
A co-preLie structure from chronological loop erasure in graph walks

Löıc Foissya, Pierre-Louis Giscarda,∗, Cécile Mammezb

aUniversité du Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques Pures et Appliquées Joseph
Liouville, 50 rue F. Buisson, F-62100, Calais, France

bLaboratoire de Mathématiques de Reims - UMR 9008, U.F.R. Sciences Exactes et Naturelles, Université Reims
Champagne-Ardenne, Moulin de la Housse - BP 1039, Reims, 51687 cedex 2, France

Abstract

We show that the chronological removal of cycles from a walk on a graph, known as Lawler’s loop-erasing
procedure, generates a preLie co-algebra on the vector space spanned by the walks. In addition, we
prove that the tensor and symmetric algebras of graph walks are Hopf algebras, provide their antipodes
explicitly and recover the preLie co-algebra from a brace coalgebra on the tensor algebra of graph walks.
Finally we exhibit sub-Hopf algebras associated to particular types of walks.

Keywords: Graphs, walks, cycles, coproduct, co-preLie co-algebra, Hopf algebra

Introduction

Graphs and walks are ubiquitous objects in combinatorics, discrete mathematics and beyond: they
appear throughout linear algebra, differential calculus and have found widespread applications in physics,
engineering and biology. Yet, while graph theory is being developed, less attention has been devoted to
the walks themselves, a walk being a contiguous succession of directed edges on a graph. In particular
the algebraic structures associated to walks have not, to the best of our knowledge, been fully explored.
We may here refer the reader to quivers and path algebras and hike monoids [4]. The goal of the
present work is to exhibit a co-preLie structure naturally associated to walks on graphs (simple graphs,
multi-graphs, digraphs and hypergraphs). The structure arises from a simple procedure, now known as
Lawler’s loop erasing [6], first conceived in the context of percolation theory to randomly generate simple
paths–walks where all vertices are distinct–from a sample of random walks. The procedure consists of
a chronological removal of cycles (called loops in Lawler’s original work) as one walks along on the
graph: consider for instance the complete graph K4 on 4 vertices and label these vertices with integers
1 through 4. Walking along the path 1 → 2 → 1 → 3 → 4 → 3 → 1 → 3 on the graph and removing
cycles whenever they appear, we are left with the simple path 1 → 3 after having successively ‘erased’
the cycles 1 → 2 → 1, then 3 → 4 → 3 and finally 1 → 3 → 1. Note how 1 → 3 → 1 does not appear
contiguously in the original walk. Once terminated, Lawler’s loop-erasing has eliminated a set of cycles,
all of whose internal vertices are distinct, leaving a possibly trivial walk-skeleton behind. If the initial
walk was itself a cycle, this skeleton is the empty walk on the initial vertex (also called length-0 walk)
and otherwise it is a self-avoiding path. Remark that because the loop-removal occurs in a chronological
fashion, Lawler’s process is strongly non-Markovian: complete knowledge of all the past steps of a walk
is required to decide the current and future erased sections at any point of the walk.

We show below that this intuitive process is naturally associated with a co-preLie coproduct. In
addition, slightly relaxing the chronological constraints by allowing simultaneous erasures under some

∗Corresponding author.
Email addresses: foissy@univ-littoral.fr (Löıc Foissy), giscard@univ-littoral.fr (Pierre-Louis Giscard),

cecile.mammez@ac-versailles.fr (Cécile Mammez)

compatibility conditions leads to Hopf algebra structures on the tensor and symmetric algebras of graph
walks.

The article is organized as follows. In Section §1 we begin with basic notations and definitions
concerning walks, graphs and Lawler’s loop erasing procedure. In §2 we describe the chronological
structure that walks acquire from Lawler’s process and use this structure to define the admissible cuts
of a walk. We show in particular that this notion is well defined in the sense that in spite of the strong
chronological constraints created by Lawler’s process, cutting out admissible cuts does not alter the
other cuts admissibility. This leads in §3 to the definition of a co-product on walks which we show to
be co-preLie. Then, in §4.2, considering a wider set of simultaneously admissible cuts, called extended
admissible cuts, we construct a co-associative co-product on the tensor and symmetric algebras generated
by the vector space of walks on a graph. We then prove an explicit formula for the antipode maps in
the so-obtained Hopf algebras. In §5 we construct a brace coalgebra and a codendriform bialgebra on
the tensor algebra generated by graph walks and use these to recover the preLie structure as a corollary
of the Hopf algebra of the preceding section. Finally in §6 we exhibit Hopf subalgebras associated to
certain types of walks, the cacti, ladders and corollas.

In a subsequent work inspired by previous combinatorial results [5], we will show that Lawler’s
process is also naturally associated with a non-associative permutative product, known as nesting [5],
which satisfies the Livernet compatibility condition [7] with the co-preLie co-product defined here.
This will provide the very first concrete example of the NAP - co-preLie operad in a ‘living’ context.
This construction appears to be of paramount importance given the pervasive use of graph-walks in
mathematics and mathematical-physics. In particular, we will show that this leads to a useful bridge
between formal sums over infinite families of walks and branched continued fractions.

1. Notations and definitions

1.1. Notations for graphs and rooted walks

While we begin by recalling standard definitions for graphs, we introduce somewhat less common
concepts for walks, of which we advise the reader to take special notice.

A graph G = (V,E) is a countable set of vertices V and a countable set E of distinct paired vertices,
called edges, denoted {i, j}, i, j ∈ V . A digraph G = (V,E) is a finite set of vertices V and a finite
set E ⊆ V 2 of directed edges (or arcs), denoted (i, j) for the arc from i to j. A directed multigraph (or
multidigraph) is defined the same way as a digraph, except that E is a multiset. An edge of E is then
denoted (i, j)k, the integer k specifying which edge from i to j we consider. In the present work we
always assume that G is non-empty.

A rooted walk, or rooted path, of length ℓ from vertex i to vertex j on a multi directed graph G is a
contiguous sequence of ℓ arcs starting from i and ending in j, e.g. ω = (i, i1)k1(i1, i2)k2 · · · (iℓ−1, j)kℓ (a
sequence of arcs is said to be contiguous if each arc but the first one starts where the previous ended).
The rooted walk ω is open if i ̸= j and closed otherwise, in which case it is also called rooted cycle.
Since we only consider rooted walks in this work, we shorten this terminology to walks. On digraphs we
may unambiguously represent walks simply as ordered sequences of vertices ω = w0w1 · · ·wℓ−1wℓ. The
walk ω = w0 of length 0 is called the trivial walk on vertex w0, it is both open and closed. The set of
all walks of length greater or equal to one on a graph G is denoted W(G).

Consider a walk ω = w0 . . . wℓ. A subwalk of a walk ω = w0 · · ·wℓ is any walk wk · · ·wk′ where
0 ≤ k ≤ k′ ≤ ℓ. If k ̸= k′ and wk = wk′ , we designate by ωk,k′ := wkwk+1 . . . wk′ the closed subwalk of
ω with root wk. In a complementary way, we define the remainder section ωk,k′ := w0 . . . wkwk′+1 . . . wℓ

to be what remains of ω after removal of the section ωk,k′ . Note, for convenience we denote ωl,l′

k,k′ for

2

(ωk,k′)
l,l′ , the section wl . . . wl′ erased from the remainder ωk,k′ = w0 . . . wkwk′+1 . . . wℓ. This means in

particular that in ωl,l′

k,k′ , integers k, k
′, l and l′ all refer to indices from ω.

A rooted walk in which all vertices are distinct is said to be a simple path or self-avoiding walk. The set
of all such walks on a digraphG is denoted SAW(G). Similarly, a rooted cycle (i0, i1)k1(i1, i2)k2 · · · (iℓ−1, i0)kℓ
of non-zero length for which all vertices it are distinct is said to be a simple cycle or self-avoiding polygon.
Note that a self-loop (i, i)k is considered a rooted simple cycle of length one. The set of all simple cycles
on G is SAP(G). For G any (directed multi)graph, to ease the notation, we also denote by W(G) the K-
vector space spanned by all walks of length greater or equal to one on G, K being a field of characteristic
0. For a walk ω ∈ W(G), we designate by V (ω) the support of ω, that is the set of distinct vertices
visited by ω; and by E(ω) the multiset of directed edges visited by ω.

1.2. Definitions for loop-erasure

As stated in the introduction, Lawler’s loop-erasing procedure consists in erasing all cycles from a
walk ω in the chronological order in which they appear. Formally, it is a selection-quotient process
which transforms a walk into its self-avoiding skeleton. To construct the algebraic structures associated
with Lawler’s procedure we must not only consider its end product but also what it produces during its
intermediary stages and what it removes from the walk, in its original context:

Definition 1 (Loop-erased sections). Let G be a digraph and consider ω = w0 . . . wℓ ∈ W(G). The
set LES(ω) of loop-erased sections is the set of all closed subwalks of ω erased by Lawler’s procedure.

Remark 1. Let ω ∈ W(G), then the set LES(ω) is a subset of W(G).

Example 1. On the complete graphK5 on 5 vertices (including self-loops), consider the walk ω = 12324522,

ω =

1

2

34

5

1

2 345

6

7

In this illustration, the integers in boxes in the middle of edges give these edges’ order of traversal while
vertices are labeled by black integers next to them. The simple cycles erased by Lawler’s procedure are
ω1,3 = 232, ω3,6 = 2452 and ω6,7 = 22 and the set of erased closed subwalks of ω is therefore,

LES(12324522) ={ω1,3, ω3,6, ω1,6, ω6,7, ω3,7, ω1,7}
={232, 2452, 232452, 22, 24522, 2324522}.

Remark 2. The requirement that the closed subwalks of LES(ω) be constructed solely from erased
sections is crucial. For example, in

ω = 1232341 =

1

2

34

1

2 3
4

5

6

we have LES(ω) = {ω1,3, ω} = {232, 1232341}. In particular 323 /∈ LES(ω) because 323 was not erased
at once by Lawler’s procedure. Including it would violate the chronological condition innate in Lawler’s
process, as erasing 323 from ω would imply having overlooked the cycle 232 which was closed prior to
323. We formalize this observation with the notion of loop-erased walks:

3

Definition 2 (Loop-erased walks). Let G be a digraph and ω = w0 · · ·wℓ ∈ W(G) of length ℓ. For
0 ≤ k ≤ ℓ, we designate LEWk(ω), called loop-erased walk ω at step k, to be what is left of ω after its
first k steps while performing Lawler’s procedure.

Remark 3. Let ω = w0 · · ·wℓ ∈ W(G). Then LEW(ω) is the trivial walk on vertex w0 if and only if ω
is closed.

By the definitions of LES(ω) and LEW(ω) we obtain what was remarked above, namely that
loop-erased sections may not straddle over one-another, a consequence of their step-by-step erasure
in chronological order:

Lemma 1. Let G be a digraph and ω = w0 . . . wℓ ∈ W(G). Then ωk,k′ ∈ LES(ω) if and only if there
does not exist a pair of integers 0 ≤ l < k < l′ < k′ ≤ ℓ with wk = wk′ ̸= wl = wl′ and ωl,l′ ∈ LES(ω)

Before we prove the lemma, we remark that the notion of loop-erased walks allows for an alternative
but equivalent definition of that of loop-erased section:

Remark 4 (A recursive procedure for constructing LES(ω)). Let G be a digraph and consider
ω = w0 . . . wℓ ∈ W(G). The set LES(ω) of loop-erased sections of ω = w0 · · ·wℓ is constructed recursively
as follows. Initialize with LES(ω) = ∅. Then for k ∈ {1, . . . , ℓ − 1}, if wk+1 ∈ V (LEWk(ω)) denote k′,
the greatest integer such that 0 ≤ k′ ≤ k and wk′ = wk+1. If k

′ exists, then:

1. add the closed walk ωk′,k+1 = wk′ . . . wk+1 to LES(ω);

2. if there exists ωk′′,k′ ∈ LES(ω), add the closed walk ωk′′, k+1 = wk′′ . . . wk+1 to LES(ω) as well.

While equivalent to Definition 1, the above formulation is more formal in flavor and recursive in nature,
thus better suited to algorithm designs and easier to wield in proofs.

Proof of Lemma 1. Assuming that ωk,k′ , ωl,l′ ∈ LES(ω), suppose that both sections nonetheless straddle
over one-another. We may choose without loss of generality (wlog) that k < l < k′ < l′. In particular,
there is no earlier step m < k with wm = wl since otherwise we would effectively be in the straddling
situation where l < k. Then at step l′ − 1 ≥ k′ of the walk, vertex wl /∈ V (LEWl′−1)(w) since at this
point ωk,k′ has already been erased and so by Remark 4, ωl,l′ /∈ LES(ω), a contradiction. Conversely, if
the pair of integers l and l′ as stated does not exists, then ωk,k′ defines a closed subwalk of ω erased by
Lawler’s procedure, hence in LES(ω).

2. The chronological structure of walks

From a walk ω, Lawler’s process, once terminated, produces a set of erased simple cycles and one self-
avoiding skeleton (possibly trivial). It is therefore natural to seek a co-product which to the walk ω would
associate a sum over erased sections ωk,k′ and associated remainders ωk,k′ , so that ω could be obtained
back from these through grafting of the former onto the latter. The ‘grafting’ product appropriate to
that end, known as nesting, was first identified thanks to purely combinatorial considerations [5] and
is permutative non-associative reflecting Lawler’s process’ chronological constraints. It is difficult to
maintain any form of compatibility with nesting via such an indiscriminate procedure as cutting out all
loop-erased sections however, as not all pairs (ωk,k′ , ωk,k′) can be consistently grafted back to form the
original walk; and when grafting is possible, it may be so in more than one way. These problems arise
from certain ladders and all corollas, respectively. Consider first an instance of the former,

ω = 1233231 =

1

2

3
1

2

3
4

5

6

,

4

which is a ladder in the sense that the self-loop 33 is attached ‘on top of’ cycle 232, itself attached to
the ‘base’ triangle 1231. Here ω2,3 = 33 is a valid loop-erased section of ω, yet can be grafted back onto
ω2,3 in two distinct ways: one producing ω and the other yielding the walk ω′ = 1232331. Remark how
in ω′, the self-loop 33 occurs one level below its original location in ω since it is now attached directly
to the ‘base’ triangle 1231. Algebraically such instances correspond to cases where the nesting product
fails to be associative. Second, for the issue with corollas, i.e. bouquets of closed walks with the same
root, consider e.g.

ω = 12131 =

1

2 3

1
2 3

4

.

Here both 121, 131 ∈ LES(ω); yet cutting e.g. ω0,2 = 121 and grafting it back onto ω0,2 = 131 either
gives back the walk ω = 12131 or the completely different one ω′ = 13121. Algebraically, these instances
translate into cases where the nesting product fails to be commutative.

2.1. Admissible cuts

To resolve the difficulties mentioned above, which become extensive when taken together in arbitrary
long walks, we must refine the set of loop-erased sections that can be cut out of the original walk by
the co-product. Here, as earlier, the major hurdle is due to the chronological constraints inherent to
Lawler’s process. Because of this, special attention must be paid to erased sections that appear within
longer erased sections, the latter providing the temporal context of the former:

Definition 3 (Temporal context of an erased section). Let G be a digraph, ω ∈ W(G) and
ωk,k′ ∈ LES(ω). We denote LES(ω)<k,k′ ⊂ LES(ω) the subset of loop-erased sections ωl,l′ which strictly

include ωk,k′ as left subwalk, i.e. l ≤ k < k′ < l′. Because we require k′ < l′ strictly, LES(ω)<k,k′ may be

empty. Otherwise, we denote ωmin
k,k′ the smallest element of LES(ω)<k,k′ for inclusion.

By construction, if ωmin
k,k′ exists, it is the tightest erased section which comprises ωk,k′ entirely. It

provides the relevant temporal context for ωk,k′ since anything outside of ωmin
k,k′ creates no further

chronological constraints on ωk,k′ beyond those on ωmin
k,k′ . This is because vertices appearing in the

loop-erased walk at the start of ωmin
k,k′ cannot appear again inside of it by Lemma 1, so are necessarily

avoided by ωk,k′ . Hence, any additional constraint that Lawler’s process imposes on ωk,k′ as compared
to ωmin

k,k′ arise solely from within ωmin
k,k′ .

Example 2. Let ω = 12324522 be the walk of Example 1 and consider its loop-erased section ω1,3. Since
LES(12324522) = {ω1,3, ω3,6, ω1,6, ω6,7, ω3,7, ω1,7}, then LES(σ)<1,3 = {σ1,6, σ1,7}. Indeed, both section
ω1,6 and ω1,7 strictly contain ω2,4. Furthermore, the smallest of these by inclusion is ωmin

1,3 = ω1,6, i.e.
ω1,6 is the shortest loop-erased section strictly containing ω1,3. At the opposite, there is no loop-erased
section strictly containing ω3,7 ∈ LES(ω), that is LES(ω)<4,8 = ∅ and ωmin

4,8 does not exist.

We can now control the loop-erased sections that a co-product may extract by admitting only those
cuts which are corollas within their relevant temporal context and only if those cuts are contiguous
subwalks including the last petals of the corolla:

Definition 4 (Admissible cuts). Let G be a digraph and ω = w1 . . . wℓ ∈ W(G). A non-empty loop-
erased section ωk,k′ := wkwk+1 . . . wk′ ∈ LES(ω) is an admissible cut of ω when ωk,k′ ̸= ω and either
ωl,l′ := ωmin

k,k′ does not exist or wk does not appear in wk′+1 · · ·wl′ . The set of admissible cuts of ω is
denoted AdC(ω).

5

Remark 5. The condition that for ωk,k′ ∈ LES(ω), ωl,l′ := ωmin
k,k′ either does not exist or wk does not

appear in wk′+1 · · ·wl′ implies that admissible cuts can only be made right to left in the walk, that is
from the latest to the earliest, in reverse chronological order.

Example 3. In the complete graph K5, consider the walk

ω = 12324345 = 2

3

4

1 5

1

2

3

4

5

6

7

The loop-erased sections ω1,3 = 232 ∈ LES(ω) and ω4,6 = 434 ∈ LES(ω) are both admissible cuts of ω.
At the opposite, ω2,5 = 3243 /∈ LES(ω) and so is not an admissible cut.

Example 4. In the walk

ω = 12131 =

1

2 3

1
2 3

4

subwalk ω2,4 ∈ LES(ω) is an admissible cut of ω, while ω0,2 = 121 ∈ LES(ω) is not admissible because
vertex 1 is visited again by ωmin

0,2 after completion of ω0,2.

The notion of admissible cut is well defined because the property of being admissible does not depend
on the order in which admissible cuts are considered and removed from the original walk. In particular,
if a loop-erased section is an admissible cut of an admissible cut of a walk or of its remainder, then it is
an admissible of that walk and vice-versa. This is significant because it indicates that, in spite of the
strong chronological constraints created by Lawler’s process, cutting out admissible cuts does not alter
the other cuts relevant temporal context and thence, their admissibility:

Proposition 2. Let G be a digraph and ω ∈ W(G).

Case 1. If k < k′ < l < l′ or l < l′ < k < k′ then,

ωk,k′ ∈ AdC(ω) and ωl,l′ ∈ AdC(ωk,k′) ⇐⇒ ωl,l′ ∈ AdC(ω) and ωk,k′ ∈ AdC(ωl,l′).

Case 2. If k < l < l′ ≤ k′ then,

ωk,k′ ∈ AdC(ω) and ωl,l′ ∈ AdC(ωk,k′) ⇐⇒ ωl,l′ ∈ AdC(ω) and ωk,k′

l,l′ ∈ AdC(ωl,l′).

Proof. Case 1. We assume k < k′ < l < l′ without loss of generality (wlog), pictorially this is the
situation where

ω = w0 . . . wk . . . wk′ . . . wl . . . wl′ . . . wℓ =

0

l k

ℓ

ω0k

ωk′l

ωl′ℓ

ωkk′ ωll′

Suppose that ωk,k′ ∈ AdC(ω) and ωl,l′ ∈ AdC(ωk,k′), we first establish that ωl,l′ ∈ AdC(ω).

Given that ωk,k′ ∈ LES(ω), a closed subwalk is erased from ω if and only if it is either erased
from inside of the ωk,k′ section or from outside of it, i.e. ωk,k′ . This is because, by Lemma 1, erased
sections cannot straddle over one-another owing to their step-by-step erasure in chronological order.

6

Here, ωl,l′ ∈ AdC(ωk,k′) and since ωk,k′ ∈ LES(ω), then ωl,l′ is an erased closed subwalk of within an
erased closed subwalk of ω. This indicates that ωl,l′ ∈ LES(ω).

To show that ωl,l′ is an admissible loop-erased section of ω, consider the set LES(ω)<l,l′ of loop-erased

sections of ω which strictly include ωl,l′ as subwalk. If ωmin
l,l′ does not exist, then ωl,l′ is admissible,

ωl,l′ ∈ AdC(ω). Suppose instead that ωm,m′
:= ωmin

l,l′ exists and recall that ωl,l′ ∈ AdC(ωk,k′). This
implies one of the two following possibilities:

i) (ωk,k′)
min
l,l′ does not exist then,

(a) either m ∈ {1, . . . , k} ∪ {k′, . . . , l} and thus ωm,m′

k,k′ ∈ LES(ωk,k′)
<
l,l′ ̸= ∅ so its minimum exists,

a contradiction;

(b) or m ∈ {k+1, . . . , k′ − 1} but then ωk,k′ ∈ AdC(ω) implies ωm,m′
/∈ LES(ω), a contradiction.

ii) ωn,n′
:= (ωk,k′)

min
l,l′ exists, n ≤ l < l′ < n′, and

(a) if k < n < k′ then ωk,k′ ∈ AdC(ω) implies ωn,n′
/∈ LES(ωk,k′) a contradiction;

(b) if n ≥ k′ then ωmin
l,l′ = (ωk,k′)

min
l,l′ so ωl,l′ ∈ AdC(ωk,k′) implies ωl,l′ ∈ AdC(ω);

(c) if n ≤ k then ωn,n′ ∈ LES(ω)<l,l′ i.e. either ω
m,m′

is a subwalk of ωn,n′
or the two are the same

and in both cases ωl,l′ ∈ AdC(ωk,k′) implies ωl,l′ ∈ AdC(ω).

This shows that ωl,l′ ∈ AdC(ω). Second, we establish that ωk,k′ ∈ AdC(ωl,l′).

Since ωk,k′ ∈ AdC(ω) and given that k′ < l implies that ωk,k′ is an erased closed subwalk from outside
of ωl,l′ , then ωk,k′ ∈ LES(ωl,l′). Supposing that ωmin

k,k′ does not exist then (ωl,l′)
min
k,k′ does not exist either

and ωk,k′ ∈ AdC(ωl,l′). Now suppose instead that ωmin
k,k′ exists, then (ωl,l′)

min
k,k′ is either identical to ωmin

k,k′

or is a subwalk of it. In both situations ωk,k′ ∈ AdC(ω) then entails that vertex wk = w′
k is not visited

again after step k′ in ωmin
k,k′ and its subwalks, hence ωk,k′ ∈ AdC(ωl,l′).

Conversely, assuming that ωl,l′ ∈ AdC(ω) and ωk,k′ ∈ AdC(ωl,l′) and proceeding as above we obtain
that ωk,k′ ∈ AdC(ω) and ωl,l′ ∈ AdC(ωk,k′), which proves Case 1 of the Proposition.

Case 2. k < l < l′ ≤ k′, pictorially this is the situation where,

ω = w0 . . . wk . . . wl . . . wl′ . . . wk′ . . . wℓ =
k

l

ω
k
l

ω
l ′k

′

ωll′

0 ℓω0k ωk′ℓ ,

or

ω = w0 . . . wk . . . wl . . . wk′=l′ . . . wℓ =
k

ωkl ωll′

0 ℓω0k ωl′ℓ .

We assume that ωl,l′ ∈ AdC(ω) and ωk,k′

l,l′ ∈ AdC(ωl,l′) and first establish that ωk,k′ ∈ AdC(ω).

Since ωk,k′

l,l′ ∈ LES(ωl,l′), by Lemma 1 there exists no pair of integersm,m′ with 0 ≤ m ≤ k ≤ m′ ≤ k′ ≤ ℓ
and wm = wm′ ∈ V (LEWk(ωl,l′)). Additionally, k < l < l′ ≤ k′ implies that LEWk(ωl,l′) = LEWk(ω).
Replacing the former with the latter gets wm ∈ V (LEWk(ω)) which entails that ωk,k′ ∈ LES(ω) by
Lemma 1. It remains to verify that ωk,k′ is admissible. To this end remark that (ωl,l′)

min
k,k′ exists if and

7

only if ωmin
k,k′ exists since k < l < l′ ≤ k′ and, by assumption, ωl,l′ ∈ AdC(ω). In this case (ωl,l′)

min
k,k′ = ωmin

k,k′

so ωk,k′ ∈ AdC(ω).

Second we show that ωl,l′ ∈ AdC(ωk,k′). By assumption ωl,l′ ∈ AdC(ω), then ωl,l′ is a closed erased
subwalk of ω and, by k < l < l′ ≤ k′, it is more precisely a subwalk of ωk,k′ . Then ωl,l′ ∈ LES(ωk,k′).

To verify that the loop-erased section ωl,l′ is admissible in ωk,k′ , observe that assumption ωk,k′

l,l′ ∈ AdC(ωl,l′)
implies, depending on the situation:

i) if l′ < k′ then ωk,k′ ∈ LES(ωk,k′)<l,l′ and so (ωk,k′)min
l,l′ = ωmin

l,l′ ;

ii) if l′ = k′ then LES(ωk,k′)<l,l′ is empty and (ωk,k′)min
l,l′ does not exist.

Therefore in both situations ωl,l′ is an admissible cut of ωk,k′ .

The converse results, namely proving that ωl,l′ ∈ AdC(ω) and ωk,k′

l,l′ ∈ AdC(ωl,l′) while assuming

ωk,k′ ∈ AdC(ω) and ωl,l′ ∈ AdC(ωk,k′) are obtained completely similarly, yielding Case 2 of the
Proposition.

2.2. All walks are totally-ordered temporal trees

Lemma 1 and Proposition 2 strongly suggest that any walk on any graph is chronologically equivalent
to a tree where the root node is the self-avoiding skeleton of the walk and each non-root node stands
for a simple cycle, see Theorem 4 below. In that tree, Lawler’s procedure erases nodes from the leaves
down to the root and operates on the branches from left to right (or more precisely along the direction
given to time). That is, time totally orders the walk’s tree structure. Formally, this translates into a
total order on the set of admissible cuts of a walk:

Definition 5 (Time-ordering of the admissible cuts). LetG be a digraph and ω ∈ W(G). Assuming
that AdC(ω) ̸= ∅ we define the relation ⩽ on AdC(ω) as follows:

ωk,k′ , ωl,l′ ∈ AdC(ω) : ωk,k′ ⩽ ωl,l′ ⇐⇒ l ≤ k < k′ ≤ l′ or k < k′ < l < l′.

That is, ωk,k′ ⩽ ωl,l′ if and only if either ωk,k′ is erased prior to ωl,l′ or, if both are erased simultaneously,

ωk,k′ began after ωl,l′ .

Example 5. Consider the walk,

ω = 34555444678879 =
3 4

5

6 7

8

9
1

2

3 4

5
6

7

8 9

10

11

12

13

and three of its admissible cuts, ω2,4 = 555, ω3,4 = 55 and ω10,11 = 88. Then ω3,4 ⩽ ω2,4 ⩽ ω10,11.

Proposition 3. Let G be a digraph, ω ∈ W(G) and suppose that AdC(ω) ̸= ∅. Then AdC(ω) is totally
ordered by ⩽ .

Proof. By contradiction. Suppose that there exists two admissible cuts of ω, ωk,k′ and ωl,l′ such that
k < l′ wlog, and which cannot be time-ordered. Then necessarily k < l ≤ k′ ≤ l′. But since both ωk,k′

and ωl,l′ are admissible they are loop-erased sections of ω. But by Lemma 1 they may not straddle, that
is we may not have k < l ≤ k′ ≤ l′, a contradiction. Transitivity, reflexivity and anti-symmetry of ⩽
follow immediately.

8

Example 6. Consider again the walk of Example 5. It admissible cuts set is

AdC(ω) = {ω1,7, ω2,4, ω3,4, ω5,7, ω6,7, ω9,12, ω10,11},

and the total order on it is

ω3,4 ⩽ ω2,4 ⩽ ω6,7 ⩽ ω5,7 ⩽ ω1,7 ⩽ ω10,11 ⩽ ω9,12.

Theorem 4 (All walks are temporal-trees). Let G be a digraph and ω ∈ W(G). Then ω has the
temporal-structure of a tree t(ω) whose nodes are totally ordered by ⩽ according to a depth-first order.

Proof. To establish the theorem, we first map walks to cacti then cacti to trees:

Definition 6 (Cactus). Let G be a digraph. A walk ω = w0 . . . wℓ ∈ W(G) is a cactus if and only if
for any 0 ≤ k < k′ ≤ ℓ, wk = wk′ ⇐⇒ ωk,k′ ∈ LES(ω). We denote C the set of all cacti on the complete
graph KN with V (KN) = N and by Cact(G) the vector space spanned by the cacti on G.

In a cactus all repeated vertices delimit valid loop-erased sections, which means that there cannot be
patterns such as ω = 12121 as 212 /∈ LES(ω). Intuitively a cactus is therefore a ‘disentangled’ walk,
where every instance of repeated vertex is the root of a simple-cycle erased by Lawler’s procedure. We
may always map walks to cacti by defining,

C : W(G) → C, (1)

ω = w0 · · ·wℓ 7→ κ := C(ω) = c0 · · · cℓ,

where κ is the cactus defined as follows: c0 = w0 and, for any k ∈ {0, ..., ℓ− 1},

• if LEWk+1(ω) = LEWk(ω)wk+1 then ck+1 = max(V (c0 . . . ck)) + 1;

• else ck+1 = cl where l = max(i ∈ {0, . . . , k}, wl = wk+1).

In words, considering the loop-erased walk LEWk(ω) at step k, if vertex wk+1 reached at step k+1 is
distinct from those of LEWk(ω) then ck+1 is a vertex with integer label given by the length of LEWk(ω)
plus one (an expedient ensuring that we map distinct labels to distinct labels). If instead vertex wk+1

was visited at some step l prior to step k+1 in the loop-erased walk, that is wl · · ·wk+1 closes an erased-
section, then ck+1 is given the same label as cl. For example walk ω = 12121 becomes κ := C(ω) = 12131.
Because the new labels are not labels of nodes of G, it may be that κ is not a valid walk on G but at
least it is a walk on a complete graph KN, see §6.2 below. This is sufficient for our purpose: by definition
ω and κ := C(ω) have the same length, κ is a cactus, and ω and κ share the same temporal structure,

ωk,k′ ∈ AdC(ω) ⇐⇒ κk,k′ ∈ AdC
(
κ
)
. (2)

Since any two simple cycles in cacti share at most one vertex (their roots), we define a tree t(κ) from
κ by drawing a tree-node t for every simple cycle σ of κ. Two nodes t and t′ of the tree are connected
if and only if the corresponding simple cycles σ and σ′ share a vertex in κ. Finally we add a root node
representing the (possibly trivial) self-avoiding skeleton of ω. The time-order ⩽ now totally orders the
nodes of t(κ): for t, t′ two nodes of t(κ) corresponding to simple cycles σ and σ′ of κ, t ⩽ t′ ⇐⇒ σ is
erased prior to σ in κ. This builds a reverse depth-first order on the nodes of t(κ) with the top-left leaf
of the tree corresponding to the first erased simple cycle, hence the smallest as per ⩽ .

9

Example 7. As an example, consider the walk ω = 12332331. Then κ := C(ω) = 12332441 and the
tree τ := t(κ) is

ω =

1

2

3
1

2

3
4

5

6 7

, κ =

1

2

4

3

1

2

3

4

5

6 7

, t(κ) =

Root

d

b
c

a

The simple cycles of κ are 1241, corresponding to node d of the tree; 232 (node b of the tree); 33 (node
a) and 66 (node c). The root node of t(ω) stands for the trivial walk ‘1’ on vertex 1, which is the self-
avoiding skeleton of ω. The time-order on the tree nodes is a ⩽ b ⩽ c ⩽ d ⩽ Root. This is closely
related to the upper-left order ≥tot introduced by Foissy [2], which would lead to Root < d < b < a < c.
In our situation node order increases from top to bottom and from left to right.

Although the tree t(κ) = t(C(ω)) depends on the walk ω, an universal tree can be constructed for
all walks of a given digraph G. Considering only the trees t(κ) obtained from walks with no repeated
sections produces a finite number of structurally distinct trees from all walks on G. These trees can
be ordered partially by inclusion and the resulting poset always admits an unique maximum. This
maximum tree is of paramount importance to G: it is one of the few invariants of its hike monoid [3, 4],
and dictates the shape of all branched continued fractions counting walks on G [5].

3. The co-preLie co-algebra of walks

3.1. Co-product

With the notion of admissible cut, we may now formally define the co-product associated to Lawler’s
process, by mapping a walk to a sum over all its admissible cuts tensored with their remainders:

Definition 7 (Co-product). Let G be a digraph. The co-product associated to Lawler’s process is
the linear map ∆CP defined by,

∆CP :

W(G) → W(G)⊗W(G)

ω 7→ ∆CP(ω) =
∑

ωc∈AdC(ω)

ωc ⊗ ωc.

An essential property of this co-product is that a walk is primitive for it if and only if it is a simple
path or a simple cycle.

Proposition 5. Let G be a digraph and ω ∈ W(G). Then,

∆CP(ω) = 0 ⇐⇒ ω ∈ SAW(G) ∪ SAP(G).

Proof. Let ω = w0 . . . wℓ ∈ W(G). If ω ∈ SAW(G) then it has no cycles and AdC(ω) = ∅ so ∆CP(ω) = 0.
If ω ∈ SAP(G), then LES(ω) = {ω}, AdC(ω) = ∅ since the walk is not an admissible cut of itself,
therefore ∆CP(ω) = 0.

Now suppose that ω /∈ SAW(G)∪SAP(G). Then ω has at least one simple cycle and we may consider
the last such cycle ωk,k′ ∈ LES(ω) erased from ω by Lawler’s process. This simple cycle cannot be ω
itself since ω /∈ SAP(G). Furthermore after step k′ no vertex of LEWk′(ω) is visited again in wk′+1 · · ·wℓ

as otherwise ωk,k′ would not be the last erased simple cycle. This simply indicates that the last erased
simple cycles is not within a wider erased section by virtue of being the last to be removed. Thus ωmin

k,k′

does not exist, ωk,k′ ∈ AdC(ω), and ∆(ω) ̸= 0.

10

Example 8. Consider the walk ω = 1233234441, then

∆CP(1233234441) = 123323441⊗ 44 + 12332341⊗ 444 + 123234441⊗ 33 + 1234441⊗ 2332,

or, graphically,

∆CP

1

2

3

4

1

2

3
4

5

6

7

8

9

 =

1

2

3

4

1

2

3
4

5

6

7
9

⊗ 4

8

+

1

2

3

4

1

2

3
4

5

6

9

⊗ 47

8

+

1

2

3

4

1

2

4

5

6

7

8

9

⊗
3

3 +

1

2

3

4

1

5

6

7

8

9

⊗

2

3

2

3
4

3.2. The co-preLie property

Having established the definition of the co-product associated to the Lawler process and identified
its primitive walks, we now turn to the co-algebraic structure it gives to the walk vector space W(G).
Recall that:

Definition 8. A co-preLie co-algebra is a couple (V ,∆) where V is a vector space and ∆ : V → V ⊗ V
is a linear map such that for any v ∈ V the following relation is satisfied

(∆⊗ Id− Id⊗∆) ◦∆(v) = (Id⊗ τ) ◦ (∆⊗ Id− Id⊗∆) ◦∆(v)

where Id is the identity map and τ is the twisting linear map, τ : V ⊗ V → V ⊗ V , τ(u⊗ v) = v ⊗ u.

Theorem 6. The vector space W(G), equipped with the coproduct ∆CP, is a co-preLie (but not co-unital)
co-algebra.

We present two proofs of this result. The first, given immediately below, is a direct approach based on
the properties of admissible cuts. The second proof, presented in §5, obtains the theorem as a corollary
of the Hopf structure on the tensor algebra generated by W(G) via a brace coalgebra construction.

Proof. Let ω = w0 . . . wℓ ∈ W(G). We begin with evaluating (∆CP ⊗ Id) ◦ ∆CP(ω) explicitly. To that
end consider an admissible cut ωk,k′ ∈ AdC(ω), assuming that ωk,k′ is not self-avoiding nor a simple
cycle as this leads to a 0 result. Then, (∆CP⊗ Id)(ωk,k′ ⊗ωk,k′) yields a sum over cuts that fall into four
distinct cases, depending on the second cut’s coordinates l, l′ relatively to k, k′:

1) l < l′ < k < k′, i.e. ω = w0 · · ·wl · · ·wl′ · · ·wk · · ·wk′ · · ·wℓ, this gets cut as ωk,k′;l,l′ ⊗ ωl,l′ ⊗ ωk,k′ ,

2) k < k′ < l < l′, i.e ω = w0 · · ·wk · · ·wk′ · · ·wl · · ·wl′ · · ·wℓ, this gets cut as ωk,k′;l,l′ ⊗ ωl,l′ ⊗ ωk,k′ ,

3) l < k < k′ < l′, i.e. ω = w0 · · ·wl · · ·wk · · ·wk′ · · ·wl′ · · ·wℓ, this gets cut as ωl,l′ ⊗ ωl,l′

k,k′ ⊗ ωk,k′ ,

4) l < l′ = k < k′, i.e. ω = w0 · · ·wl · · ·wl′=k · · ·wk′ · · ·wℓ, this gets cut as ωl,k′ ⊗ωlk
k,k′ ⊗ωk,k′ . Remark

that ωl,l′ is not an admissible cut of ω because wl′ = wk′ occurs after step l′ in ωmin
l,l′ .

11

By Case 1 of Proposition 2, if an admissible cut falls into situation 1) above, another one will be
admissible as per situation 2). Thus,

(∆CP ⊗ Id) ◦∆CP(ω) =
∑

c∈AdC(ω)
ωk,k′ /∈SAW(G)

ωk,k′ /∈SAP(G)

∑
c′∈AdC(ωk,k′)

ωk,k′;l,l′ ⊗ ωl,l′ ⊗ ωk,k′ l < l′ < k < k′

ωk,k′;l,l′ ⊗ ωl,l′ ⊗ ωk,k′ k < k′ < l < l′,

ωl,l′ ⊗ ωk,k′

l,l′ ⊗ ωk,k′ l < k < k′ < l′,

ωl,k′ ⊗ ωl,k
k,k′ ⊗ ωk,k′ l < l′ = k < k′,

where we used c := ωk,k′ and c′ := ωl,l′ to alleviate the notation.

Now we turn to (Id⊗∆CP) ◦∆CP(ω). Let again ωk,k′ ∈ AdC(ω) be an admissible cut of ω which we
assume not to be a simple cycle as this would lead to a 0 result. Then, (Id⊗∆CP) ◦ (ωk,k′ ⊗ωk,k′) yields
a sum over cuts that fall into two distinct cases, depending on the second cut’s coordinates l, l′ inside
of ωk,k′ :

1) k < l < l′ < k′, that is ω = w0 · · ·wk · · ·wl · · ·wl′ · · ·wk′ · · ·wℓ, which gets cut as ωk,k′ ⊗ωk,k′

l,l′ ⊗ωl,l′ ,

2) k < l < l′ = k′, that is ω = w1 · · ·wk · · ·wl · · ·wl′=k′ · · ·wm, which gets cut as ωk,k′ ⊗ ωk,k′

l,k′ ⊗ ωl,k′ .

Here we do not need to consider the case k = l < l′ ≤ k′. Indeed, either k = l < l′ = k′ then ωl,l′ = ωk,k′

meaning we cut ωk,k′ out of itself, which is not admissible; or k = l < l′ < k′ but then, ωl,l′ is not
admissible because wl′ = wk′ is visited again after step l′. Rather, in that situation it is ωl′,k′ that is
admissible and falls into case 2) above. Thus,

(Id⊗∆CP) ◦∆CP(ω) =
∑

c∈AdC(ω)

ωk,k′ /∈SAP(ω)

∑
c′∈AdC(ωk,k′)

{
ωk,k′ ⊗ ωk,k′

l,l′ ⊗ ωl,l′ k < l < l′ < k′,

ωk,k′ ⊗ ωk,k′

l,k′ ⊗ ωl,k′ k < l < l′ = k′,

where we used c := ωk,k′ and c′ := ωl,l′ to alleviate the notation. By Case 2 of Proposition 2, gathering
everything, we obtain

(∆CP ⊗ Id− Id⊗∆CP) ◦∆CP(ω) =
∑

c∈AdC(ω)
ωk,k′ /∈SAW(G)

ωk,k′ /∈SAP(G)

∑
c′∈AdC(ωk,k′)

l<l′<k<k′

k<k′<l<l′

ωk,k′;l,l′ ⊗ ωl,l′ ⊗ ωk,k′ .

Remark how k, k′ and l, l′ now play completely symmetric roles in the above so that the co-prelie relation
holds for all walks ω ∈ W(G),

(∆CP ⊗ Id− Id⊗∆CP) ◦∆CP(ω) = (Id⊗ τ) ◦ (∆CP ⊗ Id− Id⊗∆CP) ◦∆CP(ω).

This indicates, perhaps suprisingly, that Lawler’s intuitive chronological removal of the simple cycles
from walks naturally endows their vector space with a sophisticated co-preLie structure.

Example 9. Consider again the walk ω = 1233234441 of Example 8. Then,(
∆CP ⊗ Id

)
◦∆CP(1233234441) = 12332341⊗ 44⊗ 44 + 12323441⊗ 33⊗ 44 + 123441⊗ 2332⊗ 44

+ 1232341⊗ 33⊗ 444 + 12341⊗ 2332⊗ 444

+ 12323441⊗ 44⊗ 33 + 1232341⊗ 444⊗ 33 + 1234441⊗ 232⊗ 33

+ 123441⊗ 44⊗ 2332 + 12341⊗ 444⊗ 2332,

12

(
Id⊗∆CP

)
◦∆CP(1233234441) = 12332341⊗ 44⊗ 44 + 1234441⊗ 232⊗ 33.

From this, reordering the terms for convenience, we obtain(
∆CP ⊗ Id− Id⊗∆CP

)
◦∆CP(1233234441) = 12323441⊗ 33⊗ 44 + 12323441⊗ 44⊗ 33

+ 123441⊗ 2332⊗ 44 + 123441⊗ 44⊗ 2332

+ 1232341⊗ 33⊗ 444 + +1232341⊗ 444⊗ 33

+ 12341⊗ 2332⊗ 444 + 12341⊗ 444⊗ 2332,

which is invariant under the action of Id⊗ τ as dictated by Theorem 6.

4. Hopf structures on the tensor and symmetric algebras of walks

As in the case of trees due to Connes and Kreimer in [1] or the case of decorated trees due to Foissy
[2], for any walk, we can extend the notion of admissible cut to allow for multiple simultaneous cuts,
which we call extended admissible cuts. Thanks to this construction, a dual of Oudon and Guin’s own
[8], we get a co-product compatible with the tensor and symmetric algebra structures generated by walks
on G.

4.1. Extended admissible cuts

We begin by defining the notion of extended admissible cuts of a walk, then show that they turn the
tensor and symmetric algebras of walks into Hopf algebras. Finally, we present three special families of
walks, ladders, corollas and cacti, and explain how we can make them into Hopf algebras.

Definition 9. Let G be a finite connected non-empty graph and K a field of characteristic 0.

1. We define T ⟨W(G)⟩ as the tensor algebra generated by W(G). To alleviate the notation, for
walks ω1, . . . , ωp ∈ W(G), the tensor ω1 ⊗ · · · ⊗ ωp will be denoted by ω1 | . . . |ωp. Such elements
of T ⟨W(G)⟩ are called forests.

2. Let ω = w0 . . . wℓ be a walk in G. In keeping with common terminology for Hopf algebras we call
degree deg(ω) the length of the walk ω, i.e. deg(ω) = ℓ

We recall that the tensor algebra T ⟨W(G)⟩ is equipped with the concatenation product •,

• :

{
T ⟨W(G)⟩ ⊗ T ⟨W(G)⟩ −→ T ⟨W(G)⟩

ω1 | . . . |ωm ⊗ ω′
1 | . . . |ω′

n 7−→ ω1 | . . . |ωm |ω′
1 | . . . |ω′

n,

and the degree deg(ω1| . . . |ωm) =
m∑
i=1

deg(ωi) is the sum of the involved walks’ degrees. By construction,

(T ⟨W(G)⟩, •) is an unital associative algebra with unit the empty forest (), identified with 1 ∈ K, written
in bold font so as to distinguish it from a vertex label ‘1’.

Remark 6. Seeing the walks as words on vertices and setting their degrees to be the number of vertices
in these words leads to inconsistencies with the coproduct ∆CP, e.g. ∆CP(w1w1w1) = w1w1 ⊗ w1w1 but
deg(w1w1) = 2 so that deg(w1w1) + deg(w1w1) = 4 yet deg(w1w1w1) = 3. Ultimately, this indicates
that walks really ought to be seen as words on edges rather than vertices, something consistent with the
Cartier-Foata monoids of hikes [4].

13

Definition 10 (Extended admissible cut). Let G be a digraph and ω ∈ W(G). An extended
admissible cut of ω is the tensor product of n ∈ N\{0} consecutive admissible cuts ωki,k

′
i ∈ AdC(ω)

which are non-overlapping in ω, that is k1 < k′
1 < k2 < k′

2 < · · · < kn < k′
n. We write,

ωk1,k′1;...;kn,k
′
n := ωk1,k′1 | . . . |ωkn,k′n ∈ T ⟨W(G)⟩.

The set of extended admissible cuts of ω is denoted EAdC(ω). Observe that AdC(ω) ⊂ EAdC(ω).

To alleviate the notation whenever possible we designate an extended admissible cut by a single
letter, e.g. ωc ∈ EAdC(ω) and might then simply write that c is an extended admissible cut of ω.

Example 10. Consider the walk ω = 123324441, then

EAdC(ω) = {33, 44, 444, 2332, 33 | 44, 33 | 444, 2332 | 44, 2332 | 444}.

As stated Definition 10 the admissible cuts constituting an extended admissible cut ωc of a walk
ω = w0 · · ·wℓ are non-overlapping, i.e. ωc := ωk1,k′1;...;kn,k

′
n ∈ EAdC(ω) satisfies

0 ≤ k1 < k′
1 < k2 < k′

2 < · · · < kn < k′
n ≤ ℓ. We can therefore meaningfully denote

ωc := ωk1,k′1;...;kn,k
′
n
= w0 . . . wk1wk′1+1 . . . wk2wk′2+1 . . . wknwk′n+1 . . . wℓ,

for what remains of ω after erasure of all ωki,k
′
i . Since admissible cuts are closed subwalks of a walk, ωc

is still a walk. Together with the non-overlapping condition this implies that, for any 1 ≤ i ≤ n,

ωk1,k′1;...;kn,k
′
n ∈ EAdC(ω) ⇒ ωki,k

′
i ∈ AdC(ωk1,k′1;...;ki−1,k′i−1;ki+1,k′i+1;...;kn,k

′
n
). (3)

Extended admissible cuts are ‘well behaved’ in the sense that such cuts and their remainders satisfy an
analog of Proposition 2 for admissible cuts:

Proposition 7. Let G a digraph, ω ∈ W(G) a walk, ωc ∈ EAdC(ω). Then,

ωc′ ∈ AdC(ωc) ⇒ ωc′ ∈ AdC(ω),

which also implies
ωc′ ∈ EAdC(ωc) ⇒ ωc′ ∈ EAdC(ω).

Furthermore,
ωc′ ∈ EAdC(ωc) ⇒ ωc′ ∈ EAdC(ω).

Proof. Let ωc := ωk1,k′1;...;kn,k
′
n be an extended admissible cut of ω. By virtue of Proposition 2, an

admissible cut of the remainder of an admissible cut of a walk is an admissible cut of that walk,

ωk,k′ ∈ AdC(ω), ωl,l′ ∈ AdC(ωk,k′) ⇒ ωl,l′ ∈ AdC(ω).

In addition ω
k1,k′1
k2,k′2;...;kn,k

′
n
∈ AdC(ωk2,k′2;...;kn,k

′
n
) by virtue of the fact that extended admissible cuts only

comprise non-overlapping admissible cuts. Therefore we get

ωl,l′ ∈ AdC(ωk1,k′1;...;kn,k
′
n
) ⇒ ωl,l′ ∈ AdC(ωk2,k′2;...;kn,k

′
n
).

Iterating this observation leads to the first claim for ωc′ := ωl,l′ . Note that since all cuts are non-
overlapping we could have chosen to remove the ki, k

′
i cuts in any order in the iteration. The result for

extended admissible cuts is now immediate since such cuts comprise only non-overlapping admissible
cuts to each of which we apply the result just proven.

For the second claim, observe that by Case 2 of Proposition 2, ωc ∈ AdC(ω) and ωc′ ∈ AdC(ωc)
implies ωc′ ∈ AdC(ω). The result for extended admissible cuts follows once more from the observation
that such cuts comprise only non-overlapping admissible cuts, each of which behaves as dictated by
Case 2 of Proposition 2.

14

4.2. Hopf algebra on walks

We may now define a co-product on T ⟨W(G)⟩ by relying on extended admissible cuts and their
remainders:

Definition 11 (Extended co-product). Let G be a digraph. Consider the morphism of algebras ∆H

defined by:

∆H :

T ⟨W(G)⟩ −→ T ⟨W(G)⟩ ⊗ T ⟨W(G)⟩

ω 7−→ ∆H(ω) = 1⊗ ω + ω ⊗ 1+
∑

c∈EAdC(ω)

ωc ⊗ ωc,

where ω is a walk and the sum runs over all extended admissible cuts ωc of ω.

Theorem 8. Let G a finite digraph and consider the triple HT := (T ⟨W(G)⟩, •,∆H). Equipped with the
map deg, it defines a graded connected Hopf algebra.

Proof. Observe first that deg is a graduation by direct calculation. Second, to prove the theorem we
must establish that ∆H is coassociative. Since ∆H is a morphism of algebras it is sufficient to show that
for any walk ω ∈ W(G),

(∆H ⊗ Id) ◦∆H(ω) = (Id⊗∆H) ◦∆H(ω).

Let ω be a walk in G. Then

(∆H ⊗ Id) ◦∆H(ω) = ω ⊗ 1⊗ 1+ 1⊗ ω ⊗ 1+ 1⊗ 1⊗ ω +
∑

c∈EAdC(ω)

ωc ⊗ ωc ⊗ 1

+
∑

c∈EAdC(ω)

ωc ⊗ 1⊗ ωc +
∑

c∈EAdC(ω)

1⊗ ωc ⊗ ωc +
∑

c∈EAdC(ω)

∑
c′∈EAdC(ωc)

(ωc)c′ ⊗ (ωc)
c′ ⊗ ωc,

Similarly,

(Id⊗∆H) ◦∆H(ω) = ω ⊗ 1⊗ 1+ 1⊗ ω ⊗ 1+ 1⊗ 1⊗ ω +
∑

c∈EAdC(ω)

1⊗ ωc ⊗ ωc

+
∑

c∈EAdC(ω)

ωc ⊗ 1⊗ ωc +
∑

c∈EAdC(ω)

ωc ⊗ ωc ⊗ 1+
∑

c∈EAdC(ω)

∑
c′∈EAdC(ωc)

ωc ⊗ (ωc)c′ ⊗ (ωc)c
′
,

So the theorem follows if we prove that∑
c∈EAdC(ω)

∑
c′∈EAdC(ωc)

(ωc)c′ ⊗ (ωc)
c′ ⊗ ωc =

∑
c∈EAdC(ω)

∑
c′∈EAdC(ωc)

ωc ⊗ (ωc)c′ ⊗ (ωc)c
′
. (4)

Consider first terms from the left-hand side (LHS) of the above, i.e. of the form

(ωc)c′ ⊗ (ωc)
c′ ⊗ ωc (5)

with c ∈ EAdC(ω) and c′ ∈ EAdC(ωc).

ωk ⊗ (ωk)c ⊗ ωc

with ωk ∈ EAdC(ω) and ωc ∈ EAdC(ωk). This implies that the LHS of Eq. (4) is comprised in its
right-hand side (RHS).

Second, consider terms from the RHS of Eq. (4),

ωc ⊗ (ωc)c′ ⊗ (ωc)c
′
, (6)

15

with c ∈ EAdC(ω) and c′ ∈ EAdC(ωc). Since c ∈ EAdC(ω) and c′ ∈ EAdC(ωc) then c′ ∈ EAdC(ω) by
the second result of Proposition 7. Since c′ ∈ EAdC(ωc), c′ is entirely included within cut c and we can
define l := c\c′, c = l ∪ c′ to be the extended admissible cut ωl ∈ EAdC(ωc′) which cuts out c from the
remainder ωc′ . By construction (ωc′)

l = (ωc)c′ and (ωc′)l = ωc,c′ . Consequently, any term of the form
given by Eq. (6) is also of the form

(ωc′)l ⊗ (ωc′)
l ⊗ ωc′

with ωc′ ∈ EAdC(ω) and ωl ∈ EAdC(ωc′). This implies that the RHS of Eq. (4) is comprised in its LHS.

The equality of Eq. (4) is proven and ∆H is coassociative. Thus we have a graded connected bialgebra
hence a Hopf algebra.

Remark 7. In the proof above, we showed that the LHS of Eq. (4) is comprised in its RHS. Observe that
this is not true for admissible cuts, indeed we used that k := c ∪ c′ is the union of two non-overlapping
cuts and so while k ∈ EAdC(ω), we have k /∈ AdC(ω). This explains why ∆CP fails to be coassociative.

At the opposite, it would still be true that the RHS of Eq. (4) is comprised in its LHS had we allowed
only for admissible cuts. This is because if c′ ∈ AdC(ω) and c ∈ AdC(ωc′) then l := c\c′ is an admissible
cut of AdC(ωc′) by Proposition 2. This indicates that all terms generated by

(
Id⊗∆CP

)
◦∆CP can be

found in those generated by
(
∆CP ⊗ Id

)
◦∆CP, see e.g. Example 9

Remark 8. Note that we can always see any finite walk on an infinite digraph as a walk on a finite
digraph. As a corollary, properties of the product, co-product, unit, co-unit and existence of the antipode
extend to the case of walks on infinite digraphs where HT is still a Hopf algebra.

Corollary 9. Let G a digraph. The triple HT := (T ⟨W(G)⟩, •,∆H) is a Hopf algebra.

Example 11. Let ω = 1233234441 be the walk of Examples 8, 9 and 10 and consider the reduced
co-product ∆̃H(ω) := ∆H(ω)− 1⊗ ω − ω ⊗ 1. Then

∆̃H(ω) = 123323441⊗ 44 + 12332341⊗ 444 + 123234441⊗ 33 + 1234441⊗ 2332

+ 12323441⊗ 33 | 44 + 1232341⊗ 33 | 444 + 123441⊗ 2332 | 44 + 12341⊗ 2332 | 444.

Thus we have,

(∆̃H ⊗ Id) ◦ ∆̃H(ω) =

12332341⊗ 44⊗ 44 + 12323441⊗ 33⊗ 44 + 123441⊗ 2332⊗ 44 + 1232341⊗ 33 | 44⊗ 44

+ 12341⊗ 2332 | 44⊗ 44

+ 1232341⊗ 33⊗ 444 + 12341⊗ 2332⊗ 444

+ 12323441⊗ 44⊗ 33 + 1232341⊗ 444⊗ 33 + 1234441⊗ 232⊗ 33 + 123441⊗ 232 | 44⊗ 33

+ 12341⊗ 232 | 444⊗ 33

+ 12341⊗ 444⊗ 2332 + 123441⊗ 44⊗ 2332

+ 12341⊗ 232 | 44⊗ 33 | 44 + 123441⊗ 232⊗ 33 | 44 + 1232341⊗ 44⊗ 33 | 44
+ 12341⊗ 232⊗ 33 | 444
+ 12341⊗ 44⊗ 2332 | 44.

The presentation has been organized for the sake of readability: each line above represents terms steming
from the same term found in ∆̃H(ω), while an additional indentation denotes a continuing line. Similarly,

(Id⊗ ∆̃H) ◦ ∆̃H(ω) = 12332341⊗ 44⊗ 44

16

+ 1234441⊗ 232⊗ 33

+ 12323441⊗ 44⊗ 33 + 12323441⊗ 33⊗ 44

+ 1232341⊗ 33⊗ 444 + 1232341⊗ 444⊗ 33 + 1232341⊗ 33 | 44⊗ 44 + 1232341⊗ 44⊗ 33 | 44
+ 123441⊗ 2332⊗ 44 + 123441⊗ 232 | 44⊗ 33 + 123441⊗ 232⊗ 33 | 44 + 123441⊗ 44⊗ 2332

+ 12341⊗ 232 | 444⊗ 33 + 12341⊗ 2332 | 44⊗ 44 + 12341⊗ 232 | 44⊗ 33 | 44 + 12341⊗ 2332⊗ 444

+ 12341⊗ 444⊗ 2332 + 12341⊗ 232⊗ 33 | 444 + 12341⊗ 2332 | 44.

A close examination of both results reveals their equality as predicted by Theorem 8.

Let G be a digraph. Let G be a finite connected non-empty graph. We denote by I the vector
space spanned by the elements ω1| . . . |ωn − ωσ(1)| . . . |ωσ(n) where ω1| . . . |ωn ∈ T ⟨W(G)⟩ and σ is a
permutation. We define

S⟨W(G)⟩ := T ⟨W(G)⟩
I

.

In the vector space S⟨W(G)⟩ the concatenation product • becomes the disjoint-union product □. By
construction, S⟨W(G)⟩ is the Abelianization of the Hopf algebra T ⟨W(G)⟩ and therefore :

Corollary 10. Let G be a digraph. Then HS := (S⟨W(G)⟩,□,∆H) is a Hopf algebra.

4.3. Antipode

In this section we construct the antipodes explicitly, relying on the total time-order introduced in
Definition 5.

Definition 12. Let ω be a walk, AdC(ω) be its set of admissible cuts which we assume to be not
empty. Let 1 ≤ n ≤ |AdC(ω)| be a positive integer, ci ∈ AdC(ω) a collection of n totally ordered,
distinct, non-overlapping admissible cuts of ω with c1 ⩽ · · · ⩽ cn. Let e := c1 | . . . | cn, we may also
conveniently use the notation |e| := n. We associate to e a tensor Te and a disjoint union Se as follows,

Te := ωc1,...,cn ⊗ (ωc1,...,cn−1)
cn ⊗ · · · ⊗ (ωc1,...,ci−1

)ci ⊗ · · · ⊗ (ωc1)
c2 ⊗ ωc1 ,

and
Se := ωc1,...,cn □ (ωc1,...,cn−1)

cn □ · · · □ (ωc1,...,ci−1
)ci □ · · · □ (ωc1)

c2 □ωc1 .

Example 12. Consider again the walk of Example 6,

ω = 12333222456657 =
1 2

3

4 5

6

7
1

2

3 4

5
6

7

8 9

10

11

12

13

and three of its admissible cuts c1 = ω2,4, c2 = ω3,4 and c3 = ω10,11. Since ω3,4 ⩽ ω2,4 ⩽ ω10,11, for
e := c1 | c2 | c3, |e| = 3,

Te =
1 2

3

4 5

6

7
1

2
5

6
7

8 9

10 12

13 |
6

11

|
3

3

|
3

4

17

Theorem 11. Let G be a digraph and ω ∈ W(G) a walk. Then, in T ⟨W(G)⟩, the antipode S(ω)
calculated on ω is,

S(ω) = −ω −
∑

e∈EAdC(ω)

(−1)|e|Te = −ω −
|AdC(ω)|∑

n=1

∑
c1< ···< cn

ci∈AdC(ω)

(−1)n Tc1|...|cn

where |AdC(ω)| designates the cardinality of AdC(ω).

Corollary 12. Let G be a digraph and ω ∈ W(G) a walk. Then, in S⟨W(G)⟩, the antipode S(ω)
calculated on ω is,

S(ω) = −ω −
∑

e∈EAdC(ω)

(−1)|e|Se = −ω −
|AdC(ω)|∑

n=1

∑
c1< ···< cn

ci∈AdC(ω)

(−1)n Sc1|...|cn ,

where |AdC(ω)| designates the cardinality of AdC(ω).

Proof of Theorem 11. We prove the theorem by induction on the cardinality of AdC(ω), using the
relation ε = • ◦ (Id ⊗ S) ◦ ∆H where ε is the counity of the Hopf algebra T ⟨W(G)⟩, and the algebra
antimorphism relation S(ω|ω′) = S(ω′)S(ω) for ω, ω′ walks.

Firstly, if AdC(ω) = ∅ then ω ∈ SAW(G) ∪ SAP(G) and therefore S(ω) = −ω.

Secondly, if AdC(ω) = {ωk,k′} then by Proposition 2, ωk,k′ ∈ SAW(G) ∪ SAP(G) and

∆H(ω) = ω ⊗ 1+ 1⊗ ω + ωk,k′ ⊗ ωk,k′ .

Consequently,
S(ω) = −ω + ωk,k′ ⊗ ωk,k′ ,

as claimed by the theorem.

Thirdly, we assume that there exists and integer n ∈ N such that the theorem is satisfied by any
walk ω′ ∈ W(G) with |AdC(ω′)| ≤ n. Consider ω ∈ W(G) a walk with |AdC(ω)| = n+ 1. Then,

S(ω) =− ω −
∑

k1<k′1<···<kn<k′n

ωki,k
′
i∈AdC(ω)

ωk1,k′1;...;kn,k
′
n

• S(ωk1,k′1 • . . . • ωkn,k′n)

=− ω −
∑

k1<k′1<···<kn<k′n

ωki,k
′
i∈AdC(ω)

ωk1,k′1;...;kn,k
′
n

• S(ωks,k′s) • . . . • S(ωk1,k′1).

Thanks to Proposition 2,
n⋃

i=1

AdC(ωki,k
′
i) ⊂ AdC(ω).

and as a consequence, ∀i ∈ {1, . . . , n}, |AdC(ωki,k
′
i)| ≤ n and by induction hypothesis the theorem holds

true for all ωki,k
′
i . In particular, since any collection of m admissible cuts of any ωki,k

′
i is totally ordered

by ⩽ per Proposition 3,

S(ω) = −ω −
|AdC(ω)|∑

n=1

∑
ωk1,k

′
1< ···< ωkn,k′n

ωki,k
′
i∈AdC(ω)

(−1)nT
ωk1,k

′
1 | ... |ωkn,k′n

.

18

Example 13. Consider the walk

ω = 12223445 =
1 2 3 4 5

1 4 5 7

2 3 6

which has three admissible cuts AdC(ω) = {ω2,3, ω1,3, ω5,6} with ω2,3 ⩽ ω1,3 ⩽ ω5,6. Then the
antipode of ω is

S(ω) =− ω +
1 2 3 4 5

1 4 5 7

2 6

|
2

3

+
1 2 3 4 5

1 4 5 7

2 3

|
4

6

+
1 2 3 4 5

1 4 5 7

6

|
2

2 3

−
1 2 3 4 5

1 4 5 7 |
4

6

|
2

2 3

−
1 2 3 4 5

1 4 5 7

6

|
2

2

|
2

3

−
1 2 3 4 5

1 4 5 7

2

|
4

6

|
2

3

+
1 2 3 4 5

1 4 5 7 |
4

6

|
2

2

|
2

3

.

5. Brace coalgebra and codendriform bialgebra on walks

5.1. Brace coalgebra

We show in this section that by paying attention to the number of admissible cuts appearing
simultaneously in extended admissible cuts, we may endow T ⟨W(G)⟩ with a brace coalgebra structure
from which the preLie co-structure onW(G) is recovered. We begin by recalling the necessary definitions
pertaining to brace coalgebras.

Definition 13 (B∞-algebra). Let V be a vector space, T ⟨V⟩ the tensor algebra generated by V and
let π be the canonical projection from T ⟨V⟩ to V . A B∞-algebra is a family (V , (⟨−,−⟩k,l)k,l≥0) where
V is a vector space and for any k, l ≥ 0, ⟨−,−⟩k,l : V⊗k ⊗ V⊗l −→ V such that:

i) ⟨−,−⟩k,0 = ⟨−,−⟩0,k = 0 if k ̸= 1 and ⟨−,−⟩1,0 = ⟨−,−⟩0,1 = IdV .

ii) The unique coalgebra morphism m : T ⟨V⟩ ⊗ T ⟨V⟩ −→ T ⟨V⟩ defined by π ◦mV⊗k⊗V⊗l = ⟨−,−⟩k
is associative.

Then, equipped with the deconcatenation coproduct ∆dec(v1 . . . vn) :=
n∑

i=0

v1 . . . vi⊗vi+1 . . . vn, the triple

(T ⟨V⟩,m,∆dec) is a Hopf algebra.

A brace algebra is a B∞-algebra such that ⟨−,−⟩k,l = 0 if k ≥ 2. If V is a brace algebra, then for
any u = x1 . . . xk ∈ V⊗k and v ∈ T ⟨V⟩+,

m(u⊗ v) =
∑

v= v0...v2k

v0⟨x1, v1⟩v2 . . . ⟨xk, v2k−1⟩v2k,

where vi may be empty.

19

Dually, a locally finite brace coalgebra is a family (V , (δn)n≥1) where V is a vector space and for any
n, δn : V −→ V ⊗ V⊗n such that δ1 = IdV ; for any v ∈ V , there exists N(v) ∈ N such that if n ≥ N(v),
then δn(v) = 0; and the algebra morphism defined by

∆ :

T ⟨V⟩ −→ T ⟨V⟩ ⊗ T ⟨V⟩

v 7−→ ∆(v) = 1⊗ v + v ⊗ 1 +
∑
n≥1

δn(v)︸ ︷︷ ︸
∈V⊗V⊗n⊆T ⟨V⟩⊗T ⟨V⟩

, (7)

is coassociative. Then, (T ⟨V⟩, •,∆) is a bialgebra, • being the concatenation product.

Proposition 13. Let (V , (δn)n≥0) be a brace coalgebra with ∆ the associated coassociative coproduct on
T ⟨V⟩ as defined in Eq. (7). Then (V , δ1) is a preLie coalgebra.

Proof. For any v1, . . . , vn ∈ V ,

(π ⊗ π) ◦∆(v1 . . . vn) =

δ1(v1), if n = 1,

v1 ⊗ v2 + v2 ⊗ v1, if n = 2,

0, otherwise.

Therefore, for any v ∈ V ,

(π ⊗ π ⊗ π) ◦ (∆⊗ Id) ◦∆(v) = (π ⊗ π ⊗ Id) ◦ (∆⊗ Id) ◦ δ1(v)
= (δ1 ⊗ Id) ◦ δ1(v),

(π ⊗ π ⊗ π) ◦ (Id⊗∆) ◦∆(v) =
∞∑
k=1

(Id⊗ π ⊗ π) ◦ (Id⊗∆) ◦ δn(v)

= (Id⊗ δ1) ◦ δ1(v) + (Id⊗ Id⊗ Id + Id⊗ τ) ◦ δ2(v).

As a consequence, by the coassociativity of ∆,

(δ1 ⊗ Id) ◦ δ1 − (Id⊗ δ1) ◦ δ1 = (Id⊗ Id⊗ Id + Id⊗ τ) ◦ δ2,

and it follows that,

(δ1 ⊗ Id) ◦ δ1 − (Id⊗ δ1) ◦ δ1 = (Id⊗ Id⊗ Id + Id⊗ τ) ◦ ((δ1 ⊗ Id) ◦ δ1 − ◦(Id⊗ δ1) ◦ δ1),

so (V , δ1) is a preLie coalgebra.

In the case of interest here, namely that of W(G), define for ω ∈ W(G),

δn(ω) :=
∑

c∈EnAdC(w)

ωc ⊗ ωc,

with c an extended admissible cut involving exactly n admissible cuts, i.e.

c ∈ EnAdC(w) ⇐⇒ ωc = ωk1,k′1 | · · · |ωkn,k′n where ωki,k
′
i ∈ AdC(ω).

By Theorem 8, the coproduct defined as in Eq. (7) with the above definition for the δn, namely ∆H, is
coassociative. Proposition 13 then implies that (W(G), δ1), δ1 ≡ ∆CP, is a preLie coalgebra. In other
terms, Theorem 6 may be seen as a corollary of Theorem 8.

20

5.2. Codendriform bialgebra

The brace co-structure on W(G) now implies that T (W(G)) is a codendriform bialgebra, a dual of
the results of [9].

Denoting by EAdC+(ω) = EAdC(ω) ∪ {1, ω} the set of extended admissible cuts of ω augmented
by the empty cut and the total cut, recall that for any n ≥ 1 walks ω1, · · · , ωn ∈ W(G),

∆H(w1 | . . . | wn) =
∑

ci∈EAdC+(ωi)

(ω1)c1 | . . . | (ωn)cn ⊗ ωc1
1 | . . . | ωcn

n .

Now define, for any nonempty word ω1 | . . . | ωn ∈ T ⟨W(G)⟩, the maps

∆≺(ω1 | . . . | ωn) :=
∑

ci∈EAdC+(ωi),
(ω1)c1 ̸=1

(ω1)c1 | . . . | (ωn)cn ⊗ ωc1
1 | . . . | ωcn

n ,

∆≻(w1 | . . . | wn) :=
∑

ci∈EAdC+(wi),
(ω1)c1=1

(ω1)c1 | . . . | (ωn)cn ⊗ ωc1
1 | . . . | ωcn

n .

Proposition 14. (T (W(G)),∆≺,∆≻) is a codendriform bialgebra. Furthermore, for any x ∈ T (W(G))
with no constant term and any y ∈ T (W(G)), we have the two equalities ∆≺(x | y) = ∆≺(x) | ∆H(y),
and ∆≻(x | y) = ∆≻(x) | ∆H(y).

Proof. By the coassociativity of ∆H, for any ω ∈ W(G), (∆H⊗ Id)◦∆H(ω) = (Id⊗∆H)◦∆H(ω), that is∑
c∈EAdC+(ω)

∑
c′∈EAdC+(ωc)

(ωc)c′ ⊗ (ωc)
c′ ⊗ ωc =

∑
c∈EAdC+(ω)

∑
c′∈EAdC+(ωc)

ωc ⊗ (ωc)c′ ⊗ (ωc)c
′
.

Thus, there exists a set EAdC
(2)
+ (ω) such that the above may be put in the form∑

c∈EAdC
(2)
+ (ω)

ωc ⊗ ωc(1) ⊗ ωc(2).

Then, using this notation,

(∆H ⊗ Id) ◦∆≻(ω1| . . . |ωn) = (Id⊗∆≻) ◦∆≻(ω1| . . . |ωn)

=
∑

ci∈EAdC
(2)
+ (wi),

(ω1)c1=ω
c1(1)
1 =1

(ω1)c1 | . . . | (ωn)c1 ⊗ ω
c1(1)
1 | . . . | ωcn(1)

n ⊗ ω
c1(2)
1 | . . . | ωcn(2)

n ,

(∆≻ ⊗ Id) ◦∆≺(ω1| . . . |ωn) = (Id⊗∆≺) ◦∆≻(ω1| . . . |ωn)

=
∑

ci∈EAdC
(2)
+ (wi),

(ω1)c1=1, ω
c1(1)
1 ̸=1

(ω1)c1 | . . . | (ωn)c1 ⊗ ω
c1(1)
1 | . . . | ωcn(1)

n ⊗ ω
c1(2)
1 | . . . | ωcn(2)

n ,

(∆≺ ⊗ Id) ◦∆≺(ω1| . . . |ωn) = (Id⊗∆H) ◦∆≺(ω1| . . . |ωn)

=
∑

ci∈EAdC
(2)
+ (wi),

(ω1)c1 ̸=1

(ω1)c1 | . . . | (ωn)c1 ⊗ ω
c1(1)
1 | . . . | ωcn(1)

n ⊗ ω
c1(2)
1 | . . . | ωcn(2)

n .

21

6. Cacti, ladders and corollas

Recall from Definition 6 that a cactus is a kind of “disentangled” walk resembling a self-avoiding
skeleton on which bouquets of ladders are attached. Given that by the proof of Theorem 4 all walks are
chronologically equivalent to cacti, it seems intuitive that bouquets and ladders are basic building blocks
of walks and ought to be associated to sub-algebras of the walk algebras. In this section we formalize
this observation by showing first that cacti, ladders and corollas (a special type of bouquets) give rise
to sub-Hopf algebras of the tensor and symmetric algebras of all walks; and secondly that the mapping
from walks to cacti effected by the map C defined in the proof of Theorem 4 generates Hopf algebra
morphisms.

In a later work, using the permutative non-associative product nesting and the NAP-copreLie operad
it forms with ∆CP, we will formalize and exploit algebraically the construction of walks from bouquets
and ladders based on Lawler’s process.

6.1. Hopf subalgebras associated to cacti, ladders and corollas

Definition 14 (Ladder). Let G be a digraph. A ladder with root r1 and of height n ∈ N\{0} is a
closed walk made of a collection Cycl1, . . . , Cycln of simple cycles with roots r1, . . . , rn, respectively,
and such that:

i) V (Cyclk) ∩ V (Cyclk+1) = {rk+1} for any k ∈ {1, . . . , n− 1},

ii) V (Cyclk) ∩ V (Cycll) = ∅ whenever |k − l| > 1.

The vector space spanned by the ladders of G is denoted by Lad(G). The space T ⟨Lad(G)⟩ (respectively
S⟨Lad(G)⟩) is the tensor algebra (respectively the symmetric algebra) generated by Lad(G).

Definition 15 (Corolla). Let G be a digraph. A corolla of root r in G is a closed walk made of
n ∈ N\{0} simple cycles Cycl1, . . . , Cycln, all with a common root r. Corollas are bouquets of simple
cycles.

The vector space spanned by all corollas (respectively corollas of root r) of G is Cor(G) (respectively
Corr(G)). The space T ⟨Cor(G)⟩ (respectively S⟨Cor(G)⟩) is the tensor algebra (respectively the symmetric
algebra) generated by Cor(G). We define the spaces T ⟨Corr(G)⟩ and S⟨Corr(G)⟩ similarly from Corr(G).

Example 14. The walk 123454321 ∈ Lad(G) is a ladder, while walks 111 ∈ Cor1(G) and 123412451 ∈
Cor1(G) are corollas with root 1.

Proposition 15. Let G be a digraph and r ∈ V (G). Then,

1. (T ⟨Lad(G)⟩, •,∆H), (T ⟨Corr(G)⟩, •,∆H), (T ⟨Cor(G)⟩, •,∆H) and (T ⟨Cact(G)⟩, •,∆H) are Hopf
subalgebras of (T ⟨W(G)⟩, •,∆H).

2. (S⟨Lad(G)⟩,□,∆H), (S⟨Corr(G)⟩,□,∆H), (S⟨Cor(G)⟩,□,∆H) and (S⟨Cact(G)⟩,□,∆H) are Hopf
subalgebras of (S⟨W(G)⟩,□,∆H).

Proof. Firstly, the claims regarding (T ⟨Lad(G)⟩, •,∆H) and (S⟨Lad(G)⟩,□,∆H) are shown by direct
calculation.

Secondly, let ω be a corolla with root r ∈ V (G) comprising n ∈ N\{0} simple cycles Cycl1≤k≤n. Let
v ∈ V (G) be a vertex other than the root r visited by ω. Since Cycl1, . . . , Cycln are simple cycles, if v
is visited several times by ω then two instances of v cannot be found within a unique simple cycle. But
by using Remark 4 equivalent to Definition 4 for the loop- erased sections, any subwalk ωl,l′ = wl · · ·wl′

with wl = wl′ = v is not an admissible cut of ω, as it is not a valid loop-erased section of ω. Then all
the admissible cuts of ω take place at the root r,

22

∆H(ω) = ω ⊗ 1 + 1⊗ ω +
n−1∑
p=1 r

Cycl1 Cyclk· · ·
⊗

r

Cyclk+1 Cycln· · ·

which implies the claims for (T ⟨Cor(G)⟩, •,∆H), (S⟨Cori(G)⟩,□,∆H) and (S⟨Cor(G)⟩,□,∆H).
Thirdly, the claims about (T ⟨Cact(G)⟩, •,∆H) and (S⟨Cact(G)⟩,□,∆H) both follow from Proposition 7

and the fact that an admissible cut of a walk ω is, by definition, a loop-erased section of ω.

Remark 9. Since Proposition 15 establishes Hopf algebra structures on the tensor algebras generated
by ladders, corollas and cacti, the constructions of §5 extend to these walks as well. That is, there are
brace coalgebras and codendriform bialgebras on ladders, corollas and cacti and these are sub coalgebras
of the structures of §5 on all walks.

6.2. The cactus map generates Hopf algebra morphisms

We now show that the map C defined in Eq. (1) which sends a walk ω to a cactus generates
Hopf algebra morphisms. Recall that, by definition, C(ω) is a cactus in the complete graph KN with
V (KN) = N.

Let IN be the set of the injective maps N → N. For f ∈ IN and ω = w0 · · ·wℓ ∈ W(KN), we denote
by f(ω) ∈ W(KN) the walk defined by f(ω) := f(w0) . . . f(wℓ).

Definition 16. Let J1 and J2 be the vector spaces defined by:

J1 := Span
(
ω1 | . . . |ωn − f1(ω1) | . . . | fn(ωn); n ∈ N\{0}, ωi ∈ Cact(KN), fi ∈ IN

)
,

J2 := Span
(
ω1□ . . . □ωn − f1(ω1)□ . . . □ fn(ωn); n ∈ N\{0}, ωi ∈ Cact(KN), fi ∈ IN

)
.

Proposition 16. The vector space J1 (respectively J2) is a Hopf biideal of T ⟨Cact(KN)⟩ (respectively
S⟨Cact(KN)⟩).

Proof. We prove the result for J1. The reasoning for J2 is entirely similar.
Let ω = w0 · · ·wℓ ∈ W(G), then for any injective map f ∈ IN, the length of f(ω) is still ℓ and we

have the relation Eq. (2), that is

ωk,k′ ∈ AdC(ω) ⇐⇒ f(ω)k,k
′ ∈ AdC(f(ω)). (8)

Therefore, if ω ∈ Cact(G), f(ω) is also a cactus.

Now let α := ω1| . . . |ωn−f1(ω1)| . . . |fn(ωn) be a generator of J1 and β := τ1| . . . |τm ∈ T ⟨Cact(KN)⟩,

α • β = ω1 | . . . |ωn | τ1 | . . . | τm − f1(ω1) | . . . | fn(ωn) | τ1 | . . . | τm
= ω1 | . . . |ωn | τ1 | . . . | τm − f1(ω1) | . . . | fn(ωn) | Id(τ1) | . . . | Id(τm).

So we obtain α • β ∈ J1 and similarly β • α ∈ J1. As a consequence, J is an ideal.

Let ω = w0 . . . wℓ ∈ Cact(G) and f ∈ IN. By injectivity of f for c ∈ EAdC(ω) with ωc := ωk1,k′1;...;knk
′
n ,

we have
f(ω)c = f(ω)k1,k′1;...;knk′n = f(ωk1,k′1;...;knk

′
n
) = f(ωc).

Therefore

∆H(ω − f(ω)) = (ω − f(ω))⊗ 1+ 1⊗ (ω − f(ω)) +
∑

c∈EAdC(ω)

{
ωc ⊗ ωc − f(ω)c ⊗ f(ω)c

}
,

23

= (ω − f(ω))⊗ 1+ 1⊗ (ω − f(ω)) +
∑

c∈EAdC(ω)

{
ωc ⊗ ωc − ωc ⊗ f(ω)c

}
+

∑
c∈EAdC(ω)

{
ωc ⊗ f(ω)c − f(ωc)⊗ f(ω)c

}
.

This shows that ∆H(ω − f(ω)) ∈ T ⟨Cact(KN)⟩ ⊗ J1 + J1 ⊗ T ⟨Cact(KN)⟩. Since furthermore ∆H is an
algebra morphism, we conclude that J1 is a coideal.

Finally, by Eq. (2), Theorem 11 and the fact the antipode is an algebra antimorphism, we get
S(J1) ⊂ J1.

Remark 10. The elements of T ⟨Cact⟩(KN)/J1 and S⟨Cact⟩(KN)/J2 can be seen as cacti where the
node labels have been forgotten since the node labels are defined modulo the action of IN. These Hopf
algebras can thus legitimately be called the tensor and symmetric Hopf algebras of unlabeled cacti,
respectively.

By direct calculation,

Proposition 17. The degree map deg makes T ⟨Cact(KN)⟩/J1 and S⟨Cact(KN)⟩/J2 into graded Hopf
algebras.

Theorem 18. Let G be a digraph. Let Φ1 : T ⟨W(G)⟩ → T ⟨Cact(KN)⟩/J1 and
Φ2 : S⟨W(G)⟩ → T ⟨Cact(KN)⟩/J2 be the two algebra morphisms such that Φi(ω) is the unlabeled cactus
obtained from C(ω) by forgetting all its node labels. Then Φ1 and Φ2 are Hopf algebra morphisms.

Proof. By definition, the cardinalities of V (ω) and V (C(ω)) are equal, C(ω) is a cactus and Eq. (2)
holds. By the definition of ∆H and the formulas of the antipode given in Theorem 11 and Corollary 12,
we prove the theorem.

7. Acknowledgements

C. Mammez and P.-L. Giscard are supported by the ANR Alcohol project ANR-19-CE40-0006. In
addition, C. Mammez aknowledges support from Labex CEMPI, ANR-11-LABX-0007-01. P.-L. Giscard
also received funding from ANR Magica project ANR-20-CE29-0007. L. Foissy received funding from
ANRCarplo ANR-20-CE40-0007. We thank M. Ronco for regular, insightful discussions on the subject
of algebraic structures associated to graph walks since 2015.

References

[1] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, in
Quantum field theory: perspective and prospective (Les Houches, 1998), vol. 530 of NATO Sci. Ser.
C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 1999, pp. 59–108.

[2] L. Foissy, Les algèbres de Hopf des arbres enracinés décorés. I, Bull. Sci. Math., 126 (2002),
pp. 193–239.

[3] J. Fromentin, P.-L. Giscard, and T. Karaboghossian, Realizable cycle structures in
digraphs, European Journal of Combinatorics, 113 (2023), p. 103748.

[4] P.-L. Giscard and P. Rochet, Algebraic Combinatorics on Trace Monoids: Extending Number
Theory to Walks on Graphs, SIAM Journal on Discrete Mathematics, 31 (2017), p. 1428–1453.

24

[5] P.-L. Giscard, S. J. Thwaite, and D. Jaksch, Walk-sums, continued fractions and unique
factorisation on digraphs, CoRR, abs/1202.5523v5 (2012).

[6] G. F. Lawler, Loop-Erased Random Walk, Birkhäuser Boston, Boston, MA, 1999, pp. 197–217.

[7] M. Livernet, A rigidity theorem for pre-Lie algebras, Journal of Pure and Applied Algebra, 207
(2006), pp. 1–18.

[8] J.-M. Oudom and D. Guin, On the Lie enveloping algebra of a pre-Lie algebra, Journal of K-
Theory, 2 (2008), p. 147–167.

[9] M. Ronco, A Milnor–Moore theorem for dendriform Hopf algebras, Comptes Rendus de l’Académie
des Sciences - Series I - Mathematics, 332 (2001), pp. 109–114.

25

