REDUCED TYPED ANGULARLY DECORATED PLANAR ROOTED TREES AND
GENERALIZED TRIDENDRIFORM ALGEBRAS

LOIC FOISSY AND XIAO-SONG PENG

ABsTRACT. We introduce a generalization of tridendriform algebras, where each of the three prod-
ucts are replaced by a family of products indexed by a set Q. We study the needed structure on
Q for free Q-tridendriform algebras to be built on Schroder trees (as it is the case in the classical
case), with convenient decorations on their leaves. We obtain in this way extended triassociative
semigroups. We describe commutative Q-tridendriform algebras in terms of typed words. We
also study links with generalizations of Rota-Baxter algebras and describe the Koszul duals of the
corresponding operads.
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1. INTRODUCTION

Shuffle algebras have been studied for a long time, starting from combinatorial problems of
card shufflings, to operadic aspects. They were formalized in the fifties by Eilenberger and
MacLane [2] and, independently, by Schiitzenberger [11]: a shuffle algebra is a vector space
with a bilinear product < following the axiom

x<y)<y=x<@x<y+y<ux).

Free shuffle algebras are based on words, with the half-shuffle product: for example, if a, b, ¢, d
are letters,

a < bed = abcd,
ab < cd = abed + acbd + acdb,
abc < d = abcd + abdc + adbc.
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It follows that the product * defined by x * y = x < y + y < x is commutative and associative. The
noncommutative version, known as noncommutative shuffle algebras or dendriform algebras, is
introduced by Loday and Ronco [9]: a dendriform algebra is a vector space with two products <
and >, with the following axioms:

(x<y)<z=x<@y<z+y>2),

x>y)<z=x> (<2,

x>@>2=x<y+x>y >z
It follows that the product * defined by x * y = x < y + x > y is associative. Loday and Ronco
described the free dendriform algebra on one generator in terms of planar binary trees [8, 1].
Recently, various generalizations of dendriform algebras appeared: the two products < and > are
replaced by families (<,)qcq and (>,)qcq Of products parametrized by elements of a given set €,
which can have extra structures: for matching dendriform algebras [12], Q is just a set, whereras
for family dendriform algebra it is a semigroup. More generally, Q2-dendriform algebras over an
extended diassociative semigroup have been introduced and studied in [3].

In the spirit of [3], we work here with parametrized versions of tridendriform algebras. Tri-
dendriform algebras are introduced in [7]: they are vector spaces with three products <, > and o,
with the following axioms:

(a<b)y<c=a<b>c)+a<b=<c)+a<((boc)
(a>b)y<c=a>Mb<c)
a>b>c)=(a>b)>c+(a@<b)>c+(aob)>c
(a>b)oc=a>(boc)
(a<b)oc=ao>c)
(aob)y<c=aob<c)
(@aob)yoc= ao(boco).
Summing, we obtain that the product * =< + > +o is associative; moreover, < +o and > define
a dendriform algebra structure, as well as < and > +o. A classical example of tridendriform

algebra is given by quasi-shuffle (or stuffle) algebras [6, 4]: if (V; -) is an associative algebra, then
the half-shuffle algebra 7' (V) is tridendriform. For example, if a,b,c,d € V,

ab < c¢d = abcd + acbd + acdb + a(b - ¢)d + ac(b - d),
ab > cd = cabd + cadb + cdab + c(a - d)b + ca(b - d),
ab>cd=(a-c)bd+ (a-c)db+ (a-c)b-d).

Other examples of tridendriform algebras are based on packed words or on parking functions

[10]. The free tridendriform algebra on one generator is described by Loday and Ronco in terms
of planar reduced trees, which we call here Schroder trees.

We here give a parametrized version of tridendriform algebras. We start with a set Q with six
products <, —, <, >, * and -. An Q-tridendriform algebra is given three families (<, )acq, (>a)eca
and (o, )qeq of bilinear products, with the following axioms:

(@<ab)<gc= a<4.8b>wpc)+ta<qcp(b<qqpc)+a<qs(bogsc)
(@>yb)<gc=a>,(b<gc)
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a>q (b>pc)= (a>uwpb) >qmp C+(a <qqp D) >qcp ¢+ (a045b) >qpC
(@>yb)ogc=a>,(bogc)
(@ <ab)ogc= aog(b>,c)
(@aoyb)<gc= ao,(b<gc)
(@aogb)ogc = ao,(bogc).

As in the classical case, particular examples of Q-tridendriform algebras are given by Q-Rota-
Baxter algebras, as defined in [5], see Proposition 2.8. As a condition, we impose that free
Q-tridendriform algebras are based on Schroder trees decorated in some sense by elements of Q.
In the dendriform case, the elements of Q become types (that is to say decorations) of the internal
edges of the planar binary trees which were the basis of free dendriform algebras: this is not pos-
sible for Schroder trees, as the number of internal edges does not uniquely depend on the number
of internal vertices, which is a major difference with planar binary trees. Instead, we choose that
the elements of € become decorations of the leaves of the Schrdder trees, at the exception of the
leftmost and rightmost ones. We then define inductively three families of products <, > and o on
these trees and ask for them to define an Q-tridendriform algebra. This impose a strong constraint
on the products taken on Q: they have to make 2 an extended triassociative semigroup (briefly,
ETS): see Definition 2.3 below for the list of 18 axioms defining these object below. If this holds,
these Schroder trees indeed give free Q-tridendriform algebras (Theorem 3.2).

Moreover, if Q is a ETS and if A is an Q-tridendriform algebra, then kQ ® A inherits a structure
of (classical) tridendriform algebra (Proposition 3.6), which generalizes a similar result for Q-
dendriform algebra proved in [3]. We consider the particular case where A is the Q-tridendriform
algebra of Schroder trees in Proposition 3.7, where we give necessary and sufficient condition for
kQ ® kKT(X, Q) to be free.

We also study Q-tridendriform algebras of typed words. If A is a matching associative algebra
(Definition 3.3), we prove in Theorem 3.4 that the algebra Sh(,(A) of Q-typed words on A is an Q-
tridendriform algebra. When A and Q are commutative, then we prove in Theorem 3.5 that Sh;,(A)
is the free commutative Q-tridendriform over A. Consequently, if A is the free matching algebra,
generated by a set X, then Sh§(A) is the free commutative Q-tridendriform algebra generated by
X.

The last section of the paper is devoted to the operad of Q-tridendriform algebras. In partic-
ular, we study operadic morphisms from tridendriform algebras to Q-tridendriform algebras and
we compute its Koszul dual in Proposition 4.3, finding in this way a parametrised version of tri-
associative algebras [7].

Notation. Throughout this paper, let k be a unitary commutative ring which will be the base
ring of all modules, algebras, as well as linear maps, unless otherwise specified.

2. GENERALIZED TRIDENDRIFORM ALGEBRAS

2.1. EDS and ETS. First, we recall the definition of diassociative semigroups and extended
diassociative semigroups in [3].

Definition 2.1. [3, Definition 1] A diassociative semigroup is a family (€, <, —), where Q is a
set and «—, —: Q x Q — Q are maps such that

(=P ey=a«Bey)=a—(B-y),
(@—->p)—y=a—-> By,
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(@-p)-y=(@=poy=a->B-Yy),
for all o, B,y € Q.

Definition 2.2. [3, Definition 2] An extended diassociative semigroup (abbr. EDS) is a fam-
ily (Q, «,—, <,>), where Q is a set and <, —,<,> : Q X Q — Q such that (Q,«,—) is a
diassociative semigroup and

(D a> By =arp,
2) (@ —>pB)<y= By,
(3) (@<p) (@<= pP)<y)= a<d(B <),
4 (@<p) (@< p)<y)= By,
) (@<f) = (@=pP)<y)= a<(B—7y),
(6) (@<P)> (@< p)<y)= B>,
@) (@>B—=7)—Bry=(@<=prvy,
(8) (@ B-oy)<@Bry) = a<dp,
) (@a>B—-y)—>Bry)=(@—->p)ry,
(10) (@a>B-y)>@Bry) = a>p,

for all @, B,y € Q.

Definition 2.3. An extended triasssociative semigroup (abbr. ETS) is a family (Q, «, —, <, >, -, %),
where (Q, «, —, <,>) is an EDS and

(11) (@ > p)xy= Bxv,

(12) (@—=p)-y=a—>B-y),
(13) a>pf=ar(@B-y),

(14) (@<p)* (@ < p)y) = B+,

(15) (@<p)- (@ =P <y)= a<(B-y),

(16) (@=p—y=a< @B y),
(17) (@>(B-y)=Br>y) = ax*p,

(18) a—->B-oy)= (@ p) -y,
(19) (@a>B-7)-Bry) = (@-prvy,

(20) (@=p)xy=axB—-y),
(21 (@e=p)-y=a-(B-y),
(22) a<df= pry,

(23) axf=ax(B<vy),
(24) (@-B)<y= By,

(25) (@-B)e=y=a By,
(26) axf=axB-y),

(27 (@-B)xy= B=v,

(28) (@-B)-y=a-(B-7).
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Example 2.4. (a) Let (Q, *, -) be a set with two products satisfying (26)—(28). This holds for
example if for any @, 8 € Q,

axf=a, a =5
or if for any o, 8 € Q,

axf=p, a-fB=a.
We put, for any a, S € Q:

a—f=a, a<dp=p,

a— B =a, a>f=a.

Then (Q, <, —, <q,>, -, %) is an ETS.
(b) Let (Q, <, —,<,1>,-,*) be an ETS. For any «, 8 € Q, we put

a<7B=8->a, a<’a=8>a,
a—->TPB=pa, a>a=p<aq,
a/*”pﬁ=,3*a/, a,,o]’ﬁ:ﬁ_a,‘

Then (Q, <7, =%, <P, > «°P_ .°P) is also an ETS, called the opposite of Q. We shall
say that Q is commutative if it is equal to its opposite.

2.2. Q-tridendriform algebras. Let us now give the concept of Q-tridendriform algebras as
follows.

Definition 2.5. Let Q be a set with six products «, —, <, >, -, . An Q-tridendriform algebra is
a family (A, (<0)wea, >o)weas (00)wea), Where A is a k-module and <, >,,0, : AQ A — A are
linear maps such that

(29) (@<ab)<gc= a<4.8b>ewpc)+ta<qcp(b<qqpc)+a<ys(bogsc)
(30) (@>yb)<gc=a>,(b<gc)

3D a>q, (b>gc)= (a>uwpb) >qup Cc+(a <qqpb) >acp c+(a04phb) >qpcC
(32) (@>ab)ogc= a>, (bogc)

(33) (@ <ab)ogc= aog(b>,c)

(34) (@aoyb)<gc= ao,(b<gc)

(35) (@aogb)ogc= ao,(bogc)

for all a,b,c € A and a, 8 € Q. If moreover, for all a,b € A and a € Q,
a<,b=b>,a and ao,b=bo,a,

then A is called a commutative Q-tridendriform algebra.

Example 2.6. (a) If Q is a semigroup, we take all maps o, with w € Q to be equal to an
associative product x and
a—-pf=a—B=a-B=axpf, ab>f=a, a<dp=p,

then Q-tridendriform algebra are tridendriform family algebras [!3].
(b) For a set Q, define, as in Example 2.4,

a—-fB=a<f=ax*xp =0, a>f=a—pF=a-B=a.

Then Q-tridendriform algebra are matching tridendriform algebras [12].
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Remark 2.7. Q-dendriform algebras, as defined in [3], are Q-tridendriform algebras such that,
forany @ € Q, o, = 0.

Next we show the relationship between (2-Rota-Baxter algebras [5] and Q-tridendriform alge-
bras.

Proposition 2.8. Let Q be a set with six products «—,—, <,>, -, * and, for any a € Q, let u, € Q.
We put, for any a, B € Q, Adyp = Haup. Let (A, (P,)weq) be an Q-Rota-Baxter algebra of weight A.
Then (A, (<0)wear >w)weas (00)weq) is an Q-tridendriform algebra, where

a<,b:=abP,b), a>,b:=P,la)b, aoy,b:=pu,ab
foralla,b € A and w € Q.
Proof. Fora,b,c € Aand a,f € Q,
(aPy(b))Pp(c) = a(P,(b)Ps(c))
aPo_.s(Porp(b)c) + aP o g(bPop(c)) + aPyp(Aq gbC)
a <a—>,3 (b >a>ﬁ C) +a <a<—,8 (b <(z<1ﬁ C) +a <a-ﬂ (b oa*/j' C)
(Po(@)b)Pp(c) = Po(a)(bPs(c)) = a >4 (b < ©)

(a<ab)=<pc

(a>ab)<gc

a>q (b>pc)= Po(a)(Pp(b)c) = (Po(a)Ps(b))c
= Popg(Pap(a)b)c + Py pg(aPyp(b))c + Pop(dy pab)c
= (@ >asp b) >asp € +(a <o b) >qep ¢+ (A 04up b) >op C
(a>q b)ogc= pg(Py(a)b)c = Po(a)(ugbc) = a >, (bogc)
(a <o D) ogc = pg(aPy(b))c = ppa(Po(b)c) = aop (b >4 ©)
(a o4 b) < ¢ = puo(ab)Pp(c) = paa(bPp(c)) = ao, (b < c)

(04 b) o ¢ = pgptalab)e = paptpa(be) = a o, (b og ). 0

3. FREE Q-TRIDENDRIFORM ALGEBRAS

3.1. Q-tridendriform algebras on leaf-typed angularly decorated Schroder trees. Recall
from [14] that Schroder trees are planar rooted trees such that there are at least two incoming
edges for each vertex. For a Schroder tree 7', we still view the root and the leaves of T as edges
rather than vertices. Denote by L(T') the set of leaf edges of T, i.e. edges which represent the
leaves of T and denote by /L(T) the subset of L(T") consisting of leaf edges which are neither the
leftmost one nor the rightmost one.

Definition 3.1. Let X and Q be two sets. An X-angularly decorated Q-leaf typed (abbr. leaf-
typed angularly decorated) Schroder tree is a triple 7 = (7, dec, type), where T is a Schroder
tree, dec : A(T) — X and type : IL(T) — € are maps.

Forn > 1, let T,(X, Q) be the set of X-angularly decorated Q-leaf typed Schroder trees with
n + 1 leaves and at lease one internal vertex. Denote by

X, Q) = u T,(X, Q) and KI(X,Q) := @ kI, (X, Q).
nx1 nx1

Here are some examples.

(X, Q) = {\)/ | xeX},
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y [0 07 y x(l’y
LX) =1 X N N | ryexacat,

B @z B @ B @ B @, B
Zy Y |2 x\YV/z N
X, Q) = v v ! , S

For T € T(X,Q) and w € Q, let “T be the tree T whose leftmost leaf edge is typed by w and
let 7¢ be the tree T whose rightmost leaf edge is typed by w. We also define ¢| := | := | and say
I(“T) =r(T”) = wif T # |. Graphically, an element 7" € T(X, Q) is of the form

x,,2€ X,a,feQp.

withn > 1,x,---,x, € Xand T = | or Uf”, T, =|or U for2 <i<mand T, =]|or
iy, for some U; € T(X, Q) and aj;, @, € Q. For each T € (X, Q), denote by leaf(T’) the
number of leaf edges of 7.

Now, let Q be a set with six products «, —, <, >, -, . For w € Q, we define products <, >, o,
on kT(X, Q) recursively as follows.
For

and U € TUX,Q),

we define T <, U,T >, U, T o, U by induction on leaf(7) + leaf(U). If leaf(T") + leaf(U) = 4,

we have
T:\)/ and U:\y/-
) x xwy
T <,U:= \%/, T>wU::\<y/ and TowU::\V.

For the induction step of leaf(7T) + leaf(U) > 5, to define T <, U, we consider the following two
cases.

Case 1: 7,,.1 =|. Then

Then

T<,U:= 7

Case2: T,,,1 # | and [(T,,+1) = @,u41. Then

A1 DPW
Tm+1 >(ym+|l>w U

Ui ] —W
+ Tm+1 <am+| <Qw U

Ap+1-W
+ Tm+] Oam+1*w U
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To define T >, U, we consider the following two cases.
Case 3: U; = |. Then

U, U,
T>(UU: T yl n Un+l'

Case 4: U, # | and r(U,) = B;. Then

T>,U:=| 4T <, yeh

To define T o,, U, we consider the following four cases.
Case5: T = \’/ Then

a T2

Case6: 7T = \* . Then

To,U:= \)/Ow(T2>aU)-

Case8: T = 1

To,U:=

Note that for 7, U € I(X, Q) with leaf(T) = m,leaf(U) = n, then the treesin T <, U, T >,
U, T o, U which are defined in Case 1-7 have m + n — 1 leaf edges. Hence Case 8 is in the
induction step.



REDUCED TYPED TREES AND GENERALIZED TRIDENDRIFORM ALGEBRAS 9

Letj: X - kIX,Q),x— \)/ be the natural inclusion. Then with these products defined
as above, we obtain the following result:

Theorem 3.2. Let Q be a set with six products <, —, <,>, -, *. Then the following conditions are
equivalent:

(a) With these products, KI(X, Q) and the map j is the free Q-tridendriform algebra generated
by X.

(b) With these products, KI(X, Q) is an Q-tridendriform algebra.

(©) (Q, ,—>,<,>,, %) is an ETS.

Proof. (a) = (b) It is obvious.

c ,y
(b) = (c¢) For a, B,y € Q and \”/ \l/, \<‘/ € kT(X, Q), by calculation there are both

eleven trees in the expression of
C 7
\C/ . (\b/ . \<6/]

(\‘/ >asp \b/) >ap \C<dy/ + (\c/ <o \b/) - \c<dy/
(N s )

Identifying the types of the trees in these expressions, we get that (€, <, —, <, >, -, %) is an
ETS.
(c) = (b) Extending the products <, >, o, to the space

(kI(X, Q) kI(X, Q)) @ (k| e kI(X, Q)) ® (kiz(x, 0)® k|)

and of

by
| > T =T <,|:=T, | <o T =T >,]:=0 and |op, T :=To,|:=0,

forw € Qand T € kIT(X, Q). By convention, we consider the added element () as a unit for the
six products of €. Then the products <, >, can be rewritten in the following way: for

T2 Tm U2 Un

and U, €3IUX,Q),

then

A+l —)U-)T
m

+1 >am+1>w U
Ap+]1 W

+ Tm+l <a/m+1<1w U
i1 W

+" Tm+l oa,,,ﬂ*w U

’
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w—pf
T >wl>,81 []1 !

T >, U:=| +T <4qp U‘l‘"_ﬁ1

wp
+T OwB Ul !

We first show that kKT(X, Q) is an Q-tridendriform algebra. We prove Eqgs. (29)-(35) hold for
Uz Um V2 Vn

Um+l and V = V] Vn+1 S z(X, Q)

by induction on the sum p := leaf(T) + leaf(U) + leaf(V). If p = 6, then leaf(T) = leaf(U) =
leaf(V) =2 and T, U, V are of the form

T:\)/, U:\\y/ and V:\\Z/.

Egs. (29)-(35) hold by direct calculation.
Suppose that Egs. (29)-(35) hold for p < g, where g > 6 is a fixed positive integer. Consider
the case of p = g + 1. First, we prove Eq. (29) and we assume I(T},;) = ;41 if Ty # |. Then

(T <, U)=<3V
T, T, R A > a1 @ U
+ G AT < U
— T, X e A m+1 Dapi<a <ﬁ V
+ (1m+|'lle+1 Oa,,H_]*a U
(((11+|—><1)—>ﬂTl+1 >a’1+|>(l U) >(al+1—>a)>ﬁ vV
+((al+l_)a)(_'BTl+l >(Y1+1>a/ U) <((11+1—>(1)<1ﬁ V
T T +((al+l_>a).'8Tl+l ><11+|><x U) O(a/+1—>(z)*ﬁ V
2 /

+((az+|<—a')—’ﬁTl+l <y < U) > (e — )P 14
= 71 x\ /X +((al+l(_a)<_'3Tl+l a1 < U) (1)< 4
+(((11+1<—(1)'ﬂTl+1 <ap1<a U) Oarcays V
+((a,+1~a)—>,3Tl+1 Ogyr+ar U) > (1) \%
+((al+l.a)(_ﬂTl+l Oayy 1+ U) <(ap1-)9B 4
+((al+].a)ﬂT1+1 Oapy+a U) O(ar1-a)p 4

W12 OOBT) > etasp) (U >ang V)
+ a]H(_(a—)ﬁ)THl <al+1<1(a—>ﬁ) (U >al>,8 V)
+ @@ oy s (U >ang V)
+ aHl_)(m_ﬁ)THl >(11+1l>(£x<—/3) (U <cx<1ﬁ V)
= T,00x\ /u + o @B, <ami<a@e—p) (U <4q5 V)
+ QIH.(M_B)THI Oal+1*(a<—ﬁ) (U <a<1,8 V)
+ @O s o) (U 0asg V)
+ @ OBDT < sap) (U 0asg V)
+ @B 04 w@p (U 0np V)

(by induction hypothesis and (Q, «, —, <, >, -, ) being an ETS)
= T <o (U 5aog V) + T <y (U <aas V) + T <a (U 0gu V).
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Hence Eq. (29) holds. Eq.(31) can be proved similarly. Eq. (30) holds directly as T >, U changes
the leftmost branch of U and U <g V changes the rightmost branch of U and U has at least two
branches. Now we show Eq. (32) holds. If U; = |, then (T >, U) og V =T >, (U og V) by the
definition of o, in Case 8. If U, # |, we assume r(U;) = 1, then

(T >a U)O,BV

= (T >ap, Ul + T <gap, UL+ T 0pup, UTPY

(T >m>B] Ul) >a—>ﬁ1

(T >al>,81 Ul) >a—>,81

+ (T Oa*ﬂl Ul) >Q"ﬁ1

(by Case 8)

(by Eq. (31))

=T>,|lU; > (by the induction hypothesis)
Bi

T >a (U Op V)

Hence Eq. (32) holds. Now we show Eq. (33) holds. If T = \)/, then (T <, U)og V =

T op (U >, V) by the definition of o, in Case 6. For general case, we assume I(T},1) = . if
T;1 # |, then

(T <4 U)o V

Ap+1 Q@ Ay <O
" Tm+1 >a/m+1l>(l U+ Tm+l <am+1<1a/ U

. ogV
+ Am+1 aTm+l o(ym+1*(y U ) ﬁ
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<al+1—>a (Tm+1 > 1> U) + 1 <a1+1<—a (Tm+l <arm+|<la U)

T2 Tm O'B V

+ T, X1 m <a/+1-a (Tm+l Oa,,Hl*a U)

(a) If 7,

X X
\/ <m+1—>a (Tm+1 >(7z,,,+1l>a/ U) + \/ <0q+1&05 (Tm+1 <am+1<1a U) %
o
B
X
+\/ <a1+1-a (Tm+1 O s *a U)

— \J/ O,B( (Tl+1 >al+1l>a U) >al+]—>a V + (Tl+1 <m+|<1a U) >a1+]<—a Vv )

+(T141 900 U) >apa V (by Case 6)

= \)/ g (Tis1 >ayy (U >0 V) (by Eq. (31))

- (\’/ <o Tm) o5 (U >4 V) (by Case 6)
= Toy(U>, V).

(b) If there are 7', T” € T(X, Q) and w € Q such that 7, =T">,T", then

+(T, >w TH) <al+1<—a (Tm+l <am+1<1a/ U) Oﬁ V

( (T, >w T”) <al+1—>a (Tm+1 >a/m+11>a/ U)
+(T, >w T”) <al+1-a (Tm+l oa,,,+1>ka U)

T Zw (TH <a1+1—>a (Tm+1 >a/m+1l>a U)
= +T" <apie—a (Tm+l <@e1<a U) °p 14 (by Eq (30))
+T” <a/1+|-a (Tm+l oamﬂ*(y U))

= (T" >0 (T <oy Tiv1) <e U)) 05V (by Eq. (29))

=T >w (((TN < T11) <, U) °p V) (by Case 8)

=T >, (T" <4y Tiv1) 05 (U >4 V) (by induction hypothesis)
= (T" >4 (T" <ap, Tir1)) 05 (U >4 V) (by Case 8)

= (T > T") <4y, Tis1) 0 (U >, V) (by Eq. (30)

T Oﬂ (U > V)



(c) If there are \’/, T" € T(X,Q) and w € Q such that 7,
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(\)/ Sw TN) <(l[+1—>(l (Tm+l >am+|>w U)
+ (\’/ O T”) <amica (Tnil <apo<a U) |0V
H(N 20 T”) <aa Tt Sarea U)

v
(\J/ 0w (T <ayy Ti1) <a U)) o5 V

\’/ 04 ((T” <apy Tis1) <a U) 05 V)
N 00 (X7 <y Trar) 05 (U >4 V)
(N 0 (" <0 Ton)) 05 U =, V)
(S

+T” <a1+1<—a (Tm+1 <am+|<la U)

T” <<11+|—><z (Tm+1 >w,,,+1l>(x U)
w
+T” <a]+1'(l (Tm+] Oam+]*a U)

]Oﬁv

. T") <o T1+1) 05 (U >4 V)

=T ©p (U >a V)

Hence Eq. (33) holds. Eq. (34) holds directly as T o, U does not change the rightmost branch
of U and U <g V only changes the rightmost branch of U and U has at least two branches.
Finally, we show Eq. (35) holds by induction on leaf(7T). If T = \’/ for some x € X, then

(T o, U)ogV =T o, (U og V) by the definition of o, in Case 7. Suppose Eq. (35) holds for all T',
where leaf(7T') < g with ¢ a fixed integer. Assume leaf(7") = p + 1, we consider the form of T as

follows.

(by Case 7)

(by Eq. (29))

(by Case 7)

(by induction hypothesis)
(by Case 7)

(by induction hypothesis and Eq. (34))

(a) If thereare 77, 7" € T(X,Q)and w € Q suchthat T =T’ <, T”, then
(T o U)og V=T <, T")0, U)oV

(T 0o (T" >, U)o V
T o, (T" >, U)ogV)
T o, (T" >, (UogzV))
(T" <y T") 0o (U og V)
T oq (UogV).

(by Eq. 33)

(by induction hypothesis)
(by Eq. (32))

(by Case 6)

(b) If there are 77, T” € T(X, Q) and w € Q suchthat 7T =T’ >, T”, then
(ToqU)og V=T >,T")o, U)oV

(T' >0 (T" 04 U)) 05 V
T >, ((T" 0, U)og V)
T >, (T" 04 (U ogV))

(by Case 8)
(by Case 8)
(by induction hypothesis)
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(T" >, T") 0y (U og V) (by Case 8)
= T o, (UogV).

(c) If there are \)/, T” € T(X,Q) and w € Q such that T = \)/ o, T”, then

(T oq U)ogV = ((\J/ o, T") o, U) oz V
= (\’/ 0y (T" 04 U)) ogV ( by Case 7)

= \’/ 0y (T" 04 U) 0 V) (by Case 7)

= \)/ 0y (T 04 (U 05 V)) ( by induction hypothesis)
_ (\)/ o, T”) 00 (U 05 V) (by Case 7)

=T o, (UogV).

Hence Eq. (35) holds. So kT(X, Q) is an Q-tridendriform algebra.

Let (A, (<4, >ws ©0w)wea) be an Q_—tridendriform algebra and f _: X — A aset map. We extend f
to be an Q-tridendriform algebra f : kKT(X,Q) — A such that fo j = f. For T € T(X, Q) with

leaf(T) = 2,1.e. T = \)/ for some x € X, define ]_”(T) = f(x). Suppose ]_C(T) has been defined

for all T with leaf(T") < g, where g > 2 is a fixed integer. Consider the case of leaf(7") = g + 1.

We consider the form of 7 as follows.
0./7"2

(@) If T = \~* , then define

A(T) = f(x) <4 F(T2).
T, T,

(b)y f T = _x\"" 7,., Withm > 2, then define

m

Tm+1

7,., With Ty # |, then define

TZ Tm

HT) = FT)) >0 Fle N A _or,
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We can get that it is the unique way to extend f as an Q-tridendriform algebra morphism. Hence,
kT (X, Q) and the map j is the free Q-tridendriform algebra generated by X. O

3.2. Commutative Q-tridendriform algebras on typed words. Let us first recall the concept
of associative matching algebras [12].

Definition 3.3. An associative matching algebra is a tuple (A, (*,)wen), Where A is a vector
space and for each w € Q, %, : A® A — A is a linear map such that

(a %o b) kpgc=axkq(bkgc)
forall a,b,c € A and o, 8 € Q.

As in [5], the space of Q-typed words in A is
Shi4) = PAe ke 8Kk eA.

nz1 w's A and (n — 1)’s (KQ)

For ease of statement, we shall write each pure tensorv =vy® w; ® - - - ® w, ® v, € Q under the
form

V=70 By, V1 Ou, " ** Bu, Vas

wheren > 0, wy, -+ ,w, € Qand vy, --- ,v, € V with the convention v = vgif n = 0. We call v
an Q-typed word in V and define its length £(v) :=n + 1.

Let Q be a set with six products <, —, <, >, -, *. For w € Q, we define products <, >, o, on
Sh¢,(A) recursively in the following way:

For a,b € Sh{(A), if £(a) + ¢(b) = 2, then

f(@)=¢Mb)=1, a=a and b=5>b wherea,b € A.
Define
a<,b:=a®,b, ao,b=ax,b and a>,b=>0®,a.

For the induction step of £(a) +£(b) > 1, to define a <, b, we consider the following two cases.
If £(a) =1 and a = a; € A, then define

a<,b:=a,®,b.
Otherwise £(a) > 2 and write a = a; ®,, a’ where a; € A, then define
a<y b =4 ®al—>w (a, >afll>w b) +a; ®a1<—w (al <al<1a) b) +a ®al-w (a/ oal*w b)

To define a >, b, we consider the following two cases.
If £{(b) = 1and b = b, € A, then define

a>,b:=b ®,a.
Otherwise €(b) > 2 and write b = b; ®3 b’ where b, € A, then define
a>,b:=b Qu—p (a > wsBi b,) + by Quep (a <w<B b,) + by Bw i (a Owxp b/)

To define a o, b, we consider the following three cases.
If £(a) = 1 and £(b) > 2, write a = a; and b = b; ®3, b’ where a;, b, € A, then define

ao,b:= (Cll * b1)®ﬁ1 b’.
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Otherwise, if £(a) > 2 and €(b) = 1, write a = q; ®,, @’ and b = b; where a,, b, € A, then define
ao,b:=(a x,b)Q, a’.
Otherwise,a > 2 and b > 2, write a = a; ®,, @’ and b = b; ®s, b’ where a,, b, € A, then define
ao,b:= (a; x, b)) ®yp (@ >40p b))+ (a1 %4 b1) ®a,cp, (@" <445, D)
+ (a1 *y b1) ®q, 5, (@" 04,45 D).
We obtain the following result:
Theorem 3.4. With these products defined as above, if (Q, «, —, <, >, -, %) is an ETS, then Sh5(A)
is an Q-tridendriform algebra. Moreover, if Q is commutative and if (A, (*x,)weq) IS commutative,

that is to say: for any a,b € A, for any w € Q, a *, b = b *,, a, then Sh{,(A) is a commutative
Q-tridendriform algebra.

Proof. Denote by 1 the empty A-typed word and Shq(A) := k1 & Sh{,(A). Extending the products
<w»> >w» O to the space Sho(A) ® Shy(A) @ Shi,(A) ® Sha(A) by

1>,a:=a<,1:=a, l<,a:=a>,1:=0 and lo,a:=ao,1:=0,
for all w € Q and a € Sh;(A). The products <, >, o, can now be rewritten in the following

way: fora = a;®,,a’,b = b; ®;, b’ € Sh;,(A). By convention, we add an element 0 to €, as a unit
for the six products of Q. Note thata = a; and @y = Q0 if £(a) = 1; b = by and B, = 0 if £(b) = 1.

a<,b:=a;®,5,@ >4pwb)+a ®w @ <4< b)+a; R (@' 04,40 b),
a>,b:i=b®,.p (@>up b))+ b ®uep (@ <4y D)+ D ®up (@oc,s b),
ao,b:= (a; x, b1) ®uop, (@ >40p D)+ (a1 x4, b1) ®aycp, (A" <a,45, D)
+ (a1 *y b1) ®gyp, (@ 0405, b).
Now we show that Sh;(A) is an Q-tridendriform algebra. For a,b,c¢ € Sh{,(A), we prove
Eqgs. (29)-(35) hold by induction on the sum £(a) + ¢(b) + {(c). If {(a) + £(b) + £(c) = 3, then

(@) ={€(b) ={(c)=1anda =a;,b =b;,c =c €A, Egs. (29)-(35) hold by direct calculation.
For the induction step of {(a) + {(b) + {(c) > 4, assume a = a; ®,, a’, then

(@<,b)<gc=((a®,a)<,b)=<sc¢

(al ®a/1—>a (a, >arll>a/ b) +a ®(xl<—a (a, <(11<1(x b) +a; ®(11-af (a/ oal*a b)) <,B c

= a1 ®—a)-p (@ >a50 D) >0, 5055 €) + A1 Oay5a)—p ((@" >a00 D) (250195 ©)
+ a1 B¢ -a)8 (@ >¢150 P) 0150148 €) + A1 By cay—p (A" <a1a0 D) >y carpp €)

+ a1 B —a)—p (@ <a1<a D) <(a)—a)<B ¢) +a; B(a1—a) (@ <a1<a D) O(a) —a)+B c)

+ a1 ®a-0)5p (@ 04110 B) > (10158 €) + A1 B0y (A" 04140 D) <(0)-0)45 €)

+ a1 Qa1 (@ 04,10 D) 00,0145 €)

= a1 ®ay@-p) (A >a10@op (B >avp ©)) + a1 Bay(0-p) (B" <ay9@—p) (B >arp ©))
+ a1 Bqy(amp) (@ Payuiamsp) (B >anp ©)) + a1 By sip) (A >a10@ep) (B <aqp ©)

+ a1 Qo (aep) (8" <aya@ep) (B <aqp ©)) + a1 Qo (@p) (A7 Oaysaep) (b <agp ©))

+ a1 By —ap) (@ >ar5@p) (B 0gup ©)) + a1 Buy(ap) (" <o at@p) (B 0gup €))

+ a1 ®qy(ap) (2 00 4(ap) (P 0aup ©)) (by induction hypothesis and Q being an ETS)
= a<4p5 (b>pc)+a<,5(b<,q5¢€)+a<,5(boygc).



REDUCED TYPED TREES AND GENERALIZED TRIDENDRIFORM ALGEBRAS 17

Hence Eq. (29) holds. Similarly, it can be proved that Egs. (30)-(35) hold. So Sh{(A) is an
Q-tridendriform algebra.
Next, assume € is commutative and (A, (*,,),cq) 1S commutative, we prove that

a<,b=b>,a and ao,b=bo,a
for all a,b € Sh;;(A) and a € Q by induction on £(a)+£(b). If {(a)+{(b) = 2, then £(a) = £(b) = 1
anda=a,b=>be€A. So
a<,b=a®,b=b>,a and ao,b=ax,b=b*,a=bo,a.
For the inductive step of £(a) + {(b) > 3, assume a = a; ®,, a’, then
a<,b= a5 8-a(@ >4peb)+ a1 B o (@ <4a0 b) + a1 Baya (A" 0410 b)
= a1 ®pea; (b <4<, @) + a1 a0y (B >apq, @) + a1 Baay (b Ogia, @)
(by induction hypothesis and €2 being commutative)
= b >, a.
Similarly, it can be proved that a o, b = b o, a. Hence Sh{,(A) is a commutative Q-tridendriform
algebra. O

Leti: A — Sh;(A) be the natural inclusion. We obtain the following result:

Theorem 3.5. Let (Q, «—,—,<,>,-, %) be a commutative ETS and let (A, (*x,)weq) be a com-
mutative matching associative algebra. If (B, (<u)weq, (>w)wcar (Ow)weq) IS a commutative Q-
tridendriform algebra and ¢ : (A, (*)weq) = (B, (04,)weq) is a morphism of matching associative
algebras, then there exists a unique morphism ® : Shi,(A) — B of Q-tridendriform algebras such
thatp = Do i.

In other terms, Shy, is the left adjoint functor of the forgetful functor from commutative Q-
tridendriform algebras to commutative Q2-associative algebras (which consists to forget < and
>). As a consequence, the free commutative Q-tridendriform algebra generated by A is Sh;,(A”)
where A’ is the free matching commutative algebra generated by A.

Proof. For a € Shi(A), we define ®(a) by induction on ¢(a). If £(a) = 1, thena = a; € A and
define ®(a) = ¢(a;). For the induction step of £(a) > 2, suppose a = a; ®,, a’, then define

D(a) = D(a; ®,, a") = D(a; <,, ') 1= D(a;) <,, P@).

We can get that it is the unique way to extend ¢ to an Q-tridendriform algebra morphism ®
such that ¢ = @ o i. |

3.3. From Q-tridendriform algebras to tridendriform algebras. If Q) is an ETS, we consider
the three maps

[ kQ? — kO [ KQ? — kO

P a®B +— a<—LBRa<p, $- a®B — a-Bear>p,
[ kO — kKQ*

Ll a®B +— a-BRaxp.

Proposition 3.6. Let Q be an ETS and let A be a vector space equipped with bilinear products
<ws >ws Ow- We equip KQ ® A with three bilinear products <, >, o defined by

aR®X<BRY:= a— LOX<,p),
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a@®x>PRY:= a—LOX >up),
a®x0ﬁ®yi= a/‘,3®x°a*/5y,
forall a,p € Qand x,y € A.

(@) If (A, (<0)weas u)weas (Pw)wea) is an Q-tridendriform algebra, then (KQ® A, <,>,0) is a
tridendriform algebra.
(b) If o, ¢_, and @. are surjective, then the converse implication is true.

Proof. (a)Fora,B,y € Qanda,b,c € A,
(@®a<BRb)<y®c=(0—pBR®a<,4b)<y®c
= (a/ — ﬁ) — )’® (Cl <a<1/3 b) <(m—ﬁ)<y C
a <(a/<1,8)—>((a/<—ﬁ)<1y) (b >((l<1/3)l>((a<—ﬁ)<1'y) C)
(a/ — ﬁ) —v | +a <(a/<1ﬂ)<—((a/<—ﬁ)<1)/) (b <(a'<1/3)<1(((t<—/3)<1y) C)
+a <(@ap)(@—p)ay) (B O@apyr((@pyay) €)
(by A being an Q-tridendriform algebra)
@ (ﬁ — 7) ® a <g<aBe—y) 4 By C)+a« (,8 - 7) ® a <g<B—y) (4 > By c)
+a < (B-y)®a <o«py) (bopyy ©) (by Q being an ETS)
a®a<B—y®b<p,c+B—o>y®b>p,c+B-y®bog,C)
a®a<PRb<yRc+pLb>yR®c+Lboy®c).

The other equations can be proved in the same way. Hence (kQ2 ® A, <, >, o) is a tridendriform
algebra.
(b) For a,B,y € Qand a, b, c € A, by Q being an ETS and
(@®a<BRb)<yQc=a®a<BROb<yR@c+LROb>yR@c+LRboy®c),
we get
(@ <aap D) <(apyay € = @ <qagey) (b <pay ) + A <ga@—y) (b >poy ©) +a <qa@y) (b opsy ©)
By hypothesis, the following map is surjective:
) 02 s O
b { (@B — (@<Ba—p)
Hence, the following composition is surjective:
QF — QO
(@,,y) — (@<B,(@ =By, (@<=p) <)
Let (a,8,7), (&, 8,7 € Q° such that

(Id@¢ )o(¢_®ld): {

@ =a<p, B =(a < pB)<y, Y =(@«p) <.
Then
(a <y b)<p c= a<4qpey) (b pay ©) +a <ga>y) (b >poy €) +a <ga@y) (b 0psy ©)
= a<gep b<wgp c)ta<ypg (b>yop ) +a<yp (boy.p C).
So Eq. (29) holds. Egs. (30)-(35) can be proved similarly. O
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Proposition 3.7. Let Q be an ETS.
(1) The following assertions are equivalent:

(a) The tridendriform algebra KQ ® KT(X, Q) is generated by the elements w ® \)/, where

weQandxeX.
(b) The maps ¢, ¢_, and ¢, are surjective.

(2) The following assertions are equivalent:

(a) The tridendriform subalgebra of KQ ® kT(X, Q) generated by the elements w @ \)/,

where w € Q and x € X, is free.
(b) The maps ¢., ¢_, and ¢, are injective.

Proof. Note that the tridendriform algebra kQ ® T(X, Q) is graded, with for each n > 1,

(kQ® I(X,Q)), = kQ® T, (X, Q).
Y

(1) (a) = (b) As kKQ® (X, Q) is graded, by hypothesis, for any a ® \& € (Q®I(X,ND)),,

where @, € Q and x,y € X, there are @ ® \y/,ﬁl ® \\x/ € (Q®I(X,Q)), and p,, 5, € K
such that

a1 > B

Y ’
Y ! /
P0GV IS WA EN 4

a1,B1€Q a1,B1€Q

Hence, there exists (a;,5;) € Q2 such that a; — B; = @ and @, > B, = 5. So ¢_, is surjective.
Similarly, ¢. and ¢, are surjective.

(b) = (a) We prove that any « ® T € kQ ® KIT(X,Q), where @ € Q and T € IT(X,Q), is
generated by w ® \’/ by induction on the number N of leaves of T. If N = 2, then T = \{

for some x € X and it is obvious. Suppose @ ® T is generated by w ® \\)/ for N < p, where
p > 2 is afixed integer. Consider the case of N = p + 1. We consider the form of 7" as follows.

ﬁTz

(@) If T = \~» ,let (a1, B81) € Q2 such that ¢ _(ay, 1) = (@) < Bi,;1 <B1) = (a,B). Then

a1 <9B; T,

CL’1®\)/<,81®T2:(01<—,81)® X =a®T.

Hence, by induction hypothesis, @ ® T is generated by w ® \)/
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with m > 2, let (a1,81) € Q2 such that ¢,(a;,8:1) = (a; * B, ) -

m+1

ay#p] TZ Tm

TZ Tm

Tz Tm T2 Tm

Hence, by induction hypothesis, « ® T is generated by w ® \)/

(2) (a) = (b) Denote by A the tridendriform subalgebra of kQ ® KT(X, (2) generated by
elements w ® \)/ Let (a,B8), (@, 8) € Q2 such that ¢ _(a,8) = ¢_(a’, ). Then
, a<f, o <f ,
a®\y/<ﬁ®\/=a<—ﬂ®\%/:a/<—ﬁ’®\%/:a'®\)/<,8'®\/.

By the freeness of A, (a,8) = («’,’) and so ¢._ is injective. The maps ¢_, and ¢, can be proved
to be injective similarly.

(b) = (a) Let TDend(L2) be the free tridendriform algebra generated by QQ ® X. As a vector
space, it is generated by Schroder trees which angles are decorated by Q®X. Let @ : TDend(Q2) —

kQ ® kT(X, Q) be the unique tridendriform algebra sending \“@(‘/ toa® \’/ We prove that
@ is injective, i.e.

ODT)=D(T)=T=T
by induction on the number N of leaves of T. By the construction of @, if ®(T) = O(T’), then

T, T’ are of the same form. If N = 2, then T = \S@K/ for some @ € Q) and x € X and obviously

T’ = T. Suppose O is injective for all 7 with N < p, where p is a fixed integer. Consider the case
of N=p+1.1f

T T;
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and assume ®(7) = f® U,, D(T;) = ' ® U,. Then

v,
O(T) = cp(\'@/ < Tg) _ Q(\“@//) <D = — B\
vor,

O(T") = @(W < Tg):cb(*'\@/) <O =d — B ®\*

Since ®(T) = O(T’) and ¢ is injective, @ = a’, x = x" and ®(T,) = @(T7). Hence by induction
hypothesis, 7 = T”. For other forms of T, 7’, the injectivity of ® is proved similarly. Hence A is
isomorphic to the free tridendriform algebra TDend(€2) and so A is free. O

4. OPERAD OF (2-TRIDENDRIFORM ALGEBRAS

Denote by P the (nonsymmetric) operad of Q-tridendriform algebras. It is generated by <,,
o, and >,€ Pq(2) with @ € Q and the relations:
<ﬁ O(<oml) = <oz—>/3 0(1, >a>,8)+ <ae,3 O(I, <a<1ﬁ)+ <a-ﬁ O(I, Oa*ﬁ)a
<ﬁ O(>a/, I) =>q O(I’ <ﬁ)v
>a O(I’ >,8) = >a—>ﬁ o(>a>ﬁ’ I)+ >a<—,3 (<a<1ﬁ’ I)+ >a-ﬁ o(oa*,B, I)»
0,3 © (>aa I) =>a O(I’ O,B)a
Op © (<(1, I) = 050 (I, >a)7
<,3 O(Oa/, I) = 04 © (I’ <,B)»
0,3 © (OLH I) = 0q 0 (17 O,B),
for all @, B € Q.

As in [3, Proposition 21], we obtain the following result:

Proposition 4.1. Suppose m € Pq(2) is of the form

m:Zaa <Q+Zbaoa+an >0

a€eQ) aeQ) a€Q)
where ay, by, c, € K. Then m o (I,m) = m o (m, 1) if and only if for any a, 8 € Q,
a,ag = Z Ay ag, aobg = Z Qo g,
o (@ B)=(a,p) e (@ p)=(a,B)

AgCp = Z Ay ag, bycg = byag,
o (@ p)=(ap)

Colp = Z CoCprs Cobp = Z CoCprs
p(a’ B)=(a,8) ex(a’ B)=(aB)

CaCp = Z CoCpr.

(" B)=(a,B)
Proof. By the relations of the operad of Q-tridendriform algebras,

mo (I, m) = (da <u +ba, Oy +Cq >a) o (I, ag <g +bﬁ op +Cp >,3)
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= > talg <a o1, <g) + Y b <o o(1,0p) + Y <y oI, >5) + ¥ bty 04 o(I, <)
a.f ap a,f af

+ Z b(xbﬁ Ca O(I, oﬁ) + Z ba/cﬁ Ca O(I’ >/3) + Z Codp >a O(I’ <ﬁ) + Z cabﬂ >a O(I, oﬁ)
ap ap af ap

+ Z CaCp >a—p O(>m>'3, I) + Z CaCp >aep (<a<1,85 1) + Z CaCB >ap O(O‘Y*,B’ I)
ap ap ap

and

mo (m,I) = (ay <y +by 04 +Co >¢) © (A <o +bo 0 +Co >o, )

= Z A <g¢—p O(I, >a'>,3) + Z Ao <gqep (I, <a/<ﬁ) + Z Aodg <op O(I, Oa,*ﬂ)
B ap B

+ Z aobg <, o(op, I) + Z aqCp <q o(>p, 1) + Z boag o, o(<p, I) + Z babg 04 o(0p, 1)
ap B ap ap

+ Z[; bocg 0q o(>p, 1) + Z[; Colg >o o(<p, 1) + zﬁ: Cobp >q 0(0p, 1) + Zﬁ: CaCp >q o(>p, 1).

Hence m o (I,m) = m o (m, I) if and only if the above equations hold. O

Remark 4.2. These conditions can be reformulated as follows. We extend ¢., ¢_, and ¢, as
linear endomorphisms kQ®. We then consider the three elements of kQ:

a= Zaaa/, b=Zbaa, c= ana.
aeQ) acQ) acQ)

Then m is associative if, and only if

p.(a®a)=a®a, p.(a®a)=a®b,
p(@a®a)=aec, b=0ora=c,
Y (c®c)=c®a, p.(c®c)=c®D,

p(c®c)=c®c,

which is equivalent to

b = 0,
p.(a®a) = a®a, ¢ = 4
p(a®a) = a®ec, ’
pla®a) = 0, or p-(a®a) = a®a,
o (c®C) = c®a, p(a®a) = a®a,
o (c®c) = c®c, p.(a®a) = a®b.
p.(c®c) = 0,

If Q is finite, the operad Pq, is a finite generated quadratic operad. By computation, we obtain
the Koszul dual of Pq as follows.
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Proposition 4.3. Let Q be a finite ETS. The Koszul dual Py, of Pq is generated by Hy, L, Fo With
a € Q and the relations

da ol 4g) = D A5 o(4y, D), daolkg) = D A5 o(4y. D),
(7,0)eQ?, (7,6)eQ?,
ye—o=a, y—o=a,
y<6=p y>o=p
dooll, Lg) = > A5 o4y, D),
(7,0)eQ?,
y-0=a,
yx6=p
ks ok )= D Fy ol ky), ks o )= D Fy ol k),
(7.0)eQ?, (7.0)eQ?,
y—o=a, y—o=a,
y>0=p y<0=4
ks oL )= D by ol k),
(7.0)eQ?,
y-6=a,
y*6=p
_|ﬂ O(I—a,’ I) = ko O(I’ _|ﬁ)9 —Lﬁ O(I—a/, I) = kg 0(19 J—ﬂ)»
J—ﬁ O(_|(Ia I) = J—ﬁ O(I’ |_Lx)a _|/3 O(J-Lh I) =1, O(Ia _|,B)a

Lgo(Le, ) = L, o1, Lp),
forall a,B € Q.

In particular, if [QQ] = 1, we recover the definition of triassociative algebras, which operad is the
Koszul dual of the operad of tridendriform algebras [7].
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