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Abstract. We introduce a generalization of tridendriform algebras, where each of the three prod-
ucts are replaced by a family of products indexed by a set Ω. We study the needed structure on
Ω for free Ω-tridendriform algebras to be built on Schröder trees (as it is the case in the classical
case), with convenient decorations on their leaves. We obtain in this way extended triassociative
semigroups. We describe commutative Ω-tridendriform algebras in terms of typed words. We
also study links with generalizations of Rota-Baxter algebras and describe the Koszul duals of the
corresponding operads.
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1. Introduction

Shuffle algebras have been studied for a long time, starting from combinatorial problems of
card shufflings, to operadic aspects. They were formalized in the fifties by Eilenberger and
MacLane [2] and, independently, by Schützenberger [11]: a shuffle algebra is a vector space
with a bilinear product ≺ following the axiom

(x ≺ y) ≺ y = x ≺ (x ≺ y + y ≺ x).

Free shuffle algebras are based on words, with the half-shuffle product: for example, if a, b, c, d
are letters,

a ≺ bcd = abcd,
ab ≺ cd = abcd + acbd + acdb,
abc ≺ d = abcd + abdc + adbc.

Date: December 14, 2021.
2010 Mathematics Subject Classification. 17B38, 05C05, 16S10, 08B20 .
Key words and phrases. Generalized tridendriform algebras; Semigroups; Schröder trees; Typed words.
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It follows that the product ∗ defined by x ∗ y = x ≺ y + y ≺ x is commutative and associative. The
noncommutative version, known as noncommutative shuffle algebras or dendriform algebras, is
introduced by Loday and Ronco [9]: a dendriform algebra is a vector space with two products ≺
and �, with the following axioms:

(x ≺ y) ≺ z = x ≺ (y ≺ z + y � z),
(x � y) ≺ z = x � (y ≺ z),
x � (y � z) = (x ≺ y + x � y) � z.

It follows that the product ∗ defined by x ∗ y = x ≺ y + x � y is associative. Loday and Ronco
described the free dendriform algebra on one generator in terms of planar binary trees [8, 1].
Recently, various generalizations of dendriform algebras appeared: the two products ≺ and � are
replaced by families (≺α)α∈Ω and (�α)α∈Ω of products parametrized by elements of a given set Ω,
which can have extra structures: for matching dendriform algebras [12], Ω is just a set, whereras
for family dendriform algebra it is a semigroup. More generally, Ω-dendriform algebras over an
extended diassociative semigroup have been introduced and studied in [3].

In the spirit of [3], we work here with parametrized versions of tridendriform algebras. Tri-
dendriform algebras are introduced in [7]: they are vector spaces with three products ≺, � and ◦,
with the following axioms:

(a ≺ b) ≺ c = a ≺ (b � c) + a ≺ (b ≺ c) + a ≺ (b ◦ c)
(a � b) ≺ c = a � (b ≺ c)
a � (b � c) = (a � b) � c + (a ≺ b) � c + (a ◦ b) � c
(a � b) ◦ c = a � (b ◦ c)
(a ≺ b) ◦ c = a ◦ (b � c)
(a ◦ b) ≺ c = a ◦ (b ≺ c)
(a ◦ b) ◦ c = a ◦ (b ◦ c).

Summing, we obtain that the product ∗ =≺ + � +◦ is associative; moreover, ≺ +◦ and � define
a dendriform algebra structure, as well as ≺ and � +◦. A classical example of tridendriform
algebra is given by quasi-shuffle (or stuffle) algebras [6, 4]: if (V, ·) is an associative algebra, then
the half-shuffle algebra T (V) is tridendriform. For example, if a, b, c, d ∈ V ,

ab ≺ cd = abcd + acbd + acdb + a(b · c)d + ac(b · d),
ab � cd = cabd + cadb + cdab + c(a · d)b + ca(b · d),
ab � cd = (a · c)bd + (a · c)db + (a · c)(b · d).

Other examples of tridendriform algebras are based on packed words or on parking functions
[10]. The free tridendriform algebra on one generator is described by Loday and Ronco in terms
of planar reduced trees, which we call here Schröder trees.

We here give a parametrized version of tridendriform algebras. We start with a set Ω with six
products←,→, C, B, ∗ and ·. An Ω-tridendriform algebra is given three families (≺α)α∈Ω, (�α)α∈Ω
and (◦α)α∈Ω of bilinear products, with the following axioms:

(a ≺α b) ≺β c = a ≺α→β (b �αBβ c) + a ≺α←β (b ≺αCβ c) + a ≺α·β (b ◦α∗β c)
(a �α b) ≺β c = a �α (b ≺β c)
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a �α (b �β c) = (a �αBβ b) �α→β c + (a ≺αCβ b) �α←β c + (a ◦α∗β b) �α·β c
(a �α b) ◦β c = a �α (b ◦β c)
(a ≺α b) ◦β c = a ◦β (b �α c)
(a ◦α b) ≺β c = a ◦α (b ≺β c)
(a ◦α b) ◦β c = a ◦α (b ◦β c).

As in the classical case, particular examples of Ω-tridendriform algebras are given by Ω-Rota-
Baxter algebras, as defined in [5], see Proposition 2.8. As a condition, we impose that free
Ω-tridendriform algebras are based on Schröder trees decorated in some sense by elements of Ω.
In the dendriform case, the elements of Ω become types (that is to say decorations) of the internal
edges of the planar binary trees which were the basis of free dendriform algebras: this is not pos-
sible for Schröder trees, as the number of internal edges does not uniquely depend on the number
of internal vertices, which is a major difference with planar binary trees. Instead, we choose that
the elements of Ω become decorations of the leaves of the Schröder trees, at the exception of the
leftmost and rightmost ones. We then define inductively three families of products ≺, � and ◦ on
these trees and ask for them to define an Ω-tridendriform algebra. This impose a strong constraint
on the products taken on Ω: they have to make Ω an extended triassociative semigroup (briefly,
ETS): see Definition 2.3 below for the list of 18 axioms defining these object below. If this holds,
these Schröder trees indeed give free Ω-tridendriform algebras (Theorem 3.2).

Moreover, if Ω is a ETS and if A is an Ω-tridendriform algebra, then kΩ⊗A inherits a structure
of (classical) tridendriform algebra (Proposition 3.6), which generalizes a similar result for Ω-
dendriform algebra proved in [3]. We consider the particular case where A is the Ω-tridendriform
algebra of Schröder trees in Proposition 3.7, where we give necessary and sufficient condition for
kΩ ⊗ kT(X,Ω) to be free.

We also study Ω-tridendriform algebras of typed words. If A is a matching associative algebra
(Definition 3.3), we prove in Theorem 3.4 that the algebra Sh+

Ω(A) of Ω-typed words on A is an Ω-
tridendriform algebra. When A and Ω are commutative, then we prove in Theorem 3.5 that Sh+

Ω(A)
is the free commutative Ω-tridendriform over A. Consequently, if A is the free matching algebra,
generated by a set X, then Sh+

Ω(A) is the free commutative Ω-tridendriform algebra generated by
X.

The last section of the paper is devoted to the operad of Ω-tridendriform algebras. In partic-
ular, we study operadic morphisms from tridendriform algebras to Ω-tridendriform algebras and
we compute its Koszul dual in Proposition 4.3, finding in this way a parametrised version of tri-
associative algebras [7].

Notation. Throughout this paper, let k be a unitary commutative ring which will be the base
ring of all modules, algebras, as well as linear maps, unless otherwise specified.

2. Generalized tridendriform algebras

2.1. EDS and ETS. First, we recall the definition of diassociative semigroups and extended
diassociative semigroups in [3].

Definition 2.1. [3, Definition 1] A diassociative semigroup is a family (Ω,←,→), where Ω is a
set and←,→: Ω ×Ω→ Ω are maps such that

(α← β)← γ = α← (β← γ) = α← (β→ γ),
(α→ β)← γ = α→ (β← γ),
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(α→ β)→ γ = (α← β)→ γ = α→ (β→ γ),

for all α, β, γ ∈ Ω.

Definition 2.2. [3, Definition 2] An extended diassociative semigroup (abbr. EDS) is a fam-
ily (Ω,←,→,C,B), where Ω is a set and ←,→,C,B : Ω × Ω → Ω such that (Ω,←,→) is a
diassociative semigroup and

α B (β← γ) = α B β,(1)
(α→ β) C γ = β C γ,(2)

(α C β)← ((α← β) C γ) = α C (β← γ),(3)
(α C β) C ((α← β) C γ) = β C γ,(4)

(α C β)→ ((α← β) C γ) = α C (β→ γ),(5)
(α C β) B ((α← β) C γ) = β B γ,(6)

(α B (β→ γ))← (β B γ) = (α← β) B γ,(7)
(α B (β→ γ)) C (β B γ) = α C β,(8)

(α B (β→ γ))→ (β B γ) = (α→ β) B γ,(9)
(α B (β→ γ)) B (β B γ) = α B β,(10)

for all α, β, γ ∈ Ω.

Definition 2.3. An extended triasssociative semigroup (abbr. ETS) is a family (Ω,←,→,C,B, ·, ∗),
where (Ω,←,→,C,B) is an EDS and

(α→ β) ∗ γ = β ∗ γ,(11)
(α→ β) · γ = α→ (β · γ),(12)

α B β = α B (β · γ),(13)
(α C β) ∗ ((α← β) C γ) = β ∗ γ,(14)
(α C β) · ((α← β) C γ) = α C (β · γ),(15)

(α← β)← γ = α← (β · γ),(16)
(α B (β→ γ)) ∗ (β B γ) = α ∗ β,(17)

α→ (β→ γ) = (α · β)→ γ,(18)
(α B (β→ γ)) · (β B γ) = (α · β) B γ,(19)

(α← β) ∗ γ = α ∗ (β→ γ),(20)
(α← β) · γ = α · (β→ γ),(21)

α C β = β B γ,(22)
α ∗ β = α ∗ (β← γ),(23)

(α · β) C γ = β C γ,(24)
(α · β)← γ = α · (β← γ),(25)

α ∗ β = α ∗ (β · γ),(26)
(α · β) ∗ γ = β ∗ γ,(27)
(α · β) · γ = α · (β · γ).(28)
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Example 2.4. (a) Let (Ω, ∗, ·) be a set with two products satisfying (26)–(28). This holds for
example if for any α, β ∈ Ω,

α ∗ β = α, α · β = β,

or if for any α, β ∈ Ω,

α ∗ β = β, α · β = α.

We put, for any α, β ∈ Ω:

α← β = α, α C β = β,

α→ β = α, α B β = α.

Then (Ω,←,→,C,B, ·, ∗) is an ETS.
(b) Let (Ω,←,→,C,B, ·, ∗) be an ETS. For any α, β ∈ Ω, we put

α←op β = β→ α, α Cop α = β B α,

α→op β = β← α, α Bop α = β C α,

α ∗op β = β ∗ α, α ·op β = β · α.

Then (Ω,←op,→op,Cop,Bop, ∗op, ·op) is also an ETS, called the opposite of Ω. We shall
say that Ω is commutative if it is equal to its opposite.

2.2. Ω-tridendriform algebras. Let us now give the concept of Ω-tridendriform algebras as
follows.

Definition 2.5. Let Ω be a set with six products←,→,C,B, ·, ∗. An Ω-tridendriform algebra is
a family (A, (≺ω)ω∈Ω, (�ω)ω∈Ω, (◦ω)ω∈Ω), where A is a k-module and ≺ω,�ω, ◦ω : A ⊗ A → A are
linear maps such that

(a ≺α b) ≺β c = a ≺α→β (b �αBβ c) + a ≺α←β (b ≺αCβ c) + a ≺α·β (b ◦α∗β c)(29)
(a �α b) ≺β c = a �α (b ≺β c)(30)
a �α (b �β c) = (a �αBβ b) �α→β c + (a ≺αCβ b) �α←β c + (a ◦α∗β b) �α·β c(31)
(a �α b) ◦β c = a �α (b ◦β c)(32)
(a ≺α b) ◦β c = a ◦β (b �α c)(33)
(a ◦α b) ≺β c = a ◦α (b ≺β c)(34)
(a ◦α b) ◦β c = a ◦α (b ◦β c)(35)

for all a, b, c ∈ A and α, β ∈ Ω. If moreover, for all a, b ∈ A and α ∈ Ω,

a ≺α b = b �α a and a ◦α b = b ◦α a,

then A is called a commutative Ω-tridendriform algebra.

Example 2.6. (a) If Ω is a semigroup, we take all maps ◦ω with ω ∈ Ω to be equal to an
associative product ? and

α→ β = α← β = α · β = α ? β, α B β = α, α C β = β,

then Ω-tridendriform algebra are tridendriform family algebras [13].
(b) For a set Ω, define, as in Example 2.4,

α→ β = α C β = α ∗ β = β, α B β = α← β = α · β = α.

Then Ω-tridendriform algebra are matching tridendriform algebras [12].
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Remark 2.7. Ω-dendriform algebras, as defined in [3], are Ω-tridendriform algebras such that,
for any α ∈ Ω, ◦α = 0.

Next we show the relationship between Ω-Rota-Baxter algebras [5] and Ω-tridendriform alge-
bras.

Proposition 2.8. Let Ω be a set with six products←,→,C,B, ·, ∗ and, for any α ∈ Ω, let µα ∈ Ω.
We put, for any α, β ∈ Ω, λα,β = µα∗β. Let (A, (Pω)ω∈Ω) be an Ω-Rota-Baxter algebra of weight λ.
Then (A, (≺ω)ω∈Ω, (�ω)ω∈Ω, (◦ω)ω∈Ω) is an Ω-tridendriform algebra, where

a ≺ω b := aPω(b), a �ω b := Pω(a)b, a ◦ω b := µωab

for all a, b ∈ A and ω ∈ Ω.

Proof. For a, b, c ∈ A and α, β ∈ Ω,

(a ≺α b) ≺β c = (aPα(b))Pβ(c) = a(Pα(b)Pβ(c))
= aPα→β(PαBβ(b)c) + aPα←β(bPαCβ(c)) + aPα·β(λα,βbc)
= a ≺α→β (b �αBβ c) + a ≺α←β (b ≺αCβ c) + a ≺α·β (b ◦α∗β c)

(a �α b) ≺β c = (Pα(a)b)Pβ(c) = Pα(a)(bPβ(c)) = a �α (b ≺β c)
a �α (b �β c) = Pα(a)(Pβ(b)c) = (Pα(a)Pβ(b))c

= Pα→β(PαBβ(a)b)c + Pα←β(aPαCβ(b))c + Pα·β(λα,βab)c
= (a �αBβ b) �α→β c + (a ≺αCβ b) �α←β c + (a ◦α∗β b) �α·β c

(a �α b) ◦β c = µβ(Pα(a)b)c = Pα(a)(µβbc) = a �α (b ◦β c)
(a ≺α b) ◦β c = µβ(aPα(b))c = µβa(Pα(b)c) = a ◦β (b �α c)
(a ◦α b) ≺β c = µα(ab)Pβ(c) = µαa(bPβ(c)) = a ◦α (b ≺β c)
(a ◦α b) ◦β c = µβµα(ab)c = µαµβa(bc) = a ◦α (b ◦β c). �

3. Free Ω-tridendriform algebras

3.1. Ω-tridendriform algebras on leaf-typed angularly decorated Schröder trees. Recall
from [14] that Schröder trees are planar rooted trees such that there are at least two incoming
edges for each vertex. For a Schröder tree T , we still view the root and the leaves of T as edges
rather than vertices. Denote by L(T ) the set of leaf edges of T , i.e. edges which represent the
leaves of T and denote by IL(T ) the subset of L(T ) consisting of leaf edges which are neither the
leftmost one nor the rightmost one.

Definition 3.1. Let X and Ω be two sets. An X-angularly decorated Ω-leaf typed (abbr. leaf-
typed angularly decorated) Schröder tree is a triple T = (T, dec, type), where T is a Schröder
tree, dec : A(T )→ X and type : IL(T )→ Ω are maps.

For n > 1, let Tn(X,Ω) be the set of X-angularly decorated Ω-leaf typed Schröder trees with
n + 1 leaves and at lease one internal vertex. Denote by

T(X,Ω) :=
⊔
n>1

Tn(X,Ω) and kT(X,Ω) :=
⊕
n>1

kTn(X,Ω).

Here are some examples.

T1(X,Ω) =

{
x

∣∣∣∣ x ∈ X
}
,
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T2(X,Ω) =

 α

x
y

,

α

x
y
,

x y
α ∣∣∣∣ x, y ∈ X, α ∈ Ω

 ,
T3(X,Ω) =


αβ

x
y

z

,

α β

x
y

z

,

α β

x

y z

,
zyx
βα

,
x

z

y

βα

, . . .

∣∣∣∣∣∣ x, y, z ∈ X, α, β ∈ Ω

 .
For T ∈ T(X,Ω) and ω ∈ Ω, let ωT be the tree T whose leftmost leaf edge is typed by ω and

let Tω be the tree T whose rightmost leaf edge is typed by ω. We also define ω| := |ω := | and say
l(ωT ) = r(Tω) = ω if T , |. Graphically, an element T ∈ T(X,Ω) is of the form

T = T1

T2 Tm

Tm+1x1
· · · xm ,

with n > 1, x1, · · · , xn ∈ X and T1 = | or Uα1,r
1 , Ti = | or αi,lUi

αi,r for 2 6 i 6 m and Tm+1 = | or
αm+1,lUm+1 for some U j ∈ T(X,Ω) and α j,l, α j,r ∈ Ω. For each T ∈ T(X,Ω), denote by leaf(T ) the
number of leaf edges of T .

Now, let Ω be a set with six products←,→,C,B, ·, ∗. For ω ∈ Ω, we define products ≺ω,�ω, ◦ω
on kT(X,Ω) recursively as follows.

For

T = T1

T2 Tm

Tm+1x1
· · · xm and U = U1

U2 Un

Un+1y1
· · · yn ∈ T(X,Ω),

we define T ≺ω U,T �ω U,T ◦ω U by induction on leaf(T ) + leaf(U). If leaf(T ) + leaf(U) = 4,
we have

T =
x and U =

y
.

Then

T ≺ω U :=
ω

x
y
, T �ω U :=

ω
yx

and T ◦ω U :=
x y
ω

.

For the induction step of leaf(T ) + leaf(U) > 5, to define T ≺ω U, we consider the following two
cases.
Case 1: Tm+1 = |. Then

T ≺ω U : = T1

T2 Tm

ωUx1
· · · xm .

Case 2: Tm+1 , | and l(Tm+1) = αm+1. Then

T ≺ω U : = T1

T2 Tm

x1
· · · xm


αm+1→ωTm+1 �αm+1Bω U

+ αm+1←ωTm+1 ≺αm+1Cω U
+ αm+1·ωTm+1 ◦αm+1∗ω U

 .
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To define T �ω U, we consider the following two cases.
Case 3: U1 = |. Then

T �ω U : = Tω

U2 Un

Un+1y1
· · · yn .

Case 4: U1 , | and r(U1) = β1. Then

T �ω U : =


T �ωBβ1 Uω→β1

1
+T ≺ωCβ1 Uω←β1

1
+T ◦ω∗β1 Uω·β1

1


U2 Un

Un+1y1
· · · yn .

To define T ◦ω U, we consider the following four cases.
Case 5: T =

x . Then

T ◦ω U : =

ωU1 Un

Un+1x
· · · yn .

Case 6: T =

αT2

x . Then

T ◦ω U : =
x
◦ω (T2 �α U).

Case 7: T =

αT2 Tm

Tm+1x1
· · · xm with m > 2. Then

T ◦ω U : =
x1
◦α


T2

Tm

Tm+1
· · · xm ◦ω U

 .

Case 8: T = Tα
1

T2 Tm

Tm+1x1
· · · xm with T1 , |. Then

T ◦ω U : = T1 �α


T2 Tm

Tm+1x1
· · · xm ◦ω U

 .
Note that for T,U ∈ T(X,Ω) with leaf(T ) = m, leaf(U) = n, then the trees in T ≺ω U,T �ω

U,T ◦ω U which are defined in Case 1-7 have m + n − 1 leaf edges. Hence Case 8 is in the
induction step.
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Let j : X → kT(X,Ω), x 7→ x be the natural inclusion. Then with these products defined
as above, we obtain the following result:

Theorem 3.2. Let Ω be a set with six products←,→,C,B, ·, ∗. Then the following conditions are
equivalent:

(a) With these products, kT(X,Ω) and the map j is the free Ω-tridendriform algebra generated
by X.

(b) With these products, kT(X,Ω) is an Ω-tridendriform algebra.
(c) (Ω,←,→,C,B, ·, ∗) is an ETS.

Proof. (a) =⇒ (b) It is obvious.

(b) =⇒ (c) For α, β, γ ∈ Ω and a , b ,
γ

d
c

∈ kT(X,Ω), by calculation there are both
eleven trees in the expression of

a
�α

 b
�β

γ
d

c


and of (
a
�αBβ

b
)
�α→β

γ
d

c
+

(
a
≺αCβ

b
)
�α←β

γ
d

c

+

(
a
◦α∗β

b
)
�α·β

γ
d

c
.

Identifying the types of the trees in these expressions, we get that (Ω,←,→,C,B, ·, ∗) is an
ETS.

(c) =⇒ (b) Extending the products ≺ω,�ω, ◦ω to the space(
kT(X,Ω) ⊗ kT(X,Ω)

)
⊕

(
k| ⊗ kT(X,Ω)

)
⊕

(
kT(X,Ω) ⊗ k|

)
by

| �ω T := T ≺ω | := T, | ≺ω T := T �ω | := 0 and | ◦ω T := T ◦ω | := 0,

for ω ∈ Ω and T ∈ kT(X,Ω). By convention, we consider the added element ∅ as a unit for the
six products of Ω. Then the products ≺ω,�ω can be rewritten in the following way: for

T = T1

T2 Tm

αm+1 Tm+1x1
· · · xm and U = Uβ1

1

U2 Un

Un+1y1
· · · yn ∈ T(X,Ω),

then

T ≺ω | = | �ω T = T,
| ≺ω T = T �ω | = 0,
| ◦ω T = T ◦ω | = 0,

T ≺ω U := T1

T2 Tm

x1
· · · xm


αm+1→ωTm+1 �αm+1Bω U

+ αm+1←ωTm+1 ≺αm+1Cω U
+ αm+1·ωTm+1 ◦αm+1∗ω U

 ,
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T �ω U :=


T �ωBβ1 Uω→β1

1
+T ≺ωCβ1 Uω←β1

1
+T ◦ω∗β1 Uω·β1

1


U2 Un

Un+1y1
· · · yn .

We first show that kT(X,Ω) is an Ω-tridendriform algebra. We prove Eqs. (29)-(35) hold for

T = T1

T2 Tl

Tl+1x1
· · · xm , U = U1

U2 Um

Um+1y1
· · · yn and V = V1

V2 Vn

Vn+1z1
· · · zn ∈ T(X,Ω)

by induction on the sum p := leaf(T ) + leaf(U) + leaf(V). If p = 6, then leaf(T ) = leaf(U) =

leaf(V) = 2 and T,U,V are of the form

T =
x , U =

y
and V =

z
.

Eqs. (29)-(35) hold by direct calculation.
Suppose that Eqs. (29)-(35) hold for p 6 q, where q > 6 is a fixed positive integer. Consider

the case of p = q + 1. First, we prove Eq. (29) and we assume l(Tl+1) = αl+1 if Tl+1 , |. Then

(T ≺α U) ≺β V

=

 T1

T2 Tl

x1
· · · xl


αm+1→αTm+1 �αm+1Bα U

+ αm+1←αTm+1 ≺αm+1Cα U

+ αm+1·αTm+1 ◦αm+1∗α U


 ≺β V

= T1

T2 Tl

x1
· · · xl



((αl+1→α)→βTl+1 �αl+1Bα U) �(αl+1→α)Bβ V
+((αl+1→α)←βTl+1 �αl+1Bα U) ≺(αl+1→α)Cβ V
+((αl+1→α)·βTl+1 �αl+1Bα U) ◦(αl+1→α)∗β V

+((αl+1←α)→βTl+1 ≺αl+1Cα U) �(αl+1←α)Bβ V
+((αl+1←α)←βTl+1 ≺αl+1Cα U) ≺(αl+1←α)Cβ V
+((αl+1←α)·βTl+1 ≺αl+1Cα U) ◦(αl+1←α)∗β V
+((αl+1·α)→βTl+1 ◦αl+1∗α U) �(αl+1·α)Bβ V
+((αl+1·α)←βTl+1 ◦αl+1∗α U) ≺(αl+1·α)Cβ V
+((αl+1·α)·βTl+1 ◦αl+1∗α U) ◦(αl+1·α)∗β V



= T1

T2 Tl

x1
· · · xl



αl+1→(α→β)Tl+1 �αl+1B(α→β) (U �αBβ V)
+ αl+1←(α→β)Tl+1 ≺αl+1C(α→β) (U �αBβ V)
+ αl+1·(α→β)Tl+1 ◦αl+1∗(α→β) (U �αBβ V)

+ αl+1→(α←β)Tl+1 �αl+1B(α←β) (U ≺αCβ V)
+ αl+1←(α←β)Tl+1 ≺αl+1C(α←β) (U ≺αCβ V)
+ αl+1·(α←β)Tl+1 ◦αl+1∗(α←β) (U ≺αCβ V)
+ αl+1→(α·β)Tl+1 �αl+1B(α·β) (U ◦α∗β V)
+ αl+1←(α·β)Tl+1 ≺αl+1C(α·β) (U ◦α∗β V)
+ αl+1·(α·β)Tl+1 ◦αl+1∗(α·β) (U ◦α∗β V)


(by induction hypothesis and (Ω,←,→,C,B, ·, ∗) being an ETS)

= T ≺α→β (U �αBβ V) + T ≺α←β (U ≺αCβ V) + T ≺α·β (U ◦α∗β V).
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Hence Eq. (29) holds. Eq.(31) can be proved similarly. Eq. (30) holds directly as T �α U changes
the leftmost branch of U and U ≺β V changes the rightmost branch of U and U has at least two
branches. Now we show Eq. (32) holds. If U1 = |, then (T �α U) ◦β V = T �α (U ◦β V) by the
definition of ◦ω in Case 8. If U1 , |, we assume r(U1) = β1, then

(T �α U) ◦β V

=

(T �αBβ1 Uα→β1
1 + T ≺αCβ1 Uα←β1

1 + T ◦α∗β1 Uα·β1
1

) U2 Un

Un+1y1
· · · yn

 ◦β V

=



(T �αBβ1 U1) �α→β1

U2 Un

Un+1y1
· · · yn + (T ≺αCβ1 U1) �α←β1

U2 Un

Un+1y1
· · · yn

+(T ◦α∗β1 U1) �α·β1

U2 Un

Un+1y1
· · · yn


◦β V

= (T �αBβ1 U1) �α→β1


U2 Un

Un+1y1
· · · yn ◦β V

 + (T ≺αCβ1 U1) �α←β1


U2 Un

Un+1y1
· · · yn ◦β V


+ (T ◦α∗β1 U1) �α·β1


U2 Un

Un+1y1
· · · yn ◦β V

 (by Case 8)

= T �α

U1 �β1


U2 Un

Un+1y1
· · · yn ◦β V


 (by Eq. (31))

= T �α


U1 �β1

U2 Un

Un+1y1
· · · yn

 ◦β V

 (by the induction hypothesis)

= T �α (U ◦β V).

Hence Eq. (32) holds. Now we show Eq. (33) holds. If T =
x , then (T ≺α U) ◦β V =

T ◦β (U �α V) by the definition of ◦ω in Case 6. For general case, we assume l(Tl+1) = αl+1 if
Tl+1 , |, then

(T ≺α U) ◦β V

=

 T1

T2 Tm

x1
· · · xm

(
αm+1→αTm+1 �αm+1Bα U + αm+1←αTm+1 ≺αm+1Cα U

+ αm+1·αTm+1 ◦αm+1∗α U

) ◦β V
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=



T1

T2 Tm

x1
· · · xm ≺αl+1→α (Tm+1 �αm+1Bα U) + T1

T2 Tm

x1
· · · xm ≺αl+1←α (Tm+1 ≺αm+1Cα U)

+ T1

T2 Tm

x1
· · · xm ≺αl+1·α (Tm+1 ◦αm+1∗α U)


◦β V.

Next we consider the form of T1

T2 Tm

x1
· · · xm as following:

(a) If T1

T2 Tm

x1
· · · xm =

x for some x ∈ X, then

 x
≺αl+1→α (Tm+1 �αm+1Bα U) +

x
≺αl+1←α (Tm+1 ≺αm+1Cα U)

+
x
≺αl+1·α (Tm+1 ◦αm+1∗α U)

 ◦β V

=
x
◦β

(
(Tl+1 �αl+1Bα U) �αl+1→α V + (Tl+1 ≺αl+1Cα U) �αl+1←α V

+(Tl+1 ◦αl+1∗α U) �αl+1·α V

)
(by Case 6)

=
x
◦β

(
Tl+1 �αl+1 (U �α V)

)
(by Eq. (31))

=

(
x
≺αl+1 Tl+1

)
◦β (U �α V) (by Case 6)

= T ◦β (U �α V).

(b) If there are T ′,T ′′ ∈ T(X,Ω) and ω ∈ Ω such that T1

T2 Tm

x1
· · · xm = T ′ �ω T ′′, then

 (T ′ �ω T ′′) ≺αl+1→α (Tm+1 �αm+1Bα U)
+(T ′ �ω T ′′) ≺αl+1←α (Tm+1 ≺αm+1Cα U)
+(T ′ �ω T ′′) ≺αl+1·α (Tm+1 ◦αm+1∗α U)

 ◦β V

=

 T ′ �ω
(
T ′′ ≺αl+1→α (Tm+1 �αm+1Bα U)

+T ′′ ≺αl+1←α (Tm+1 ≺αm+1Cα U)
+T ′′ ≺αl+1·α (Tm+1 ◦αm+1∗α U)

)
 ◦β V (by Eq. (30))

=
(
T ′ �ω ((T ′′ ≺αl+1 Tl+1) ≺α U)

)
◦β V (by Eq. (29))

= T ′ �ω
(
((T ′′ ≺αl+1 Tl+1) ≺α U) ◦β V

)
(by Case 8)

= T ′ �ω
(
(T ′′ ≺αl+1 Tl+1) ◦β (U �α V)

)
(by induction hypothesis)

=
(
T ′ �ω (T ′′ ≺αl+1 Tl+1)

)
◦β (U �α V) (by Case 8)

=
(
(T ′ �ω T ′′) ≺αl+1 Tl+1

)
◦β (U �α V) (by Eq. (30)

= T ◦β (U �α V).
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(c) If there are x ,T ′′ ∈ T(X,Ω) and ω ∈ Ω such that T1

T2 Tm

x1
· · · xm =

x
◦ω T ′′, then



(
x
◦ω T ′′

)
≺αl+1→α (Tm+1 �αm+1Bα U)

+

(
x
◦ω T ′′

)
≺αl+1←α (Tm+1 ≺αm+1Cα U)

+

(
x
◦ω T ′′

)
≺αl+1·α (Tm+1 ◦αm+1∗α U)

 ◦β V

=

 x
◦ω

 T ′′ ≺αl+1→α (Tm+1 �αm+1Bα U)
+T ′′ ≺αl+1←α (Tm+1 ≺αm+1Cα U)
+T ′′ ≺αl+1·α (Tm+1 ◦αm+1∗α U)


 ◦β V (by Case 7)

=

(
x
◦ω ((T ′′ ≺αl+1 Tl+1) ≺α U)

)
◦β V (by Eq. (29))

=
x
◦ω

(
((T ′′ ≺αl+1 Tl+1) ≺α U) ◦β V

)
(by Case 7)

=
x
◦ω

(
(T ′′ ≺αl+1 Tl+1) ◦β (U �α V)

)
(by induction hypothesis)

=

(
x
◦ω (T ′′ ≺αl+1 Tl+1)

)
◦β (U �α V) (by Case 7)

=

((
x
◦ω T ′′

)
≺αl+1 Tl+1

)
◦β (U �α V) (by induction hypothesis and Eq. (34))

= T ◦β (U �α V).

Hence Eq. (33) holds. Eq. (34) holds directly as T ◦α U does not change the rightmost branch
of U and U ≺β V only changes the rightmost branch of U and U has at least two branches.

Finally, we show Eq. (35) holds by induction on leaf(T ). If T =
x for some x ∈ X, then

(T ◦α U) ◦β V = T ◦α (U ◦β V) by the definition of ◦ω in Case 7. Suppose Eq. (35) holds for all T ,
where leaf(T ) 6 q with q a fixed integer. Assume leaf(T ) = p + 1, we consider the form of T as
follows.

(a) If there are T ′,T ′′ ∈ T(X,Ω) and ω ∈ Ω such that T = T ′ ≺ω T ′′, then

(T ◦α U) ◦β V =
(
(T ′ ≺ω T ′′) ◦α U

)
◦β V

=
(
T ′ ◦α (T ′′ �ω U)

)
◦β V (by Eq. 33)

= T ′ ◦α
(
(T ′′ �ω U) ◦β V

)
(by induction hypothesis)

= T ′ ◦α
(
T ′′ �ω (U ◦β V)

)
(by Eq. (32))

= (T ′ ≺ω T ′′) ◦α (U ◦β V) (by Case 6)
= T ◦α (U ◦β V).

(b) If there are T ′,T ′′ ∈ T(X,Ω) and ω ∈ Ω such that T = T ′ �ω T ′′, then

(T ◦α U) ◦β V =
(
(T ′ �ω T ′′) ◦α U

)
◦β V

=
(
T ′ �ω (T ′′ ◦α U)

)
◦β V (by Case 8)

= T ′ �ω
(
(T ′′ ◦α U) ◦β V

)
(by Case 8)

= T ′ �ω
(
T ′′ ◦α (U ◦β V)

)
(by induction hypothesis)
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= (T ′ �ω T ′′) ◦α (U ◦β V) (by Case 8)
= T ◦α (U ◦β V).

(c) If there are x ,T ′′ ∈ T(X,Ω) and ω ∈ Ω such that T =
x
◦ω T ′′, then

(T ◦α U) ◦β V =

((
x
◦ω T ′′

)
◦α U

)
◦β V

=

(
x
◦ω (T ′′ ◦α U)

)
◦β V ( by Case 7)

=
x
◦ω

(
(T ′′ ◦α U) ◦β V

)
( by Case 7)

=
x
◦ω

(
T ′′ ◦α (U ◦β V)

)
( by induction hypothesis)

=

(
x
◦ω T ′′

)
◦α (U ◦β V) (by Case 7)

= T ◦α (U ◦β V).

Hence Eq. (35) holds. So kT(X,Ω) is an Ω-tridendriform algebra.

Let (A, (≺ω,�ω, ◦ω)ω∈Ω) be an Ω-tridendriform algebra and f : X → A a set map. We extend f
to be an Ω-tridendriform algebra f : kT(X,Ω) → A such that f ◦ j = f . For T ∈ T(X,Ω) with
leaf(T ) = 2, i.e. T =

x for some x ∈ X, define f (T ) = f (x). Suppose f (T ) has been defined
for all T with leaf(T ) 6 q, where q > 2 is a fixed integer. Consider the case of leaf(T ) = q + 1.
We consider the form of T as follows.

(a) If T =

αT2

x , then define

f (T ) := f (x) ≺α f (T2).

(b) If T =

αT2 Tm

Tm+1x1
· · · xm with m > 2, then define

f (T ) : = f (x) ◦α f


T2

Tm

Tm+1
· · · xm

 .

(c) If T = Tα
1

T2 Tm

Tm+1x1
· · · xm with T1 , |, then define

f (T ) := f (T1) �α f


T2 Tm

Tm+1x1
· · · xm

 .
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We can get that it is the unique way to extend f as an Ω-tridendriform algebra morphism. Hence,
kT(X,Ω) and the map j is the free Ω-tridendriform algebra generated by X. �

3.2. Commutative Ω-tridendriform algebras on typed words. Let us first recall the concept
of associative matching algebras [12].

Definition 3.3. An associative matching algebra is a tuple (A, (?ω)ω∈Ω), where A is a vector
space and for each ω ∈ Ω, ?ω : A ⊗ A→ A is a linear map such that

(a ?α b) ?β c = a ?α (b ?β c)

for all a, b, c ∈ A and α, β ∈ Ω.

As in [5], the space of Ω-typed words in A is

Sh+
Ω(A) =

⊕
n>1

A ⊗ (kΩ) ⊗ · · · ⊗ (kΩ) ⊗ A︸                            ︷︷                            ︸
n’s A and (n − 1)’s (kΩ)

.

For ease of statement, we shall write each pure tensor v = v0 ⊗ ω1 ⊗ · · · ⊗ ωn ⊗ vn ∈ Ω under the
form

v = v0 ⊗ω1 v1 ⊗ω2 · · · ⊗ωn vn,

where n > 0, ω1, · · · , ωn ∈ Ω and v0, · · · , vn ∈ V with the convention v = v0 if n = 0. We call v
an Ω-typed word in V and define its length `(v) := n + 1.

Let Ω be a set with six products←,→,C,B, ·, ∗. For ω ∈ Ω, we define products ≺ω,�ω, ◦ω on
Sh+

Ω(A) recursively in the following way:
For a,b ∈ Sh+

Ω(A), if `(a) + `(b) = 2, then

`(a) = `(b) = 1, a = a and b = b where a, b ∈ A.

Define

a ≺ω b := a ⊗ω b, a ◦ω b = a ?ω b and a �ω b = b ⊗ω a.

For the induction step of `(a)+`(b) > 1, to define a ≺ω b, we consider the following two cases.
If `(a) = 1 and a = a1 ∈ A, then define

a ≺ω b := a1 ⊗ω b.

Otherwise `(a) > 2 and write a = a1 ⊗α1 a′ where a1 ∈ A, then define

a ≺ω b : = a1 ⊗α1→ω (a′ �α1Bω b) + a1 ⊗α1←ω (a′ ≺α1Cω b) + a1 ⊗α1·ω (a′ ◦α1∗ω b).

To define a �ω b, we consider the following two cases.
If `(b) = 1 and b = b1 ∈ A, then define

a �ω b := b1 ⊗ω a.

Otherwise `(b) > 2 and write b = b1 ⊗β1 b′ where b1 ∈ A, then define

a �ω b := b1 ⊗ω→β1 (a �ωBβ1 b′) + b1 ⊗ω←β1 (a ≺ωCβ1 b′) + b1 ⊗ω·β1 (a ◦ω∗β1 b′).

To define a ◦ω b, we consider the following three cases.
If `(a) = 1 and `(b) > 2, write a = a1 and b = b1 ⊗β1 b′ where a1, b1 ∈ A, then define

a ◦ω b := (a1 ?ω b1) ⊗β1 b′.
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Otherwise, if `(a) > 2 and `(b) = 1, write a = a1 ⊗α1 a′ and b = b1 where a1, b1 ∈ A, then define

a ◦ω b := (a1 ?ω b1) ⊗α1 a′.
Otherwise, a > 2 and b > 2, write a = a1 ⊗α1 a′ and b = b1 ⊗β1 b′ where a1, b1 ∈ A, then define

a ◦ω b : = (a1 ?ω b1) ⊗α1→β1 (a′ �α1Bβ1 b′) + (a1 ?ω b1) ⊗α1←β1 (a′ ≺α1Cβ1 b′)
+ (a1 ?ω b1) ⊗α1·β1 (a′ ◦α1∗β1 b′).

We obtain the following result:

Theorem 3.4. With these products defined as above, if (Ω,←,→,C,B, ·, ∗) is an ETS, then Sh+
Ω(A)

is an Ω-tridendriform algebra. Moreover, if Ω is commutative and if (A, (?ω)ω∈Ω) is commutative,
that is to say: for any a, b ∈ A, for any ω ∈ Ω, a ?ω b = b ?ω a, then Sh+

Ω(A) is a commutative
Ω-tridendriform algebra.

Proof. Denote by 1 the empty A-typed word and ShΩ(A) := k1⊕ Sh+
Ω(A). Extending the products

≺ω,�ω, ◦ω to the space ShΩ(A) ⊗ Sh+
Ω(A) ⊕ Sh+

Ω(A) ⊗ ShΩ(A) by

1 �ω a := a ≺ω 1 := a, 1 ≺ω a := a �ω 1 := 0 and 1 ◦ω a := a ◦ω 1 := 0,

for all ω ∈ Ω and a ∈ Sh+
Ω(A). The products ≺ω,�ω, ◦ω can now be rewritten in the following

way: for a = a1⊗α1 a′,b = b1⊗β1 b′ ∈ Sh+
Ω(A). By convention, we add an element ∅ to Ω, as a unit

for the six products of Ω. Note that a = a1 and α1 = ∅ if `(a) = 1; b = b1 and β1 = ∅ if `(b) = 1.

a ≺ω b : = a1 ⊗α1→ω (a′ �α1Bω b) + a1 ⊗α1←ω (a′ ≺α1Cω b) + a1 ⊗α1·ω (a′ ◦α1∗ω b),
a �ω b : = b1 ⊗ω→β1 (a �ωBβ1 b′) + b1 ⊗ω←β1 (a ≺ωCβ1 b′) + b1 ⊗ω·β1 (a ◦ω∗β1 b′),
a ◦ω b : = (a1 ?ω b1) ⊗α1→β1 (a′ �α1Bβ1 b′) + (a1 ?ω b1) ⊗α1←β1 (a′ ≺α1Cβ1 b′)

+ (a1 ?ω b1) ⊗α1·β1 (a′ ◦α1∗β1 b′).

Now we show that Sh+
Ω(A) is an Ω-tridendriform algebra. For a,b, c ∈ Sh+

Ω(A), we prove
Eqs. (29)-(35) hold by induction on the sum `(a) + `(b) + `(c). If `(a) + `(b) + `(c) = 3, then
`(a) = `(b) = `(c) = 1 and a = a1,b = b1, c = c1 ∈ A, Eqs. (29)-(35) hold by direct calculation.

For the induction step of `(a) + `(b) + `(c) > 4, assume a = a1 ⊗α1 a′, then

(a ≺α b) ≺β c = ((a1 ⊗α1 a′) ≺α b) ≺β c
=

(
a1 ⊗α1→α (a′ �α1Bα b) + a1 ⊗α1←α (a′ ≺α1Cα b) + a1 ⊗α1·α (a′ ◦α1∗α b)

)
≺β c

= a1 ⊗(α1→α)→β
(
(a′ �α1Bα b) �(α1→α)Bβ c

)
+ a1 ⊗(α1→α)←β

(
(a′ �α1Bα b) ≺(α1→α)Cβ c

)
+ a1 ⊗(α1→α)·β

(
(a′ �α1Bα b) ◦(α1→α)∗β c

)
+ a1 ⊗(α1←α)→β

(
(a′ ≺α1Cα b) �(α1←α)Bβ c

)
+ a1 ⊗(α1←α)←β

(
(a′ ≺α1Cα b) ≺(α1←α)Cβ c

)
+ a1 ⊗(α1←α)·β

(
(a′ ≺α1Cα b) ◦(α1←α)∗β c

)
+ a1 ⊗(α1·α)→β

(
(a′ ◦α1∗α b) �(α1·α)Bβ c

)
+ a1 ⊗(α1·α)←β

(
(a′ ◦α1∗α b) ≺(α1·α)Cβ c

)
+ a1 ⊗(α1·α)·β

(
(a′ ◦α1∗α b) ◦(α1·α)∗β c

)
= a1 ⊗α1→(α→β)

(
a′ �α1B(α→β) (b �αBβ c)

)
+ a1 ⊗α1←(α→β)

(
a′ ≺α1C(α→β) (b �αBβ c)

)
+ a1 ⊗α1·(α→β)

(
a′ ◦α1∗(α→β) (b �αBβ c)

)
+ a1 ⊗α1→(α←β)

(
a′ �α1B(α←β) (b ≺αCβ c)

)
+ a1 ⊗α1←(α←β)

(
a′ ≺α1C(α←β) (b ≺αCβ c)

)
+ a1 ⊗α1·(α←β)

(
a′ ◦α1∗(α←β) (b ≺αCβ c)

)
+ a1 ⊗α1→(α·β)

(
a′ �α1B(α·β) (b ◦α∗β c)

)
+ a1 ⊗α1←(α·β)

(
a′ ≺α1C(α·β) (b ◦α∗β c)

)
+ a1 ⊗α1·(α·β)

(
a′ ◦α1∗(α·β) (b ◦α∗β c)

)
(by induction hypothesis and Ω being an ETS)

= a ≺α→β (b �α→β c) + a ≺α←β (b ≺αCβ c) + a ≺α·β (b ◦α∗β c).
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Hence Eq. (29) holds. Similarly, it can be proved that Eqs. (30)-(35) hold. So Sh+
Ω(A) is an

Ω-tridendriform algebra.
Next, assume Ω is commutative and (A, (?ω)ω∈Ω) is commutative, we prove that

a ≺α b = b �α a and a ◦α b = b ◦α a

for all a,b ∈ Sh+
Ω(A) and α ∈ Ω by induction on `(a)+`(b). If `(a)+`(b) = 2, then `(a) = `(b) = 1

and a = a,b = b ∈ A. So

a ≺α b = a ⊗α b = b �α a and a ◦α b = a ?α b = b ?α a = b ◦α a.

For the inductive step of `(a) + `(b) > 3, assume a = a1 ⊗α1 a′, then

a ≺α b = a1 ⊗α1→α (a′ �α1Bα b) + a1 ⊗α1←α (a′ ≺α1Cα b) + a1 ⊗α1·α (a′ ◦α1∗α b)
= a1 ⊗α←α1 (b ≺αCα1 a′) + a1 ⊗α→α1 (b �αBα1 a′) + a1 ⊗α·α1 (b ◦α∗α1 a′)

(by induction hypothesis and Ω being commutative)
= b �α a.

Similarly, it can be proved that a ◦α b = b ◦α a. Hence Sh+
Ω(A) is a commutative Ω-tridendriform

algebra. �

Let i : A→ Sh+
Ω(A) be the natural inclusion. We obtain the following result:

Theorem 3.5. Let (Ω,←,→,C,B, ·, ∗) be a commutative ETS and let (A, (?ω)ω∈Ω) be a com-
mutative matching associative algebra. If (B, (≺ω)ω∈Ω, (�ω)ω∈Ω, (◦ω)ω∈Ω) is a commutative Ω-
tridendriform algebra and φ : (A, (?ω)ω∈Ω)→ (B, (◦ω)ω∈Ω) is a morphism of matching associative
algebras, then there exists a unique morphism Φ : Sh+

Ω(A)→ B of Ω-tridendriform algebras such
that φ = Φ ◦ i.

In other terms, Sh+
Ω is the left adjoint functor of the forgetful functor from commutative Ω-

tridendriform algebras to commutative Ω-associative algebras (which consists to forget ≺ and
�). As a consequence, the free commutative Ω-tridendriform algebra generated by A is Sh+

Ω(A′)
where A′ is the free matching commutative algebra generated by A.

Proof. For a ∈ Sh+
Ω(A), we define Φ(a) by induction on `(a). If `(a) = 1, then a = a1 ∈ A and

define Φ(a) = φ(a1). For the induction step of `(a) > 2, suppose a = a1 ⊗α1 a′, then define

Φ(a) = Φ(a1 ⊗α1 a′) = Φ(a1 ≺α1 a′) := Φ(a1) ≺α1 Φ(a′).

We can get that it is the unique way to extend φ to an Ω-tridendriform algebra morphism Φ

such that φ = Φ ◦ i. �

3.3. From Ω-tridendriform algebras to tridendriform algebras. If Ω is an ETS, we consider
the three maps

ϕ← :
{

kΩ⊗2 −→ kΩ⊗2

α ⊗ β 7−→ α← β ⊗ α C β,
ϕ→ :

{
kΩ⊗2 −→ kΩ⊗2

α ⊗ β 7−→ α→ β ⊗ α B β,

ϕ∗ :
{

kΩ⊗2 −→ kΩ⊗2

α ⊗ β 7−→ α · β ⊗ α ∗ β.

Proposition 3.6. Let Ω be an ETS and let A be a vector space equipped with bilinear products
≺ω,�ω, ◦ω. We equip kΩ ⊗ A with three bilinear products ≺,�, ◦ defined by

α ⊗ x ≺ β ⊗ y : = α← β ⊗ x ≺αCβ y,
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α ⊗ x � β ⊗ y : = α→ β ⊗ x �αBβ y,
α ⊗ x ◦ β ⊗ y : = α · β ⊗ x ◦α∗β y,

for all α, β ∈ Ω and x, y ∈ A.
(a) If (A, (≺ω)ω∈Ω, (�ω)ω∈Ω, (◦ω)ω∈Ω) is an Ω-tridendriform algebra, then (kΩ ⊗ A,≺,�, ◦) is a

tridendriform algebra.
(b) If ϕ←, ϕ→ and ϕ∗ are surjective, then the converse implication is true.

Proof. (a) For α, β, γ ∈ Ω and a, b, c ∈ A,

(α ⊗ a ≺ β ⊗ b) ≺ γ ⊗ c = (α← β ⊗ a ≺αCβ b) ≺ γ ⊗ c
= (α← β)← γ ⊗ (a ≺αCβ b) ≺(α←β)Cγ c

= (α← β)← γ ⊗

 a ≺(αCβ)→((α←β)Cγ) (b �(αCβ)B((α←β)Cγ) c)
+a ≺(αCβ)←((α←β)Cγ) (b ≺(αCβ)C((α←β)Cγ) c)
+a ≺(αCβ)·((α←β)Cγ) (b ◦(αCβ)∗((α←β)Cγ) c)


(by A being an Ω-tridendriform algebra)

= α← (β← γ) ⊗ a ≺αC(β←γ) (b←βCγ c) + α← (β→ γ) ⊗ a ≺αC(β→γ) (b �βBγ c)
+ α← (β · γ) ⊗ a ≺αC(β·γ) (b ◦β∗γ c) (by Ω being an ETS)
= α ⊗ a ≺ (β← γ ⊗ b ≺βCγ c + β→ γ ⊗ b �βBγ c + β · γ ⊗ b ◦β∗γ c)
= α ⊗ a ≺ (β ⊗ b ≺ γ ⊗ c + β ⊗ b � γ ⊗ c + β ⊗ b ◦ γ ⊗ c).

The other equations can be proved in the same way. Hence (kΩ ⊗ A,≺,�, ◦) is a tridendriform
algebra.

(b) For α, β, γ ∈ Ω and a, b, c ∈ A, by Ω being an ETS and

(α ⊗ a ≺ β ⊗ b) ≺ γ ⊗ c = α ⊗ a ≺ (β ⊗ b ≺ γ ⊗ c + β ⊗ b � γ ⊗ c + β ⊗ b ◦ γ ⊗ c),

we get

(a ≺αCβ b) ≺(α←β)Cγ c = a ≺αC(β←γ) (b←βCγ c) + a ≺αC(β→γ) (b �βBγ c) + a ≺αC(β·γ) (b ◦β∗γ c)

By hypothesis, the following map is surjective:

φ′← :
{

Ω2 −→ Ω2

(α, β) −→ (α C β, α← β).

Hence, the following composition is surjective:

(Id ⊗ φ′←) ◦ (φ′← ⊗ Id) :
{

Ω3 −→ Ω3

(α, β, γ) −→ (α C β, (α← β) C γ, (α← β)← γ)

Let (α, β, γ), (α′, β′, γ′) ∈ Ω3 such that

α′ = α C β, β′ = (α← β) C γ, γ′ = (α← β)← γ.

Then

(a ≺α′ b) ≺β′ c = a ≺αC(β←γ) (b←βCγ c) + a ≺αC(β→γ) (b �βBγ c) + a ≺αC(β·γ) (b ◦β∗γ c)
= a ≺α′←β′ (b ≺α′Cβ′ c) + a ≺α′→β′ (b �α′Bβ′ c) + a ≺α′·β′ (b ◦α′∗β′ c).

So Eq. (29) holds. Eqs. (30)-(35) can be proved similarly. �
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Proposition 3.7. Let Ω be an ETS.
(1) The following assertions are equivalent:

(a) The tridendriform algebra kΩ ⊗ kT(X,Ω) is generated by the elements ω ⊗ x , where
ω ∈ Ω and x ∈ X.

(b) The maps ϕ←, ϕ→ and ϕ∗ are surjective.

(2) The following assertions are equivalent:

(a) The tridendriform subalgebra of kΩ ⊗ kT(X,Ω) generated by the elements ω ⊗ x ,
where ω ∈ Ω and x ∈ X, is free.

(b) The maps ϕ←, ϕ→ and ϕ∗ are injective.

Proof. Note that the tridendriform algebra kΩ ⊗ T(X,Ω) is graded, with for each n > 1,

(kΩ ⊗ T(X,Ω))n = kΩ ⊗ Tn(X,Ω).

(1) (a) =⇒ (b) As kΩ⊗T(X,Ω) is graded, by hypothesis, for any α⊗
β

x
y

∈ (Ω⊗T(X,Ω))2,

where α, β ∈ Ω and x, y ∈ X , there are α1 ⊗
y′

, β1 ⊗
x′
∈ (Ω ⊗ T(X,Ω))2 and pα1,β1 ∈ k

such that

α ⊗

β

x
y

=
∑

α1,β1∈Ω

pα1,β1α1 ⊗
y′
� β1 ⊗

x′
=

∑
α1,β1∈Ω

pα1,β1α1 → β1 ⊗

α1 B β1

x′
y′

.

Hence, there exists (α1, β1) ∈ Ω2 such that α1 → β1 = α and α1 B β1 = β. So ϕ→ is surjective.
Similarly, ϕ← and ϕ∗ are surjective.

(b) =⇒ (a) We prove that any α ⊗ T ∈ kΩ ⊗ kT(X,Ω), where α ∈ Ω and T ∈ T(X,Ω), is
generated by ω ⊗ x by induction on the number N of leaves of T . If N = 2, then T =

x

for some x ∈ X and it is obvious. Suppose α ⊗ T is generated by ω ⊗ x for N 6 p, where
p > 2 is a fixed integer. Consider the case of N = p + 1. We consider the form of T as follows.

(a) If T =

βT2

x , let (α1, β1) ∈ Ω2 such that ϕ←(α1, β1) = (α1 ← β1, α1 C β1) = (α, β). Then

α1 ⊗
x
≺ β1 ⊗ T2 = (α1 ← β1) ⊗

α1Cβ1 T2

x = α ⊗ T.

Hence, by induction hypothesis, α ⊗ T is generated by ω ⊗ x .
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(b) If T =

βT2 Tm

Tm+1x1
· · · xm with m > 2, let (α1, β1) ∈ Ω2 such that ϕ∗(α1, β1) = (α1 ∗ β1, α1 ·

β1) = (β, α). Then

α1 ⊗
x
◦ β1 ⊗

T2

Tm

Tm+1
· · · xm = α1 · β1 ⊗

α1∗β1 T2 Tm

Tm+1x1
· · · xm = α ⊗ T.

Hence, by induction hypothesis, α ⊗ T is generated by ω ⊗ x .

(c) If T = T β
1

T2 Tm

Tm+1x1
· · · xm with T1 , |, let (α1, β1) ∈ Ω2 such that ϕ→(α1, β1) = (α1 →

β1, α1 B β1) = (α, β). Then

α1 ⊗ T1 � β1 ⊗

T2 Tm

Tm+1x1
· · · xm = (α1 → β1) ⊗ Tα1Bβ1

1

T2 Tm

Tm+1x1
· · · xm = α ⊗ T.

Hence, by induction hypothesis, α ⊗ T is generated by ω ⊗ x .

(2) (a) =⇒ (b) Denote by A the tridendriform subalgebra of kΩ ⊗ kT(X,Ω) generated by
elements ω ⊗ x . Let (α, β), (α′, β′) ∈ Ω2 such that ϕ←(α, β) = ϕ←(α′, β′). Then

α ⊗ x
≺ β ⊗

y
= α← β ⊗

α C β

x
y

= α′ ← β′ ⊗

α′ C β′

x
y

= α′ ⊗ x
≺ β′ ⊗

y
.

By the freeness of A, (α, β) = (α′, β′) and so ϕ← is injective. The maps ϕ→ and ϕ∗ can be proved
to be injective similarly.

(b) =⇒ (a) Let TDend(Ω) be the free tridendriform algebra generated by Ω ⊗ X. As a vector
space, it is generated by Schröder trees which angles are decorated by Ω⊗X. Let Φ : TDend(Ω)→
kΩ ⊗ kT(X,Ω) be the unique tridendriform algebra sending α ⊗ x to α ⊗ x . We prove that
Φ is injective, i.e.

Φ(T ) = Φ(T ′) =⇒ T = T ′

by induction on the number N of leaves of T . By the construction of Φ, if Φ(T ) = Φ(T ′), then
T,T ′ are of the same form. If N = 2, then T =

α ⊗ x for some α ∈ Ω and x ∈ X and obviously
T ′ = T . Suppose Φ is injective for all T with N 6 p, where p is a fixed integer. Consider the case
of N = p + 1. If

T =

T2

α ⊗ x T ′ =

T ′2

α′ ⊗ x′
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and assume Φ(T2) = β ⊗ U2,Φ(T ′2) = β′ ⊗ U′2. Then

Φ(T ) = Φ

(
α ⊗ x

≺ T2

)
= Φ

(
α ⊗ x

)
≺ Φ(T2) = α← β ⊗

αCβT2

x

Φ(T ′) = Φ

(
α′ ⊗ x′

≺ T ′2
)

= Φ

(
α′ ⊗ x

)
≺ Φ(T ′2) = α′ ← β′ ⊗

α′Cβ′T2

x .

Since Φ(T ) = Φ(T ′) and ϕ← is injective, α = α′, x = x′ and Φ(T2) = Φ(T ′2). Hence by induction
hypothesis, T = T ′. For other forms of T,T ′, the injectivity of Φ is proved similarly. Hence A is
isomorphic to the free tridendriform algebra TDend(Ω) and so A is free. �

4. Operad of Ω-tridendriform algebras

Denote by PΩ the (nonsymmetric) operad of Ω-tridendriform algebras. It is generated by ≺α,
◦ω and �ω∈ PΩ(2) with α ∈ Ω and the relations:

≺β ◦(≺α, I) = ≺α→β ◦(I,�αBβ)+ ≺α←β ◦(I,≺αCβ)+ ≺α·β ◦(I, ◦α∗β),
≺β ◦(�α, I) = �α ◦(I,≺β),
�α ◦(I,�β) = �α→β ◦(�αBβ, I)+ �α←β (≺αCβ, I)+ �α·β ◦(◦α∗β, I),
◦β ◦ (�α, I) = �α ◦(I, ◦β),
◦β ◦ (≺α, I) = ◦β ◦ (I,�α),
≺β ◦(◦α, I) = ◦α ◦ (I,≺β),
◦β ◦ (◦α, I) = ◦α ◦ (I, ◦β),

for all α, β ∈ Ω.
As in [3, Proposition 21], we obtain the following result:

Proposition 4.1. Suppose m ∈ PΩ(2) is of the form

m =
∑
α∈Ω

aα ≺α +
∑
α∈Ω

bα ◦α +
∑
α∈Ω

cα �α,

where aα, bα, cα ∈ k. Then m ◦ (I,m) = m ◦ (m, I) if and only if for any α, β ∈ Ω,

aαaβ =
∑

ϕ←(α′,β′)=(α,β)

aα′aβ′ , aαbβ =
∑

ϕ∗(α′,β′)=(α,β)

aα′aβ′ ,

aαcβ =
∑

ϕ→(α′,β′)=(α,β)

aα′aβ′ , bαcβ = bαaβ,

cαaβ =
∑

ϕ←(α′,β′)=(α,β)

cα′cβ′ , cαbβ =
∑

ϕ∗(α′,β′)=(α,β)

cα′cβ′ ,

cαcβ =
∑

ϕ→(α′,β′)=(α,β)

cα′cβ′ .

Proof. By the relations of the operad of Ω-tridendriform algebras,

m ◦ (I,m) = (aα ≺α +bα ◦α +cα �α) ◦ (I, aβ ≺β +bβ ◦β +cβ �β)
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=
∑
α,β

aαaβ ≺α ◦(I,≺β) +
∑
α,β

aαbβ ≺α ◦(I, ◦β) +
∑
α,β

≺α ◦(I,�β) +
∑
α,β

bαaβ ◦α ◦(I,≺β)

+
∑
α,β

bαbβ ◦α ◦(I, ◦β) +
∑
α,β

bαcβ ◦α ◦(I,�β) +
∑
α,β

cαaβ �α ◦(I,≺β) +
∑
α,β

cαbβ �α ◦(I, ◦β)

+
∑
α,β

cαcβ �α→β ◦(�αBβ, I) +
∑
α,β

cαcβ �α←β (≺αCβ, I) +
∑
α,β

cαcβ �α·β ◦(◦α∗β, I)

and

m ◦ (m, I) = (aα ≺α +bα ◦α +cα �α) ◦ (aα ≺α +bα ◦α +cα �α, I)

=
∑
α,β

aαaβ ≺α→β ◦(I,�αBβ) +
∑
α,β

aαaβ ≺α←β (I,≺αCβ) +
∑
α,β

aαaβ ≺α·β ◦(I, ◦α∗β)

+
∑
α,β

aαbβ ≺α ◦(◦β, I) +
∑
α,β

aαcβ ≺α ◦(�β, I) +
∑
α,β

bαaβ ◦α ◦(≺β, I) +
∑
α,β

bαbβ ◦α ◦(◦β, I)

+
∑
α,β

bαcβ ◦α ◦(�β, I) +
∑
α,β

cαaβ �α ◦(≺β, I) +
∑
α,β

cαbβ �α ◦(◦β, I) +
∑
α,β

cαcβ �α ◦(�β, I).

Hence m ◦ (I,m) = m ◦ (m, I) if and only if the above equations hold. �

Remark 4.2. These conditions can be reformulated as follows. We extend ϕ←, ϕ→ and ϕ∗ as
linear endomorphisms kΩ⊗. We then consider the three elements of kΩ:

a =
∑
α∈Ω

aαα, b =
∑
α∈Ω

bαα, c =
∑
α∈Ω

cαα.

Then m is associative if, and only if

ϕ←(a ⊗ a) = a ⊗ a, ϕ∗(a ⊗ a) = a ⊗ b,
ϕ→(a ⊗ a) = a ⊗ c, b = 0 or a = c,
ϕ←(c ⊗ c) = c ⊗ a, ϕ∗(c ⊗ c) = c ⊗ b,
ϕ→(c ⊗ c) = c ⊗ c,

which is equivalent to

b = 0,
ϕ←(a ⊗ a) = a ⊗ a,
ϕ→(a ⊗ a) = a ⊗ c,
ϕ∗(a ⊗ a) = 0,
ϕ←(c ⊗ c) = c ⊗ a,
ϕ→(c ⊗ c) = c ⊗ c,
ϕ∗(c ⊗ c) = 0,

or


c = a,

ϕ←(a ⊗ a) = a ⊗ a,
ϕ→(a ⊗ a) = a ⊗ a,
ϕ∗(a ⊗ a) = a ⊗ b.

If Ω is finite, the operad PΩ is a finite generated quadratic operad. By computation, we obtain
the Koszul dual of PΩ as follows.
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Proposition 4.3. Let Ω be a finite ETS. The Koszul dual P!
Ω

of PΩ is generated by aα,⊥α, `α with
α ∈ Ω and the relations

aα ◦(I, aβ) =
∑

(γ,δ)∈Ω2,
γ←δ=α,
γCδ=β

aδ ◦(aγ, I), aα ◦(I, `β) =
∑

(γ,δ)∈Ω2,
γ→δ=α,
γBδ=β

aδ ◦(aγ, I),

aα ◦(I,⊥β) =
∑

(γ,δ)∈Ω2,
γ·δ=α,
γ∗δ=β

aδ ◦(aγ, I),

`β ◦(`α, I) =
∑

(γ,δ)∈Ω2,
γ→δ=α,
γBδ=β

`γ ◦(I, `δ), `β ◦(aα, I) =
∑

(γ,δ)∈Ω2,
γ←δ=α,
γCδ=β

`γ ◦(I, `δ),

`β ◦(⊥α, I) =
∑

(γ,δ)∈Ω2,
γ·δ=α,
γ∗δ=β

`γ ◦(I, `δ),

aβ ◦(`α, I) = `α ◦(I, aβ), ⊥β ◦(`α, I) = `α ◦(I,⊥β),
⊥β ◦(aα, I) = ⊥β ◦(I, `α), aβ ◦(⊥α, I) = ⊥α ◦(I, aβ),
⊥β ◦(⊥α, I) = ⊥α ◦(I,⊥β),

for all α, β ∈ Ω.

In particular, if |Ω| = 1, we recover the definition of triassociative algebras, which operad is the
Koszul dual of the operad of tridendriform algebras [7].
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