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Abstract

We study generalizations of pre-Lie algebras, where the free objects are based on rooted
trees which edges are typed, instead of usual rooted trees, and with generalized pre-Lie
products formed by graftings. Working with a discrete set of types, we show how to obtain
such objects when this set is given an associative commutative product and a second prod-
uct making it a commutative extended semigroup. Working with a vector space of types,
these two products are replaced by a bilinear map ® which satisfies a braid equation and
a commutation relation. Examples of such structures are defined on sets, semigroups, or
groups.

These constructions define a family of operads PreLieg which generalize the operad of
pre-Lie algebras PreLie. For any embedding from PreLie into PreLiey, we construct a
family of pairs of cointeracting bialgebras, based on typed and decorated trees: the first
coproduct is given by an extraction and contraction process, the types being modified by the
action of ®@; the second coproduct is given by admissible cuts, in the Connes and Kreimer’s
way, with again types modified by the action of ®.

We also study the Koszul dual of PreLieg, which gives generalizations of permutative
algebras.
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Introduction

Recently, numerous parametrization of well-known operads were introduced. Choosing a set
Q of parameters, any product defining the considered operad is replaced by a bunch of prod-
ucts indexed by 2, and various relations are defined on them, mimicking the relations defining
the initial operads. One can first require that any linear spans of the parametrized products
also satisfy the relations of the initial operads this is the matching parametrization. For exam-
ple, matching Rota-Baxter algebras, associative, dendriform, pre-Lie algebras are introduced in
[20, O]. Another way is the use of one or more semigroup structures on 2: this it the family
parametrization. For example, family Rota-Baxter algebras, dendriform, pre-Lie algebras are
introduced and studied in [21] 22] 18]. A way to obtain both these parametrizations for dendri-
form algebras is introduced in [I1], with the help of a generalization of diassociative semigroups,
namely extended diassociative semigroups (EDS), and a two-parameters version for dendriform
algebras and pre-Lie algebras is described in [14].

In this paper, we extend the parametrizations of pre-Lie algebras to a more general settings,
and study the pairs of cointeracting bialgebras on decorated and typed rooted trees which result
of these constructions. We start with a discrete version of these parametrizations. The set
of parameters € is here given an associative product — and another (maybe nonassociative)
product =, satisfying the four axioms of commutative extended diassociative semigroup (briefly,
CEDS), see Definition . An Q-pre-Lie algebra is a pair (V, (04)aeq), where V' is a vector space
and for any a € Q, o, : V®V — V such that, for any z,y,2z € V, for any «, 8 € §,

2 0a (Y 08 2) = (T 0asp Y) Camsp 2 = Y 08 (€ 0 2) = (Y Ofea T) 0—a 2.

In the particular case where (2 is reduced to a singleton, these are classical (left) pre-Lie algebras.
There are other interesting examples:

e For any set (), define the two products —, > by
a—f=pF>a=20.

Then (2, —, =) is a CEDS, and Q-pre-Lie algebras are matching pre-Lie algebras of [20].

e Let (©2,—) be a commutative semigroup. Define the product = by
a3 =aqa.

Then (2, —, >) is a CEDS, and Q-pre-Lie algebras are family pre-Lie algebras of [18].

e Let (2, %) be a group. Define the two products —, > by
a— f3=0, asf=axfl

Then (2, —»,>) is a CEDS. The associated - pre-Lie algebras do not seem to appear in
the literature.



In order to be more general, we turn to a linearized version of CEDS, which is based on the
following observation (Lemma [1.4): if € is a set with two operations — and =, then we can
consider the maps

Q2 _ QZ QQ BN 92
¢'{ (a,8) — (a—B,a=p), T'{ (,8) — (B,a).

Then (2, —, =) is a CEDS if, and only if:

(Id x ¢p) o (¢p x Id) o (Id x ¢) = (¢ x Id) o (Id x 7) o (¢ x 1d),
(Id x ¢)o(Id x 7)o (7 x Id) o (¢ x Id) = (7 x Id) o (¢ x Id) o (Id x ¢) o (Id x 7).

The first equation is called the braid equation, the second one the commutation relation. This
observation leads to the definition of linear CEDS, which are pairs (A, ®), where A is a vector
space and @ : AQ A — A® A, such that

(Id®®) o (P@1d) o (1d®@P) = (®®1d) o (Id® 7)o (b @ 1d),
(Id®®P)o(Id®T)o (T®Id) 0 (P®Id) = (7®Id) o (P®Id) o (Id® P) o (Id® T),

where 7: AQ A — A® A is the usual flip (Definition . In particular, if Q2 is a CEDS, then
the vector space K2 generated by €2 is a linear CEDS; there are far more examples of linear
CEDS than the linearizations of CEDS.

To any linear CEDS (A, ®) is associated a category of ®-pre-Lie algebras (Definition [2.1f).
We prove in the second section of this paper that ®-pre-Lie algebras can be described in terms
of trees with graftings if, and only if, (4, ®) is linear CEDS (Theorem [2.2)). The trees used here
are rooted, decorated (that is to say to any vertex is attached a decoration, taken in a set D of
generators), and typed (that is to say to any edge is attached a type, taken in the underlying
space A of the CEDS). In each case, the products of two trees is a sum over all the graftings
of the first tree to a vertex of the second one, where the CEDS structure is used to modify the
types of the edges in the result of the grafting, see Proposition [2.6] for a more precise description
of this process. For example, in the three examples of CEDS described earlier, we obtain

@) @) ﬁ()
@oaé b+@ @oa b = ) b+@’
@ o

@ =

This combinatorial description of free ®-pre-Lie algebras induces a description of the operad
PreLieg of ®-pre-Lie algebras in terms of rooted trees with insertion into vertices, which gen-
eralises the description of the operad PreLie of pre-Lie algebras of [5]. The second section ends
with the study of operadic morphisms from PreLie to PreLieg, or equivalently to the study
of pre-Lie products in any ®-pre-Lie algebras. We prove that these products are in one-to-one

D=0 ®



correspondence with vectors a € A, such that ®(a) = a ® a (Proposition . These vectors will
be called special vectors of eigenvalue 1. There are also special vectors of eigenvalue 0, which give
rise to morphism from the operad of nonassociative permutative algebras [16]. We prove that
for any such nonzero pre-Lie product, the free ®-pre-Lie algebras are also free pre-Lie algebras
and we give an explicit set of generators in Proposition with the help of a convenient order
on trees, in the spirit of [15].

The third section is devoted to the study of the Koszul dual of the operad PreLieg. In the
non-parametrized case, the Koszul dual of the operad PreLie is the operad Perm of permuta-
tive algebras (proposition : we naturally obtain a parametrization of this operad, by objects
which are dual linear CEDS (Definition . Free ®-permutative algebras are combinatorially
described in terms of monomials (Proposition . Looking for morphisms from the operad
Perm to the operad Permg leads to special vectors of eigenvalue 1 and to weak special vectors
(Proposition . Note that we did not find any weak special vector, and that the only results
we obtained are theorems of nonexistence in some particular cases (Proposition .

We construct some pairs of cointeracting bialgebras in the last section. These objects are pairs
of bialgebras (A, m, d) and (A4, m, A) sharing the same algebraic background, such that (A4, m, A)
is a bialgebra in the category of right comodules over (A, m,d). One of the first examples of
such an object is based on trees, the first coproduct being given by an extraction-contraction
process of edges, the second one being the Connes-Kreimer’s one, given by admissible cuts [4].
Other examples are based on graphs [I7, [7], posets and finite topologies [10]... An important
example of cointeracting bialgebra based on decorated and typed trees is used in |3}, 2] in order
to study stochastic PDEs, in a more general context (the tensor products need a completion
there). We construct a way to obtain such a pair in an operadic context in [8]: if P is an operad,
the the symmetric algebra generated by the invariants of the dual of P is a bialgebra (A, m, ),
where ¢ is obtained by dualizing the composition of the operad. For any operadic morphism
¢ : PreLie — P, one can define a second coproduct A on A, making it a bialgebra (A, m, A),
cointeracting with (A, m,d): the coproduct A is obtained by dualizing the pre-Lie product in-
duced by ¢. In our context, if (A, ®) is a finite-dimensional CEDS and a € A is a special vector
of ® of eigenvalue 1, we obtain a pair of cointeracting bialgebras on A-typed trees; this can be
generalized to D-decorated and A-typed trees, under the condition that D is given a structure
of commutative semigroup. We describe these to coproducts in terms of extraction-contraction
and admissible cuts, where the types are modified according to the maps ®. We end this paper
by a more explicit description of this structure when the considered map ® comes from one of
the three examples described earlier.

Acknowledgements. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 0.1. K is a commutative field of characteristic zero. All the vector spaces in this text
will be taken over K.

1 Extended (di)associative semigroups

1.1 Commutative extended diassociative semigroup

Extended diassociative semigroups (briefly, EDS) are introduced in [II], where they are used
to define generalizations of dendriform algebras. We here consider commutative extended semi-
groups:



Definition 1.1. A commutative extended diassociative semigroup (briefly, CEDS) is a triple
(2, —, =), where  is a set and —,>: Q? — Q are maps such that, for any a, B,y €
a—B-oy)=(@=>p)—-7=B—-a) -7, (1)
ac(f—9)=acy, (2)
(a=9) = (Be7) =(a—B) =7, (3)
(a=7)=(f=y)=a=p. (4)

CEDS are particular examples of extended associative semigroup, introduced in [12].

Definition 1.2. [I12] An extended associative semisgroup (briefly, EAS) is a triple (2, —, ),
where Q is a set and —, > : Q% — Q are maps such that, for any «, B, € 2

a—(B—-7)=(a—p8) -7, (5)
(= (B —7) = () =(a—p) =7, (6)
(a=(8—7)=(B=7) =a=0. (7)

More details and examples on these objects can be found in [13].

1.2 Examples
Example 1.1. 1. Let 2 be a set. We put:

V(a,ﬁ)EQQ, {OK_)B:B7

a>fg=a.
Then (2, —, =) is an EAS, denoted by EAS(Q). It is a CEDS.

2. Let (€, *) be an associative semigroup. We put:
Ya, B €, a8 =a.

It is an EAS, which we denote by EAS(Q,x). It is a CEDS if, and only if, for any
a, B, € L
(axB)*vy=(Bra)xr.

3. Let ) be a set with a binary operation = such that, for any «, 3,y € :
(=)= (Bery) = a e B
We then put:
Y(a, B) € Q% a— B =4.
Then (2, —, =) is a CEDS (so is an EAS). This holds for example if (2, ) is a group, with:
a=f=axp7L

This EAS is denoted by EAS'(Q, *).

Definition 1.3. Let (2, —,>) be an EAS. We shall say that it is nondegenerate if the following

map 1s bijective:
02— 02
44 09 = (amsaes)
Ezample 1.2. 1. Let Q be a set. In EAS(Q2), for any «, 8 € Q, ¢(«, 5) = (5, ), so EAS(Q)
is nondegenerate and ¢~ ! = ¢.

2. Let (€2, *) be a group. Then EAS((2, x) is nondegenerate. Indeed, in this case, ¢(«, 5) =
(a* B, ), so ¢ is a bijection, of inverse given by ¢~ !(a, 8) = (8,51 * ).

3. Let (9, *) be an associative semigroup with the right inverse condition. Then EAS'(, %)
is nondegenerate. Indeed, in this case, ¢(a, 8) = (8, a*B*71), so ¢ is a bijection, of inverse
given by ¢~ '(a, B) = (8 * , ).



1.3 Reformulations with the map ¢
Let us first reformulate the axioms of EAS and CEDS in terms of the map ¢ of Definition [I.3]

Lemma 1.4. Let (2, —,>) be a set with two binary operations. We consider the maps

02— Q2 02— 02
P4 ) — (o prah) "Len — o
Then:
1. (Q,—,>) is an EAS if, and only if:

(Id x @) o (¢ x Id) o (Id x @) = (¢ x Id) o (Id x 7) o (¢ x Id). (8)

2. (Q,—,>) is a CEDS if, and only if:

(Id x ¢p) o (¢p x Id) o (Id x ¢) = (¢ x Id) o (Id x 7) o (¢ x Id),
(Id x ¢)o(Id x 7)o (7 x Id) o (¢ x Id) = (7 x Id) o (¢ x Id) o (Id x ¢) o (Id x 7).

TN
<@
~— =

Proof. Let «, B,y € . Then:

(Id x ¢) o (¢ x Id) o (Id x ¢)(ax, B,7)

=(a=>B->7),(a=B—-7) > B=7),(a=(B—>7)=(8=7)),
(¢ xId) o (Id x 7) o (¢ x Id)(av, B, 7)

=((a—=B) =y, (a—B)=v,a=p),

(Id x @) o (Id x 7)o (7 x Id) o (¢ x Id)(ev, B,7)

= (a=B,y = (a— B),y=(a— B)),
(T x1Id)o (¢ xId)o(Id x ¢) o (Id x 7)(cv, 8,7)

=(a=(y—=p)a—(y—f),7=0).
The result immediately follows. O
Reversing gives again; reversing @D, we obtain the notion of dual CEDS:
Definition 1.5. A dual CEDS is a pair (2, ¢) where ) is a set and ¢ : Q> — Q? such that:

(Id x ¢) o (¢ x Id) o (Id x @) = (¢ x Id) o (Id x 7) o (¢ x Id), (8)
(pxId)o(r xId)o(Id x 7)o (Id x ¢) = (Id x 7) o (Id x ¢) o (¢ x Id) o (7 x Id). (10)
By direct computation, we can reformulate the axioms of dual CEDS:

Proposition 1.6. Let (2, —,>) be a map with two binary operations. It is a dual CEDS if, for
any o, B,y €

(a—B)>v=a—(B—-7), (11)
(a=(B—7) = (Be7)=(a—p)=7, (©)
(a=(B—>7))=(B=9)=a=5,

(@=p) =y =a—7, (12)

(a=pB)=7y = (a=7)=B. (13)

Remark 1.1. By definition, dual CEDS are EAS.

We immediately obtain:



Proposition 1.7. Let (Q, —,>) be a set with two binary operations, such that the map ¢ is a

biyjection. We put:
U { ¥ — o
(,8) — (o~ B,ar7).

Then (2, —, ) is an EAS (respectively a CEDS, a dual CEDS) if, and only if, (2, ~,») is an
EAS (respectively a dual CEDS, a CEDS).

Example 1.3. From Example [I.2}
1. If (A, ®) = EAS(Q), then (4,®7!) = EAS(Q).
2. If (Q,*) is a group and if (A, ®) = EAS(Q, %), then (4, ®~1) = EAS'(Q, xP).

3. If (Q, %) is a group and if (A4, ®) = EAS'(Q, %), then (A, ®~1) = EAS(Q, «°P).

1.4 Linear extended semigroups

Following the discrete version of Lemma [1.4] we now introduce the notion of /EAS, /CEDS and
dual /CEDS:

Definition 1.8. Let A be a vector space and let ®: AQ A — AR A be a linear map.

1. We shall say that (A, ®) is a linear extended associative semigroup (briefly, {EAS) if:

(Id®®) o (P@Id) o (Id®®) = (P@Id) o (Id®7T) o (P ®1d). (14)

2. We shall say that (A, ®) is a linear commutative extended diassociative semigroup (briefly,
LCEDS) if:

(Id®P) o (PRId) o (Id®P) = (P®Id) o (Id®T) o (P ®Id), (114)
(Id®®)oc(Id®7) o (T®Id) 0 (P®Id) = (T®Id) 0 (P®Id) o (Id® P) o (Id® 7). (15)

3. We shall say that (A, ®) is a linear dual commutative extended diassociative semigroup
(briefly, dual CEDS) if:

(Id®®) o (P®Id) o (Id®P) = (P®Id) o (Id® 7)o (P ®I1d), (114])
(P®Id)o(T®Id) o (Id®7) o (Id®®) = (Id®7) o (Id® ®) 0 (P®Id) o (T®Id). (16)

If (A, @) is an LEAS (respectively an LCEDS or a dual {CEDS), we shall say that it is nonde-
generate if ® is bijective.

Note that, by definition, ZCEDS and dual /CEDS are /EAS.
Ezample 1.4. Let (2, —,>) be an EAS (respectively, a CEDS, a dual CEDS), and let A = KQ
be the vector space generated by ). We define:

6./ A®A — A®A
) a®b —> (a—>b)®(a>b)

Then (A, ®) is an (EAS (respectively, an /CEDS, a dual (CEDS), called the linearization of
(Q, —, ). It is a nondegenerate /EAS if, and only if, ({2, —, =) is a nondegenerate EAS.

Other examples can be found in [13].



Notations 1.1. Let (A, ®) be an /EAS. We use the Sweedler notation:
(a®b) =Y d >V ®@d =V (17)

Note that the operations — and = may not necessarily exist, nor the coproducts a’®a” or b’ ®¥b".
With this notation, can be rewritten as:

ZZZG, N (b/ N C/)/ ® (a// = (b/ N C/)//)/ N (b// = C//)/ ® (a// = (b/ - C/))// = (b// = C//)// ' )
_ ZZ(CL, _ b/)/ N C/ ® (a/ N b/)// = C// ® a” = b”.
Similarly, and are rewritten as:

ZZ a” . (C/ N b/)// ® a/ N (C” N b//)/ ® c// = b// ‘ )
_ Zza// = b// ®Cl N (a/ N b/)/ ® C” = (a/ - b/)”,

ZZ(b” >C//)/ N CL/ ® (b” >C//)// >a// ® b/ N CI ‘ )
_ ZEb/ N a/ ® (b// = a//)// = c// ® (b// >CL”)/ N Cl.
By transposition of , , :

Proposition 1.9. Let V be a finite-dimensional space and ® : VRV — VQV be a linear
map. We consider ®* : V*QV* = (VRV)* — (VV)* = V*@V™*. Then (V,®) is an LEAS
[respectively an LCEDS, a dual ¢CEDS] if, and only if, (V*, ®*) is an LEAS [respectively a dual
(CEDS, an (CEDS].

Ezample 1.5. Let Q be a finite EAS and A = (K, ®) be its linearization. The dual A* is
identified with the space K of maps from 2 to K, with the dual basis (04 )acq of the basis Q of
K. Then, for any «, 8 € €2

D* (0, ® 0p) = > 0, ® 05.
(7.0)€6~ 1 (a,8)

If (2, @) is degenerate, this is not the linearization of an EAS.

2 Generalized prelie algebras

2.1 Definition

Definition 2.1. Let A be a vector space, ® : AQ A —> A® A be a linear map, and let (V,0) be
a family such that V is a vector space and o is a linear map:

A — LVRVV)
o: {V@V — V
a —> Og4:

VRW —> VO, w.

We shall say that (V,0) is a ®-prelie algebra if, for any z,y,z € V, for any a,b € A, using
Sweedler’s notation for ®:

xog (yopz)— Z(gj Oarrmp Y) O/ oty 2 =1 0p (T 0g 2) — Z(y Opimq? T) O gt 2. (18)

We denote by PreLieg the operad of ®-prelie algebras.



Ezample 2.1. 1. Let (2, —,>) be a CEDS and (A, ®) its linearization. We obtained a dis-
cretized version of generalized prelie algebras: for any a € €, V is given a product
0q : V®V — V such that, for any «, 5 € Q, for any z,y,z€ V,
Toq (y ©B z) — (v Caxf Y) Ca—np z =1Yop (T 00 2) = (y CBa ) Of—a %
For example:

o If Q) is a set, taking EAS(Q) (which is a CEDS), we obtain Q2-matching prelie algebras
of [9, 20].

o If (2, %) is a commutative semigroup, taking EAS(S2, ») (which is a CEDS), we obtain
Q-family prelie algebras of [T, 18].

2. Let us take A =K and let us put e = o7. f #(1®1) = 1® 1, then becomes
re(yez)—(reylez=ye(rez)—(yex)ez

In other words, ®-prelie algebras are (left) prelie algebras. f ®(1 ® 1) = 0, then
becomes

Telyez)—ye(ze2)
In other words, ®-prelie algebras are nonassociative permutative (briefly, NAP) algebras,
as considered by [16].

2.2 Structure on rooted trees

Let A be a vector space and D be a set.

Notations 2.1. 1. Let us denote by T the set of rooted trees:

T {avivi vl v kvl vyl b

We denote by T4 p the set of D-decorated and A-typed trees, that is to say rooted trees T'
with a map d : V(T') — D from the set of vertices of 7' to D and a map t : E(T) — A
from the set of edges of T' to A, the type being linear in each edge: for example, if ga p, if

dy,ds,d3 € D, a,a’,b,b' € A and \, u € K,
(&) + X&)

b+ub’
a+k M \ \
O @ () ().
X 4 x 4
We denote by gap the vector space generated by T4 p, the trees being linear in the type

of each edge. More formally, denoting by 7p the set of isoclasses of rooted trees decorated
by D,

9ap = P KT Qawry X A4,

TeTp 6€E' )

where Aut(T') acts trivially on KT and by permutation of the tensors on @ A.
eeE(T)



2. IftT,....,Ty € Tap, d€ D and ay,...,a; € A, we denote by Bg(aiT1,...,a;T)) the tree
obtained by grafting 77,...,T; on a common root decorated by d; the edge relating the
root to the root of T} in the process is of type a; for any ¢. This defines for any d € D a
map By : S(A® gap) — ga,p. For example, if di,dp,d3,d € D and a,b,c € A:

¢ : .

N

@

By a, b

Generalizing the construction of free prelie algebras of [5], we obtain:

Theorem 2.2. Let ®: AQA — A®A be a map. We define products o : gaAD®gAD —> §AD
for any a € A in an inductive way: for any T,T1,...,T} € Tap, for any a,ai,...,a; € A,

T Oa Bd(alTl, cee ,aka) = Bd((LT, alTl, ce ,aka)

k
/ /
+ Z Z Ba(a1Ty, ..., ai-1Tiw1, (@ — ai)T ogregr Ty a1 Tiva, - - - agTh).
i—1

Then, for any set D, (ga.p,0) is a P-prelie algebra if, and only if, (A, ®) is an (CEDS. Moreover,
if this holds, then ga p is the free ®-prelie algebra generated by trees @ with one vertex, decorated
by an element d of D.

Example 2.2. Let a,be A and X,Y,Z € D. Then:

10



Proof. =. Let D = {X,Y, Z} be a set of cardinality 3. In g4 p:

@
@ea| Do e |[= 2T

(a//D(b/_)cl)/I)l/>(b//>cll)//

be=c” b'c

a"(b'—c)" ! CY
.y ) @D +TNY ey
o b —c! a’'— (' —c) @

a/_)(bl_>cl)/

whereas:

@) el (v)
c =) (2) +2.), |@-wy=e.
a’'—b ¢ @

(@ Oa”>b” @) Oa/—>b/

Hence, relation gives, by identification of the types of the types of the edges of the trees of
the form

and ,

the relation for the first one, up to the permutation of b and ¢, and for the second one.
So A is an (/CEDS.

11



<. Let us prove for x, y and z trees, by induction on the number of vertices n of z.
We put z = By(aiTh, . ..,axTy). Then:

x 0o (yop 2) = Bylax,b,y,a1T1,...,a;Ty) + Z Ba((a' — b')(x ogneyr y), a1Th, - . ., arpTy)

i

k
+ Z ZBd(by,alTl, vy (d > d)(wognegr Ty), . .. arTy)
=1
k
+ Z Z By(az,a1Ty,. .., (b/ — aé)(y b/t Ti),...,a;Ty)
i=1

k
+ ZlZZBd(alTl, ey ((a, — (b/ —> afi)/)a: Oa”>(b’%a;)” (y Ob//>a/i/ ﬂ))’ e ,(Ika)
1=

i

+ Z ZZBd(alTl, (@ = @) (@ ogregr Tp), ., (U — d)(y Op-a! Tj), ..., apTy),

i#j
and

Z([]} Oa”l>b” y) Oa’—>b’ z

= Y Ba((d' = V)(x 0grey y), arTh, - . arTi)

k
+ Z ZZ Bd(alTl, SN ((a/ - b/), — ai)(az Og/' b y) O(a’—»b/)”|>a,’i’ TZ), c. ,aka).
i=1
Hence:
k
xog (yopz)— Z(m Oa'st! Y) Ol bt 2 = Z Bi(a1 Ty, ... ,w(az, by, a;T;), ..., apTy) (19)
i=1
+ terms symmetric in (az, by),

where

w(azx,by,cz') = ZZ a — (V' — )z opep ey (Y oy 2')
YN 8 e ) e 7
If n =0, then k = 0, so is satisfied from . Otherwise, we put
u = ZZa’ -V ->dV®d =0l - ="

Then:

Id® ®(u) = ZZ(CL’ -V 5@ ->V)="®d =V
Appyling the induction hypothesis on 2z’ = T}, we obtain that

w(azx,by,a;T;) = 0.

So by , is satisfied for (z,yz). Hence, ga p is indeed a ®-prelie algebra.

The proof of its freeness is similar to the proof of [5], see also [9]. O

As the number of indexed rooted trees with n vertices is n? 1, see sequence A000169 of the
OEIS [19]:

Corollary 2.3. If (A, ®) is a finite dimensional ¢CEDS, then for any n = 1:

dim(PreLieg(n)) = n™ ! dim(A4)" 1.

12



2.3 Links with prelie algebras

Proposition 2.4. Let A be a vector space, ®: AQ A — AR A be a linear map and V be a
vector space with a map

A — hom(V@V,V)
o: {V@V — V
a —> Og4:
TR®Y —> T OgYy.

We define a product on AQV by:
Vz,y eV, Va,be A, aveby =Y a' — Yz ogey y.
Then:
1. If (A, ®@) is an ¢CEDS and (A, o) is a ®-prelie algebra, then (A® V,e) is a prelie algebra.

2. If (A, ®) is a nondegenerate LCEDS and (A ® V,e) is a prelie algebra, then (A,0) is a
®-prelie algebra.

3. If, for the free ®-prelie algebra g4 p, where D contains at least three elements, (A®ga p,0)
is a prelie algebra, then (A, ®) is an ¢CEDS.

Proof. Let a,b,ce A and x,y,z € V. Then:

(ax o by) e cz = ZZ(a’ — ) — (@ ogreyr Y) Ot yrmer 2,

aze(byecs) =33 o (V' = &) ooy (§ wreer 2),

(bysaz)scs =3 S — @) — ¢(y yroar ) S aryroer 2

by e (ax e cz) = ZZ V' — (a' — )y opre(woey (@ 0qreer 2).
1. We obtain:

(ax o by) e cz—ax e (by e cz)

NN Y ) s

I > (V> NV wogepey (Y opreer 2)

= ZZZ ' = (V' = )z o(@re(poeyyepreey Y) Oy y b=y 2 bY
SIS 0 Yty o)

= 22,2, = (@ = &) @ orecryeetw—eyy V) Sweery et —eyy F BY
— 2 Z V' — (a = )z ogee (Y opre(ar—eryr 2)

= 2220 = (@ = &Y Y 0wy yre(@reany @) Opr(a—eyy ~@ieery 7 bY
SIS oy o )

= (byeax)ecz—bye (axecz).
So (A®V,e) is prelie.
2. Let a1,b1,c1 € V. As ® is surjective, there exists a @ b® c € A®3, such that

(@®1d)o(IdR ) (a®b®c) = a1 R b @ c1,

or, with Sweedler’s notation:
ZZa -t ->)@d =l - =" =a1 @b ®c;1.

13



The prelie relation gives:

(ax o by) @ cz —ax e (by e cz)

= 2.2 01(& Caryr ) O ryremer 2 — a1 by (Y Oy )

= a1(2 Oyt Y) O ey 2 — Q1T Oy (Y O, 2) by (14)),
= (byeax)ecz—bye (ax ecz)

= a1(y oy @) 0 Ly 2 — a1y o, (T ¢, 2).

We deduce )

3. Let D = {z,y, z} be a set of cardinality 3 and let V' = g4 p be the free ®-prelie algebra
generated by x,y, z. Then, for any a,b,c € A:
Y = V) = (@ owrey y) O yreer 2
SN (> ) sy (o 2)
I = d) = (Yo ) Oy aryreer 2
FRS (= Oy vt o 2 =

Let R be the space of relations defining ®-prelie algebras, seen as a subspace of the free operad
generated by A, concentrated in degree 2. We deduce that the following element belongs to

AR R:

0= S5 Y e 1) oy
Y = (V= )V wopeoey (Y opee 2)
I = d) = Y oyrear ) Oty 2
S e Yoy (e )

Necessarily, by identification of elements of the form zo(yoz), (zoy)oz, yo(zroz) and (yox)oz,
we obtain relations and (15). So (A, ®) is an (CEDS. O

2.4 Combinatorial description of the generalized prelie products on trees

Definition 2.5. Let (A, ®) be an {CEDS, and D be a set. Let T,T' € Tap, x be a vertex of T’
and a € A. We denote by Togl T' the element of gap obtained by the following process:

1. Graft T on the vertex x of T'. This process add an edge e which is of type a.

2. Let ey, ..., e be the edges of T' on the path between the root of T' and the vertex x, and
ai,...,ay their type. Compute

p
> d)®. . ®a),,@a, = ([A®FDRP)o(1d®FD@dgId)o. . .o @RId®F V) (a®u1®. . ®ar),
=1

and take the sum for 1 < i < p of trees obtained by typing e by a, and e; by a;‘,i for any j.

14



Example 2.3. Let us consider the following trees:

T=, T/:.

Then:

@ (a// I>b//)// |>C”

\ c (@)

T<> d4) T — @ T ol d3) T — Z T<> d2) T — ZZ (@Y =

o

a'—b

Proposition 2.6. Let T,T7" € Tap and a€ A. Then, in gap:

To,T'= ) To(z T
xeV (T)’

Proof. We proceed by induction on the number n of vertices of T7V. If n = 1 let us put 7" = @
Then:
T Oq T/ _ Bd(CLT) T <>(1“001;(T )) T/.

Let us assume the result at all ranks < n. We put 7" = By(a1T4,...,a;Tk). Appying the
induction hypothesis to 11, ..., T, we obtain:

T oo T' = By(aT,arTh, ..., axT}) +Z Z ZBd alTl,...,(a’—»a;)ToijL,,M,_,Ti,...,aka)
i=12eV (T,

To) T

= T 0§ )T’+Z S
i=1 eV (T;)

= 3 T T 0
zeV (T7)

Corollary 2.7. Let (A, ®) be an {CEDS and D a nonempty set. We denote by ¢’y , the prelie
subalgebra of A® gap generated by the elements a@, with a€ A and a € D.

1. The following conditions are equivalent:

° gi‘LD =A®gaD.

e O is surjective.
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2. The following conditions are equivalent:

e The prelie algebra ngD is free.

o O s injective.

Proof. 1. =>. Let X € D and a,be€ A. Then:

a@ o b@ = Za' — b o= .

Let us assume that Q/A,D = A®gap- Let a,be A. Because of the graduation by the number of
vertices, there exist elements ¢;, d; € A such that

k
Zci@odi@):a b .
i=1

k
PIDET AR
i=1

k
) (Zci(@di) =a®b,

i=1

By the preceding computation:

Consequently:

so P is surjective.

1. «<=. Let us denote by gagkp be the prelie algebra of rooted trees decorated by A ® KD,
the decorations being linear in each vertex, and let ¢ : gagp — A ® gap be the unique prelie
algebra morphism sending the tree with one vertex decorated by a ® d, with a € A and d € D,

to a(d). We plan to prove that ) is surjective. Let us prove that for any a € A, any tree
J Yy Yy

T, aT € Im(v)). We proceed by induction on the number n of vertices of T. If n = 1, it is
obvious. Otherwise, let us put T' = By(a1Th, ..., arTk). We proceed by induction on k. This is
obvious if £ = 0. Otherwise, let us put = T} and Y = By(axTy, ..., a;T)). By the induction
hypothesis on the number of vertices, z and y belong to Im(¢). As ® is surjective, let us choose
Yei®di € A® A such that (> ¢; ®d;) = a®a;. Then:

Z crodyy =T + a sum of trees with n vertices and with k£ — 1 trees born from the root.

By the induction hypothesis on k, this sum belongs to Im(v), so T' € Im(%)).

2. =. If 914,D is free, then because of the graduation, it is freely generated by its elements

a@. Let us assume that ®(3]a; ® b;) = 0. Then, for any d € D:

@

" /7
aleb] = 0.

@

REIORIOEDIEET
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By freeness of A® gap, >,a; ®b; =0, so ¢ is injective.

2. <. We now show that 1 is injective. The combinatorial description of the generalized
prelie product implies by a direct induction that for any tree 1" which vertices are decorated
by A® KD, ¢(T) is a sum of terms a ® T’, where T" is a tree with the same form as T, the
decorations by D being conserved, and a and the types of the edges of T” being obtained from
the decoration by elements of A by iterated applications of ®, depending uniquely of the form
of T. As ® is injective, 1 is injective. O

2.5 Combinatorial description of the underlying operad

Let (A, ®) be an /CEDS. The description of the free ®-prelie algebras induce a description of
this operad. We shall use the formalism of operads in the category of species. For any set D,
PreLieg|[D] is the space generated by the set of trees T4[D] A-typed, the types being linear on
each edge, and which set of vertices is D. The operadic composition is given in the following
way: if D and D’ are sets, d € D, T € Ta[D] and T" € T4[D'], let us consider the unique ®-prelie
algebra morphism ¢ : g4 p — g4 pLp/\ (¢} sending @ on itself if X # d and on T’ otherwise;
then T oy T" = ¢(T). From the combinatorial description of the prelie products with graftings,
we deduce the following description of this operadic composition:

e Let us denote by T7,...,T} be the subtrees of T" born from the vertex d of T', and by a;
the type of the edge relating this vertex to the root of T; for any i.

e Denote Ty = T\(T1 . .. uTy) the subtree of T' obtained by deleting the subtrees T, ..., Tk
and by T #4 T the tree obtained by identification of the vertex d of T' with the root of T".

Then:

The unit is the tree I = @ € PreLieg(1).

17



Ezxample 2.4. If x,y,2 € D, u,v,w € D', and a,b,c,d € A:

(CL I>b~>c)

@
ADIIICECETD

@
a—> b—»c

®
OWRG,

(a”|>(b’ac’)//)//|>((b//DC,/),HM V'=c")"=d"
)
+ Z Z Z Z (a"=(b' = )Y = (V=) —=d')
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Remark 2.1. If A = K, we can forget about the types of the edges and we obtain operadic
structures on rooted trees. If #(1®1) = 1® 1, we recover the description of the operad of prelie
algebras as done in [5]. If ®(1®1) = 0, we recover the description of the operad of NAP algebras
of [16].

2.6 Pre-Lie and non-associative permutative products

We now look for prelie and non-associative permutative products in ®-prelie algebras. More
formally, we look for operad morphisms from the operad PreLie of prelie algebras or from the
operad NAP of non-associative permutative (briefly, NAP) algebras [16] to the operad PreLieg.
Recall that the operad PreLie is generated by o € PreLie(2), with the relation

po (Iap) —po (paI) =po (va)(12) —p° (paj)(IQ)v
whereas the operad NAP is generated by o € NAP(2), with the relation
po(I,p)=po(I,p)"?.

Let us first recall this definition of [13]:

Definition 2.8. Let (A, ®) be an (EAS, A € K and a € A. We shall say that a is a special vector
of (A, ®) of eigenvalue A if P(a®a) = Aa® a.

We prove in [13] Lemma 4.4] that if (A, ®) has a nonzero special vector of eigenvalue A, then
A=0orl.

Proposition 2.9. Let (A, ®) be an LCEDS.

1. The prelie products of PreLieg are the products o,, where a is a special vector of (A, ®)
of ergenvalue 1.

2. The NAP products of PreLieg are the products o,, where a is a special vector of (A, ®) of
eigenvalue 0.

Proof. We use the description of PreLieg in terms of typed rooted trees. From the combinatorial
description of the operad PreLiegs, for any a,b € A:

o ®
oao([,ob)z X b+2@ , oao(ob7I):@_
®)

a/l/ >b//

a'—b'

® ®
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Let p = oq + o)” € PreLieg(2), with a,b e A. Then:

®
oNo ® ®
@ e e @ ®

potr.1)= (@ +(D \@;2@ : \@wE@

b// >b//

b —b'

® © @

1. In the prelie relation po (I,p) —po (p,I) = po (I,p)? —po (p, )12, let us identify the
type of the edges of the trees of the form

b —a’

oMo |

\ ‘ and (2).

@ |

The first one gives a®b—a®b=0—b®b, so b® b = 0 and consequently b = 0. The second
one gives ».d/ > d ®d">d" —a®a=0—a®b =0, 50 P(a®a) = a®a. Conversely, if

4®a=0(a®a) and p = o,:
ONENO
- Q. @
po(Lp)~po D) = \\HE@ NOEE N
ol 0
®  ®

which is invariant under the action of (12). So o, is prelie.

a/l ‘>a/l

L ®

2. In the NAP relation po (I,p) = po (I,p)1?), let us identify the trees of the form

@ and @
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The first one gives b®b = 0, so b = 0. The second one gives >.a’ — ¢’ ®a” =a" = 0. Conversely,

if ?(a®a) =0 and p = o,:
O @

po(l,p)=p= x
®)

which is invariant under the action of (12). So o, is non-associative permutative. O

a,

Ezample 2.5. Let (2, —,>) be an EAS and (K2, ®) be its linearization. Let a = Z aqa € KO.

ae)
Then a is a special vector of eigenvalue 1 if, and only if:

Va’,IB’ €N, Z a0 = Qo Q.
CV,BEQ,
(a—B,a=B)=(c,")

It is a special vector of eigenvalue 0 if, and only if:

vo!, B e Q, Z aqag = 0.
Q,BEQ,
(a—B,a=p)=(,5")

As a consequence, if a is a special vector of (A, ®) of eigenvalue 1, then (g4 p,0q) is a pre-Lie
algebra. Let us study the structure of this pre-Lie algebra in the particular case where a is a left
unit.

Proposition 2.10. Let a be a nonzero special vector of A of eigenvalue 1 and let f € A* such
that f(a) = 1. The pre-Lie algebra (ga.p,0q) is freely generated by the space of trees T' such that
any edge born from the root of T is typed by an element of Ker(f).

Proof. We fix a basis (e;);epr of Ker(f) and fix a total order < on I'. Putting I = I 1 {o0} and
€y = a, we obtain a basis (e;);e; of A, and I is totally ordered, oo being its greatest element.
We also fix a total order < on D.

A basis of g4 p is given by the set T of rooted trees which vertices are decorated by D and
the edges are typed by elements of the basis (e;);e;. For any n = 1, we denote by 7, the set of
elements of 7 with n vertices. We now define a total order on 7, in the following way.

e If n =1, the considered trees are reduced to a single vertex decorated by an element of D.
The total order of D induced a total order on 77.

e Let us assume that the total order is totally defined on Ty for any & < n. We then define
a total order on {e;,7 € I} x (Uk<,Tx) in the following way: ;7" < e;T" if one of the
following condition holds:

—4i<jin [
— ¢ = j and T has strictly less vertices thant T".

— i =7, T and T" have the same number of vertices p and 7' < T" in 7).

Let us consider T, 7" € T, which we write T = By(aiT1,...,a;Ty) and T = By (a(T7, ..., a)T}),
with:

! ! !/ /!

We shall say that T < T in 7T, if one of the following condition holds:
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—d<d inD.
—d=d and k <.
— d=d', k=1 and there exists i € {1,...,k} such that

! ! / / el
alT]_ = a1T17 ceey ai_lT'_]_ = ai_lj—;’_l, aiﬂ < azTZ

We denote by T the set of trees T' € T, such that no edge born the root is typed by a = eq.
A basis T+ of the free pre-Lie algebra g7+ generated by 7~ is given by non-typed rooted trees T,
which vertices are decorated by elements of 7’. There exists a unique pre-Lie algebra morphism
¢ : (g77,0) — (94D, 04) sending any tree T' € T7» with a single vertex decorated by T' € T’ to
the tree T'. Let us consider a tree T' = By (T1,...,Ty) € g7, with T" = By(a{ 11, ..., a)T]) € T".
¢(T) is a nonzero linear span of trees with the same number of vertices, obtained by generalized
graftings of the decorations of T.  We denote by m(7T') the greatest of these trees for the the
total order defined earlier. In all the trees appearing in ¢(7'), the decoration of the root is the
decoration d of the root of T”. If we consider a tree obtained by grafting trees of ¢(11), ..., d(Tk)
on the root of T”, the fertility of the root is k + [. If one of the trees of ¢(T1),...,d(T}) is not
grafted on the root of T”, the fertility of the root is < k + [. By definition of the total order, we
obtain that:

¢(T) = m(Ba(ap(Th), ..., ad(Tx), a1 11, - . ., aiT})).

Up to a permutation, we can assume that m(71) > ... > w(T}). Then any tree in ¢(7") is smaller
than By(am(Th),...,an(Ty),a Ty, ..., a;T]). Hence:

7(T) = Bylan(Th),...,m(T}),a Ty, ..., a/T}).

In other words, 7(T') is obtained in the following process: for any vertex v of T which is not
the root, graft the decoration of v on the root of the decoration of the father of v. This defines
a bijection from the set 77 (basis of g77) to T (basis of gap). By triangularity of ¢, ¢ is
bijective. O

Remark 2.2. A similar order was used in [I5] in free pre-Lie algebras in order to define and study
Grobner-Shirshov bases on these objects.

3 Generalized permutative algebras

3.1 Definition and Koszul duality

Definition 3.1. Let (A, ®) be a dual LCEDS. An (A, ®)-permutative algebra is a pair (Vo)
where V' is a vector space and

A — (VeVV)
o {V@V-H 14
a — o4

VRW —> Vo, W,
such that for any x,y,z €V, for any a,be A:
(m p y) Oq 2 = Zl‘ Cql b (y NN Z)a (20)
T 0q (Y 0 2) = Y 0 (T 0a 2), (21)

with Sweedler’s notation
P(a®b) =Y d ~V®d >V
We denote by Permg the operad of (A, ®)-permutative algebras.
Proposition 3.2. Let (A, ®) be a finite-dimensional {CEDS. The Koszul dual of the quadratic

operad PreLieg is Permegs .
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Proof. For any vector space F, let us denote by Fg the free operad generated by £ € Fg. As a
vector space, with tree-operadic notations:

Fg(2) = (V@E) P <2\(1®E) ,

1 2 3 1 3 2 2 1 3
Fg(3) = V@E@ P V@E@ P V@E@
2 3 1 3 1 2 3 2 1
P V@E@ P V@E@ P V@E@
1 2 3 1 3 2 2 1 3
P V/®E®2 P V/®E®2 P V/®E®2
2 3 1 3 1 2 3 2 1
P NV g e AP N g e @ Y ,

and the action of the symmetric groups is given by permutations on the indices on the leaves.
The composition is given by grafting on the leaves: for any a,b € FE,

1 2 3 1 2 3
1 2 1 2 1 2 1 2
Y@aolY@)b:V@a@b, Y@aOQY@)b:V@a@b,
2 1 2 1 3 2
1 2 2 1 1 2 2 1
Y®a01Y®b=V®a®b, Y®a02Y®b=V®a®b,
3 1 2 2 3 1
Y@aol\(@b:v@a@b, Y®a02Y®b:V®a®b,

3 2 1

3 2 1
2 1 2 1 2 1 2 1
Y@aolY@)b:V@a@b, Y®a02Y®b=\</®a®b.

Moreover, if E is finite-dimensional, F7, is identified with Fg+ with a pairing compatible with
the action of the symmetric groups, such that:

e For any operadic trees T', T” with two leaves, f € E* and a € E:
T f,T' ®ay= f(a)drrer,

with

1 212 1

TIY|Y

er| 1 | —1

e For any operadic trees T', T” with three leaves, f,g € E* and a,b € E:

T®fFRyT ®a®b) = f(a)gb)orrer,

with
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
T \</ \</
ET 1 -1 —1 1 1 -1
1 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1
T V/ V/ \?/
eT -1 1 1 —1 -1 1




The operad PreLieg is the quotient of F 4 by the ideal I generated by

X(a®b) = \P/®a®b—\</®<ba®b \P/®b®a+\y®<bb®a

with a,b € . As a vector space, I(3) is of dimension 3dim(A)?, and is generated by the
elements

X(a®Db),
Y(a®b) = X(a®b)?)

1 3 2

—V@a@b—V®¢a®b \P/®b®a+\y®<bb®a

Z(a®b) = X(a® b))

3 2 1

—V@a@b—VQ)CI)a@b \P/®b®a+\y®‘1>b®a

with a,b € A. Recall that the Koszul dual PreLie;b is the quotient of F 4« by the ideal
generated by I(3)*. For any f,g € A*, we put:

=V®f®g—\7®®*(f®g)-

For any f,g € A*, any a,b € A:

X1(f®9), X(a®b)) = =(f®9)(2(a®b) + 2*(f ®g)(a®b) =0,
X1(f®9),Y(a®b)) =
X1(f®9), Z(a®b)) =

So X1(f®g) € I(3)*. As a consequence, we obtain a free Gz-submodule of I(3)*, generated by
the elements

X1(f®y),
(f®g)—X1(f®g(12)—V®f®g—\y®¢*f®g)
X3(f®g) = X1(f®g)*) = V@f@g V@@ (f®9),

Xi(f®g) =Xi(f@9) = \y®f®g V®‘1> (f®g),

2 3 1 2 3 1

X5(f®g) = Xi(f®g)1%) = V®f®g— v®¢*(f®g),

Xo(f®g) = X1(f®9) " = V®f®g— \?/@@*(f@g),

with f,g € A*. For any f,g € A*, we put:

X7(f®g) = v@f@)g \?/@g@f

For any f,g € A*, any a,b € A:

(Xr(f®9), X(a®b)) = —f(a)g(b) +9(b)f(a) =0,
(Xr(f®9),Y(a®b)) =0,
(X7(f®9),Z(a®b)) =
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So X7(f ®g) € I(3)*. As a consequence, noticing that X7(f ® g)'? = —X7(¢ ® f), we obtain
a Gz-submodule of I(3)*, generated by the elements

X7(f®y),
Xs(f®g) = X:(f® ) = \P/®f®g—\P/®g®f,

3 2 1 2 3 1
X9<f®g>=X7<f®f><13>=\7®f®g—\7®g®f.
Let f; ® g; € A* ® A* such that
9
ZXi(fi ®gi) =0
i=1

Considering the terms \>/ ® f ® g, with (i, j, k) € &3, we obtain that if 1 <i <6, f;®g; =0.

i k
Considering the terms \5/ we obtain that if 7 <i <9, f; ® g; = 0. Hence, we have obtained
a submodule of I(3)* of dlmensmn 9dim(V)2. Moreover.

dim(1(3)%) = dim(F4(3)) — dim(I(3)) = 12dim(V)? — 3dim(V)? = 9dim(V)?,

so the elements Xi(f ® f) and X7(f ® g), with f,g € A*, generate I(3)*, which gives the
description of PreLiel. O

3.2 Free generalized permutative algebras
Proposition 3.3. Let (A, ®) be a dual ¢(CEDS and V' be a vector space. We define
Ca(V)=S(ARV)®V.

Its elements will be denoted as linear spans of terms a121 . .. anTy | ©, withn =0, a1, ...,a, € A
and T1,...,Tn,x € V. Note that for any o € G,

AT1 - ApTy | T = Ao(1)To(1) - - - Qo(n)To(n) | T-
For any a € A, we define a product a product o, on C4(V) by:
a1y ... apxp | £ 0q b1yr .. by |y = Z a1 - TR TY1 - DYk | Y, (22)
with
YA ®.. . ®ap,, = (Id®(k—1> ®<I>) o...0 <<I>®Id®(k_1)> ((®a®...Qay).
Then (C4(V),o) is the free (A, ®)-permutative algebra generated by V.

Proof. Firstly, note that o, is well-defined, that is to say the result in does not depend on
the order chosen on the a;x;. For example, for k = 2, taking b; ® by = a2 ® a1, by ,

DR @b = (Id® ) o (?@Id)(a®az ®ar)
“ SN b ® (0 v ) @ () o
= al) @ @ (o v af) > a,
so, in S(A®V):
Zaixlaémgagx = Z by wobhx .
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Let us prove that C4(V) is a (A, ®)-permutative algebra. Let us consider
X =a1x1...apxg | x, Y =byr ... bryk | v, Z =c121...Cm2m | 2.
Let a,b e A. Then:
(XopY)o, Z = Z alzy ... apxRag xbiyr Wb yeiz - emam | 2,
ZX gty (Y ognupr Z) = Z a’{xl .. a%wkagﬂxb'{yl ... b%llbgﬁrlyclzl e CmZm | 2,
with:
Ddi®. . ahy, RV ®...®bj,, = (Id®(k+l) ® q;) (q) ® Id@(k+l)>
o (11 @ e@1d™ ) o...0 (4@ @ @1a®¢++1)
@®IRU .. ®a®b®...Rb),
Nal®...d, oM. .o, = (Id®<k—1> QD ® 1d®<l+1>> o...0 (cI> ® Id®’“+l)
o (11D @) 0.0 (10D @ e @1d% )
o (10 V@ r@1a®* V) oo (@ T @ 1™+
o <<I>®Id®k”> (R4 ®..QaQb®...Qb),

where 7 : AQ A — A® A is the usual flip. In order to prove that these two elements of
A®K+I+2) are equal, we shall use braid diagrams-like notations. We shall represent ® and 7 by
diagrams (to be read from bottom to top)

CI):Y, T:X,

and the composition will be represented by a vertical concatenation. For example, is rewrit-

ten as:
d d
FR .
Z r Z
Then:
YA ®.. ah O ®...Q,, = (ARVRa®..Qur @b ®...Qb),
D@ a O ®... QO = (VR ®..Qu Rl ®...Qb).

)

The iterated application of gives that the two diagrams above are equal, which finally gives
for C'4(V'). Moreover:

/ / / / /
Xog(YopZ) Z a1zl ... apxRa, 1 biyr . b yeiz . emzm | 2,

" " // /! //
Y op (X o Z Z aizy ...ajzrayp 1 blyr . Oyl yciz - emam | 2,
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with

Ydi®. . a, @U@ Qb = (RIRU®..Qur b ®...Qb),

DA ®. . ah U@, @V = (GRIRU .. Qur @b ®...Qb).

The two appearing diagrams are equal to

X\

which implies for C4(V).

Let B be an (A, ®)-permutative algebra and let 6 : V' — B be a linear span. Let us prove
that there exists a unique permutative algebra morphism © : C4(V') — B, extending 6.

Uniqueness. Let us remark that for any z1,xo,..., 25,y €V, a1,...,ax € A, by definition of
the product of Cx(V):

X1 Oqy A2T2 ... QKTE | T = a121 ... apTK | T
A direct consequence is that C'4(V') is generated by V', which implies that such a © is unique.
Existence. Let us define © by:
O(a1z1 ... ankzy | ) = 0(z1) 04, (... (0(xk) g, O(x)) .. .).

By , this does not change if one permutes aiz1,...,arrE, so this is well-defined. Let us
consider

Cu(V) ={z e Ca(V), Yy e Ca(V), f¥ae A, O(z 0 y) = O(z) %0 O(y)}.
Let 21, 29 € Cy(V) and be A. For any y € C4(V) and a € A:

O(x1 0p T2) 0q O(x1) = (O(x1) ©p O(22)) 00 O(71)
= 2,0(21) owpr (B(w2) Carnyr O(21))
= Z O(21) 0g/~ty O(22 Oarvbr 1)
0 (v (s )

=0 (.%'1 p .132) Ca .%'1) .
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Therefore, z1 o, 2 € C4(V): we proved that C,(V) is an (A, ®)-permutative subalgebra of
Ca(V). Moreover, for any x € V, for any y1,...,yk,y € V, for any a, by, ..., by € A:

O(x 0g bryr ... bryr | y) = O(axbiyr .. bryk | y)
= 0(x) o (y10p, (- Yk <p, y)---))
= O(x) 0q O(b1y1 - .- bryr | y),

so x € C(V). As Cx(V) is generated by V, Cxa(V) = C’(V), which implies that © is an
(A, ®)-permutative algebra morphism. Therefore, C'4 (V) is the free (A, ®)-permutative algebra
generated by V. O

Corollary 3.4. Let (A, ®) be a finite-dimensional dual ¢CEDS. For anyn > 1:

dim(Permg(n)) = ndim(A4)" L.

3.3 From permutative to generalized permutative algebras

Notations 3.1. 1. We denote by Perm the operad of permutative algebras, that is to say
binary algebras (A, <) such that for any a,b,c € A,

(xoy)oz=xo(yoz), rxo(yoz)=yo(roz).
The operad Perm is the Koszul dual of the operad PreLie.

2. We denote by Perm(® the operad of O-permutative algebras, that is to say binary algebras
(A, ¢) such that for any a,b,c € A,

(xoy)oz=0, xo(yoz)=yo(roz).

The operad Perm® is the Koszul dual of the operad of NAP algebras.

We now consider operad morphisms from Perm or Perm® to Permg, or equivalently
permutative or O-permutative products in Permg. We shall need the following notion:

Definition 3.5. Let (A, ®) be an (EAS. A weak special vector of (A, ®) is an element a € A
such that:

P(a®a)+T70oP(a®a) =a®a.

Proposition 3.6. Let (A, ®) be a dual (CEDS. The permutative products in Permg are of one
of the following form:

e o4, where a is a special vector of ® of eigenvalue 0.
O . .
o o, + o, where a is a weak special vector.

The 0-permutative products in Permg are the products ¢4, where a is a special vector of eigen-
value 0.

Proof. Let ¢ = ¢4 + o;” be any element of Permg(2), with a,b € A. Let us apply it in the free
Permg-algebra on three generators x,y, 2.

(xoy)oz=(a ~dzd"»ad"y+ad —~byd »b"z)| 2+ azbz | y + bybz | z,
ro(yoz)=azay|z+avbz|y+ b —~adyb" »a’2bl =026"»b"y |z,

yo(zoz)=azvay|z+aybz | z+ (V —~dzb" »ad"20) =b20"»b'x|y.
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Identifying terms czdy | z, cxdz | y and cycz | z, if © is a permutative product:

P(a®a)+T70P(a®b) =a®a, (23)
db®a) +Tod(bRb) =b®b, (24)
db®a)+Tod(b®b) =a®b. (25)

By @5)-[24), (a —b)®b=0,s0 a=>borb=0.If b =0, then by (23), a is a special vector of

eigenvalue 1. If a = b, by , a is a weak special vector. The converse implication is immediate.

If ¢ is a O-permutative product:

P(a®a)+T0oP(a®b) =0, (26)
a®b=0, (27)
b®b =0, (28)
Pb®Ra)+ToP(bRD) =a®b. (29)

By 7 b = 0 and, by , a is a special vector of eigenvalue 0. The converse implication is
immediate. O

We do not know any /EAS with a nonzero weak special vector, and we only have negative
results on their existence:

Proposition 3.7. 1. Let (A, ®) be a two-dimensional (EAS. Then its only weak special vector
15 0.

2. Let Q be a semigroup. If Q) is a group or if Q is finite, then the only weak special vector of
(EAS(KQ) is 0.

3. Let (Q,*) be a group and let (A, ®) be the linearization of EAS'(Q, ). Then the only weak
special vector of (A, ®) is 0.

Proof. 1. Let us assume that (A, ®) has a nonzero weak special vector x, which we complete
in a basis (z,y) of A. The basis of ® in the basis (z ® z,2 ® y,y ® z,y ® y) is denoted by
M = (aij)lgi,j@l. Then:

PrRz)+T70P(x®2z) =2an12Q@z+ (a1 +a31) (2 QY +y®x) +2anyRQy =z z,
1
SO a11 = 2 ag1 = —ag and ayg; = 0. Considering the matrix of the map (Id ® ®) o (¢ ®Id) o
(Id®®P) — (P®Id) o (Id®T) o (P ®Id) in the basis of tensors products of x and y, we obtain a

8 x 8 matrix, which all coefficients are zero. Up to the replacement of y by a4oy if a4o is nonzero,
we can assumne that aqo = 0 or 1.

2
o If ass = 0, coefficient (6,1) is % = 0, whereas coefficient (7,5) is —% = 0: this is a
contradiction.
1
o If ayo = 1, coefficient (7,1) is —ag3 — 1 = 0, so ay3 = —1. Coefficient (6,1) is —az3 — 5= 0,

1
whereas coefficient (7,5) is asgs — 5= 0: this is a contradiction.

So there is no nonzero weak special vector in A.
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2. Let a = Z aqa € K.

a€eld

a is a weak special vector of /EAS(KQ)
— Z aqgago® B = Z acag(af @ a +a®ap)

a,BeN a,BeS)

— Vo, €, aqap = Z ay |ag + Z ay |aq. (30)
YEQ, By=cx vEQ, ay=p

Let a be a nonzero weak special vector of FEAS(KQ). We put G = {a € Q, a, # 0}. Then G is
nonempty.

We first assume that €2 is a group. Then becomes:

Ya, 5 € €, a0 = Aag-—14 + AaGn-1g-
Taking o = f = eg, we obtain agg = 2a§G, so ae, = 0. Taking o = S € (), we obtain
a?x = 20c,0q = 0, 50 a, = 0. There is no nonzero weak special vector in this case.

We now assume that 2 is finite. We define a relation < on G by:
a<f<<af=aora=,.

This relation is obviously reflexive. Let us assume that a« < fand f <~v. f a = B or § =7,
then obviously a < . Otherwise:

ay = (af)y = a(By) = af = a.
So o < v. We proved that < is transitive, so < is a quasiorder. Consequently:
e The relation ~ defined on G by a ~ 8 if, @ < 8 and 8 < « is an equivalence.
e The relation < defined on G/ ~ by @< if a < 3 is an order.

The poset (G/ ~, <) is finite, as 2 is finite; so it has a maximal element, which is a class of ~
denoted by H. By construction of H:

e H is nonempty and, for any o € H, a, # 0.
e If « € H and B € GG such that aff = «, then 5 € H.

e Forany a,€ H, a = or aff = a.

We put
Hy ={ae H an = o}, H_; ={ae Haa # a}.
Then gives:
VYa e Hy, aa=22a7,
yeH
VOéerl, Qg =2 Z ()
veH, y#a
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which can be reformulate as

Vo € Hy, ao+2 Y, ay=0,
YEH y#a

Yae H 1, —aq + 2 Z ay = 0.
veH, v#a

Hence, after a convenient indexation, the vector (aq)acq is a nonzero vector of the kernel of the
matrix

1 2 ... 2 2 ... ... 2
2
2
2 2 1 2 ... 2
2 2 -1 2 2
2

: : : 2
2 .. ...2 2 ... 2 -1

We leave to the reader the proof that this matrix is invertible: this is a contradiction, so
(EAS(KQ) has no nonzero weak special vector.

3. Let a = Z aqa € KQ.

a€ef

a is a weak special vector of the linearization of EAS'(, x)
— Z aqagB® B = Z aaaﬁ(,@@)a*ﬁ*_l +Oé*5*_1®ﬁ)
OC?BEQ Oé,ﬁEQ
— Va,B €9, a3 = ABa0q + Gapags. (31)

Let a be a nonzero weak special vector and let « € Q, such that a, # 0. For § = o™ in (31):
Ao Qon = Qan+10q + Aan+1Aan.

A direct induction proves that for any n > 1:
1

Aon+l = —Qg-
n

Consequently, if 8 € (2, such that ag # 0, then ag = 3ags = agz. Moreover, applying this for
a = B2, ags = agz. Finally, ag = 3ags = aga, so age = 0 and ag = 0: this is a contradiction.
There is no nonzero weak special vector in this case. ]

4 Hopf algebras and bialgebras from generalized pre-Lie algebras

4.1 Dual bialgebras

As shown in [8], the symmetric algebra generated by the dual of the coinvariant space of the
operad PreLieg inherits a bialgebra structure, induced by the operadic composition. In order to
avoid unnecessary technical difficulties, we restrict ourselves to the case of a finite-dimensional
dual /CEDS (A, ®). We identify the graded dual g% of g4 with g4, through the pairing defined
in the following way: if T' is an A*-typed and D-decorated tree and T’ is an A-typed tree and

D-decorated tree, then:

<T,T/>: Z H fe(ao(e)) 1_[ 5dv7d;<v>7

o€lso(T,T") eeE(T) veV(T)

with the following notations:
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e Iso(T,T") is the set of isomorphisms of rooted trees from T to T". If o € Iso(7,T") and
e = (z,y) is an edge of T', we denote by o(e) = (o(z),o(y)) the corresponding edge of T".

e For any e € E(T), f. is the type of e in T (and belongs to A*); for any ¢ € E(T"), a is
the type of ¢ in T” (and belongs to A).

We shall use the following definitions:

Definition 4.1. We assume that (D, x) is a commutative semigroup. Let F be an A-typed and
D-decorated forest and I be a subset of the set E(F') of edges of F'.

o We denote by F|; the forest obtained by deleting all the edges of Fwhich does not belong to
1. As its set of vertices is the set of vertices of F' and its set of edges is I, it is naturally
an A-typed and D-decorated forest.

o We denote by F); the forest obtained by contracting all the edges of F' which belong to I.
As its set of edges is E(F)\I, it is naturally an A-typed forest. Any of its vertices v can
be seen as the contraction of a subtree T, of F: we decorate v by the product in D of the
decorations of the vertices of T,,. With these decorations, Fyr is an A-typed and D-decorated
forest.

Note that E(F) = E(F;) u E(F);). We make Fi; ® F); a sum of tensors of A-typed and D-
decorated forests in the following process:

e For each edge e ¢ I: let us denote by eq, ..., e, the edges of F in the path from the root of
the tree containing e to the first extremity of e which belongs to I; denote by a the type of
e and by a; the type of e;. Compute

p
/ / /
Zai@)alﬂ-@...@ak’i

i=1

_ (¢®1d®(’f*1>) o (1d®q>®1d®(’f*2)> 6...0 <1d®(’f*1) @...@@) (1 ®...Qa1a)

and take the sum for 1 < i < p of tensors of forests obtained by typing e by a} and e; by
as; for any j in Fi; @ F;.

This sum of tensor products is denoted by Fj; ®q F)r.

Dualizing the combinatorial description of the operadic composition, we obtain a description
of the dual bialgebra induced by the operad PreLieg::

Theorem 4.2. Let (D, x) be an associative and commutative semigroup and (A, ®) be a finite-
dimensional dual {CEDS. Let us consider the symmetric algebra generated by ga p, with its usual
product m. For any A-typed and D-decorated forest F', we put:

§(F)= > F®sF).
ICE(F)

Then (S(ga,p),m,0) is a bialgebra, denoted by By (p, x)-
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Ezxample 4.1. Let a,be A and d,d’,d" € D.

i (@) = @ s (@)

() ()
5l ol [=a ®+@®a :
(@) @ (@)

b

@ @
| @) |- @@ @ @)+ X wor] @0 w
: : @ @
@ @

(@)
@ )
+Z@®?+®,
(@) (@ @

e : '\? .

Proposition 4.3. Let (D, x) and (D', x') be two associative and commutative semigroups and
(A, @), (A", D) be two finite- dzmenszonal dual LCEDS such that By (p xy and Bg (pr xry are
isomorphic bialgebras. Then (D, x) and (D', x') are isomorphic and A and A’ have the same
dimension.

Proof. We denote by M the monoid of group-like elements of B = Bg (p x). Its elements are the
forests with no edge and vertices decorated by D and its product is the disjoint union. For any
forest F'in B, F|g is an element of M which we denote by 71, (F'), and F)gp) is another element
of M which we denote by mr(F). We denote by B the subspace of B generated by forests with
at least one edge. Then, if F' is a forest of B™:

S(F) -7, (F)QF -~ FQnr(F)e Bt ®@B™.

For any g,9' € M, we denote by By, the subspace of B generated by forests F' such that
7. (F) = g and 7r(F) = ¢’ and we put:

Pg,g’ ={ze B@,(D,x)a d(r)=9gQ@u -1-33@9/-}-
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We adopt similar notations for B’ = By (pr,x7)-

First step. Let g,¢' € M. Let us prove that

P, 9,9 =

P,y 0 By g @® Vect(g — ¢').
Asd(g—9)=9®9-9d®9 =9®(9-9)+(9—9¢)®g', 2 is obvious. Let x € P, ;. We write

it under the form of a span of forests x = > apF. Then:

i) =gR®r+r®g+ Z ap (1 (F)QF + FQnr(F)) + Z arFQF + BT ®B*
FeB+ FeM

=Zap(g®F+F®g').

Identifying, if F' € B* such that 7 (F) # g or mr(F) # ¢, then ap = 0. If F'€ M\{g, ¢'}, then
ap = 0. Therefore, P, o < By o @ Vect(g,g’). If g # ¢, considering the coefficient of g ® ¢', we
obtain 0 = a4 + agy, so Py o < By o @ Vect(g — ¢'). If g = ¢/, considering the coefficient of g ® g,
we obtain 2a, = ag4, so ag = 0. Hence, Py, By g = By, ® Vect(g—g). As g—g' € Py gy, we
obtain the announced result.

Second step. Let W : B — B’ be a bialgebra isomorphism. Then ¥ sends any group-like
element of B on a group-like element of B’, so Uy : M — M’ is a bijection. Looking at the
indecomposable elements of the monoids M and M’, we obtain that ¥ sends any tree with only
one D-decorated vertex to a tree with only one D’-decorated vertex, so ¥ induces a bijection
1 : D — D’. Up to an isomorphism, we assume now that D’ = D’ and that 1) is the identity of
D.

Let us consider three elements d,d’,d” of D. Let us consider the group-like elements g7, =

@ and gp = . Then, by the first step, noticing that By, 4r is generated by trees with

two vertices:

Pg.9n = Vect(gz — gr) @ VectPy, g5 M By g

( @
Vect | a| ,a| ,aeA|ifd" =dxd,
= Vect(g9z — gr) ® 1 ‘
(&) @

| 0 otherwise.

. 3
and Py, g, we obtain that for any (d, d',d") € D*,

d'=dxd —=d =d x'd,

As ¥ induces an isomorphism between Py, 4,

so ¥ induces an isomorphism between (D, x) and (D', x’).

Let us fix now an element d € D, and let us consider the group-like elements g7, = @@

and gp = . Then:
(@)

Pyrgr = Pyrgr O Bgpgr = Vect | o] Jae A
As W induces a bijection form Py, ;. to P, it induced a bijection from A to A, so A et A’
have the same dimension. O

Remark 4.1. We conjecture that there exist two non isomorphic dual /EAS (A, ®) and (A’, ®),
such that Bg (p x) and Bgs (p,x) are isomorphic.
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4.2 Colinteractions

From [§], if (A, @) is a finite-dimensional dual /CEDS, then for any operad morphism PreLie —
PreLieg+, we obtain a pair of cointeracting bialgebras. We shall use the following definition,
using the definition of admissible cuts and the notations of [6]:

Definition 4.4. Let (A, ®) be a dual (CEDS and D be a set. Let us fiv f € A*. Let F be an
A-typed and D-decorated forest, and let ¢ be an admissible cut of F. This admissible cuts give
a tensor P°(F) ® RY(F) of D-decorated forests. We make it a sum of tensors of A-typed and
D-decorated forests by the following process:

e For each edge e € ¢, let us denote by eq, ..., e, the edges of F' in the path from the root of
the tree containing e to the first extremity of e; denote by a the type of e and by a; the type
of e;. Compute

P
Zall,i®---®a;m» = (f®1d®k)o

=1

(¢®Id®(k*1)) o (Id@cb@ld@k*?)) o...0 (Id®<’“*1) Q... ®<I>) (1 ®...QaQa).

and take the sum for 1 < i < p of tensors of forests obtained by typing e; by a;ﬁ for any j
in P(F)® R(F).

This sum of tensor products is denoted by P°(F) ®q, ; R°(F).
From Proposition [2.9

Theorem 4.5. Let (A, ®) be a finite-dimensional dual ¢CEDS and let D be a set. Let us consider
the symmetric algebra generated by ga p, with its usual product m, and let f € A*. For any A-
typed and D-decorated forest F', we put:

If(f@f)o® = f®f, then (S(gap), m,Ay) is a Hopf algebra, denoted by He p ¢. Moreover,
if (D, x) is a commutative associative semigroup, then Hep ¢ is a Hopf algebra in the category
of left By (p,x)-comodules, with the coaction ¢.
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Ezxample 4.2. Let a,b,c€ A and d,d’,d",d"” € D.

Cc

Ay () :1@ (4)®1+ fla )

Ot
®
®

C

NN EDWCETIDL:

" >b// al/ >c

(@) (@)
(@)
XV = Of@ =) (@) (@)@ @y
(@)

e@e

/!

Dualizing Proposition [2.10}

Proposition 4.6. Let (A, ®) be a finite-dimensional dual ¢CEDS, D be a set and let f € A*
such that (f® f)o® = f® f. We denote by gap be subspace of gap generated by D-decorated
and A-typed trees T = Bg(aiTi, ..., axTy) such that for any i, f(a;) = 0. Then the Hopf algebra
Hgp ¢ is isomorphic to the Connes-Kreimer Hopf algebra of non-typed, g’y p-decorated rooted
trees with its usual product of admissible cuts. 7

Remark 4.2. The coproduct Ay is coassociative and sends any tree T to T® 1+ 1® T

4.3 Examples
Ezxample 4.3. Let Q be a finite set and ' < Q. We consider K2 and ® defined by

B@aif Be,

0 otherwise.

Vo, B € Q, @(a@ﬂ)—{

A direct computation shows that (A, ®) is a dual /CEDS. In particular, if ' = Q, we recover
the linearization of EAS(S2). Hence, for any o, aq,...,ax € 2, with the notations of Definition
we obtain:

P
/ / /
Zai®a1,i®'~®ak,i

=1
- (¢®Id®(k—1>> o <Id®<1>®1d®(k_2)> o...0 (Id®(k_1)®...®¢>) (1®...0u1a)
{a®a1®...®ak ifaeQor k=0,

0 otherwise.

Consequently:
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1. In Bg (q,x), we obtain:

§(F) = Y FreF,
ICE(F),
t((E(FON) )=

where (E(F)\I) is the set of edges e in E(F)\I such that at least one edge in the path
between a root of F' and the first extremity of e is in I. For example:

B

? @ @@ @) s
5| (@) |- @(@)@)e(@) 1) | (@)@ s +5 (@D© o +®,
° @ @ @ @ -

a

@ @ @

where 1¢y is the characteristic function of €.

2. Let (Aa)acq be any family of scalars such that Ay = 0if a ¢ Q. If f: KQ — K is defined
by f(a) = A\ for any a € Q, then (f® f) o ® = f® f. For any forest F' and for any
admissible cut ¢ of F'; P¢(F) and R°(F) are obtained by deleting the edges of ¢, the types
of the remaining edges being untouched. Then:

Af(F) = 2 H)‘type e)P ®RC( )

ceAdm(F) e€c
@1+ A xz ®(d)

@ @
)

+)\g® +>\5>\®
() @

Ezample 4.4. Let (€, ) be a finite associative semigroup such that for any «, 8,y €

For example:

v
@Qﬁgg
;

%)

@

(axf)xy=(Bxa)«

We shall take A = EAS(Q2, x)*, which we identify as a vector space A = KQ. For any «a, 3 € ,
P*(a®pB) =axBa, so:
Pa®pB) = Y, A7

'YEQv 5*7:0“
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Hence, for any o, aq, ..., af € €2, with the notations of Definition we obtain:

P

Zaé@a’l,i(@...@agm

i=1

_ (cp ® Id®(’“*1)> o (Id@ d® Id®(k*2)> o...0 (1d®<’“*1> ®...® <I>) (1®...001a)

k
:Z Z a7 ... & V.
i=1 'yl'EQ, Qi *x7Y; =Q

Consequently:

L. In By (p,x), if F' is an Q-typed and D-decorated forest and I < E(F), F1 . is obtained by
deleting all the edges which does not belong to I, the type of the remaining edges being
modified in the following way: if e € I and eq,...,e; begin the edges between a root of F'
and e which do not belong to I, a the type of e and «; the type of e; for any i, then the
type of e is replaced by:

DI
7EQ,
Q1 *.. KQp*Y=O

Moreover, Fyr is obtained by contracting all the edges which belong to I, with the types
of the remaining edges being untouched. We obtain:

S(F)= >, Fr.®F);
ISE(F)

For example:

B
~-@@W@We@+ 3
a’e, Bxa/=a
@
@

(@)
@) @) s
+z@®?+®.
@ @ -

@

In the particular case where §2 is a commutative group:

(@) ®

O
&=®

(o2
OEnCOanC)

B

: @ @ @
=@®+5~1m ®z+z@®a +®.
@ @ @ @) @

«

@ @
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2. Let a be a special vector of eigenvalue 1 of EAS(, x) (see Example , written under
the form

a= Z/\aaeKQ.

ael)

For any forest F' and for any admissible cut ¢ of F, P¢(F) and RS{(F') are obtained by
deleting the edges of ¢, the types of the remaining edges of P°(F') being untouched, whereas
the types of the remaining edges of R°(F’) are modified in the following way: if e is such
an edge, « its type, ei1,..., e the edges f of I such that there exists a path from the
last extremity of e to the first extremity of f, aq,...,ay their types, then the type of e is
replaced by

S

YEQ, aup *.. kY=

Then:

Aq(F) = Z HAtype(e)Pc(F) ® R (F).

ceAdm(F) e€c

For example:

+ )] /\5®

e, Bra’=a e, yxa/ =«

IR IGIGE
a’eQ), yxfxra’ =a
(@)

In the special case where 2 is a commutative group, let us choose a subgroup H of 2. We
denote by 1 the characteristic function of H. For any « € 2, we put A\, = 1gy(«). From
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[13 Proposition 4.12], this defines a special vector of eigenvalue 1. Then:

(@) (@) (@)
N N N @
A, (@) [=1® + ®l+1u(@ N\ | ®@)
: : G
(@) (@)

5

Y
+14(8) (@) ® (&) +1a0) (@) ® (@)
. o

*QY

@ @

©
+1a(9)1a() ® |5ty
@

Ezample 4.5. Let (€, %) be a finite associative semigroup with the right inverse condition, and
let us consider (A, ®) = KEAS'(Q, *)*, identified with K2 as a vector space. For any «, 3 € :

P(a®p)=0ra®a.

Hence, for any «, aq, ..., a € Q, with the notations of Definition [4.I} we obtain:

p

/ / /
2ai®a1,i®"‘®ak,i
i=1

— (@QI®*F o (1d®®QLA®* D)o, o (1A®* VR ... @d) (a1 ®...QayQa)

=axap*x...*xa1Ra; R ...Q ay.
Consequently:

L. n Bg (p,x), if F' is an Q-typed and D-decorated forest and I = E(F'), Fj; is obtained by
deleting all the edges which does not belong to I, the type of the remaining edges being
untouched. Moreover, Fy;, is obtained by contracting all the edges which belong to I,
with the types of the remaining edges being modified in the following way: if e € I and
e1,...,er being the edges between the root of the tree of F' containing e and e, « the type
of e and «; the type of e; for any 4, then the type of e is replaced by:

Q* Qp * ... % Q.

We obtain:



For example:

B

(@)
@ @ (@ ’
5 @ =@®+a ®ﬂ*z+z@®a +®.
o (@ @) (@) (@ -

(07

@ @ @

. Let a be a special vector of eigenvalue 1 of A (see Example [2.5)), written under the form

a = Z/\aaeKQ.

ael)

For any forest F' and for any admissible cut ¢ of F', P¢(F') and R¢(F') are obtained by delet-
ing the edges of ¢, the types of the remaining edges of P¢(F') and R¢(F') being untouched.
For any cut edge e € ¢, let us denote by «, its type, by e1,..., e in the path from the root
of the tree of F' containing e to the first extremity of e and «aq, ..., aj their types. We put:

’
Qp = Qe * X % ... *x (1.

Then:
Ao(F)= >, [[raP(F)®R(F).

ceAdm(F) e€c

For example:

(@) (@) (@)
v ol v

A, ’ @ -1® ’ + ’ ®1
(D) (D) (@)

+ Ao

5

® (@) +Aswa (@) ® (@)

«

@

B

v

(@)
+ Aea (@) @ (@) + Asearyea ® |o.
(&)

(&)

Q
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In the special case where (2 is a commutative group, let us choose a subgroup H of 2. We
denote by 1p the characteristic function of H. For any a € 2, we put A\, = 15 («). From
[13 Proposition 4.12|, this defines a special vector of eigenvalue 1, and therefore a pair of
bialgebras in cointeraction.
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