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Abstract
We study generalizations of pre-Lie algebras, where the free objects are based on rooted

trees which edges are typed, instead of usual rooted trees, and with generalized pre-Lie
products formed by graftings. Working with a discrete set of types, we show how to obtain
such objects when this set is given an associative commutative product and a second prod-
uct making it a commutative extended semigroup. Working with a vector space of types,
these two products are replaced by a bilinear map Φ which satisfies a braid equation and
a commutation relation. Examples of such structures are defined on sets, semigroups, or
groups.

These constructions define a family of operads PreLieΦ which generalize the operad of
pre-Lie algebras PreLie. For any embedding from PreLie into PreLieφ, we construct a
family of pairs of cointeracting bialgebras, based on typed and decorated trees: the first
coproduct is given by an extraction and contraction process, the types being modified by the
action of Φ; the second coproduct is given by admissible cuts, in the Connes and Kreimer’s
way, with again types modified by the action of Φ.

We also study the Koszul dual of PreLieΦ, which gives generalizations of permutative
algebras.
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Introduction

Recently, numerous parametrization of well-known operads were introduced. Choosing a set
Ω of parameters, any product defining the considered operad is replaced by a bunch of prod-
ucts indexed by Ω, and various relations are defined on them, mimicking the relations defining
the initial operads. One can first require that any linear spans of the parametrized products
also satisfy the relations of the initial operads this is the matching parametrization. For exam-
ple, matching Rota-Baxter algebras, associative, dendriform, pre-Lie algebras are introduced in
[20, 9]. Another way is the use of one or more semigroup structures on Ω: this it the family
parametrization. For example, family Rota-Baxter algebras, dendriform, pre-Lie algebras are
introduced and studied in [21, 22, 18]. A way to obtain both these parametrizations for dendri-
form algebras is introduced in [11], with the help of a generalization of diassociative semigroups,
namely extended diassociative semigroups (EDS), and a two-parameters version for dendriform
algebras and pre-Lie algebras is described in [14].

In this paper, we extend the parametrizations of pre-Lie algebras to a more general settings,
and study the pairs of cointeracting bialgebras on decorated and typed rooted trees which result
of these constructions. We start with a discrete version of these parametrizations. The set
of parameters Ω is here given an associative product Ñ and another (maybe nonassociative)
product Ź, satisfying the four axioms of commutative extended diassociative semigroup (briefly,
CEDS), see Definition 1.1. An Ω-pre-Lie algebra is a pair pV, p˝αqαPΩq, where V is a vector space
and for any α P Ω, ˝α : V b V ÝÑ V such that, for any x, y, z P V , for any α, β P Ω,

x ˝α py ˝β zq ´ px ˝αŹβ yq ˝αÑβ z “ y ˝β px ˝α zq ´ py ˝βŹα xq ˝βÑα z.

In the particular case where Ω is reduced to a singleton, these are classical (left) pre-Lie algebras.
There are other interesting examples:

• For any set Ω, define the two products Ñ,Ź by

αÑ β “ β Ź α “ β.

Then pΩ,Ñ,Źq is a CEDS, and Ω-pre-Lie algebras are matching pre-Lie algebras of [20].

• Let pΩ,Ñq be a commutative semigroup. Define the product Ź by

αŹ β “ α.

Then pΩ,Ñ,Źq is a CEDS, and Ω-pre-Lie algebras are family pre-Lie algebras of [18].

• Let pΩ, ‹q be a group. Define the two products Ñ,Ź by

αÑ β “ β, αŹ β “ α ‹ β‹´1.

Then pΩ,Ñ,Źq is a CEDS. The associated Ω- pre-Lie algebras do not seem to appear in
the literature.
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In order to be more general, we turn to a linearized version of CEDS, which is based on the
following observation (Lemma 1.4): if Ω is a set with two operations Ñ and Ź, then we can
consider the maps

φ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pαÑ β, αŹ βq,
τ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pβ, αq.

Then pΩ,Ñ,Źq is a CEDS if, and only if:

pIdˆ φq ˝ pφˆ Idq ˝ pIdˆ φq “ pφˆ Idq ˝ pIdˆ τq ˝ pφˆ Idq,

pIdˆ φq ˝ pIdˆ τq ˝ pτ ˆ Idq ˝ pφˆ Idq “ pτ ˆ Idq ˝ pφˆ Idq ˝ pIdˆ φq ˝ pIdˆ τq.

The first equation is called the braid equation, the second one the commutation relation. This
observation leads to the definition of linear CEDS, which are pairs pA,Φq, where A is a vector
space and Φ : AbA ÝÑ AbA, such that

pIdb Φq ˝ pΦb Idq ˝ pIdb Φq “ pΦb Idq ˝ pIdb τq ˝ pΦb Idq,

pIdb Φq ˝ pIdb τq ˝ pτ b Idq ˝ pΦb Idq “ pτ b Idq ˝ pΦb Idq ˝ pIdb Φq ˝ pIdb τq,

where τ : AbA ÝÑ AbA is the usual flip (Definition 1.8). In particular, if Ω is a CEDS, then
the vector space KΩ generated by Ω is a linear CEDS; there are far more examples of linear
CEDS than the linearizations of CEDS.

To any linear CEDS pA,Φq is associated a category of Φ-pre-Lie algebras (Definition 2.1).
We prove in the second section of this paper that Φ-pre-Lie algebras can be described in terms
of trees with graftings if, and only if, pA,Φq is linear CEDS (Theorem 2.2). The trees used here
are rooted, decorated (that is to say to any vertex is attached a decoration, taken in a set D of
generators), and typed (that is to say to any edge is attached a type, taken in the underlying
space A of the CEDS). In each case, the products of two trees is a sum over all the graftings
of the first tree to a vertex of the second one, where the CEDS structure is used to modify the
types of the edges in the result of the grafting, see Proposition 2.6 for a more precise description
of this process. For example, in the three examples of CEDS described earlier, we obtain

GFED@ABCX ˝a

?>=<89:;Z
b

GFED@ABCY

“

GFED@ABCX

a @@
@@

@@
@@

@
?>=<89:;Z
b

GFED@ABCY

`

GFED@ABCX

a

?>=<89:;Z
b

GFED@ABCY

, GFED@ABCX ˝a

?>=<89:;Z
b

GFED@ABCY

“

GFED@ABCX

a @@
@@

@@
@@

@
?>=<89:;Z
b

GFED@ABCY

`

GFED@ABCX

a

?>=<89:;Z
aÑb

GFED@ABCY

,

GFED@ABCX ˝a

?>=<89:;Z
b

GFED@ABCY

“

GFED@ABCX

a @@
@@

@@
@@

@
?>=<89:;Z
b

GFED@ABCY

`

GFED@ABCX

a‹b‹´1

?>=<89:;Z
b

GFED@ABCY

.

This combinatorial description of free Φ-pre-Lie algebras induces a description of the operad
PreLieΦ of Φ-pre-Lie algebras in terms of rooted trees with insertion into vertices, which gen-
eralises the description of the operad PreLie of pre-Lie algebras of [5]. The second section ends
with the study of operadic morphisms from PreLie to PreLieΦ, or equivalently to the study
of pre-Lie products in any Φ-pre-Lie algebras. We prove that these products are in one-to-one
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correspondence with vectors a P A, such that Φpaq “ ab a (Proposition 2.9). These vectors will
be called special vectors of eigenvalue 1. There are also special vectors of eigenvalue 0, which give
rise to morphism from the operad of nonassociative permutative algebras [16]. We prove that
for any such nonzero pre-Lie product, the free Φ-pre-Lie algebras are also free pre-Lie algebras
and we give an explicit set of generators in Proposition 2.10, with the help of a convenient order
on trees, in the spirit of [15].

The third section is devoted to the study of the Koszul dual of the operad PreLieΦ. In the
non-parametrized case, the Koszul dual of the operad PreLie is the operad Perm of permuta-
tive algebras (proposition 3.2): we naturally obtain a parametrization of this operad, by objects
which are dual linear CEDS (Definition 3.1). Free Φ-permutative algebras are combinatorially
described in terms of monomials (Proposition 3.2). Looking for morphisms from the operad
Perm to the operad PermΦ leads to special vectors of eigenvalue 1 and to weak special vectors
(Proposition 3.6). Note that we did not find any weak special vector, and that the only results
we obtained are theorems of nonexistence in some particular cases (Proposition 3.7).

We construct some pairs of cointeracting bialgebras in the last section. These objects are pairs
of bialgebras pA,m, δq and pA,m,∆q sharing the same algebraic background, such that pA,m,∆q
is a bialgebra in the category of right comodules over pA,m, δq. One of the first examples of
such an object is based on trees, the first coproduct being given by an extraction-contraction
process of edges, the second one being the Connes-Kreimer’s one, given by admissible cuts [4].
Other examples are based on graphs [17, 7], posets and finite topologies [10]. . . An important
example of cointeracting bialgebra based on decorated and typed trees is used in [3, 2] in order
to study stochastic PDEs, in a more general context (the tensor products need a completion
there). We construct a way to obtain such a pair in an operadic context in [8]: if P is an operad,
the the symmetric algebra generated by the invariants of the dual of P is a bialgebra pA,m, δq,
where δ is obtained by dualizing the composition of the operad. For any operadic morphism
φ : PreLie ÝÑ P, one can define a second coproduct ∆ on A, making it a bialgebra pA,m,∆q,
cointeracting with pA,m, δq: the coproduct ∆ is obtained by dualizing the pre-Lie product in-
duced by φ. In our context, if pA,Φq is a finite-dimensional CEDS and a P A is a special vector
of Φ of eigenvalue 1, we obtain a pair of cointeracting bialgebras on A-typed trees; this can be
generalized to D-decorated and A-typed trees, under the condition that D is given a structure
of commutative semigroup. We describe these to coproducts in terms of extraction-contraction
and admissible cuts, where the types are modified according to the maps Φ. We end this paper
by a more explicit description of this structure when the considered map Φ comes from one of
the three examples described earlier.

Acknowledgements. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 0.1. K is a commutative field of characteristic zero. All the vector spaces in this text
will be taken over K.

1 Extended (di)associative semigroups

1.1 Commutative extended diassociative semigroup

Extended diassociative semigroups (briefly, EDS) are introduced in [11], where they are used
to define generalizations of dendriform algebras. We here consider commutative extended semi-
groups:
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Definition 1.1. A commutative extended diassociative semigroup (briefly, CEDS) is a triple
pΩ,Ñ,Źq, where Ω is a set and Ñ,Ź : Ω2 ÝÑ Ω are maps such that, for any α, β, γ P Ω:

αÑ pβ Ñ γq “ pαÑ βq Ñ γ “ pβ Ñ αq Ñ γ, (1)
αŹ pβ Ñ γq “ αŹ γ, (2)

pαŹ γq Ñ pβ Ź γq “ pαÑ βq Ź γ, (3)
pαŹ γq Ź pβ Ź γq “ αŹ β. (4)

CEDS are particular examples of extended associative semigroup, introduced in [12].

Definition 1.2. [12] An extended associative semisgroup (briefly, EAS) is a triple pΩ,Ñ,Źq,
where Ω is a set and Ñ,Ź : Ω2 ÝÑ Ω are maps such that, for any α, β, γ P Ω:

αÑ pβ Ñ γq “ pαÑ βq Ñ γ, (5)
pαŹ pβ Ñ γqq Ñ pβ Ź γq “ pαÑ βq Ź γ, (6)
pαŹ pβ Ñ γqq Ź pβ Ź γq “ αŹ β. (7)

More details and examples on these objects can be found in [13].

1.2 Examples

Example 1.1. 1. Let Ω be a set. We put:

@pα, βq P Ω2,

#

αÑ β “ β,

αŹ β “ α.

Then pΩ,Ñ,Źq is an EAS, denoted by EASpΩq. It is a CEDS.

2. Let pΩ, ‹q be an associative semigroup. We put:

@α, β P Ω, αŹ β “ α.

It is an EAS, which we denote by EASpΩ, ‹q. It is a CEDS if, and only if, for any
α, β, γ P Ω:

pα ‹ βq ‹ γ “ pβ ‹ αq ‹ γ.

3. Let Ω be a set with a binary operation Ź such that, for any α, β, γ P Ω:

pαŹ γq Ź pβ Ź γq “ αŹ β.

We then put:

@pα, βq P Ω2, αÑ β “ β.

Then pΩ,Ñ,Źq is a CEDS (so is an EAS). This holds for example if pΩ, ‹q is a group, with:

αŹ β “ α ‹ β‹´1.

This EAS is denoted by EAS1pΩ, ‹q.

Definition 1.3. Let pΩ,Ñ,Źq be an EAS. We shall say that it is nondegenerate if the following
map is bijective:

φ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pαÑ β, αŹ βq.

Example 1.2. 1. Let Ω be a set. In EASpΩq, for any α, β P Ω, φpα, βq “ pβ, αq, so EASpΩq
is nondegenerate and φ´1 “ φ.

2. Let pΩ, ‹q be a group. Then EASpΩ, ‹q is nondegenerate. Indeed, in this case, φpα, βq “
pα ‹ β, αq, so φ is a bijection, of inverse given by φ´1pα, βq “ pβ, β‹´1 ‹ αq.

3. Let pΩ, ‹q be an associative semigroup with the right inverse condition. Then EAS1pΩ, ‹q
is nondegenerate. Indeed, in this case, φpα, βq “ pβ, α‹β‹´1q, so φ is a bijection, of inverse
given by φ´1pα, βq “ pβ ‹ α, αq.
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1.3 Reformulations with the map φ

Let us first reformulate the axioms of EAS and CEDS in terms of the map φ of Definition 1.3.

Lemma 1.4. Let pΩ,Ñ,Źq be a set with two binary operations. We consider the maps

φ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pαÑ β, αŹ βq,
τ :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pβ, αq.

Then:

1. pΩ,Ñ,Źq is an EAS if, and only if:

pIdˆ φq ˝ pφˆ Idq ˝ pIdˆ φq “ pφˆ Idq ˝ pIdˆ τq ˝ pφˆ Idq. (8)

2. pΩ,Ñ,Źq is a CEDS if, and only if:

pIdˆ φq ˝ pφˆ Idq ˝ pIdˆ φq “ pφˆ Idq ˝ pIdˆ τq ˝ pφˆ Idq, (8)
pIdˆ φq ˝ pIdˆ τq ˝ pτ ˆ Idq ˝ pφˆ Idq “ pτ ˆ Idq ˝ pφˆ Idq ˝ pIdˆ φq ˝ pIdˆ τq. (9)

Proof. Let α, β, γ P Ω. Then:

pIdˆ φq ˝ pφˆ Idq ˝ pIdˆ φqpα, β, γq

“ pαÑ pβ Ñ γq, pαŹ pβ Ñ γqq Ñ pβ Ź γq, pαŹ pβ Ñ γqq Ź pβ Ź γqq,

pφˆ Idq ˝ pIdˆ τq ˝ pφˆ Idqpα, β, γq

“ ppαÑ βq Ñ γ, pαÑ βq Ź γ, αŹ βq,

pIdˆ φq ˝ pIdˆ τq ˝ pτ ˆ Idq ˝ pφˆ Idqpα, β, γq

“ pαŹ β, γ Ñ pαÑ βq, γ Ź pαÑ βqq,

pτ ˆ Idq ˝ pφˆ Idq ˝ pIdˆ φq ˝ pIdˆ τqpα, β, γq

“ pαŹ pγ Ñ βq, αÑ pγ Ñ βq, γ Ź βq.

The result immediately follows.

Reversing (8) gives (8) again; reversing (9), we obtain the notion of dual CEDS:

Definition 1.5. A dual CEDS is a pair pΩ, φq where Ω is a set and φ : Ω2 ÝÑ Ω2 such that:

pIdˆ φq ˝ pφˆ Idq ˝ pIdˆ φq “ pφˆ Idq ˝ pIdˆ τq ˝ pφˆ Idq, (8)
pφˆ Idq ˝ pτ ˆ Idq ˝ pIdˆ τq ˝ pIdˆ φq “ pIdˆ τq ˝ pIdˆ φq ˝ pφˆ Idq ˝ pτ ˆ Idq. (10)

By direct computation, we can reformulate the axioms of dual CEDS:

Proposition 1.6. Let pΩ,Ñ,Źq be a map with two binary operations. It is a dual CEDS if, for
any α, β, γ P Ω:

pαÑ βq Ñ γ “ αÑ pβ Ñ γq, (11)
pαŹ pβ Ñ γqq Ñ pβ Ź γq “ pαÑ βq Ź γ, (6)
pαŹ pβ Ñ γqq Ź pβ Ź γq “ αŹ β, (7)

pαŹ βq Ñ γ “ αÑ γ, (12)
pαŹ βq Ź γ “ pαŹ γq Ź β. (13)

Remark 1.1. By definition, dual CEDS are EAS.

We immediately obtain:
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Proposition 1.7. Let pΩ,Ñ,Źq be a set with two binary operations, such that the map φ is a
bijection. We put:

φ´1 :

"

Ω2 ÝÑ Ω2

pα, βq ÝÑ pα ñ β, α § γq.

Then pΩ,Ñ,Źq is an EAS (respectively a CEDS, a dual CEDS) if, and only if, pΩ,ñ, §q is an
EAS (respectively a dual CEDS, a CEDS).

Example 1.3. From Example 1.2:

1. If pA,Φq “ EASpΩq, then pA,Φ´1q “ EASpΩq.

2. If pΩ, ‹q is a group and if pA,Φq “ EASpΩ, ‹q, then pA,Φ´1q “ EAS1pΩ, ‹opq.

3. If pΩ, ‹q is a group and if pA,Φq “ EAS1pΩ, ‹q, then pA,Φ´1q “ EASpΩ, ‹opq.

1.4 Linear extended semigroups

Following the discrete version of Lemma 1.4, we now introduce the notion of `EAS, `CEDS and
dual `CEDS:

Definition 1.8. Let A be a vector space and let Φ : AbA ÝÑ AbA be a linear map.

1. We shall say that pA,Φq is a linear extended associative semigroup (briefly, `EAS) if:

pIdb Φq ˝ pΦb Idq ˝ pIdb Φq “ pΦb Idq ˝ pIdb τq ˝ pΦb Idq. (14)

2. We shall say that pA,Φq is a linear commutative extended diassociative semigroup (briefly,
`CEDS) if:

pIdb Φq ˝ pΦb Idq ˝ pIdb Φq “ pΦb Idq ˝ pIdb τq ˝ pΦb Idq, (14)
pIdb Φq ˝ pIdb τq ˝ pτ b Idq ˝ pΦb Idq “ pτ b Idq ˝ pΦb Idq ˝ pIdb Φq ˝ pIdb τq. (15)

3. We shall say that pA,Φq is a linear dual commutative extended diassociative semigroup
(briefly, dual `CEDS) if:

pIdb Φq ˝ pΦb Idq ˝ pIdb Φq “ pΦb Idq ˝ pIdb τq ˝ pΦb Idq, (14)
pΦb Idq ˝ pτ b Idq ˝ pIdb τq ˝ pIdb Φq “ pIdb τq ˝ pIdb Φq ˝ pΦb Idq ˝ pτ b Idq. (16)

If pA,Φq is an `EAS (respectively an `CEDS or a dual `CEDS), we shall say that it is nonde-
generate if Φ is bijective.

Note that, by definition, `CEDS and dual `CEDS are `EAS.

Example 1.4. Let pΩ,Ñ,Źq be an EAS (respectively, a CEDS, a dual CEDS), and let A “ KΩ
be the vector space generated by Ω. We define:

Φ :

"

AbA ÝÑ AbA
ab b ÝÑ paÑ bq b paŹ bq.

Then pA,Φq is an `EAS (respectively, an `CEDS, a dual `CEDS), called the linearization of
pΩ,Ñ,Źq. It is a nondegenerate `EAS if, and only if, pΩ,Ñ,Źq is a nondegenerate EAS.

Other examples can be found in [13].
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Notations 1.1. Let pA,Φq be an `EAS. We use the Sweedler notation:

Φpab bq “
ÿ

a1 Ñ b1 b a2 Ź b2. (17)

Note that the operationsÑ and Ź may not necessarily exist, nor the coproducts a1ba2 or b1bb2.
With this notation, (14) can be rewritten as:
ÿÿÿ

a1 Ñ pb1 Ñ c1q1 b pa2 Ź pb1 Ñ c1q2q1 Ñ pb2 Ź c2q1 b pa2 Ź pb1 Ñ c1qq2 Ź pb2 Ź c2q2 (14’)

“
ÿÿ

pa1 Ñ b1q1 Ñ c1 b pa1 Ñ b1q2 Ź c2 b a2 Ź b2.

Similarly, (15) and (16) are rewritten as:
ÿÿ

a2 Ź pc1 Ñ b1q2 b a1 Ñ pc2 Ñ b2q1 b c2 Ź b2 (15’)

“
ÿÿ

a2 Ź b2 b c1 Ñ pa1 Ñ b1q1 b c2 Ź pa1 Ñ b1q2,

ÿÿ

pb2 Ź c2q1 Ñ a1 b pb2 Ź c2q2 Ź a2 b b1 Ñ c1 (16’)

“
ÿÿ

b1 Ñ a1 b pb2 Ź a2q2 Ź c2 b pb2 Ź a2q1 Ñ c1.

By transposition of (14), (15), (16):

Proposition 1.9. Let V be a finite-dimensional space and Φ : V b V ÝÑ V b V be a linear
map. We consider Φ˚ : V ˚b V ˚ “ pV b V q˚ ÝÑ pV b V q˚ “ V ˚b V ˚. Then pV,Φq is an `EAS
[respectively an `CEDS, a dual `CEDS] if, and only if, pV ˚,Φ˚q is an `EAS [respectively a dual
`CEDS, an `CEDS].

Example 1.5. Let Ω be a finite EAS and A “ pKΩ,Φq be its linearization. The dual A˚ is
identified with the space KΩ of maps from Ω to K, with the dual basis pBαqαPΩ of the basis Ω of
KΩ. Then, for any α, β P Ω:

Φ˚pBα b Bβq “
ÿ

pγ,BqPφ´1pα,βq

Bγ b Bδ.

If pΩ,Φq is degenerate, this is not the linearization of an EAS.

2 Generalized prelie algebras

2.1 Definition

Definition 2.1. Let A be a vector space, Φ : AbA ÝÑ AbA be a linear map, and let pV, ˝q be
a family such that V is a vector space and ˝ is a linear map:

˝ :

$

&

%

A ÝÑ LpV b V, V q

a ÝÑ ˝a :

"

V b V ÝÑ V
v b w ÝÑ v ˝a w.

We shall say that pV, ˝q is a Φ-prelie algebra if, for any x, y, z P V , for any a, b P A, using
Sweedler’s notation (17) for Φ:

x ˝a py ˝b zq ´
ÿ

px ˝a2Źb2 yq ˝a1Ñb1 z “ y ˝b px ˝a zq ´
ÿ

py ˝b2Źa2 xq ˝b1Ña1 z. (18)

We denote by PreLieΦ the operad of Φ-prelie algebras.
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Example 2.1. 1. Let pΩ,Ñ,Źq be a CEDS and pA,Φq its linearization. We obtained a dis-
cretized version of generalized prelie algebras: for any α P Ω, V is given a product
˝α : V b V ÝÑ V , such that, for any α, β P Ω, for any x, y, z P V ,

x ˝α py ˝β zq ´ px ˝αŹβ yq ˝αÑβ z “ y ˝β px ˝α zq ´ py ˝βŹα xq ˝βÑα z.

For example:

• If Ω is a set, taking EASpΩq (which is a CEDS), we obtain Ω-matching prelie algebras
of [9, 20].

• If pΩ, ‹q is a commutative semigroup, taking EASpΩ, ‹q (which is a CEDS), we obtain
Ω-family prelie algebras of [1, 18].

2. Let us take A “ K and let us put ‚ “ ˝1. If Φp1b 1q “ 1b 1, then (18) becomes

x ‚ py ‚ zq ´ px ‚ yq ‚ z “ y ‚ px ‚ zq ´ py ‚ xq ‚ z.

In other words, Φ-prelie algebras are (left) prelie algebras. f Φp1 b 1q “ 0, then (18)
becomes

x ‚ py ‚ zq “ y ‚ px ‚ zq.

In other words, Φ-prelie algebras are nonassociative permutative (briefly, NAP) algebras,
as considered by [16].

2.2 Structure on rooted trees

Let A be a vector space and D be a set.

Notations 2.1. 1. Let us denote by T the set of rooted trees:

T “

#

, , , , , , , , , , , , , , , , ...

+

.

We denote by TA,D the set of D-decorated and A-typed trees, that is to say rooted trees T
with a map d : V pT q ÝÑ D from the set of vertices of T to D and a map t : EpT q ÝÑ A
from the set of edges of T to A, the type being linear in each edge: for example, if gA,D, if
d1, d2, d3 P D, a, a1, b, b1 P A and λ, µ P K,

GFED@ABCd2

a`λa1 @@
@@

@@
@@

@
GFED@ABCd3

b`µb1

GFED@ABCd1

“ GFED@ABCd2

a @@
@@

@@
@@

@
GFED@ABCd3

b

GFED@ABCd1

` λ GFED@ABCd2

a1 @@
@@

@@
@@

@
GFED@ABCd3

b

GFED@ABCd1

` µ GFED@ABCd2

a @@
@@

@@
@@

@
GFED@ABCd3

b1

GFED@ABCd1

` λµ GFED@ABCd2

a1 @@
@@

@@
@@

@
GFED@ABCd3

b1

GFED@ABCd1

.

We denote by gA,D the vector space generated by TA,D, the trees being linear in the type
of each edge. More formally, denoting by TD the set of isoclasses of rooted trees decorated
by D,

gA,D “
à

TPTD
KT bAutpT q

â

ePEpT q

A,

where AutpT q acts trivially on KT and by permutation of the tensors on
â

ePEpT q

A.
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2. If T1, . . . , Tk P TA,D, d P D and a1, . . . , ak P A, we denote by Bdpa1T1, . . . , akTkq the tree
obtained by grafting T1, . . . , Tk on a common root decorated by d; the edge relating the
root to the root of Ti in the process is of type ai for any i. This defines for any d P D a
map Bd : SpAb gA,Dq ÝÑ gA,D. For example, if d1, d2, d3, d P D and a, b, c P A:

Bd

¨

˚

˚

˚

˚

˝

a GFED@ABCd1 , b

GFED@ABCd3

c

GFED@ABCd2

˛

‹

‹

‹

‹

‚

“

GFED@ABCd3

c

GFED@ABCd1

a
@@

@@
@@

@@
@

GFED@ABCd2

b

?>=<89:;d

.

Generalizing the construction of free prelie algebras of [5], we obtain:

Theorem 2.2. Let Φ : AbA ÝÑ AbA be a map. We define products ˝a : gA,DbgA,D ÝÑ gA,D
for any a P A in an inductive way: for any T, T1, . . . , Tk P TA,D, for any a, a1, . . . , ak P A,

T ˝a Bdpa1T1, . . . , akTkq “ BdpaT, a1T1, . . . , akTkq

`

k
ÿ

i“1

ÿ

Bdpa1T1, . . . , ai´1Ti´1, pa
1 Ñ a1iqT ˝a2Źa2i Ti, ai`1Ti`1, . . . , akTkq.

Then, for any set D, pgA,D, ˝q is a Φ-prelie algebra if, and only if, pA,Φq is an `CEDS. Moreover,
if this holds, then gA,D is the free Φ-prelie algebra generated by trees ?>=<89:;d with one vertex, decorated
by an element d of D.

Example 2.2. Let a, b P A and X,Y, Z P D. Then:

GFED@ABCX ˝a GFED@ABCY “

GFED@ABCX

a

GFED@ABCY

, GFED@ABCX ˝a

?>=<89:;Z
b

GFED@ABCY

“

GFED@ABCX

a @@
@@

@@
@@

@
?>=<89:;Z
b

GFED@ABCY

`
ÿ

GFED@ABCX

a2Źb2

?>=<89:;Z
a1Ñb1

GFED@ABCY

.
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Proof. ùñ. Let D “ tX,Y, Zu be a set of cardinality 3. In gA,D:

GFED@ABCX ˝a

¨

˚

˚

˚

˝

GFED@ABCY ˝b

?>=<89:;Z
c

GFED@ABCX

˛

‹

‹

‹

‚

“

GFED@ABCX

a AA
AA

AA
AA

A
GFED@ABCY

b

?>=<89:;Z
c

~~
~~
~~
~~
~

GFED@ABCX

`
ÿ

GFED@ABCX

a2Źb2

GFED@ABCY

a1Ñb1 AA
AA

AA
AA

A
?>=<89:;Z
c

GFED@ABCX

`
ÿ

GFED@ABCX

a2Źc2

GFED@ABCY

b @@
@@

@@
@@

@
?>=<89:;Z
a1Ñc1

GFED@ABCX

`
ÿ

GFED@ABCY

b2Źc2

GFED@ABCX

a AA
AA

AA
AA

A
?>=<89:;Z
b1Ñc1

GFED@ABCX

`
ÿÿ

GFED@ABCX

a2Źpb1Ñc1q2 AA
AA

AA
AA

A
GFED@ABCY

b2Źc2

?>=<89:;Z
a1Ñpb1Ñc1q

GFED@ABCX

`
ÿÿÿ

GFED@ABCX

pa2Źpb1Ñc1q2q2Źpb2Źc2q2

GFED@ABCY

pa2Źpb1Ñc1q2q1Ñpb2Źc2q1

?>=<89:;Z
a1Ñpb1Ñc1q1

GFED@ABCX

,

whereas:

´ GFED@ABCX ˝a2Źb2
GFED@ABCY

¯

˝a1Ñb1

?>=<89:;Z
c

GFED@ABCX

“
ÿ

GFED@ABCX

a2Źb2

GFED@ABCY

a1Ñb1 AA
AA

AA
AA

A
?>=<89:;Z
c

GFED@ABCX

`
ÿÿ

GFED@ABCX

a2Źb2

GFED@ABCY

pa1Ñb1q2Źc2

?>=<89:;Z
pa1Ñb1q1Ñc1

GFED@ABCX

.

Hence, relation (18) gives, by identification of the types of the types of the edges of the trees of
the form

GFED@ABCX

AA
AA

AA
AA

A
GFED@ABCY

?>=<89:;Z

GFED@ABCX

and

GFED@ABCX

GFED@ABCY

?>=<89:;Z

GFED@ABCX

,

the relation (15) for the first one, up to the permutation of b and c, and (14) for the second one.
So A is an `CEDS.
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ðù. Let us prove (18) for x, y and z trees, by induction on the number of vertices n of z.
We put z “ Bdpa1T1, . . . , akTkq. Then:

x ˝a py ˝b zq “ Bdpax, b, y, a1T1, . . . , akTkq `
ÿ

Bdppa
1 Ñ b1qpx ˝a2Źb2 yq, a1T1, . . . , akTkq

`

k
ÿ

i“1

ÿ

Bdpby, a1T1, . . . , pa
1 Ñ a1iqpx ˝a2Źa2i Tiq, . . . , akTkq

`

k
ÿ

i“1

ÿ

Bdpax, a1T1, . . . , pb
1 Ñ a1iqpy ˝b2Źa2i Tiq, . . . , akTkq

`

k
ÿ

i“1

ÿÿ

Bdpa1T1, . . . , ppa
1 Ñ pb1 Ñ a1iq

1qx ˝a2Źpb1Ña1iq2 py ˝b2Źa2i Tiqq, . . . , akTkq

`
ÿ

i‰j

ÿÿ

Bdpa1T1, . . . , pa
1 Ñ a1iqpx ˝a2Źa2i Tiq, . . . , pb

1 Ñ a1jqpy ˝b2Źa2j Tjq, . . . , akTkq,

and
ÿ

px ˝a2Źb2 yq ˝a1Ñb1 z

“
ÿ

Bdppa
1 Ñ b1qpx ˝a2Źb2 yq, a1T1, . . . , akTkq

`

k
ÿ

i“1

ÿÿ

Bdpa1T1, . . . , ppa
1 Ñ b1q1 Ñ a1iqpx ˝a2Źb2 yq ˝pa1Ñb1q2Źa2i Tiq, . . . , akTkq.

Hence:

x ˝a py ˝b zq ´
ÿ

px ˝a1Źb1 yq ˝a2Ñb2 z “
k
ÿ

i“1

Bdpa1T1, . . . , ωpax, by, aiTiq, . . . , akTkq (19)

` terms symmetric in pax, byq,

where

ωpax, by, cz1q “
ÿÿ

a1 Ñ pb1 Ñ c1q1x ˝a2Źpb1Ñc1q2 py ˝b2Źc2 z
1q

´
ÿÿ

pa1 Ñ b1q1 Ñ c1px ˝a2Źb2 yq ˝pa1Ñb1q2Źc2 z
1.

If n “ 0, then k “ 0, so (18) is satisfied from (19). Otherwise, we put

u “
ÿÿ

a1 Ñ pb1 Ñ c1q1 b a2 Ź pb1 Ñ c1q2 b b2 Ź c2.

Then:

Idb Φpuq “
ÿÿ

pa1 Ñ b1q1 Ñ c1 b pa1 Ñ b1q2 Ź c2 b a2 Ź b2.

Appyling the induction hypothesis on z1 “ Ti, we obtain that

ωpax, by, aiTiq “ 0.

So by (19), (18) is satisfied for px, yzq. Hence, gA,D is indeed a Φ-prelie algebra.

The proof of its freeness is similar to the proof of [5], see also [9].

As the number of indexed rooted trees with n vertices is nn´1, see sequence A000169 of the
OEIS [19]:

Corollary 2.3. If pA,Φq is a finite dimensional `CEDS, then for any n ě 1:

dimpPreLieΦpnqq “ nn´1 dimpAqn´1.
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2.3 Links with prelie algebras

Proposition 2.4. Let A be a vector space, Φ : A b A ÝÑ A b A be a linear map and V be a
vector space with a map

˝ :

$

&

%

A ÝÑ hompV b V, V q

a ÝÑ ˝a :

"

V b V ÝÑ V
xb y ÝÑ x ˝a y.

We define a product on Ab V by:

@x, y P V, @a, b P A, ax ‚ by “
ÿ

a1 Ñ b1x ˝a2Źb2 y.

Then:

1. If pA,Φq is an `CEDS and pA, ˝q is a Φ-prelie algebra, then pAb V, ‚q is a prelie algebra.

2. If pA,Φq is a nondegenerate `CEDS and pA b V, ‚q is a prelie algebra, then pA, ˝q is a
Φ-prelie algebra.

3. If, for the free Φ-prelie algebra gA,D, where D contains at least three elements, pAbgA,D, ˝q
is a prelie algebra, then pA,Φq is an `CEDS.

Proof. Let a, b, c P A and x, y, z P V . Then:

pax ‚ byq ‚ cz “
ÿÿ

pa1 Ñ b1q1 Ñ c1px ˝a2Źb2 yq ˝pa1Ñb1q2Źc2 z,

ax ‚ pby ‚ czq “
ÿÿ

a1 Ñ pb1 Ñ c1q1x ˝a2Źpb1Ñc1q2 py ˝b2Źc2 zq,

pby ‚ axq ‚ cz “
ÿÿ

pb1 Ñ a1q1 Ñ c1py ˝b2Źa2 xq ˝pb1Ña1q2Źc2 z,

by ‚ pax ‚ czq “
ÿÿ

b1 Ñ pa1 Ñ c1q1y ˝b2Źpa1Ñc1q2 px ˝a2Źc2 zq.

1. We obtain:

pax ‚ byq ‚ cz ´ ax ‚ pby ‚ czq

“
ÿÿ

pa1 Ñ b1q1 Ñ c1px ˝a2Źb2 yq ˝pa1Ñb1q2Źc2 z

´
ÿÿ

a1 Ñ pb1 Ñ c1q1x ˝a2Źpb1Ñc1q2 py ˝b2Źc2 zq

“
ÿÿÿ

a1 Ñ pb1 Ñ c1q1x ˝pa2Źpb1Ñc1q2q2Źpb2Źc2q2 yq ˝pa2Źpb1Ñc1q2q1Ñpb2Źc2q1 z by (14)

´
ÿÿ

a1 Ñ pb1 Ñ c1q1x ˝a2Źpb1Ñc1q2 py ˝b2Źc2 zq

“
ÿÿÿ

b1 Ñ pa1 Ñ c1q1px ˝pa2Źc2q2Źpb2Źpa1Ñc1q2q2 yq ˝pa2Źc2q1Ñpb2Źpa1Ñc1q2q1 z by (14)

´
ÿÿ

b1 Ñ pa1 Ñ c1q1x ˝a2Źc2 py ˝b2Źpa1Ñc1q2 zq

“
ÿÿÿ

b1 Ñ pa1 Ñ c1q1py ˝pb2Źpa1Ñc1q2q2Źpa2Źc2q2 xq ˝pb2Źpa1Ñc1q2q1Ñpa2Źc2q1 z by (5)

´
ÿÿ

b1 Ñ pa1 Ñ c1qy ˝b2Źpa1Ñc1q2 px ˝a2Źc2 zq

“ pby ‚ axq ‚ cz ´ by ‚ pax ‚ czq.

So pAb V, ‚q is prelie.

2. Let a1, b1, c1 P V . As Φ is surjective, there exists ab bb c P Ab3, such that

pΦb Idq ˝ pIdb Φqpab bb cq “ a1 b b1 b c1,

or, with Sweedler’s notation:
ÿÿ

a1 Ñ pb1 Ñ c1q1 b a2 Ź pb1 Ñ c1q2 b b2 Ź c2 “ a1 b b1 b c1.
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The prelie relation gives:

pax ‚ byq ‚ cz ´ ax ‚ pby ‚ czq

“
ÿÿ

a1px ˝a2Źb2 yq ˝pa1Ñb1q2Źc2 z ´ a1x ˝b1 py ˝c1 zq

“
ÿ

a1px ˝b21Źc21 yq ˝b11Ñc11 z ´ a1x ˝c1 py ˝b1 zq by (14),

“ pby ‚ axq ‚ cz ´ by ‚ pax ‚ czq

“
ÿ

a1py ˝c21Źb21 xq ˝c11Ñb11 z ´ a1y ˝b1 px ˝c1 zq.

We deduce (18).

3. Let D “ tx, y, zu be a set of cardinality 3 and let V “ gA,D be the free Φ-prelie algebra
generated by x, y, z. Then, for any a, b, c P A:

ÿÿ

pa1 Ñ b1q1 Ñ c1px ˝a2Źb2 yq ˝pa1Ñb1q2Źc2 z

´
ÿÿ

a1 Ñ pb1 Ñ c1q1x ˝a2Źpb1Ñc1q2 py ˝b2Źc2 zq

´
ÿÿ

pb1 Ñ a1q1 Ñ c1py ˝b2Źa2 xq ˝pb1Ña1q2Źc2 z

`
ÿÿ

b1 Ñ pa1 Ñ c1q1y ˝b2Źpa1Ñc1q2 px ˝a2Źc2 zq “ 0.

Let R be the space of relations defining Φ-prelie algebras, seen as a subspace of the free operad
generated by A, concentrated in degree 2. We deduce that the following element belongs to
AbR:

U “
ÿÿ

pa1 Ñ b1q1 Ñ c1px ˝a2Źb2 yq ˝pa1Ñb1q2Źc2 z

´
ÿÿ

a1 Ñ pb1 Ñ c1q1x ˝a2Źpb1Ñc1q2 py ˝b2Źc2 zq

´
ÿÿ

pb1 Ñ a1q1 Ñ c1py ˝b2Źa2 xq ˝pb1Ña1q2Źc2 z

`
ÿÿ

b1 Ñ pa1 Ñ c1q1y ˝b2Źpa1Ñc1q2 px ˝a2Źc2 zq.

Necessarily, by identification of elements of the form x˝py˝zq, px˝yq˝z, y˝px˝zq and py˝xq˝z,
we obtain relations (14) and (15). So pA,Φq is an `CEDS.

2.4 Combinatorial description of the generalized prelie products on trees

Definition 2.5. Let pA,Φq be an `CEDS, and D be a set. Let T, T 1 P TA,D, x be a vertex of T 1

and a P A. We denote by T ˛pxqΦ,a T
1 the element of gA,D obtained by the following process:

1. Graft T on the vertex x of T 1. This process add an edge e which is of type a.

2. Let e1, . . . , ek be the edges of T 1 on the path between the root of T 1 and the vertex x, and
a1, . . . , ak their type. Compute

p
ÿ

i“1

a11,ib. . .ba
1
k,iba

1
i “ pId

bpk´1qbΦq˝pIdbpk´2qbΦbIdq˝. . .˝pΦbIdbpk´1qqpaba1b. . .bakq,

and take the sum for 1 ď i ď p of trees obtained by typing e by a1i and ej by a
1
j,i for any j.
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Example 2.3. Let us consider the following trees:

T “ GFED@ABCd1 , T 1 “

GFED@ABCd2

c

GFED@ABCd3

b

GFED@ABCd4

.

Then:

T ˛
pd4q

Φ,a T
1 “

GFED@ABCd2

c

GFED@ABCd1

a @@
@@

@@
@@

@
GFED@ABCd3

b

GFED@ABCd4

, T ˛
pd3q

Φ,a T
1 “

ÿ

GFED@ABCd1

a2Źb2 @@
@@

@@
@@

@
GFED@ABCd2

c

GFED@ABCd3

a1Ñb1

GFED@ABCd4

, T ˛
pd2q

Φ,a T
1 “

ÿÿ

GFED@ABCd1

pa2Źb2q2Źc2

GFED@ABCd2

pa2Źb2q1Ñc1

GFED@ABCd3

a1Ñb1

GFED@ABCd4

.

Proposition 2.6. Let T, T 1 P TA,D and a P A. Then, in gA,D:

T ˝a T
1 “

ÿ

xPV pT q1

T ˛
pxq
Φ,a T

1.

Proof. We proceed by induction on the number n of vertices of T 1. If n “ 1 let us put T 1 “ ?>=<89:;d .
Then:

T ˝a T
1 “ BdpaT q “ T ˛

prootpT 1qq
Φ,a T 1.

Let us assume the result at all ranks ă n. We put T 1 “ Bdpa1T1, . . . , akTkq. Appying the
induction hypothesis to T1, . . . , Tk, we obtain:

T ˝a T
1 “ BdpaT, a1T1, . . . , akTkq `

k
ÿ

i“1

ÿ

xPV pTiq

ÿ

Bdpa1T1, . . . , pa
1 Ñ a1iqT ˛

pxq
Φ,a2Źa2i

Ti, . . . , akTkq
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

T˛
pxq
Φ,aT

1

“ T ˛
prootpT 1qq
Φ,a T 1 `

k
ÿ

i“1

ÿ

xPV pTiq

T ˛
pxq
Φ,a T

1

“
ÿ

xPV pT 1q

T ˛
pxq
Φ,a T

1.

Corollary 2.7. Let pA,Φq be an `CEDS and D a nonempty set. We denote by g1A,D the prelie

subalgebra of Ab gA,D generated by the elements a GFED@ABCX , with a P A and a P D.

1. The following conditions are equivalent:

• g1A,D “ Ab gA,D.

• Φ is surjective.
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2. The following conditions are equivalent:

• The prelie algebra g1A,D is free.
• Φ is injective.

Proof. 1. ùñ. Let X P D and a, b P A. Then:

a GFED@ABCX ˝ b GFED@ABCX “
ÿ

a1 Ñ b1

GFED@ABCX

a2Źb2

GFED@ABCX

.

Let us assume that g1A,D “ Ab gA,D. Let a, b P A. Because of the graduation by the number of
vertices, there exist elements ci, di P A such that

k
ÿ

i“1

ci GFED@ABCX ˝ di GFED@ABCX “ a

GFED@ABCX

b

GFED@ABCX

.

By the preceding computation:

k
ÿ

i“1

ÿ

c1i Ñ d1i

GFED@ABCX

c2iŹd
2
i

GFED@ABCX

“ a

GFED@ABCX

b

GFED@ABCX

.

Consequently:

Φ

˜

k
ÿ

i“1

ci b di

¸

“ ab b,

so Φ is surjective.

1. ðù. Let us denote by gAbKD be the prelie algebra of rooted trees decorated by AbKD,
the decorations being linear in each vertex, and let ψ : gAbD ÝÑ Ab gA,D be the unique prelie
algebra morphism sending the tree with one vertex decorated by a b d, with a P A and d P D,
to a ?>=<89:;d . We plan to prove that ψ is surjective. Let us prove that for any a P A, any tree
T , aT P Impψq. We proceed by induction on the number n of vertices of T . If n “ 1, it is
obvious. Otherwise, let us put T “ Bdpa1T1, . . . , akTkq. We proceed by induction on k. This is
obvious if k “ 0. Otherwise, let us put x “ T1 and Y “ Bdpa2T2, . . . , akTkq. By the induction
hypothesis on the number of vertices, x and y belong to Impψq. As Φ is surjective, let us choose
ř

ci b di P AbA such that Φp
ř

ci b diq “ ab a1. Then:
ÿ

cix ˝ diy “ T ` a sum of trees with n vertices and with k ´ 1 trees born from the root.

By the induction hypothesis on k, this sum belongs to Impψq, so T P Impψq.

2. ùñ. If g1A,D is free, then because of the graduation, it is freely generated by its elements

a GFED@ABCX . Let us assume that Φp
ř

ai b biq “ 0. Then, for any d P D:

ÿ

ai b ?>=<89:;d ˝ bi ?>=<89:;d “
ÿÿ

a1i Ñ b1i

?>=<89:;d
a2iŹb

2
i

?>=<89:;d
“ 0.
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By freeness of Ab gA,D,
ř

ai b bi “ 0, so φ is injective.

2. ðù. We now show that ψ is injective. The combinatorial description of the generalized
prelie product implies by a direct induction that for any tree T which vertices are decorated
by A b KD, ψpT q is a sum of terms a b T 1, where T 1 is a tree with the same form as T , the
decorations by D being conserved, and a and the types of the edges of T 1 being obtained from
the decoration by elements of A by iterated applications of Φ, depending uniquely of the form
of T . As Φ is injective, ψ is injective.

2.5 Combinatorial description of the underlying operad

Let pA,Φq be an `CEDS. The description of the free Φ-prelie algebras induce a description of
this operad. We shall use the formalism of operads in the category of species. For any set D,
PreLieΦrDs is the space generated by the set of trees TArDs A-typed, the types being linear on
each edge, and which set of vertices is D. The operadic composition is given in the following
way: if D and D1 are sets, d P D, T P TArDs and T 1 P TArD1s, let us consider the unique Φ-prelie
algebra morphism ψ : gA,D ÝÑ gA,D\D1ztdu sending GFED@ABCX on itself if X ‰ d and on T 1 otherwise;
then T ˝d T 1 “ ψpT q. From the combinatorial description of the prelie products with graftings,
we deduce the following description of this operadic composition:

• Let us denote by T1, . . . , Tk be the subtrees of T born from the vertex d of T , and by ai
the type of the edge relating this vertex to the root of Ti for any i.

• Denote T0 “ T zpT1\ . . .\Tkq the subtree of T obtained by deleting the subtrees T1, . . . , Tk
and by T0 ˚d T

1 the tree obtained by identification of the vertex d of T with the root of T 1.

Then:

T ˝d T
1 “

ÿ

d1,...dkPV pT 1q

T1 ˛
pd1q

Φ,a1
p. . . Tk ˛

pdkq
Φ,ak

pT0 ˚d T
1q . . .q.

The product ˝a P PreLieΦp2q is represented by the tree

˝a “

?>=<89:;1

a

?>=<89:;2

.

The unit is the tree I “ ?>=<89:;1 P PreLieΦp1q.
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Example 2.4. If x, y, z P D, u, v, w P D1, and a, b, c, d P A:

?>=<89:;y
a ??

??
??

??
?

?>=<89:;z
b

?>=<89:;x
˝x

?>=<89:;w
d

?>=<89:;v
c

?>=<89:;u

“

?>=<89:;w
d

?>=<89:;y
a @@

@@
@@

@@
@

?>=<89:;v
c

?>=<89:;z
b

~~
~~
~~
~~
~

?>=<89:;u

`
ÿ

?>=<89:;w
d

?>=<89:;z
b2Źc2

~~
~~
~~
~~
~

?>=<89:;y
a @@

@@
@@

@@
@

?>=<89:;v
b1Ñc1

?>=<89:;u

`
ÿÿ

?>=<89:;z
pb2Źc2q2Źd2

?>=<89:;w
pb2Źc2q1Ñd1

?>=<89:;y
a @@

@@
@@

@@
@

?>=<89:;v
b1Ñc1

?>=<89:;u

`
ÿ

?>=<89:;y
a2Źc2 @@

@@
@@

@@
@

?>=<89:;w
d

?>=<89:;v
a1Ñc1

?>=<89:;z
b

}}
}}
}}
}}
}

?>=<89:;u

`
ÿÿ

?>=<89:;y
a2Źpb1Ñc1q2 @@

@@
@@

@@
@

?>=<89:;w
d

?>=<89:;z
b2Źc2

~~
~~
~~
~~
~

?>=<89:;v
a1Ñpb1Ñc1q1

?>=<89:;u

`
ÿÿ

?>=<89:;z
pb2Źc2q2Źd2

?>=<89:;y
a2Źpb1Ñc1q2 @@

@@
@@

@@
@

?>=<89:;w
pb2Źc2q1Ñd1

?>=<89:;v
a1Ñpb1Ñc1q1

?>=<89:;u

`
ÿÿ

?>=<89:;y
pa2Źc2q2Źd2

?>=<89:;w
pa2Źc2q1Ñd1

?>=<89:;v
a1Ñc1

?>=<89:;z
b

}}
}}
}}
}}
}

?>=<89:;u

`
ÿÿÿ

?>=<89:;y
pa2Źpb1Ñc1q2q2Źd2

?>=<89:;w
pa2Źpb1Ñc1q2q1Ñd1

?>=<89:;z
b2Źc2

}}
}}
}}
}}
}

?>=<89:;v
a1Ñpb1Ñc1q1

?>=<89:;u

`
ÿÿÿÿ

?>=<89:;y
pa2Źpb1Ñc1q2q2Źppb2Źc2q1Ñd1q2 @@

@@
@@

@@
@

?>=<89:;z
pb2Źc2q2Źd2

?>=<89:;w
pa2Źpb1Ñc1q2q1Ñppb2Źc2q1Ñd1q1

?>=<89:;v
a1Ñpb1Ñc1q1

?>=<89:;u

.
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Remark 2.1. If A “ K, we can forget about the types of the edges and we obtain operadic
structures on rooted trees. If Φp1b 1q “ 1b 1, we recover the description of the operad of prelie
algebras as done in [5]. If Φp1b1q “ 0, we recover the description of the operad of NAP algebras
of [16].

2.6 Pre-Lie and non-associative permutative products

We now look for prelie and non-associative permutative products in Φ-prelie algebras. More
formally, we look for operad morphisms from the operad PreLie of prelie algebras or from the
operad NAP of non-associative permutative (briefly, NAP) algebras [16] to the operad PreLieΦ.
Recall that the operad PreLie is generated by ˝ P PreLiep2q, with the relation

p ˝ pI, pq ´ p ˝ pp, Iq “ p ˝ pI, pqp12q ´ p ˝ pp, Iqp12q,

whereas the operad NAP is generated by ˝ P NAPp2q, with the relation

p ˝ pI, pq “ p ˝ pI, pqp12q.

Let us first recall this definition of [13]:

Definition 2.8. Let pA,Φq be an `EAS, λ P K and a P A. We shall say that a is a special vector
of pA,Φq of eigenvalue λ if Φpab aq “ λab a.

We prove in [13, Lemma 4.4] that if pA,Φq has a nonzero special vector of eigenvalue λ, then
λ “ 0 or 1.

Proposition 2.9. Let pA,Φq be an `CEDS.

1. The prelie products of PreLieΦ are the products ˝a, where a is a special vector of pA,Φq
of eigenvalue 1.

2. The NAP products of PreLieΦ are the products ˝a, where a is a special vector of pA,Φq of
eigenvalue 0.

Proof. We use the description of PreLieΦ in terms of typed rooted trees. From the combinatorial
description of the operad PreLieΦ, for any a, b P A:

˝a ˝ pI, ˝bq “

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;2

b

?>=<89:;3

`
ÿ

?>=<89:;1

a2Źb2

?>=<89:;2

a1Ñb1

?>=<89:;3

, ˝a ˝ p˝b, Iq “

?>=<89:;1

a

?>=<89:;2

b

?>=<89:;3

.
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Let p “ ˝a ` ˝
op
b P PreLieΦp2q, with a, b P A. Then:

p ˝ pI, pq “

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;2

a

?>=<89:;3

`
ÿ

?>=<89:;1

a2Źa2

?>=<89:;2

a1Ña1

?>=<89:;3

`

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;3

b

?>=<89:;2

`
ÿ

?>=<89:;1

a2Źb2

?>=<89:;3

a1Ñb1

?>=<89:;2

`

?>=<89:;2

a

?>=<89:;3

b

?>=<89:;1

`

?>=<89:;3

b

?>=<89:;2

b

?>=<89:;1

,

p ˝ pp, Iq “

?>=<89:;1

a

?>=<89:;2

a

?>=<89:;3

`

?>=<89:;2

b

?>=<89:;1

a

?>=<89:;3

`

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;3

b

?>=<89:;2

`
ÿ

?>=<89:;3

b2Źa2

?>=<89:;1

b1Ña1

?>=<89:;2

`

?>=<89:;2

b >>
>>

>>
>>

>
?>=<89:;3

b

?>=<89:;1

`
ÿ

?>=<89:;3

b2Źb2

?>=<89:;2

b1Ñb1

?>=<89:;1

.

1. In the prelie relation p ˝ pI, pq ´ p ˝ pp, Iq “ p ˝ pI, pqp12q ´ p ˝ pp, Iqp12q, let us identify the
type of the edges of the trees of the form

?>=<89:;1

>>
>>

>>
>>

>
?>=<89:;3

?>=<89:;2

and

?>=<89:;1

?>=<89:;2

?>=<89:;3

.

The first one gives a b b ´ a b b “ 0 ´ b b b, so b b b “ 0 and consequently b “ 0. The second
one gives

ř

a1 Ñ a1 b a2 Ź a2 ´ a b a “ 0 ´ a b b “ 0, so Φpa b aq “ a b a. Conversely, if
ab a “ Φpab aq and p “ ˝a:

p ˝ pI, pq ´ p ˝ pp, Iq “

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;2

a

?>=<89:;3

`
ÿ

?>=<89:;1

a2Źa2

?>=<89:;2

a1Ña1

?>=<89:;3

´

?>=<89:;1

a

?>=<89:;2

a

?>=<89:;3

“

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;2

a

?>=<89:;3

,

which is invariant under the action of p12q. So ˝a is prelie.

2. In the NAP relation p ˝ pI, pq “ p ˝ pI, pqp12q, let us identify the trees of the form

?>=<89:;3

?>=<89:;2

?>=<89:;1

and

?>=<89:;1

?>=<89:;2

?>=<89:;3

.
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The first one gives bb b “ 0, so b “ 0. The second one gives
ř

a1 Ñ a1ba2Źa2 “ 0. Conversely,
if Φpab aq “ 0 and p “ ˝a:

p ˝ pI, pq “ p “

?>=<89:;1

a >>
>>

>>
>>

>
?>=<89:;2

a

?>=<89:;3

,

which is invariant under the action of p12q. So ˝a is non-associative permutative.

Example 2.5. Let pΩ,Ñ,Źq be an EAS and pKΩ,Φq be its linearization. Let a “
ÿ

αPΩ

aαα P KΩ.

Then a is a special vector of eigenvalue 1 if, and only if:

@α1, β1 P Ω,
ÿ

α,βPΩ,
pαÑβ,αŹβq“pα1,β1q

aαaβ “ aα1aβ1 .

It is a special vector of eigenvalue 0 if, and only if:

@α1, β1 P Ω,
ÿ

α,βPΩ,
pαÑβ,αŹβq“pα1,β1q

aαaβ “ 0.

As a consequence, if a is a special vector of pA,Φq of eigenvalue 1, then pgA,D, ˝aq is a pre-Lie
algebra. Let us study the structure of this pre-Lie algebra in the particular case where a is a left
unit.

Proposition 2.10. Let a be a nonzero special vector of A of eigenvalue 1 and let f P A˚ such
that fpaq “ 1. The pre-Lie algebra pgA,D, ˝aq is freely generated by the space of trees T such that
any edge born from the root of T is typed by an element of Kerpfq.

Proof. We fix a basis peiqiPI 1 of Kerpfq and fix a total order ď on I 1. Putting I “ I \ t8u and
e8 “ a, we obtain a basis peiqiPI of A, and I is totally ordered, 8 being its greatest element.
We also fix a total order ď on D.

A basis of gA,D is given by the set T of rooted trees which vertices are decorated by D and
the edges are typed by elements of the basis peiqiPI . For any n ě 1, we denote by Tn the set of
elements of T with n vertices. We now define a total order on Tn in the following way.

• If n “ 1, the considered trees are reduced to a single vertex decorated by an element of D.
The total order of D induced a total order on T1.

• Let us assume that the total order is totally defined on Tk for any k ă n. We then define
a total order on tei, i P Iu ˆ p\kănTkq in the following way: eiT 1 ă ejT

1 if one of the
following condition holds:

– i ă j in I.

– i “ j and T has strictly less vertices thant T 1.

– i “ j, T and T 1 have the same number of vertices p and T ă T 1 in Tp.

Let us consider T, T 1 P Tn which we write T “ Bdpa1T1, . . . , akTkq and T 1 “ Bd1pa
1
1T
1
1, . . . , a

1
lT
1
l q,

with:

a1T1 ě . . . ě akTk, a11T
1
1 ě . . . ě a1kT

1
k.

We shall say that T ă T 1 in Tn if one of the following condition holds:
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– d ă d1 in D.
– d “ d1 and k ă l.
– d “ d1, k “ l and there exists i P t1, . . . , ku such that

a1T1 “ a11T
1
1, . . . , ai´1Ti´1 “ a1i´1T

1
i´1, aiTi ă a1iT

1
i .

We denote by T 1 the set of trees T P T , such that no edge born the root is typed by a “ e8.
A basis TT 1 of the free pre-Lie algebra gT 1 generated by T 1 is given by non-typed rooted trees T ,
which vertices are decorated by elements of T 1. There exists a unique pre-Lie algebra morphism
φ : pgT 1 , ˝q ÝÑ pgA,D, ˝aq sending any tree T P TT 1 with a single vertex decorated by T P T 1 to
the tree T . Let us consider a tree T “ BT 1pT1, . . . , Tkq P gT 1 , with T 1 “ Bdpa

1
1T
1
1, . . . , a

1
lT
1
l q P T 1.

φpT q is a nonzero linear span of trees with the same number of vertices, obtained by generalized
graftings of the decorations of T . We denote by πpT q the greatest of these trees for the the
total order defined earlier. In all the trees appearing in φpT q, the decoration of the root is the
decoration d of the root of T 1. If we consider a tree obtained by grafting trees of φpT1q, . . . , φpTkq
on the root of T 1, the fertility of the root is k ` l. If one of the trees of φpT1q, . . . , φpTkq is not
grafted on the root of T 1, the fertility of the root is ă k ` l. By definition of the total order, we
obtain that:

φpT q “ πpBdpaφpT1q, . . . , aφpTkq, a
1
1T
1
1, . . . , a

1
lT
1
l qq.

Up to a permutation, we can assume that πpT1q ě . . . ě πpTkq. Then any tree in φpT q is smaller
than BdpaπpT1q, . . . , aπpTkq, a

1
1T
1
1, . . . , a

1
lT
1
l q. Hence:

πpT q “ BdpaπpT1q, . . . , πpTkq, a
1
1T
1
1, . . . , a

1
lT
1
l q.

In other words, πpT q is obtained in the following process: for any vertex v of T which is not
the root, graft the decoration of v on the root of the decoration of the father of v. This defines
a bijection from the set TT 1 (basis of gT 1) to T (basis of gA,Dq. By triangularity of φ, φ is
bijective.

Remark 2.2. A similar order was used in [15] in free pre-Lie algebras in order to define and study
Gröbner-Shirshov bases on these objects.

3 Generalized permutative algebras

3.1 Definition and Koszul duality

Definition 3.1. Let pA,Φq be a dual `CEDS. An pA,Φq-permutative algebra is a pair pV, ˛q
where V is a vector space and

˛ :

$

&

%

A ÝÑ pV b V, V q

a ÝÑ ˛a :

"

V b V ÝÑ V
v b w ÝÑ v ˛a w,

such that for any x, y, z P V , for any a, b P A:

px ˛b yq ˛a z “
ÿ

x ˛a1ñb1 py ˛a2§b2 zq, (20)

x ˛a py ˛b zq “ y ˛b px ˛a zq, (21)

with Sweedler’s notation
Φpab bq “

ÿ

a1 ñ b1 b a2 § b2.

We denote by PermΦ the operad of pA,Φq-permutative algebras.

Proposition 3.2. Let pA,Φq be a finite-dimensional `CEDS. The Koszul dual of the quadratic
operad PreLieΦ is PermΦ˚ .
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Proof. For any vector space E, let us denote by FE the free operad generated by E Ď FE . As a
vector space, with tree-operadic notations:

FEp2q “

˜

1 2

b E

¸

à

˜

2 1

b E

¸

,

FEp3q “

¨

˝

1 2 3

b Eb2

˛

‚

à

¨

˝

1 3 2

b Eb2

˛

‚

à

¨

˝

2 1 3

b Eb2

˛

‚

à

¨

˝

2 3 1

b Eb2

˛

‚

à

¨

˝

3 1 2

b Eb2

˛

‚

à

¨

˝

3 2 1

b Eb2

˛

‚

à

¨

˝

1 2 3

b Eb2

˛

‚

à

¨

˝

1 3 2

b Eb2

˛

‚

à

¨

˝

2 1 3

b Eb2

˛

‚

à

¨

˝

2 3 1

b Eb2

˛

‚

à

¨

˝

3 1 2

b Eb2

˛

‚

à

¨

˝

3 2 1

b Eb2

˛

‚,

and the action of the symmetric groups is given by permutations on the indices on the leaves.
The composition is given by grafting on the leaves: for any a, b P E,

1 2

b a ˝1

1 2

b b “

1 2 3

b ab b,
1 2

b a ˝2

1 2

b b “

1 2 3

b ab b,

1 2

b a ˝1

2 1

b b “

2 1 2

b ab b,
1 2

b a ˝2

2 1

b b “

1 3 2

b ab b,

2 1

b a ˝1

1 2

b b “

3 1 2

b ab b,
2 1

b a ˝2

1 2

b b “

2 3 1

b ab b,

2 1

b a ˝1

2 1

b b “

3 2 1

b ab b,
2 1

b a ˝2

2 1

b b “

3 2 1

b ab b.

Moreover, if E is finite-dimensional, F˚E is identified with FE˚ with a pairing compatible with
the action of the symmetric groups, such that:

• For any operadic trees T , T 1 with two leaves, f P E˚ and a P E:

xT b f, T 1 b ay “ fpaqδT,T 1εT ,

with

T
1 2 2 1

εT 1 ´1

• For any operadic trees T , T 1 with three leaves, f, g P E˚ and a, b P E:

xT b f b g, T 1 b ab by “ fpaqgpbqδT,T 1εT ,

with

T

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

εT 1 ´1 ´1 1 1 ´1

T

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

εT ´1 1 1 ´1 ´1 1
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The operad PreLieΦ is the quotient of FA by the ideal I generated by

Xpab bq “

1 2 3

b ab b´

1 2 3

b Φpab bq ´

2 1 3

b bb a`

2 1 3

b Φpbb aq,

with a, b P Ω. As a vector space, Ip3q is of dimension 3 dimpAq2, and is generated by the
elements

Xpab bq,

Y pab bq “ Xpab bqp23q

“

1 3 2

b ab b´

1 3 2

b Φpab bq ´

3 1 2

b bb a`

3 1 2

b Φpbb aq,

Zpab bq “ Xpab bqp13q

“

3 2 1

b ab b´

3 2 1

b Φpab bq ´

2 3 1

b bb a`

2 3 1

b Φpbb aq,

with a, b P A. Recall that the Koszul dual PreLie!
Φ is the quotient of FA˚ by the ideal

generated by Ip3qK. For any f, g P A˚, we put:

X1pf, gq “

1 2 3

b f b g ´

1 2 3

b Φ˚pf b gq.

For any f, g P A˚, any a, b P A:

xX1pf b gq, Xpab bqy “ ´pf b gqpΦpab bq ` Φ˚pf b gqpab bq “ 0,

xX1pf b gq, Y pab bqy “ 0,

xX1pf b gq, Zpab bqy “ 0.

So X1pf b gq P Ip3q
K. As a consequence, we obtain a free S3-submodule of Ip3qK, generated by

the elements

X1pf b gq,

X2pf b gq “ X1pf b gq
p12q “

2 1 3

b f b g ´

2 1 3

b Φ˚pf b gq,

X3pf b gq “ X1pf b gq
p23q “

1 3 2

b f b g ´

1 3 2

b Φ˚pf b gq,

X4pf b gq “ X1pf b gq
p13q “

3 2 1

b f b g ´

3 2 1

b Φ˚pf b gq,

X5pf b gq “ X1pf b gq
p123q “

2 3 1

b f b g ´

2 3 1

b Φ˚pf b gq,

X6pf b gq “ X1pf b gq
p132q “

3 1 2

b f b g ´

3 1 2

b Φ˚pf b gq,

with f, g P A˚. For any f, g P A˚, we put:

X7pf b gq “

1 2 3

b f b g ´

2 1 3

b g b f.

For any f, g P A˚, any a, b P A:

xX7pf b gq, Xpab bqy “ ´fpaqgpbq ` gpbqfpaq “ 0,

xX7pf b gq, Y pab bqy “ 0,

xX7pf b gq, Zpab bqy “ 0.
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So X7pf b gq P Ip3qK. As a consequence, noticing that X7pf b gqp12q “ ´X7pg b fq, we obtain
a S3-submodule of Ip3qK, generated by the elements

X7pf b gq,

X8pf b gq “ X7pf b fq
p23q “

1 3 2

b f b g ´

3 1 2

b g b f,

X9pf b gq “ X7pf b fq
p13q “

3 2 1

b f b g ´

2 3 1

b g b f.

Let fi b gi P A˚ bA˚ such that
9
ÿ

i“1

Xipfi b giq “ 0.

Considering the terms

i j k

b f b g, with pi, j, kq P S3, we obtain that if 1 ď i ď 6, fi b gi “ 0.

Considering the terms

i j k

, we obtain that if 7 ď i ď 9, fi b gi “ 0. Hence, we have obtained
a submodule of Ip3qK of dimension 9 dimpV q2. Moreover:

dimpIp3qKq “ dimpFAp3qq ´ dimpIp3qq “ 12 dimpV q2 ´ 3 dimpV q2 “ 9 dimpV q2,

so the elements X1pf b fq and X7pf b gq, with f, g P A˚, generate Ip3qK, which gives the
description of PreLie!

Φ.

3.2 Free generalized permutative algebras

Proposition 3.3. Let pA,Φq be a dual `CEDS and V be a vector space. We define

CApV q “ SpAb V q b V.

Its elements will be denoted as linear spans of terms a1x1 . . . anxn | x, with n ě 0, a1, . . . , an P A
and x1, . . . , xn, x P V . Note that for any σ P Sn:

a1x1 . . . anxn | x “ aσp1qxσp1q . . . aσpnqxσpnq | x.

For any a P A, we define a product a product ˛a on CApV q by:

a1x1 . . . akxk | x ˛a b1y1 . . . blyk | y “
ÿ

a11x1 . . . a
1
kxka

1
k`1xy1 . . . blyk | y, (22)

with
ÿ

a11 b . . .b a
1
k`1 “

´

Idbpk´1q b Φ
¯

˝ . . . ˝
´

Φb Idbpk´1q
¯

pab a1 b . . .b akq.

Then pCApV q, ˛q is the free pA,Φq-permutative algebra generated by V .

Proof. Firstly, note that ˛a is well-defined, that is to say the result in (22) does not depend on
the order chosen on the aixi. For example, for k “ 2, taking b1 b b2 “ a2 b a1, by (16),

ÿ

b11 b b
1
2 b b

1
3 “ pIdb Φq ˝ pΦb Idqpab a2 b a1q

“
ÿÿ

a1 ñ a12 b pa
2 § a22q

1 ñ a11 b pa
2 § a22q

2 § a21

“
ÿÿ

pa2 § a21q
1 ñ a12 b a

1 ñ a11 b pa
2 § a21q

2 § a22,

so, in SpAb V q:
ÿ

a11x1a
1
2x2a

1
3x “

ÿ

b11x2b
1
2x1b

1
3x.
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Let us prove that CApV q is a pA,Φq-permutative algebra. Let us consider

X “ a1x1 . . . akxk | x, Y “ b1y1 . . . bkyk | y, Z “ c1z1 . . . cmzm | z.

Let a, b P A. Then:

pX ˛b Y q ˛a Z “
ÿ

a11x1 . . . a
1
kxka

1
k`1xb

1
1y1 . . . b

1
kllb

1
l`1yc1z1 . . . cmzm | z,

ÿ

X ˛a1ñb1 pY ˛a2§b2 Zq “
ÿ

a21x1 . . . a
2
kxka

2
k`1xb

2
1y1 . . . b

2
kllb

2
l`1yc1z1 . . . cmzm | z,

with:
ÿ

a11 b . . . a
1
k`1 b b

1
1 b . . .b b

1
l`1 “

´

Idbpk`lq b Φ
¯

˝ . . . ˝
´

Φb Idbpk`lq
¯

˝

´

Idbk b Φb Idbl
¯

˝ . . . ˝
´

Idb Φb Idbpk`l´1q
¯

pab bb a1 b . . .b ak b b1 b . . .b blq,
ÿ

a21 b . . . a
2
k`1 b b

2
1 b . . .b b

2
l`1 “

´

Idbpk´1q b Φb Idbpl`1q
¯

˝ . . . ˝
´

Φb Idbk`l
¯

˝

´

Idbpk`lq b Φ
¯

˝ . . . ˝
´

Idbpk`1q b Φb Idbpl´1q
¯

˝

´

Idbpk´1q b τ b Idbpl`1q
¯

˝ . . . ˝
´

Idb τ b Idbpk`l´1q
¯

˝

´

Φb Idbk`l
¯

pab bb a1 b . . .b ak b b1 b . . .b blq,

where τ : A b A ÝÑ A b A is the usual flip. In order to prove that these two elements of
Abpk`l`2q are equal, we shall use braid diagrams-like notations. We shall represent Φ and τ by
diagrams (to be read from bottom to top)

Φ “ , τ “ ,

and the composition will be represented by a vertical concatenation. For example, (14) is rewrit-
ten as:

“ . (14”)

Then:

ÿ

a11 b . . . a
1
k`1 b b

1
1 b . . .b b

1
l`1 “ . . . . . . pab bb a1 b . . .b ak b b1 b . . .b blq,

ÿ

a11 b . . . a
1
k`1 b b

1
1 b . . .b b

1
l`1 “ . . . . . . pab bb a1 b . . .b ak b b1 b . . .b blq.

The iterated application of (14) gives that the two diagrams above are equal, which finally gives
(20) for CApV q. Moreover:

X ˛a pY ˛b Zq “
ÿ

a11x1 . . . a
1
kxka

1
k`1b

1
1y1 . . . b

1
lylb

1
l`1yc1z1 . . . cmzm | z,

Y ˛b pX ˛a Zq “
ÿ

a21x1 . . . a
2
kxka

2
k`1b

2
1y1 . . . b

2
l ylb

2
l`1yc1z1 . . . cmzm | z,

26



with

ÿ

a11 b . . . a
1
k`1 b b

1
1 b . . .b b

1
l`1 “ . . . . . . pab bb a1 b . . .b ak b b1 b . . .b blq,

ÿ

a11 b . . . a
1
k`1 b b

1
1 b . . .b b

1
l`1 “ . . . . . . pab bb a1 b . . .b ak b b1 b . . .b blq.

The two appearing diagrams are equal to

. . . . . .

,

which implies (21) for CApV q.

Let B be an pA,Φq-permutative algebra and let θ : V ÝÑ B be a linear span. Let us prove
that there exists a unique permutative algebra morphism Θ : CApV q ÝÑ B, extending θ.

Uniqueness. Let us remark that for any x1, x2, . . . , xk, y P V , a1, . . . , ak P A, by definition of
the product of CApV q:

x1 ˛a1 a2x2 . . . akxk | x “ a1x1 . . . akxk | x.

A direct consequence is that CApV q is generated by V , which implies that such a Θ is unique.

Existence. Let us define Θ by:

Θpa1x1 . . . ankxl | xq “ θpx1q ˛a1 p. . . pθpxkq ˛ak θpxqq . . .q.

By (21), this does not change if one permutes a1x1, . . . , akxk, so this is well-defined. Let us
consider

C 1ApV q “ tx P CApV q, @y P CApV q, f@a P A, Θpx ˛a yq “ Θpxq ˛a Θpyqu.

Let x1, x2 P C
1
ApV q and b P A. For any y P CApV q and a P A:

Θpx1 ˛b x2q ˛a Θpx1q “ pΘpx1q ˛b Θpx2qq ˛a Θpx1q

“
ÿ

Θpx1q ˛a1ñb1 pΘpx2q ˛a2§b2 Θpx1qq

“
ÿ

Θpx1q ˛a1ñb1 Θpx2 ˛a2§b2 x1q

“ Θ
´

ÿ

x1 ˛a1ñb1 px2 ˛a2§b2 x1q

¯

“ Θ px1 ˛b x2q ˛a x1q .
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Therefore, x1 ˛b x2 P C
1
ApV q: we proved that C 1ApV q is an pA,Φq-permutative subalgebra of

CApV q. Moreover, for any x P V , for any y1, . . . , yk, y P V , for any a, b1, . . . , bk P A:

Θpx ˛a b1y1 . . . bkyk | yq “ Θpaxb1y1 . . . bkyk | yq

“ θpxq ˛a py1 ˛b1 p. . . pyk ˛bk yq . . .qq

“ Θpxq ˛a Θpb1y1 . . . bkyk | yq,

so x P C 1ApV q. As CApV q is generated by V , CApV q “ C 1ApV q, which implies that Θ is an
pA,Φq-permutative algebra morphism. Therefore, CApV q is the free pA,Φq-permutative algebra
generated by V .

Corollary 3.4. Let pA,Φq be a finite-dimensional dual `CEDS. For any n ě 1:

dimpPermΦpnqq “ n dimpAqn´1.

3.3 From permutative to generalized permutative algebras

Notations 3.1. 1. We denote by Perm the operad of permutative algebras, that is to say
binary algebras pA, ˛q such that for any a, b, c P A,

px ˛ yq ˛ z “ x ˛ py ˛ zq, x ˛ py ˛ zq “ y ˛ px ˛ zq.

The operad Perm is the Koszul dual of the operad PreLie.

2. We denote by Permp0q the operad of 0-permutative algebras, that is to say binary algebras
pA, ˛q such that for any a, b, c P A,

px ˛ yq ˛ z “ 0, x ˛ py ˛ zq “ y ˛ px ˛ zq.

The operad Permp0q is the Koszul dual of the operad of NAP algebras.

We now consider operad morphisms from Perm or Permp0q to PermΦ, or equivalently
permutative or 0-permutative products in PermΦ. We shall need the following notion:

Definition 3.5. Let pA,Φq be an `EAS. A weak special vector of pA,Φq is an element a P A
such that:

Φpab aq ` τ ˝ Φpab aq “ ab a.

Proposition 3.6. Let pA,Φq be a dual `CEDS. The permutative products in PermΦ are of one
of the following form:

• ˛a, where a is a special vector of Φ of eigenvalue 0.

• ˛a ` ˛opa , where a is a weak special vector.

The 0-permutative products in PermΦ are the products ˛a, where a is a special vector of eigen-
value 0.

Proof. Let ˛ “ ˛a ` ˛
op
b be any element of PermΦp2q, with a, b P A. Let us apply it in the free

PermΦ-algebra on three generators x, y, z.

px ˛ yq ˛ z “ pa1 ñ a1xa2 § a2y ` a1 ñ b1ya2 § b2xq | z ` axbz | y ` bybz | x,

x ˛ py ˛ zq “ axay | z ` axbz | y ` pb1 ñ a1yb2 § a2zb1 ñ b1zb2 § b2y | x,

y ˛ px ˛ zq “ axay | z ` aybz | x` pb1 ñ a1xb2 § a2zb1 ñ b1zb2 § b2x | y.
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Identifying terms cxdy | z, cxdz | y and cycz | x, if ˛ is a permutative product:

Φpab aq ` τ ˝ Φpab bq “ ab a, (23)
Φpbb aq ` τ ˝ Φpbb bq “ bb b, (24)
Φpbb aq ` τ ˝ Φpbb bq “ ab b. (25)

By (25)-(24), pa ´ bq b b “ 0, so a “ b or b “ 0. If b “ 0, then by (23), a is a special vector of
eigenvalue 1. If a “ b, by (23), a is a weak special vector. The converse implication is immediate.

If ˛ is a 0-permutative product:

Φpab aq ` τ ˝ Φpab bq “ 0, (26)
ab b “ 0, (27)
bb b “ 0, (28)

Φpbb aq ` τ ˝ Φpbb bq “ ab b. (29)

By (28), b “ 0 and, by (26), a is a special vector of eigenvalue 0. The converse implication is
immediate.

We do not know any `EAS with a nonzero weak special vector, and we only have negative
results on their existence:

Proposition 3.7. 1. Let pA,Φq be a two-dimensional `EAS. Then its only weak special vector
is 0.

2. Let Ω be a semigroup. If Ω is a group or if Ω is finite, then the only weak special vector of
`EASpKΩq is 0.

3. Let pΩ, ‹q be a group and let pA,Φq be the linearization of EAS1pΩ, ‹q. Then the only weak
special vector of pA,Φq is 0.

Proof. 1. Let us assume that pA,Φq has a nonzero weak special vector x, which we complete
in a basis px, yq of A. The basis of Φ in the basis px b x, x b y, y b x, y b yq is denoted by
M “ paijq1ďi,jď4. Then:

Φpxb xq ` τ ˝ Φpxb xq “ 2a11xb x` pa21 ` a31qpxb y ` y b xq ` 2a41y b y “ xb x,

so a11 “
1

2
, a31 “ ´a21 and a41 “ 0. Considering the matrix of the map pId b Φq ˝ pΦ b Idq ˝

pIdbΦq ´ pΦb Idq ˝ pIdb τq ˝ pΦb Idq in the basis of tensors products of x and y, we obtain a
8ˆ8 matrix, which all coefficients are zero. Up to the replacement of y by a42y if a42 is nonzero,
we can assume that a42 “ 0 or 1.

• If a42 “ 0, coefficient (6,1) is
a43

2
“ 0, whereas coefficient (7,5) is ´

a2
43

2
“ 0: this is a

contradiction.

• If a42 “ 1, coefficient (7,1) is ´a43´ 1 “ 0, so a43 “ ´1. Coefficient (6,1) is ´a33´
1

2
“ 0,

whereas coefficient (7,5) is a33 ´
1

2
“ 0: this is a contradiction.

So there is no nonzero weak special vector in A.
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2. Let a “
ÿ

αPΩ

aαa P KΩ.

a is a weak special vector of `EASpKΩq

ðñ
ÿ

α,βPΩ

aαaβαb β “
ÿ

α,βPΩ

aαaβpαβ b α` αb αβq

ðñ @α, β P Ω, aαaβ “

¨

˝

ÿ

γPΩ, βγ“α

aγ

˛

‚aβ `

¨

˝

ÿ

γPΩ, αγ“β

aγ

˛

‚aα. (30)

Let a be a nonzero weak special vector of `EASpKΩq. We put G “ tα P Ω, aα ‰ 0u. Then G is
nonempty.

We first assume that Ω is a group. Then (30) becomes:

@α, β P Ω, aαaβ “ aβaβ´1α ` aαaα´1β.

Taking α “ β “ eG, we obtain a2
eg “ 2a2

eG
, so aeG “ 0. Taking α “ β P Ω, we obtain

a2
α “ 2aeGaα “ 0, so aα “ 0. There is no nonzero weak special vector in this case.

We now assume that Ω is finite. We define a relation ĺ on G by:

α ĺ β ðñ αβ “ α or α “ β.

This relation is obviously reflexive. Let us assume that α ĺ β and β ĺ γ. If α “ β or β “ γ,
then obviously α ĺ γ. Otherwise:

αγ “ pαβqγ “ αpβγq “ αβ “ α.

So α ĺ γ. We proved that ĺ is transitive, so ĺ is a quasiorder. Consequently:

• The relation „ defined on G by α „ β if, α ĺ β and β ĺ α is an equivalence.

• The relation ĺ defined on G{ „ by αĺβ if α ĺ β is an order.

The poset pG{ „,ĺq is finite, as Ω is finite; so it has a maximal element, which is a class of „
denoted by H. By construction of H:

• H is nonempty and, for any α P H, aα ‰ 0.

• If α P H and β P G such that αβ “ α, then β P H.

• For any α, β P H, α “ β or αβ “ α.

We put

H1 “ tα P H,αα “ αu, H´1 “ tα P H,αα ‰ αu.

Then (30) gives:

@α P H1, aα “ 2
ÿ

γPH

aγ ,

@α P H´1, aα “ 2
ÿ

γPH, γ‰α

aγ ,
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which can be reformulate as

@α P H1, aα ` 2
ÿ

γPH,γ‰α

aγ “ 0,

@α P H´1, ´aα ` 2
ÿ

γPH, γ‰α

aγ “ 0.

Hence, after a convenient indexation, the vector paαqαPH is a nonzero vector of the kernel of the
matrix

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 2 . . . 2 2 . . . . . . 2

2
. . . . . .

...
...

...
...

. . . 2
...

...
2 . . . 2 1 2 . . . . . . 2
2 . . . . . . 2 ´1 2 . . . 2
...

... 2
. . . . . .

...
...

...
...

. . . 2
2 . . . . . . 2 2 . . . 2 ´1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

We leave to the reader the proof that this matrix is invertible: this is a contradiction, so
`EASpKΩq has no nonzero weak special vector.

3. Let a “
ÿ

αPΩ

aαa P KΩ.

a is a weak special vector of the linearization of EAS1pΩ, ‹q

ðñ
ÿ

α,βPΩ

aαaββ b β “
ÿ

α,βPΩ

aαaβpβ b α ‹ β
‹´1 ` α ‹ β‹´1 b βq

ðñ @α, β P Ω, aαaβ “ aβαaα ` aαβaβ. (31)

Let a be a nonzero weak special vector and let α P Ω, such that aα ‰ 0. For β “ αn in (31):

aαaαn “ aαn`1aα ` aαn`1aαn .

A direct induction proves that for any n ě 1:

aαn`1 “
1

n
aα.

Consequently, if β P Ω, such that aβ ‰ 0, then aβ “ 3aβ4 “ aβ2 . Moreover, applying this for
α “ β2, aβ4 “ aβ2 . Finally, aβ “ 3aβ4 “ aβ4 , so aβ4 “ 0 and aβ “ 0: this is a contradiction.
There is no nonzero weak special vector in this case.

4 Hopf algebras and bialgebras from generalized pre-Lie algebras

4.1 Dual bialgebras

As shown in [8], the symmetric algebra generated by the dual of the coinvariant space of the
operad PreLieΦ inherits a bialgebra structure, induced by the operadic composition. In order to
avoid unnecessary technical difficulties, we restrict ourselves to the case of a finite-dimensional
dual `CEDS pA,Φq. We identify the graded dual g˚A of gA with gA˚ , through the pairing defined
in the following way: if T is an A˚-typed and D-decorated tree and T 1 is an A-typed tree and
D-decorated tree, then:

xT, T 1y “
ÿ

σPIsopT,T 1q

ź

ePEpT q

fepaσpeqq
ź

vPV pT q

δdv ,d1σpvq
,

with the following notations:
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• IsopT, T 1q is the set of isomorphisms of rooted trees from T to T 1. If σ P IsopT, T 1q and
e “ px, yq is an edge of T , we denote by σpeq “ pσpxq, σpyqq the corresponding edge of T 1.

• For any e P EpT q, fe is the type of e in T (and belongs to A˚); for any e1 P EpT 1q, ae1 is
the type of e1 in T 1 (and belongs to A).

We shall use the following definitions:

Definition 4.1. We assume that pD,ˆq is a commutative semigroup. Let F be an A-typed and
D-decorated forest and I be a subset of the set EpF q of edges of F .

• We denote by F|I the forest obtained by deleting all the edges of Fwhich does not belong to
I. As its set of vertices is the set of vertices of F and its set of edges is I, it is naturally
an A-typed and D-decorated forest.

• We denote by F{I the forest obtained by contracting all the edges of F which belong to I.
As its set of edges is EpF qzI, it is naturally an A-typed forest. Any of its vertices v can
be seen as the contraction of a subtree Tv of F : we decorate v by the product in D of the
decorations of the vertices of Tv. With these decorations, F{I is an A-typed and D-decorated
forest.

Note that EpF q “ EpF|Iq \ EpF{Iq. We make F|I b F{I a sum of tensors of A-typed and D-
decorated forests in the following process:

• For each edge e R I: let us denote by e1, . . . , ek the edges of F in the path from the root of
the tree containing e to the first extremity of e which belongs to I; denote by a the type of
e and by ai the type of ei. Compute

p
ÿ

i“1

a1i b a
1
1,i b . . .b a

1
k,i

“

´

Φb Idbpk´1q
¯

˝

´

Idb Φb Idbpk´2q
¯

˝ . . . ˝
´

Idbpk´1q b . . .b Φ
¯

pa1 b . . .b ak b aq.

and take the sum for 1 ď i ď p of tensors of forests obtained by typing e by a1i and ej by
a1j,i for any j in F|I b F{I .

This sum of tensor products is denoted by F|I bΦ F{I .

Dualizing the combinatorial description of the operadic composition, we obtain a description
of the dual bialgebra induced by the operad PreLieΦ˚ :

Theorem 4.2. Let pD,ˆq be an associative and commutative semigroup and pA,Φq be a finite-
dimensional dual `CEDS. Let us consider the symmetric algebra generated by gA,D, with its usual
product m. For any A-typed and D-decorated forest F , we put:

δpF q “
ÿ

IĎEpF q

F|I bΦ F{I .

Then pSpgA,Dq,m, δq is a bialgebra, denoted by BΦ,pD,ˆq.
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Example 4.1. Let a, b P A and d, d1, d2 P D.

δ
´ ?>=<89:;d

¯

“ ?>=<89:;d b ?>=<89:;d ,

δ

¨

˚

˚

˚

˚

˝

GFED@ABCd1

a

?>=<89:;d

˛

‹

‹

‹

‹

‚

“

GFED@ABCd1

a

?>=<89:;d
b GFED@ABCdd1 ` ?>=<89:;d GFED@ABCd1 b

GFED@ABCd1

a

?>=<89:;d
,

δ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

b

GFED@ABCd1

a

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ?>=<89:;d GFED@ABCd1 GFED@ABCd2 b

GFED@ABCd2

b

GFED@ABCd1

a

?>=<89:;d

`
ÿ

GFED@ABCd1

a2Źb2

?>=<89:;d
GFED@ABCd2 b

GFED@ABCd2

a1Ñb1

GFED@ABCdd1

`

GFED@ABCd2

b

GFED@ABCd1

?>=<89:;d b

ONMLHIJKd1d2

a

?>=<89:;d
`

GFED@ABCd2

b

GFED@ABCd1

a

?>=<89:;d

b WVUTPQRSdd1d2 ,

δ

¨

˚

˚

˚

˚

˝

GFED@ABCd1

a
@@

@@
@@

@@
@

GFED@ABCd2

b

?>=<89:;d

˛

‹

‹

‹

‹

‚

“ ?>=<89:;d GFED@ABCd1 GFED@ABCd2 b

GFED@ABCd1

a
@@

@@
@@

@@
@

GFED@ABCd2

b

?>=<89:;d
`

GFED@ABCd1

a

?>=<89:;d
GFED@ABCd2 b

GFED@ABCd2

b

GFED@ABCdd1

`

GFED@ABCd2

b

?>=<89:;d
GFED@ABCd1 b

GFED@ABCd1

a

ONMLHIJKdd2

`

GFED@ABCd1

a
@@

@@
@@

@@
@

GFED@ABCd2

b

?>=<89:;d
b WVUTPQRSdd1d2 .

Proposition 4.3. Let pD,ˆq and pD1,ˆ1q be two associative and commutative semigroups and
pA,Φq, pA1,Φ1q be two finite-dimensional dual `CEDS such that BΦ,pD,ˆq and BΦ1,pD1,ˆ1q are
isomorphic bialgebras. Then pD,ˆq and pD1,ˆ1q are isomorphic and A and A1 have the same
dimension.

Proof. We denote by M the monoid of group-like elements of B “ BΦ,pD,ˆq. Its elements are the
forests with no edge and vertices decorated by D and its product is the disjoint union. For any
forest F in B, F|H is an element of M which we denote by πLpF q, and F{EpF q is another element
of M which we denote by πRpF q. We denote by B` the subspace of B generated by forests with
at least one edge. Then, if F is a forest of B`:

δpF q ´ πLpF q b F ´ F b πRpF q P B
` bB`.

For any g, g1 P M , we denote by Bg,g1 the subspace of B generated by forests F such that
πLpF q “ g and πRpF q “ g1 and we put:

Pg,g1 “ tx P BΦ,pD,ˆq, δpxq “ g b x` xb g1.u.
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We adopt similar notations for B1 “ BΦ1,pD1,ˆ1q.

First step. Let g, g1 PM . Let us prove that

Pg,g1 “ Pg,g1 XBg,g1 ‘Vectpg ´ g1q.

As δpg´ g1q “ gb g´ g1b g1 “ gb pg´ g1q ` pg´ g1q b g1, Ě is obvious. Let x P Pg,g1 . We write
it under the form of a span of forests x “

ř

aFF . Then:

δpxq “ g b x` xb g `
ÿ

FPB`

aF pπLpF q b F ` F b πRpF qq `
ÿ

FPM

aFF b F `B
` bB`

“
ÿ

aF pg b F ` F b g
1q.

Identifying, if F P B` such that πLpF q ‰ g or πRpF q ‰ g1, then aF “ 0. If F PMztg, g1u, then
aF “ 0. Therefore, Pg,g1 Ď Bg,g1 ‘ Vectpg, g1q. If g ‰ g1, considering the coefficient of g b g1, we
obtain 0 “ ag ` ag1 , so Pg,g1 Ď Bg,g1 ‘Vectpg´ g1q. If g “ g1, considering the coefficient of gb g,
we obtain 2ag “ ag, so ag “ 0. Hence, Pg,g Ď Bg,g “ Bg,g ‘ Vectpg ´ gq. As g ´ g1 P Pg,g1 , we
obtain the announced result.

Second step. Let Ψ : B ÝÑ B1 be a bialgebra isomorphism. Then Ψ sends any group-like
element of B on a group-like element of B1, so Ψ|M : M ÝÑ M 1 is a bijection. Looking at the
indecomposable elements of the monoids M and M 1, we obtain that Ψ sends any tree with only
one D-decorated vertex to a tree with only one D1-decorated vertex, so Ψ induces a bijection
ψ : D ÝÑ D1. Up to an isomorphism, we assume now that D1 “ D1 and that ψ is the identity of
D.

Let us consider three elements d, d1, d2 of D. Let us consider the group-like elements gL “?>=<89:;d GFED@ABCd1 and gR “ GFED@ABCd2 . Then, by the first step, noticing that BgL,gR is generated by trees with
two vertices:

PgL,gR “ VectpgL ´ gRq ‘VectPgL,gR XBgL,gR

“ VectpgL ´ gRq ‘

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Vect

¨

˚

˚

˚

˚

˝

?>=<89:;d
a

GFED@ABCd1

,

GFED@ABCd1

a

?>=<89:;d
, a P A

˛

‹

‹

‹

‹

‚

if d2 “ dˆ d1,

0 otherwise.

As Ψ induces an isomorphism between PgL,gR and P 1gL,gR , we obtain that for any pd, d1, d2q P D3,

d2 “ dˆ d1 ðñ d2 “ d1 ˆ1 d1,

so Ψ induces an isomorphism between pD,ˆq and pD1,ˆ1q.

Let us fix now an element d P D, and let us consider the group-like elements gL “ ?>=<89:;d ?>=<89:;d
and gR “ GFED@ABCd2 . Then:

PgL,gR “ PgL,gR XBgL,gR “ Vect

¨

˚

˚

˚

˚

˝

?>=<89:;d
a

?>=<89:;d
, a P A

˛

‹

‹

‹

‹

‚

.

As Ψ induces a bijection form PgL,gR to P 1gL,gR , it induced a bijection from A to A1, so A et A1

have the same dimension.

Remark 4.1. We conjecture that there exist two non isomorphic dual `EAS pA,Φq and pA1,Φ1q,
such that BΦ,pD,ˆq and BΦ1,pD,ˆq are isomorphic.
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4.2 Cointeractions

From [8], if pA,Φq is a finite-dimensional dual `CEDS, then for any operad morphism PreLie ÝÑ
PreLieΦ˚ , we obtain a pair of cointeracting bialgebras. We shall use the following definition,
using the definition of admissible cuts and the notations of [6]:

Definition 4.4. Let pA,Φq be a dual `CEDS and D be a set. Let us fix f P A˚. Let F be an
A-typed and D-decorated forest, and let c be an admissible cut of F . This admissible cuts give
a tensor P cpF q b RcpF q of D-decorated forests. We make it a sum of tensors of A-typed and
D-decorated forests by the following process:

• For each edge e P c, let us denote by e1, . . . , ek the edges of F in the path from the root of
the tree containing e to the first extremity of e; denote by a the type of e and by ai the type
of ei. Compute

p
ÿ

i“1

a11,i b . . .b a
1
k,i “ pf b Idbkq˝

´

Φb Idbpk´1q
¯

˝

´

Idb Φb Idbpk´2q
¯

˝ . . . ˝
´

Idbpk´1q b . . .b Φ
¯

pa1 b . . .b ak b aq.

and take the sum for 1 ď i ď p of tensors of forests obtained by typing ej by a1j,i for any j
in P cpF q bRcpF q.

This sum of tensor products is denoted by P cpF q bΦ,f R
cpF q.

From Proposition 2.9:

Theorem 4.5. Let pA,Φq be a finite-dimensional dual `CEDS and let D be a set. Let us consider
the symmetric algebra generated by gA,D, with its usual product m, and let f P A˚. For any A-
typed and D-decorated forest F , we put:

∆f pF q “
ÿ

cPAdmpF q

P cpF q bΦ,f R
cpF q.

If pf b fq ˝ Φ “ f b f , then pSpgA,Dq,m,∆f q is a Hopf algebra, denoted by HΦ,D,f . Moreover,
if pD,ˆq is a commutative associative semigroup, then HΦ,D,f is a Hopf algebra in the category
of left BΦ,pD,ˆq-comodules, with the coaction δ.
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Example 4.2. Let a, b, c P A and d, d1, d2, d3 P D.

∆f

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

b AA
AA

AA
AA

A
GFED@ABCd3

c

GFED@ABCd1

a

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 1b

GFED@ABCd2

b AA
AA

AA
AA

A
GFED@ABCd3

c

GFED@ABCd2

a

GFED@ABCd1

`

GFED@ABCd2

b AA
AA

AA
AA

A
GFED@ABCd3

c

GFED@ABCd1

a

?>=<89:;d

b 1` fpaq

GFED@ABCd2

b AA
AA

AA
AA

A
GFED@ABCd3

c

GFED@ABCd1

b ?>=<89:;d

`
ÿ

fpa1 Ñ b1q GFED@ABCd2 b

GFED@ABCd3

c

GFED@ABCd1

a2Źb2

?>=<89:;d

`
ÿ

fpa1 Ñ c1q GFED@ABCd3 b

GFED@ABCd2

b

GFED@ABCd1

a2Źc2

?>=<89:;d

`
ÿÿ

fppa2 § b2q1 Ñ c1qfpa1 Ñ b1q GFED@ABCd2 GFED@ABCd3 b

GFED@ABCd1

pa2Źb2q2Źc2

?>=<89:;d
.

Dualizing Proposition 2.10:

Proposition 4.6. Let pA,Φq be a finite-dimensional dual `CEDS, D be a set and let f P A˚

such that pf b fq ˝Φ “ f b f . We denote by gA,D be subspace of gA,D generated by D-decorated
and A-typed trees T “ Bdpa1T1, . . . , akTkq such that for any i, fpaiq “ 0. Then the Hopf algebra
HΦ,D,f is isomorphic to the Connes-Kreimer Hopf algebra of non-typed, g1A,D-decorated rooted
trees with its usual product of admissible cuts.

Remark 4.2. The coproduct ∆0 is coassociative and sends any tree T to T b 1` 1b T .

4.3 Examples

Example 4.3. Let Ω be a finite set and Ω1 Ď Ω. We consider KΩ and Φ defined by

@α, β P Ω, Φpαb βq “

#

β b α if β P Ω1,

0 otherwise.

A direct computation shows that pA,Φq is a dual `CEDS. In particular, if Ω1 “ Ω, we recover
the linearization of EASpΩq. Hence, for any α, α1, . . . , αk P Ω, with the notations of Definition
4.1, we obtain:

p
ÿ

i“1

α1i b α
1
1,i b . . .b α

1
k,i

“

´

Φb Idbpk´1q
¯

˝

´

Idb Φb Idbpk´2q
¯

˝ . . . ˝
´

Idbpk´1q b . . .b Φ
¯

pα1 b . . .b αk b αq

“

#

αb α1 b . . .b αk if α P Ω1or k “ 0,

0 otherwise.

Consequently:
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1. In BΦ,pΩ,ˆq, we obtain:
δpF q “

ÿ

IĎEpF q,
tppEpF qzIq1qĎΩ1

F|I b F{I ,

where pEpF qzIq1 is the set of edges e in EpF qzI such that at least one edge in the path
between a root of F and the first extremity of e is in I. For example:

δ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ?>=<89:;d GFED@ABCd1 GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

`1Ω1pβq

GFED@ABCd1

α

?>=<89:;d
GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCdd1

`

GFED@ABCd2

β

GFED@ABCd1

?>=<89:;d b
ONMLHIJKd1d2

α

?>=<89:;d
`

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

b WVUTPQRSdd1d2 ,

where 1Ω1 is the characteristic function of Ω1.

2. Let pλαqαPΩ be any family of scalars such that λα “ 0 if α R Ω1. If f : KΩ ÝÑ K is defined
by fpαq “ λα for any α P Ω, then pf b fq ˝ Φ “ f b f . For any forest F and for any
admissible cut c of F , P cpF q and RcpF q are obtained by deleting the edges of c, the types
of the remaining edges being untouched. Then:

∆f pF q “
ÿ

cPAdmpF q

ź

ePc

λtypepeqP
cpF q bRcpF q,

For example:

∆f

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 1b

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

`

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

b 1` λα

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

b ?>=<89:;d

` λβ GFED@ABCd2 b

GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

` λγ GFED@ABCd3 b

GFED@ABCd2

γ

GFED@ABCd1

α

?>=<89:;d

` λβλγ GFED@ABCd2 GFED@ABCd3 b

GFED@ABCd1

α

?>=<89:;d
.

Example 4.4. Let pΩ, ‹q be a finite associative semigroup such that for any α, β, γ P Ω:

pα ‹ βq ‹ γ “ pβ ‹ αq ‹ γ.

We shall take A “ EASpΩ, ‹q˚, which we identify as a vector space A “ KΩ. For any α, β P Ω,
Φ˚pαb βq “ α ‹ β b α, so:

Φpαb βq “
ÿ

γPΩ, β‹γ“α

β b γ.
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Hence, for any α, α1, . . . , αk P Ω, with the notations of Definition 4.1, we obtain:

p
ÿ

i“1

α1i b α
1
1,i b . . .b α

1
k,i

“

´

Φb Idbpk´1q
¯

˝

´

Idb Φb Idbpk´2q
¯

˝ . . . ˝
´

Idbpk´1q b . . .b Φ
¯

pα1 b . . .b αk b αq

“

k
ÿ

i“1

ÿ

γiPΩ, αi‹γi“α

αb γ1 b . . .b γk.

Consequently:

1. In BΦ,pD,ˆq, if F is an Ω-typed and D-decorated forest and I Ď EpF q, F|I,‹ is obtained by
deleting all the edges which does not belong to I, the type of the remaining edges being
modified in the following way: if e P I and e1, . . . , ek begin the edges between a root of F
and e which do not belong to I, α the type of e and αi the type of ei for any i, then the
type of e is replaced by:

ÿ

γPΩ,
α1‹...‹αk‹γ“α

γ.

Moreover, F{I is obtained by contracting all the edges which belong to I, with the types
of the remaining edges being untouched. We obtain:

δpF q “
ÿ

IĎEpF q

F|I,‹ b F{I .

For example:

δ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ?>=<89:;d GFED@ABCd1 GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

`
ÿ

α1PΩ, β‹α1“α

GFED@ABCd1

α1

?>=<89:;d
GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCdd1

`

GFED@ABCd2

β

GFED@ABCd1

?>=<89:;d b

ONMLHIJKd1d2

α

?>=<89:;d
`

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

b WVUTPQRSdd1d2 .

In the particular case where Ω is a commutative group:

δ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ?>=<89:;d GFED@ABCd1 GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

`

GFED@ABCd1

β‹´1‹α

?>=<89:;d
GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCdd1

`

GFED@ABCd2

β

GFED@ABCd1

?>=<89:;d b
ONMLHIJKd1d2

α

?>=<89:;d
`

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

b WVUTPQRSdd1d2 .
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2. Let a be a special vector of eigenvalue 1 of EASpΩ, ‹q (see Example 2.5), written under
the form

a “
ÿ

αPΩ

λαα P KΩ.

For any forest F and for any admissible cut c of F , P cpF q and Rc‹pF q are obtained by
deleting the edges of c, the types of the remaining edges of P cpF q being untouched, whereas
the types of the remaining edges of RcpF q are modified in the following way: if e is such
an edge, α its type, e1, . . . , ek the edges f of F such that there exists a path from the
last extremity of e to the first extremity of f , α1, . . . , αk their types, then the type of e is
replaced by

ÿ

γPΩ, α1‹...‹αk‹γ“α

γ.

Then:

∆apF q “
ÿ

cPAdmpF q

ź

ePc

λtypepeqP
cpF q bRc‹pF q.

For example:

∆a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd2

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 1b

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd2

α

?>=<89:;d

`

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

?>=<89:;d

b 1` λα

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

b ?>=<89:;d

`
ÿ

α1PΩ, β‹α1“α

λβ GFED@ABCd2 b

GFED@ABCd3

γ

GFED@ABCd1

α1

?>=<89:;d

`
ÿ

α1PΩ, γ‹α1“α

λγ GFED@ABCd3 b

GFED@ABCd2

γ

GFED@ABCd1

α1

?>=<89:;d

`
ÿ

α1PΩ, γ‹β‹α1“α

λβλγ GFED@ABCd2 GFED@ABCd3 b

GFED@ABCd1

α1

?>=<89:;d
.

In the special case where Ω is a commutative group, let us choose a subgroup H of Ω. We
denote by 1H the characteristic function of H. For any α P Ω, we put λα “ 1Hpαq. From
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[13, Proposition 4.12], this defines a special vector of eigenvalue 1. Then:

∆a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 1b

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

`

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

?>=<89:;d

b 1` 1Hpαq

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

b ?>=<89:;d

` 1Hpβq GFED@ABCd2 b

GFED@ABCd3

γ

GFED@ABCd1

β‹´1‹α

?>=<89:;d

` 1Hpγq GFED@ABCd3 b

GFED@ABCd2

γ

GFED@ABCd1

γ‹´1‹α

?>=<89:;d

` 1Hpβq1Hpγq GFED@ABCd2 GFED@ABCd3 b

GFED@ABCd1

β‹´1‹γ‹´1‹α

?>=<89:;d
.

Example 4.5. Let pΩ, ‹q be a finite associative semigroup with the right inverse condition, and
let us consider pA,Φq “ KEAS1pΩ, ‹q˚, identified with KΩ as a vector space. For any α, β P Ω:

Φpαb βq “ β ‹ αb α.

Hence, for any α, α1, . . . , αk P Ω, with the notations of Definition 4.1, we obtain:

p
ÿ

i“1

α1i b α
1
1,i b . . .b α

1
k,i

“ pΦb Idbpk´1qq ˝ pIdb Φb Idbpk´2qq ˝ . . . ˝ pIdbpk´1q b . . .b Φqpα1 b . . .b αk b αq

“ α ‹ αk ‹ . . . ‹ α1 b α1 b . . .b αk.

Consequently:

1. n BΦ,pD,ˆq, if F is an Ω-typed and D-decorated forest and I Ď EpF q, F|I is obtained by
deleting all the edges which does not belong to I, the type of the remaining edges being
untouched. Moreover, F{I,‹ is obtained by contracting all the edges which belong to I,
with the types of the remaining edges being modified in the following way: if e P I and
e1, . . . , ek being the edges between the root of the tree of F containing e and e, α the type
of e and αi the type of ei for any i, then the type of e is replaced by:

α ‹ αk ‹ . . . ‹ α1.

We obtain:
δpF q “

ÿ

IĎEpF q

F|I b F{I,‹.

40



For example:

δ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ?>=<89:;d GFED@ABCd1 GFED@ABCd2 b

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

`

GFED@ABCd1

α

?>=<89:;d
GFED@ABCd2 b

GFED@ABCd2

β‹α

GFED@ABCdd1

`

GFED@ABCd2

β

GFED@ABCd1

?>=<89:;d b
ONMLHIJKd1d2

α

?>=<89:;d
`

GFED@ABCd2

β

GFED@ABCd1

α

?>=<89:;d

b WVUTPQRSdd1d2 .

2. Let a be a special vector of eigenvalue 1 of A (see Example 2.5), written under the form

a “
ÿ

αPΩ

λαα P KΩ.

For any forest F and for any admissible cut c of F , P cpF q and RcpF q are obtained by delet-
ing the edges of c, the types of the remaining edges of P cpF q and RcpF q being untouched.
For any cut edge e P c, let us denote by αe its type, by e1, . . . , ek in the path from the root
of the tree of F containing e to the first extremity of e and α1, . . . , αk their types. We put:

α1e “ αe ‹ αk ‹ . . . ‹ α1.

Then:
∆apF q “

ÿ

cPAdmpF q

ź

ePc

λα1eP
cpF q bRcpF q.

For example:

∆a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ 1b

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

`

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

b 1

` λα

GFED@ABCd2

β AA
AA

AA
AA

A
GFED@ABCd3

γ

GFED@ABCd1

b ?>=<89:;d ` λβ‹α GFED@ABCd2 b

GFED@ABCd3

γ

GFED@ABCd1

α

?>=<89:;d

` λγ‹α GFED@ABCd3 b

GFED@ABCd2

γ

GFED@ABCd1

α

?>=<89:;d

` λβ‹αλγ‹α GFED@ABCd2 GFED@ABCd3 b

GFED@ABCd1

α

?>=<89:;d
.
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In the special case where Ω is a commutative group, let us choose a subgroup H of Ω. We
denote by 1H the characteristic function of H. For any α P Ω, we put λα “ 1Hpαq. From
[13, Proposition 4.12], this defines a special vector of eigenvalue 1, and therefore a pair of
bialgebras in cointeraction.
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