-module ΓœpXq on graphs, taking into account this module structure.

Let G P PGrœ. As G is a planar graph, the sets Ipvq and Opvq are canonically identified
with ripvqs and ropvqs thanks to their total orders.

For any vertex v P V pGq, there is a natural action of SopvqˆSop
ipvq, obtained by acting on the

total orders of Opvq and Ipvq. The graph obtained from G by the action of pσ, τq on the vertex
v is denoted by

σ ¨v G ¨v τ.

For example:

p12q¨v

v

w

“

v

w

¨wp12q “

v

w

.

Let G P PGrœpk, lq and X a SˆSop-module. We define

GpXq “
â

vPXpGq

Xpipvq, opvqq.

The elements of GpP q will be written as linear spans of tensors
â

vPV pGq

xv.

In other words, we decorate any vertex of G by an element of X, with respect to the number of
incoming and outgoing edges of v, and we take these decorations to be linear in each vertex.

Let
PGrœpXqpk, lq :“

à

GPPGrœpk,lq

CGbGpXq,

whose elements are linear spans of tensors

Gb

˜

â

vPV pGq

xv

¸

.
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Remark 4.2.1. Graphically, this element of PGrœpXqpk, lq is represented by the planar graph G
where each vertex v P V pGq is decorated by xv.

PGrœpXqpk, lq is a Sl ˆSop
k -module, by the action on the indexation of the incoming and

outgoing edges of the graphs.
Let Ipk, lq be the Sl ˆSop

k -submodule of PGrœpXqpk, lq generated by elements of the form

σ ¨v0 G ¨v0 τ b

˜

â

vPV pGq

xv

¸

´Gb

˜˜

â

vPV pGqztv0u

xv

¸

b σ ¨ xv0 ¨ τ

¸

, (9)

where G P PGrœpk, lq, v0 P V pGq, σ P Sopv0q and τ P Sipv0q. We further define

ΓœpXqpk, lq :“
PGrœpXqpk, lq

Ipk, lq
.

Here is the type of relations we obtain graphically:

x

y

1 2 3

1 2

“

p12q ¨ x

y

1 2 3

1 2

“

x

y ¨ p12q

1 2 3

1 2

“

p12q ¨ x

y ¨ p12q

1 2 3

1 2

,

x ¨ p12q

y

1 2 3

1 2

“

x

y

2 1 3

1 2

,

x

p12q ¨ y

1 2 3

1 2

“

x

y

2 1 3

2 1

,

where x P X3,2 and y P X2,2.

Example 4.2.1. Let us assume that X is a trivial S ˆ Sop-module: for any k, l P N0, for any
x P Xk,l, for any pσ, τq P SlˆSl, σ ¨ x ¨ τ “ x. The relations defining ΓœpXq which boil down to

σ ¨v0 G ¨v0 τ b

˜

â

vPV pGq

xv

¸

´Gb

˜

â

vPV pGq

xv

¸

, (10)

amount to the identification of two planar X-decorated graphs with the same underlying X-
decorated graph. In this case we recover the SˆSop-module GrœpXq.

More generally, according to the relations defining ΓœpXq, if for any graph G, we choose a
planar graph G, the underlying graph of which is some G P GrœpXqpk, lq, then the set of graphs
GpXqpk, lq is a basis of ΓœpXqpk, lq. As there is no canonical way to choose the graphs G, we
prefer to consider ΓœpXq as a quotient of PGrœpXq.

Alongside the category ProP introduced in Definition 1.1.3, we now introduce a second
category.

Definition 4.2.1. Let ModS denote the category of S ˆSop-modules: its objects are families
P “ pP pk, lqqpk,lqPN2

0
, where for any pk, lq P N2

0, P pk, lq is a Sl b Sop
k -module; a morphism

φ : P ÝÑ Q is a family pφk,lqpk,lqPN2, where for any pk, lq P N2
0, φk,l : P pk, lq ÝÑ Qpk, lq is a

morphism of Sl bSop
k -modules.

To aSˆSop-moduleX inModS we have assigned anotherSˆSop-module ΓœpP q inModS.
One easily checks that a morphism ϕ : P ÝÑ Q of S ˆ Sop-modules induces a morphism of
SˆSop-modules

Γœpϕq : ΓœpP q ÝÑ ΓœpQq

defined by pull-back on the decorations of the vertices of the graphs:

ΓœpϕqpG, dGq :“ pG,ϕ ˝ dGq. (11)

In summary, we have proven the following
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Proposition 4.2.2. The map Γœ : ModS ÝÑ ModS defines an endofunctor of the category
ModS.

Moreover, for any SˆSop-module, ΓœpXq is a ProP:

Theorem 4.2.3. Let X be a SˆSop-module. The vertical and horizontal concatenations of the
ProP PGrœpXq induce a ProP structure on ΓœpXq.

Proof. We have to prove that if P P I and H P PGrœpXq, then P ˚H, H ˚P , H ˝P and P ˝H
(if these vertical concatenations are possible) belong to I. We can restrict ourselves to the case
P “ G´G1, where G is a X-decorated planar graph and G1 is obtained from G by the action of
two permutations on a vertex v of G. It is then immediate that G1 ˚H is obtained from G ˚H
by the action of two permutations on a vertex v of G ˚H, so that G ˚H ´G1 ˚H “ P ˚H P I.
Similarly, H ˚ P P I, and H ˝ P and P ˝ H belong to I if these vertical concatenations are
possible. So Γœ inherits a structure of ProP from the structure of PGrœ.

Definition 4.2.4. For any SˆSop-module X, the ProP ΓÒpXq is defined by

ΓÒpXq “
PGrÒpXq

I XPGrÒpXq
.

As PGrÒpXq is a sub-ProP of PGrœpXq, ΓÒpXq is a sub-ProP of ΓœpXq.

Example 4.2.2. As in Example 4.2.1, if X is a trivial S ˆ Sop module, we recover the ProP
GrÒpXq.

We have seen (Theorem 4.2.3) that for any S ˆSop-module, ΓœpXq has a ProP structure,
and that the same holds for ΓÒpXq. We can then lift ΓœpXq and ΓÒpXq to functors between
these categories:

Proposition 4.2.5. The maps Γœ : ModS ÝÑ ProP and ΓÒ : ModS ÝÑ ProP define
functors from the category ModS to the category ProP of ProPs.

Proof. Let X and Y be two SˆSop-modules and ϕ : X ÝÑ Y a morphism of SˆSop-modules
and let PGrœpϕq : PGrœpP q ÝÑ PGrœpQq be its pullback defined by

PGrœpϕqpG, dGq :“ pG,ϕ ˝ dGq (12)

for any G P PGrœpP q. As the structure of ProP of ΓœpXq is combinatorially given by disjoint
union and grafting of graphs, PGrœpϕq clearly defines a morphism of ProPs from PGrœpXq to
PGrœpY q. As ϕ is a morphism of S ˆ Sop-modules, it follows that PGrœpϕq sends the ideal
defining ΓœpXq to the ideal defining ΓœpY q, hence it induces a morphism Γœpϕq : ΓœpXq ÝÑ
ΓœpY q of ProPs. A similar proof holds for ΓÒ.

4.3 The ProP ΓÒpP q of graphs decorated by another ProP

The ProPs ΓÒpXq satisfy a universal property:

Theorem 4.3.1. Let X be a S ˆ Sop-module, P a ProP and ϕ : X ÝÑ P a morphism of
S ˆSop-modules. There exists a unique morphism of ProPs Φ : ΓÒpXq ÝÑ P , extending ϕ so
that the following diagramme commutes:

X

ι
��

ϕ // P

ΓÒpXq

Φ

<<yyyyyyyy

where ι : X ãÑ ΓÒpXq is the map that sends an element x of X to the X-decorated graph
Gpxq “ pGk,l, dq with d sending the unique vertex of Gk,l to x.

In other words, ΓÒpXq is the free ProP generated by the SˆSop-module X.
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Proof. Uniqueness. As a quotient of PGrÒindpXq, the ProP ΓÒpXq is generated by graphs with
only one vertex v, decorated by an element ofX respecting ipvq and opvq. Hence, such a morphism
Φ is unique.

Existence. As PGrÒindpXq is the free ProP generated by the space X, for any linear map
ϕ : X ÝÑ P , there exists a unique morphism of TraPs Φ : PGrÒindpXq ÝÑ P , extending ϕ. If ϕ
is a morphism of SˆSop-modules, that any element of the form (9) belongs to the kernel of Φ,
thanks to the compatibility of the concatenation products of P and the action of the symmetric
groups. so Φ induces a morphism Φ : ΓÒpXq ÝÑ P .

Corollary 4.3.2. Given a ProP P , there is a canonical morphism of ProPs

αP : ΓÒpP q ÝÑ P

induced by the decoration.

Proof. This is a straightfoward consequence of Theorem 4.3.1, with ϕ “ IdP .

Example 4.3.1. Let p P P p3, 2q and q P P p2, 2q. The four following graphs (which are equal in
ΓÒpP q)

p

q

1 2 3

1 2

p12q ¨ p

q

1 2 3

1 2

p

q ¨ p12q

1 2 3

1 2

p12q ¨ p

q ¨ p12q

1 2 3

1 2

are respectively sent to

q ˝ p, pq ¨ p12qq ˝ pp12q ¨ pq, pq ¨ p12qq ˝ pp12q ¨ pq, pq ¨ p12qq ˝ pp12q ¨ pq,

which are equal in P . The two following graphs (which are equal in ΓÒpP q)

p ¨ p12q

q

1 2 3

1 2

p

q

2 1 3

1 2

are respectively sent to

q ˝ pp ¨ p12qq, pq ˝ pq ¨ p12q,
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coincide in P . The two following graphs (which are equal in ΓÒpP q)

p

p12q ¨ q

1 2 3

1 2

p

q

2 1 3

2 1

are respectively sent to

pp12q ¨ qq ˝ p, p12q ¨ pq ˝ pq,

which are equal in P .

Recall from Definition 1.1.1 that a ProP is a SˆSop-module. Composing with the forgetful
functor F : ProP ÝÑModS endofunctors Γœ ˝ F and ΓÒ ˝ F of the category ProP, which we
denote also by Γœ and ΓÒ with a slight abuse of notations.

Proposition 4.3.3. The maps αP defined in Corollary 4.3.2 give a natural transformation from
the identity endofunctor of ProP to the endofunctor ΓÒ, that is to say, for any morphism ϕ :
P ÝÑ Q of ProPs, the following diagram commutes:

ΓÒpP q
ΓÒpϕq //

αP

��

ΓÒpQq

αQ

��
P ϕ

// Q

Proof. Since ΓÒpϕq, αP , αQ and ϕ are morphisms of ProPs, αQ˝ΓÒpϕq and ϕ˝αP are morphisms
of ProPs. As ΓÒpP q is generated by classes of graphs with only one vertex, it is enough to prove
that αQ˝ΓÒpϕq and ϕ˝αP coincide on such graphs. Let us consider the planar graph Gp “ PGk,l,
with its unique vertex decorated by p P P pk, lq. Then, if Gp is the class of Gp in ΓÒpXq:

αQ ˝ ΓÒpϕqpGpq “ αQpGϕppqq “ ϕppq “ ϕ ˝ αP pGpq.

So αQ ˝ ΓÒpϕq “ ϕ ˝ αP .

4.4 The case of Homc
V

Specialising the results of the previous Subsection to Q :“ Homc
V for some Fréchet nuclear

topological vector space V leads us to algebras over ProPs, see e.g. [Mar08].

Definition 4.4.1. A Fréchet nuclear topological vector space V is an algebra over a ProP P or
a P -algebra if there is a representation

ϕ : P ÝÑ Homc
V ,

of the ProP P on the vector space V i.e. if ϕ is a morphism of ProPs.

Remark 4.4.1. In the literature of ProPs, the HomV ProP consists of the algebraic counterpart
of our HomV

c.
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Remark 4.4.2. Algebras over ProPs arise in Segal’s axiomatic approach to conformal field theory
(CFT) [ABM`01], by which a CFT is viewed as an algebra over the Segal ProP. A CFT is viewed
as as an algebra over the Segal ProP in [Ion07a], where the author claims that Feynman rules
of a given QFT, may be presented functorially as an algebra over the corresponding Feynman
ProP.

Applying Corollary 4.3.2 to P “ Homc
V and ϕ “ Id|Homc

V
yields:

Corollary 4.4.2. A topological vector space V has a canonical algebra structure over ΓÒpHomc
V q

given by the canonical morphism of ProP

αV : ΓÒpHomc
V q ÝÑ Homc

V .

Proposition 4.3.3 applied to Q “ Homc
V yields the following statement.

Corollary 4.4.3. Let P be a ProP and V an algebra over P given by a ProP-morphism
ϕ : P ÝÑ Homc

V . Then V also canonically has the structure of an algebra over ΓÒpP q given by
the map αV ˝ ΓÒpϕq “ ϕ ˝ αP .

5 Traces and Permutations (TraPs)

This section is dedicated to TraPs, the other main protagonist of the paper. As for ProP, the
main objects of interests in the category of TraP will be the TraP of graphs Grœ together with
its variants and the TraP Homc

V of continuous morphisms on a Fréchet nuclear space V .

5.1 The category of TraPs

Definition 5.1.1. A TraP is a family pP pk, lqqk,lě0 of vector spaces, equipped with the following
structures:

1. For any k, l P N0, P pk, lq is a Sl bSop
k -module.

2. For any k, l, k1, l1 P N0, there is a map

˚ :

"

P pk, lq b P pk1, l1q ÝÑ P pk ` k1, l ` l1q
pb p1 ÝÑ p ˚ p1,

called the horizontal concatenation, such that:

(a) (Associativity). For any pk, l, k1, l1, k2, l2q P N6
0, for any pp, p

1, p2q P P pk, lqˆP pk1, l1qˆ
P pk2, l2q,

pp ˚ p1q ˚ p2 “ p ˚ pp1 ˚ p2q.

(b) (Unity). There exists I0 P P p0, 0q such that for any pk, lq P N2
0, for any p P P pk, lq,

I0 ˚ p “ p ˚ I0 “ p.

(c) (Compatibility with the symmetric actions). For any pk, l, k1, l1q P N4
0, for any pp, p

1q P

P pk, lq ˆ P pk1, l1q, for any pσ, τ, σ1, τ 1q P Sl ˆSk ˆSl1 ˆSk1 ,

pσ ¨ p ¨ τq ˚ pσ1 ¨ p1 ¨ τ 1q “ pσ b σ1q ¨ pp ˚ p1q ¨ pτ b τ 1q.

(d) (Commutativity). For any pk, , k1, l1q P N4
0, For any p P P pk, lq, p1 P P pk1, l1q,

cl,l1 ¨ pp ˚ p
1q “ pp1 ˚ pq ¨ ck,k1 ,

where ck,k1 and cl,l1 are defined by (2).
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3. For any k, l ě 1, for any i P rks, j P rls, there is a map

ti,j :

"

P pk, lq ÝÑ P pk ´ 1, l ´ 1q
p ÝÑ ti,jppq,

(13)

called the partial trace map, such that:

(a) (Commutativity). For any k, l ě 2, for any i P rks, j P rls, i1 P rk ´ 1s, j1 P rl ´ 1s,

ti1,j1 ˝ ti,j “

$

’

’

’

’

&

’

’

’

’

%

ti´1,j´1 ˝ ti1,j1 if i1 ă i, j1 ă j,

ti,j´1 ˝ ti1`1,j1 if i1 ě i, j1 ă j,

ti´1,j ˝ ti1,j1`1 if i1 ă i, j1 ě j,

ti,j ˝ ti1`1,j1`1 if i1 ě i, j1 ě j.

(b) (Compatibility with the symmetric actions). For any k, l ě 1, for any i P rks, j P rls,
σ P Sl, τ P Sk, for any p P P pk, lq,

ti,jpσ ¨ p ¨ τq “ σj ¨ ptτpiq,σ´1pjqppqq ¨ τi,

with the following notation: if α P Sn and p P rns, then αp P Sn´1 is defined by

αppkq “

$

’

’

’

’

&

’

’

’

’

%

αpkq if k ă α´1ppq and αpkq ă p,

αpkq ´ 1 if k ă α´1ppq and αpkq ą p,

αpk ` 1q if k ě α´1ppq and αpkq ă p,

αpk ` 1q ´ 1 if k ě α´1ppq and αpkq ą p.

(14)

In other words, if we represent α by a word α1 . . . αn, then αp is represented by the
word obtained by suppression of the letter p in α1 . . . αn and subtraction of 1 to all the
letters ą p.

(c) (Compatibility with the horizontal concatenation). For any k, l, k1, l1 ě 1, for any
i P rk ` ls, j P rk1 ` l1s, for any p P P pk, lq, p1 P P pk1, l1q:

ti,jpp ˚ p
1q “

#

ti,jppq ˚ p
1 if i ď k, j ď l,

p ˚ ti´k,j´lpp
1q if i ą k, j ą l.

(d) (Unit). There exists I P P p1, 1q such that for any k, l ě 1, for any i P rk ` 1s,
j P rl ` 1s, for any p P P pk, lq:

t1,jpI ˚ pq “ p1, 2, . . . , j ´ 1q ¨ p if j ě 2,

ti,1pI ˚ pq “ p ¨ p1, 2, . . . , i´ 1q´1 if i ě 2,

tk`1,jpp ˚ Iq “ pj, j ` 1, . . . , lq´1 ¨ p if j ď l,

ti,l`1pp ˚ Iq “ p ¨ pi, i` 1, . . . , kq if i ď k.

Remark 5.1.1. 1. We do not require that t1,1pIq “ I0, hence the terminology partial trace
map.

2. By commutativity of ˚, for any p P P p0, 0q, for any pk, lq P N2
0, for any p1 P P pk, lq:

p ˚ p1 “ p1 ˚ p,

since c0,k “ Idrks.
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Remark 5.1.2. Our notion of TraP is an axiomatised version of Merkulov’s notion of wheeled
ProPs introduced in [Mer06]. The link between TraPs and wheeled ProPs will be made in
Section 7.1 , Corollary 7.1.3.

Our approach mainly differs from Merkulov’s categorical approach in that it comprises units.
Units of wheeled ProPs are mentioned in [Mer10b, Remark 2.3.1] but their axioms are not
explicitly written down in the literature. Our axiomatic approach is tailored to address analytic
issues regarding products of singularities. This axiomatic approach allows us to give a simple
definition of quasi-TraPs in Section 7.3, a notion that seem absent in previous works on wheeled
ProPs. However, the categorical approach seems better suited for classification problems, e.g.
regarding the solutions of the master equation in the BV formalism [MMS09, Mer10b].

Lemma 5.1.2. Let P “ pP pk, lqqk,lPN0 be a SbSop-module, equipped with a horizontal concate-
nation ˚ satisfying axioms 2. (a)-(d), and with maps ti,j satisfying axioms 3. (a)-(b).

1. We assume that for any k, l, k1, l1 ě 1, for any p P P pk, lq, p1 P P pk1, l1q,

t1,1pp ˚ p
1q “ t1,1ppq ˚ p

1.

Then axiom 3.(c) is satisfied.

2. We assume for for any k, l ě 1, for any p P P pk, lq,

t1,2pI ˚ pq “ p.

Then axiom 3.(d) is satisfied.

Proof. 1. Let p P P pk, lq and p1 P P pk1, l1q. Let us take i P rk ` ls, j P rk1 ` l1s, consider the
transpositions σ “ p1, jq and τ “ p1, iq, with the convention p1, 1q “ Id. If i ď k and j ď l, then:

ti,jpp ˚ p
1q “ ti,jpσ

2 ¨ pp ˚ p1q ¨ τ2q

“ σj ¨ t1,1pσ ¨ pp ˚ p
1q ¨ τq ¨ τi

“ σj ¨ pt1,1ppσ ¨ p ¨ τq ˚ p
1q ¨ τi

“ σj ¨ pt1,1pσ ¨ p ¨ τq ˚ p
1q ¨ τi

“ pσj ¨ pt1,1pσ ¨ p ¨ τq ¨ τiq ˚ p
1

“ ti,jppq ˚ p
1.

If i ą k and j ą l, using c´1
m,n “ cn,m:

ti,jpp ˚ p
1q “ ti,jpcl1,l ¨ pp

1 ˚ pq ¨ ck,k1q

“ pcl1,lqj ¨ ti´k,j´lpp
1 ˚ pq ¨ pck,k1qi

“ cl1´1,l ¨ pti´k,j´lpp
1q ˚ pq ¨ ck,k1´1

“ p ˚ ti´k,j´lpp
1q.

2. Let us take j ě 2.

t1,jpI ˚ pq “ t1,jpp2, jq
2 ¨ pI ˚ pqq

“ p2, . . . , j ´ 1q ¨ t1,2pp2, jq ¨ pI ˚ pqq

“ p2, . . . , j ´ 1q ¨ t1,2pI ˚ p1, j ´ 1q ¨ pqq

“ p2, . . . , j ´ 1q ¨ pp1, j ´ 1q ¨ pq

“ p2, . . . , j ´ 1qp1, j ´ 1q ¨ p

“ p1, . . . , j ´ 1q ¨ p.

The three other relations are proved in the same way.
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Definition 5.1.3. Let P “ pP pk, lqqk,lě0 and Q “ pQpk, lqqk,lě0 be two TraPs with partial trace
maps ptPi,jqi,jě0 and ptQi,jqi,jě0 respectively. A morphism of TraPs is a family φ “ pφk,lqk,lě0

of linear maps φk,l : P pk, lq ÞÑ Qpk, lq which are morphism for the horizontal concatenation, the
actions of the symmetric groups and the partial trace maps. More precisely, for any pk, l,m, nq P
N4

0:

• @pp, qq P P pk, lq ˆ P pn,mq, φk`n,l`mpp ˚ qq “ φk,lppq ˚ φn,mpqq,

• @pσ, pq P Sl ˆ P pk, lq, φk,lpσ.pq “ σ.φk,lppq,

• @pp, τq P P pk, lq ˆSk, φk,lpp.τq “ φk,lppq.τ .

• @pp, i, jq P P pk, lq ˆ rks ˆ rls, φk´1,l´1pt
P
i,jppqq “ tQi,jpφk,lppqq.

With a slight abuse of notations, we write φppq instead of φk,lppq for p P P pk, lq. In particular,
TraPs form a category, which we denote by TraP.

Remark 5.1.3. The abuse of notation ti,j is legitimate since a full notation such as tk,li,j is not
necessary in practice. Indeed the indices k and l in ti,jppq are entirely determined by p to which
ti,j is applied.

More so, ti,j does not strongly depend on k and l: indeed, let f : P pk, lq ÝÑ P pk ` 1, l ` 1q
be the map that sends p to p ˚ I (for the TraP of linear morphisms, this is the tensorisation by
Id), then for i P rks and j P rls, we have

ti,j ˝ fppq “ f ˝ ti,jppq,

which is the axiom 3.(c).

Lemma 5.1.4. Let P and Q be two TraPs and φ : P ÝÑ Q be a map. We assume that:

1. For any pk, lq P N2
0, for any pσ, τq P Sl ˆSk, for any x P P pk, lq,

φpσ ¨ x ¨ τq “ σ ¨ φpxq ¨ τ.

2. For any k, l ě 1, for any x P P pk, lq,

t1,1 ˝ φpxq “ φ ˝ t1,1pxq.

Then for any k, l ě 1, for any pi, jq P rks ˆ rls, for any x P P pk, lq,

ti,j ˝ φpxq “ φ ˝ ti,jpxq.

Proof. If i P rks, j P rls, and x P P pk, lq:

φ ˝ ti,jpxq “ φ ˝ ti,jpp1, jq
2 ¨ x ¨ p1, iq2q

“ φpp1, jq ¨ t1,1pp1, jq ¨ x ¨ p1, iqq ¨ p1, iqq

“ p1, jq ¨ φ ˝ t1,1pp1, jq ¨ x ¨ p1, iqq ¨ p1, iq

“ p1, jq ¨ t1,1 ˝ φpp1, jq ¨ x ¨ p1, iqq ¨ p1, iq

“ ti,jpp1, jq ¨ φpp1, jq ¨ x ¨ p1, iqq ¨ p1, iqq

“ ti,j ˝ φpxq,

with the convention p1, kq “ Id if k “ 1.

In particular, to show that a collection of linear maps between two TraPs preserving the
horizontal concatenation and the actions of the symmetry group is a morphism of TraP, it is
enough to check the properties of Lemma 5.1.4.

36



5.2 The TraP Homc
V

We start with the TraP version of the ProP of linear morphisms of section 1.2.

Proposition 5.2.1. Let V be a finite dimensional vector space and V ˚ its algebraic dual. Then
for any pk, lq P N2

0:
HomV pk, lq “ HompV bk, V blq » V ˚bk b V bl.

SlbSop
k acts on the ProP HomV as readily described in Proposition-Definition 1.2.1. We shall

make some abuse of notation setting f1 ¨ ¨ ¨ fk :“ f1b¨ ¨ ¨bfk P V
˚bk and v1 ¨ ¨ ¨ vl :“ v1b¨ ¨ ¨bvl P

V l. We equip V ˚bk b V bl with a horizontal concatenation:

pf1 . . . fk b v1 . . . vlq ˚ pf
1
1 . . . f

1
k1 b v

1
1 . . . v

1
l1q “ f1 . . . fkf

1
1 . . . f

1
k1 b v1 . . . vlv

1
1 . . . v

1
l1 ,

and partial trace maps:

ti,jpf1 . . . fk b v1 . . . vlq “ fipvjqf1 . . . fi´1fi`1 . . . fk b v1 . . . vj´1vj`1 . . . vl

(with obvious abuses of notations). These make HomV a TraP.

Proof. Properties 2.(a)-(d) are trivially satisfied, with I0 “ 1 P K “ V b0bV ˚b0. Property 3.(a)
is direct. Let us prove Property 3. (b).

ti,jpσ ¨ f1 . . . fk b v1 . . . vl ¨ τq “ ti,jpfτp1q . . . fτpkq b vσ´1p1q . . . vσ´1plqq

“ fτpiqpvσ´1pjqqfτp1q . . . fτpi´1qfτpi`1q . . . fτpkq

b vσ´1p1q . . . vσ´1pj´1qvσ´1pj`1q . . . vσ´1plq

“ σj ¨ tτpiq,σ´1pjqpf1 . . . fk b v1 . . . vlq ¨ τi.

Property 3.(c) is straightforward. Let us prove property 3.(d) with the help of Lemma 5.1.2. Let
us fix peiqiPI a basis of V , then pe˚i qiPI is a basis of V ˚ and the identity map I “

ř

iPI e
˚
i b ei,

acts as follows, Ipvq “
ř

iPI e
˚
i pvqei “ v for all v P V . Then:

t1,2pI ˚ f1 . . . fk b v1 . . . vlq “
ÿ

iPI

t1,2pe
˚
i f1 . . . fk b eiv1 . . . vlq

“
ÿ

iPI

f1 . . . fk b eie
˚
i pv1qv2 . . . vl

“ f1 . . . fk b Ipv1qv2 . . . vl

“ f1 . . . fk b v1 . . . vl.

So HomV is a TraP.

Remark 5.2.1. In this example of TraP, t1,1pIq “ dimpV q “ dimpV qI0.
In order to generalise this construction to nuclear Fréchet spaces, we need to characterise the

composition of linear morphisms of such spaces.

Lemma 5.2.2. Let E1, E2 be two Fréchet nuclear spaces and E3 a Fréchet space. Then the
composition of continuous morphisms L1 : E1 ÝÑ E2, L2 : E2 ÝÑ E3 amounts to a dual
pairing.

Proof. Let E1, E2, E3 be three topological spaces as in the statement. Then by (4) the identifi-
cations HomcpE1, E2q » E11b̂E2 and HomcpE2, E3q » E12b̂E3 hold. For L1 “

ř

i,j u
1˚
i b u2

j P

HomcpE1, E2q, L2 “
ř

k,l u
2˚
k b u

3
l P HompE2, E3q and u P E1, we have

L2 ˝ L1puq “ L2

˜

ÿ

i,j

u1˚
i puqu

2
j

¸

“
ÿ

k,l

ÿ

i,j

u1˚
i puqu

2˚
k pu

2
j qu

3
l

so that

HomcpE1, E3q Q L2 ˝ L1 “
ÿ

i,l

¨

˝

ÿ

k,j

u2˚
k pu

2
j q

˛

‚u1˚
i b u

3
l P E

˚
1 b̂E3.
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Recall that, for a Fréchet nuclear space V , the ProP pHomc
V pk, lqqk,lě0 introduced in Sub-

section 2.2, Theorem 2.2.5, reads:

Homc
V pk, lq »

`

V 1
˘

pbk
b̂V

pbl.

Proposition 5.2.3. Let V be a Fréchet nuclear space. The family pHomc
V pk, lqqk,lě0 equipped

with the partial trace maps in the sense of (13) defined by

tri,j :

"

Homc
V pk, lq ÝÑ Homc

V pk ´ 1, l ´ 1q
pv˚1 b ¨ ¨ ¨ b v

˚
k q b pw1 b ¨ ¨ ¨ b wlq ÞÝÑ tri,j ppv

˚
1 b ¨ ¨ ¨ b v

˚
k q b pw1 b ¨ ¨ ¨ b wlqq

with tri,j pv
˚
1 b ¨ ¨ ¨ b v

˚
k q b pw1 b ¨ ¨ ¨ b wlq defined as

v˚i pwjq pv
˚
1 b ¨ ¨ ¨ b

xv˚i b ¨ ¨ ¨ b v
˚
k q b pw1 b ¨ ¨ ¨ b xwj b ¨ ¨ ¨ b wlq

for any k, l ě 1, for any i P rks, j P rls, where v˚i pwjq is the dual pairing, defines a TraP, with
the topological tensor product as horizontal concatenation.

Proof. Commutativity follows from the commutativity of the field K, compatibility with the
symmetric actions and compatibility with the horizontal concatenation are shown as for the
ProP Homc

V . The unit is the identity map I P V ˚pbV .

Example 5.2.1. With the notations of Remark 1.2.3, tri,j

´

ř

~I, ~J a
~I
~J
e
~J b e~I

¯

is of the form
ř

~Ii, ~Jj
b
~Ii
~Jj
e
~Jjb

e~Ii , where
~Ii “ pi1, ¨ ¨ ¨ , î, ¨ ¨ ¨ ikq, ~Jj “ pj1, ¨ ¨ ¨ , ĵ, ¨ ¨ ¨ , jlq and b

~Ii
~Jj

corresponds to the trace of the

nˆ n matrix in the pi, jq entries of a~I~J with the other indices frozen.

Example 5.2.2. Let U be an open of Rn. Example 2.1.2 and Equation (7) imply that the family
pKU pk, lqqk,lě0, with KU pk, lq “ pE 1pUqqb̂k b̂ EpUqb̂l defines a TraP.

Example 5.2.3. Let X be a finite dimensional smooth manifold. Proposition 2.2.2 and Equation
(7) imply that the family pKXpk, lqqk,lě0, with KXpk, lq “ pE 1pXqqb̂k b̂ EpXqb̂l defines a TraP.

5.3 The TraP Grœ of graphs

We now equip graphs and planar graphs with a TraP structure. We have already equipped Grœ

and PGrœ with a structure of SˆSop-modules and a horizontal concatenation, which we leave
untouched. Let us now define partial trace maps. Let G P Grœpk, lq, 1 ď i ď k and 1 ď j ď l.
We set ei “ α´1

G piq, fj “ β´1
G pjq and define ti,jpGq as the graph obtained by identifying the input

of ei with the output j of fj . If ei P IpGq and fj P OpGq, this creates an edge in EpGq. This
case is illustrated in the figure below. Otherwise, we create an edge in IpGq, or OpGq or IOpGq
or in LpGq. In all these cases, we then reindex increasingly the inputs and the outputs of the
obtained graph.

Graphically:
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G

1 i k

. . . . . .

1 j l

. . . . . .

ti,j
ÝÑ G

1 k ´ 1

. . . . . .

1 l ´ 1

. . . . . .

A more rigorous definition is given in the appendix. A similar definition can be given for planar
graphs, by preserving the orders on incoming and outgoing edges of any vertex.

Example 5.3.1. Let G be the following graph:

2 1

/.-,()*+

OO

1

OO

2

OO

3

__>>>>>>>>

Then:

t1,2pGq “

1

/.-,()*+

OO

<<

1

OO

2

__>>>>>>>>

t1,1pGq “ t2,2pGq “ t3,2pGq “

1

/.-,()*+

OO

1

OO

2

__>>>>>>>>

t2,1pGq “ t3,1pGq “

1

/.-,()*+99

1

OO

2

OO

Note that t1,2 creates a loop when applied on G.

Remark 5.3.1. In particular, t1,1pIq is the graph O, which is essential for TraPs.

Proposition 5.3.1. Grœ and PGrœ, with the usual horizontal concatenation and this partial
trace map, are TraPs.

Proof. Properties 2.(a)-(d) are trivial. Let us give a graphical indication of the proof of Property
3.(a), when i1 ă i and j1 ă j.
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G

1 i1 i k

. . . . . . . . .

1 j1 j l

. . . . . . . . .

ti,j
ÝÑ G

1 i1 k ´ 1

. . . . . . . . .

1 j1 l ´ 1

. . . . . . . . .

ti1,j1
ÝÑ G

1 k ´ 2

. . . . . . . . .

1 l ´ 2

. . . . . . . . .

G

1 i1 i k

. . . . . . . . .

1 j1 j l

. . . . . . . . .

ti1,j1
ÝÑ G

1 i´ 1 k ´ 1

. . . . . . . . .

1 j ´ 1 l ´ 1

. . . . . . . . .

ti´1,j´1
ÝÑ G

1 k ´ 2

. . . . . . . . .

1 l ´ 2

. . . . . . . . .

For Property 3.(b), let us consider p “ G a graph. As the input edge indexed by i in σ ¨G ¨ τ is
the input edge of G indexed by τpiq and the output edge indexed by j in σ ¨G ¨ τ is the output
edge of G indexed by σ´1pjq, G1 “ ti,jpσ ¨ G ¨ τq is the graph obtained by gluing together the
input indexed by τpjq and the output indexed by σ´1pjq, reindexing the input according to σi
and the output edges by τj , so G1 “ σi ¨ tτpiq,σ´1pjqpGq ¨ τj .

Let us prove Property 3.(c). By Lemma 5.1.2, it is enough to prove it for pp, p1q “ pG,G1q a
pair of graphs and pi, jq “ p1, 1q. In this case, ei and fj are both edges of G, so t1,1pG ˚ G1q “
t1,1pGq ˚G

1.
For Property 3.(d), let us consider the graph I such that

V pIq “ EpIq “ OpIq “ IpIq “ LpIq “ H,

and IOpIq being reduced to a single element. Then for any graph G with |OpGq| ě 1,

t1,2pI ˚Gq “ G.

By Lemma 5.1.2, Property 3.(d) is satisfied, so Grœ is a TraP.

5.4 Free TraPs

Theorem 5.4.1. Let P be a TraP and, for any k, l P N0, let xk,l P P pk, lq such that:

@σ P Sl, @τ P Sk, σ ¨ xk,l ¨ τ “ xk,l.

There exists a unique TraP morphism Φ from Grœ to P sending Gk,l to xk,l for any k, l ě 0.

Proof. We provide here a sketch of the proof, and refer the reader to the appendix for a full
proof. We define ΦpGq for any graph G P Grœpk, lq by induction on the number N of internal
edges of G.

If N “ 0, then G can be written as

G “ O˚p ˚ σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gkr,lrq ¨ τ,
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(recall that O is the graph with no vertex, and only one edge belonging to LpGq) where p, q, r P
N0, pki, kiq P N2

0 for any i, and σ P Sq`k1`...`kr , τ P Sq`l1`...`lr . We then put:

ΦpGq “ t1,1pIq
˚p ˚ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τ.

We can prove that this does not depend on the choice of the decomposition of G, with the help
of the TraP axioms applied to P and the invariance of the xk,l. Let us assume now that ΦpG1q
is defined for any graph with N ´ 1 internal edges, for a given N ě 1. Let G be a graph with N
internal edges and let e be one of these edges. Let Ge be a graph obtained by cutting this edge
in two, such that G “ t1,1pGeq. We then set:

ΦpGq “ t1,1 ˝ ΦpGeq.

One can prove that this does not depend on the choice of e. It can then be shown that Φ defined
as above is compatible with the partial trace maps.

The following TraP counterpart of Theorem 4.3.1 can be proved in a similar way as Theorem
5.4.1:

Theorem 5.4.2. Let X be a S ˆ Sop-module, P a TraP and ϕ : X ÝÑ P be a morphism of
SˆSop-modules. There exists a unique morphism of TraPs Φ : PGrœpXq ÝÑ P , which extends
ϕ so that the following diagramme commutes:

X

ι
��

ϕ // P

PGrœpXq

Φ

::tttttttttt

where ι : X ãÑ PGrœpXq is the map that sends an element x of X to the planar X-decorated
graph Gpxq “ pPGk,l, dq with d sending the unique vertex of PGk,l to x.

In other words, PGrœpXq is the free TroP generated by the SˆSop-module X.

Remark 5.4.1. The invariance condition of xk,l in Theorem 5.4.1 is replaced here with the planar
condition on graphs. They play the same role, namely to allow us to show that the map Φ,
defined inductively, is indeed well-defined.

6 The functor Γœ applied on TraPs

6.1 The functor Γœ as an endofunctor of TraP

Proposition 6.1.1. Let X be a SˆSop-module. Then ΓœpXq is a TraP.

Proof. Similarly to the proof of Proposition 5.3.1 concerning Grœ, we can prove that PGrœpXq
is a TraP.

If G and G1 are two X-decorated planar graphs such that G1 is obtained from G by the
action of permutations on the incoming and outgoing edges of a vertex of G, then clearly, for
any relevant i and j, ti,jpG1q is obtained from G by the same operation. So ti,jpG´G1q P I, and
the partial trace maps of PGrœpXq induce partial trace maps on ΓœpXq.

Hence, Γœ is a functor from the category ModS to the category TraP. Combining with the
forgetful functor F : TraP ÝÑ ModS, we obtain an endofunctor Γœ ˝ F : TraP ÝÑ TraP,
which we denote by Γœ, with a slight abuse of notations. As for ProPs (Corollary 4.3.2 and
Proposition 4.3.3), we have the following statement.
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Proposition 6.1.2. Given a TraP P , there is a canonical morphism of TraPs

αP : ΓœpP q ÝÑ P

induced by the decoration. These maps define a natural transformation from the endofunctor Γœ

to the identity endofunctor of TraP, that is to say: for any morphism of TraP ϕ : P ÝÑ Q, the
following diagram commutes:

ΓœpP q
Γœpϕq //

αP

��

ΓœpQq

αQ

��
P ϕ

// Q

Proof. Similar arguments as in the proofs of Corollary 4.3.2 and Proposition 4.3.3.

6.2 The endofunctor Γœ as a monad

Let us now equip the endofunctor Γœ with a monad structure, a terminology we borrow from
[MMS09, Definition 2.13].

Definition 6.2.1. A monad Γ (also called a triple) on a category C is an associative and unital
monoid pΓ, µ, νq in the the unital monoid4 EndpCq of endofunctors of C. This means that the
multiplication µ : Γ ˝ Γ ÝÑ Γ and the unit morphism ν : IdC ÝÑ Γ should satisfy the axioms
given by commutativity of the diagrams below for any object P of the category C.

Γ ˝ Γ ˝ ΓpP q
ΓpµP q //

µΓpP q

��

Γ ˝ ΓpP q

µP
��

Γ ˝ ΓpP q µP
// ΓpEq

ΓpP q
ΓpνP q//

IdC %%JJJJJJJJJ
Γ ˝ ΓpP q

µP
��

ΓpP q
νΓpP qoo

IdCyyttttttttt

ΓpP q

(15)

We want to define a transformation ν : IdModS
ÝÑ Γœ, i.e. maps νP : P ÝÑ ΓœpP q for any

S ˆ Sop-module P . The morphism νP sends an element p P P pk, lq to the class of the graph
PGk,lppq with one vertex v decorated by p, and k incoming edges indexed from left to right by
1, . . . , k, l outgoing edges indexed from left to right by 1, . . . , l.

νP ppq “
p

1 . . . k

1 . . . l

.

The morphism ν is a unit in EndpModSq in the following sense: for any morphism φ : P ÝÑ Q,
the following diagram commutes:

P
νP //

φ

��

ΓœpP q

Γœpφq
��

Q νQ
// ΓœpQq

The multiplication is given by morphisms µP : Γœ ˝ ΓœpP q ÝÑ ΓœpP q attached to SˆSop-
modules P . Elements of Γœ ˝ ΓœpP q are graphs G whose vertices v are decorated by graphs Gv,

4The terminology monoid is used in this definition with the obvious abuse of vocabulary since Γ and EndpCq

are not necessarily sets.
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consistently with the number of incoming and outgoing edges. We denote by µP pGq the graph
H such that

V pHq “
ğ

vPV pGq

V pGvq,

whose edges are obtained by identifying, for any vertex v, the i-th incoming edges of v with the
i-th incoming edge of Gv, and the j-th outgoing edge of v with the j-th outgoing edge of Gv.

To illustrate this graphically, here is an example in which µP sends the graph on the left to
the graph on the right:

p

1 2

1 2 3

2 1

2 3 1 4

1 2

q

r

1 2 3

p

2 1

2 3 1 4

q

r

where p P P p2, 3q, q P P p2, 2q and r P P p2, 3q.
It is clear from the combinatorics that the relations corresponding to the diagrams (15) are

satisfied. Hence:

Proposition 6.2.2. The triple Γœ “ pΓœ, µ, νq is a monad in the category ModS.

7 TraPs versus ProPs

We have built the free TraPs by means of graphs discussed in Subsection 5.3. This, together
with the functor Γœ of Sections 4 and 6 will allow us to show the equivalence of the categories
of TraPs and wheeled ProPs.

7.1 TraPs are wheeled ProPs

The free TraP we previously built from a given TraP enables us to relate TraPs and Merkulov’s
notion of wheeled ProPs [MMS09]. We now build algebras on the monad Γœ. Let us first recall
the notion of Γ-algebra (see e.g. [MMS09, Definition 2.1.4]).

Definition 7.1.1. Let C be a category. An algebra over a monad Γ P EndpCq or a Γ-algebra
is an object P of C together with a structure morphism α : ΓpP q Ñ P such that the following

43



diagrams commute:

Γ ˝ ΓpP q
Γpαq //

µP
��

µP
��

ΓpP q

α

��
ΓpP q α

// P

P
νP //

Id
��

ΓpP q

α
}}zzzzzzzz

P

(16)

Proposition 7.1.2. Any Γœ-algebra pP, αq defines a TraP defined as follows:

• For any pp, p1q P P pk, lq ˆ P pk1, l1q, p ˚ p1 is obtained by applying α to the following graph:

p

1 . . . k

1 . . . l

p1

k ` 1. . . k ` k1

l ` 1 . . . l ` l1

• For any p P P pk, lq, for any pi, jq P rks ˆ rls, ti,jppq is obtained by the application of α to
the following graph:

p

1

. . .

i´ 1 i

. . .

k ´ 1

1

. . .

j ´ 1 j

. . .

l ´ 1

Proof. Let us prove some of the axioms of TraPs for P . The others can be proved in the same
way and are left to the reader.

2. (a). let pp, p1, p2q P P pk, lq ˆ P pk1, l1q ˆ P pk2, l2q. Then pp ˚ p1q ˚ p2 is obtained by the
application of αP to the graph:

p ˚ p1

. . .

. . .

p2

. . .

. . .

(For the sake of simplicity, we delete the indices of the input and output edges of this graph:
they are always indexed from left to right). Hence, pp ˚ p1q ˚ p2 is obtained by application of
α ˝ Γœpαq to the graph:

p

. . .

. . .

p1

. . .

. . .

p2

. . .

. . .

. . .

. . .

. . .

. . .

Note that for the second connected component of this graph, this comes from:

α ˝ Γœpαq ˝ ΓœpνP qpp
2q “ α ˝ Γœpα ˝ νP qpp

2q “ α ˝ ΓœpIdP qpp
2q “ αpp2q.

44



As α ˝ Γœpαq “ α ˝ µP , pp ˚ p1q ˚ p2 is obtained by application of α to the graph:

p

. . .

. . .

p1

. . .

. . .

p2

. . .

. . .

The same computation can be done for p ˚ pp1 ˚ p2q, which gives the associativity of ˚.
2. (b). The unit is I0 “ αpHq, where H is the graph with no vertex and no edge.
3. (d). The unit I is αpI1q, where I1 is the graph with only one input-output edge. Let

p P P pk, lq and 2 ď j ď l ` 1. Then t1,jpI ˚ pq is obtained by application of α ˝ Γœpαq to the
graph:

p

. . .

. . .

. . .

. . . . . .

where the curved edge relate the first edge at the bottom to the j-th edge on the top. As
α ˝ Γœpαq “ α ˝ µP , t1,jpI ˚ pq is obtained by application of α to the graph:

p

. . .

. . . . . .

where the curved edge relate the first edge on the bottom to the j-th edge on the top (note that
this edge is also the pj´1q-th outgoing the vertex decorated by p). As α is a SˆSop morphism,
we obtain that this is p1, . . . , j ´ 1q ¨ α ˝ νP ppq, that is to say p1, . . . , j ´ 1q ¨ p.

Proposition 7.1.3. Any TraP is a Γœ-algebra.

Proof. Let P be a TraP. From Proposition 6.1.2, we obtain a unique TraP morphism αP :
ΓœpP q ÝÑ P , such that for any pk, lq P N2

0, for any p P P pk, lq, αP sends the graph νP pP q to P .
The map αP ˝Γœpαq : Γœ˝ΓœpP q ÝÑ P is a TraP morphism, sending, for any graph G P ΓœpP q,
νΓœpP qpGq to αpGq. It is not difficult to see that µP : Γœ˝ΓœpP q ÝÑ ΓœpP q is a TraP morphism.
Hence, αP ˝ µP : Γœ ˝ ΓœpP q ÝÑ P is a TraP morphism, sending, for any graph G P ΓœpP q,
νΓœpP qpGq to αP pGq. As Γœ ˝ΓœpP q is generated by the elements µP pGq, both these morphisms
coincide:

αP ˝ Γœpαq “ α ˝ µP .

For any p P P , by construction of αP , αP ˝ νP ppq “ p, so:

αP ˝ νP “ IdP .

Therefore, P is a Γœ-algebra.

Corollary 7.1.4. The categories TraP of TraPs and Γœ ´Alg of Γœ-algebras are isomorphic.
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Proof. We defined in Propositions 7.1.2 and 7.1.3 two functors

F : TraP ÝÑ Γœ ´Alg, G : Γœ ´Alg ÝÑ TraP.

Let P be a TraP and P 1 the TraP G ˝ FpP q, with concatenation ˚1 and trace operators t1i,j . We
set FpP q :“ pP, αP q: in other words, αP is the TraP morphism of Proposition 6.1.2. For any
p, q P P :

p ˚1 q “ αP pνP ppq ˚ νP pqqq “ p ˚ p1,

where in the middle term ˚ is the concatenation in the TraP ΓœpP q. Therefore, ˚ “ ˚1. If
p P P pk, lq, pi, jq P rks ˆ rls, then t1i,j is obtained by the application of αP to the graph:

p

1

. . .

i´ 1 i

. . .

k ´ 1

1

. . .

j ´ 1 j

. . .

l ´ 1

which is ti,jpνP ppqq, where here ti,j is the trace operator of ΓœpP q. As αP is a TraP morphism:

t1i,jppq “ αP ˝ ti,j ˝ νP ppq “ ti,j ˝ αP ˝ νP ppq “ ti,jppq,

so P 1 “ P and G ˝ F is the identity functor of TraP.
Let now pP, αq be a Γœ-algebra and let us consider pP 1, α1q be the Γœ-algebra F ˝GpP q. Both

α and α1 are TraP morphisms from ΓœpP q to GpP q; for any p P P ,

α ˝ νP ppq “ α1 ˝ νP ppq “ p.

As ΓœpP q is generated, as a TraP, by the elements νP ppq, α “ α1, so F ˝G is the identity functor
of Γœ ´Alg.

Remark 7.1.1. Γœ-algebras appear in the literature [Mer06, MMS09, Mer10b, Mer10a] under the
name of unitary wheeled props; see [MMS09] for the description of the monad of graphs used for
wheeled props, and [Mer10b, Mer10a] for applications of wheeled props.

We defined the structure of TraPs having their application to Feynman graphs in QFT in
mind. Since our focus in this paper is on traces for which we need an explicit realisation of the
structures under consideration, we choose to keep here the terminology TraP.

7.2 TraPs are ProPs

TraPs can be equipped with a ProP structure as a result of the fact that both the trace and
composition of morphisms can be expressed in terms of a dual pairing. Corollary 7.1.4, yields
an isomorphism between the categories of TraPs and wheeled ProPs. It is known that wheeled
ProPs are ProPs, and we give here a detailed construction of the ProP structure on our TraPs,
showing how the partial trace maps (referred to as contractions by Merkulov) of wheeled ProPs
give rise to a vertical composition, and therefore to a ProP structure, a fact readily observed in
[MMS09, Remarks 2.1.1].

Proposition 7.2.1. Let P be a TraP. We define a vertical composition in the following way:

@p P P pk, lq, @q P P pl,mq, q ˝ p “ tk`1,1 ˝ . . . ˝ tk`l´1,l´1 ˝ tk`l,lpp ˚ qq.

Then P is a ProP.
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Example 7.2.1. In the TraP of graphs Grœ:

H

1 l

. . .

1 m

. . .

˝
G

1 k

. . .

1 l

. . .

“
G

1 k

. . .

. . .

H

1 m

. . .

. . .

“
G

1 k

. . .

. . .

H

1 m

. . .

Proof. It is enough to prove it for a free TraP PGrœpXq, as any TraP is the quotient of such
an object. If G P PGrœpXqpk, lq and H P PGrœpXqpl,mq are two X-decorated planar graphs,
then by definition of the partial trace maps, G ˚ H is the X-decorated planar graph obtained
by grafting together the output edge i of G with the input edge j of H for any i P rks; this is
precisely the vertical concatenation of graphs, adapted to X-decorated planar graphs. So it is
indeed a ProP.

Example 7.2.2. 1. For graphs, we recover the composition defined in Section 1.3, extended to
graphs.

2. For the HomV TraP, for any F “ f1 . . . fk b v1 . . . vl P V
˚bk b V bl « HompV bk, V blq

and G “ g1 . . . gl b w1 . . . wn PP V
˚bl b V bm « HompV bl, V bmq:

F ˝G “ g1pv1q . . . glpvlqf1 . . . fk b w1 . . . wn.

This is the composition of HomV .

Applied to the TraP Homc
V of Proposition 5.2.3, this method allows to recover the ProP

Homc
V of Theorem 2.2.5.

Proposition 7.2.2. Let V be a Fréchet nuclear space. The ProP built from the TraP pHomc
V pk, lqqk,lě0

as in Proposition 7.2.1 is isomorphic, as a ProP, to the ProP Homc
V of Theorem 2.2.5.

Proof. It is enough to check that the composition of two homomorphisms will give the right
object. Let f “ Homc

V pk, lq and g “ Homc
V pl,mq. By Equation (4) we can write

f “
ÿ

α

ppvα1 q
˚ b ¨ ¨ ¨ b pvα1 q

˚qbpwα1 b ¨ ¨ ¨ b w
α
k q , g “

ÿ

β

´

puβ1 q
˚ b ¨ ¨ ¨ b puβmq

˚
¯

b

´

rβ1 b ¨ ¨ ¨ b r
β
l

¯

.

Then the definition of the composition product of Proposition 7.2.1 implies

f ˝ g “
ÿ

α

ÿ

β

«

l
ź

i“1

pvαi q
˚prβi q

ff

´

puβ1 q
˚ b ¨ ¨ ¨ b puβmq

˚
¯

b pwα1 b ¨ ¨ ¨ b w
α
k q .

Using Equation (7), we can apply Lemma 5.2.2 to the case E1 “ V pbm, E2 “ V pbl, E3 “ V pbk.
The result then follows from this lemma and the observation that

l
ź

i“1

pvαi q
˚prβi q “ pv

α
1 b ¨ ¨ ¨ b v

α
1 q
˚ b prβ1 b ¨ ¨ ¨ b r

β
l q

for the duality pairing in E2.
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We end this Subsection with a Corollary to Proposition 7.2.1.

Corollary 7.2.3. Let P be a TraP. For any p P P pk, kq, we set:

Trppq “ t1,1 ˝ . . . ˝ tk,kppq.

1. For any pk, lq P N2
0, for any pp, qq P P pk, lq ˆ P pl, kq,

Trpp ˝ qq “ Trpq ˝ pq.

2. For any pk, lq P N2
0, for any pp, qq P P pk, kq ˆ P pl, lq,

Trpp ˚ qq “ TrppqTrpqq.

Example 7.2.3. 1. In Grœ, for any graph G P Grœpk, kq, TrpGq is obtained by gluing together
the i-th output edge with the i-th output edge of G. In particular, O “ TrpIq. Graphically:

G

1 k

. . .

1 k

. . .

Tr
ÝÑ

G

. . .

. . .

2. Let V be a finite dimensional vector space of dimension n. In the TraP HomV introduced
in Proposition 5.2.1 we obtain a trace for morphisms F : V bk ÞÑ V bk. Specialising to the
case k “ 1, we recover the usual trace of linear endomorphisms: choose pe1, ¨ ¨ ¨ , enq a basis
of V . Any morphism f : V ÞÑ V can be represented in this basis by

řn
i,j“1 a

f
ije
˚
i b ej for

some complex numbers afij . Then Trpfq “
řn
i,j“1 a

f
ije
˚
i pejq “

řn
i“1 a

f
ii. Trpfq lies in K, is

viewed here as an element of HomV p0, 0q via the identification of a constant λ in K to a
linear map x ÞÝÑ λx on K.

The vertical composition f ˝ g “ t2,1pf ˚ gq of two morphisms f and g, defined according
to Proposition 7.2.1 is indeed represented by the usual matrix product:

n
ÿ

i,j“1

n
ÿ

k,l“1

afik a
g
lj e

˚
i b e

˚
kpelq b ej “

n
ÿ

i,j“1

˜

n
ÿ

k“1

afik a
g
kj

¸

e˚i b ej ,

where pafijqi,j , pa
g
ijqi,j are the matrix representations of f and g respectively.

Proof. Again, it is enough to prove the result for a free TraP PGrœpXq.
LetG P PGrœpXqpk, lq andH P PGrœpXqpl, kq be two graphs. Then TrpH˝Gq is graphically

represented by each of the graphs:
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G

. . .

. . .

H

. . .

H

. . .

. . .

G

. . .

which are the same. So TrpH ˝Gq “ TrpG ˝Hq. Moreover, the graph TrpG ˚Hq is represented
by the graph

G

. . .

. . .

H

. . .

. . .

which is also a graphical representation of TrpGq ˚ TrpHq. So TrpG ˚Hq “ TrpGq ˚ TrpHq.

7.3 Quasi-TraPs

The partial trace maps ti,j arising in the definition of a TraP might not be defined on every
operator. To circumvent this difficulty, we work with a S ˆ Sop-module pP pk, lqqk,lě0 with a
horizontal concatenation ‹, satisfying all the required axioms, and for any k, l ě 1, for any i P rks,
j P rls, a map Ti,j : P 1pk, lq ÝÑ P pk ´ 1, l ´ 1q defined on a submodule of P pk, lq; we assume
that it satisfies all the required axioms as soon as all the maps they imply are defined.

We can then embed such a quasi-TraP in a "complete" TraP: consider the TraP ΓœpP q, and
quotient it by the TraP ideal generated by the elements:

1. νP ppq ˚ νP pqq ´ νP pp ‹ qq, where p, q P P .

2. ti,j ˝ νP ppq ´ νP ˝ Ti,jppq, where p P P such that Ti,jppq is defined.

We obtain in this way a TraP P , with partial trace maps ti,j induced on the quotient by the
partial trace maps of ΓœpP q. It contains a SˆS-module isomorphic to P and formed by graphs
with only one vertex, which we identify with P itself. Then, if Ti,jppq is defined, Ti,jppq “ ti,jppq.

Example 7.3.1. Let V “ KrXs, pXnqně0 its canonical basis and pδnqně0 the dual basis. Let us
denote by E` the subspace of HompV q generated by the endomorphisms of the form

fi,j :

"

KrXs ÝÑ KrXs
Xk ÝÑ δi,kX

j ,

where i, j ě 0 (i.e. fi,jpXkq “ Xj if k “ i, and fi,jpXkq “ 0 otherwise). This is the subspace
of endomorphisms of V with a finite support when applied on monomials. Note that E` does
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not contains IdV : we put E “ E` ‘ KIdV . For any k, l ě 0, let P pk, lq be the submodule
of HompV bk, V bkq generated by Ebk if k “ l, and t0u otherwise. This is stable under the
horizontal concatenation of HomV .

The elements of P pk, kq are linear spans of terms:

σ ¨ pf1 b . . .b fkq ¨ τ,

where σ, τ P Sk, and for any p, fp is one of the fi,j or is IdV . We define a partial trace map
on P by putting T1,1pfi,jq “ δi,j ; but T1,1pIdV q is not defined. This is extended to P using the
axioms of a TraP. For example:

T1,1pfi,j b fk,lq “ δi,jfk,l, T1,1pfi,j b IdV q “ δi,jIdV ,

T2,2pfi,j b fk,lq “ δk,lfi,j , T2,2pfi,j b IdV q is not defined,
T1,2pfi,j b fk,lq “ δi,lfk,j , T1,2pfi,j b IdV q “ fi,j ,

T2,1pfi,j b fk,lq “ δj,kfi,l, T2,1pfi,j b IdV q “ fi,j .

Denoting by O the graph with only one loop, we obtain that for any k ě 0,

P pk, kq “ KrOs b P pk, kq,

and t1,1pIdV q “ O. Any p P P pk, kq is identified with 1b p P P pk, kq. For example, in P :

t1,1pfi,j b fk,lq “ δi,jfk,l, t1,1pfi,j b IdV q “ δi,jIdV ,

t2,2pfi,j b fk,lq “ δk,lfi,j , t2,2pfi,j b IdV q “ fi,j bO,
t1,2pfi,j b fk,lq “ δi,lfk,j , t1,2pfi,j b IdV q “ fi,j ,

t2,1pfi,j b fk,lq “ δj,kfi,l, t2,1pfi,j b IdV q “ fi,j .

Choosing for any k ě 1 an element fk P P pk, lq, any graph G such that LpGq “ H is sent to an
element of P by Φ.

8 The TraP K8X of smoothing pseudo-differential operators

We apply our results on TraPs to tensor products of a class of of Fréchet nuclear spaces introduced
in Section 2, namely Fréchet spaces EpXq of smooth sections of X. Recall from Proposition 2.2.3
that such spaces are stable under tensor products and morphisms in HomcpE 1pXq, EpY qq are
determined by smoothing kernels in EpX ˆ Y q.

8.1 Trace of smoothing pseudo-differential operators

Let X be a smooth finite dimensional closed manifold. Let us set E “ EpXq, and F “ E 1pXq,
which is not Fréchet, in which case Lemma 5.2.2 does not apply.

Instead, we restrict ourselves to smooth kernels which stabilise EpXq. We set, for pk, lq ‰
p1, 1q:

K8Xpk, lq :“ EpXk ˆX lq » EpXqpbk b̂ EpXqpbl,

where the identification holds by Proposition 2.2.3. For pk, lq “ p1, 1q we set

K8Xp1, 1q :“ EpX ˆXq
ď

tδu » EpXq b̂ EpXq
ď

tδu

with δ the (singular) kernel of the identity operator on EpXq. With the notations of Definition
5.1.1, we will have I “ δ.

For a closed Riemannian manifold X equipped with a volume measure µ, the canonical
embedding EpXq ãÑ E 1pXq, f ÞÝÑ

`

ϕ ÞÑ
ş

X fpxqϕpxq dµpxq
˘

induces an embedding

K8Xpk, lq ãÑ KXpk, lq » E 1pXq
pbk b̂ EpXqpbl.
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Proposition 8.1.1. The family of topological vector spaces pK8Xpk, lqqk,lě0 equipped with the
partial traces

ti,j :

"

K8Xpk, lq ÝÑ K8Xpk ´ 1, l ´ 1q
K1 bK2 ÞÝÑ ti,jpK1 bK2q

with, for K1 bK2 ‰ δ, ti,jpK1 bK2q defined by

ti,jpK1 bK2qpx1, ¨ ¨ ¨ , xk´1, y1, ¨ ¨ ¨ , yl´1q :“
ż

X
K1px1, ¨ ¨ ¨ , xi´1, z, xi ¨ ¨ ¨ , xk´1qK2py1, ¨ ¨ ¨ , yj´1, z, yj ¨ ¨ ¨ , ykq dµpzq

(with an obvious abuse of notation in the cases where i (or j) is equal to 1 or k (or to 1 or l))
defines a TraP, written K8X .

Remark 8.1.1. Technically, K8X is a quasi-TraP in the sense of Subsection 7.3 since t1,1pIq “ t1,1pδq

is not defined. Following Subsection 7.3, this quasi-TraP can be completed to a full TraP K8X .

Proof. The unit I0 P K8Xp0, 0q » Cb C of the vertical concatenation ˚ “ b is the constant map
defined by fpxq “ 1. It is the unit of b by bilinearity of the tensor product.

The unit I P K8Xp0, 0q is δ by definition of the action of Dirac’s distribution on smooth kernels.
It suffices to show that ti,jpK1bK2qpx1, ¨ ¨ ¨ , xk´1, y1, ¨ ¨ ¨ , yl´1q lies in K8Xpk´ 1, l´ 1q. The

axioms of the TraP will then hold since they are in KXpk, lq (Example 5.2.3).
The existence of the integral comes from the smoothness of K1 and K2 and the closedness of

X. It is enough to show that the function ti,jpK1 bK2q : Xk´1 ˆX l´1 ÝÑ C is smooth. Since
K1 and K2 are smooth, the map

px1, ¨ ¨ ¨ , xk´1, y1, ¨ ¨ ¨ , ykq ÞÑ K1px1, ¨ ¨ ¨ , xi´1, z, xi ¨ ¨ ¨ , xk´1qK2py1, ¨ ¨ ¨ , yj´1, z, yj ¨ ¨ ¨ , ykq

is infinitely differentiable for any z P X. Since X is compact, the partial derivatives

B~α~xB
~β
~yK1px1, ¨ ¨ ¨ , xi´1, z, xi ¨ ¨ ¨ , xk´1qK2py1, ¨ ¨ ¨ , yj´1, z, yj ¨ ¨ ¨ , ykq

are bounded uniformly in z. We can therefore use the dominated convergence theorem to get
that

ż

X
B~α~xB

~β
~yK1px1, ¨ ¨ ¨ , xi´1, z, xi ¨ ¨ ¨ , xk´1qK2py1, ¨ ¨ ¨ , yj´1, z, yj ¨ ¨ ¨ , ykq dµpzq

“B~α~xB
~β
~y

ż

X
K1px1, ¨ ¨ ¨ , xi´1, z, xi ¨ ¨ ¨ , xk´1qK2py1, ¨ ¨ ¨ , yj´1, z, yj ¨ ¨ ¨ , ykq dµpzq

“B~α~xB
~β
~y ti,jpK1 bK2qpx1, ¨ ¨ ¨ , xk´1, y1, ¨ ¨ ¨ , yl´1q.

Therefore the map ti,jpK1 bK2qpx1, ¨ ¨ ¨ , xk´1, y1, ¨ ¨ ¨ , yl´1q is smooth.

In view of the fact that the trace of a smoothing pseudodifferential operator P with kernel
K is

TrpP q “

ż

X
Kpx, xq dµpxq

Corollary 7.2.3 yields a generalised trace

Tr :
ğ

kPN0

K8Xpk, kq ÝÑ C

on smoothing pseudo-differential operators on a closed smooth finite dimensional manifold. This
trace is indeed cyclic for the horizontal and vertical composition products of K8X in the sense of
Corollary 7.2.3.
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8.2 Generalised convolution of smoothing operators

Let X be a smooth finite dimensional closed Riemannian manifold. Set Xk,l :“ K8Xpk, lq. Recall
from Proposition 6.1.2 that there exists a TraP map Φ : ΓœpP q ÝÑ X, as X is a TraP.

Definition 8.2.1. Let G be a graph decorated by X “ pK8Xpk, lqqkl,PN0. The generalised con-
volution associated to G is the smoothing operator ΦpGq P K8X given by the image of G under
Φ.

The name generalised convolution is justified by the following remark.
Remark 8.2.1. Let G be a ladder graph decorated by X “ pK8Xpk, lqqkl,PN0 i.e., a graph such that
IpGq “ OpGq “ r1s, IOpGq “ LpGq “ H, V pGq “ tv1, ¨ ¨ ¨ , vnu, EpGq “ te1, ¨ ¨ ¨ , en´1u and the
source and target maps defined by

sGp1q “ vn, tGp1q “ v1,

@i P rn´ 1s, sGpeiq “ vi, tGpeiq “ vi`1.

Here is a graphical representation of this graph:

1 // GFED@ABCv1 // . . . // GFED@ABCvn // 1

Let Oi be the smoothing pseudo-differential operator defined by the kernel Ki that decorates
the vertex vi: Ki :“ decpviq for any vi P rns. Then the generalised convolution associated to
the graph G is the convolution of the kernels Ki, ¨ ¨ ¨ ,Kn, which is the kernel of the smoothing
pseudo-differential operator O1 ˝ ¨ ¨ ¨ ˝On.

The previous remark leads to the following statement.

Corollary 8.2.2. The convolution of smoothing pseudo-differential operators is well-defined and
associative.

Proof. Well-definedness follows from the definition. The associativity follows from the fact that
the vertical composition build from the TraP structure of graphs is associative, together with
the fact that φId is a morphism of TraP.

A Appendix: topologies on tensor products

Tensor products ot topological spaces can be equipped with various topologies. A first possibility
is the so-called ε-topology; [Tre67, Definition 43.1]. For two topological vector spaces E and F ,
one can show ([Tre67, Proposition 42.4]) the isomorphism of vector spaces EbF » BcpE1σˆF 1σ,Kq
where BcpE1σ ˆF 1σ,Kq denotes the space of continuous bilinear maps from E1σ ˆF

1
σ to K and E1σ

(resp. F 1σ) the topological dual of E (resp. F ) for σ, the weak topology.
Recall that a bilinear map f : E ˆ F ÝÑ K is called separately continuous if, for any pair

px, yq P E ˆ F , the maps z Ñ fpx, zq and z Ñ fpz, yq are continuous. We then clearly have
that continuous bilinear maps build a linear subspace of the space BscpE ˆ F,Kq of separately
continuous bilinear maps.

The space BscpE ˆ F,Kq can be equipped with the topology of uniform convergence on
products of equicontinuous subsets of E1σ with equicontinuous subsets of F 1σ. Recall that, for a
topological space X and a topological vector space G, a set S of maps from X to G is said to be
equicontinuous at x0 P X if, for any V Ď G neighbourhood of zero, there is some neighbourhood
V px0q Ď X of x0, such that

@f P S, x P V px0q ñ fpxq ´ fpx0q P V.

In our case, G is K and X is Eσ (resp. Fσ). This topology induces a topology on the subspace
BcpE1σ ˆF 1σ,Kq and thus on E bF . We denote by E bε F the topological vector space obtained
by endowing E b F with this topology.
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There is another topology on E b F called the projective topology; [Tre67, Definition
43.2]. The projective topology is defined as the strongest locally convex topology on EbF such
that the canonical map φ : E ˆ F ÝÑ E b F is continuous. We write E bπ F the topological
vector space obtained by endowing E b F with this topology.

The neighbourhoods of zero of the projective topology can be simply described in terms
of neighbourhoods of zero in E and V . A convex subset S of E b F containing zero is a
neighbourhood of zero if it exist a neighbourhood U (resp. V) of zero in E (resp. F ) such that
U b V :“ tub v|u P U ^ v P V u Ď S.

B Appendix: definition of the partial trace maps on Grœ

We give a rigorous definition of the partial trace maps on the space of graphs Grœ, which were
only loosely defined in the bulk of the article.

Let G P Grœpk, lq with k, l ě 1, i P rks and j P rls. We put ei “ α´1
G piq and fj “ β´1

G pjq. We
define the graph G1 “ ti,jpGq in the following way:

1. If ei P IpGq and fj P OpGq, then:

V pG1q “ V pGq, EpG1q “ EpGq \ tpei, fjqu,

IpG1q “ IpGqzteiu, OpG1q “ OpGqztfju,

IOpG1q “ IOpGq, LpG1q “ LpGq,

sG1peq “

#

sGpfjq if e “ pei, fjq,
sGpeq otherwise,

tG1peq “

#

tGpeiq if e “ pei, fjq,
tGpeq otherwise,

αG1peq “

#

αGpeq if αGpeq ă i,

αGpeq ´ 1 if αGpeq ě i,
βG1peq “

#

βGpeq if βGpeq ă j,

βGpeq ´ 1 if βGpeq ě j.

2. If ei P IOpGq and fj P OpGq, then:

V pG1q “ V pGq, EpG1q “ EpGq,

IpG1q “ IpGq, OpG1q “ OpGqztfju \ tpei, fj , qu,

IOpG1q “ IOpGqzteiu, LpG1q “ LpGq,

sG1peq “

#

sGpfjq if e “ pei, fjq,
sGpeq otherwise,

tG1peq “ tGpeq,

αG1peq “

#

αGpeq if αGpeq ă i,

αGpeq ´ 1 if αGpeq ě i,
βG1peq “

$

’

’

’

’

&

’

’

’

’

%

βGpeiq if e “ pei, fjq and βGpeiq ă j,

βGpeiq ´ 1 if e “ pei, fjq and βGpeiq ě j,

βGpeq if e ‰ pei, fjq and βGpeq ă j,

βGpeq ´ 1 if e ‰ pei, fjq and βGpeq ě j.

3. If ei P IpGq and fj P IOpGq, then:

V pG1q “ V pGq, EpG1q “ EpGq,

IpG1q “ IpGqzteiu \ tpei, fjqu, OpG1q “ OpGq,

IOpG1q “ IOpGqztfju, LpG1q “ LpGq,

sG1peq “ sGpeq, tG1peq “

#

tGpeiq if e “ pei, fjq,
tGpeq otherwise,

αG1peq “

$

’

’

’

’

&

’

’

’

’

%

αGpfiq if e “ pei, fjq and αGpfjq ă i,

αGpfiq ´ 1 if e “ pei, fjq and αGpfjq ě i,

αGpeq if e ‰ pei, fjq and αGpeq ă i,

αGpeq ´ 1 if e ‰ pei, fjq and αGpeq ě i,

βG1peq “

#

βGpeq if βGpeq ă j,

βGpeq ´ 1 if βGpeq ě j.
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4. If ei P IOpGq, fj P IOpGq and ei ‰ fj , then:

V pG1q “ V pGq, EpG1q “ EpGq,

IpG1q “ IpGq, OpG1q “ OpGq,

IOpG1q “ tpei, fjqu \ IOpGqztei, fju, LpG1q “ LpGq,

sG1peq “ sGpeq, tG1peq “ tGpeq,

αG1peq “

$

’

’

’

’

&

’

’

’

’

%

αGpfiq if e “ pei, fjq and αGpfjq ă i,

αGpfiq ´ 1 if e “ pei, fjq and αGpfjq ě i,

αGpeq if e ‰ pei, fjq and αGpeq ă i,

βGpeq ´ 1 if e ‰ pei, fjq and αGpeq ě i,

βG1peq “

$

’

’

’

’

&

’

’

’

’

%

βGpeiq if e “ pei, fjq and βGpeiq ă j,

βGpeiq ´ 1 if e “ pei, fjq and βGpeiq ě j,

βGpeq if e ‰ pei, fjq and βGpeq ă j,

βGpeq ´ 1 if e ‰ pei, fjq and βGpeq ě j.

5. If ei P IOpGq, fj P IOpGq and ei “ fj , then:

V pG1q “ V pGq, EpG1q “ EpGq,

IpG1q “ IpGq, OpG1q “ OpGq,

IOpG1q “ IOpGqztei, fju, LpG1q “ LpGq \ tpei, fjqu,

sG1peq “ sGpeq, tG1peq “ tGpeq,

αG1peq “

#

αGpeq if αGpeq ă i,

αGpeq ´ 1 if αGpeq ě i,
βG1peq “

#

βGpeq if βGpeq ă j,

βGpeq ´ 1 if βGpeq ě j.

C Appendix: full proofs

C.1 Proof of Theorem 3.2.1

Proof. Let us define ΦpGq for any graph G by induction on n “ |V pGq|, such that for any
permutation σ P SipGq, τ P SopGq,

Φpσ ¨G ¨ τq “ σ ¨ ΦpGq ¨ τ.

If n “ 0, there exists a unique permutation γ P Sk such that G “ γ ¨ Ik. We put

ΦpGq “ γ ¨ Ik,

where we used the same notation Ik for the units of Gr and P .
If σ, τ P Sk:

Φpσ ¨G ¨ τq “ Φppσγq ¨ Ik ¨ τq

“ Φppσγτq ¨ Ikq

“ pσγτq ¨ Ik

“ σ ¨ pγ ¨ Ikq ¨ τ

“ σ ¨ ΦpGq ¨ τ.

Let us assume that ΦpG1q is defined for any graph G1 such that |V pG1q| ă n. Let

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0 ˚O˚`
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be a minimal decomposition of G. If G is indecomposable, we set ΦpGq “ φpGq. Otherwise, as
V pG1q ‰ H, |V pG0q| ă n. We put:

ΦpGq “ γ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0q ˚ φpOq˚`.

Let us first prove that this does not depend on the choice of the minimal decomposition of G.
Starting from a minimal decomposition of G, one obtains all possible minimal decompositions of
G by a finite sequence of operations of type A and B:

• Type A: changing the indexations of the input and output edges of the graphs Gi. We
obtain a minimal decomposition G “ γ1 ¨ pG11 ˚ . . . ˚ G

1
k ˚ Ipq ˝ G

1
0 ˚ O˚`, such that there

exists permutations αi, βi, with:

G1i “ αi ¨Gi ¨ βi,

G10 “ pβ
´1
1 b . . .b β´1

k b Idpq ¨G0,

α1 “ αpα´1
1 b . . .b α´1

k b Idpq.

• Type B: permuting Gl and Gl`1 for l P rk´ 1s. We obtain another minimal decomposition
G “ γ1 ¨ pG11 ˚ . . . ˚G

1
k ˚ Ipq ˝G

1
0 ˚O˚`, with:

G1i “

$

’

&

’

%

Gl`1 if i “ l,

Gl if j “ l ` 1,

Gi otherwise;

G10 “ pIdipG1q`...`ipGl´1q
b cipGl`1q,ipGlq

b IdipGl`2q`...`ipGkq`pq ˝G0,

γ1 “ γpIdopG1q`...`opGl´1q
b copGlq,opGl`1q b IdopGl`2q`...`opGkq`pq.

Let G “ γ ¨ pG11 ˚ . . . ˚G
1
k ˚ Ipq ˝G

1
0 ˚O˚`

1 be another minimal decomposition of G. Then ` “ `1

is the number of loops of G. It is enough to prove that

γ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0q “ γ1 ¨ pφpG11q ˚ . . . ˚ φpG
1
kq ˚ Ipq ˝ ΦpG10q.

We can assume that G1 is obtained from G by a single operation of type A or of type B. If it is
of type A:

γ1 ¨ pφpG11q ˚ . . . ˚ φpG
1
kq ˚ Ipq ˝ ΦpG10q

“ γ ¨ pα´1
1 b . . .b α´1

k b Idpq ¨ pφpα1 ¨G1 ¨ β1q b . . .b φpαk ¨Gk ¨ βkq ˚ Ipq

˝ Φppβ´1
1 b . . .b β´1

k b Idpq ¨G0q

“ γ ¨ pα´1
1 b . . .b α´1

k b Idpq ¨ pα1 ¨ φpG1q ¨ β1 b . . .b αk ¨ φpGkq ¨ βk ˚ Ipq

˝ ppβ´1
1 b . . .b β´1

k b Idpq ¨ ΦpG0qq

“ γpα´1
1 b . . .b α´1

k b Idpqpα1 b . . .b αk b Idpq ¨ pφpG1q b . . .b φpGkq ˚ Ipq

˝ pβ1 b . . .b βk b Idpqpβ
´1
1 b . . .b β´1

k b Idpq ¨ ΦpG0q

“ γ ¨ pφpG1q b . . .b φpGkq ˚ Ipq ˝ ΦpG0q.
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If it is of type B:

γ1 ¨ pφpG11q ˚ . . . ˚ φpG
1
kq ˚ Ipq ˝ ΦpG10q

“ γpIdopG1q`...`opGl´1q
b copGlq,opGl`1q

b IdopGl`2q`...`opGkq`pq

¨ pφpG1q ˚ . . . ˚ φpGl`1q ˚ φpGlq ˚ . . . ˚ φpGkq ˚ Ipq

˝ ΦppIdipG1q`...`ipGl´1q
b cipGl`1q,ipGlq

b IdipGl`2q`...`ipGkq`pq ¨G0q

γ1 ¨ pφpG11q ˚ . . . ˚ φpG
1
kq ˚ Ipq ˝ ΦpG10q

“ γpIdopG1q`...`opGl´1q
b copGlq,opGl`1q

b IdopGl`2q`...`opGkq`pq

¨ pφpG1q ˚ . . . ˚ φpGl`1q ˚ φpGlq ˚ . . . ˚ φpGkq ˚ Ipq

˝ pIdipG1q`...`ipGl´1q
b cipGl`1q,ipGlq

b IdipGl`2q`...`ipGkq`pq ¨ ΦpG0q

“ γ ¨ pφpG1q ˚ . . . ˚ copGlq,opGl`1q
¨ pφpGl`1q ˚ φpGlqq ¨ cipGl`1q,ipGlq

˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0q

“ γ ¨ pφpG1q ˚ . . . ˚ φpGlq ˚ φpGl`1qq ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0q

“ γ ¨ pφpG1q b . . .b φpGkq ˚ Ipq ˝ ΦpG0q.

So ΦpGq is well-defined. Let σ P SopGq and τ P SipGq. We put H “ σ ¨ G ¨ τ . A minimal
decomposition of H is given by:

H0 “ G0 ¨ τ, Hi “ Gi if i P rks, γ1 “ σγ.

Hence:

ΦpHq “ σγ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0 ¨ τq ˚ φpOq˚`

“ σγ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0q ¨ τ ˚ φpOq˚`

“ σ ¨ pγ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0qq ¨ τ ˚ φpOq˚`

“ σ ¨ ΦpGq ¨ τ.

Consequently, we have defined a map Φ : Grœ ÝÑ P , extending the morphism φ of S ˆ Sop-
modules. Let us prove that it is compatible with both concatenations.

Let G and G1 be two graphs, both with no loop. Let us prove that ΦpG ˚G1q “ ΦpGq ˚ΦpG1q
by induction on n1 “ |V pG1q|. If n1 “ 0, there exists τ 1 P Sq and `1 P N0, such that G1 “ σ1 ¨ Iq.
We proceed by induction on n “ |V pGq|. If n “ 0, there exists τ P Sp, such that G “ σ ¨ Ip.
Then G ˚G1 “ pσ b σ1q ¨ Ip`q, and:

ΦpG ˚G1q “ pσ b σ1q ¨ Ip`q

“ pσ b σ1q ¨ pIp ˚ Iqq

“ pσ ¨ Ipq ˚ pσ
1 ¨ Iqq

“ ΦpGq ˚ ΦpG1q.

Otherwise, let G “ γ ¨ pG1 ˚ . . . ˚ Gk˚pq ˝ G0 be a minimal decomposition of G. A minimal
decomposition of G ˚G1 is:

G ˚G1 “ pαb σ1q ¨ pG1 ˚ . . . ˚Gk ˚ Ip`qq ˝ pG0 ˚ Iqq,

so, using the induction hypothesis on G0:

ΦpG ˚G1q “ pγ b σ1q ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ip`qq ˝ ΦpG0 ˚ Iqq

“ pγ b σ1q ¨ φpG1q ˚ . . . ˚ φpGkq ˚ Ip ˚ Iqq ˝ pΦpG0q ˚ Iqq

“ pγ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0qq ˚ pσ
1 ¨ Iqq

“ ΦpGq ˚ ΦpG1q.
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So the result holds at rank n1 “ 0.
Let us assume the results hold at any rank ă n1. Let us consider minimal decompositions of

G and G1:

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0, G1 “ γ1 ¨ pG11 ˚ . . . ˚G
1
l ˚ Iqq ˝G

1
0,

with the convention k “ 0 if V pGq “ H. We obtain a minimal decomposition of G ˚G1:

G ˚G1 “ pγ b γ1qpIdopG1q`...`opGkq
b cp,opG11q`...`opG1lq b Idqq

¨ pG1 ˚ . . . ˚Gk ˚G
1
1 ˚ . . . ˚G

1
l ˚ Ip`qq

˝ ppIdipG1q`...`ipGkq
b cipG11q`...`ipG1lq,p b Idqqq ¨ pG0 ˚G

1
0qq.

We apply the induction assumption ΦpG ˚ G1q “ ΦpGq ˚ ΦpG1q for |V pG1q| ă n1 to G10 whose
number of vertices is smaller than that of G1 and hence smaller than n1.

ΦpG ˚G1q “ pγ b γ1qpIdopG1q`...`opGkq
b cp,opG11q`...`opG1lq b Idqq

¨ pφpG1q ˚ . . . ˚ φpGkq ˚ φpG
1
1q ˚ . . . ˚ φpG

1
lq ˚ Ip`qq

˝ ΦppIdipG1q`...`ipGkq
b cipG11q`...`ipG1lq,p b Idqqq ¨ pG0 ˚G

1
0qq

“ pγ b γ1qpIdopG1q`...`opGkq
b cp,opG11q`...`opG1lq b Idqq

¨ pφpG1q ˚ . . . ˚ φpGkq ˚ φpG
1
1q ˚ . . . ˚ φpG

1
lq ˚ Ip`qq

˝ pIdipG1q`...`ipGkq
b cipG11q`...`ipG1lq,p b Idqqq ¨ ΦpG0 ˚G

1
0q

“ pγ b γ1qpIdopG1q`...`opGkq
b cp,opG11q`...`opG1lq b Idqq

¨ pφpG1q ˚ . . . ˚ φpGkq ˚ φpG
1
1q ˚ . . . ˚ φpG

1
lq ˚ Ip ˚ Iqq

˝ pIdipG1q`...`ipGkq
b cipG11q`...`ipG1lq,p b Idqqq ¨ pΦpG0q ˚ ΦpG10qq

“ pγ b γ1q ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ip ˚ φpG
1
1q ˚ . . . ˚ φpG

1
lq ˚ Iqq ˝ pΦpG0q ˚ ΦpG10qq

“ pγ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0qq ˚ pγ
1 ¨ pφpG11q ˚ . . . ˚ φpG

1
lq ˚ Iqq ˝ pΦpG

1
0qq

“ ΦpGq ˚ ΦpG1q.

So if G and G1 are both graphs with no loop, ΦpG ˚G1q “ ΦpGq ˚ ΦpG1q.

Let G, G1 be two graphs, both with no loop. Let us prove that ΦpG1 ˝ Gq “ ΦpG1q ˝ ΦpGq.
We proceed by induction on n “ |V pGq| ` |V pG1q|. If V pG1q “ H, there exists a permutation
σ P Sp such that G1 “ σ ¨ Ik. Then:

ΦpG1 ˝Gq “ Φpσ ¨Gq “ σ ¨ ΦpGq “ σ ¨ pIp ˝ ΦpGqq “ pσ ¨ Ipq ˝ ΦpGq “ ΦpG1q ˝ ΦpGq.

Similarly, if V pGq “ H, ΦpG1 ˝Gq “ ΦpG1q ˝ΦpGq. Thus we have proved the cases n “ 0 and 1.
Let us assume it holds up to rank N and take G and G1 such that n “ N`1. By the previous

argument, ΦpG ˝ G1q “ ΦpGq ˝ ΦpG1q if V pGq “ H or V pG1q “ H. We now assume that V pGq
and V pG1q are nonempty. Let us consider minimal decompositions of G and G1:

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0 G1 “ γ1 ¨ pG11 ˚ . . . ˚G
1
l ˚ Iqq ˝G

1
0.

In G1 ˝ G, the output edges of G are glued with an input or an input-output edge of G1. In
particular, for any i, output edges of Gi are glued with input edges or input-output edges of G1.
Up to a change of indexation we assume that there is some r such that:

• For all i ď r, at least one output edge of Gi is glued with an input edge of G1.

• If i ą r, all output edges of Gi are glued with input-output edges of G1.
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A particular sub-case. We assume that the input-output edges of G1 glued with an output of one
of the Gi are the input edges of G1 with the greatest indices. Then G10 “ G20 ˚ Is`opGr`1q`...`opGkq

for a certain s. Moreover, γ can be written as γ “ γ1 b γ2, such that a minimal decomposition
of H “ G1 ˝G is given by:

H0 “ pIdipG11q`...`ipG1lq b cipGr`1q`...`ipGkq`p,sq ¨G
1
0

˝ pγ1 ¨ pG1 ˚ . . . ˚Gr ˚ IipGr`1q`...`ipGkq`pq ¨G0,

pH1, . . . ,Hmq “ pG
1
1, . . . , G

1
l, Gr`1, . . . , Gkq,

γ2 “ γ1pIdopG11q`...`opG1lq b cs,opGr`1q`...`opGkq`pqpIdopG11q`...`opG1lq`s b γ2q.

Applying the induction hypothesis on G0 and G10:

ΦpHq “ γ1pIdopG11q`...`opG1lq b cs,opGr`1q`...`opGkq`pqpIdopG11q`...`opG1lq`s b γ2q

¨ ppφpG11q ˚ . . . ˚ φpG
1
lq ˚ φpGr`1 ˚ . . . ˚ φpGkqq

˝ ΦppIdipG11q`...`ipG1lq b cipGr`1q`...`ipGkq`p,sq ¨G
1
0

˝ pγ1 ¨ pφpG1q ˚ . . . ˚ φpGrq ˚ IipGr`1q`...`ipGkq`pq ¨G0q

“ γ1pIdopG11q`...`opG1lq b cs,opGr`1q`...`opGkq`pqpIdopG11q`...`opG1lq`s b γ2q

¨ ppφpG11q ˚ . . . ˚ φpG
1
lq ˚ φpGr`1 ˚ . . . ˚ φpGkqq

˝ pIdipG11q`...`ipG1lq b cipGr`1q`...`ipGkq`p,sq ¨ ΦpG
1
0q

˝ pγ1 ¨ pφpG1q ˚ . . . ˚ φpGrq ˚ IipGr`1q`...`ipGkq`pq ¨ ΦpG0qq

“ pγ ¨ pφpG1q ˚ . . . ˚ φpGkq ˚ Ipq ˝ ΦpG0qq ˝ pγ
1 ¨ pφpG11q ˚ . . . ˚ φpG

1
lq ˚ Iqq ˝ ΦpG10qq

“ ΦpGq ˝ ΦpG1q.

General case. There exists a permutation σ, such that if H 1 “ G1 ¨ σ´1 and H “ σ ¨G, then
the condition of the particular sub-case holds for pH,H 1q. Then:

ΦpG1 ˝Gq “ ΦppG1 ¨ σ´1σq ˝Gq

“ ΦppG1 ¨ σ´1q ˝ pσ ¨Gqq

“ ΦpG1 ¨ σ´1q ˝ Φpσ ¨Gq since the subcase holds

“ pΦpG1q ¨ σ´1q ˝ pσ ¨ ΦpGqq

“ pΦpG1q ¨ σ´1qσq ¨ ΦpGq

“ ΦpG1q ¨ ΦpGq.

Finally, if G and G1 are both graphs with no loop, ΦpG ˝G1q “ ΦpGq ˝ ΦpG1q.

Let us finish this proof by considering loops. First, if H is a graph, there exist a (unique)
graph with no loop and a (unique) integer `, such that H “ G ˚O˚`. Let

G “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0

be a minimal decomposition of G. Then a minimal decomposition of H is:

H “ γ ¨ pG1 ˚ . . . ˚Gk ˚ Ipq ˝G0 ˚O˚`

, so
ΦpHq “ γ ¨ pφpG1q ˚ . . . φpGkq ˚ Ipq ˝ ΦpG0q ˚ φpOq` “ ΦpGq ˚ φpOq`.

Hence, if H and H 1 are two graphs, let us consider graphs G and G1 with no loop and integers `
and `1, such that

H “ G ˚O˚`, H 1 “ G1 ˚O˚`1 .
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Then H ˚H 1 “ G ˚G1 ˚O˚p```1q and G ˚G1 is a graph with no loop. Hence, by commutativity
of the horizontal concatenation of the product of P :

ΦpH ˚H 1q “ ΦpG ˚G1q ˚ φpOq˚p```1q

“ ΦpGq ˚ ΦpG1q ˚ φpOq˚` ˚ φpOq˚`1

“ ΦpGq ˚ φpOq˚` ˚ ΦpG1q ˚ φpOq˚`1

“ ΦpHq ˚ ΦpH 1q.

So Φ is compatible with the horizontal concatenation.
If moreover, H P Grœpl,mq and H 1 P Grœpk, lq, then H ˝H 1 “ pG˝G1q˚O˚p```1q, and G˝G1

is a graph with no loop. By the compatibility of the two concatenations of P :

ΦpH ˝H 1q “ ΦpG ˝G1q ˚ φpOq˚p```1q

“ pΦpGq ˝ ΦpG1qq ˚ φpOq˚` ˚ φpOq˚`1

“ pΦpGq ˚ φpOq˚`q ˝ pΦpG1q ˚ φpOq˚`1q
“ ΦpHq ˝ ΦpH 1q.

So Φ is compatible with the vertical concatenation.

C.2 Proof of Theorem 5.4.1

Proof. We first define ΦpGq for any graph such that, if G P Grœpk, lq, for any pσ, τq P Sl ˆSk,
Φpσ ¨G ¨ τq “ σ ¨ΦpGq ¨ τ . We proceed by induction on the number N of internal edges of G. If
N “ 0, then G can be written (non uniquely) as

G “ O˚p ˚ σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gkr,lrq ¨ τ,

where p, q, r P N0 are unique, pki, kiq P N2
0 for any i, unique up to a permutation, and σ P

Sq`k1`...`kr , τ P Sq`l1`...`lr . We then put:

ΦpGq “ t1,1pIq
˚p ˚ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τ.

Let us prove that this does not depend of the choice of the writing of G. As this is up to a
permutation of the vertices and of the choice of σ and τ , we can go from one decomposition of
G to any other one in a finite steps among the following two cases:

1. We consider two writing of G of the form

G “ O˚p ˚ σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gki,li ˚Gki`1,li`1
˚ . . . ˚Gkr,lrq ¨ τ,

G “ O˚p ˚ σ1 ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gki`1,li`1
˚Gki,li ˚ . . . ˚Gkr,lrq ¨ τ

1,

with

σ1 “ σpIdq`l1`...`li´1
b cli,li`1

b Idli`2`...`lrq,

τ 1 “ pIdq`k1`...`ki´1
b cki`1,ki b Idki`2`...`krqτ.

Then, by commutativity of ˚:

σ1 ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τ
1

“ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ cli,li`1
¨ pxki`1,li`1

˚ xki,liq ¨ cki`1,ki ˚ . . . ˚ xkr,lrq ¨ τ

“ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xki,li ˚ xki`1,li`1
˚ . . . ˚ xkr,lrq ¨ τ.
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2. We consider two writings of G of the form

G “ O˚p ˚ σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gkr,lrq ¨ τ,

G “ O˚p ˚ σ1 ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gkr,lrq ¨ τ
1,

with

σ1 “ σpσ0 b σ1 b . . .b σrq, τ 1 “ pσ´1
0 b τ1 b . . .b τrqτ

1,

with σ0 P Sq, σi P Ski and τi P Sli if i ě 1. Using the commutativity of ˚ and the
invariance of the xk,l:

σ1 ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τ
1

“ σ ¨ pσ0 ¨ I
˚q ¨ σ´1

0 ˚ σ1 ¨ xk1,l1 ¨ τ1 ˚ . . . ˚ σr ¨ xkr,lr ¨ τrq ¨ τ

“ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τ.

Hence, ΦpGq is well-defined. Moreover, of τ 1 P Sk, σ1 P Sl, choosing a writing of G of the form

G “ O˚p ˚ σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gki,li ˚Gki`1,li`1
˚ . . . ˚Gkr,lrq ¨ τ,

a writing of G1 “ σ1 ¨G ¨ τ 1 is

O˚p ˚ σ1σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gkr,lrq ¨ ττ
1,

and, by definition of ΦpG1q:

ΦpG1q “ t1,1pIq
˚p ˚ σ1σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ ττ

1

“ σ1 ¨ pt1,1pIq
˚p ˚ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τq ˚ τ

1

“ σ1 ¨ ΦpGq ¨ τ 1.

Let us assume now that ΦpG1q is defined for any graph with N ´ 1 internal edges, for a given
N ě 1. Let G be a graph with N internal edges and let e be one of these edges. Let Ge be a
graph obtained by cutting this edge in two:

1. V pGeq “ V pGq.

2. EpGeq “ EpGqzteu, IpGeq “ IpGq\ teu, OpGeq “ OpGq\ teu, IOpGeq “ IOpGq, LpGeq “
LpGq.

3. sGe “ sG and tGe “ tG.

4. For any e1 P IpGeq \ IOpGeq, for any f 1 P OpGeq \ IOpGeq:

αGepe
1q “

#

1 if e1 “ e,

αGpe
1q ` 1 if e1 ‰ e,

βGepf
1q “

#

1 if f 1 “ e,

βGpf
1q ` 1 if f 1 ‰ e.

Then G “ t1,1pGeq and Ge has N ´ 1 internal edges. We then put:

ΦpGq “ t1,1 ˝ ΦpGeq.

Let us prove that this does not depend of the choice of e. If e1 is another internal edge of G,
then:

pGeqe1 “ p12q ¨ pGe1qe ¨ p12q,
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which implies, by definition of ΦpGeq and ΦpGe1q:

t1,1 ˝ ΦpGeq “ t1,1 ˝ t1,1 ˝ ΦppGeqe1q

“ t1,1 ˝ t1,1 ˝ pp12q ¨ ΦppGe1qeq ¨ p12qq

“ t1,1 ˝ t2,2 ˝ ΦppGe1qeq

“ t1,1 ˝ t1,1 ˝ ΦppGe1qeq

“ t1,1 ˝ ΦpGe1q.

So ΦpGq is well-defined. Let σ P Sk and τ P Sl. Then:

pσ ¨G ¨ τqe “ pp1q b σq ¨ pGeq ¨ pp1q b τq,

so:

Φpσ ¨G ¨ τq “ t1,1 ˝ Φppσ ¨G ¨ τqeq

“ t1,1pp1q b σq ¨ ΦpGeq ¨ pp1q b τq

“ pp1q b σq1 ¨ t1,1 ˝ ΦpGeq ¨ pp1q b τq1

“ σ ¨ ΦpGq ¨ τ.

where, for σ P Sk we use σi for the permutation in Sk´1 defined by

σipjq “

#

σpjq if j ď i´ 1,

σpj ´ 1q if j ě i.

where pp1q b τq1 is defined by (14).
We have therefore defined a map Φ : GGr ÝÑ P , compatible with the action of the symmetric

groups. Let us prove that for any graphs G, G1,

ΦpG ˚G1q “ ΦpGq ˚ ΦpG1q.

We proceed by induction on the number N of internal edges of G ˚G1. If N “ 0, we put:

G “ O˚p ˚ σ ¨ pI˚q ˚Gk1,l1 ˚ . . . ˚Gkr,lrq ¨ τ,

G1 “ O˚p1 ˚ σ1 ¨ ¨ ¨ pI˚q1 ˚Gk11,l11 ˚ . . . ˚Gk1r1 ,l1r1 q ¨ τ
1.

We obtain:

G ˚G1 “ O˚pp`p1q ˚ pσ b σ1q ˚ pIdq b ck1`...`kr,q1 b Idk11`...`k1r1
q

¨ pIq`q
1

˚Gk1,l1 ˚ . . . ˚Gk1
r1
,l1
r1
q ¨ pIdq b cq1,l1`...`lr b Idl11`...`l1r1

q,

which gives, by commutativity of ˚:

ΦpG ˚G1q “ t1,1pIq
˚pp`p1q ˚ pσ b σ1q ˚ pIdq b cl1`...`lr,q1 b Idl11`...`l1r1

q

¨ pIq`q
1

˚ xk1,l1 ˚ . . . ˚ xk1
r1
,l1
r1
q ¨ pIdq b cq1,k1`...`kr b Idk11`...`k1r1

q

“ t1,1pIq
˚p ˚ σ ¨ pI˚q ˚ xk1,l1 ˚ . . . ˚ xkr,lrq ¨ τ

˚ t1,1pIq
˚p1 ˚ σ1 ¨ pI˚q

1

˚ xk11,l11 ˚ . . . ˚ xk1r1 ,l
1
r1
q ¨ τ 1

“ ΦpGq ˚ ΦpG1q.

If N ě 1, let us take an internal edge e of G ˚G1. If e is an internal edge of G, then pG ˚G1qe “
Ge ˚G

1, and:

ΦpG˚G1q “ t1,1˝ΦppG˚G
1qeq “ t1,1˝ΦpGe˚G

1q “ t1,1pΦpGeq˚G
1q “ t1,1˝ΦpGeq˚ΦpG

1q “ ΦpGq˚ΦpG1q.
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If e is an internal edge of G1, we obtain similarly that ΦpG1 ˚ Gq “ ΦpG1q ˚ ΦpGq. The result
then follows from the commutativity of ˚ (axiom 2.pdq of Definition 5.1.1). So Φ is compatible
with ˚.

It remains to prove the compatibility of Φ with the partial trace maps. By Lemma 5.1.4, it
is enough to prove that Φ is compatible with t1,1. Let G P Grœpk, lq be a graph, e1 “ α´1p1q,
f1 “ β´1p1q. We put G1 “ t1,1pGq and e “ te1, f1u be the edge of G1 created in the process.
There are five different cases:

1. If e1 P IpGq and f1 P OpGq, then e P EpG1q and G1e “ G. By construction of ΦpG1q:

Φ ˝ t1,1pGq “ ΦpG1q “ t1,1 ˝ ΦpG1eq “ t1,1 ˝ ΦpGq.

2. If e1 P IOpGq and f1 P OpGq, let us put j “ βpe1q. Then there exists a graph H such that
p1, jq ¨G “ I ˚H. Then:

t1,1pGq “ t1,1pp1, jq ¨ pI ˚Hqq “ p1, . . . , jq ¨ pt1,ipI ˚Hqq “ p1, . . . , jq ¨H,

so:

t1,1 ˝ ΦpGq “ t1,1pp1, jq ¨ pI ˚ ΦpHqq

“ p1, jqp1, . . . , j ´ 1q ¨ ΦpHq

“ p1, . . . , jq ¨ ΦpHq

“ Φpp1, . . . , jq ¨Hq

“ Φ ˝ t1,1,pGq.

3. If e1 P IpGq and f1 P IOpGq: similar computation.

4. If e1, f1 P IOpGq, with e1 ‰ f1: similar computation.

5. If e1 “ f1 in IOpGq, then G “ I ˚H for a certain graph G and t1,1pGq “ O ˚H. Then:

Φ ˝ t1,1pGq “ ΦpOq ˚ ΦpHq “ t1,1 ˝ ΦpIq ˚ ΦpHq “ t1,1pΦpIq ˚ ΦpHq “ t1,1 ˝ ΦpGq.

So Φ is compatible with the partial trace maps.
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