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Abstract

We study extended associative semigroups (briefly, EAS), an algebraic structure used to
define generalizations of the operad of associative algebras, and the subclass of commutative
extended diassociative semigroups (briefly, CEDS), which are used to define generalizations
of the operad of pre-Lie algebras. We give families of examples based on semigroups or on
groups, as well as a classification of EAS of cardinality two. We then define linear extended
associative semigroups as linear maps satisfying a variation of the braid equation. We explore
links between linear EAS and bialgebras and Hopf algebras. We also study the structure
of nondegenerate finite CEDS and show that they are obtained by semidirect and direct
products involving two groups.
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1 Introduction

Recently, numerous parametrizations of well-known operads were introduced. Choosing a set 2
of parameters, any product defining the considered operad is replaced by a bunch of products
indexed by €2, and various relations are defined on them, mimicking the relations defining the
initial operads. One can first require that any linear spans of the parametrized products also
satisfy the relations of the initial operads this is the matching parametrization. For example,
matching Rota-Baxter algebras, associative, dendriform, pre-Lie algebras are introduced in [10],
see also [2] for pre-Lie algebras. Another way is the use of one or more semigroup structures
on €2 this it the family parametrization. For example, family Rota-Baxter algebras, dendri-
form, pre-Lie algebras are introduced and studied in [I1, 12} [7]. A way to obtain both these
parametrizations for dendriform algebras is introduced in [3], with the help of a generalization of
diassociative semigroups, namely extended diassociative semigroups (EDS). A similar result is
obtained for pre-Lie algebras in [5], with the notion of commutative extended semigroup (CEDS).
A two-parameter version for dendriform algebras and pre-Lie algebras is described in [6]. Finally,
in [4], the parametrization of the associative operad is introduced, with the notion of extended
associated semigroup (EAS).

We study in this paper CEDS and EAS used for the parametrization of the pre-Lie and the
associative operads. An EAS is a set ) with two operations — and =, satisfying the following
axioms:

a—(B—7)=(a—p8)—7,
(a=(B—-7) = (Bey)=(a—B) =7,
(a=(B—7)=(B=y)=a=0.

In particular, (£2, —) is an associative semigroup. CEDS are EAS satisfying the complementary
axioms

a—(f—7)=(a—>pB)->y=(B—a) -7,
as(f—9)=acy,
and dual CEDS are EAS satisfying the complementary axioms
(az=f)>y=a—7,
(a=p)=q = (a=y)=5.
Here are particular examples of EAS:
o If O is a set, putting
VO@BE{L Oé->6=ﬁ, Oél>6=Oé,

we obtain an EAS, which is both a CEDS and a dual CEDS, denoted by EAS(2). This
EAS leads to the notion of matching (pre-Lie, associative, dendriform. . .) algebras.

e If (2, —) is an associative semigroup, it is an EAS with
Ya, 5 €, asf=a.

This EAS is denoted by EAS(2, —). This leads to the notion of (2, —)-family (associative,
pre-Lie if Q is commutative, dendriform. . .) algebras.

o If (Q, %) is a group, it is a CEDS, with
Va,BeQ, aaﬁ:ﬁ’ Oél>/8=Oé*ﬁ*_1,
It is denoted by EAS'(Q, x). It is a dual CEDS if, and only if, (2, *) is an abelian group.



There are more EAS, and in particular we give a classification of the thirteen EAS of cardi-
nality 2. But these three examples are specially interesting: we prove in the third section of
this paper that any finite nondegenerate CEDS is the direct product of a semidirect product
EAS(Q1, %) x EAS'(Qg, *) with a CEDS EAS(Q3), see Theorem

In the fourth section of this paper, we are interested in a linear version of EAS, CEDS and
dual CEDS, based on a linear version of Lemma . An (EAS is pair (A, ®), where A is a vector
space and ® : A® A — A® A is a linear map satisfying the LFEAS braid equation:

([d®P) o (P®Id)o (Id®®P) = (P®Id) o (Id® 7)o (P ®Id).
An (EAS is an /CEDS if it satisfies the commutation relation:
(Id®®P)o(Id® 7)o (T®Id) 0 (P®Id) = (7®Id) o (P®Id) o (Id® P) o (Id® T),
and is a dual (CEDS if it satisfies the dual commutation relation:
(P®Id)o(T®Id) o (Id®T) 0o (Id®P) = (Id®7) 0o (Id® ®) 0o (P®Id) o (T ®1d).

In particular, let (2, —,>) be a set with two operations. We denote by K the vector space
generated by 2 and we define @ : KQ ® K «—— KO ® KQ2 by

Va, B e 9, P(a®f) = (a — B)® (a=p).

Then (KQ, ®) is an /EAS (respectively an /CEDS, a dual /CEDS) if, and only if, (2, —,>) is
an EAS (respectively a CEDS, a dual CEDS). Other examples of /EAS of dimension 2 are given
is Example

In the last section, we introduce two functors taking their values in the category of /EAS.
The first one (Proposition is defined on the category of bialgebras (not necessarily unitary
nor counitary) and generalizes the construction of EAS(€Q, —). The second one (Proposition
is defined is on the category of Hopf algebras and generalizes the construction EAS’(Q, ).
These objects are studied with the help of left units and counits (Definition [4.3): if (A, ®) is an
(EAS, an element a € A is a left unit if for any be A, ®(a®b) = b® a. An element f € A*
is a left counit if for any a,b € A, (f®Id) o ®(a®b) = f(b)a. In the case of an /EAS coming
from a Hopf algebra, this is closely related to the notion of right integral (Proposition . We
prove in Theorem that we can associate to any convenient pair (a, f) of a unit and a counit
a bialgebra structure on A, recovering in this way /EAS coming from a bialgebra. This is finally
applied to FEAS defined from Hopf algebras of groups.

Acknowledgements. The author acknowledges support from the grant ANR-20-CE40-0007
Combinatoire Algébrique, Résurgence, Probabilités Libres et Opérades.

Notations 1.1. K is a commutative field. All the vector spaces in this text are taken over K.

2 [Extended (di)associative semigroups

2.1 Commutative extended diassociative semigroup

Let us first recall this definition of [3], where it is related to a parametrization of the operad of
dendriform algebras:



Definition 2.1. 1. A diassociative semigroup is a family (2, <, —), where Q is a nonempty
set and «—, —: Q x Q — Q) are maps such that, for any o, B,y €

(a—=pf)—r=a—(—7y)=a—(6-7), (1)
(a—=p)—v=a—(B<7), (2)
(=) =>v=(a—=p)=rv=a—(6-7). (3)

An extended diassociative semigroup (briefly, EDS) is a family (Q, <, —,<,>), where
is a nonempty set and «—,—,<1,>: ) x Q — Q are maps such that:

(a) (Q,«,—) is a diassociative semigroup.

(b) For any a, B,y € Q:

a(B<7) =a=p, (4)

(a_>/6)<]’y:/6<]77 (5)
(a<pB)—((a=B)=v)=a<(B <), (6)
(@a<pf)<((aB)=y)=B=7, (7)

(a<pB) = ((a=B)=v)=a=<(B—>), (8)
(@=B)=((a—B)=y) =87, (9)
(a=(B—7) « (B=7) = (e B) =7, (10)
(a=(B—7)<Be7)=a<p, (11)
(a=(B—7) = (B=7)=(a—B)=m, (12)
(a=(B—=7)=(B=y)=a=p (13)

An EDS (2, <, —,<,>) is commutative if for any «, 5 € Q:

a—f=p0—aq, a<f=pF>a. (14)

Let us reformulate the definition of commutative EDS:

Proposition 2.2. A commutative EDS (briefly, CEDS) is a triple (Q,—,>), where Q is a
nonempty set and —,>: Q> — Q are maps such that, for any o, B, € Q:

a—>B-ov)=(@—>p)>y=0B—a) >, (15)
a=(f—7)=ac=7, (16)
(a=v) > (B=v) =(a— B8) =7, (17)
(a=7y)=(B=v)=a=p. (18)

Proof. Replacing < and <1 in — with the help of , we find —. [

Definition 2.3. [/ An associative extended semigroup (briefly, EAS) is a triple (2, —, ),
where ) is a nonempty set and —, > : Q> — Q are maps such that, for any o, 3,7 € Q:

a—(B—7)=(a—pB) -7, (19)
(a=(B—17) = (B=7) = (a—p) =7, (12)
(a=(8—7)=(B=7) =a=4. (13)



Remark 2.1. Let (Q, —, «,>,<) be an EDS. Then (2, —, ) is an EAS, called the right part of
the EDS (2, —, <, >,<1). We obtain a commutative triangle of functors

CEDS“——— EAS
J %&rt
EDS

We shall see that not all the EAS are right parts of an EDS (see case C6 in the classification of
EAS of cardinality 2 in the next paragraph).

Example 2.1. 1. Let © be a set. We put:

V(O[,ﬁ)EQQ, {05_)5:67

a>f=q.
Then (2, —,>) is an EAS, denoted by EAS(Q). It is a CEDS.

2. Let (2, *) be an associative semigroup and let © :  — Q be an endomorphism of
associative semigroup such that 72 = 7. We put:

Ya, 5 € §, a>f=mn(a).

It is an EAS, which we denote by EAS(Q, », 7). It is a CEDS if, and only if, for any
a, B, €

(axfB)xy=(B*a)xy.
We shall simply denote EAS(€2, x) instead of EAS(Q, x,Idg). In particular, if (2, *) is a
group, then EAS(Q, x) is a CEDS if, and only if, (£, x) is abelian, which proves that not
all EAS are CEDS.

3. Let Q2 be a set with an operation = such that, for any «, 8,y € :
(@ey) = (B=7) = a=§.
We then put:
¥(a, B) € 2, a—f=p

Then (£, —, ) is a CEDS (so is an EAS). This holds for example if (€2, x) is an associative
semigroup with the right inverse condition:

V(3,7) e 2, aeQ, axf=r.
This unique « is denoted by v = . Then, for any «, 5,7 € Q:
((a=7)=(B=7)*B=(a=y)=(B=7)*(B=7)*7)
= (((a=7)=(B=7)«(B=7)) *v
= (ae7)*y
=a,

so (a>7) > (B=7) = a=p. This EAS is denoted by EAS'(Q, ). The right inverse
condition holds for example if (2, x) is a group, and then:

as=B=axpL

It also holds for semigroups which are not groups. For example, if €2 is a nonempty set, we
give it an associative product defined by:

Ya, B €, ax*xf=a.

It satisfies the right inverse condition and, for any «, 8 € 2, a = 3 = a. Note that for this
example, EAS'(Q, ) = EAS(Q).



Definition 2.4. Let (2, —,>) be an EAS. We shall say that it is nondegenerate if the following

map 1s bijective:
QQ SN QZ
O o) — (oo
If Q is a nondegenerate EAS, the structure implied on Q by ¢! will be studied in the next
paragraph.

Ezample 2.2. 1. Let Q be a set. In EAS(Q), for any o, 8 € Q, ¢(a, 5) = (8, ), so EAS(Q)
is nondegenerate.

2. Let (€2, *) be a group. Then EAS((, x) is nondegenerate. Indeed, in this case, ¢(«, 5) =
(ax B,a), so ¢ is a bijection, of inverse given by ¢~ (a, 8) = (8, B3* ! x a).

3. Let (€, *) be an associative semigroup with the right inverse condition. Then EAS'(, x)
is nondegenerate. Indeed, in this case, ¢(«, 5) = (8,a =), so ¢ is a bijection, of inverse

given by 6~1(a, ) = (8 * a, ).
2.2 Dual commutative extended semigroups

Definition 2.5. Let (2, —,>) be a map with two binary operations. We shall say that it is a
dual CEDS if, for any o, 8,7 € Q:

—~
~

(a—B)—>v=a—(8—-7),
(a=(B—79) = (B=9) =(a—B) =7,
(a=(B—7)=(B=7) =ac=p,

(a=p)>y=a—7,

(a=p)=y=(a=9)=p.

—

SSIEIEE

AA
~— ~—

Ezample 2.3. 1. If Q is a set, then EAS(Q) is a dual CEDS.

2. If (Q, %) is a semigroup and 7 :  — € is a semigroup morphism such that 72 = , then

EAS(Q, *,7) is a dual CEDS if, and only if,
Va, B € Q, () x f=ax*f.
In particular, EAS((, x) is a dual CEDS.

3. If (Q, %) is a semigroup with the right inverse condition, then EAS’(Q, x) is a dual CEDS
if, and only if:

Va, 8,7 €, (a=f)ey=(a=9)=p.
This is is equivalent to:
Vo, 8,7 € Q, axfry=axyxp.

In the case where (£2,*) is a group, EAS'(Q, %) is a dual CEDS if, and only if, (2, %) is
abelian.

The following lemma, proved in [5], is a reformulation of the axioms of EAS, CEDS and dual
CEDS with the help of the map ¢:

Lemma 2.6. Let (2, —, ) be a set with two binary operations. We consider the maps

0 Q2 02— Q2
¢'{mﬂ)—a<a~@a>m, T'{mﬁ)—ﬁ(@M-

Then:



1. (Q,—, =) is an EAS if, and only if:
(Id x ¢) o (¢ x Id) o (Id x ¢) = (¢ x Id) o (Id x 7) o (¢ x Id). (23)
2. (Q,—,=) is a CEDS if, and only if:
(Id x ¢) o (¢ x Id) o (Id x @) = (¢ x Id) o (Id x 7) o (¢ x Id), 23)
(Id x ¢) o (Id x 7)o (7 x Id) 0 (¢ x Id) = (7 x Id) o (¢ x Id) o (Id x ¢) o (Id x 7). (24)
(Q, —, =) is a dual CEDS if, and only if:

(Id x ¢p) o (¢p x Id) o (Id x ¢) = (¢ x Id) o (Id x 7) o (¢ x Id), (23)
(pxId)o(r xId)o(Id x 7)o (Id x @) = (Id x 7) o (Id x @) o (¢ x Id) o (7 x Id). (25)

With this reformulation, the following result becomes immediate, as inversing gives
again and inversing gives :

Proposition 2.7. Let (2, —,>) be a set with two binary operations. We shall say that (2, —, =)
18 nondegenerate if the map ¢ of Definition|2.4] is a bijection. If so, we put:

¢1.{ Q®? — 97
' (O‘76) - (adﬂ,avﬂ),

Then (2, —, ) is an EAS (respectively a CEDS, a dual CEDS) if, and only if, (2, ~,») is an
EAS (respectively a dual CEDS, a CEDS).

2.3 EAS of cardinality two

Here is a classification of EAS of cardinality two, which we obtained by an exhaustive study of
the 28 possibilities of pairs of operations. The underlying set is Q@ = {X,Y} and the products
will be given by the pair of matrices

X-X X->Y XX XY
Y-X Y->Y)’ YeX YY)

We shall use the two maps:

{Q—»Q {Q—>Q
TX : Ty

a — X,

We respect the indexation of EDS of [3].

’ Case ‘ — ‘ > ‘ Description ‘ Comments ‘

Al <§ ;) <§ §> EAS(Q, —,7x) CEDS, dual CEDS,

right part of D1
A2 <§ ;) <)}£ ii) EAS(Q,—) CEDS, dual CEDS,

right part of D2
Ci <§ ii) <§(( §> EAS(Q, —,7x) CEDS, right part of C4
C3 <§ ‘;f) (‘;{ ‘;f) EAS(Z/27Z, x) CEDS, dual CEDS
Cs <§ g) @ g) EAS((Z/2Z, x), 7y) | CEDS, right part of C2
cs (x v)| (5 x)




’ Case ‘ — ‘ o> ‘ Description ‘ Comments

El - E2 < EAS(Q,—,7x) right part of E1 and E2

E3' EAS(Q,—) dual CEDS,

< ]
< a5
< e 4 5

right part of E3
EAS(Q, —,7x) CEDS, dual CEDS,

F1

(

(
m |

(

~
<
<

right part of B1, F2, G1 and G2

)
)
)
) EAS(Q) CEDS, dual CEDS,
)
)
)

<
el
ol

nondegenerate,
right part of B2 and G3

F4

< 5
<

EAS'(Z/2Z, +) CEDS, dual CEDS,

~ =

nondegenerate,
right part of F5

Hi1

(
o

EAS(Z/2Z, +,7x) | CEDS

EAS(Z/2Z, +) CEDS, dual CEDS,

I
)|
)
)
)
I
)|

Sl Gy
RISl
il

nondegenerate

For the cases C3, C5, F4, H1 and H2, Q is identified with Z/27Z, X being 0 and Y being 1.

Remark 2.2. With similar methods, it is possible to prove that there are three nondegenerate
EAS of cardinality 3 up to isomorphism: EAS({1,2,3}), EAS(Z/3Z,+) and EAS/(Z/3Z, +).
All of them are both CEDS and dual CEDS.

3 Structure of nondegenerate finite CEDS

3.1 Preliminary results
Lemma 3.1. let Q) be a finite nondegenerate EAS.
1. Let Q' be a sub-EAS of Q. Then Q' is nondegenerate.

2. Let ~ be an equivalence on 2, compatible with the EAS structure. Then the quotient FAS
)/ ~ is nondegenerate.

Proof. 1. By restriction, ¢or = (¢q)|o2 is injective. As Q' is finite, it is a bijection. So Q' is non
degenerate.
2. Let 7 :  —> Q/ ~ be the canonical surjection. Then ¢q/. o7 = (T®7) 0 po. As ¢ is

surjective, ¢q/. is surjective. As )/ ~ is finite, it is a bijection. So €/ ~ is nondegenerate. [

Definition 3.2. Let (2, —,) be an EAS. For any « € ), we put:

¢a:{Q—>Q wa:{ﬂ—>Q

p — a—p, f — Bro
We shall say that (2, —, =) is strongly nondegenerate if for any a € §, ¢, is bijective.

Remark 3.1. As the product — is associative, for any «, 8 € €2,

®a O ¢5 = ¢o¢—>/3~

8



Lemma 3.3. Let (2, %) be an associative semigroup. The following conditions are equivalent:
1. EAS(Q, *) is nondegenerate.
2. EAS(Q, «°P) is strongly nondegenerate.
3. (2, =°P) has the right inverse condition.

Proof. Let «, B, v, 6 € Q. Then:

So:

¢ is bijective <= V(7,0) € Q2, 3BeQ, 6B =~
<= in EAS(Q, %P), V¢ € Q, ¢5 is bijective

< (9, %°P) has the right inverse condition. O
Lemma 3.4. Let (Q, —,>) be a finite nondegenerate CEDS. Then it is strongly nondegenerate.
Proof. Let o, 7,7 € Q such that ¢a () = ¢a(7). In other words, « — v = a — /. By (16):
amy=as(a—9) —as(a—) = asq.

Therefore, ¢(a,v) = ¢(a,v'). As ¢ is injective, 7 = v/, so ¢, is injective. As ) is finite, ¢, is
bijective. n

Lemma 3.5. Let Q = (Q, —, =) be a nondegenerate EAS, such that:
Va, B € Q, a— B=p.

There exists a product = on ), making it a semigroup with the right inverse condition, such that
QO =EAS'(Q,*). For any B € Q, g is bijective and its inverse is:

r 2 — Q
(bﬁ'{a — ax*f.

Moreover, for any B, € €:
% o % = wﬁ*m wﬁwy = wﬁ © %_1 (26)
Proof. Note that for any a € 2, ¢, = Idg. Let a, 8,7,6 € 2. Then:

B:’Ya

¢(a7ﬁ) = (775)<:> {O[l>,6=5.

Hence:
¢ is bijective <= V(v,6) € Q%, laeQ, a>y=4§

<= Vv €, 9, is bijective.

Putting ¢~ (a, B) = (a —~ B, » ), by Proposition (Q, ~,») is an EAS, so — is associative.
Moreover, ¢~ (o, B) = (a — B,a), so (2, ~, <) = EAS(Q2, =). By Lemma if ¥+ =—°P then

* has the right inverse condition. Moreover, for any «, 3 € €2:

¢t og(a,B) = ¢ (B,a=pB) = ((a=p) * B,8) = (a, B).



Hence, the unique element v € Q such that v * 8 = « is a = 3: consequently, Q = EAS'(, ).
Moreover, for any «, 3 € €2,

@ 0 ¥3(a) = (@ =B) « f =

So ¢y 0 g = Idg. As 93 is bijective, w;l = ¢l
Let 8,~v € Q. Then, for any « € €,

¢ o z(a) =axfxy =g,

So <Z>’7 o gb’ﬁ = ¢23*7. Inversing, 1g © 1, = 1gs«y. As a consequence,
Py © Py = P(Boy)sy = Vp)
which induces the last formula. O
Lemma 3.6. Let Q = (2, —>, ) be a nondegenerate EAS such that for any a, B € Q,
a— =7

Then Qy = {Ya, a € Q} is a subgroup of the group of permutations of ).
Proof. Direct consequence of . O

Proposition 3.7. Let Q = EAS'(Q, %), where (Q, ) is a finite semigroup with the right inverse
condition. We define an equivalence ~ on 2 by a ~ 8 if o = Yg. Then:

1. ~ is compatible with the EAS structure of Q). Therefore, Q) ~ is an EAS.
2. There exists a product x on Q/ ~, making it a group, such that Q) ~= EAS'(/ ~,*).

3. There exists a sub-EAS Qg of Q, such that the restriction to Qg of the canonical surjection
m:Q —> Q) ~ is an isomorphism.

Proof. 1. Let o, B € €2, such that a ~ 5. Then ¥, = 93. Let ye Q. Then o —» v = — v =,
and y > a=a~f=v— . As, =1, v=>a = Moreover, by Lemma 3.5}

wa\>'y = q O"b;l = ¢,BO¢;1 = ¢ﬁ|>m
SO a > ~ >~ ~ is compatible with the EAS structure.

2. By Lemma )/ ~ is nondegenerate. By Lemma there exists a product x satisfying
the right inverse condition, such that Q/ ~= EAS'(Q/ ~, ). We consider the map

b { = = a0

o — 1/)5.

By Lemma this is a semigroup morphism. Let us prove that it is injective. We assume that
Pg = 1/)3 In other words, for any v € 2, y=>a ~ vy f3, or equivalently, 1y~q = V3. Moreover:

Yoo = Py 05! = Prep = Uy 05
As 1), is bijective, ¥, = 13, so @ = B.
By Lemma , there exists e € {2/ ~, such that ¢, = Idg/.. For any a € 2/ ~,
Yeew = Ye 0 Yz = U3,

10



s0 ¥(§2/ ~) is a subgroup of &g,.. Consequently, (€2/ ~,*) is a group.
3. By Lemma there exists fy €  such that ¢, = Idg. We put:

QQ = {50 >, & e Q} = {wa(ﬂo), [OAS Q}

As the product — of Q is trivial, this is a sub-semigroup of (2, —). Let By = a, By = € Q.

(60 '>a) = (50 DB) = w601>’y © ¢a(50) = w(50|>7)*a(/30) € o,
so Qg is a sub-EAS of Q.

Let us assume that By =>a ~ Gy = S. Then:

Ypyma =Ygy 0 et =15
= ¢,30>ﬂ = wﬂo o ¢§1 = ’(bEI’

80 o = Y. Hence, By =a = [y = 3, which proves that m g, is injective. By Lemma there
exists 3 € {2 such that ¢g = 1. We consider By = 3 € Qg. Then:

¢ﬁo>ﬁ = ¢ﬁo © ¢El = Y,

so Bo = ~ a. Hence, mq, is surjective. O

Theorem 3.8. Let = EAS/'(Q, %), where (0, %) is a finite semigroup with the right inverse
condition. There exists a group (Qo,*) and a set Q such that

Q ~ EAS(Q) x EAS'(Qp, *).

Proof. We keep the notations of the proof of Proposition [3.7] As the sub-EAS Q is isomorphic
to 2/ ~, it is a group for the law *, and Qy = EAS'(Q,*). Let e be the unit of the group
(Q/ ~, ). We consider:

QO = {aeQ,@=e}.

Let us prove that 1 = {a € Q, 1, = Idq}. _
o: if ¢, = Idg, for any B e Q, Bxa*! = Ya(B) = B, s0 @ = e and a € Q.
c: if o = e, then for any f € Q, f>a = 8, so f>a ~ (: in other words, 950 = 15. Then:

Vpoa = Yp oy’ = Vg
As g is bijective, ¥, = Idg.
Therefore, for any « € €, for any S € €y,
asf=igla) = o
As a consequence, 7 = EAS(Q1). We consider the map:

9'{91XQO —
) (a, ) — a=p.

Let us prove that 6 is injective. If 8(a, 8) = 6(c/, 8), in Q/ ~:
axfB=pf=ao*p =p.

As Tq, is injective, § = B3'. Because of the right inverse condition for *, a = o'.
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Let us prove that 6 is surjective. Let v € ). There exists a unique 3 € £}y such that ¢y = wB
We put @ = vy 3, so v = a * 8. Moreover:

Y = P50 %%1 = Idg/~.
Soe=a=a*"! =1yg(e) = e, and finally a € Q.
Let (e, B) and (o/,5) € Q1 x Qp. In Q, as o’ € Qy,
axfxd xf =ax(Bxp),

which implies that
(axB)>(a' ) =ax(Bp*1).
So 6 is an isomorphism of EAS from EAS(Q2;) x EAS'(Qo, *) to Q. O

3.2 Nondegenerate finite CEDS

Lemma 3.9. Let (2, —,>) be a strongly nondegenerate finite EAS. Then Qg = ({¢a, a € Q},0)
is a group. The following map is a surjective morphism of semigroups:

gb:{ (2,=) — D

a — Qg

Proof. We already observed that for any o, 3 € Q, ¢, © ¢g = po_pg, s0 ¢ is a semigroup mor-
phism. By hypothesis, for any a € €, ¢, is a bijection, so belongs the symmetric group Sq of
permutations of Q. As 2 is finite, for any a € €2, there exists n > 2 such that ¢ = Idg. Then
¢Pa—n = Idg, so 4 is a monoid. Putting 8 = a1, $p 0 Pa = ¢a © ¢g = Idg, so Q4 is a
group. O

Proposition 3.10. Let Q = (2, —,>) be a finite nondegenerate EAS, such that for any o € Q,
bq s a bijection. We put:

Q7 ={a e, ¢, =1dg}, 0" ={BeQ, Y3 =1Ida}.
Then:
1. Q7 is a nondegenerate sub-EAS of €.
2. If Q% is nonempty, it is a nondegenerate sub-FEAS of ().
3. If Q% is nonempty, then Q% N Q™ is nonempty.
4. If Q is a CEDS, Q7 is nonempty.

Proof. 1. Recall that for any o, 3 € €, ¢4 © ¢g = ¢po—p. This easily implies that Q7 is stable
under —. By Lemma there exists « € ), such that ¢, = Idg, so Q™ is nonempty.

Let o, B € Q7. Let us consider v € . As ¢ is bijective, there exists 3,4 € Q such that:

B =8 =v)=(87).
Then:

bap(7) = (@=p) =y =(a= (8 —7)) = (B =) =8> =1.
S0 ¢a=p = Idg and a = € Q. By Lemma ™ is a nondegenerate sub-EAS.
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2. Let B,7€Q%. As ¢, =1dg, B>y = 3€ Q7. For any a € Q, by and :

(a=(B—7)—>B=7)=(a—>pB)=y=a—p,
(a=(B—7)=(B=9)=a=4.

So ¢p(a=> (B — 7),8>7) = ¢(a, B). As ¢ is injective, a = (8 — 7) = a, so P3_,, = Idg and
B — v e Q7. If QF is nonempty, by Lemma [3.1] it is nondegenerate.

3. Let us take a € Q%. The permutation ¢, is of finite order as {2 is finite, so there exists
n = 2, such that ¢ = ¢o—n = Idg. Putting § = a™", then 8 € Q% (as it is a sub-CEDS) and
BeQ as ¢pg = Idg.

4. Let us consider the EAS associated to the inverse of ¢ (Proposition , which we denote
(©, ~,»). By the first point, there exists a € € such that for any 8 € Q, « —~ 8 = 3. In other
words, for any 3 € €Q,

¢~ e, B) = (B, » ).
This implies that ¢g(a » ) = a. The inverse of the bijection ¢4 is the map:

qb'ﬁ:{Q — 0

a — arf.
As Q is finite, there exists 8’ € Q such that gb[;l = ¢g. Hence:
B=B=(arf)=p=(f —a)=F=a
by . So a e Q7. O
Proposition 3.11. Let (2, —,>) be a finite nondegenerate CEDS.
1. We define an equivalence = on € by
B=pAifdaeQ, B =a—p.
This equivalence is compatible with the CEDS structure. Therefore, Q/ = is a CEDS.
2. The restriction to Q™ of the canonical surjection 7 : ) — Q) = is an isomorphism.
3. Q=0"->Q".

Proof. 1. The relation = can be reformulated as: there exists ¢, € Qy, such that ¢o(3) = 4.
By Lemmas and 4 is a group. This easily implies that = is an equivalence: its classes
are the orbits of the action of the group €, over (.

Let us assume that =" weput 3/ =a —> . Let yeQ. Theny > == =v->f
by definition of =. Moreover, 8/ — v =a — (8 — 7), so B’ - v = — v. By (13):

foy=(a—=7)ey=(a=(—-7) = (B=7) =67,
=4 =y (a—p)=y=6.

So = is compatible with the CEDS structure.

2. Let a € Q. As ¢, is bijective, there exists a unique 5 € 2 such that « — § = . Then

Do = ¢a—>,3 = P O Qb,B-

As ¢, is bijective, ¢pg = Idg, so B € Q27 and a = B. This proves that 7o is surjective.
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Let 3,3 € Q7, such that 8 = 8’. There exists a € Q such that « — § = ’. Then:

Idg = ¢p = Pa © Pg = Ga,

80 ¢ = Idg. We deduce that ' = ¢ (3) = 8. Hence, - is injective.

3. By Proposition there exists Sp € Q7 N Q7. Let § € . As mq— is bijective, there
exists 1 € Q7, such that 8= 1. Weput 5 =a — 1. As Bpe Q7

B=a— py— P
Moreover, for any v € §2, as By € Q7, by :
v (= fo) =ve=PFo =1,
so a — [y € Q7. O
Proposition 3.12. Let (2, —, =) be a finite nondegenerate CEDS. We define an equivalence on
Q% by:
d~ad'—=3aeQ”, " =d - a.

1. This equivalence is compatible with the CEDS structure, and Q' = Q%/ ~ is a nondegenerate
CEDS. Moreover, (', —) is an abelian group and ' = EAS({Y, —).

2. The following map is a semigroup isomorphism:

0-{ (@ Q7 =) — (2-)
' @p) — a—p
Proof. We consider
@_{ Q"xQ” — Q
' (a, ) — a—p.

By Proposition it is surjective. Let us prove that O(a/,3) = ©(a”,8") if, and only if,
o ~a"and g =p5".

Let us assume that ©(a’, 8') = O(a”, 8"). As ¢ is bijective, there exists a € Q, " = o/ — a.
AS a/ N B/ — a// _ B” and 6/,6” c Q*)7

¢Oél — ¢Oél O ¢/Bl — ¢al_)5/ — ¢0¢”—>B” — ¢al/,

Hence:
gba// = gba/ O ¢a = ¢C¥"

As ¢ is bjective, ¢, = Idg, so a € Q7 we obtain that o/ = o”. As ¢po = Pur, ¢ (8) =
Gar(B") = ¢L(B"). As ¢ is injective, B = . Conversely, if a € Q7 o/ > a— ' =d — .

As a consequence, ~ is indeed an equivalence, 0 is well-defined and is a bijection. It remains
to show that ~ is compatible with the CEDS structure of Q. Let o/, o” € Q%, such that o/ ~ o”.
We put o = o/ — o, with o« € Q. Let 8 € Q. Then:

de=p=d ~d" =d"=8, f=ad =p=p8=d"
Moreover:
a”—>/8:o/’—>a—>/8:a”—>/87 /8—)0/’:/8—)0/—)0[~B—>0/_

Therefore, 9/ ~ is a CEDS. By Lemma it is nondegenerate.
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Let a,0’ € Q% and 3,8 € Q™. As fe Q:

0(@,B) - 0(c/,)=a—B—>d > f
=a—>o/—>ﬁ,
:a—>a/—>ﬁ—)ﬁ/

=0(a—d,—p3).
So 0 is an isomorphism for the products —.

Let us now study the CEDS €. By definition of Q™, for any @, S € ', a>f = @, so
V' = EAS' (€, —). By Proposition [3.10] Q™ is nonempty. Let us prove that

O ={@ aeQ” Q)

D is obvious. Let us take @ € . Then, for any 8 € Q=, @ — 5 = [3: there exists v € O,
a — 8 = B — «. Therefore:

Ga © P = Gp o Py = Pg,

as ¢y = Idn. As ¢g is a bijection, ¢, = Idg, so a € Q7. Let o, 8 € Q7 n Q7. As ¢, is bijective,
there exists 5’ € Q, a« — ' = 3. Then:

ldg = ¢g = ¢pa © O = ¢p,

so 3 € Q7: we proved that o ~ 3. As a conclusion, there exists a unique € € €', such that for
anyae ), e > a=a.

Let us choose @ € €. As ¢, is bijective, there exists ¢/ € €' such that @ — ¢ = a. Let
BeQ. Thena — ¢ — =@ — (: in other words, @« — ¢’ — 3 ~ a — [3, and there exists
~v e Q7 such that « - ¢ — 8 =a — 8 — 7. As ¢, is injective, ¢ — 3 =8 — v ~ 3, so
e — [ = B for any B € . By unicity of €, ¢/ = &: for any @€ ', @ — € = @, so € is a unit of
(©,—). By (7)), for v =&, we deduce that (€', —) is an abelian monoid. Let @ € . As ¢, is

surjective, there exists @’ € Q' such that @ —» @ =#e. So (€, —) is a group. O
Proposition 3.13. Let (€2, %) be an associative semigroup such that for any o, 3, € Q,
axfry =L raxy.

Let (¥, —,>) be a CEDS, and <: Q x ' — Q be a map such that for any o, € Q, for any
gy e,

a<(f —9)=a<, (27)
(axp) <9 =(a<v)=(B <7, (28)
(@<9)< (@ =v)=a<f (29)

We define a structure of CEDS on Q x Q' in the following way: for any (o, '), (8,8") € Q@ x ¥,
(') = (8,8) = (a=p,a' = §), (o, )= (8,8) = (a < f,d/ =)

This CEDS is denoted by Q x - €Y.

Proof. Direct verifications. O

Remark 3.2. If for any (o, /) € Q x @, a < &/ = a, we recover the direct product  x € of
EAS.
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Theorem 3.14. Let Q be a finite nondegenerate CEDS. There exists an abelian group (Qq, %),
a group (Qa,*), a left action >: Ny x Q1 —> Qq of (Qa,*) on (1, *) by group automorphisms,
and a nonempty set Q3 such that Q is of the form

(EAS(Q21, %) x» EAS'(Q9, %)) x EAS(Q3),
with the products given by

(041,042,043) - (Blvﬁ?)/ﬁ?)) = (CM]_ * /Blaﬁ27/83)7

(a1, a2,a3) = (B1, B2, B3) = (B2 > a1, a2 * B3~ 1, az).

Proof. Let us consider the map 6 of Proposition For any «a,a’ € QF, for any 3,5 € Q,
by and :

(@=B)=(d - p)=(a—=p)=p =(a=F) - (8=0).
Let By € Q= n Q™. Then, as By e Q7:

(= p)=(a =) = (a=p) = By — (B=5).
| —_——

=M =72
Obviously, 72 € 2. For any v € Q, by :
e =75 =7,
so 71 € Q7. We then put, for any @ € ', for any € Q:
a<pf=a=p8-f
Then, for any @, o/ € (, for any 5,7 € Q:
6@, p) =0(,B) = 0@~ f,5=3).

Then:

=(@<n)

!
=
A
2

which proves .

(@<7y)<(Bey)=(a=y)=B>7y) = fo=(B=v) — bo
=ac=8-Bo=(B>=7) — B
=a=f - fy

—a<p,

which proves . For the last equality, we used that Sy = (8 =>~) € Q, as 3, 5y and 7 belong
to Q7.
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We finally obtain that 6 is an isomorphism between Q' x_. Q7 and Q. We put Q' =
EAS(4, ). From Theorem we obtain a decomposition of 27 of the form EAS'(Qq, *) x
EAS(Q3). The map <: Q1 x Qo x Q3 —> Q satisfies —. In this particular case,
becomes trivial, and , can be reformulated in this way: for any ay, 81 € 21, B2, 72 € o,
B3, 73 € (13,

(o1 # B1) < (72,73) = (a1 < (72,73)) * (B1 < (72,73))s
(a1 < (72,73)) < (B2,B83) = a1 < (B2 * 72, 33).

The products of 2 are given in this way: for any «ay, 8; € €2;, with 1 <1 < 3,

(a1, a9, a3) = (B1, B2, B3) = (o * B, B2, B3),
(a1, az,a3) = (81, B2, B3) = (a1 < (B2, B3), a2 * B3, a3).

For any (f32, 33) € Q2 x 3, we consider:

Bofls " | ap — g < (B2, B3)-

As ) is nondegenerate, necessarily 13, g, is injective. As € is finite, 13, g, is a bijection. More-
over, by 7 for any (B27ﬁ3)7 (72)73) € QQ X Q37

< < o<
wﬂ%ﬂa © 1/}72773 - wﬂz*wﬁ?ﬁ

2
For B3 = =9 being the unit e of Qs and B3 = 3, we obtain that <¢:53> = w:ﬁg. As it is a
bijection, 7,/1:53 = Idg, for any (3 € Q3. Hence:
< < < <
e85 © Vrays = Vaos = Vo a0

so g, 3, does not depend on (3. We denote this map by v3,. Note that we proved that

1/1569 = Idg,. We put, for any a; € Q1, B2 € Qo, a1 < B2 = wEQ(al). We finally obtain that the
2

products in §2 are given in this way:

(a1, a2, 3) = (b1, 2, B3) = (a1 * B1, P2, 3),

(a1, a2,a3) = (B1, B2, B3) = (a1 < B2, a2 B3 1, az).

So Q = (EAS(Q, %) x~ EAS'(Q,+)) x EAS(Qs).

In the particular case of EAS(Q1, %) x- EAS/(Qg, *), is trivial, and , can be
reformulated in this way: for any aq, 81 € Q1, B2, 72 € Qo,

(1% B1) <72 = (o1 < 72) * (B1 < 72),
(1 <72) < B2 = a1 < (B2*72).

As Yeq, = Idg,, the following map is a left action of (Q9, ) on (€4, *) by group automorphisms:

>.{Qg><Ql — Ql
| (Br,n) — B> =ap < fo.

The formulas for the products in 2 are then immediate. O
Remark 3.3. Consequently, we have a semidirect product of groups (1, *) x5 (Q2,*).

Inverting the corresponding maps ¢, we obtain:
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Corollary 3.15. Let Q be a finite nondegenerate CEDS. There exists an abelian group (21, *),
a group (Qa,*), a right action <: Q1 x Qo —> Q1 of (Qa,*) on (21, *) by group automorphisms,
and a nonempty set Q3 such that Q is of the form

(EAS(Q9,*) x < (EAS'(Q1, %)) x EAS(Q3),
with the products given by
(a2, a1, a3) — (B2, 1, B3) = (2 * B2, B1 < a2, B3),
(a2, a1, 03) & (Ba, Br, B3) = (o2, a1 * (B < ag), ).
Remark 3.4. The inverse dual CEDS of the CEDS (EAS(Qy, *) x». EAS'(Qg,*)) x EAS(Q3) is
(EAS(QQ,*OP) X s op (EAS/(Ql, *)) X EAS(Qg)

4 Linear extended associative semigroups

4.1 Definitions and example

The notions of /EAS, (CEDS and dual /CEDS are introduced in [5, Definition 1.5], as a linear
version of Lemma 2.6t

Definition 4.1. Let A be a vector space and let ®: AQ A — AR A be a linear map.

1. We shall say that (A, ®) is a linear extended associative semigroup (briefly, {EAS) if:

(Id®®) o (dRId) o (Id® ®) = (P@Id) o Id®T) o (® R Id). (30)

2. We shall say that (A, ®) is a linear commutative extended diassociative semigroup (briefly,
(CEDS) if:

(1d®@®) o (PRId) o (Id®®) = (PRId) o (Id®T) o (¥ ®1d), [30)
(Id®@®) o (Id®T) o (r®Id) o (P®@Id) = (r®Id) o (P ®Id) o Id@ ®) o (Id® 7). (31)

3. We shall say that (A, ®) is a linear dual commutative extended diassociative semigroup
(briefly, dual {CEDS) if:

(Id®®) o (P®Id) o (Id®P) = (P®Id) o (Id® 7)o (P ®]I1d), (30))
(PRId)o (T®Id) o (Id®7) 0 (Id®P) = (Id®7) o (IdR ®) o (P®Id) o (T ®Id). (32)

If (A, ®@) is an LEAS (respectively an LCEDS or a dual (CEDS), we shall say that it is nonde-
generate if ® is bijective.
Note that, by definition, /CEDS and dual /CEDS are /EAS.
Ezample 4.1. 1. Let (Q, —, =) be an EAS (respectively, a CEDS, a dual CEDS). Let A = KQ
be the vector space generated by 2. We define:

5 ARA — A®A
' a®b — (a—b)®(a=D).

Then (A, ®) is an /EAS (respectively, an /CEDS, a dual /CEDS), which we call the lin-
earization of (2, —, ). It is a nondegenerate /EAS if, and only if, Q is a nondegenerate
EAS.
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2. All the /EAS are not of the form K. For example, if A is a two-dimensional space with
basis (x,y), the maps given by the following matrices in the basis (z®z, 2y, y®x, y®y)

are /EAS:
00 10 0000 1000
0000 00 a O 000 0
Mi=10 00 ol Ma=14 0 0 of Ms=10 00 o
0000 0000 000 0
1000 1000 1 000
0010 00 0 0 000 0
Mi=10 00 ol Ms=10 1 0 ol Mi=10 01 o)
000 0 00 0 0 000 0
1000 1000 1000
0000 00 10 000 0
Mr=10 00 o Ms=10 01 0o My=101 ¢ o)
0010 000 0 00 10
1000 1000 10 0 0
000 0 0010 00 0 0
Mo=1o 1 1 o] Mai=]g 01 0of Me=1g 1 o of
000 0 00 10 01 —1 0
1000 1000 1100
000 0 00 0 0 000 0
Ms=1g 00 0] Ma=|o 10 0 Mis=1g 00 ol
000 1 000 1 00 1 1
1000 10 1 0 1000
000 0 00 -1 0 00 10
Me=1g 100 M7=|0 1 -1 0] M=o 10 0]
0011 00 2 1 000 1

where @ is a scalar. Moreover:

e The /CEDS in this list are the M;’s with
i€{l,2,3,4,5,9,10,13,14,16,17,18}.
e The dual /CEDS in this list are are the M;’s with
ie{1,2,3,4,5,7,8,9,11,13,14, 15,16, 17, 18}.

These /EAS are in fact the EAS of dimension 2 which have a basis of special vectors, see
Definition @31

Notations 4.1. Let (A, ®) be an fEAS. We use the Sweedler notation:
P(a®b) = Za' SV ®dad ="

Note that the operations — and = do not necessarily exist, nor the coproducts a’ ® a” or v/ Q b”.
With this notation, can be rewritten as:

ZZZGI N (b/ N C/)/ ® (a// = (b/ N C/)//)/ N (b” >C//)/ ® (a// = (b/ N c/))// = (b” >C//)// ‘ )
_ ZZ(GI N b/)/ - ® (a/ N b/)// >c”®a” = b
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Similarly, (31]) and are rewritten as:

ZZ a” . (C/ N b/)// ® a/ - (C” - b//)/ ® C” = b// ‘ )
_ ZZ a// = b// ® C/ N (a/ N b/)/ ® C// = (a/ N b/)”,

22(6” >C”)/ N a/ ® (b// >C//)// >a// ® b/ N C/ ‘ )
_ Zzb/ N a/ ® (b// = a//)// = c// ® (b// >CL”)/ N Cl.
By transposition of , and :

Proposition 4.2. Let V be a finite-dimensional space and ® : VRV — VRV be a linear
map. We consider ®* : V*QV* = (VRV)* — (VRV)* =V*QV*. Then (V,®) is an LEAS
[respectively an ¢ CEDS, a dual ¢CEDS] if, and only if, (V*, ®*) is an LEAS [respectively a dual
(CEDS, an ¢{CEDS].

Ezample 4.2. 1. As their matrices are symmetric, the fEAS Ms, Mg, M3 and Mg are self-
dual, through the pairing which matrix in the basis (z,y) is

(o 1)

With the same pairing, the dual of My is M5 and the dual of Mg is M1g. The /fEAS My
and My are also self-dual, through the pairing which matrix in the basis (z,y) is

(1 o)

The (EAS My and Mi; are self—dua]ﬂ through the pairings which matrix in the basis

(z,y) are respectively
1 1 2 2
1 0)° 2 1)°

The duals of My, M7, My, My1, My2 and Mjs are not isomorphic to any M;’s.

2. Let Q be a finite EAS and A = KQ be the associated /EAS. The dual A* is identified
with the space K of maps from Q to K, with the dual basis (0a)acq of the basis Q of K.
Then, for any «, 8 € €

*(0a®bpg) = D, 0, ®d%.
(1.8)e0~" (@,6)

This is usually not the linearization of an EAS, except if ) is nondegenerate: in this case,
we recover the linearization of (€2, —, ») of Proposition .

4.2 Special vectors, left units and counits

Definition 4.3. Let (A, ®) be an (EAS.
1. Let a€ A. We shall say that a is a left unit of (A, ®) if for anybe A, P(a®b) =bR®a.
2. Let f € A*. We shall say that f is a left counit of (A, ®) if (f®Id)o® =1d® f.

3. Let a € A and A € K. We shall say that a is a special vector of (A, ®) of eigenvalue \ if
P(a®a) =Aa®a.

TFor M7, this holds if the characteristic of the base field is not 2.
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Remark 4.1. Let (A, ®) be an /EAS.
1. Any left unit of (A, ®) is a special vector of eigenvalue 1.
2. If A is finite dimensional, its left counits are the left units of (A4*, ®*).

3. The set of left units is a subspace of A and the set of left counits a subspace of A*. The
set of special vectors of a given eigenvalue is generally not a subspace of A.

Lemma 4.4. Let (A, ®) be an (EAS and a € A be a nonzero special vector of (A, ®). Then its
etgenvalue X is 0 or 1.

Proof. Let us apply to a ®a ® a. This gives NMe®a®a=Na®a®a. Asa#0, \=0or
1. O

Ezample 4.3. 1. Let us give special vectors, left units and left counits for the thirteen /EAS
associated to the thirteen EAS of cardinality 2. In each case, we give a basis of the spaces

of left units and left counits; A, u and v are scalars. The dual basis of the basis (X,Y") of

K is denoted by (X*,Y™*).

Case Special vectors | Special vectors | Left units | Left conits
of eigenvalue 1 | of eigenvalue 0

Al AX v(X-Y) (&) (%]

A2 AX v(X-Y) (0] (X*+Y™)

C1 AX 0 (0] (%]

C3 AX, puY 0 (Y) (X*+Y%)

C5 ng 0 (Y) (%]

C6 AX 0 (%] (]
E'1 -E'2 AX v(X-Y) ()] (0]

E'3 AX, uY v(X-Y) %) (X*+Y™)

F1 AX v(X-Y) (X) (%]

F3 AX +uY 0 (X,Y) (X*,Y*)

F4 AX,v(X +Y) 0 (X+Y) (X™)

H1 AX 0 (X) (%]

H2 AX,v(X +Y) 0 (X) (X*4+Y%)

Some of them have a basis of special vectors: let us determine their matrices in such a
basis. We recover in this way some matrices of Example

e For A1, in the basis (X, X —Y), we obtain Ms.

e For A2/ in the basis (X, X —Y), and for F1, in the basis (X — Y, X), we obtain Mj.

e For C3, in the basis (Y, X), we obtain M.

e For E'1 — E’2, in the basis (X, X —Y), we obtain Mg.

e For E’3, in the basis (X,Y — X), we obtain Mj;.

e For F3, in the basis (X,Y), we obtain M;g.

e For F4 and H2, in the basis (X — Y, X), we obtain M.

Hence, the /EAS associated to A2 and F1 are isomorphic, whereas the EAS A2 and F1
are not. As similar situation holds for F4 and H2.

2. It is possible to show that any 2-dimensional /EAS with a basis of special vectors is iso-
morphic to one of the eighteen cases of Example For all of them, let us give special
vectors, left units and left counits for the eighteen cases of Example In each case, we
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give a basis of the spaces of left units and left counits; A, 4 and v are scalars. For M, we
assume that the parameter a is nonzero (otherwise, ® = 0).

Case || Special vectors | Special vectors | Left units | Left counits
of eigenvalue 1 | of eigenvalue 0

M, 0 Az, py %) %)
M, 0 Az, py %) %)
M3 Az Ky %) %)
M, Az 1y %) (z*)
Ms; Ax 1y (2) %)
Mg Az Ky %) %)
My Az Yy %) %)
Mg Az Yy 0] (x*)
My Az 1y (2) %)
Mg Az Ky (z) %)
My | Az, v(z +y) 1y %) (x*)
Mo Az Ky %) %)
M3 Az, p1y 0 %) %)
Myy Az, py 0 (2) (¥*)
M;s Az, py v(z —y) %) (@* +y*)
Mg Az, py 0 (x) (@ +y*)
My AT, py 0 (2) (@* +y*)
Mg Aa:—kuy 0 (.T,y) (x*,y*)

Among them, Mj; has three lines of special vectors. In the basis (x + y,x) its matrix is
M5, so My1 and M5 are isomorphic.
4.3 Left units and counits of finite nondegenerate CEDS

Proposition 4.5. Let (Qq,*) be an abelian finite group, (2, *) be a finite group, and Q3 be a
finite set. We denote by e1 and eo the units of Q1 and .

1. Let (A, ®) be the linearization of the CEDS
(EAS(1, %) x= EAS'(Q9, %)) x EAS(Q3)

of Theorem [3.1].
(a) The special vectors of eigenvalue 1 of (A, ®) are the vectors of the form

a = Z g(asz)(ai, az, a3),

(a1,02,a3)€H1 X Ha x Q3

where Hy is a subgroup of 01, Ho is a subgroup of Qs, such that Hy > H1 < Hy, and
g: Q3 —> K is a map.

(b) The left units of (A, ®) are the vectors of the form
a= Z 9(063)(61,0627043),

(aa ,ch)EQg X3

where g : Q3 — K is a map.
(c) The left counits of (A, ®) are the linear forms f such that for any (a1, e, a3) € Q:

f(ab 2, Oég) = 6ag,€2g(a3)a

where g : Q3 —> K is a map.
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2. Let (A, ®) be the linearization of the CEDS
(EAS(Q2,*) x < EAS'(Q4, %)) x EAS(Q3)

of Corollary[3.15

(a) The special vectors of eigenvalue 1 of (A, ®) are the vectors of the form

a= Z g(a3)(az, a1, a3),

(0417042,043)61‘[1 x Ho xQ3

where Hy 1s a subgroup of 1, Ho is a subgroup of s, such that Hy < Ho € Hq, and
g: Q3 —> K is a map.

(b) The left units of (A, ®) are the vectors of the form

a= Z g(as)(e2, a1, a3),

(a1,03)E1 x Q3
where g : Q3 —> K is a map.
(c) The left counits of (A, ®) are the linear forms f such that for any (a1, s, as) € Q:
flan, ag, a3) = 6a, e, 9(a3),
where g : Q3 — K is a map.

Proof. 1.(a) Let a be a nonzero vector of A, which we write as

a= Z a(a17a27a3)(a17a27a3)'
(a1,02,a3)eR

Then a is a special vector of eigenvalue 1 if, and only if, for any (a1, ag, as), (81, B2, 83) € Q,

A(ar,02,03)(B1,62.83) = Yagt>B1,B2xa2,83) L((ag t>Br Hxar,az,a3) (33)
We put:
V(ag,ag) € QQ X Qg, Hl(ag,ag) = {Oél € Ql, a(aha%ag) # 0},
Vaz € O3, Hj(og) = {ag € Qo, Hi(ao,03) # T},

Hjs = {053 € Q3, HQ(O[3) # @}
We shall also consider the map:

g:{QS — K

a3y — g(a3):ae17627a3'

Let us first prove that if ag € Hs, then Ha(ag) is a subgroup of Q. Let aw, B2 € Ha(as)
(which is nonempty as a3 € Hs). Let a1, £1 € 1, such that a(y, ay.0y) # 0 and a(g, g,.a4) # 0.

By (33),

a(a§1>,31,,32*042,0c3) # 0,

so B * ag € Ha(as). As Qo is finite, Ha(a3) is a subgroup of Qs.

Let us prove that if a3 € Hs, then Hi(e2, a3) is a subgroup of ©; and, moreover, for any a; €
Hi(e2,03), G(ay e0,05) = 9(@3). As Ha(as) is a subgroup of {2, it contains ez, so Hi (e, a3) # .
Let 041,51 € Hl(eg,ag). By :

Qa1 e2,03) Y(B1,e2,03) = U(Bre2,03) (8] Lxar ea,a3) # 0.

23



Hence, Bl_l % a1 € Hy(eg, ag). Taking oy = (31, we obtain

A(ay,eq,03) U ar,ez,03) = ar,ez,az)d et ea,a3) & 0,
80 Q(ay,ez,a3) = er,en,a3) = g(o‘3)'

Let us prove that if ag, 53 € Hs and B2 € Ha(B3), then Hy(B2,083) < Hi(ez,as). Let
p1 € Hi(B2,03). Then ag, g, 3, # 0. As Hi(er,2) is a subgroup of €2y, it contains e, so

ey ,e2,a3) # 0- By :
Q(er,e2,a3)(B1,82,83) — g(a3)a(51ﬁ2ﬁ3) = A(B1.82,83) (B L e2,03) # 0,

SO ,6’1_1 € Hi(eg, a3). As this is a subgroup of Q1, 51 € Hi(e2, as3).

As a consequence, for f2 = ey, we obtain by symmetry that for any as, 83 € Hs, Hi(ea, a3) =
Hi(e2, B3). Therefore, there exists a subgroup Hj of 1 such that for any ag € Q3, Hi(e2,a3) =
H;.

Let us prove that for any a3 € Hs, Ha(as) > Hy < Hy. Let 81 € Hi = Hi(ez,a3), then
(B, e0,05) = 0- Let ol € Ha(az). We put ag = o/{1 € Ho(as). there exists a; € Hy(ag, as), such
that a(a; as,0s) # 0. By :

Aar,a2,a3)4(Br.e2,03) = Br.az,a3)Y((ag>B7 o e2,a3) # 0.
So (a;l > ,61_1) x a1 € Hy(eg,a3) = Hy. Moreover, as Hy(ag,as) € Hi:
apl > prt=ah > Bt e Hy.
Its inverse af, > (1 is also an element of Hy, so Ha(ag) > Hy € H;.

Let us prove that for any ag € Hs, for any as € Hy(as), Hi(ag,a3) = Hy. Let ay € Hy =
Hi(ez a3) and 1 € Hi (g, o). By (B3):

Ao e2,03)4(B1,a2,03) = YBr,az,03) (8] Lar,a2,03) # 0,
S0 ,8;1 # p € Hi(ag, a3). We obtain an injective map

{H1 — Hi(az,a3)

o —> ﬁfl*al.

Hence, |H;| < |Hi(ag,as)|. We already proved that Hy(ag,a3) € Hy, so Hi = Hi(ag, as).

We now prove that there exists a subgroup Ha of Q9 such that for any a3 € Hs, Ha(as) = Ha,
and that, moreover, for any ag € Ha, for any az € H3, a(e, ay0y) = 9(a3). Let asz, B3 € Hs. Let
Q9 € HQ(Oég). Ase; € Hl(OéQ,Oég) = Hy, Qe a0,03) #0. Aseg € Hg(a3)7 Q(eq,e9,83) # 0. By :

Aler,az,a3)Mer,e,83) = Uer,a2,83)Uer,azas) 0,

so ag € Hy(B3). We proved that Ha(as) € Ha(f3): by symmetry, Ho(as) = Ha(f83), which
prove the existence of Hy. Moreover, as a(e, a,,a;) # 0 and a( = g(f3), we obtain that

Oey,a0,83) = g(/BS)-

e1,€2,3)

We proved that for any (aq, a9, as) € Q,

Aoy az,03) 7 0 = (1,0, 3) € Hy x Hy x Hs.
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Let as, 83 € Hs, f1 € Hi, ap € Hy. We put o = a2_1 > (1. Then, By :

9(013),9(63) = a(ﬂl,ag,ag)a(el,ag,ﬁg) = a(ﬁl,az,ag)g(ﬁ?))’

SO (8, a2,04) = 9(a3). we proved that a has the announced form.

Conversely, if a is of the announced form,
P(a®a) = > 9(a3)g(Bs) (o = B1, Ba, B3) ® (B2 > g, a0 % By ', )
(a1,02,03),(81,82,83)eH1 x Hy xQ23

- Z (51752753)@)(061,042,043)

(a1,02,03),(81,P2,03)e H1 x Ha X3
=aQa.

2.(a) If (4, @) is the linearization of (EAS(g, *) x < EAS'(Q, %)) x EAS(Q3), then (A4, 1)
is the linearization of (EAS(Q1, *) X <op EAS'(Q9, *?)) x EAS(£23). The result then comes from
the observation that the special vectors of (A4, ®) and (A, ®~1) are the same.

1.(b) Let a be a left unit of A. Then it is a special vector, which we write as

a= Z g(as)(aq, a1, as).

(a1,01,3)€H1 X Ho x Q3

For any b = (1, B2, B3) € €&

P(a®b) = Z g(az) (a1 * B, Ba, B3) ® (B2 > a1, a2 * By, az)
(al,oc1,a3)EH1XH2X93
=b®a = Z g(a3)(B1, P2, B3) ® (a1, a1, as).

(a1,01,a3)€H1 X Ho x Q3

Taking 1 = e, we obtain that for any oy € Hy, a3 = e, so Hy = {e1}. Moreover, for any
ﬁg € QQZ
D glas)(aax By az) = >, g(az)(az,a),

(a2,a3)eH2 x Q3 (ov2,a3)eHa x Q3

so for any ag € Ha, ag * 62_1 € Hy. In particular, for as = e, ﬁ;l € Hy and finally 82 € Ha:
Hy = Q9. The converse application is immediate.

2.(b) Similar proof.

1.(c) and 2.(c) The left counits of (A, ®) are the left units of (A*, ®*), which is isomorphic
to (A, ®1). The resut comes from 2.(b). and 1.(b). O

5 From bialgebras to /EAS

We refer to [I], 8] for classical results and notations on bialgebras and Hopf algebras.

5.1 A functor from bialgebras to /EAS

Proposition 5.1. Let (A, m,A) be a bialgebra, not necessarily unitary nor counitary. We define
P:ARA— AR A by:

Va,be A, (a®b) = (m®Ida) o (Ida®7) 0 (ARIdA)(a®b) = > aVb@al?,

with Sweedler’s notation A(a) = Y aV®a® . Then (A, ®) is an (EAS, denoted by (EAS(A, m, A).
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Proof. For any a,b,c e A:

(@) o (P®1d) 0 [d® ) (a®@b®c) = (2@ Id) o (Id®T) 0 (P ®IA)(a @ b® c)
= D Va0 e a®b® @ a® O

Example 5.1. 1. Let (2, ) be a semigroup. We take A = K, with its usual bialgebra struc-
ture: the product m obtained by linearization of * and the coproduct A defined by

Va e Q, Ala) = a® a.

Then (A,m,A) is a bialgebra, unitary if, and only if £ is a monoid, and counitary. In
(EAS(A,m,A), for any «a, f € Q:

P(a®pP) =ax*xRa.
We recover the linearization of EAS(£2, x).

2. Let A be a vector space, 14 € A and € € A* such that e(14) = 1. We define a product and
a coproduct on A by:

Va,be A, a-b=c¢(a)b,
Va e A, Aa) =14 ®a.

Then (A,m,A) is a bialgebra, with a left unit 14 and a left counit e. It is unitary if,
and only if A is one-dimensional; it is counitary if, and only if, A is one-dimensional. In
(EAS(A,m,A), for any a,be A, P(a®b) =b® a.

Proposition 5.2. Let (A, m,A) be a bialgebra, not necessarily unitary nor counitary.
1. Let us consider the following conditions:

(a) (EAS(A,m,A) is an {CEDS.
(b) For any a,b,ce A, 3.3 aMtMe®a® @b =33 6MeMe®a? @ b3,
(¢) For any a,b,c € A, abc = bac.

(d) m is commutative.

Then (d) = (¢) = (b) < (a). If (A,A) has a right counit, then (¢) < (a). If
(A, m,A) has a right counit and a right unit, then (d) < (a).

2. Let us consider the following conditions:
(a) C(EAS(A,m,A) is a dual {CEDS.
(b) For any a,b,ce A, Za hRa@e®a® Za hRaVe®a®).
(c) ARId) oA =(T®Id)o (A®Id)oc A
(d) A is cocommutative.

Then (d) = (¢) = (b) <= (a). If (A, m) has a right unit, then (c) < (a). If (A, m,A)
has a right counit and a right unit, then (d) < (a).

Proof. 1. Obviously, (d) = (¢) = (b). Let a,b,c € A.

(d®®)o(Id®@T) o (r®Id) o (2®I)Bd®c®a) = > > bP @aVbVega®,
(r®Id) o (2®Id) o ([d®®) o (AR T)(d®c®a) = Y. > bP @bMVaVe®a®,
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so (a) < (b). If (D) is satisfied and if (A, A) has a right counit €, applying (Id® e ®¢) to (b),
we obtain (c¢). If (c) is satisfied and (A, m) has a right unit 14, taking ¢ = 14 in (¢), we obtain (d).

2. Obviously, (d) = (¢) = (b). Let a,b,c € A.

(2®Id)o (r®Id)o(Id®@7) o ([d®®)(b@a®c) = Y d®b®d® ®ale,
(d®7)o(Id®?) o (2RId) o (r®I)(b@arc) = > aPb®d® ®a?e,
so (a) <= (b). If (b) is satisfied and if (A, m) has a right unit 14, taking b = ¢ = 14 in (b), we

obtain (c). If (c) is satisfied and (A, A) has a right counit €, applying (Id ® Id ® €) to (c), we
obtain (d).

O

Proposition 5.3. Let (A,m,A) be a finite-dimensional bialgebra, not necessarily unitary nor
counitary. Then (EAS(A,m,A)* = (EAS(A*, A*, m*).

Proof. Let f,g € A*. For any a,b e A:

" = ((m®Ida) o (Ida®7) 0 (A®Ida))*
= (A* ®IdA*) o (IdA* ®7') 9] (m* ®IdA*).

Therefore, FEAS(A, m, A)* = (EAS(A*, A* m*). O
Proposition 5.4. Let (A, m,A) be a bialgebra.

1. We assume that (A,m) has a right unit 14.

o If 14 is not a unit of (A, m), the unique left unit of fEAS(A,m,A) is 0. If 14 is a
unit of (A, m), then the left units of (EAS(A, m,A) are the elements a € A such that
Aa) =14 ®a.

2. We assume that (A, A) has a right counit € 4.

o [fcy is not a unit of (A, A), the unique left counit of (EAS(A, m,A) is 0. If 4 is
a counit of (A, A), then the left counits of FEAS(A,m,A) are the elements A\ € A*
such that \om = e ® \.

Proof. 1. Let us assume that fEAS(A, m,A) has a nonzero left unit a. Let us choose A € A*
such that A\(a) = 1. For any b€ A:

(Id@\) o d(a®b) = (Za(l ( ))b—(Id@A)(b@a):bA(a):b,

:g/
so a’ is a left unit of (A,m). Then a’14 = a/ = 14, so @’ = 14 is a unit. Moreover, for b = 14,

Pla®1y) =Za<1)1A®a(2) =Aa) =14®a.

Conversely, if 14 is a unit of (A,m) and A(a) = 14 ® a, then a is clearly a left unit of
(EAS(A,m, A).

2. Let us assume that FEAS(A, m,A) has a nonzero left counit . Let us choose b € A such
that \(b) = 1. For any a € A:

A®1d) o d(a@b) = ZA( ) — a\(b) = a.
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If we define M : A — K by X(a) = A(ab), then X is a left counit of (A, A). As e4 is a right
counit of (A, A),
N ®ea)oA =N =¢yu,

so X = €4 is a counit of (A, A). Moreover, for any a,b € A:

A®e4) o B(a®@b) = eala ZA( ) ((2))=>\(ab),

so Aom = g4 ® A. Conversely, if €4 is a counit of (A,A) and Aom = g4 ® A, then for any
a,be A:

M@)o d(a®b) = YA ( ) N (a(l)) A(b)a = A(b)a,
so A is a left counit of FEAS(A, m,A). O

More generally, we can obtain others /FEAS with the help of a bialgebra projection or with
certain linear forms:

Proposition 5.5. Let (A, m,A) be a bialgebra, not necessarily unitary nor counitary, and  :
A — A be a bialgebra morphism such that 72 = w. We define ® : AQ A — A® A by:

Va,be A, Pa®b)=(mm)o(Ida®7) o (A®Id4)(a®b) = Za b®7r( )

Then (A, ®) is an LEAS.

Proof. We define § = (Id®7) o A. Then (A, m,0d) is a bialgebra. Note that it is not counitary,
except if (A, A) is counitary and m = Id4. We can then apply Proposition to (A,m,d). O

Ezxample 5.2. Let (£2,*) be a semigroup and 7 :  — 2 be a semigroup morphism such that
72 = 7. We take A = K, with its usual bialgebra structure. Then in /EAS(A, m,A), for any
a, B e

P(a®p) =axfR7m(a).

We recover the linearization of EAS(2, *, 7).

Proposition 5.6. Let (A, A) be a coalgebra, not necessarily counitary, and f € A* such that
(f®f)oA=f. We put, for any a,be A:

Ba@b) = Zf( )b®a<2>
Then (A, ®) is an LCEDS.

Proof. We define a product on A by a b = f(a)b. It is associative. Moreover, for any a,b € A,
as (f®f)oA=f:

Alaxb) = f(a) > 0V @b
:Zf(a ) (a )me@b@)
N, (a(1)> bV @ f <a<2)> b2

— A()+ A®),
o (A, x,A) is a bialgebra, and (A4, ®) = FEAS(A, x, A). Moreover, for any a,bc € A,
axbxc= f(a)f(b)e = f(b)f(c)a=Dbxaxc.

By Proposition (A, ®) is an (/CEDS. O

28



Ezample 5.3. Let Q be a set, A = K be the associated coalgebra (where any o € Q is a
group-like element), and Q' < Q be any set. We define the linear form f: A — K by

1if Q
VaeQ, flay={ "o
0 otherwise.

For any a € Q, (f ® f) o A(a) = f(a)?> = f(a), so we obtain an /CEDS such that for any
a, B e Q:
BRaif ae Y,

0 otherwise.

Pla®p) = {

5.2 A functor from Hopf algebras to /EAS

Proposition 5.7. Let (A,m,A) be a Hopf algebra, of antipode S. We define ® : AQA — AR A
by:

Va,be A, ®(a®b) = (Ida®@m)o (Ida®S®Ida) o (A®Id)or(a®b) :Zb(1)®5<b(2))a

Then (A, ®) is an (EAS, denoted by (EAS'(A,m,A). It is nondegenerate, and (A,®~!) =
(EAS(A, m, A°P).

Proof. Let a,b,ce A.
(Id@@)o(<I>®Id)o(Id®<I>)(a®b®c)
Y'Y Wes (c(3)>(1) @S ( Y 4o > s (
“XEes ()i @ (s« ) V) (C@))
_ZZ (1)®S< )b(1)®5<c ( )b@))a
_ZZ (1)®S( )b(l)@)S(b())

=(P®Id)o(Id®7) o (P®Id)(a®b® c).

So (A, ®) is an /EAS.
Let (A, ¥) = (EAS(A, m, A%): for any a,be A, U(a®b) =Y aPb®a). Then:

PoV¥(a®b) = Za(l) ®S (a(2)> a®b = a®b,
voa®b) = 2615 (b?) e —a@b.
So @ is bijective, of inverse W. O

Ezample 5.4. Let (G, *) be a group and let A = KG° be the Hopf algebra of the opposite of
this group. A basis of FEAS'(A, m,A) is given by G itself and, for any «, 3 € G:

Pla®B) =F@®axpf.
We recover in this way the linearisation of EAS'(€, ).

Corollary 5.8. Let (A,m,A) be a bialgebra, such that (A, m,A°P) is a bialgebra. Then (A, ®) =
(EAS(A,m,A) is nondegenerate and (A, ®~!) = (EAS'(A, m, A°P).

Proposition 5.9. Let (A, m,A) be a Hopf algebra.
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1. Then fEAS'(A,m,A) is an LCEDS if, and only if, Ao S = A%0o S,

2. Then fEAS'(A,m,A) is a dual (CEDS if, and only if Som = S om®°
Proof. 1. Let a,b,c € A.

(d®®) o (Id®@7) o (r@ld) o (3@I)(b®c®a) = ZS( ) a@bV® S (b<2>) e, (34)
(r@Id) o (@@Id) o (Id®®) o (Id@T)(b® c®a) = ZS( ) a®@bV @S (b<3>)
IfAoS =A%08, then:
Yies (b2)es (1) =YYW es (b(2)>(2) ® S (b<2>>(1)
~ VY es (b<2>>“’ ®5 (b<2>)(2)
- Y es (b<3)> ® S <b<2>) 7
which implies that (A, ) is an (CEDS. Conversely, taking a = ¢ = 14, we obtain in (34):

ZS( ) @S( ) Zs(b@))@b()@S(())
Applying Id ® € ® Id, we obtain:
AoS(b)=> 5b)Y®S0H)®

C.

2. Let a,b,c e A.
(2®Id)o (r@Id)o(Id®@7) o ([d@®P)(b®a®c) =y > a ( )5((2)>b®c(1)
(Id®@7) o (I[d®®P) o (P@Id) o (r@I)(b®a®c) =) > a ®S((2)>S<a<2>>b®c<1>.

If Som = Som®, then m?o(S®S) =mo(S®.S), which implies that (A4, ®) is a dual /{CEDS.
Conversely, taking b = 1 and applying € ® Id ® €, we obtain:

5(0)5(¢) = 5(c)S(a),
som®PoS=mo(S®S)=mPo(S®S)=Som. O

Remark 5.1. In particular, if S is invertible, then /EAS'(A, m,A) is an (CEDS if, and only if,
(A, m) is commutative; it is a dual /CEDS if, and only if, (A, A) is cocommutative.

Proposition 5.10. Let (A, m, A) be a finite-dimensional Hopf algebra. Then fEAS' (A, m, A)* =
(EAS/(A*, A%, m*op).

Proof. Let f,g € A*. For any a,b € A:
*(f®9)(a®b) = (f®g)((a®b))
= Y(r@9) (8@ s (b))
-\ <f®g ®g<2>> (bu) ® S <b<2>) @a)

- <f® g* <g(1)) ®g<2>> <b<1) ® b2 @a)
a

=> (g@) ®fS* (9(1))) (a®b),

30



so P*(fRg) = Yl gPfS* (g(l)), which is the FEAS attached to the Hopf algebra (A*, A*%P m*°P),
whose antipode is S*. O

Recall from [9] that a right integral of a Hopf algebra (A, m,A) is a linear map f € A* such
that for any p e A*,

(A®p) o A = p(la)A.
Proposition 5.11. Let (A,m,A) be a Hopf algebra.
1. Letae A. It is a left unit of tEAS'(A,m,A) if, and only if for any be A, S(b)a = £(b)a.

2. Let \ € A*. It is a left counit of FEAS'(A,m,A) if, and only if, for any a € A,
DA (b(l)) 5(6(2)) = Ab)la. In particular, right integrals on (A,m,A) are left counit
of FEAS' (A, m,A); if S is invertible, then the converse is true.

Proof. 1. Let a € A. Then its a left unit if, and only if, for any be A, >’ W ®s (6(2)) a=>b®a.
Applying e ®1d, if a is a left unit, for any b € B, S(b)a = £(b) ®a. Conversely, if this holds, then
for any b e B:

P(a®b) = Zb(l)@)S( )a—Zb ®5< )a=b®a.

2. Let A e A*. Tt is a left counit if, and only if, for any a,b € A:

A (b<1>) 5 (b<2>) a = a\(b).

If A is a left counit, taking a = 14, we obtain that for any b € A, A (b(l)) S (b(2)) = A(b)14.
Conversely, if this holds, then for any a,b € A,

A®Id) o dla®b) = ZA( ) ( ))azA(b)a=(1d®)\)(a®b),

so A is a left counit.
Let us assume that A is a right integral of (A, m,A). For any b € A, for any ue A*:

ZA( ) ( (b(2)))=()\®uoS)oA(b) = 10 SAALOAD) = u(1)A(D).

As this holds for any p e A% >\ (b(l)) S (b(2)) = A(b)14, so A is a right integral. Let us now
assume that S is invertible and that A is a left counit. Let v € A*. Forany be A, if y = vo S~

22 (00) v (42) = LA () o s (7)
= A(b)u(1a)
= Ab)roST(1a)
= Ab)v(14).

So A is a right integral. O

5.3 From left units and counits to bialgebras

Theorem 5.12. Let (A, ®) be an (EAS.

1. If a is a special vector of eigenvalue 1 of (A, ®) then Ay : A — A® A defined by Ay(b) =
P(b® a) is a coassociative coproduct.

2. If € is a special vector of eigenvalue 1 of (A, ®)*, that is to say if (c®e) o P =e®e, then
me: A® A — A defined by m. = (Id®¢) o ® is an associative coproduct.
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3. If a is a left unit of (A, ®) and € is a left counit of (A, ®) such that e(a) = 1, then
(A, me, Ay) is a bialgebra, with a as a left unit and € as a left counit. Moreover, (A, ®) =
(EAS(A,mg, Ay).

Proof. 1. For any b e A:

(@) o (d®1d) 0o [d® ) (b®a®a) = ([d® ) o (2 ®Id)(b®a®a)
= ([d® ®)(Au(b) ®a)
= (Id®Aa) o Aa(b)a

(PRId)o(Id® 7)o (P®Id) (bR a®a) = (P®Id) o (Id®7)(ALb) ®a)
= (A ®Id) o Ay(d).

Hence, A, is coassociative.

2. We obtain, as ¢ is a special vector of eigenvalue 1 of (A4, ®)*:

(d®e®e) o (IA® ) o (P®Id) o (Id®®P) = (d®@e®e) o (P@Id) o (Id® )
=(ld®e)o®o ((Id®c) o P))
=m. o (Id®m.),

(IdR®e®e)o (P®Id) o (Id® 7)o (PRId) = (Id®e) o Po (Id®e) ®I)
= me o (m: ®1d).

As a consequence, m, is associative.

3. As a is a left unit, it is a special vector of eigenvalue 1 of (A, ®), so A, is coassociative.
Moreover, for any b € A:

(E@1d) 0 Ag(b) = (c®1d) 0 B(b®a) = Id®e)(b® a) = be(a) = b,

so € is a left counit of A,. As € is a left counit, it is a special vector of eigenvalue 1 of (A, ®)*,
S0 m, is associative. Moreover, for any b € A:

me(a®0b) = (Id®e)oP(a®b) = (Id®e)(b®a) = be(a) = b.

So a is a left unit of m,.
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Let bl, bg € A.

Ay(bib) = (1d®e®Id®e) o (PR P) o (Id®T®Id) o (P®P) o (IdRT®IA) (b ®b2®a®a)
— (®:e®Id®:e) o ([dRId®P) o (PRId®Id) o (Id® 7 ®1d) o (¢ ® Id ® Id)
o (Id®Id®®) o (Id®T®I1d) (b ® by ®a® a)
—([@:®IA®:) o (AR ®) o (Id®e®1d) o (P@Id®1d) o (Id® & ®1d)
c(IdRI®®) o (Id®T®1d)(h ® b ® a® a)
— (1d®1d®e) o (Id®®) o (Id® (e ®1d) 0 $) @ Id) o (P @ I ® Id) o (Id ® d ® 1d)
c(IdRIA®®) o (Id®T®1d)(h ® b ® a® a)
— (RI®:)o(1d®®) o ([dRId®e®1d) o (P @1d®1d) o (Id® & ®1d)
c(IdRIA®®) o (Id®T®1d)(h ® by ® a® a)
— (@I e) o (@) o (PRIAQI) o (Id® (d®&) 0 d ®1d)
o (Id®Id® P) (b1 ®a®bs ®a)
=([dRId®e) o (Id®P) o (P®Id) o (Id® @) (b ® by ®a)
=Po((Id®e)oP®Id)(b; ® b ®a)
= &(m. (b1 ® b2) ®a)
= Ay(me(by ® by)).

So (A,mg,A,) is a bialgebra. Let (A, V) = fEAS(A, m.,A,). For any by, by € A:

U ®b) =(1d®e®Id)o (P®Id) o (Id®T) 0 (P ®1d)(b; ® a® by)
=(Id®e®Id) o (Id® P) o (P®Id) o (Id® P) (b1 ® a ® be)
= ([d®Id®e) o (P®Id) (b ® b ® a)
= ®(b; ®b2)e(a
= &(b; ®ba).

Therefore, (A, ®) = (EAS(A, me, A,). O

Ezxample 5.5. This can be applied for fEAS Mg, My7 and Mg of Example

e For Mg, taking a = x and € = z* + y*, we obtain:

Aa(a:) =rQ, Aa(y) =Yy,
me(z @) = x, me(z®y) =y,
me(y ®x) =y, me(y ®y) = y.

This is the bialgebra of the semigroup (Z/2Z, x), with z = 1 and y = 0: we recover the
linearization of C3.

e For Mj7, taking a = x and € = z* + y*, we obtain:

Ay(2) = 2@, Ag(y) =2@z -2y -y +2y®yY,
me(x®:v) =, me(x®y) =Y,
me(y®x) =z, me(y®y) = y.
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Putting 3’ = —z + 2} we obtain:

Aa(l‘) = I®$, Aa(y/) = y,®y/7
me(z®x) = x, me(r®y') =9,
me(y @) =, me(y ®y') =

This is the bialgebra of the semigroup (Z/2Z, +), with = 0 and y = 1: we recover the

linearization of H2.

e For Mg, we can take any a € A and any € € A* such that e(a) = 1. For any b,c € A,

Ay b)) =a®Db, me(b® c) = e(b)c.

5.4 Applications to nondegenerate finite CEDS

From Proposition [4.5}

Proposition 5.13. Let (2, —,>) be a nondegenerate finite CEDS, which we write following

Theorem |3.14] under the form
(EAS(91, %) x» EAS' (29, %)) x EAS(Q3).

Let g, h : Q3 — K be two maps such that:

> glag)h(as) = 1.

a3€eflg
We define a product and a coproduct on K, putting, for any (aq, a2, a3), (B1, B2, 53) € Q-

(a1, a9, a3) - (B1, B2, 43) = Oas,pa9(3) (1 * B1, B2, B3),

Alar, az,a3) = > h(Bs) (a1, B2, B3) @ (Ba > a1, a2 % By ', 3).
(B2,B3)€822 x Q23

Then (KQ, -, A) is a bialgebra and the linearization of Q is (EAS(KQ, -, A).

Proof. By Proposition the following is a left unit of KQ:

a= Z h(as)(e1, g, as),

(ag,ag)eﬂg Xﬂg
and the following map is a left counit of K(2:

8_{( KQ — K

a1,02,03) —>  day e 9(as).
By hypothesis, €(a) = 1. The result comes from a direct application of Theorem [5.12]

Similarly:

Proposition 5.14. Let (2, —, ) be a nondegenerate finite dual CEDS, which we write following

Corollary under the form

(EAS(Q9,*) x < (EAS' (01, %)) x EAS(Q3),

2if the characteristic of the base field K is not 2.
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Let g, h : Q3 —> K be two maps such that:

2 g(as)h(as) = 1.

a3€N3

We define a product and a coproduct on K, putting, for any (a1, a9, as), (51,52, 83) € §2:

(a1, 02,03) - (81, B2, B3) = 0oy ,p19(a3) (a2 * B2, f1 < a2, 53),

Aoz, o1, 03) = h(Bs) (a2, B1 < a2, B3) ® (ag, a1 * (B < ayt), as).
(B1,83)€021 xQ3

Then (KQ, -, A) is a bialgebra and the linearization of Q is (EAS(KQ, -, A).

5.5 Applications to Hopf algebras of groups

In all this paragraph, G is a group. We denote by KG the associated Hopf algebra. If G is finite,
we denote by K& the Hopf algebra of functions over G, with its basis (0g)gec, dual of the basis
G of K@G.

Corollary 5.15. If G is finite, then fEAS'(KG) is isomorphic to fEAS(K®), and /EAS'(K%)
is isomorphic to (EAS(KGP).

Proof. As G is finite, a = Z g is a right integral of K&, so is a left unit of fEAS'(KG). If eq is
geG

the unit of the group G, then & = 4., is a right integral of KG, so is a left counit of FEAS'(KG).

As g(a) = 1, (EAS'(KG) = fEAS(KG, m.,A,). For any g,h € G:

me(g®h) = 1d®@de) 0 B(g®h) = hdeg (K1 g) = dgnh.

For any g € G:
Na(g) = D ®(g®@h) = Y h®hT'g= > g Qg
heG heG 91,92€G,
9192=9

So (KG,m.,A,) is isomorphic to K¢, via the map sending g to §,, for any g € G.

By duality, a is a left counit of /EAS’(K%) and ¢ is a left unit of FEAS'(KY). For any
g,heG:
Ma(0g®0) = (Id®@a) o B(g®h) = > ® 8),-189(a) = Gpg-
hl,hQEG,

hiha=h
For any g € G:
A(0g) = (0 ®bee) = Y, 0@ Ody = . 04 ® Fgndh = 0y ® &y
heG heG
So (K%, myg, A.) is isomorphic to KGP via the map sending 04 to g, for any g € G. O

Proposition 5.16. 1. The nonzero special vectors of eigenvalue 1 of fEAS(KG) and of
(EAS'(KG) are the elements
A Z a,

aeH
where A is a nonzero scalar and H is a subgroup of G.

2. If G is finite, the nonzero special vectors of eigenvalue 1 of FEAS(K®) and of EAS'(KY)
are the elements
A D ba,

aceH
where A is a nonzero scalar and H is a subgroup of G.
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Proof. Any a € A can be written under the form a = Z Aq. Then:
aeG

a is a special vector of eigenvalue 1 of FEAS(KG)
— Z aqaga @ B = Z aqagofl @ o

07560 OC,BEG
— Z apaga @ B = Z agag-1,03 @ a
CV,['}EG a,ﬁEG

= Va,B e, ag(aa —ag-1,) = 0.

Let a be a nonzero special vector of eigenvalue 1 of /FEAS(KG). Let us put a;, = A and
H={aeG, aq #0}. Let « = f € H. As ag # 0, we obtain a, = a1, = A, so 1g € H and
A # 0. For any 3 € H, taking a = 1g, we obtain ag-1 = A, so B~le H. If o, B € H, we obtain

that ag-1, = aq # 0, so B ta e H. Hence, H is a subgroup and a = A Z Q.
acH

a is a special vector of eigenvalue 1 of FEAS'(KG)
— Z aqaga @ B = Z asapgB® B ta

a,BeG a,BeG
— Z aqago @ B = Z agaasa @ o
Q,BEG &,ﬁEG

= Va,B e G, an(ag — aap) = 0.

Let a be a nonzero special vector of eigenvalue 1 of fEAS'(KG). Let us put a;, = A and
H={aeG, aq,#0}. Leta=pe H. If ae H, for § = 1¢, we obtain a1, = aq = A\, s0 1g € H
and \ # 0; for B = a1, we obtain a,-1 = a1, = A # 0,50 a”! € G. If a, B € H, we obtain that
aqg = ag # 0, so aff € H. Hence, H is a subgroup and a = A Z Q.

aceH

Let f e K¢ We put f(a) = a, for any a € G.

f 1s a special vector of eigenvalue 1 of EEAS(KG)
= Va,B e G, anag = anp

= VYo,B € G, anag —aqp) = 0;

f is a special vector of eigenvalue 1 of /EAS'(K®)
= Va,B € G, aqag = agag-1,

> Va,B €, ag(aa —ag-1,) = 0.
The conclusion is the same as for KG. O

Remark 5.2. 1. From Proposition , the left units of FEAS(KG) are the multiples of eq,
and its left counits are the multiples of its counit. If G is finite, the left units of FEAS(KY)

are the multiple of Z g are its left counits are the multiples of eg.
geG

2. From Proposition [5.11} it is not difficult to show that if G is finite, the left units of

(EAS'(KG) are the multiples of Z g; if G is not finite, FEAS'(KG) has no nonzero
geG

left unit. The left counits of FEAS’(KG) are the multiples of d... By duality, if G is finite,

the left units of FEAS’(KY) are the multiples of &, and its left counits are the multiples

OfZg.

geG
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